204 research outputs found

    IP protection for DSP algorithms\u27 FPGA implementation.

    Get PDF
    With today\u27s system-on-chip (SOC) technology, we are able to design larger and more complicated application-specific integrated circuits (ASICs) and field programmable gate array (FPGA) in shorter time period. The key point of the success of SOC technology is the reuse of intellectual property (IP) cores. Consequently the copyright protection for these IP cores becomes the major concern for the development pace of SOC technology. Watermarking technology has been proved to be an effective way of copyright protection. In this thesis, the author presents two new watermarking algorithms respectively at algorithm level and FPGA layout level. The simulations and implementation results show that the new proposals have much less design and hardware implementation overheads, lower watermark embedding and extraction cost, as well as higher security strength, compared to the previously proposed methods.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .D39. Source: Masters Abstracts International, Volume: 43-03, page: 0929. Advisers: H. K. Kwan; H. Wu. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Contribution to the construction of fingerprinting and watermarking schemes to protect mobile agents and multimedia content

    Get PDF
    The main characteristic of fingerprinting codes is the need of high error-correction capacity due to the fact that they are designed to avoid collusion attacks which will damage many symbols from the codewords. Moreover, the use of fingerprinting schemes depends on the watermarking system that is used to embed the codeword into the content and how it honors the marking assumption. In this sense, even though fingerprinting codes were mainly used to protect multimedia content, using them on software protection systems seems an option to be considered. This thesis, studies how to use codes which have iterative-decoding algorithms, mainly turbo-codes, to solve the fingerprinting problem. Initially, it studies the effectiveness of current approaches based on concatenating tradicioanal fingerprinting schemes with convolutional codes and turbo-codes. It is shown that these kind of constructions ends up generating a high number of false positives. Even though this thesis contains some proposals to improve these schemes, the direct use of turbo-codes without using any concatenation with a fingerprinting code as inner code has also been considered. It is shown that the performance of turbo-codes using the appropiate constituent codes is a valid alternative for environments with hundreds of users and 2 or 3 traitors. As constituent codes, we have chosen low-rate convolutional codes with maximum free distance. As for how to use fingerprinting codes with watermarking schemes, we have studied the option of using watermarking systems based on informed coding and informed embedding. It has been discovered that, due to different encodings available for the same symbol, its applicability to embed fingerprints is very limited. On this sense, some modifications to these systems have been proposed in order to properly adapt them to fingerprinting applications. Moreover the behavior and impact over a video produced as a collusion of 2 users by the YouTube’s s ervice has been s tudied. We have also studied the optimal parameters for viable tracking of users who have used YouTube and conspired to redistribute copies generated by a collusion attack. Finally, we have studied how to implement fingerprinting schemes and software watermarking to fix the problem of malicious hosts on mobile agents platforms. In this regard, four different alternatives have been proposed to protect the agent depending on whether you want only detect the attack or avoid it in real time. Two of these proposals are focused on the protection of intrusion detection systems based on mobile agents. Moreover, each of these solutions has several implications in terms of infrastructure and complexity.Els codis fingerprinting es caracteritzen per proveir una alta capacitat correctora ja que han de fer front a atacs de confabulació que malmetran una part important dels símbols de la paraula codi. D'atra banda, la utilització de codis de fingerprinting en entorns reals està subjecta a que l'esquema de watermarking que gestiona la incrustació sigui respectuosa amb la marking assumption. De la mateixa manera, tot i que el fingerprinting neix de la protecció de contingut multimèdia, utilitzar-lo en la protecció de software comença a ser una aplicació a avaluar. En aquesta tesi s'ha estudiat com aplicar codis amb des codificació iterativa, concretament turbo-codis, al problema del rastreig de traïdors en el context del fingerprinting digital. Inicialment s'ha qüestionat l'eficàcia dels enfocaments actuals en la utilització de codis convolucionals i turbo-codis que plantegen concatenacions amb esquemes habituals de fingerprinting. S'ha demostrat que aquest tipus de concatenacions portaven, de forma implícita, a una elevada probabilitat d'inculpar un usuari innocent. Tot i que s'han proposat algunes millores sobre aquests esquemes , finalment s'ha plantejat l'ús de turbocodis directament, evitant així la concatenació amb altres esquemes de fingerprinting. S'ha demostrat que, si s'utilitzen els codis constituents apropiats, el rendiment del turbo-descodificador és suficient per a ser una alternativa aplicable en entorns amb varis centenars d'usuaris i 2 o 3 confabuladors . Com a codis constituents s'ha optat pels codis convolucionals de baix ràtio amb distància lliure màxima. Pel que fa a com utilitzar els codis de fingerprinting amb esquemes de watermarking, s'ha estudiat l'opció d'utilitzar sistemes de watermarking basats en la codificació i la incrustació informada. S'ha comprovat que, degut a la múltiple codificació del mateix símbol, la seva aplicabilitat per incrustar fingerprints és molt limitada. En aquest sentit s'ha plantejat algunes modificacions d'aquests sistemes per tal d'adaptar-los correctament a aplicacions de fingerprinting. D'altra banda s'ha avaluat el comportament i l'impacte que el servei de YouTube produeix sobre un vídeo amb un fingerprint incrustat. A més , s'ha estudiat els paràmetres òptims per a fer viable el rastreig d'usuaris que han confabulat i han utilitzat YouTube per a redistribuir la copia fruït de la seva confabulació. Finalment, s'ha estudiat com aplicar els esquemes de fingerprinting i watermarking de software per solucionar el problema de l'amfitrió maliciós en agents mòbils . En aquest sentit s'han proposat quatre alternatives diferents per a protegir l'agent en funció de si és vol només detectar l'atac o evitar-lo en temps real. Dues d'aquestes propostes es centren en la protecció de sistemes de detecció d'intrusions basats en agents mòbils. Cadascuna de les solucions té diverses implicacions a nivell d'infrastructura i de complexitat.Postprint (published version

    3D indoor positioning of UAVs with spread spectrum ultrasound and time-of-flight cameras

    Get PDF
    Este trabajo propone el uso de un sistema híbrido de posicionamiento acústico y óptico en interiores para el posicionamiento 3D preciso de los vehículos aéreos no tripulados (UAV). El módulo acústico de este sistema se basa en un esquema de Acceso Múltiple por División de Código de Tiempo (T-CDMA), en el que la emisión secuencial de cinco códigos ultrasónicos de espectro amplio se realiza para calcular la posición horizontal del vehículo siguiendo un procedimiento de multilateración 2D. El módulo óptico se basa en una cámara de Tiempo de Vuelo (TOF) que proporciona una estimación inicial de la altura del vehículo. A continuación se propone un algoritmo recursivo programado en un ordenador externo para refinar la posición estimada. Los resultados experimentales muestran que el sistema propuesto puede aumentar la precisión de un sistema exclusivamente acústico en un 70-80% en términos de error cuadrático medio de posicionamiento.This work proposes the use of a hybrid acoustic and optical indoor positioning system for the accurate 3D positioning of Unmanned Aerial Vehicles (UAVs). The acoustic module of this system is based on a Time-Code Division Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic codes is performed to compute the horizontal vehicle position following a 2D multilateration procedure. The optical module is based on a Time-Of-Flight (TOF) camera that provides an initial estimation for the vehicle height. A recursive algorithm programmed on an external computer is then proposed to refine the estimated position. Experimental results show that the proposed system can increase the accuracy of a solely acoustic system by 70–80% in terms of positioning mean square error.• Gobierno de España y Fondos para el Desarrollo Regional Europeo. Proyectos TARSIUS (TIN2015-71564-C4-4-R) (I+D+i), REPNIN (TEC2015-71426-REDT) y SOC-PLC (TEC2015-64835-C3-2-R) (I+D+i) • Junta de Extremadura, Fondos FEDER y Fondo Social Europeo. Proyecto GR15167 y beca predoctoral 45/2016 Exp. PD16030peerReviewe

    Design and theoretical analysis of advanced power based positioning in RF system

    Get PDF
    Accurate locating and tracking of people and resources has become a fundamental requirement for many applications. The global navigation satellite systems (GNSS) is widely used. But its accuracy suffers from signal obstruction by buildings, multipath fading, and disruption due to jamming and spoof. Hence, it is required to supplement GPS with inertial sensors and indoor localization schemes that make use of WiFi APs or beacon nodes. In the GPS-challenging or fault scenario, radio-frequency (RF) infrastructure based localization schemes can be a fallback solution for robust navigation. For the indoor/outdoor transition scenario, we propose hypothesis test based fusion method to integrate multi-modal localization sensors. In the first paper, a ubiquitous tracking using motion and location sensor (UTMLS) is proposed. As a fallback approach, power-based schemes are cost-effective when compared with the existing ToA or AoA schemes. However, traditional power-based positioning methods suffer from low accuracy and are vulnerable to environmental fading. Also, the expected accuracy of power-based localization is not well understood but is needed to derive the hypothesis test for the fusion scheme. Hence, in paper 2-5, we focus on developing more accurate power-based localization schemes. The second paper improves the power-based range estimation accuracy by estimating the LoS component. The ranging error model in fading channel is derived. The third paper introduces the LoS-based positioning method with corresponding theoretical limits and error models. In the fourth and fifth paper, a novel antenna radiation-pattern-aware power-based positioning (ARPAP) system and power contour circle fitting (PCCF) algorithm are proposed to address antenna directivity effect on power-based localization. Overall, a complete LoS signal power based positioning system has been developed that can be included in the fusion scheme --Abstract, page iv

    A survey on acoustic positioning systems for location-based services

    Get PDF
    Positioning systems have become increasingly popular in the last decade for location-based services, such as navigation, and asset tracking and management. As opposed to outdoor positioning, where the global navigation satellite system became the standard technology, there is no consensus yet for indoor environments despite the availability of different technologies, such as radio frequency, magnetic field, visual light communications, or acoustics. Within these options, acoustics emerged as a promising alternative to obtain high-accuracy low-cost systems. Nevertheless, acoustic signals have to face very demanding propagation conditions, particularly in terms of multipath and Doppler effect. Therefore, even if many acoustic positioning systems have been proposed in the last decades, it remains an active and challenging topic. This article surveys the developed prototypes and commercial systems that have been presented since they first appeared around the 1980s to 2022. We classify these systems into different groups depending on the observable that they use to calculate the user position, such as the time-of-flight, the received signal strength, or the acoustic spectrum. Furthermore, we summarize the main properties of these systems in terms of accuracy, coverage area, and update rate, among others. Finally, we evaluate the limitations of these groups based on the link budget approach, which gives an overview of the system's coverage from parameters such as source and noise level, detection threshold, attenuation, and processing gain.Agencia Estatal de InvestigaciónResearch Council of Norwa

    Joint Communication and Positioning based on Channel Estimation

    Get PDF
    Mobile wireless communication systems have rapidly and globally become an integral part of everyday life and have brought forth the internet of things. With the evolution of mobile wireless communication systems, joint communication and positioning becomes increasingly important and enables a growing range of new applications. Humanity has already grown used to having access to multimedia data everywhere at every time and thereby employing all sorts of location-based services. Global navigation satellite systems can provide highly accurate positioning results whenever a line-of-sight path is available. Unfortunately, harsh physical environments are known to degrade the performance of existing systems. Therefore, ground-based systems can assist the existing position estimation gained by satellite systems. Determining positioning-relevant information from a unified signal structure designed for a ground-based joint communication and positioning system can either complement existing systems or substitute them. Such a system framework promises to enhance the existing systems by enabling a highly accurate and reliable positioning performance and increased coverage. Furthermore, the unified signal structure yields synergetic effects. In this thesis, I propose a channel estimation-based joint communication and positioning system that employs a virtual training matrix. This matrix consists of a relatively small training percentage, plus the detected communication data itself. Via a core semi- blind estimation approach, this iteratively includes the already detected data to accurately determine the positioning-relevant parameter, by mutually exchanging information between the communication part and the positioning part of the receiver. Synergy is created. I propose a generalized system framework, suitable to be used in conjunction with various communication system techniques. The most critical positioning-relevant parameter, the time-of-arrival, is part of a physical multipath parameter vector. Estimating the time-of-arrival, therefore, means solving a global, non-linear, multi-dimensional optimization problem. More precisely, it means solving the so-called inverse problem. I thoroughly assess various problem formulations and variations thereof, including several different measurements and estimation algorithms. A significant challenge, when it comes to solving the inverse problem to determine the positioning-relevant path parameters, is imposed by realistic multipath channels. Most parameter estimation algorithms have proven to perform well in moderate multipath environments. It is mathematically straightforward to optimize this performance in the sense that the number of observations has to exceed the number of parameters to be estimated. The typical parameter estimation problem, on the other hand, is based on channel estimates, and it assumes that so-called snapshot measurements are available. In the case of realistic channel models, however, the number of observations does not necessarily exceed the number of unknowns. In this thesis, I overcome this problem, proposing a method to reduce the problem dimensionality via joint model order selection and parameter estimation. Employing the approximated and estimated parameter covariance matrix inherently constrains the estimation problem’s model order selection to result in optimal parameter estimation performance and hence optimal positioning performance. To compare these results with the optimally achievable solution, I introduce a focused order-related lower bound in this thesis. Additionally, I use soft information as a weighting matrix to enhance the positioning algorithm positioning performance. For demonstrating the feasibility and the interplay of the proposed system components, I utilize a prototype system, based on multi-layer interleave division multiple access. This proposed system framework and the investigated techniques can be employed for multiple existing systems or build the basis for future joint communication and positioning systems. The assessed estimation algorithms are transferrable to all kinds of joint communication and positioning system designs. This thesis demonstrates their capability to, in principle, successfully cope with challenging estimation problems stemming from harsh physical environments

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Augmented watermarking

    Get PDF
    This thesis provides an augmented watermarking technique wherein noise is based on the watermark added to the watermarked image so that only the end user who has the key for embedding the watermark can both remove the noise and watermark to get a final clear image. The recovery for different values of noise is observed. This system may be implemented as a basic digital rights management system by defining a regime of partial rights using overlaid watermarks, together with respectively added layers of noise, in which the rights of the users define the precision with which the signals may be viewed
    corecore