
Contribution to the construction of

fingerprinting and watermarking

schemes to protect mobile agents

and multimedia content

by

Joan Tomàs-Buliart

Director:

Prof. Marcel Fernández-Muñoz

A dissertation submitted to the Department of Network Engineering and the

committee on graduate studies of Universitat Politècnica de Catalunya in

partial fulfilment of the requirements for the degree of doctor

Barcelona, September 2018

This document has been produced using LATEX 2ε.

To Silvia, Joan and Laia,

my mother,

my two fathers

and my family

“Tornarem a sofrir,

tornarem a lluitar

i tornarem a vèncer”

Lluís Companys i Jover

“It is only in the mysterious equations of love

that any logic or reasons can be found”

John Nash (A beautiful mind)

iii

AGRAÏMENTS

Aquesta tesi ha estat molt llarga, és cert, per aquest motiu en especial i per molts

d’altres vull agrair profundament a totes les persones que m’han ajudat i animat en

el camí. Especialment:

• Al professor Marcel Fernández i Muñoz, per la direcció, el suport, la paciència,

la insistència, la crítica constructiva i l’orientació. De ben segur que sense ell

aquesta tesi no s’hauria acabat.

• Al professor Miquel Soriano i Ibáñez, per haver cregut que podia aportar quel-

com a la recerca i recolzar-me en el camí, pels consells, tant els acadèmics, pels

que li estic profundament agraït, però sobretot pels personals.

• Al professor Emilio Sanvicente i Gargallo, per fer que els turbo-codis semblessin

senzills, la descodificació lògica i la versemblança evident.

• Als companys del Information Security Group, per l’ajuda, la col·laboració, les

idees i el bon humor. Heu estat uns magnífics companys de viatge.

• Als meus projectistes, el Joan, el Sergi, el Christian, el Ricardo, el Federico, el

Xavier i, especialment, el Roger i l’Ana, sense vosaltres aquesta tesi no hauria

estat possible.

• Als membres del Departament d’Enginyeria Telemàtica de la UPC, especial a la

línia de SERTEL, per haver-me ajudat en tot el que us he anat demanant durant

aquest 14 anys.

• A la meva família i amics que sempre han cregut que el dia d’avui arribaria.

v

Research of this work was supported in part by the Spanish Government through

projects TSI2005-07293-C02-01 (SECONNET), TEC2008-06663-C03-01 (P2PSEC), and

TEC2011-26491 “COPPI”, by the Spanish Ministry of Science and Education with CON-

SOLIDER CSD2007-00004 (ARES), by Generalitat de Catalunya with the grants 2005

SGR 01015 and 2009 SGR 01362 to consolidated research groups and by Secretaría de

Estado de Universidades e Investigación of Spanish Government through the grant

BES-2006-13976.

vii

ACRONYMS

AG Algebraic Geometric Code

API Application Programming Interface

BCH Bose–Chaudhuri–Hocquenghem codes

BER Bit Error Ratio

CDMA Code-Division Multiple-Access

CIA Cooperative Itinerant Agent

CRL Certificate Revocation List

CSCFI Collusion Secure Convolutional Fingerprinting Information

DCT Discrete Cosine Transform

DRM Digital Right Management

FBF Fingerprinting Branch Function

FFT Fast Fourier Transform

FP Frameproof

HoRA Host Revocation Authority

HRL Host Revocation List

HVS Human Visual System

IDS Intrusion Detection Systems

IPP Identifiable Parent Property

LLR Log-Likelihood Ratio

MAP Maximum A-posteriori Probability Algorithm

ix

x ACRONYMS

MAW Mobile Agent Watermarking

MFBF Modified Fingerprinting Branch Function

MFD Maximum Free Distance

MFDLRC Maximum Free Distance Low-Rate Convolutional Codes

ML Maximum-likelihood

ODS Optimum Distance Spectrum

PKI Public Key infrastructure

PSNR Peak Signal-to-Noise Ratio

QIM Quantization Index Modulation

RSC Recursive Systematic Convolutional

SDS Superior Distance Spectrum

SFP Secure Frameproof

SNR Signal-to-Noise Ratio

SOVA Soft Output Viterbi Algorithm

SVBBSW Self-Validating Branch-Based Software Watermarking

TA Traceability Property

TFC Turbo Fingerprinting Codes

TTP Third Trusted Party

WNR Watermark-to-Noise Ratio

ABSTRACT

The main characteristic of fingerprinting codes is the need of high error-correction

capacity due to the fact that they are designed to avoid collusion attacks which will

damage many symbols from the codewords. Moreover, the use of fingerprinting

schemes depends on the watermarking system that is used to embed the codeword

into the content and how it honors the marking assumption. In this sense, even

though fingerprinting codes were mainly used to protect multimedia content, using

them on software protection systems seems an option to be considered.

This thesis, studies how to use codes which have iterative-decoding algorithms,

mainly turbo-codes, to solve the fingerprinting problem. Initially, it studies the ef-

fectiveness of current approaches based on concatenating tradicioanal fingerprinting

schemes with convolutional codes and turbo-codes. It is shown that these kind of

constructions ends up generating a high number of false positives. Even though this

thesis contains some proposals to improve these schemes, the direct use of turbo-

codes without using any concatenation with a fingerprinting code as inner code has

also been considered. It is shown that the performance of turbo-codes using the ap-

propiate constituent codes is a valid alternative for environments with hundreds of

users and 2 or 3 traitors. As constituent codes, we have chosen low-rate convolutional

codes with maximum free distance.

As for how to use fingerprinting codes with watermarking schemes, we have stud-

ied the option of using watermarking systems based on informed coding and informed

embedding. It has been discovered that, due to different encodings available for the

same symbol, its applicability to embed fingerprints is very limited. On this sense,

some modifications to these systems have been proposed in order to properly adapt

them to fingerprinting applications. Moreover the behavior and impact over a video

produced as a collusion of 2 users by the YouTube’s service has been studied. We

have also studied the optimal parameters for viable tracking of users who have used

YouTube and conspired to redistribute copies generated by a collusion attack.

xi

xii ABSTRACT

Finally, we have studied how to implement fingerprinting schemes and software

watermarking to fix the problem of malicious hosts on mobile agents platforms. In

this regard, four different alternatives have been proposed to protect the agent de-

pending on whether you want only detect the attack or avoid it in real time. Two of

these proposals are focused on the protection of intrusion detection systems based on

mobile agents. Moreover, each of these solutions has several implications in terms of

infrastructure and complexity.

CONTENTS

iii

Agraïments v

Acronyms ix

Abstract xi

I Overview 1

1 Introduction 3

1.1 About this thesis . 3

1.2 Motivation and objectives . 4

1.2.1 Objectives on fingerprinting codes and schemes 4

1.2.2 Objectives on secure e-commerce of multimedia content 5

1.2.3 Objectives on mobile agents protection 6

1.3 Main contributions of this thesis . 7

1.3.1 Contributions related to fingerprinting codes and schemes . . . 7

1.3.2 Contributions related to secure e-commerce of multimedia

content . 7

1.3.3 Contributions related to mobile agents protection 8

2 State of the art 9

2.1 Digital Watermarking . 10

2.1.1 Differences between watermarking and cryptography 10

2.1.2 Classical image watermarking systems 12

2.1.3 Common concepts in actual watermarking schemes 14

2.1.4 Spread Spectrum Modulation . 16

2.2 Digital Fingerprinting . 18

2.2.1 Properties of fingerprinting codes 19

2.2.2 Types of fingerprinting codes . 20

xiii

xiv CONTENTS

2.2.3 Comparison of the most significant existing fingerprinting

schemes . 27

2.3 Codes with iterative decoding . 29

2.3.1 Turbo Codes . 31

2.4 Software Watermarking . 33

2.4.1 Classification of Software Watermarks 34

2.4.2 Threat Model for Software Copyright Protection 34

2.4.3 Dynamic Graph Watermarking . 35

2.4.4 Self-Validating Branch-Based Software Watermarking by Myles

et al. 37

2.5 Mobile agents . 40

II Contributions related to fingerprinting codes and schemes 45

3 Improvements of existent convolutional-like fingerprinting codes 47

3.1 Introduction . 47

3.2 Definition . 49

3.3 Boneh-Shaw fingerprinting model . 50

3.3.1 n-secure codes . 51

3.3.2 Logarithmic Length c-Secure Codes 52

3.4 Impr. of Collusion Secure Convolutional Fingerprinting Information

Codes . 52

3.4.1 Collusion Secure Convolutional Fingerprinting Information

Codes . 53

3.4.2 A new critical performance analysis 55

3.4.3 Guidelines for minimizing the effect of false positives 59

3.5 New considerations about the correct design of Turbo Fingerprinting

Codes . 60

3.5.1 Turbo Codes . 60

3.5.2 Turbo Fingerprinting Scheme . 62

3.5.3 A new critical performance analysis 64

3.5.4 Proposed improvements and open problems 66

3.6 Conclusions . 68

4 Use of Turbo Codes with Low-Rate Convolutional Constituent Codes 73

4.1 Introduction . 73

4.1.1 The novel contribution . 74

4.2 Definitions and previous results . 75

4.2.1 Turbo Codes . 76

CONTENTS xv

4.2.2 Maximum free distance low-rate convolutional codes 76

4.2.3 Traceability Codes . 77

4.3 Family of turbo fingerprinting codes for coalitions of size two 78

4.3.1 Code construction . 78

4.3.2 Family construction . 79

4.4 Security analysis . 79

4.4.1 Study about the performance of the presented codes depending

on constituent codes and the number of supported users 81

4.4.2 Length comparison with other well-known fingerprinting con-

structions . 83

4.4.3 Puncturing effects on proposed codes 85

4.4.4 On the selected algorithm and implementation details of the

watermarking layer . 86

4.4.5 Innocent-user framing probability versus Watermarking-to-

Noise Ratio . 89

4.4.6 Effect of the use of a repetition code in the performance of the

whole system . 89

4.5 Conclusions . 92

III Contributions related to secure e-commerce of multimedia content 93

5 Traitor tracing over YouTube video service - Proof of concept 95

5.1 Introduction . 95

5.2 Scenario description . 97

5.3 Watermarking Layer . 98

5.3.1 Watermarking in the frequency domain 99

5.3.2 Secure Spread Spectrum . 100

5.4 Fingerprinting Layer . 101

5.4.1 Background on coding theory . 102

5.4.2 Construction of a Concatenated Fingerprinting Code 103

5.4.3 Overview of the Fingerprinting Concatenated Decoding Algo-

rithm . 103

5.5 YouTube Broadcast video service . 104

5.5.1 Technical notes . 105

5.6 Our implementation . 105

5.6.1 Sequence generator . 108

5.6.2 Collusion attack generator . 110

5.6.3 Traitor Tracing . 110

5.6.4 External tools . 110

xvi CONTENTS

5.7 Results . 111

5.7.1 How to choose the correct α. 112

5.7.2 Traitors retrieval performance after collusion attacks. 114

5.8 Conclusions . 115

6 Development of a platform for the copyright protection 117

6.1 Introduction . 117

6.2 Working Scenario . 118

6.3 Implementation Details . 120

6.3.1 Watermarking Layer . 120

6.3.2 Fingerprinting Layer . 120

6.3.3 Implementation Details of Digital Rights Protection 121

6.4 Entities and Collaboration . 124

6.4.1 Platform Functionalities . 126

6.4.2 Stock Management . 128

6.4.3 System Architecture . 129

6.4.4 Platform User Interface . 132

6.5 Conclusion . 134

IV Contributions related to Mobile Agent Protection 137

7 Execution integrity of mobile agents in intrussion detection systems 139

7.1 Introduction . 140

7.2 Background . 140

7.2.1 Software watermarking and fingerprinting 140

7.2.2 Intrusion Detection Systems . 141

7.2.3 IDS based on autonomous agents 141

7.2.4 Risks in an IDS based on agents 142

7.3 Mobile Agent integrity System . 143

7.3.1 Scheme proposal . 143

7.3.2 Discussion . 147

7.4 Improvement of Cooperative Itinerant Agents platform 147

7.4.1 Protecting agents against replay attacks 149

7.4.2 Using a matrix of marks . 149

7.4.3 Code obfuscation . 154

7.4.4 Mark embedding . 155

7.4.5 Discussion . 156

7.5 Conclusions . 156

CONTENTS xvii

8 Protection of MA execution using an external sentinel 157

8.1 Introduction . 157

8.2 General Concepts . 159

8.3 Self-Validating Branch-Based Software Watermarking with external

sentinel . 159

8.4 Security analysis . 161

8.5 Implementation aspects . 163

8.6 Conclusions . 164

9 An infrastructure for detecting and punishing malicious hosts 165

9.1 Introduction . 165

9.2 Background . 167

9.2.1 Malicious Hosts . 167

9.2.2 Software Watermarking . 168

9.3 Mobile Agent Watermarking (MAW) . 168

9.3.1 Watermark Embedding . 169

9.3.2 Watermark Transference . 170

9.3.3 Detecting Manipulations . 171

9.3.4 Advantages and Drawbacks of MAW 172

9.3.5 Design of the Watermarks for MAW 173

9.3.6 Implementation of MAW using the CT Algorithm 175

9.4 Punishing Attacks with the HoRA . 179

9.4.1 Status Checking . 179

9.4.2 Host Revocation . 180

9.4.3 Summarizing the Overall Process 181

9.5 Conclusions . 182

V Final remarks 183

10 Conclusions and future work 185

10.1 Conclusions . 185

10.2 Future research work . 188

Own References 191

JCR . 191

LNCS . 191

International conferences . 192

Spanish conferences . 192

References 195

LIST OF FIGURES

2.1 Differences between watermarking and cryptography 11

2.2 Generic embedding of marks . 15

2.3 Generic mark extraction . 15

2.4 DCT coefficients . 16

2.5 Dual Turbo Encoder/Decoder with ratio r = 1
3 32

2.6 Scheme of Dynamic Graph Watermarking . 36

2.7 Example of embedding n=4453 by means of Radix-k 37

2.8 Some instructions (jump or call for instance) are converted to calls to a

branch function. The next step in the program execution will be managed

by this branch function. 39

2.9 Tamper detection mechanism implemented with checksums and branch

functions. 39

2.10 Mobile Agent Scenario . 40

3.1 State diagram for (2,1,2) Convolutional code 56

3.2 Paths in a trellis diagram corresponding to two colluders that can create

false positives . 57

3.3 False Positive Probability vs. Number of users 59

3.4 False Positive Probability vs. Memory of Convolutional Code 59

3.5 Dual Turbo Encoder/Decoder with ratio r = 1
3 62

3.6 Turbo fingerprinting scheme for 2 traitors. 63

3.7 Bit probability error of a TFC with generator sequences constituent RSC

(53,75)8 over collusion attack decoded using likelihood information. 67

3.8 Bit probability error of a TFC with generator sequences constituent RSC

(53,75)8 concatenated with several error correcting codes over collusion at-

tack decoded using likelihood information. 69

3.9 % of detecting 0, 1 or 2 traitors after a collusion attack of 2 traitors by the

use of TFC with correlation decoding. 70

4.1 Feed-forward concolutional encoder for a rate R = 1/m and constraint

length k = 7. 76

xix

xx List of Figures

4.2 Schema of the simulated scenario. 81

4.3 Evolution of error probability versus attack noise level (in dB) and internal

convolutional code ratio R for a user group of 225 and c = 3. 84

4.4 Effect of puncturing the parity bits generated by the RSC encoders of a

turbo encoder. The turbo fingerprinting code has two identical RSC en-

coders with generator polynomials Fs1 , Fs2 , Fs3 , Fs4 , Fs5 . Simulation results

obtained using a turbo code with c = 2, SN R = 10dB and constraint length

K = 7. 86

4.5 Evolution of error probability versus attack noise level (in dB), for a user

group of 28, using a turbo fingerprinting code with c = 2, constraint length

K = 7 and internal convolutional code ratio R = 1
15 90

4.6 Evolution of error probability versus the number r of repetitions of the

codeword of the users (r is indicated near every point in the figure), for a

user group of 28, using different turbo fingerprinting codes with c = 2, con-

straint length K = 7, internal convolutional code ratios R = {1
5 , 1

10 , 1
15 , 1

20 , 1
25

}
and WNR=−3.5218 dB. 91

4.7 Evolution of error probability versus the number of repetitions of the code-

word of the users (r), for a user group of 28, using a turbo fingerprinting

code with c = 2, constraint length K = 7, internal convolutional code ratio

R = 1
15 and WNR=−3.5218 dB. 92

5.1 Overall system . 98

5.2 Watermarking process schema . 101

5.3 Collusion attack process. 106

5.4 Traitors tracing workflow. 107

5.5 Tools developed to perform our proof of concept. 109

5.6 Corpus of videos used in our simulations. These images have Copyright

(1996) David Sarnoff Research Center, Inc. and are availabel at [108]. All of

them are MPEG-2 elementary streams with a resolution of 352×288 pixels

and a bit rate of 1.5 Mbps. 112

5.7 Watermarking layer performance. 113

5.8 Results of traitor tracing in scenarios with and without collusion and differ-

ent α values. 114

6.1 Libavfilter working flow . 122

6.2 Graphical representation of platform main functionalities. 126

6.3 Diagram of the generic platform modules . 129

6.4 Deployment diagram of the services proposed in the platform 131

6.5 System welcome page and product detailed information view 132

6.6 Products list and available menu options (right side) 133

List of Figures xxi

7.1 MAIS System Architecture . 145

7.2 Transceivers verification by cooperative agents. 148

8.1 Schema of self-validating branch-based software watermarking with exter-

nal control operation. 161

8.2 Control of critically distributed infrastructures with mobile agents and dif-

ferent sentinels. 162

9.1 Container generation process. 176

9.2 Working of MAW proposal . 181

LIST OF TABLES

2.1 Feasible Set according to the different definitions 24

2.2 Characteristics of some fingerprinting codes. 27

4.1 Simulation results obtained using a turbo fingerprinting code with c = 2,

SN R = 10dB , constraint length K = 7. The turbo fingerprinting code has

two identical convolutional codes with generator polynomials Fs1 , Fs2 , Fs3 ,

Fs4 , Fs5 . 83

4.2 Length comparison with Boneh-Shaw and Tardos contructions consider-

ing a collusion of 2 attackers (c=2). 85

4.3 Length comparison with Boneh-Shaw and Tardos contructions consider-

ing a collusion of 3 attackers (c=3). Note that in BS and Tardos construc-

tions, the channel is considered noiseless, nevertheless, some noise is consid-

ered in the proposed construction (not considered in BS or Tardos). 85

5.1 PSNR between original sequences and sequences after YouTube process. . 113

6.1 Tests results for movie sample . 124

7.1 Matrix of marks . 151

7.2 Fixed values used in the example. 151

7.3 Random values issued every time that the CIA Matrix of marks 152

7.4 Matrix Positions versus set of possible sub marks to verify. 153

xxiii

Part I

Overview

C
H

A
P

T
E

R

1
INTRODUCTION

1.1 About this thesis

This thesis deals with the construction of fingerprinting schemes taking into account

the problems in their actual implementations, whether they are used for the protec-

tion of multimedia content, such as software in the form of mobile agents. Specifically,

the areas of study in which the contributions of this thesis are framed could be sum-

marized in:

• Watermarking techniques, that is, how a mark, which contains a certain infor-

mation, can be embedded within a certain digital content (mainly videos and

software parts) in order to guarantee a set of security properties.

• The way these marks have to be generated to protect the contents against con-

fabulation attacks is treated with fingerprinting schemes. A collusion attack

occurs when several users who have access to different copies of the same con-

tent decide to put them in common in order to identify parts of the embedded

marks and produce a new copy that contains parts of the marks of the attackers.

Once this copy has been obtained, it is illegally distributed.

• A typology of codes commonly used in fingerprinting schemes is that ones with

iterative decoding. Specifically, the suitability of the convolutional codes and

their combination in the form of turbo-codes has been studied to be used in

fingerprinting schemes.

3

1. INTRODUCTION

This thesis is structured within three main parts. Each one related to one of these

areas. Moreover, the next chapter describes the state-of-the-art on these areas. Finally,

in the last chapter, all the conclusions and open research lines are summarized.

1.2 Motivation and objectives

In the previous section we have presented a brief introduction of the three areas in

which this thesis has made contributions and how they are related to each other.

Basically, in the part II the fingerprinting codes based on iterative decoding codes

are studied. The way to integrate fingerprinting codes with watermarking schemes

and how they react in a hostile environment like YouTube is addressed in the part III.

Finally, in the part IV, we push watermaking and fingerprinting one step further by

applying its principles to protect the execution of mobile agents.

The details about of the different chapters that make up each part are summarized

in more detail below.

1.2.1 Objectives on fingerprinting codes and schemes

First we analyse and aim to reduce the impact of the problem of false positives de-

tected in the scheme presented in Convolutional Fingerprinting Information Codes by

Zhu et al. [122]. These codes are the result of concatenating convolutional codes with

the Boneh-Shaw [11] fingerprinting scheme. These codes have a design deficiency

which provokes that they will not be necessarily c-secured with ε-error. This failure is

due to the fact that the Viterbi standard error probability analysis can not directly be

applied to the detection algorithm proposed by the authors. So, the main objectives

in this case are:

• to show the problem of false positives that this construction has, that is to say,

to prove how an authorized user can be accused of illegal redistribution

• to quantify, by means of a threshold, this probability of false positive and justify

it both analytically and by means of simulation

• to sketch some master lines for the correct design of this family’s codes.

A similar approach was followed by Zhang et al. in [121]. Basically, these new codes

are formed by the composition of an outer turbo-code with an inner code based on the

Boneh-Shaw scheme [11]. This proposal has some problems due to the symbol-by-

symbol collusion attack performed by pirates is not treated efficiently by the decoding

algorithm. The objectives are:

4

1.2. Motivation and objectives

• present the problems detected in order to facilitate the design of new schemes

of turbo fingerprinting codes that allow the correct identification of, at least, one

attacker,

• improve the codes using the likelihood information of the non-detected coef-

ficients by the attackers, that is, conditioning the turbo-decoder depending on

whether the internal code has detected that a symbol has not been modified as

a result of confabulation,

• increase the performance of codes by using the correlation between the words

of the code and the likelihood obtained from the decoding of the collapsed word

with the drawback of increasing the computational cost of decoding.

Finally, we explore the use of turbo-codes in fingerprinting schemes. Specifically, it

is proposed to use as constituent codes those presented by Frenger et al. in [42] taking

advantage of the fact that they are convolucional codes of low ratio with maximum

free distance. Specifically to:

• introduce a new family of turbo-codes that are safe against collusion attacks of

2 traitors,

• show how efficiently it can be the tracking of attackers using turbo-decoding

algorithms,

• compare the length of this new code family with the codes of Boneh-Shaw [11]

and Tardos [107]

1.2.2 Objectives on secure e-commerce of multimedia content

In this part, we present two different developments. First, a development that has

been done in order to be able to identify the users that have worked together to gener-

ate an illegal copy of a content and subsequently they have been distributed through

the YouTube service. The objectives of this development are:

• to develop the necessary software to embed fingerprinting codewords using a

watermarking algorithm (specifically one variant of the well-known algorithm

presented by Cox to [27]) in videos in MPEG-2 format,

• to perform collusions of 2 traitors and distribute them through the YouTube ser-

vice,

• to evaluate the impact of the video processing carried out by the YouTube service

on the marked videos when it comes to tracking the users that have participated

in the match.

5

1. INTRODUCTION

The second development is a software platform that consists of a combination of

watermarking and fingerprinting techniques with the objectives defined below:

• to help protect authorship and copyright of multimedia content,

• to provide content distributors and authors with a trusted system that allows the

former to develop new business models while preserving the authorship rights

of the latter,

• to offer the distribution of multimedia content via a Web platform, providing

mechanisms for tracing dishonest users that illegally redistribute their content.

1.2.3 Objectives on mobile agents protection

The most difficult problem to solve in mobile agents environments is the attack from a

platform against the agents. In this part, we analyse the use of software watermarking

techniques as a possible solution to guarantee the integrity of mobile agents’ execu-

tion. First we focus on protecting Intrusion Detection Systems (IDS) based on agents.

The main strategies to achieve this goal are:

• use the Dynamic Graph Watermarking algorithm [23, 22] to store a watermark-

ing into the structure of a graph which is created during the agent execution.

When the agent’s execution is modified, the graph is altered so the system can

conclude that an attack has been performed.

• the use of Self-validating Branch-Based Software Watermarking algorithm [87]

is studied in order to embed a matrix of marks in each transceiver of the IDS.

Every time that an agent arrives to a host, this fingerprinting mark is monitored

to verify that it is correct and conclude that the agent execution has not been

modified.

Taking this an step further, we studied how to guarantee that the software is being

executed correctly by a non-trusted host. In this sense, it is intended to:

• adapt the software watermarking scheme presented by Myles et al. in [87] to

incorporate an external element called sentinel that controls the different exe-

cution stages of the agents,

• ensure the correct execution of the agent or, at least, detect illicit behaviours of

the malicious system during the execution of the agent instead of detecting it

once the agent has already been executed.

Finally, an infrastructure for detecting and punishing malicious hosts using mobile

agent watermarking is presented. Specifically, the main objectives are:

6

1.3. Main contributions of this thesis

• design a mobile agents infrastructure capable of detecting manipulation attacks

performed by the host,

• propose a watermarking scheme of software that allows this detection,

• penalize hosts that are identified as malicious,

• present the results that demonstrate the usability of the solution.

1.3 Main contributions of this thesis

The results from the research carried out during the course of this thesis are mainly

contained in 9 publications between journals included in JCR (2), Lecture Notes in

Computer Science (5) as well as in various conferences.

1.3.1 Contributions related to fingerprinting codes and schemes

• IMPROVEMENT OF COLLUSION SECURE CONVOLUTIONAL FINGERPRINTING IN-

FORMATION CODES

International Conference on Information Theoretic Security (ICITS 2007), LNCS

4883, pp. 76 – 88, Springer-Verlag Berlin Heidelberg 2009

DOI: 10.1007/978-3-642-10230-1_6

Quality Index: CORE ranking C

• NEW CONSIDERATIONS ABOUT THE CORRECT DESIGN OF TURBO FINGERPRINT-

ING CODES

Esorics 2008, LNCS 5283, pp. 501 – 516, Springer-Verlag Berlin Heidelberg, 2008.

DOI: 10.1007/978-3-540-88313-5_32

Quality Index: CORE ranking A

• USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

IN FINGERPRINTING SCENARIOS

IEEE Intl. Workshop on Information Forensics and Security - WIFS’11, 2011, pp.

1-6,

DOI:10.1109/WIFS.2011.6123142

Quality Index: h-index 16

1.3.2 Contributions related to secure e-commerce of multimedia content

• USING INFORMED CODING AND INFORMED EMBEDDING TO DESIGN ROBUST

FINGERPRINTING EMBEDDING SYSTEMS

11th International Conference on Knowledge-Based and Intelligent Information

7

1. INTRODUCTION

& Engineering Systems (KES 2007), LNCS 4694, pp. 992 – 999, Springer-Verlag

Berlin Heidelberg, 2007.

DOI:10.1007/978-3-540-74829-8_121

Quality Index: CORE ranking B

• TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE—PROOF OF CONCEPT

Telecommunication Systems, Volume 45, Issue 1, pp. 47 – 60, Springer US, 2010-

09.

DOI:10.1007/s11235-009-9236-z

Quality Index: Impact Factor (ISI) 0.705

1.3.3 Contributions related to mobile agents protection

• MAIS: MOBILE AGENT INTEGRITY SYSTEM. A SECURITY SYSTEM TO IDS BASED

ON AUTONOMOUS AGENTS

SECRYPT 2007, Proceedings of the International Conference on Security and

Cryptography, ICETE - The International Joint Conference on e-Business and

Telecommunications, 2007.

Quality Index: CORE ranking B

• SECURING AGENTS AGAINST MALICIOUS HOST IN AN INTRUSION DETECTION

SYSTEM

Critical Information Infrastructures Security, Second International Workshop,

CRITIS 2007, LNCS 5141, pp. 94 – 105, Springer-Verlag Berlin Heidelberg, 2007.

DOI:10.1007/978-3-540-89173-4_9

Quality Index: CORE ranking C

• PROTECTION OF MOBILE AGENTS EXECUTION USING A MODIFIED SELF- VALIDAT-

ING BRANCH-BASED SOFTWARE WATERMARKING WITH EXTERNAL SENTINEL

Critical Information Infrastructures Security, Third International Workshop,

CRITIS 2008, LNCS 5508, pp. 287 – 294, Springer-Verlag Berlin Heidelberg,

2009.

DOI:10.1007/978-3-642-03552-4_26

Quality Index: CORE ranking C

• AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS USING

MOBILE AGENT WATERMARKING

Wireless Communications and Mobile Computing, Volume 11, Issue 11, pp. 1446

– 1462, John Wiley & Sons, Ltd., 2010.

DOI:10.1002/wcm.941

Quality Index: Impact Factor (ISI) 0.858

8

C
H

A
P

T
E

R

2
STATE OF THE ART

In this chapter, the background of different aspects tackled during this thesis is intro-

duced. The main important study areas in which the contributions of this document

are bounded could be divided into:

• Watermarking techniques, that is, how a mark, which will contain some infor-

mation, could be embedded into a digital document (mainly video and pieces

of software) in order to guarantee a certain restrictions.

• Fingerprinting codes, that is, the alternatives for generating the marks embed-

ded by means of watermarking techniques. The aim of these kinds of codes is to

offer resilience against collusion attacks in which some users collude in order to

generate an illegal copy of specific content.

• Iterative-decoding codes, which will be modified and adapted in order to be

used as fingerprinting codes due to their reliability in noisy scenarios.

• Mobile agents, a study field in which the previous techniques have been applied

in order to construct systems which are capable of prove the correct execution

of an agent in host in real-time, that is, during his execution.

Even though the main ideas and definitions are presented in this chapter, more

particular ones will be addressed during the next chapters in order to be more self-

contained.

9

2. STATE OF THE ART

2.1 Digital Watermarking

The definition of watermarking is simple. A watermark is a message that is inserted

into a document, and provides information about the author or the work itself. The

reader can easily see that this vague definition applies to a great variety of fields. From

the format of the original work; audio, video, text... to the topology of the incrusted

mark, the spectrum of possibilities is endless.

2.1.1 Differences between watermarking and cryptography

Cryptography must not be confused with watermarking (the differences can be seen

in the Figure 2.1). When a content is ciphered the user or client is forced to have a spe-

cific key to be able to view the original data. However, the intention of watermarking

is not to avoid the user from displaying the content, but to prevent a dishonest user

from removing the mark (a mark of property or a copyright) from the document. If we

take an email as example, the encryption of it would prevent anybody except the au-

thorized receiver from reading it. On the other hand, watermarking the email would

prevent that a dishonest user deletes the signature and forwards the email changing

the authorship of it.

The main technical objective of digital watermarking schemes is to build a robust

and secure watermark. To accomplish this goal some basic requirements have to be

accomplished. These requirements are:

• Fidelity: a watermark should be perceptually invisible, it should minimize

degradation of the original content that’s being marked.

• Robustness: a watermark should be difficult to remove. Specially, it should be

resistant to the distortions caused by the typical signal processing mechanisms

(conversion from analogue to digital, digital to analogue, re-quantification, re-

compression...) and the generic distortions (rotation, translation, cropping...).

• Capacity: A watermarking system has to be capable of embedding a relative high

amount of information. Being capable of storing a large quantity of information

inside a mark makes the watermarking algorithm more flexible and versatile.

Some of this requirements are incompatible between them, for example it’s not

feasible to design a watermarking system that can provide a high robustness and ca-

pacity without introducing a high degree of distortion to the resulting document. On

the other hand, an invisible and robust system is probably not able to offer a high in-

formation capacity. As a result of this constrains, the design of a watermarking schema

10

2.1. Digital Watermarking

Figure 2.1: Differences between watermarking and cryptography

is a trade-off between all these presented parameters. Also, not all kinds of watermark-

ing systems are designed to maximize this requirements, as an example the fragile wa-

termarking is designed to detect any kind of modification made to a document, so it

is very fragile, and when a document is modified the recovered mark is different from

the original. This watermarking technique is based on a low robustness algorithm, in

fact, the low robustness of the algorithm is what proves the validity of this method.

It exists other complementary requirements, and they vary accordingly to each

application. The most relevant ones are the following:

• Undetectable: impossibility to prove the presence of a hidden message in a cer-

tain content. This concept is strongly tied to the statistical model of the orig-

inal document. It is important to remark the capacity to detect the presence

of a mark doesn’t directly imply the possibility to remove it, but in some cases

the possibility to apply a certain watermarking schema depends on this factor.

Sometimes this requirement is mistaken with fidelity, it is important to remark

that fidelity is based on perceptual measurements, on the other hand unde-

11

2. STATE OF THE ART

tactability is based on statistical methods.

• Complexity: the process of generating a mark should not be trivial, since a dis-

honest user may take advantage of this and could be able to generate a false

mark. In that case, the system might not be able to differentiate pirate marks

from original ones.

• Access key: embedded information should not be extracted, not even with at-

tacks designed knowing the algorithm used in the embedding, the extraction of

the mark and a marked document with its associated key. This property is ex-

actly the same as the one applied in cryptographic systems.

• Low error probability: it is important to minimize the probability of detecting

a mark incorrectly. It is also important to differentiate this situation from the

one that happens when it is not possible to detect any mark. Recovering an

erroneous mark may incriminate a honest user, since the recovered mark may

match the mark of this user due to an error in the extraction. This presents a

subtle issue, that has to the examined with caution.

• Computational cost of the embedding and extraction: usually the input files of

this systems have a high size (a DVD movie), but it should be feasible to embed

the mark in a short amount of time using appropriate and optimized algorithms.

This factor is usually not take into account, since the computational power of

devices is increased every day.

The application’s scope of watermarking techniques is very large, and this thesis is

centred on applying watermarking systems to video streams, in a similar way as still

images, video streams are a set of coded images, usually using the DCT1.

2.1.2 Classical image watermarking systems

Currently there is a large number of programs able to embed information inside of an

image. Most of them work by adding the desired information in the less significant

bits of every pixel [109]. When using this method, the information embedded in the

system remains invisible to the human eye [70], but it is trivial for a third party to

1The Discrete Cosine Transform or abbreviated as DCT is a transformation based on the Discrete
Fourier Transform but using only real numbers. Formally the Discrete Cosine Transformation is an in-
vertible lineal function with an equivalent square matrix. The DCT used in the image domain is a 2D-DCT
with a size of 8x8 pixels. The formal formulation is the following:

Xk1,k2
≺

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n2 +

1

2

)
k2

]
where X is the transformed matrix of x and N1 = N2 = 8 when using images.

12

2.1. Digital Watermarking

detect and remove this information without introducing any distortion in the original

image. Improved systems use a shared key between the sender and the receiver, and

a pseudo-random cryptographic generator [101] to select the bits that will hold the

encrypted data somehow [41].

It is logical to think that not all pixels in an image will be suitable for embedding the

watermark: modifications made on pixels that belong to large areas of the same color

(monochromes) or on sharp edges are more likely to cause visual distortion of the

image. That is why some systems have algorithms designed to choose the best pixels

for embedding extra information. This algorithms are based on the calculation of the

variance of the luminance in the surrounding pixels (if the result of this difference is

very high, it means the pixel belong to an edge, and if it is very low or null it means

that the pixel belongs to a monochrome region). If a pixel passes this test, it is capable

of holding the desired information in it’s least significance bits.

This techniques can easily be neutralized by an attacker that the permissions to

manipulate the marked image. As an example, almost every filtering process can mod-

ify the value of the less significant bits of an image, removing all the extra information

and deleting the mark without affecting the quality of the image. A way to palliate this

attack is to add an error correction code to the mark, or to add the same mark multiple

times in the same image. The "Patchwork" algorithm, developed by Bender et al. [8],

modifies the luminance of pairs of pixels selected in a pseudo-random way to embed

a mark. A similar system was proposed by Pitas on [96]. Many similar techniques can

be used to mark digital audio.

Another attack to this systems is to break the synchronization needed to detect

the zones of the image where the information was embedded. Regarding images, it

is possible to crop2 a region of the image. On the audio field, an attack developed

by Anderson et al. on [1] to accomplish a de-synchronization of the audio stream is

described as removing random parts of the samples and duplicating the others. This

attack introduces a jitter3 of several microseconds that is capable of fooling the typical

embedding systems.

Another way to attach information to an image is to embed this information in-

side the colour palette. A great number of the images distributed over the internet are

coded using formats based on colour palette mechanism, like GIF or PNG. The ad-

vantage of this method is that it is easier to design a secure system for images with a

certain degree of noise, like images coming from converted analogue sources (scan-

ner, camera...). The main disadvantage is that the length of the mark is restricted to

the size of the palette and not the size of the image.

On [71] it is suggested that a message might be hidden in a secure way on a colour

2Cropping: process where a portion of the image is removed from the original.
3Jitter: deviation in or displacement of some aspect of the pulses in a high-frequency digital signal

13

2. STATE OF THE ART

palette by shifting the order of the colours instead of actually changing the colours

itself. This method doesn’t change the visual aspect of the image perceived by the

viewer, which is an advantage, but it’s safety it’s at least questionable, because most

image processing programs order the palette in an specific order (usually regarding

the luminance of the colours or their frequency). A randomly ordered palette would

probably seem suspicious at least, and just opening the image and saving it again us-

ing any common image processing program would destroy the hidden message be-

cause the palette will be reordered.

More practical methods can obtain capacities that depend on the size of the im-

age or the number of pixels. There is existing software that first decreases the depth

of the colour palette of a GIF image to 128, 64 or 32 and then modifies the less signif-

icant bits of this palette to make it grow back to it’s original size. Using this method

it is possible to embed from one to three bits per pixel without creating much visual

distortion. However, the newly created palette will have a similar group of colors, and

the detection of this kind of marks is feasible because of this fact [65, 64].

One of the most popular methods to embed information in images based on a

colour palette was proposed by Machado on [77]. In the proposed method, known

as EZ Stego, the colour palette is first ordered according to its luminance. In the re-

ordered palette, adjacent colours are very similar and EZ Strego embeds the message

in a binary way using the less significant bits of the pixels that point to the colour

palette.

The algorithm is based on the premise that adjacent colours in a luminosity or-

dered the palette are similar. However, as luminosity is a linear combination of the

three colours R (red), G (green) and B (blue), eventually adjacent colours in a palette

can represent different colours. To avoid this problem, Fridich proposes to embed this

information in the parity bit (the calculation of the parity bit is as follows: R +B +
G mod 2) found on adjacent colours [43]. Based on the colour of every pixel that is

going to be used to embed information a search is performed to find similar colours

on the palette until a colour with the desired parity is found. According to the author,

it is realistic to assume that parity bits across a palette are distributed in a random way.

Currently, all these systems based on pixel or colour palette modifications have

been put aside in favour of embedding the information in the transformed domain.

2.1.3 Common concepts in actual watermarking schemes

Usually the process of embedding a watermark follows four steps schematized in Fig-

ure 2.2. The first step is to transform the original document to a more appropriate

domain to perform the embedding process. It is common to use the Discrete Co-

sine Transform, the Fast Fourier Transform or the Discrete Wavelet Transform. In this

14

2.1. Digital Watermarking

project the Discrete Cosine Transform was used because most video compression sys-

tems are based on this transformation and the watermarking algorithm will be more

efficient and easy to implement. The second step consist in coding the original mes-

sage or the information to a mark that is suitable for embedding. The third step is the

embedding of the mark inside the DCT coefficients, and the last step is the inverse

DCT transformation, to recover the image.

Figure 2.2: Generic embedding of marks

The process of recovering a watermark consists of three steps, as show in Figure

2.3. The first step is to convert the document to the domain where the mark was em-

bedded and extract the mark from it. The second pass determines if the extracted

information is a watermark, and if the result of this step is positive, it decodes the em-

bedded message. Depending on the information available to perform the extraction,

be can distinct between two different detection schemes:

• Informed detection: the original unmarked document is available.

• Blind detection: the decoder works without using the original document.

Usually, the availability of the original document during the detection process fa-

cilitates the decoding, and better results are obtained using informed detection.

Figure 2.3: Generic mark extraction

As explained before, the marks are embedded directly into the DCT domain, mod-

ifying the coefficients of the transform. It is important to notice that not all the coef-

ficients of the domain are modified, on the image field, the DCT matrix has sixty four

15

2. STATE OF THE ART

coefficients (structured in a 8× 8 square matrix), but usually only some of them are

used. The coefficients are not chosen randomly, usually the used coefficients are the

ones where a small modification doesn’t represent a big impact on image quality, but

that they are enough important that they can not be removed from the image with-

out a significant image quality loss. Different coefficients have been used for various

studies, as an example the author of [27] uses the coefficients indicated in Figure 2.4a

while the author of [82] uses the coefficients of Figure 2.4b.

(a) DCT coefficients DCT used in [27] (b) DCT coefficients DCT used in [82]

Figure 2.4: Black coefficients represents those used to embed the mark.

Regardless of the coefficients to be marked, the marking process applies the cho-

sen transformation and selects the coefficients where the watermark information is

going to be embedded. This positions can be permuted to increase the robustness of

the algorithm.

2.1.4 Spread Spectrum Modulation

The Spread Spectrum modulation proposed by Cox et al. on [27] is one of the most

famous watermarking schemes, probably because it was one of the first ones to em-

bed the mark in the transformed domain (using the DCT). This article advocated that

adding the mark to the most significant coefficients in the DCT would provide a most

robust watermark. Also, this watermark should be generated using independent sam-

ples and equally distributed generated by a Gaussian distribution (N(0,1)). So any at-

tempt to attenuate or remove the watermark would result in a severe degradation of

the content.

This article defines the following notation: given a content to mark (cover work)

C = {c1,c2, · · · ,cN }, the length of the mark embedded W = {w1, w2, · · · , wN } so that C

can be converted to a marked vector Cw = {c ′1,c ′2, · · · ,c ′N }. On the proposal it is thought

16

2.1. Digital Watermarking

that this marked document Cw is sent using a given channel that produces a set of

attacks. Eventually, the document given to the detector is represented as C∗
w . One

simple way to embed the mark could be

c ′i = ci +α ·wi , (2.1)

where α is the scaling parameter that controls the trade-off between the robustness

and the visibility of the watermark. The equation 2.1 is always invertible, so given C∗
w

and having C it is feasible to extract W ∗. It seems logical that the next step is to put

together W and W ∗ in order to determine if the extracted watermark is the same as

the one that has been embedded. This evaluation is performed using the similarity

function represented in the equation

si m(W,W ∗) = W ·W ∗
p

W ·W ∗ . (2.2)

The next step is to settle a threshold T so that if si m(W,W ∗) > T , W is considered to

be similar to W ∗ and the received document contains the mark W . On the other hand,

if si m(W,W ∗) ≤ T , the document does not contain the mark W . The threshold level T

has to be chosen having in mind that a value too high may cause false negatives (the

detector incorrectly states that the document does not contain W), and a value too low

may cause false positives (the detector incorrectly states that the document contains

W when it actually does not).

Another way to calculate the similarity between W and W ∗, which is usually more

efficient regarding systems implementations is the following, defined in 2.3.

si m(W,W ∗) = 1

N
W ·W ∗ = 1

N

∑
i

wi ·w∗
i (2.3)

If a bit of the message (m = 0 or m = 1) is going to be inserted inside a document c0, a

reference mark wr of the same length as the document c0. The watermark is defined

using the following function

wm =
wr si m = 1

−wr si m = 0
(2.4)

once we have obtained wm it is inserted inside the original document c0 as the equa-

tion 2.1 states.

Taking into account the noise injected during the process, the received content

cw can be defined as cw = c0 +αwm +n, where n is considered an additive Gaussian

noise. The relation between the watermark and the noise can be measured using what

the authors define as a Watermark-to-Noise relation (WNR),

W N R = 10∗ log10

(
δ2

w

δ2
n

)
. (2.5)

17

2. STATE OF THE ART

To detect the watermark, a subtraction of the original document c0 from cw is per-

formed to obtain w∗
m . Then the lineal correlation between w∗

m and wr is calculated

using the following function

zlc
(
w∗

m , wr
)= 1

N
(αwm ·wr +n ·wr) . (2.6)

Taking into account that n has a Gaussian distribution, n · wr can be consid-

ered negligible because the term αwm · wr = ±αwr · wr is going to be greater. So

zlc
(
w∗

m , wr
)
≈αwr ·wr if the watermark is m = 1 and zlc

(
w∗

m , wr
)
≈−αwr ·wr if the

watermark is m = 0. The detector should set the threshold T to zl c
(
w∗

m , wr
)

and the

result will be:

messag e =


1 if zlc

(
w∗

m , wr
)> T

no watermark if −T ≤ zl c
(
w∗

m , wr
)≤ T

0 if zlc
(
w∗

m , wr
)<−T

. (2.7)

If the original document is divided in several segments and a vector is generated

for each segment, various bits of the mark can be embedded. It is important to notice

that the smaller the segment, the greater the distortion generated by the noise will be.

2.2 Digital Fingerprinting

During the last decade, the distribution and playback of digital images and other mul-

timedia products has become a trivial issue to every computer user. Therefore, im-

plementing satisfactory copyright protection systems has become almost a necessity.

This topic is a challenging problem for the security research community. At first sight

one can believe that data encryption already solves the problem. Unfortunately this

is not the case, because encryption only offers protection as long as the data remains

encrypted. The redistribution of digital products to unauthorized users becomes un-

avoidable once an authorized, but fraudulent, user decrypts it correctly.

A different approach to encryption is to discourage authorized users to misbehave.

This idea lies at the core of fingerprinting techniques. The concept of fingerprinting

was introduced by Wagner in [116] as a method to protect intellectual property in mul-

timedia contents. The fingerprinting technique consists in making the copies of a dig-

ital object unique by embedding a different set of marks in each copy. Having unique

copies of an object clearly rules out plain redistribution, but still a coalition of dis-

honest users can collude. A collusion attack consists in comparing the copies of the

coalition members and by changing the marks where their copies differ, they can cre-

ate a pirate copy in order to disguise their identities. Observe that in this situation it

could be possible for the attackers to frame an innocent user. Thus, the fingerprinting

18

2.2. Digital Fingerprinting

problem consists in finding, for each copy of the object, the right set of marks that help

prevent collusion attacks.

In order to realize effective implementations of digital fingerprinting techniques,

two important points must be contemplated: reliable embedding of the fingerprint-

ing code and choosing the appropriate fingerprinting code. While the state of art in

the first part has already been extensively presented in the section 2.1, this section will

focus on the state of the art on the second part. It should be noted that this is a math-

ematical problem focused on the theory of codes and that will be treated from this

perspective.

2.2.1 Properties of fingerprinting codes

Many efforts have been devoted to design new fingerprinting codes and to improve

existing ones [12, 75, 102, 38, 6, 107]. In order to compare its performance, some mea-

surement criteria, more or less objective, are needed, and to define measurement cri-

teria, the properties to be measured must be defined. Therefore, the first thing to do is

to define the basic properties that are desired for a good fingerprinting code:

• High cardinality of codebook: The code should be able to fit a large number of

users. Although in some applications a small codebook can be appropriate (as it

is the case of the Oscar’s juries who only need a thousand copies for members

of the Academy), in general, the size of codebook may be great. For example, the

number of copies of a movie that are distributed to end users would be in the

order of magnitude of millions.

• Short codewords: Embedding systems impose a limitation on the information

capacity that they can embed in a particular document. If the codewords are

short, the fingerprinting code will be adaptable to a greater number of applica-

tions than in the case they are long since there is not always a document with a

very large capacity.

• Easily traceable: The more efficient the tracing algorithm is, the better the

scheme of a particular fingerprinting code will be. Take into account that, in the

case in which the detector has only limited computational capacity, the tracing

algorithm is efficient enough to give decoding in a reasonable time.

• Low false positives/false negatives probability: It is obvious that an important

property is that the probability that the tracing algorithm fails, that is return a

false negative, has to be very low. Moreover, it is also desirable that, in the case of

failing, the results will give obvious signs of having it produced an error instead

of producing false positives, that is, to accuse innocent people.

19

2. STATE OF THE ART

As you can see with the naked eye, some properties conflict with each other

quickly. For example, the length of the codewords and the size of codebook, since

the shortest the codewords are, the lowest cardinality the code has. Another example

is the relationship between the size of the codewords and the probability of error.

Since in order to reduce the probability of error to a certain level the length of the

codewords must be increased to add redundancy of some kind. In any case, these

conditions usually lead to an increase in the computational cost of the tracing algo-

rithms. Therefore, in many cases, when designing a fingerprinting code, it is necessary

to consider the application to which it will be used.

2.2.2 Types of fingerprinting codes

In the context of digital fingerprinting, codes can be divided into two categories:

non-coded fingerprinting and coded fingerprinting. Non-coded is a unique ID, serial

number or any other information that is used to identify. The embedding process for

each fingerprint involves the assignment of a single predefined mark for each finger-

print. An example is the use of orthogonal signals, in this case a different orthogonal

signal is assigned to each fingerprint and in the detection the linear correlation is

used 4 to decide which fingerprint is most likely among all possible. Although the

implementation of the various proposals of this type of fingerprinting is usually sim-

ple and a good solution for small groups of users, they present the problem that their

computational complexity in detection increases linearly with the number of users.

Some remarkable articles where you can find more information about orthogonal fin-

gerprints are [29, 118, 117].

In contrast, in the environments where coded fingerprinting is used, the original

fingerprint (the serial number or the unique identifier) is encoded in order to obtain

the real fingerprint. It is necessary to take into account the fact that, while the original

fingerprints shouldn’t have a structure or even of the same length, the real fingerprints

are words made up of the same number of symbols of a particular alphabet. (From

this point, when talking about fingerprint, this second type of fingerprinting will be

referenced). One of the first publications on this type of fingerprinting appeared in

1995 in the hands of Dan Boneh and James Shaw [12]. In this publication the Marking

Assumption was explicitly defined for the first time as well as a dimension of its length.

Moreover, a method was proposed to build a safe binary code.

4The linear correlation between two vectors, v and w , it is the average of the product of its elements.
zl c

∑
i v[i]w[i]. It is used to verify the existence of the transmitted signal, w , in the signal received, v , by

calculating zl c (w,W) and comparing the result with a certain threshold.

20

2.2. Digital Fingerprinting

2.2.2.1 Marking Assumption

The Marking Assumtion is the essential principle for the design of a fingerprinting

code, which is why it is crucial to discuss it in depth. In this section, the differ-

ent versions presented in the literature will be introduced. In any case, it is good

to present the different elements that take relevance in this environment. As a no-

tation, we define that given a word w of length l-bits such that w ∈ Σl and a set

I = {i1, · · · , ir } ⊆ {1, · · · , l } we indicate with w |I the word wi1 wi2 · · ·wir where wi is the

i -th letter of w . w |I will represent the restriction of w at the positions indicated by I .

First of all we will define a code (or codebook):

Definition 2.1 (Codebook [12]). A set Γ = {w (1), w (2), · · · , w (n)} ⊆ Σl , where Σ will de-

note some alphabet of size s, will be called an (l ,n, s)-code. The codeword w (i) will be

assigned to user ui , for 1 ≤ i ≤ n. We refer to the set of words in Γ as the codebook.

Once the concept of codebook is defined, the next important element will be the

undetectable positions. Conceptually we define a coalition as a group of users whose

members try to attenuate or eliminate the fingerprints of their copies in order to gen-

erate a new copy with a fingerprint that is different from its own and that it can not

incriminate them. Actions can go from to make the average between the copies and

distribute the result to much more sophisticated techniques. We can consider as un-

detectable positions those positions marked in a document where all members of the

attackers’ coalition have the same value and, therefore, they can not discriminate

against the positions not marked in the document. A more formal description is the

one given by Boneh-Shaw in [12]:

Definition 2.2 (Undetectable Position [12]). Let Γ = {w (1), w (2), · · · , w (n)} be an (l,n,s)-

code and C = {u1,u2, · · · ,uc } be a coalition of c-traitors. Let position i ∈ {1, · · · , l } be

undetectable for C , if the words assigned to users in C match in i ’th position, that is

w (u1)
i = ·· · = w (uc)

i .

On the different definitions of Marking assumptions a consensus exists on this:

Definition 2.3 (Marking Assumption). Let Γ = {w (1), w (2), · · · , w (n)} be an (l,n,s)-code,

C = {u1,u2, · · · ,uc } a coalition of c-traitors and Γ(C) the feasible set of C. The coalition

C is only capable of creating an object whose fingerprinting lies in Γ(C).

The problem lies in how this feasible set is defined. In the literature there are up

to 6 different definitions for this term.

Definition 2.4 (Feasible Set according to [18, 104]). Let Γ= {w (1), w (2), · · · , w (n)} be an

(l ,n, s)-code and C = {u1,u2, · · · ,uc } be a coalition of c-traitors. We define the feasible

21

2. STATE OF THE ART

set F S(C ;Γ) of C and Γ as

F S(C ;Γ) = {x = (x1, · · · , xl) ∈Σl | x j ∈ {w j | w ∈C },1 ≤ j ≤ l }.

In [120] the case in which the coalition knows the entire alphabet is considered.

And therefore can use any symbol of the alphabet in the positions detected, so a new

definition could be the following:

Definition 2.5 (Feasible Set according to [120]). Let Γ = {w (1), w (2), · · · , w (n)} be an

(l ,n, s)-code and C = {u1,u2, · · · ,uc } be a coalition of c-traitors. We define the feasible

set F S(C ;Γ) of C and Γ as

F S(C ;Γ) = {x = (x1, · · · , xl) ∈Σl | x j ∈ w j ,1 ≤ j ≤ l }

where

w j =
{

{w (u1)
j } w (u1)

j = ·· · = w (uc)
j

{Σ} other wi se

Moreover, if we include in the previous definitions the possibility that the attackers

could manage to erase the detected positions, we could reformulate them as:

Definition 2.6 (Feasible Set according to [120]). Let Γ = {w (1), w (2), · · · , w (n)} be an

(l ,n, s)-code and C = {u1,u2, · · · ,uc } be a coalition of c-traitors. We define the feasible

set F S(C ;Γ) of C and Γ as

F S(C ;Γ) = {x = (x1, · · · , xl) ∈ (Σ∪ {?})l | x j ∈ w j ,1 ≤ j ≤ l }

where

w j =
{

{w (u1)
j } w (u1)

j = ·· · = w (uc)
j

{w (ui)
j | 1 ≤ i ≤ c}∪ {?} other wi se

and ? denotes an erased position.

And in the case in which the coalition knows the entire alphabet:

Definition 2.7 (Feasible Set according to [12]). Let Γ = {w (1), w (2), · · · , w (n)} be an

(l ,n, s)-code and C = {u1,u2, · · · ,uc } be a coalition of c-traitors. We define the feasible

set F S(C ;Γ) of C and Γ as

F S(C ;Γ) = {x = (x1, · · · , xl) ∈ (Σ∪ {?})l | x j ∈ w j ,1 ≤ j ≤ l }

where

w j =
{

{w (u1)
j } w (u1)

j = ·· · = w (uc)
j

{Σ}∪ {?} other wi se

and ? denotes an erased position.

22

2.2. Digital Fingerprinting

Safavi-Naini and Wang proposed in [98] a further step on the proposal of the defi-

nition 2.6 allowing to add erased symbols to the undetectable positions.

Definition 2.8 (Feasible set according to [98]). Let Γ = {w (1), w (2), · · · , w (n)} be an

(l ,n, s)-code and C = {u1,u2, · · · ,uc } be a coalition of c-traitors. We define the feasible

set F S(C ;Γ) of C and Γ as

F S(C ;Γ) = {x = (x1, · · · , xl) ∈ (Σ∪ {?})l | x j ∈ w j ,1 ≤ j ≤ l }

where w j =
{

{w (ui)
j | 1 ≤ i ≤ c}∪ {?}

}
and ? denotes an erased position.

Finally, the last proposal comes from Guth and Pfitzmann in [49]. In this proposal

a set of random errors are added to the code word and C can generate any word.

Definition 2.9 (Feasible set according to [49]). Let Γ = {w (1), w (2), · · · , w (n)} be an

(l ,n, s)-code and C = {u1,u2, · · · ,uc } be a coalition of c-traitors. We define the feasible

set F S(C ;Γ) of C and Γ as

F S(C ;Γ) = {x = (x1, · · · , xl) ∈ (Σ∪ {?})l | x j ∈ w j ,1 ≤ j ≤ l }

where w j = {{Σ}∪ {?}} and ? denotes an erased position, that is w j could be any symbol

in the alphabet or an erased position.

To illustrate the differences, the following assumption is made: Σ such Σ =
{A,B ,C ,D,E ,F } is available and words of length l = 4 are generated. A coalition of

3 users is defined that their codewords are:

x(u1) : A C F B

x(u2) : A C E A

x(u3) : A B D F

The content of the Feasible Set according to the various definitions would be

shown in the table 2.1.

In any case, this thesis focuses on the case of the definition 2.6, which in the binary

case is equivalent to that made by Boneh-Shaw in its article and that corresponds to

the definition 2.7. It is considered that an attacking coalition is only able to detect

those positions in which the marks for the various members of the coalition differ. So,

the attackers can choose between selecting the value of any of them or damaging the

position in order to cause an erasure. On the other hand, in a real case, this assump-

tion is considered the most reasonable since, although the alphabet can be known,

the attackers do not have to know how this one is codified to the watermarking level.

Finally, in video environments, positioning in the suppose of [49] would be unrealistic

23

2. STATE OF THE ART

Feasible Sets according to the different definitions

Definition w0 w1 w2 w3

F S(C ;Γ) def. 2.4: A {B ,C } {D,E ,F } {A,B ,F }
F S(C ;Γ) def. 2.5: A {Σ} {Σ} {Σ}
F S(C ;Γ) def. 2.6: A {B ,C }∪ {?} {D,E ,F } ∪ {?} {A,B ,F } ∪ {?}
F S(C ;Γ) def. 2.7: A {Σ}∪ {?} {Σ}∪ {?} {Σ}∪ {?}
F S(C ;Γ) def. 2.8: {A}∪ {?} {B ,C }∪ {?} {D,E ,F } ∪ {?} {A,B ,F } ∪ {?}
F S(C ;Γ) def. 2.9: {Σ}∪ {?} {Σ}∪ {?} {Σ}∪ {?} {Σ}∪ {?}

Table 2.1: Different set ups of the Feasible Set depending on the different definitions
present in the literature. {Σ} denotes any symbol in the alphabet Σ and ? denotes an
erased position

since inserting a noise in all the markable positions of a video with sufficient intensity

to alter the mark would cause a distortion of the sequence sufficiently important to

make the video unusable.

2.2.2.2 Classification of traceability codes according their resistance to collusion

attacks

This section will give the definitions of the types of collusion secure codes. In order

to make an accurate description, the concept of descendants must be defined before,

that is to say, given a Feasible Set which words of the code can be formed with it. A

formal definition would be:

Definition 2.10 (Descendants of C). Let Γ = {w (1), · · · , w (n)} is a (l ,n, s) - code and

F S(C ;Γ) is the Feasible Set of a coalition C of at most c user of Γ then, we define the

set of descendants of C , denoted desc(C), as

desc(C) =
{

y ∈ {Σ∪ {?}}l | yi ∈ {xi | x ∈ F S(C ;Γ)} ,1 ≤ i ≤ l
}

And, from this definition, it is defined the k-descendant code as the code formed

by all descendants of all coalitions of up to k users. Formally,

Definition 2.11 (k-descendant code). Let k be a positive integer. For an (l ,n, s)-code Γ,

define the k-descendant code, denoted desck (Γ), as follows:

desck (Γ) = ⋃
C⊆Γ,|C |≤k

desc(C)

The first type of codes are c-frameproof, that is, given a collusion of c users, they

can not generate a codeword for a user that does not form part of the coalition. These

codes were defined in [12]. Formally,

Definition 2.12 (c-frameproof). Let Γ be an (l ,n, s)-code, it is c-frameproof or c-FP if

for any x ∈ desc(C) such that C ⊂ Γ , c ≥ |C |, x ∈ F S(C ;Γ)∩Γ=⇒ x ∈C

24

2.2. Digital Fingerprinting

A refinement of these types of codes are called c-secure frameproof. These codes

were presented in [105] and guarantee that two different coalitions of c different users,

without any user in common, can not generate the same codeword. The formal defi-

nition would be:

Definition 2.13 (c-secure frameproof). LetΓ be a (l ,n, s)-code, it is c-secure frameproof

or c-SFP if for any C1,C2 ⊆ Γ such that |C1| ≤ c, |C2| ≤ c and C1 ∩C2 = ;, we have

F S(C1;Γ)∩F S(C2;Γ) =;.

So far, the codes presented in definitions 2.12 and 2.13 assure that a C coalition of

no more than c users can not frame an innocent user even though they can generate a

word that is not part of the code.

When a word that is not part of the code is detected in an illegal distribution, the

distributor can realize that this is a pirated copy but this code does not allow finding a

member of the coalition C that is, the ultimate goal that the distributor pursues. The

following three codes defined in 2.14, 2.16 and 2.17 allow tracing to determine at least

one member of the coalition that has generated the pirate word, whether it is a pirate

in the sense of being the result of a collusion attack or as a user who has redistributed

his copy.

The first type of codes have the Identifiable Parent Property (IPP), meaning that

for each word x that belongs to the descending code, a code word w belonging to Γ

can we found that is common in all coalitions that can form x. This type of code was

presented in [59]. Formally,

Definition 2.14 (Identifiable parent property). Let Γ be an (l ,n, s)-code and Ci ⊆ Γ
where |Ci | ≤ c, we say that it has the identifiable parent property for coalitions of at

most c parents (c-identifiable parent property) or c-IPP if for any x ∈ descc (Γ) we have

⋂
i |x∈desc(Ci)

Ci 6= ;

An evolution about this property would be the traceability discussed in depth in

[18], where it was defined, and [106]. The basic property of these codes is that, with

respect to a pirated word, the codewords of the users that do not belong to the coali-

tion have a Hamming distance5 greater than at least one of the colluding codewords.

The idea is that not only a coalition can not frame an innocent but also, given a pirated

word, the code word that is closest in terms of Hamming’s distance will be part of the

coalition. In any case, we first define the index concept of undetectable bits such as:

5The distance of Hamming between two words of equal length is the number of positions in which
the symbols are different.

25

2. STATE OF THE ART

Definition 2.15 (Index to undetectable bit). Let x = {x1, · · · , xl } and y = {y1, · · · , yl } such

that x, y ∈Σl , we define the Index to undetectable bit between x and y as I (x, y) = {i |xi =
yi }.

Once defined, this concept will be used in the definition of the traceability codes:

Definition 2.16 (Traceability code). Let Γ be a (l ,n, s)-code and C ⊆ Γ where |C | ≤ c,

we say that Γ has traceability property for coalitions of at most c parents or c-TA if for

any x ∈ desc(C) exists at least one code word y ∈C such that |I (x, y)| > |I (x, z)| for any

z ∈ Γ\C where Γ\C represents the set Γminus the subset C .

Going one step further, we reach the ideal codes defined in [12] and receive the

name of totally c-secure. Formally, considering the feasible set defined in 2.7,

Definition 2.17 (totally c-secure). Let Γ be a (l ,n, s)-code, this code is totally c-secure if

there exists a tracing algorithm A satisfying the following condition: if a coalition C of

at most c users generates a word x then A(x) ∈C .

The tracing algorithm A on input x must output a member of the coalition that

generated the word x. Unfortunately, when c ≥ 2, totally c-secure codes do not exist.

This was formulated as the theorem 2.1 and proof by Boneh and Shaw in [12].

Theorem 2.1. For c ≥ 2 and n ≥ 3 there are no totally c-secure (l ,n)-codes.

However, Boneh i Shaw, also in [12], propose codes with a small relaxation of con-

ditions with respect to totally c-secure, c-secure with a probability of error ε. The for-

mal definition would be the following:

Definition 2.18 (c-secure with ε-error). Let Γ be a (l ,n, s)-code, it is c-secure with ε-

error probability if there exists a tracing algorithm A satisfying the following condition:

if a coalition C of at most c users generates a word x then

Pr [A(x) ∈C] > 1−ε
In [104] the relationship between these different codes is studied and the proposi-

tion 2.1 is shown in [120]. Another study on the relationship between the IPP codes

and TAs can be found in [55].

Proposition 2.1. Let Γ be a (l ,n, s)-code, then, we have the following:

1. Γ is a c-IPP if Γ is a c-TA.

2. Γ is a c-SFP if Γ is a c-IPP.

3. Γ is a c-FP if Γ is a c-SFP.

Keep in mind that the reverse implications do not have to be met and, in fact, in

[104] there are several counter-examples.

26

2.2. Digital Fingerprinting

2.2.3 Comparison of the most significant existing fingerprinting schemes

The table 2.2 shows some of the most relevant existing fingerprinting algorithms. The

first five schemes are adaptable for coalitions of any size, while the other two are ex-

plicitly designed for coalitions of 2 or 3 users respectively.

Authors Users Attackers Error Length of the code

Boneh & Shaw [11] N c ε

Inner code (n,d), Outer code (L, N),
L = 2cloge (2N /ε),

d = 2n2loge (4nL/ε), l = Ld(n −1)

Lindkvist [75] N c 0 l =
(N

c

)(q−1
c

) , c < q < N

Staddon, Stinson &
Wei [104]

N c ε N = qd l
c2 e , l ≤ q +1

Fernández &
Soriano [38]

N 2 ε

(2r −1,r,2r −1) DH(r)
(n,dn

4)e,n −dn
4)e+1 RS code

l = (2r −1)n

Sebe &
Domingo-Ferrer

[102]
N 3 ε

Scatter code (d , t), n-Dual
Hamming Code l = (2n −1)(2t +1)d

Barg, Blakley &
Kabatiansky [6]

N c ε l =O(2c c logc log N)

Cotrina &
Fernandez [25]

N c ε l =O(c6 log(c/e) log N)

Tardos [107] N c ε l = 100c2 ln N
ε

Table 2.2: Characteristics of some fingerprinting codes.

Collusion secure fingerprinting principles derive from the seminal work of Boneh

and Shaw in [11], where they present a collusion n-secure code with ε error, where

n represents the total number of authorized users, and ε denotes the probability of

not identifying a traitor user. Since in practical scenarios we will rarely have to face a

traitor coalition that consists of all authorized users, c-secure codes, with c < n will

be sufficient for our purposes. The code of Boneh and Shaw is a c-secure binary code

with probability of error ε able to serve a large number of users with the ability to

withstand high-probability coalitions of many users. Even so, the price paid for it is

a very large code length. This code is a concatenated code where the codewords are

generated by the use of codewords of an internal code in order to code the symbols

of the external code. The inner code is a binary code with length l and size n sym-

bolized as Γ0(n,d) and compounded by n codewords of length l = d(n − 1), Γ0(n,d)

is a repetition code, the probability of error ε can be adjusted by choosing a different

d (known as a repetition ratio). The outer layer can be a random (N ,L)-code with N

27

2. STATE OF THE ART

codewords on a size alphabet of n (the number of codewords for the internal code)

and each code word with length L. The resulting construction is a (N ,L(n−1)d)-code.

As can be seen in the table 2.2, the length of the codewords is enormous and, in most

cases, cannot be implemented for real applications. Moreover, due to the random

nature of the outer code in the concatenation, this construction does not have any

polynomial-time (in the code length) decoding algorithm, thus limiting their practical

applications for large values of N .

The Staddon, Stinson and Wei [104] code is a c-secure q-ary fingerprinting code.

It is built using a Reed-Solomon code and is a code with traceability properties. The

length of the code is significantly lower than the Boneh and Shaw code.

The Lindkist code (also known as a Gossip code), proposed in [75], is a q-ary fin-

gerprinting code, and has the IPP property. Ravi S. Veerubhotla et al. in [110] give a

general construction in order to achieve the minimum code length possible according

to the specification for Gossip codes, in terms of alphabet size, number of codewords

and coalition size. The advantage of the Gossip codes is that they can accuse a traitor

deterministically while the previous constructions were probabilistic. In any case, the

size of the codewords is still a problem for real applications, as can be seen in the table

2.2.

The code presented by Sebe and Domingo-Ferre on [102] is specifically designed

against coalitions of three users (c = 3), the construction contains two layers, the in-

ternal code known as scattering code and the external code that is a dual Hamming

code. The scattering code (d , t) is a binary code that consists of 2t codewords of

length (2t +1)d . The final code can represent up to N users with codewords of length

(N −1)(2t +1)d . For a certain level of security (or probability of error ε), the codes can

be much shorter than those obtained by the proposal of Boneh and Shaw while the

number of users is moderated (less than 216).

The code of Fernandez and Soriano [38] is specifically designed for coalitions of

size c = 2, it is a binary code with two layers, the internal code is (2,2)-separable (they

use a dual binary Hamming code), while the external code is a Reed-Solomon code

with the IPP property. The advantage offered by this code is that the construction

allows the use of an efficient decoding algorithm that corrects above the code’s cor-

rective capacity (a simplified version of the Chase algorithm [14] for the internal code

and Koetter-Vardi’s soft-decision list decoding algorithm presented in [69].

In another breakthrough work Barg et al. in [6], constructed c-secure fingerprint-

28

2.3. Codes with iterative decoding

ing codes, with error probability less than exp(−Ω(logn)), of length 0(2c logn) and

decoding algorithm of complexity pol y(logn). Their schemes are based on the con-

catenation of Algebraic Geometric Code (AG) codes, and binary (c,c)-separable codes.

This construction improves in many ways the construction of Boneh and Shaw. It pos-

sesses an efficient decoding algorithm. Moreover, for a fixed c, it is asymptotically

better in n and ε.

Cotrina and Fernandez presented [25] a new construction that is a mixture of

the codes in [11] and [6]. They combine asymptotically good AG codes with Boneh-

Shaw codes. The error probability of the concatenated construction is O(1/n) =
exp(−Ω(logn)), with length of order O(c6 logc logn), and decoding algorithm of com-

plexity pol y(logn).

Tardos, building upon Boneh and Shaw’s codes also used randomization in deter-

mining the codewords [107]. By representing the code as a binary matrix in which each

row corresponds to a codeword, there is a binary distribution for each column, and

each entry is a given column is selected to be 0 or 1 according to the corresponding

distribution. By cleverly choosing those distributions and the tracing algorithm, the

length of Tardos codes is O(c2 log(n/ε)), roughly the square root of that in the Boneh-

Shaw codes. This code length is optimal, within a constant factor, for sufficiently small

values of ε.

2.3 Codes with iterative decoding

As Ken Gracie and Marie-Hélène Hamon state in [48], getting a generic definition for

the turbo and “turbo-like” codes is quite complicated. Even so they share three very

identifying features:

• Composite Structure: The information bits are encoded with multiple low-

complexity constituent or component codes. Each constituent code may or may

not involve all of the information bits.

• Interleaving: The information bits are reordered or permuted between en-

coders.

• Soft iterative decoding: The component codes are decoded multiple times and

soft reliability estimation derived from each code are used to improve the de-

coding of the other component codes.

By means of using the idea of concatenating simple codes to obtain better codes,

iterative-decoding codes use permuted versions of the same information encoded

29

2. STATE OF THE ART

with reasonable simple codes. Even the simplicity of the constituent codes, the result-

ing codes have characteristics really close to the Shannon limit.

The iterative decoding begins by decoding the constituent codes individually, si-

multaneously or not, using the input retrieved from the channel and a certain a priori

information (in the first step it is assumed that the bits can take either values 0 or 1

with a the same probability so this information will cost 1
2). The information on the

symbols obtained from this first decoding is shared with the other decoders and so

repeatedly until it is no longer improved on the result. In other words, the informa-

tion obtained from the channel and the one provided by the other decoders is used

to improve the decoding of a given constituent code, and thus the joint decoding is

improved. The decoder not only provides information about the value of each bit but

also informs about the veracity of this value.

Another responsible of the increase in performance presented by these type of

codes is the use of information called “soft” instead of “hard” decisions, that is, the

use of real numbers, the values which represent the reliability of the estimated sym-

bol, instead of using only the symbols. Iterative decoding requires that the algorithms

that decode component codes use soft information both in input and output (known

as soft-in soft-out algorithms or SISO). This process of exchanging soft information

between the various parts that make up the decoder is known as a message crossing

(message passing) or a propagation of trust (belief propagation) and was introduced in

[44] by Gallager. The spread of trust is based on passing messages locally within the

structure of the code, that is, estimations of a given symbol are updated based on the

symbols that are close to the structure of the code. The information of a given symbol

is propagated throughout the structure of the code. In the probabilistic environment,

the likelihood ratios or LR of each bit d are defined in order to propagate this informa-

tion. The formal definition for the binary data symbols could be expressed as:

`k = Pr ob{d = 0 | y,C }

Pr ob{d = 1 | y,C }
= `k

n ·∏
i
`k

ei , (2.8)

where y is the decoder input, C refers to the code structure, `k
n denotes the con-

tribucion due to the decoder inputs (the intrinsic information), `k
ei denotes the con-

tribution due to the constituent codes (the extrinsic information) and i denotes the

number of constituent decoding operations. Often, the constituent decoders operate

in the log domain. In this case, the shared information between the decoders is the

Log-Likelihood Ratio (LLR), expressed as

Lk = ln
Pr ob{d = 0 | y,C }

Pr ob{d = 1 | y,C }
= Lk

n +∑
i

Lk
ei . (2.9)

30

2.3. Codes with iterative decoding

2.3.1 Turbo Codes

Turbo codes were introduced in 1993 by Berrou, Glavieux and Thitimajashima [9], [10].

In their research, they reported extremely impressive results for a code with a long

frame length. The main idea is an extrapolation from Shannon’s theory of communi-

cation. Shannon [103] shows that an ultimate code would be one where a message

is sent infinite times, each time shuffled randomly, but this requires infinite band-

width so this schema is unpractical. The contribution of turbo codes is that sending

the information infinite number of times is not really needed, just two or three times

provides pretty good results.

2.3.1.1 Turbo Coding

The most common turbo encoder consists of parallel concatenation of some Recur-

sive Systematic Convolutional encoders (RSC) [9], each with a different interleaver,

working on the same information. The purpose of the interleaver is to offer to each en-

coder an uncorrelated version of the information. The usual configuration consists of

two identical convolutional encoders with rate 1/2 and a pseudo-random interleaver,

π. As shown in Figure 2.5a, this is called a Parallel Concatenated Convolutional Code

(PCCC).

The input bits m are grouped in sequences whose length N is equal to the size of

the interleaver. The sequence m′ is obtained as the result of the interleaving process.

The first encoder receives the sequence m and produces the pairs (m,c1) and the

second encoder receives the sequence m′ and produces the pairs (m′,c2). Since both

encoders are systematic encoders m′ = π(m) and, as π is known by the decoder, only

(m,c1,c2) will be transmitted. The rate of this encoder is 1/3 but it can be increased by

puncturing by 1/2.

2.3.1.2 Turbo Decoding

Turbo decoding is based on an iterative process to improve performance and it uses,

as a basic decoder unit, a Soft-Input Soft-Output algorithm. The block scheme of a

common turbo decoder is shown in figure 2.5b.

First of all, the sequence encoded by the first encoder is decoded by the first de-

coder. As a result, this decoder returns soft information, that is to say, an estimation

about which were the values of the bit in the original sequence and how likely is this

estimation for each bit. This information is usually called extrinsic information. The

31

2. STATE OF THE ART

m
m

c1

m’

c2

m’

Convolutional
Encoder (r=½)

Convolutional
Encoder (r=½)

Interleaver

(a) Common turbo encoder

Decoder

Decoder

Interleaver

m ̂

ĉ2

ĉ1

m’̂

Interleaver

Interleaver-1

(b) Common turbo decoder

Figure 2.5: Dual Turbo Encoder/Decoder with ratio r = 1
3 .

extrinsic information of the first decoder is interleaved in the same manner that the

input bits had been interleaved in the turbo encoder before they are applied to the

second encoder. The next step is to send this interleaved information to the second

decoder. This decoder takes the extrinsic information of the first decoder into account

when it decodes the sequence encoded by the second encoder and gives a new esti-

mation about the original values. This process is repeated several times depending on

the performance that is required of the system. On the average, 7 or 8 iterations give

adequate results and no more 20 are ever required.

There are some algorithms that can be modified to use as a turbo decoder com-

ponent but the ones most used are the Soft Output Viterbi Algorithm [50, 52] and the

BCJR [2] or Maximum A-posteriori Probability (MAP) algorithm. SOVA is a combina-

tion of iterative decoding with a modified form of Viterbi decoding and it maximizes

the probability of a sequence. On the other hand, MAP maximizes the output prob-

ability based on some knowledge of the input a priori probabilities and soft output

from the demodulator.

2.3.1.3 The Max-Log-MAP Algorithm

The MAP algorithm gives, for each decoded bit (bi), the probability that this bit was

+1 o -1, given the received symbol sequence Y. This is equivalent to finding the a

posteriori log-likelihood ratio (LLR):

L(bi | Y) = ln

(
P (bi =+1 | Y)

P (bi =−1 | Y)

)
(2.10)

The Max-Log-MAP algorithm is a simplified version of the MAP algorithm by trans-

ferring these equations into the logarithmic domain and using the approximation:

ln

(∑
i

eai

)
≈ max

i
(ai) (2.11)

32

2.4. Software Watermarking

Forward, backward and transition state metrics, α, β and γ, are calculated as

shown below:

αi (u) ' max
u′ {αi−1(u′)+γi (u′,u)}

βi−1(u′) ' max
u

{βi (u)+γi (u′,u)}

γi (u′,u) ' C ln(e(bi L(bi))/2e
Lc
2

∑n
k=1(yi k xi k)) (2.12)

where C is a constant value, bi is the information bit, L(bi) is the a priori informa-

tion for each constituent decoder, the constant Lc = 2 Eb

σ2 is a measure of the Signal-to-

Noise Ratio (SNR) in the channel and, finally, yi k and xi k are the received and trans-

mitted bits.

To determine the reliabilities LLR in Max-Log-MAP algorithm, in contrast to the

MAP algorithm, only the most likely paths at time i are considered. This approxi-

mation is one of the reasons for the sub-optimal performance of the Max-Log-MAP

algorithm compared to the MAP algorithm.

The bitwise LLR can be computed as:

L(bi | Y n
1) = max

{u′,u}⇒bi=+1
(αi−1(u′)+γi (u′,u)+βi (u))

− max
{u′,u}⇒bi=−1

(αi−1(u′)+γi (u′,u)+βi (u))

= max
{u′,u}⇒bi=+1

σi 1(u′,u)− max
{u′,u}⇒bi=−1

σi 0(u′,u) (2.13)

2.4 Software Watermarking

Digital watermarking has been traditionally used to provide copyright protection for

different kinds of digital objects. In the copyright protection scenario, a distributor

embeds the watermark into the digital object, so its ownership can be proved later.

Software watermarking is the term used when the digital object is a software applica-

tion. Software watermarking has been used to detect software piracy (i.e. the illegal

copying and resale of software applications). In addition, software watermarks have

also been used in other scenarios such as tamperproofing or obfuscation [21].

According to [23] there are three parameters that essentially define the charac-

teristics and security of a software watermarking scheme: (1) the data rate expresses

the quantity of hidden data that can be embedded within the digital object; (2) the

stealth expresses how imperceptible the embedded data is to an observer; and (3) the

resilience expresses the hidden message’s degree of immunity to attacks performed by

33

2. STATE OF THE ART

an adversary. All watermarks exhibit a trade-off between these three parameters and

the related cost.

2.4.1 Classification of Software Watermarks

Software watermarks are usually classified in two types:

• Static watermarks. The static watermark is embedded in the executable code

of the program. The main drawback of static watermarks is that they can be

detected even without running the program and thus, they are susceptible to at-

tack by anyone of reasonable skills in software analysis. One of the most robust

static watermarking techniques is presented in [111]. In that proposal, Venkate-

san et al. treat the program as a control flow graph, in which a watermark graph

is added to form the marked program.

• Dynamic watermarks. The watermark depends on conditions during the exe-

cution of the program. These conditions can be related with input data, user-

interaction, a packet from network, a special file, the program state etc. This

makes dynamic watermarks much more difficult to detect because in general

the application must be run several times to detect the watermark. As dynamic

watermarks are relatively new, there are still few published proposals of this kind

[23, 87]. In the literature we can find three types of dynamic watermarks:

– Easter egg watermarks, in which the application performs an action that

is immediately perceptible for the user when a special input sequence is

entered.

– Execution trace watermarks, in which the watermark is embedded within

the program trace (either instructions or addresses).

– Data structure watermarks, in which the watermark is embedded within

the state of the program (global, heap, stack data, etc.).

2.4.2 Threat Model for Software Copyright Protection

The objective of an illegal software redistributor is to make the watermark invalid with-

out changing the behavior of the program. In this sense, three main attacks can be

performed:

• Subtraction attacks: an attacker that knows the location of the watermark can

try to delete it from the code, in the hope that the program after the extraction

will be still useful.

34

2.4. Software Watermarking

• Distortive attacks: an attacker without knowledge about the location of the

watermark can apply transformations that uniformly distort the code trying to

make the watermark unrecognizable.

• Additive attacks: an attacker adds its own mark, in the hope that it will be im-

possible to detect that the real watermark precedes the new fake one.

Most distortive attacks are based on semantic preserving program transforma-

tions, that is, transformations that preserve the semantics of the program, but they

modify its appearance. Some examples of classical semantic preserving program

transformations are obfuscation, translation and optimization (compilation, decom-

pilation or binary translation).

Regarding the strength of both types of software watermarks, in general, static wa-

termarks are simpler than the dynamic ones, but also weaker against attacks [23, 21].

Static watermarks are usually easy to distort by using any semantic preserving pro-

gram transformation. On the other hand, most published dynamic watermarking

schemes are resilient to some of these transformations when applied individually,

but not to combined attacks of some of them. For this reason, most watermarking

schemes are designed to make it difficult to locate and change the watermark when

semantic preserving program transformations are used.

2.4.3 Dynamic Graph Watermarking

The CT algorithm (also called Dynamic Graph Watermarking [23]) is based on embed-

ding watermarks within the topology of graphs built dynamically in memory during

the execution of a program. The structure embedded is a graph-watermark (G). The

graph-watermark contains in its topology a representation of a number N , which is

the product of two large primes p and q . A program called recognizer or R can retrieve

this graph from memory. Then, N can be retrieved from G , and finally, the author

can prove that she has embedded the corresponding graph into the code because she

knows p and q .

Graphs are a suitable mechanism to embed marks because as it is known [23],

the analysis of large graphs involves significant complexity and requires an important

computational effort. Furthermore, attacks based on semantic modifications of the

source code are useless because they do not alter the execution of the marked code,

and thus, the watermark can be recovered by means of the analysis of the memory

during the execution.

Figure 2.6 illustrates the steps of this mechanism. The algorithm starts selecting

two large primes (p and q) and calculating N = p ×q . Then, the algorithm continues

as follows:

35

2. STATE OF THE ART

1. Embedding N into the topology of a given graph G .

2. Creating the code W which generates G .

3. Embedding W in the original code O to generate a O0, which given an input I,

the recognizer R is able to extract W (and hence N).

4. Using tamperproofing to avoid W being removed (generating O1).

5. Using obfuscation to difficult analysis (generating O2). In this case, the recog-

nizer R and the watermark code W become R ′ and W ′ respectively because of

obfuscation.

6. Extracting the recognizer R ′ and distributing the marked code O3.

7. After distribution, an attacker can generate O4 distorting the code O3 to make

the watermark invalid.

8. The author of the code can prove her authorship by applying the recognizer R ′

to O4 using the special input I. This will generate the graph G in memory, so N

can be found. As N is not a random number but it has been chosen deliberately

as the product of two large primes, then the author demonstrates authorship

just factoring N (publishing p and q).

Figure 2.6: Scheme of Dynamic Graph Watermarking

36

2.4. Software Watermarking

One of the main difficulties of this algorithm is the embedding process of the mark

within a graph. Collberg et al. mention in [23] some possible ways to do so. From

these, we summarize here the Radix-k encoding. In Radix-k, the number used as wa-

termark is embedded by means of a circular linked list. In fact, every number can be

encoded as n =∑k−2
i=0 ai k i . So, the base-k digit is encoded by the length of the list and

an extra pointer, which points to the first node. Every node encodes an ai by pointers:

if the pointer is null, then ai = 0; if the pointer points itself, then ai = 1; if it points

the next element, then ai = 2, and so on. Equation 2.14 and Figure 2.7 show an exam-

ple of Radix-6 encoding, which codifies the number n = 4453 with these coefficients

a = {a0, a1, a2, a3, a4} = {1,4,3,2,3}.

n = 3×64 +2×63 +3×62 +4×61 +1×60 = 4453 = 61×73 (2.14)

Figure 2.7: Example of embedding n=4453 by means of Radix-k

Enumeration Encoding: This method is based on the possibility of enumerating

and indexing graphs [54]. The idea is codifying N using the index of the graph in this

enumeration.

2.4.4 Self-Validating Branch-Based Software Watermarking by Myles et al.

The algorithm presented in [87] fulfils the watermarking requirements and it also con-

tributes with fingerprinting characteristics to the system. In other words, this algo-

rithm can embed imperceptible authorship information in a piece of code and be-

sides, it adds mechanisms to identify the owner of a specific copy of this piece of code.

The Self-Validating Branch-Based Software Watermarking algorithm, as its name indi-

cates, is based in the use of branch function to generate, in runtime, the appropriate

fingerprint codeword. As a collateral effect of the use of this type of functions, tamper

detection can be incorporated into this algorithm to detect and to disappoint attacks.

This algorithm has twice different processes. The first process (equation 2.15) is the

embedding operation (embed). This function requires 4 input parameters: the piece

of code to be marked (P), Authorship mark (AM) and two secret keys, K EYAM and

K EYF M . Note that, while the K EYAM is the same for all copies, each copy will have a

37

2. STATE OF THE ART

different unique K EYF M . The aim of this function is to add the authorship mark and

the fingerprint generating code into the program (P), yielding a new piece of code or

program (P ′) and a fingerprinting mark (F M) which is generated from K EYF M and the

program execution trace. The second process (recognise) the function which can re-

trieve the authorship mark and the fingerprinting mark from a marked piece of code or

program, the ke y AM and ke yF M (equation 2.16). Note that this algorithm has a blind

recogniser, that is, marks can be retrieved without the original piece of code (P), only

the marked program P ′ and the respective keys ke y AM and ke yF M are needed.

embed
(
P, AM ,ke y AM ,ke yF M

)−→ P ′,F M (2.15)

recognise
(
P ′,ke y AM ,ke yF M

)−→ AM ,F M (2.16)

The branch functions [76] were created to difficult static disassembly of native exe-

cutables as a basis of an obfuscation technique. Its operation is conceptually easy (see

figure 2.8): some determined jump instructions of the code are replaced by calls to the

same function which will redirect these calls to the correct point in the code. Myles

et al. defined a special type of branch functions that is named fingerprinting branch

function (FBF). In addition to normal branch functions behaviour, this kind of func-

tion modifies the ki value every time that this function is called. This value is used to

obtain the destination of the branch in each iteration. Moreover, in the last iteration,

kn will take as value the fingerprinting mark F M . The aims of FBF can be schematized

as follow: Verifying code integrity by obtaining, with a digest function, the value vi

which will be used in the ki calculation; to generate the new ki value with one way

function which depends on the values of ki−1 and vi ; transferring program execution

to the original branch target using the value of ki ; tamper detection; authorship mark

is incorporated to prove ownership. As example of ki calculation, Myles et al., pro-

pose ki = SH A1[(ki−1⊕AM)‖vi]. Note that the integrity checks, as a tamper detection

mechanisms, are capable of detecting if a program has been subjected to semantics-

preserving transformation or even if a debugger is presented. Figure 2.9 shows a sim-

plified schema of a tamper detection mechanism. For example, if malicious host is

analysing the agent execution (inserting, for instance, breakpoints in a debugger), the

checksum over a block of code will be different from the original checksum and the

branch function will not be able to find the program target for this adulterated check-

sum.

The embedding process can be divided into three steps. The first step lies in run-

ning the program to be marked using as input the authorship key (ke y AM) to obtain

the trace of the program. In the second step of the algorithm the branches in each

function f ∈ F (where F is the set of all functions identified by trace) are substituted

by calls to the FBF. The values for ki and the mapping between these values and the

pointers to the next respective steps are generated. Finally, the resulting structure of

38

2.4. Software Watermarking

Branch
Function

j3: call B jump t3jump t3j3: jump t3 t3

j2: call B jump t2jump t2j2: call t2 t2

j1: call B jump t1jump t1j1: jump t1 t1

Figure 2.8: Some instructions (jump or call for instance) are converted to calls to a
branch function. The next step in the program execution will be managed by this
branch function.

the mapping is injected into the code. Note that this mapping is essential to the correct

behaviour of the application.

When the program is executed taking the pertinent keys as input, the set of the

functions marked by fingerprinting process and the FBF are identified. If the one way

function used is known, the supposed author can demonstrate his authorship by sup-

plying his authorship mark and comparing with the obtained mark. In the same way,

as a result of the last call to FBF, the fingerprint mark is obtained.

¿?
Execution stops!
Attack detected!

NOBlock
of

code j

Ki is
found in the

mapping?

Mapping

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Ki

calculation

Block
of

code i

O
rigin

al execu
tio

n
 flo

w

YES

Figure 2.9: Tamper detection mechanism implemented with checksums and branch
functions.

39

2. STATE OF THE ART

2.5 Mobile agents

Mobile agents are software entities that consist of code, data and state, and that can

migrate from host to host performing actions on behalf of a user. For instance, mo-

bile agents can be used to support wireless terminals, which usually are resource-

constrained. In fact, mobile agents are especially useful to perform functions auto-

matically in almost all electronic services, like distributed computing, e-commerce or

data mining. Figure 2.10 shows a possible mobile agent scenario.

Figure 2.10: Mobile Agent Scenario

In this scenario, a user wants to perform some tasks using mobile agents. For in-

stance, let us imagine that the user wants to arrange a meeting in which invitees are

spread all over the country in different local offices. The date and place of the meeting

may depend on several different parameters such as room availability, room capac-

ity, available commodities (projector, blackboard, etc) and, of course, on the invitees’

agendas. To do so, the user will use a mobile agent that will migrate to the host of each

invitee to consult her agenda, room availability in the local office and so on. Finally,

the mobile agent will decide the place and date of the meeting, and it will introduce

a new entry in the agenda of each invitee. The user might send the agent by herself,

or she might delegate the sending process to an Agent Sender, which is a principal

with capabilities to dispatch the mobile agent to the network. Usually, this part of the

mobile-agent infrastructures are called “Origin Host” and it is considered trustworthy.

On the contrary, executing hosts cannot be considered trusted entities. For in-

stance, these executing hosts might be competitors. Before sending the agent, the user

can have information about the trustworthiness of the hosts, for instance obtained in

previous transactions, or consulted to external reputation servers. Depending on the

40

2.5. Mobile agents

degree of trustworthiness of these hosts, the user can decide if protection techniques

are needed or not, or it simply can avoid sending the agent to them. There are several

reasons that can lead a host to become malicious and attack a mobile agent to obtain

a certain profit. In the previous example, one of the invitees could try to manipulate

the agent to impose the meeting to be in her local office because she is averse to travel,

or simply to avoid spending money in a flight. Even, she can try to impose a date in

which an adversary of another local office cannot assist to the meeting to damage the

reputation of this adversary.

According to reasons exposed before, two entities must be considered to study

the security weaknesses of the scenario: the mobile agent and the executing host (or

simply host). Protection is necessary when trustworthy relationships between these

entities cannot be assured. So these are the main cases that can be found [17, 93, 63]:

• Host protection: the system administrator’s duty is protecting the hosts from

attacks that try to exploit the weaknesses of the execution platform. The at-

tacks performed by external entities (e.g. other hosts) are out of the scope of this

article because they can appear irrespective of the use of mobile agents. How-

ever, there are new threats that must be taken into account. The hosts must be

protected against the attacks that an agent can perform while it is executing its

code. A malicious mobile agent can try to eavesdrop or manipulate any kind of

available data, or even it can perform a denial of service attack to make the plat-

form break down. Continuing with the example of the arrangement of a meet-

ing, a malicious mobile agent could try to delete entries that should not have

permission to access in the agenda of a user. Fortunately, most of these attacks

can be detected or avoided by using a proper access control and sandboxing

techniques, which are techniques that control the execution environment. In

addition, some other proposals try to determine if the agent’s code is malicious

before executing it [37, 90].

• Communications security: the agent can receive multiple attacks from any ex-

ternal entity while it is migrating from host to host. Typical attacks are eaves-

dropping or manipulation of data. Data eavesdropping attacks can be avoided

by using encryption techniques, so any confidential information should be en-

crypted. Data manipulation attacks can be detected by using digital signature

[68]. This includes any part of the mobile agent (the code, the itinerary, etc). In

fact, before sending the agent the origin host signs the mobile agent to assure

that it will not be modified during its journey by any host. So then, the hosts are

sure that the agent’s code has not been manipulated by any external entity (this

includes any other previous host in the itinerary). In both cases, data eavesdrop-

ping and manipulation, the use of well-known cryptographic protocols is nec-

41

2. STATE OF THE ART

essary. However, these cryptographic techniques are subject to the existence of

mechanisms to create and exchange encryption/signature keys between hosts.

The use of a Public Key Infrastructure (PKI) is a useful and standard way to pro-

vide these services. However, any other mechanism/infrastructure that makes

possible the creation and exchange of encryption/signature keys could be used.

• Agent protection: while the agent is inside an execution platform, it can re-

ceive attacks from other agents or from the platform itself. The attacks between

agents inside the same platform can be solved by using separate execution en-

vironments. However, it is not so easy to protect the agents from the attacks of

the execution platform. This is considered the most difficult security problem to

solve in mobile agent systems for most of the authors [36, 61]. There are many

reasons that can lead a host to attack the agents that is executing. The host can

try to obtain an economical benefit or a favorable execution, or just it can try to

damage the reputation of another principal. Following the previous example, a

rival host could try to manipulate the agent to impose the meeting in another

local office, but in a room without projector, so the organizer of that local of-

fice will make a bad impression. Notice that while it is possible to assure the

agent’s privacy and integrity during its journey, It is difficult to prevent or detect

eavesdropping and manipulation attacks performed by the host during the ex-

ecution. The host has complete control of the execution and hence it can read

or modify any part of the mobile agent: the code, the execution flow, the state,

the itinerary, the communications, or even the results. The agent cannot hold

a decryption key because the host could read or modify it. This is the reason

why there is not a published solution that protects the mobile agents completely

from the attacks of an executing host. This kind of attacks is also known as the

problem of the “malicious hosts”.

As the attacks performed by malicious hosts are considered the most difficult to

face within the mobile agent scenario regarding security [16], the research in this area

is centred on it. There are two main attacks of this kind: (1) eavesdropping attacks,

in which the host tries to extract information from the execution of the agent. The

system must provide execution privacy to face these attacks, but this security service

is difficult because eavesdropping attacks cannot be detected, only avoided; and (2)

manipulation attacks, in which the executing host tries to modify the proper execu-

tion of the agent. Providing execution integrity is also a quite difficult security service

because the executing hosts have complete control over the agent’s execution.

The literature about countermeasures for malicious host attacks can be divided in

two kinds of approaches: attack avoidance and attack detection approaches. Regard-

ing attack avoidance approaches, they try to avoid attacks before they happen. Some

42

2.5. Mobile agents

authors introduced the idea of a tamper-proof hardware subsystem [119, 79] where

agents can be executed in a secure way, but this forces each host to buy this hardware.

Hohl presents obfuscation [58] as a mechanism to assure the execution integrity dur-

ing a period of time, but this time depends on the capacity of analyzing the code of the

malicious host. The use of encrypted programs [99] is proposed as the only way to give

execution privacy and integrity to mobile code. The difficulty here is to find functions

that can be executed in an encrypted way. Published attack avoidance techniques

are difficult to implement or computationally expensive. For this reason, we consider

attack detection techniques more promising because they are usually easier to imple-

ment. The objective of attack detection approaches is detecting manipulation attacks.

In [83], the authors introduce the idea of replication and voting, but this proposal can

only be used as an attack detection approach if the hosts in the same stage are inde-

pendent. In [112], Vigna introduces the idea of the cryptographic traces, which are

logs of the operations performed by the agent. The operations of the agent can be cat-

egorized in white statements, which modify the agent’s state due to internal variable

values; and black statements, which alter the agent’s state due to external variables.

These traces contain the changes performed to internal variables as a consequence of

black statements. A re-execution of the agent can be performed with these traces.

43

Part II

Contributions related to

fingerprinting codes and schemes

C
H

A
P

T
E

R

3
IMPROVEMENTS OF EXISTENT

CONVOLUTIONAL-LIKE FINGERPRINTING

CODES

3.1 Introduction

The distribution and playback of digital images and other multimedia products is easy

due to the digital nature of the content. Achieving satisfactory copyright protection

has become a challenging problem for the research community. Encrypting the data

only offers protection as long as the data remains encrypted, since once an authorized

but fraudulent user decrypts it, nothing stops him from redistributing the data without

having to worry about being caught.

The concept of fingerprinting was introduced by Wagner in [116] as a method to

protect intellectual property in multimedia contents. The fingerprinting technique

consists in making the copies of a digital object unique by embedding a different set

of marks in each copy. Having unique copies of an object clearly rules out plain redis-

tribution, but still a coalition of dishonest users can collude. A collusion attack consist

in comparing the copies of the coalition members and by changing the marks where

their copies differ, they create a pirate copy that tries to disguise their identities. In this

situation they can also frame an innocent user. Thus, the fingerprinting problem con-

sists in finding, for each copy of the object, the right set of marks that help to prevent

collusion attacks.

The construction of collusion secure codes was first addressed in [12]. In that pa-

per, Boneh and Shaw obtain (c > 1)-secure codes, which are capable of identifying a

47

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

guilty user in a coalition of at most c users with a probability ε of failing to do so. The

construction composes an inner binary code with an outer random code. Therefore,

the identification algorithm involves the decoding of a random code, that is known to

be a N P-hard problem [6]. Moreover, the length of the code is considerably large for

small error probabilities and a large number of users.

To reduce the decoding complexity, Barg, Blakley and Kabatiansky in [6] used

algebraic-geometric codes to construct fingerprinting codes. In this way, their sys-

tem reduces the decoding complexity to O(pol y(n)) for a code length n and only 2

traitors. In [38], Fernandez and Soriano constructed a 2-secure fingerprinting code by

concatenating an inner (2,2)-separating codes with an outer IPP code (a code with the

Identifiable Parent Property), and also with decoding complexity O(pol y(n)).

The Collusion Secure Convolutional Fingerprinting Information Codes presented

in [122] have shorter information encoding length and achieve optimal traitor search-

ing in scenarios with a large number of buyers. Unfortunately, these codes suffer from

an important drawback in the form of false positives, in other words, an innocent user

can be tagged as guilty with very high probability. This codes where extended by Zhang

et al. in the paper [121] using an turbo code instead of a convolutional code. In a

practical implementation of these codes, the turbo code must have some restrictions,

which the authors did not take into account, to obtain the desired performance.

In this chapter, these two proposals are analysed in depth and some improvements

are proposed. More precisely, in section 3.4 we analyse in depth the work in [122] and

quantify the probability of false positives. Moreover, in section 3.5 turbo fingerprint-

ing codes are analysed. This analysis shows that, in order to obtain the desired perfor-

mance, the turbo code must have some restrictions in a practical implementation of

these codes. The authors did not take into account this restrictions.

The chapter is organized as follows. In Section 3.2 we provide some definitions on

fingerprinting and error correcting codes. Section 3.3 presents the well known Boneh-

Shaw fingerprinting codes. Section 3.4 discusses the Collusion Secure Convolutional

Fingerprinting Information Codes presented by Zhu et al. and carefully explains the

encoding and decoding mechanisms. Furthermore we deal with the false positive

problem and give a bound on the false positive probability and some guidelines for

the correct construction of this family of codes with low false positive probability are

presented. Section 3.5 discusses the turbo fingerprinting codes presented by Zhang

et al. and carefully explains the encoding and decoding mechanisms. Moreover, new

considerations about Turbo Fingerprinting Codes (TFC) as well as the errors that can

be produced as a consequence of not taking into account these considerations are ex-

plained and justified. In the same way a numerical example of this problem is given.

Furthermore, this section proposes two improvements to the performance of the TFC

using the likelihood provided by the turbo decoder. Finally, some conclusions are

48

3.2. Definition

given in Section 3.6.

3.2 Definition

We begin by defining some concepts which will be needed throughout this chapter.

Definition 3.1 (Error Correcting Code). A set C of N words of length L over an alphabet

of p letters is said to be an (L, N ,D)p -Error-Correcting Code or in short, an (L, N ,D)p -

ECC, if the Hamming distance1 between every pair of words in C is at least D.

Other important definitions needed below are:

Definition 3.2 (Convolutional Code). A convolutional code is a type of error-correcting

code in which each k-bit information symbol (each k-bit string) to be encoded is trans-

formed into an n-bit symbol, where k/n is the code rate (n ≥ k) and the transformation

is a function of the last m information symbols, where m is the constraint length of the

code. Or more formally [39], an (n,k) convolutional encoder over a finite field F is a

k-input n-output constant linear causal finite-state sequential circuit. And a rate k/n

convolutional code C over F is the set of outputs of the sequential circuit.

An important concept in fingerprinting environments is the Marking Assumption.

Definition 3.3 (Codebook [12]). A set Γ= {W (1),W (2), · · · ,W (n)} ⊆Σl , where Σl will de-

note some alphabet of size s, will be called an l (l ,n)-code. The codeword w (i) will be

assigned to user ui , for 1 ≤ i ≤ n. We refer to the set of words in Γ as the codebook

Definition 3.4 (Undetectable Position). Let Γ = {W (1),W (2), · · · ,W (n)} is an (l,n)-code

and C = {u1,u2, · · · ,uc } is a coalition of c-traitors. Let position i be undetectable for C,

i.e. the words assigned to users in C match in i’th position, that is w (u1)
i = ·· · = w (uc)

i .

Definition 3.5 (Feasible set). Let Γ = {W (1),W (2), · · · ,W (n)} is an (l,n)-code and C =
{u1,u2, · · · ,uc } is a coalition of c-traitors. We define the feasible set Γ of C as

Γ(C) = {x = (x1, · · · , xl) ∈Σl | x j ∈ w j ,1 ≤ j ≤ l }

where

w j =
{

{w (u1)
j } w (u1)

j = ·· · = w (uc)
j

{w (ui)
j | 1 ≤ i ≤ c}∪ {?} other wi se

where ? denotes an erased position.

1The Hamming distance d(y ; x) [53] between two sequences of equal length can be defined as the
number of positions in which the two sequences differ.

49

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

Now we are in position to define the Marking Assumption that establishes the rules

that the attacking coalition are subjected to. This definition sets the work environment

of many actual fingerprinting systems.

Definition 3.6 (Marking Assumption). Let Γ = {W (1),W (2), · · · ,W (n)} be an (l,n)-code,

C = {u1,u2, · · · ,uc } a coalition of c-traitors and Γ(C) the feasible set of C. The coalition

C is only capable of creating an object whose fingerprinting lies in Γ(C).

The main idea of this definition is that a coalition of c-traitors can not detect the

positions in the document in which their mark holds the same value. Many of the

fingerprinting schemes in the literature base their tracing algorithms in trying to esti-

mated the positions that are changed by the attackers.

As example, a (3,4)-code can be defined as:

Positions: 1 2 3

A : 1 1 1

B : 0 1 1

C : 0 0 1

D : 0 0 0

Suppose that users B and C collude, for this collusion the positions 1 and 3 will be

undetectable positions. And the Feasible set for this collusion will be:

0 1 1

0 ? 1

0 0 1

And, taking into account the marking assumption, the coluders are only capable

of creating an object whose fingerprinting lies in this set of words. Note that, as well

as putting one of their value in the position 2, they can erase this position which is

represented by ?.

3.3 Boneh-Shaw fingerprinting model

In 1995, Dan Boneh and James Shaw presented in [12] a seminal paper about the collu-

sion secure fingerprinting problem. First of all, we need to define what a fingerprinting

scheme is.

Definition 3.7 (Fingerprinting scheme [12]). A (l ,n)-fingerprinting scheme is a func-

tion Γ(u,r) which maps a user identifier 1 ≥ u ≥ n and a string of random bits r ∈ {0,1}∗

to a codeword Σl . The random string r is the set of random bits used by the distributor

and kept hidden from the user. We denote a fingerprinting scheme by Γr .

50

3.3. Boneh-Shaw fingerprinting model

3.3.1 n-secure codes

We now define n-secure codes, see [12] for a more detailed description.

Definition 3.8 (c-secure code with ε-error). A fingerprinting scheme Γr is a c-secure

code with ε-error if there exists a tracing algorithm A which from a word x, that has

been generated (under the Marking Assumption) by a coalition C of at most c users,

satisfies the following condition Pr [A(x) ∈C] > 1−ε where the probability is taken over

random choices made by the coalition.

Now, we define the code and its decoding algorithm:

1. Construct an n-secure (l ,n)-code with length l = nO(1).

2. Construct an Γ0(n,d)-fingerprinting scheme by replicating each column of an

(l ,n)-code d times. For example, suppose a (3,4)-code {111,011,001,000}. We

can construct a Γ0(4,3) for four users A,B,C and D as follows:

A : 111111111

B : 000111111

C : 000000111

D : 000000000

3. When the code has been defined, the next step is to define the appropriate de-

coding algorithm. For instance

Algorithm 3.1. From [12], given x ∈ {0,1}l , find a subset of the coalition that pro-

duced x. We denote by Bm is the set of all bit positions in which the column m is

replicated, Rm = Bm−1 ∪Bm and weight denotes the number of bits that are set to

1.

a) If weight (x | B1) > 0 then output “User 1 is guilty”

b) If weight (x | Bn−1) < d then output “User n is guilty”

c) For all s = 2 to n −1 do:

Let k = weight (x | Rs). if

wei g ht (x | Bs−1) < k

2
−

√
k

2
log

2n

ε

then output “User s is guilty”

Finally, the only thing left to do is to find a relationship between the error ε and the

replication factor d . This relation is given in the following theorem,

Theorem 3.1. For n ≥ 3 and ε > 0 let d = 2n2 log(2n/ε). The fingerprinting scheme

Γ0(n,d) is n-secure with ε-error and has length d(n −1) =O(n3 log(n/ε)).

51

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

3.3.2 Logarithmic Length c-Secure Codes

The construction of Boneh and Shaw n-secure with ε-error is impractical for a medium

and large number of user because the length of codewords increases as O(n3 log(n/ε)).

To achieve shorter codes, Boneh and Shaw apply the ideas of [18] to construct c-secure

(n, l)-codes of length l = cO(1) log(n). The basic idea is to use the n-secure code as the

alphabet which is used by an (L, N ,D)p -error-correcting code. As a result of this com-

position, Boneh and Shaw obtained the following result. The proof of this theorem

can be found in [12].

Theorem 3.2. Given integers N ,c, and ε > 0 set n = 2c, L = 2c log(2N /ε, and d =
2n2 log(4nL/ε). Then, Γ′(L, N ,n,d) is a code which is c-secure with ε-error. The code

contains N words and has length l =O(Ldn) =O(c4 log(N /ε) log(1/ε))

Thus the code Γ′(L, N ,n,d) is made up of L copies of Γ0(n,d). Each copy is called

a component of Γ′(L, N ,n,d). The codewords of component codes will be kept hidden

from the users. Finally, the codewords of Γ′(L, N ,n,d) are randomly permuted by π

before the distributor embeds the codeword of the user ui in an object, that is to say,

user ui ’s copy of the object will be fingerprinted using the word πw (i). To guarantee

the security of this scheme, the permutation π must be kept hidden from the users in

order to hide the information of which mark in the object encodes which bit in the

code.

3.4 Improvement of Collusion Secure Convolutional

Fingerprinting Information Codes

This sections presents, analyzes and improves the false positive problem detected in

Convolutional Fingerprinting Information Codes presented by Zhu et al. The codes are

a concatenation of a convolutional code and a Boneh-Shaw code. In their paper Zhu

et al. present a code construction that is not necessarily c-secure with ε-error because

in their modified detection algorithm the standard Viterbi error probability analysis

cannot be directly applied. In this case we show that false positives appear, that is to

say, the problem of accusing an innocent and legal user of an illegal redistribution,

and give a bound on the probability of false positives as well as justify it analytically

and by simulations. Moreover, some guidelines for a correct design of this family of

codes is also given.

52

3.4. Impr. of Collusion Secure Convolutional Fingerprinting Information Codes

3.4.1 Collusion Secure Convolutional Fingerprinting Information Codes

In [122], Yan Zhu et al. presented a fingerprinting scheme with the aim of obtaining a

c-secure with ε-error fingerprinting schemes for N -users that improve BS in run-time

and storage capacity. Mainly, their scheme composes an inner Boneh-Shaw code with

an outer Convolutional code. In the decoding process, they propose a modified Viterbi

algorithm that works with more than one symbol in each step or ‘Optional Code Sub-

set’ as the authors term it. In the next subsections we explain in detail the original

workflow of this scheme.

3.4.1.1 Convolutional fingerprinting encoding

The fingerprinting code presented in [122] has a two-layer concatenated structure (the

Convolutional Error-Correcting Layer and the Fingerprinting Layer) and we denote it

as Φ(L, N , l ,n)-Fingerprinting code where N is the number of users, L is the convolu-

tional code length and l and n are the parameters of an Γ(l ,n) code. The encoding

process of aΦ(L, N , l ,n)-fingerprinting code consists in the following 3 steps:

1. A codeword m(ui) of length N is randomly assigned to each user ui .

2. Convolutional error-correcting layer encoding: The codeword m(ui), divided

into blocks of k0 bits, is used as input to a (n0,k0,m0)-Convolutional encoder

3. Fingerprinting layer encoding: Each group of n0 output bits is mapped to a

Γ(l ,n)-code.

To construct a Φ(L, N , l ,n)-code we need two codes. The first code must be a c-

secure code with ε-error. For this purpose, the authors use the Boneh-Shaw Γ0(n,d)

code [12].

As it has been discussed before, this code consist of all columns (c1,c2, · · · ,cn−1)

each duplicated d times. The value of ci can be expressed as:

ci =
{

1 if i nput x ≥ i

0 other wi se

For example, when the input is 1 all ci take the binary value 1, and when the input

is n all ci take the binary value 0. The value of d depends on ε as is shown in Theorem

3.1.

The other code that we need for an implementation of the Convolutional Finger-

printing Scheme is a ℑ(n0,k0,m0)-Convolutional code. The only requirement that the

code ℑ(n0,k0,m0) must satisfy is that n ≥ 2k0m0 , in other words, the number of sym-

bols in the alphabet of the code ℑ(n0,k0,m0) must not be larger than the number of

symbols in the alphabet of code Γ0(n,d).

53

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

Algorithm 3.2 presents the encoding process. Finally, the result of this process

must be randomly permuted by a permutation denoted by π. The result of this per-

mutation is embedded into the original document to obtain a copy of this document

customized for user ui .

Algorithm 3.2. From [122], Fingerprinting-Information-Encoding (original-document

X ,message m(ui), permutation π)

Let v = Convolutional-Encoding(m(ui),i)

For each 1 ≤ k ≤ L

w (vk)=Fingerprinting-Encoding(vk)

Let W (v) =π(W (v1) ∥W (v2) ∥ · · · ∥W (vL) ∥)

Embed W (v) into document X to obtain X (ui)

Return marked copy X (ui)

End

3.4.1.2 Convolutional fingerprinting decoding

The main objective of fingerprinting decoding is to obtain a tracing algorithm that

can retrieve with a very low error probability a group of traitors that created an illegal

document. Of course, this group of traitors should not contain an innocent user, at

least with high probability.

First of all, the fingerprinting layer is decoded using algorithm 3.1. As a result of

this, an ‘Optional Code Set’ is retrieved from each position. An ‘Optional Code Set’

is the set of codewords from an (L, N ,D)p -ECC that must collude to obtain a pirate

codeword.

In this way, in [122] the Viterbi algorithm has been modified by using as input

an ‘Optional Code Set’ from the fingerprinting layer decoder output instead of a cor-

rupted codeword for each state. This modification is shown in algorithm 3.3. In the

classic implementation of the Viterbi algorithm, the decoder receives from the chan-

nel a set R = (r1,r2, · · · ,rL) where each ri is a codeword of an ECC that contains errors.

Now the decoder receives, from the Fingerprinting Layer, a set R = (r1,r2, · · · ,rL) where

each ri is a set of all suspicious codewords of an ECC, i.e. ri = {ri ,1,ri ,2, · · · ,ri ,t } where

t ∈ N .

Algorithm 3.3. From [122], Convolutional-Fingerprinting-Decoding (suspect-document

Y , original-document X)

54

3.4. Impr. of Collusion Secure Convolutional Fingerprinting Information Codes

Let d0,i =∞ , sp0,i = {} for (1 ≤ k ≤ n) except d0,1 = 0

Let W =π−1(X)

For each 1 ≤ k ≤ L

Let rk = Fingerprinting-Layer-Decoding (Yk , Xk)

For each state s j

For each the incoming branch ei , j

For each the element rk,l ∈ rk (1 ≤ l ≤ m)

ck,l = D(rk,l | ei , j)

Let sqi , j = (spk,i ,ei , j), ti , j = dk−1,i +mi n1≤l≤mck,l

Let dk, j = mi ni (ti , j) for exist ei , j

Let spk, j = sql , j for all dk, j == tl , j

Let dL,l = mi n1≤ j≤n(dL, j)

Return M(spL,l)

End

Maximum-likelihood (ML) decoding is modified to keep, for each state, the path

that has minimum Hamming distance for each codeword in ‘Optional Code Set’. For

example, suppose that in the j -th step the fingerprinting layer retrieves as fraudulent

binary codewords r j = {1011,0011}. Suppose that at the entry to state S1 there exist

two input path, one from state S1 and other from S2 labelled as P1 = 0000,P2 = 1111

and represented in the algorithm by e1,1 = 0000 and e2,1 = 0000. The next step will be

to calculate the Hamming distance between the values in r j (there are r j ,1 = 1011 and

r j ,2 = 0011) and the values of e1,1 and e2,1. The paths that arrives to state S1 in step j

are stored in sqi , j and the associated total costs are stored in ti , j . The next step in the

algorithm is to search in the array ti , j the minimum value and this value is stored in

dk, j as minimum distance in order to arrive to step j at state S1. Finally, all path that

arrive to state S1 at step j with an associated cost equal to dk, j are stored in spk, j . The

algorithm keeps as the ML path P2, with input codeword being 1011.

3.4.2 A new critical performance analysis

In [122] two theorems were presented. These theorems are briefly detailed in this sec-

tion with examples of their drawbacks. Some desirable characteristics to be added will

be explained in depth throughout the next sections.

55

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

Figure 3.1: State diagram for (2,1,2) Convolutional code

Theorem 3.3. The survivor path is the maximum likelihood path in the improved

Viterbi decoding algorithm 3.3, namely, there exist a survivor path sp for all candidate

paths sq 6= sp, D(R | sp) ≥ D(R | sq).

Let SC (R) be the set of all possible combinations of suspicious codewords re-

trieved in each step by the Fingerprinting Layer, or more formally,

SC (R) = {x = (x1, x2, · · · , xL) | x j ∈ r j ,1 ≥ j ≥ #(r j)}

where r j is the set of suspicious codeword retrieved by Fingerprinting Layer for the j th

position in R. According to algorithm 3.3 the entry to each step consists in codewords.

This idea can be seen as processing each element of SC (R) with a classical Viterbi

algorithm. If the fingerprinting decoding process is correct, this system will find at

most c combinations all of which have zero Hamming distance with a path in the trellis

diagram (3.2). The main problem is that Theorem 3.3 does not guarantee that only

these c combinations are the ones to have zero Hamming distance with a path in the

trellis diagram.

For example, suppose that, at random, we assign to users u1 and u2 the identi-

fication information M1 = {0110100} and M2 = {1010000} respectively, where the last

two bits are the ending symbol for a Convolutional encoder with two memory posi-

tions. If the diagram state of [122] shown in the following figure 3.1 is used as (2,1,2)-

Convolutional encoder, the codified symbols are R(1) = (00,11,01,01,00,10,11) and

R(2) = (11,10,00,10,11,00,00).

The next step must be to encode R(1) and R(2) with well constructed Fingerprinting

Layer, in other words, with an appropriate value of d that is robust against a coalition

of two users over an alphabet of four words. After a random collusion attack of users

u1 and u2, the resultant copy must contain a mark that the Fingerprinting Layer can

56

3.4. Impr. of Collusion Secure Convolutional Fingerprinting Information Codes

Figure 3.2: Paths in a trellis diagram corresponding to two colluders that can create
false positives

retrieve

R ′ = ({00,11}, {11,10}, {01,00}, {01,10}, {00,11}, {10,00}, {11,00})

If algorithm 3.3 is applied to R ′, the trellis structure of Figure 3.2 is obtained. From

this structure, the algorithm 3.3 retrieves as illegal users the ones with identification

M1 = {0110100}, M2 = {1010000}, M3 = {0110000} and M4 = {1010100}. And, in this

case, users u3 and u4 have not done any illegal action.

Note that now is obvious that enforcing a false positive bound is necessary to de-

sign an appropriate coding scheme. Note that the problem lies in the Convolutional

Error-Correcting layer not in the fingerprinting layer. In other words, we need tools to

choose a correct Convolutional code for each application requirement.

Theorem 3.4. Given integers N ,c and ε > 0, set n = 2c, d = 2n2(log (8n) + r), r =
(2/d f)l og (Ad f /ε), where d f (free distance) is the minimum distance between any two

codewords in the convolutional code, Ad f is the number of codewords with weight d f .

Then the convolutional fingerprinting codeΦ(L, N , l ,n) is a code which is c-secure with

ε-error. The code contains N codewords. Let x be a word which was produced by a

coalition C of at most c users. Then algorithm 3.3 will output a codeword of C with

probability at least 1-ε.

The authors in [122] prove theorem 3.4, assuming the well know error probability

Pe of Viterbi decoders in BSC channels (for references in error probability of Viterbi

decoders in BSC channels [73, 113, 114]). The basic problem lies in the fact that a

set C1 is obtained as output of this algorithm and really, C1 contains a codeword of C

with probability at least 1-ε but can also contain other codewords that are not con-

tained in C . For example, suppose that we can define SC (R ′) with 128 possible code-

words. Imagine that we take alternatively one symbol of each original codeword R(3) =
(11,11,00,01,11,10,00). In this case, we can consider that channel error probability is

close to 0,28 because 4 errors have occurred over the 14 bits transmitted (suppose that

we are comparing to R(1)).

57

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

3.4.2.1 False positive probability

It has been shown above, that a Convolutional Fingerprinting Information code exists

with a non negligible false positive probability. Our approximation only takes into

account the probability that a false positive can be generated when two paths have

one common state in a single step i . First of all we can suppose that we have a system

such as in all of the trellis states there are two input arcs and two output arcs as in

Figure 3.1. On the other hand, we can suppose that there exist two colluders. Let

P (Su1
i = Su2

i = s) be the probability that the state of the associated path to user u1 in

step i is s and it is the same that the associated path to user u2. This probability can

be expressed formally as:

P (Su1
i = Su2

i = s) = P (Su1
i−1 = sn ∩ X u1

i = xu1)

+ P (Su2
i−1 = sm ∩X u2

i = xu2) = 1

S222 + 1

S222 = 1

S22
(3.1)

This expression can be generalized for c colluders, a trellis with a input arcs for

each state and 2k input symbols as:

P (Sux

i = S
uy

i = s) = a!

(a −2)!

(
c

2

)
1

S222k
= ac(a −1)(c −1)

S222k+1
(3.2)

The probability that two paths stay in the same state as in step i can be expressed

as:

PTi =
S∑

j=1
P (Sux

i = S
uy

i = s j) = S
ac(a −1)(c −1)

S222k+1

= ac(a −1)(c −1)

S22k+1
(3.3)

It is obvious that the probability that two paths do not stay in the same state is:

PN Ti = 1−PTi = 1− ac(a −1)(c −1)

S22k+1
(3.4)

And finally, taking into account the considerations presented above, the false positive

probability can be approximated as:

PF P = 1−P
N−M−logaO S
N Ti

= 1−
{

1− ac(a −1)(c −1)

S22k+1

}N−M−logaO S

(3.5)

where PN Ti is the probability that to paths do not stay in the same state, c is the num-

ber of colluders, M is the memory of convolutional encoder, N is the number of output

symbols of the convolutional encoder, 2k is the number of symbols of the input alpha-

bet, a is the number of input arcs for each state, aO is the number of output arcs for

each state.

Note that a false positive can only be generated in the inner states, in other words,

two paths which are crossed in the memory padding states or in the start states can

not cause false positives. For example the state 0 is the last state for all paths.

58

3.4. Impr. of Collusion Secure Convolutional Fingerprinting Information Codes

Figure 3.3: False Positive Probability vs. Number of users

Figure 3.4: False Positive Probability vs. Memory of Convolutional Code

3.4.2.2 Simulation results

Figure 3.3 shows the simulation results of the behaviour of a CSCFI code with the con-

volutional code being the one shown in figure 3.1 after 5000 iterations for each number

of users. The parameters of the BS code are d = 331, ε = 0.0001 and n = 4. As we can

imagine, when the number of users in the system increases, the number input bits

increases and the false positive probability goes to 1.

On the other hand, as figure 3.4 shows, when the complexity of the trellis increases

(in this simulation we use Convolutional codes from table 11.1 in [73] with ratio 1/4)

the false positive probability goes to 0.

3.4.3 Guidelines for minimizing the effect of false positives

Basically, false positives can be caused by two reasons:

• Decoding error in the Fingerprinting Layer: This type of errors can be avoided

59

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

by a good design of this layer. If the Boneh-Shaw Fingerprinting code is used,

the parameter d will be dimensioned with an appropriate error probability.

Normally, the inner code will have a low number of codewords and, for this rea-

son, it will be easy to configure the system to obtain a very low error probability

in this layer. After this, we can consider that the origin of false positives is the

following item.

• Path Crossing in the Convolutional Layer: In [122], Zhu et. al. discuss an error

probability condition. This condition has to be satisfied by equation 3.5. With

this two conditions in mind we can design an effective Collusion Secure Con-

volutional Fingerprinting Information (CSCFI) Code with ε-error probability. As

we notice in equation 3.5, convolutional encoders that are used for the outer

codes need a big complexity in their trellis structure in order to offer protection

against Path Crossing. In the same way, Convolutional encoders with high ratios

and a large number of symbols are more appropriate.

On the other hand, when a system with a complex convolutional encoder is designed,

the coding and decoding time increases. This situation defines a relationship between

the trellis complexity and the computational complexity. It will need to prioritize one

of them.

3.5 New considerations about the correct design of Turbo

Fingerprinting Codes

Since the introduction of turbo codes in 1993, many new applications for this family of

codes have been proposed. One of the latest, in the context of digital fingerprinting, is

called turbo fingerprinting codes and was proposed by Zhang et al.. The main idea is a

new fingerprinting code composed of an outer turbo code and an inner code based on

the Boneh-Shaw model. The major contribution of this section is a new analysis of this

new family of codes that shows its drawbacks. These drawbacks must be considered

in order to perform a correct design of a turbo fingerprinting scheme otherwise the

scheme cannot retrieve the traitor users which is the main goal of digital fingerprinting

scheme. Moreover, the identification of these drawbacks allows to discuss an entirely

new construction of fingerprinting codes based on turbo codes.

3.5.1 Turbo Codes

Turbo codes were introduced in 1993 by Berrou, Glavieux and Thitimajashima [9], [10].

In their research, they reported extremely impressive results for a code with a long

60

3.5. New considerations about the correct design of Turbo Fingerprinting Codes

frame length. The main idea is an extrapolation from Shannon’s theory of communi-

cation. Shannon shows that an ultimate code would be one where a message is sent

infinite times, each time shuffled randomly, but this requires infinite bandwidth so

this schema is unpractical. The contribution of turbo codes is that sending the infor-

mation infinite number of times is not really needed, just two or three times provides

pretty good results.

3.5.1.1 Turbo Coding

The most common turbo encoder consists of parallel concatenation of some Recursive

Systematic Convolutional (RSC) encoders, each with a different interleaver, working

on the same information. The purpose of the interleaver is to offer to each encoder an

uncorrelated version of the information. This results in independent parity bits from

each RSC. It seems logical that as a better interleaver is used, these parity bits will be

more independent. The usual configuration consists of two identical convolutional

encoders with rate 1/2 and a pseudo-random interleaver, π, this schema is called a

Parallel Concatenated Convolutional Code (PCCC). Figure 3.5a shows the block dia-

gram of a turbo encoder with its two constituent convolutional encoders.

The input bits u are grouped in sequences whose length N is equal to the size of

the interleaver. The sequence u′ is obtained as the result of the interleaving process.

The first encoder receives the sequence u and produces the pairs (uk , p1
k) and the

second encoder receives the sequence u′ and produces the pairs (u′
k , p2

k). Since both

encoders are systematic encoders u′
k =π(uk), and, as π is known by the decoder, only

(uk , p1
k , p2

k) will be transmitted. The rate of this encoder is 1/3 but it can be increased

by puncturing by 1/2.

3.5.1.2 Turbo Decoding

Turbo decoding is based on an iterative process to improve performance and it uses,

as a basic decoder unit, a Soft-Input Soft-Output algorithm. The block scheme of a

common turbo decoder is shown in figure 3.5b.

First of all, the sequence encoded by the first encoder is decoded by the first de-

coder as in an usual convolutional code scheme. As a result, this decoder returns soft

information, that is to say, an estimation about which were the values of the bit in the

original sequence and how likely is this estimation for each bit. This information is

called extrinsic information in the literature of turbo codes. The extrinsic information

of the first decoder is interleaved in the same manner that the input bits had been

interleaved in the turbo encoder before they are applied to the second encoder. The

next step is to send this interleaved information to the second decoder. This decoder

61

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

(a) Common turbo encoder (b) Common turbo decoder

Figure 3.5: Dual Turbo Encoder/Decoder with ratio r = 1
3 .

takes the extrinsic information of the first decoder into account when it decodes the

sequence encoded by the second encoder and gives a new estimation about the origi-

nal values. This process is repeated several times depending on the performance that

is required of the system. On the average, 7 or 8 iterations give adequate results and

no more 20 are ever required.

There are some algorithms that can be modified to use as a turbo decoder com-

ponent but the ones most used are the Soft Output Viterbi Algorithm [50, 52] and the

BCJR [2] or Maximum A-posteriori Probability (MAP) algorithm. SOVA is a combina-

tion of iterative decoding with a modified form of Viterbi decoding and it maximizes

the probability of a sequence. On the other hand, MAP maximizes the output prob-

ability based on some knowledge of the input a priori probabilities and soft output

from the demodulator.

3.5.2 Turbo Fingerprinting Scheme

The major contributions of the turbo fingerprinting scheme, presented by Zhang et al.

in [121] with regard to the Boneh-Shaw’s scheme are the reduction of codeword length

by means of the use of turbo codes as outer code and the improvement of decoding

the decoding runtime by a Maximum Likelihood Decoding algorithm.

3.5.2.1 Concatenated Code

The proposed scheme consists of a concatenated turbo code with a Boneh-Shaw code,

that is, each symbol that a turbo encoder generates is coded by a Boneh-Shaw encoder.

Formally, Zhang et al. define their code Ψ(L, N ,n,d) as the concatenated code that

results of the composition of an outer (n0,k0)-turbo code and an inner Boneh-Shaw

Γ0(n,d)-code, where L is a turbo code length and N is the users’ number.

The first step in the process is to generate a random binary string that will be the

user identification m(ui) for the user ui , where 1 ≤ i ≤ N . Next, m(ui) is divided into L

groups of ko bits each one. This groups are encoded by an (no ,ko)-turbo encoder and

a sequence of L ×n0 bits is produced. The output binary sequence is represented by

62

3.5. New considerations about the correct design of Turbo Fingerprinting Codes

v = v1v2 · · ·vL where each group v j is constituted by n0 bits. Each v j is coded by the

inner code Γ0(n,d) where, for design reasons, n must satisfy the condition n ≥ 2n0 . As

a result, the sequence W (v) =W (v1) ∥W (v2) ∥ · · · ∥W (vL) is obtained, where W (v j) is the

codeword of Γ0(n,d)-code assigned to v j .

To formalize the encoding process, Zhang et al. define the Ψ(L, N ,n,d) encoding

algorithm as follows:

Algorithm 3.4. Ψ(L, N ,n,d) encoding algorithm defined in [121]:

Let m(u j) be the identification of user u j (1 ≤ j ≤ N)

1. v = Tur bo −Encodi ng (m(u j))

2. For each 1 ≤ k ≤ L

W (vk) = Γ0(n,d)−Encodi ng (vk)

3. Let W (v) =W (v1) ∥W (v2) ∥ · · · ∥W (vL)

This process is repeated for all u j in such a way that all users will have their own

identification fingerprint. In the fingerprinting environments the common attack is

the collusion attack, that is, some users compare their marked objects and produce,

according to the Marking Assumption defined in Definition 2.3, a pirate object which

contains a false fingerprint that lies in Γ(C). The general schema for two traitors is

shown in Figure 3.6.

Figure 3.6: Turbo fingerprinting scheme for 2 traitors.

63

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

The aim of this kind of systems is to find, at least, one user who is part of the coali-

tion. So the authors present Algorithm 3.5 to accomplish this purpose. The main idea

of the decoding algorithm is to decode the Boneh-Shaw layer and to choose one of

the symbols retrieved by this layer for this position i as the input symbol to the turbo

decoder for this position i . Note that, if the Boneh-Shaw code was error-free, then

for each position, the turbo decoder could choose among more than one symbol, de-

pending on the symbols of the traitors in this position. The proposal of Zhang et al.

was to choose one at random. A formal definition is shown by the following algorithm:

Algorithm 3.5. Ψ(L, N ,n,d) decoding algorithm defined in [121]:

Given x ∈ {0,1}l , find a subset of the coalition that produced x.

1. Apply algorithm 3.4 to each of the L components of x.

For each component i = 1,2, · · · ,L, arbitrarily choose one of the outputs of

algorithm 3.4.

Set v j to be this chosen output.

Form the word v = v1v2 · · ·vL

2. m(u j) = Tur bo −Decodi ng (v)

3. Output “User ui is guilty”

3.5.3 A new critical performance analysis

To state the performance of turbo fingerprinting codes, the authors in [121] enunciate

the following theorem:

Theorem 3.5. [121] Given integers N , c and ε> 0, set

n = 2c

d = 2n2(log(2n)+m)

m = log

(
N∑

de=dmi n

Ade

ε

)
where Ade is the number of codewords with weight de . Then the fingerprinting scheme

Ψ(L, N ,n,d) is c-secure with ε-error. The code contains N codewords and has length

Ld(n−1). Let x be a word which was produced by a coalition C of at most c users. Then

algorithm 3.5 will output a member of C with probability at least 1−ε.

The authors in [121] prove theorem 3.5, assuming the well known expression for

the error probability Pe of turbo decoders in BSC channels (for detailed references

concerning error probability of turbo decoders in BSC channels see [74, 115]). In the

present scenario the channel, from the turbo codes point of view, is a Boneh-Shaw

64

3.5. New considerations about the correct design of Turbo Fingerprinting Codes

code with error probability ε′. In [121], the authors express the turbo coded error prob-

ability as a function of the Boneh-Shaw code error probability. Denoting by Pe , the

error probability of turbo codes in a BSC, the expression is

Pe ≤
N∑

de=dmi n

Ade P2(de) (3.6)

where Ade is the number of codewords with weight de and P2(de) is the error proba-

bility between two codewords. Let the decoding error probability of code Γ0 be ε′. The

authors assume that the error probability between two codewords is smaller than the

error probability of code Γ0. So, from the authors’ point of view

Pe ≤
N∑

de=dmi n

Ade P2(de) ≤
N∑

de=dmi n

Ade ε
′ (3.7)

We now show that this is not in many cases correct.

Suppose a turbo fingerprinting code consists of an (n,k)-turbo code concatenated

with a Boneh-Shaw code with negligible error probability ε. Moreover assume that

two traitors attack this scheme by a collusion attack according to definition 2.3.

In the decoding process, the Boneh-Shaw decoder retrieves, for each position, 2

symbols with probability 2n−1
2n and only 1 symbol otherwise (here we suppose, as an

approximation, that in a collusion of 2 users a position can not be detected with prob-

ability 1
2n . So 1

2n is the probability that the symbol in a particular position will be the

same for 2 codewords). The scheme proposed by Zhang et al. takes one of them at

random and sends it to the turbo decoder.

As n increases, 2n−1
2n tends to 1, that is, the probability that the traitors, say tc1 and

tc2, have the same symbol in a particular position tends to 0. So the Hamming dis-

tances between tc1 or tc2 and the pirated word, say tcp , delivered to the turbo decoder

satisfy the equation dH (tc1, tcp) ' dH (tc2, tcp). If L is the length of the codeword and n

is large enough, the turbo decoder takes as input a word in which half of the symbols

are erroneous respect both of the two traitor codewords. And, as a result, the turbo

decoder retrieves a codeword of the turbo code codebook, but this codeword is not

assigned to any user. Note that in this case, the decoded codeword will be different

from the pirate words with a very high probability, which is not desirable at all. In this

case there cannot be a false positives because, the turbo encoded words are a random

sequence (like hash functions) and the collision probability for these functions is very

small.

As an example suppose a (3,1)-turbo code that consists of two component con-

volutional codes. The connection expressed in octal is (3,1). The traitors have the

sequences

t1 = 1100010010,

65

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

t2 = 0000111000.

The sequences t1 and t2 are turbo coded to generate

tc1 = Tur bo −Encodi ng (t1) = 100110000001001101011010110001000000,

tc2 = Tur bo −Encodi ng (t2) = 000000000001100111101011011011111100.

These turbo coded sequences may be expressed in octal notation as:

tc1 = Tur bo −Encodi ng (t1) = 460115326100

tc2 = Tur bo −Encodi ng (t2) = 000147533374

The Feasible Set will be

Γ(tc1, tc2) =
({

4

0

}
,

{
6

0

}
,
{

0
}

,
{

1
}

,

{
1

4

}
,

{
5

7

}
,

{
3

5

}
,

{
2

3

}
,

{
6

3

}
,

{
1

3

}
,

{
0

7

}
,

{
0

4

})
.

After decoding the Boneh-Shaw code, if no errors are produced, a possible sequence

sent to the turbo decoder is

tcp = 000110000001001101101011011001111000,

or in octal,

tcp = 060115533170.

After turbo decoding, the word obtained is

tp = 1100001000,

which is none of the traitors’ codewords, dH (t1, tp) = 3 and dH (t2, tp) = 4. That is, this

construction cannot be a correct fingerprinting scheme because the system cannot

trace back t1 or t2 from tcp .

3.5.4 Proposed improvements and open problems

One of the most important improvements that the turbo codes have contributed to

error correcting codes is the use of the likelihood of every information bit during the

decoding process. The proposed improvements in this section are based on the use

of this information in two different ways. The first one, uses the information provided

by the fingerprinting layer to calculate the likelihood for each information bit at the

first turbo decoding iteration. On the other hand, the second proposal is centered in

the fact that the cross-correlation between the likelihood of the decoded bits and all

possible words (users) reaches the maximum value when the evaluated user has taken

part in the collusion attack, i.e. is guilty.

66

3.5. New considerations about the correct design of Turbo Fingerprinting Codes

3.5.4.1 Decoding by the use of likelihood information in undetected coefficients

There exist some techniques, as concatenating a turbo codes with a Boneh-Shaw code

or the ones proposed in [89], that can be used to detect, at the turbo decoder input, if

a particular bit has been modified by a collusion attack. As it is also well-know, each

constituent decoder in a turbo decoder uses the likelihood information of every infor-

mation bit externalized by the other but this likelihood is not known at the first itera-

tion by the first constituent decoder. The usual solution is to consider that all values

are equally likely, that is to say, the value of L(2)
e for all bits in the first iteration is initial-

ized to 0 (take into account that Le is the Log-likelihood ratio). The first improvement

is to modify the value of Le taking into account the information of the Boneh-Shaw

layer. The main idea is, as the undetected bits by the traitors during the collusion at-

tack are known, the decoder can assign a greater likelihood to these bits in the first

decoding stage. After few simulations, it can be concluded that a little improvement

around 2% appears if the initial value of Le is slightly modified by the use of this pre-

vious information. Note that, when an error is produced during the decoding process,

the returned word identifies one legal user which has not taken part in the collusion,

that is a false positive. In other words, in this situation the decoding process frames an

innocent user. In a correct TFC system, a bit error probability around 0 is needed. If

the value of Le value is highly altered, the effect can be counterproductive because, in

this case, the turbo decoder does not converge correctly. This is shown in figure 3.7.

Figure 3.7: Bit probability error of a TFC with generator sequences constituent RSC
(53,75)8 over collusion attack decoded using likelihood information.

Even though this improvement has been applied to TFC, it is not sufficient to guar-

antee that the probability of finding one of the traitors will be small enough. It seems

that the error probability has been a slight improvement and it can be reduced near

to 0 by the use of some block error correcting code as BCH. The figures 3.8a, 3.8b

and 3.8c show the results of the use of a (15,11) Hamming code, a BCH(127,64) and

67

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

a BCH(127,22) respectively, concatenated with a turbo code decoded taking into ac-

count the likelihood information.

Some open problems are how to modify the channel characteristic, in turbo code

notation that is the value of Lc , taking into account the positions not detected by the

attackers and the study of the relation between the RSC generator sequences and the

likelihood value to assign to each bit at first decoding stage.

3.5.4.2 Decoding by the use of making correlation conditional on likelihood

The decoding algorithm proposed in the original paper of TFC was the commonly

used to decode turbo codes. The main problem was that the turbo decoder returns

the most likely codeword over all the code space; that is, if a user ID of 512 bits is used,

the turbo decoder will return the word of 512 bits that is the most likely to have been

sent. This means that with a very high probability an innocent user has been framed.

This is the main reason of the problems produced in the decoding stage of TFC.

In practice, it is very difficult to think about an application in which 2512 users are

needed. For instance, Figure 3.9 shows the results of a 1000 iterations simulation of

one system which uses a TFC with user ID of 128 bits but the system has only 1000

users whose user IDs are randomly distributed in the codes pace. In each iteration

two different users are chosen randomly and a collusion attack is performed with their

codewords. Next, this colluded codeword is decoded by the turbo decoder in order to

obtain one of the traitors. None of them have been found by the use of the original TFC

decoding system or, as is named in the figure, TFC without correlation. If the word

which results from the TFC original decoding system is correlated with all possible

user IDs, we will always find at least one of the traitors and, more than 90 percent of the

times, the two traitors will be found. If the likelihood information is used instead of the

pirate word, the probability of finding the two traitors comes close to 100 percent. In

other words, the user IDs that have the maximum correlation value with the likelihood

returned by the turbo decoder are the user IDs of the members of the collusion.

The main drawback of this proposal is that the decoding time increases exponen-

tially with the number of users.

3.6 Conclusions

On one hand, this chapter shows a new problem in Collusion Secure Convolutional

Fingerprinting Information Codes: False positives. As a result of the analysis of the

work by Zhu et al. in [122], the drawbacks of not considering false positive have been

enlightened. The original results in [122] are revisited from the point of view of the

false positive problem. Moreover the probability of false positives has been quantified

68

3.6. Conclusions

(a) TFC concatenated with HC(15,11).
//

(b) TFC concatenated with BCH(127,64).
//

(c) TFC concatenated with BCH(127,22).
//

Figure 3.8: Bit probability error of a TFC with generator sequences constituent RSC
(53,75)8 concatenated with several error correcting codes over collusion attack de-
coded using likelihood information.

69

3. IMPROVEMENTS OF EXISTENT CONVOLUTIONAL-LIKE FINGERPRINTING CODES

(a) TFC with generator sequences constituent RSC
(53,75)8

(b) TFC with generator sequences constituent RSC
(117,155)8

Figure 3.9: % of detecting 0, 1 or 2 traitors after a collusion attack of 2 traitors by the
use of TFC with correlation decoding.

formally and contrasted with simulations. Finally some guidelines for a correct design

of Collusion Secure Convolutional Fingerprinting Information Codes are given.

On the other hand, this chapter discusses an undesired problem in the analysis

of the turbo fingerprinting codes presented by Zhang et al. in [121]. We show that

the probability of tracing one of the traitors tends to 0 when the alphabet size of the

outer turbo code increases. That is because the symbol-by-symbol collusion attack

performed by pirates is not treated efficiently by the decoding algorithm proposed in

[121]. Note that, from the point of view of the turbo decoder, the error probability

of the equivalent channel tends to 1/2, because it takes as input symbols one of the

symbols retrieved by the Boneh-Shaw decoder chosen at random.

The new problem found in the turbo fingerprinting codes renders them inapplica-

ble in many cases unless the design takes into account our new contribution. More-

over, our studies indicate that, the more efficient the turbo fingerprinting code design

is, from the point of view of the length requirement, a far worse performance is ob-

tained from the tracing algorithm. In other words, to find a traitor will be more com-

plicated when the (n,k)-turbo code used, has large values of n.

Besides, two different ways to improve the performance of turbo fingerprinting

codes are given. These two ways use the likelihood of the turbo decoder to perform

the improvements. The first proposal modifies this likelihood at the input of the turbo

decoder and the other use the turbo decoder output likelihood to correlate it with

the user IDs in order to find the traitors. Moreover, this two improvements can be

70

3.6. Conclusions

integrated in the same scheme.

71

C
H

A
P

T
E

R

4
USE OF TURBO CODES WITH LOW-RATE

CONVOLUTIONAL CONSTITUENT CODES IN

FINGERPRINTING SCENARIOS

Since the introduction of turbo codes in 1993, many new applications for this type of

codes have arised. In this chapter, a family of turbo codes that can be used as finger-

printing codes is presented. These fingerprinting codes are secure against attacking

coalitions of size 2. The family discussed has as its constituent codes a type of low-rate

convolutional codes with maximum free distance. These low rate convolutional codes

are commonly used in code-spread Code-Division Multiple-Access (CDMA) applica-

tions. Moreover, how efficient traitor tracing can be performed by using the turbo de-

coding algorithm is shown. Furthermore, the performance of the developed scheme

has been studied in the presence of a watermarking layer which adds noise to the

codewords.

4.1 Introduction

The construction of collusion secure codes was first addressed in [11]. In that paper,

Boneh and Shaw obtain (c > 1)-secure codes, which are capable of identifying a guilty

user in a coalition of at most c users with a probability ε of failing to do so. The con-

struction composes an inner binary code with an outer random code. Therefore, the

identification algorithm involves the decoding of a random code, that is known to be a

N P-hard problem [6]. Moreover, the length of the code is considerably large for small

error probabilities and a large number of users.

73

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

Barg, Blakley and Kabatiansky in [6] used algebraic-geometric codes to construct

fingerprinting codes of positive rate to reduce the decoding complexity. Moreover,

their proposal reduces the decoding complexity to O(pol y(n)) for a code length n.

The case of 2 traitors is of particular interest and has been extensively discussed in

the literature [38, 91, 31].

As it has been discussed in the previous chapter, one of the first approaches to con-

struct fingerprinting codes using convolutional codes was the Collusion Secure Con-

volutional Fingerprinting Information Codes presented in [122]. These codes have

shorter information encoding length and achieve optimal traitor searching in scenar-

ios with a large number of buyers. Unfortunately, these codes suffer from an important

drawback in the form of false positives, in other words, an innocent user can be tagged

as guilty with very high probability. In [TBFS09], these codes are analyzed in depth and

the probability of false positives is quantified. As an evolution of convolutional finger-

printing codes, turbo fingerprinting codes were proposed in [121]. In [TBFS08a], an

analysis of practical implementation problems of these codes was presented. This

analysis shows that turbo fingerprinting codes must obey to some restrictions in or-

der to obtain the desired performance and that the problem of false positives remains.

Moreover, in order to obtain a good performance of high-rate turbo codes, it was nec-

essary to use a matching filter so, the decoding time is highly time consuming.

The first really implementable proposal of turbo-like codes in fingerprinting sce-

narios was presented by Jourdas and Moulin in [66]. In this proposal, a turbo-encoder

composed by low-rate convolutional codes is utilized. Moreover, they separate the

turbo-encoder output in blocks that are transformed to the Discrete Cosine domain

in order to obtain a spherical code. On the decoding side, these codes do not use a

typical turbo-decoder because extrinsic information is not interchanged by the con-

volutional decoders. They use list-Viterbi decoders in order to obtain a list of possible

traitors for each convolutional code. All these lists are concatenated, re-encoded and

a matching filter is applied between this list and the channel output. The codeword of

the list which has the maximum correlation with the channel output is selected as a

traitor.

4.1.1 The novel contribution

In this chapter, a family of fingerprinting codes based on turbo codes is constructed.

Intuitively the use of turbo codes is justified taking into account the well known perfor-

mance of turbo codes in noisy scenarios which is the case of watermarking processes

when fingerprints are embedded into digital content.

A class of Maximum Free Distance Low-Rate Convolutional Codes (MFDLRC) [42]

were designed by Frenger et al. in order to be used as code-spread in Code-Division

74

4.2. Definitions and previous results

Multiple-Access (CDMA) scenarios. The goal of this technique is to avoid the inter-

ference produced by the users of a mobile communication system to the signal of a

particular user. It is easy to see that a collusion attack in fingerprinting scenarios pro-

duces a similar effect to the codeword of one traitor when the pirate word is generated.

With this in mind, it seems a good option the use of MFDLRC as part of a fingerprint-

ing scheme. Therefore, MFDLRC will be used as the constituent codes of turbo codes

that lie at the core of the presented family of fingerprinting codes.

In practical scenarios, the performance of the presented fingerprinting scheme

could be degraded by the presence of a watermarking layer, that is to say, the embed-

ding process will clearly affect the achievement of the fingerprinting scheme goal. As

stated above, a second goal was to simulate and quantify the degradation produced by

the presence of a watermarking layer.

The chapter is organized as follows. In section 4.2, some definitions on finger-

printing, error correcting codes and turbo codes are reviewed and maximum free dis-

tance low-rate convolutional codes are presented. Section 4.3 discusses the code con-

struction of turbo fingerprinting codes and defines a family of this kind of codes. The

results of the proposed system are presented in section 4.4. Moreover, in the same

section,the watermarking layer has been included and its impact has been measured.

Finally, some conclusions are given in section 4.5.

4.2 Definitions and previous results

Let a code be a set of n-tuples of elements from a set of scalars called the code alphabet.

The elements of the code are called codewords. If the code alphabet is a finite field Fq ,

then a code C is a linear code if it forms a vector subspace. The dimension of the code

is defined as the dimension of the vector subspace. Let a,b ∈ Fn
q be two words, then

the Hamming distance d(a,b) between a and b is the number of positions where a

and b differ. Let C be a code, the minimum distance of C , d , is defined as the smallest

(Hamming) distance between two different codewords. A code C of length n with M

codewords will be denoted as C (n, M). A linear code with length n, dimension k and

minimum distance d over the field Fq is denoted as an [n,k,d]q -code, or simply as an

[n,k,d]-code.

A convolutional code (see figure 4.1) is a type of error-correcting code in which

each k-bit information symbol (each k-bit string) to be encoded is transformed into an

n-bit symbol, where k/n is the code rate (n ≥ k) and the transformation is a function

of the last K information symbols, where K is the constraint length of the code. Every

one of this functions could be denoted by a generator polynomial which represents the

relation between these K information symbols and a single output bit. The minimum

75

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

INPUT

g0

g1

gm-2

gm-1

OUTPUT

Figure 4.1: Feed-forward concolutional encoder for a rate R = 1/m and constraint
length k = 7.

free distance d f r ee of a convolutional code is defined as

d f r ee ,min{d(v ′, v ′′) : u′ 6= u′′} (4.1)

where v ′ and v ′′ are the codewords corresponding to the information sequences u′

and u′′.

4.2.1 Turbo Codes

Turbo codes were introduced in 1993 by Berrou, Glavieux and Thitimajashima [9], [10].

Turbo decoding is based on an iterative process. There are several algorithms that can

be modified in order to be used as the underlying routines in a turbo decoder. The

ones that are mostly used are the Soft Output Viterbi Algorithm (SOVA) [52] and the

BCJR [2] or Maximum A-posteriori Probability Algorithm (MAP). The MAP algorithm

maximizes the likelihood of each output bit based on its knowledge of the input a

priori probabilities and the soft output from the demodulator. The Max-Log-MAP op-

timization [51] can be used instead of MAP.

4.2.2 Maximum free distance low-rate convolutional codes

The codes presented in [42] are obtained from feed forward convolutional encoders

which give minimum information error weight. In order to compare the performance

of feed-forward convolutional encoders, the Superior Distance Spectrum is used. The

sum of the bit errors for error events at distance d will be called the information error

weight, and denote it by cd . Given a code with free distance d̃ f , a feed forward encoder

with information error weights cd has a distance spectrum superior to a feed forward

encoder with error weights c̃d , if one of the following conditions is fulfilled:

76

4.2. Definitions and previous results

1. d f > d̃ f or,

2. d f = d̃ f and there exists an integer l ≥ 0, such that cd = c̃d , for d = d f ,d f +
1, . . . ,d f + l −1 and cd < c̃d , for d = d f + l .

An Optimum Distance Spectrum (ODS) convolutional code is a code generated by

a feed-forward encoder that gives a Superior Distance Spectrum (SDS) when is com-

pared to the rest of codes with the same rate and constraint length.

Unfortunately, there is not an efficient mechanism to find these codes so in [42]

the authors use some exhaustive computer-search techniques to obtain convolutional

encoders that give ODS for code rates of 1/2, 1/3 and 1/4. Then, they apply a nested

encoder search, which consists of adding new polynomials to an 1/4 ODS encoder in

order to obtain a convolutional encoder of ratio R = 1/5. This new encoder is a R = 1/4

ODS descendant encoder. By means of repeating this search process, any R = 1/n

encoder could be generated. In this way, a set of polynomials g = {g0, g1, . . . , gn−1}

will be obtained. At the point when the process becomes excessively time consuming,

no new polynomials are added. Instead, the previously found generators are applied

again.

4.2.3 Traceability Codes

When the fingerprint is embedded by means of a watermarking layer, it is represented

with a little modification of a real value. If the attackers detect the watermarked posi-

tion (by a collusion attack), they can change this value to a random value.

The collusion attack described in Section 4.1 is modeled by the construction of a

descendant, if the descendant is taken as being the word in the pirate copy and the

parents as being the codewords of the colluders.

It is clear that in the context of marking digital content the codes of interest are

those defined over F2. Unfortunately, for F2, we have to allow for some error probabil-

ity in the outcome of the tracing process. In order to achieve an error probability as

small as desired a single code is not sufficient and a family of codes is needed [11, 6,

107]. Below, such a family of codes will be denoted as F = {Ft : t ∈ T }, where T is a

finite set. Furthermore, randomness will be also needed. The family F will be publicly

known, but the specific code Ft that it will be used, will be chosen at random from the

codes in T with probability p(t). This choice of Ft must be kept secret. Below it will

assume that p(t) = |T |−1 for all t ∈ T . The elements in the set S are usually called

keys. For a given family of codes to achieve exponential decline of the error probabil-

ity, the number of keys must grow exponentially with the length of the code [6].

Moreover, a tracing algorithm for the family of codes T must be defined. For a

family of binary fingerprinting codes T , a tracing algorithm A is a function from the

77

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

set of descendants and the set of keys to the subsets of codewords (coalitions) of the

codes in T . In other words, given a descendant a tracing algorithm will allow us to

identify at least one of the parents of the descendant, with high probability.

Definition 4.1 (Family of binary fingerprinting codes [11]). Let T be a finite set of el-

ements called keys. A family of binary fingerprinting codes F = {Ft : t ∈T }, is c-secure

with ε-error, for c ≥ 2, if there exists a tracing algorithm A that satisfies the following

condition: if a coalition U of size at most c creates a descendant z, then

Pr(A(z, s) ⊆U) > 1−ε,

where the probability is taken over the random choices made by the coalition when cre-

ating the descendant and over the keys t ∈T .

4.3 Family of turbo fingerprinting codes for coalitions of size

two

We start our contribution in this section. We will first argue our choice for the under-

lying turbo code construction, and then we show how to fit this construction into the

definition of a family of fingerprinting codes.

4.3.1 Code construction

From the discussion in Section 4.2.1, a turbo code consists of l convolutional encoders

and l − 1 interleavers. In order to present our code construction, we must therefore

specify a way to select these constituent convolutional encoders.

Given an ODS feed-forward convolutional encoder of rate R = 1/n and constraint

length K constructed with the set of generator polynomials G = {g0, g1, . . . , gn−1} where

gi 6= g j if i 6= j . Let I = (i0, . . . , iu−1) where i j ∈ {0, . . . ,n−1}. An ODS descendant encoder

is defined as a feed-forward convolutional encoder of rate R = 1/u and constraint

length K with generator polynomials {gi0 , gi1 , . . . , giu−1 } where each gi j is a member

of the set G . In other words, the convolutional encoders of our turbo fingerprinting

codes will be generated as the descendant encoders of ODS convolutional encoders.

Note that for a given ODS convolutional encoder of rate R = 1/n and constraint length

K , we can generate un different ODS descendant encoders of rate R = 1/u and con-

straint length K . Even though it is possible to use other convolutional code construc-

tions and trellis termination methods, we use recursive systematic encoders and un-

interleaved dual termination because it is easier to implement. Fortunately enough,

for any feed-forward code with generator polynomials g = {g0, g1, . . . , gn−1}, there ex-

ists an equivalent recursive (feed-back) systematic code with generator polynomials

g f = {1, g1

g0
, . . . , gn−1

g0
} [74].

78

4.4. Security analysis

Construction 4.1. Let C n
O be an ODS convolutional encoder of rate R = 1/n and con-

straint length K . Let Du
O be the set of all ODS descendant encoders of rate R = 1/u

of C n
O . The set S u

O is the set of systematic encoders, each being equivalent to an ele-

ment in Du
O . Observe that nu−1 ≤ |S u

O | ≤ |Du
O | = nu . To construct an encoder of rate

Rtc = 1/(l u − l +1), we choose l encoders from the set S u
O . Note that the encoders need

not be different. Moreover, in order to improve the ratio, a puncture of systematic bits is

done. This is the reason for the l −1 term in the Rtc equation. It is clear that with this

procedure we can construct, at least, n(u−1)l turbo fingerprinting codes. We denote this

set by Tl .

4.3.2 Family construction

We now show how to obtain a family of turbo fingerprinting codes. This will be done

using the set Tl presented above and Definition 4.1. To this end, it will be useful to

index the elements in Tl . By using an arbitrary total order relation we denote each

element of Tl by an integer in K = {0, . . . , |Tl | −1} where |Tl | denotes the number of

elements of Tl . Note that n(u−1)l ≤ |Tl | ≤ nul . The entire set of generator polynomi-

als will be publicly known. The subset of generator polynomials and the number of

constituent encoders will be a part of the key and will be kept secret.

As a tracing algorithm we will use the Max-Log-Map algorithm. As it will be show

below, given a descendant (pirate) word, the iterative decoding of the constituent en-

coders by means of Max-Log-Map algorithm will output one of the parent (traitor)

codewords with high probability. More precisely, the family of turbo fingerprinting

codes is defined as:

Definition 4.2. The set Tl , of turbo encoders in Construction 4.1, using as a tracing

algorithm the iterative decoding Max-Log-Map algorithm is a family of 2-secure turbo

fingerprinting codes with ε-error. The elements in the set K are the secret keys.

In order to use our family we draw an element of K , say s, with uniform probabil-

ity. This choice must be kept secret. The fingerprints assigned to the authorized users

will be the codewords of the code T s
l . Given a descendant from a coalition of at most

2 users, the codeword at the output of the Max-Log-Map algorithm will be identified

as a traitor.

4.4 Security analysis

The analysis is restricted to F2 for simplicity and to allow comparison with other

well-known F2 techniques. This scenario is shown in Figure 4.2. There are two users

with identifiers User I Di and User I D j . We assign codeword ui = {ui
1, · · · ,ui

n} to user

79

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

User I Di and codeword u j = {u j
1 , · · · ,u j

n} to user User I D j respectively. The k-th po-

sition of the codeword for user j is denoted by u j
k . The codewords ui and u j belong

to a turbo fingerprinting code. This turbo fingerprinting code has a fixed selection of

generator polynomials (the secret keys).

When these two users perform a collusion attack they generate a pirate (descen-

dant) word z. In this paper, as in [66, 57], we consider the following attack: when

ui
k = u j

k the position remains undetectable so zk = ui
k = u j

k . When ui
k 6= u j

k the position

becomes detectable and the traitors decide to erase the position, that is to say, zk = ∗
where, as discussed in Section 4.2.3, “∗” denotes an erasure. Moreover, the traitors are

allowed to add additive white gaussian noise to the pirate, in order to increase “con-

fusion”. Therefore the result of the collusion attack is a pirate word ẑ = 1
c

∑c
k=1 uk +n

where c is the number of colluders, uk is the fingerprint sequence for the user k and n

is the noise component. At this point an observation is probably in order. This kind of

attack has been considered in conjunction with the existent literature [66, 57]. More-

over, the reason for not considering other kinds of attacks in the watermarking layer is

because the aim of this work is to study the behaviour of fingerprinting codes. All clas-

sical fingerprinting schemes [6, 11, 107] rely on the marking assumption. This means

that the attackers can only modify the positions they detect by comparison of their

copies. Therefore, for the marking assumption is mandatory to make use of an ideal

watermarking layer. This assumption, of course, protects the fingerprinting code from

any image processing attacks. Only recently, and in order to bring watermarking into

the picture, some authors [66, 57] assume what is known as distortion attack. In this

case, by allowing the attackers to introduce Gaussian noise, one can deal with a more

realistic scenario. This assumption will also be made in this paper.

In a practical scenario the distributor would retrieve ẑ = z +n, and apply a tracing

algorithm. In this case the identification routine consists in the Max-Log-MAP itera-

tive decoding algorithm. The simulations below show that with the considered attack,

the output of the Max-Log-MAP algorithm identifies one of the traitors (User I Di or

User I D j) with high probability. Therefore, the algorithm will fail when the output

does not match with any of the traitors, so it must be considered an error. This sim-

ulation error probability is represented by Pe . Note that, the presented results have

been obtained from Monte Carlo simulations with Ntest = 100000, so the estimation

error must be added to Pe in order to obtain the confidence interval of the total error

probability. This estimation error could be approximated by±z1−α/2
p

(1−Pe)Pe /Ntest

assuming a normal distribution approximation, where z1−α/2 is the standardised nor-

mal value. In order to obtain the 95% confidence interval, we will use z1−α/2 = 1.96 to

calculate the range of the confidence intervals showed in the results of this paper.

Besides the theoretical results (subsections 4.4.1, 4.4.2 and 4.4.3), the proposed

codes have been tested in an almost totally realistic scenario (described in 4.4.4). In

80

4.4. Security analysis

Turbo encoder
R=Rtfc

Turbo encoder
R=Rtfc

UserIDi

UserIDj

Collussion
Attack

ui

uj

+

AWGN

Turbo Decoder
(Iterative

Max-Log-MAP)

UserIDi

UserIDj

or
z z+n

Figure 4.2: Schema of the simulated scenario.

this scenario, 2 layers can be identified. On one hand, the fingerprinting layer which is

composed by the turbo fingerprinting encoder/decoder presented in the section be-

low. On the other hand, a watermarking layer has been developed in order to embed

the fingerprints into MPEG2 videos. In the same way, the extraction has been per-

formed and evaluated (as it is explained in 4.4.5 and 4.4.6).

4.4.1 Study about the performance of the presented codes depending on

constituent codes and the number of supported users

On one hand, in order to simulate different and representative codes, 5 different codes

have been selected. All of them consist of two identical convolutional codes (l = 2).

Moreover, we work with different ratios for these convolutional codes. Depending on

the different internal convolutional encoder ratio, the generator polynomials selected

for each family are:

• R = 1
25 with generator polynomials Fs1 : s1 = {3×117,2×123,127,133,6×135,2×

137,145,3×155,157,2×171,2×173,175}o

• R = 1
20 with generator polynomials Fs2 : s2 = {2×117,123,127,133,5×135,137,145,2×

155,157,2×171,2×173,175}o

• R = 1
15 with generator polynomials Fs3 : s3 = {2×117,123,127,4×135,137,145,2×

155,157,171,173}o

• R = 1
10 with generator polynomials Fs4 : s4 = {117,127,2 × 135,137,145,2 ×

155,171,173}o

81

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

• R = 1
5 with generator polynomials Fs5 : s5 = {117, 127,2 × 135,137,145,2 ×

155,171,173}o

Note that a ×b means the polynomial b (octal form) is used a consecutive times.

For instance, the term 2×155 signifies that the polynomial 155o (which corresponds

to binary 11011012 and whose generator polynomial is g (D) = 1+D +D3 +D4 +D6) is

used 2 consecutive times.

On the other hand, we also deal with the number of users that the code can sup-

port. Different constructions with different number of users have been taken into ac-

count. It is important to stress that, in the presented family of codes, the length of the

code increases as O(log2(n)).

Simulation results obtained considering a collusion of 2 attackers (c = 2) Table 4.1

shows the results of the performed simulations using a turbo fingerprinting code with

SN R = 10dB and constraint length K = 7. Note that, in these simulations, the number

of decoding iterations has been fixed to 10. In this table, k is the number of bits used

to represent the User I D . That is to say, for k input bits, 2k users will be supported

by the system. The number of traitors is c = 2. The value R represents the ratio of the

internal convolutional encoders, therefore a ratio of R = 1
25 means that the entire turbo

fingerprinting code has an effective ratio of Rt f c = 1
49 . In addition to the innocent-user

framing probability (Pe), the number of iterations (Ntest) made is also specified. It is

a well known fact that turbo codes are good error-correcting codes against gaussian

noise. Due to the nature of the collusion attack, the errors introduced in the pirate

word are different from errors produced by gaussian noise. These simulations show

that the error probability of identifying a traitor increases for large values of k. This is

due to the fact that as k increases the number of positions detected by the colluders

also increases. Therefore, a collusion attack produces a number of errors that is larger

than the number of errors that gaussian noise would produce in a communications

channel.

Simulation results obtained considering a collusion of 3 attackers (c = 3) Fig-

ure 4.3 shows how the Pe decreases when the SNR of the channel increases, that is,

when the amount of noise added by the attackers decreases. As expected, the lower

the ratio is (more redundancy), the better performance is obtained. As it can be seen,

it appears an unavoidable error floor. The main contribution to this error floor seems

to come from the large amount of errors that a coalition of size 3 (as opposed to size

2) introduces to the pirate word. This error floor could be reduced using turbocodes

constructed with convolutional codes with ratios lower than 1
25 . However, simulations

with these values ratios cannot been performed due to a limitation of the software

used to perform these simulations.

82

4.4. Security analysis

Table 4.1: Simulation results obtained using a turbo fingerprinting code with c = 2,
SN R = 10dB , constraint length K = 7. The turbo fingerprinting code has two identical
convolutional codes with generator polynomials Fs1 , Fs2 , Fs3 , Fs4 , Fs5 .

Ratio k Ntest Pe estimation error

R = 1
25

64 100000 0.00029 ± 0.000106
32 100000 0.00002 ± 0.000028
16 100000 0.00003 ± 0.000034
8 100000 0.00001 ± 0.000020

R = 1
20

64 100000 0.00025 ± 0.000098
32 100000 0.00009 ± 0.000059
16 100000 0.00005 ± 0.000044
8 100000 0.00001 ± 0.000020

R = 1
15

64 100000 0.00040 ± 0.000124
32 100000 0.00006 ± 0.000048
16 100000 0.00007 ± 0.000052
8 100000 0.00001 ± 0.000020

R = 1
10

64 100000 0.00042 ± 0.000127
32 100000 0.00014 ± 0.000073
16 100000 0.00010 ± 0.000062
8 100000 0.00003 ± 0.000034

R = 1
5

64 100000 0.00117 ± 0.000212
32 100000 0.00043 ± 0.000128
16 100000 0.00035 ± 0.000116
8 100000 0.00002 ± 0.000028

4.4.2 Length comparison with other well-known fingerprinting

constructions

Our aim in this paper is to improve on existing constructions in order to provide a

practical fingerprinting scheme that allows tracing the guilty users efficiently. In this

section we compare the length of our codes with the most studied codes in the litera-

ture: Boneh-Shaw [11] and Tardos [107]. For Boneh-Shaw codes, let N be the number

of possible authorized users. Then given ε> 0, L = 2c log(2N /ε) and d = 8c2 log(8cL/ε)

the length of the code is l = 2Ldc = 32c4 log(2N /ε) log(8cL/ε). For Tardos codes the

expression of the code length is given by l = 100c2 ln N /ε. The comparison results

considering a collusion of 2 and 3 attackers are shown in Table 4.2 and Table 4.3, re-

spectively. Note that Boneh-Shaw codes and Tardos codes are asymptotically good

codes. Therefore, they are able to achieve a very small error probability even with a

large number of colluders. Nevertheless, in a real life scenario with a small number of

users is reasonable to deal with 2 or 3 colluders. For instance, suppose that the digital

objects to be protected are evidences in a trail or sensitive documents from a company

administration board, or even preview copies of a film delivered to the critic. In these

83

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

10-2

10-1

10-3

0 2 4 6 8 10 12 14 16

P
e

SNR(dB)

R=1/10 R=1/15

R=1/20 R=1/25

Figure 4.3: Evolution of error probability versus attack noise level (in dB) and internal
convolutional code ratio R for a user group of 225 and c = 3.

cases the opportunity of collusion with more than 3 users seems difficult. Note that in

any case, if one of the traitors distributes a copy that belongs to another traitor without

performing the collusion attack with her copy, the other traitor will be identified.

In this case, the turbo fingerprinting codes presented outperform both Tardos

codes and Boneh-Shaw codes. By fixing the error probability the length of the turbo

fingerprinting codes is at least one order of magnitude smaller than Tardos codes and

three orders of magnitude smaller than Boneh-Shaw codes. It is also important to em-

phasize that, in our attack model, some amount of noise is included. Therefore, when

comparing our codes with Tardos codes and Boneh-Shaw codes we have used the

theoretical expressions in [107, 11] that did not consider the presence of noise. Note

that in Table 4.2 and Table 4.3 there is no entry for Jourdas and Moulin codes [66].

Our proposed codes and the codes in [66] have the same order of magnitude in terms

of length and error probability in scenarios of 3 colluders. But somehow we feel that

there is no room for an explicit comparison because of the difference in construction

modes. More precisely, Jourdas and Moulin use a Discrete Cosine Transformation

before performing a collusion attack. Therefore, it is really difficult to evaluate if the

effect of the noise added during the simulated collusion attack (which is added in

the same domain of the code) is equivalent/comparable to the effect produced by

the noise in [66] which is added in a different domain to the code. Finally, it is also

important to point out that the tracing error probability of the turbo fingerprinting

codes can be further improved. For instance, in [25] they can be used as the inner

binary codes in the concatenated construction instead of Boneh-Shaw codes.

84

4.4. Security analysis

Table 4.2: Length comparison with Boneh-Shaw and Tardos contructions considering
a collusion of 2 attackers (c=2).

Lengths
n c Pe BS Tardos Proposed
8 2 0.00002 330512 6546 122
8 2 0.00001 357807 6823 692

16 2 0.00035 325356 7619 204
16 2 0.00003 426735 8602 1084
32 2 0.00043 512359 11973 348
32 2 0.00002 677276 13200 2068

Table 4.3: Length comparison with Boneh-Shaw and Tardos contructions considering
a collusion of 3 attackers (c=3). Note that in BS and Tardos constructions, the channel is
considered noiseless, nevertheless, some noise is considered in the proposed construction
(not considered in BS or Tardos).

BS Tardos Proposed
n c Pe Lengths Lengths SNR Lengths
25 3 0.01555 1508015 19343 0 dB 1525
25 3 0.01140 1563691 19623 2 dB 1525
25 3 0.00895 1610856 19840 4 dB 1525
25 3 0.00680 1665075 20088 6 dB 1525
25 3 0.00710 1656509 20049 8 dB 1525
25 3 0.00630 1680271 20156 10 dB 1525

4.4.3 Puncturing effects on proposed codes

The same simulations shown in Table 4.1 have been performed again, this time adding

the puncturing technique. Therefore, the simulated scenario consists again on two

users performing a collusion attack and adding noise that degrades the channel to

an SNR of 10 dB. But in these new simulations, the parity bits generated by the two

RSC encoders of the turbo encoders (that have a constraint length K = 7) have been

punctured.

The proposed process of puncturing consists on eliminating alternatively one of

the outputs generated by the constituent RSC encoders and transmitting the parity

bit of the other RSC encoder. In this way, the overall turbo fingerprinting code rate is

increased because the number of parity bits transmitted is reduced by half. Therefore,

the length of our codes is notably decreased.

Results are obtained for the different number of bits used to represent the User I D

(these values are k = 8, k = 16, k = 32 and k = 64) and different overall coding rate Rt f c

of turbo-fingerprinting codes.

In Figure 4.4 the error probability of identifying a traitor of punctured and unpunc-

85

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

tured turbo codes is compared. As expected, the performance of the turbo codes is

better when they are unpunctured than when the puncturation is used. Note that, in

scenarios where the length of the code is a restriction and a large number of users is re-

quired, the puncturing process does not decrease the code performance significantly.

With R < 1
5 the punctured turbo code identifies colluders with a Pe < 0.01. And the

lower the ratio, the lower the difference between the error probability of identifying a

traitor of punctured and unpunctured turbo codes. Even though the code length can

be adapted to smaller sizes by means of the puncturing, the simulations show that it

is not an efficient solution for the studied scenario due to the kind of errors produced

by the collusion attack.

10-3

10-4

10-5

10-6

5 10 15 20 25 30 35 40 45 50 55

P
e

1/Rtfc

Unpunctured turbo codes

Punctured turbo codes

confidence interval for a
95% level of confidence

(a) Error probability using 8 bits to represent
the User I D (k = 8)

10-2

10-3

10-4

10-5

10-6

10-7

0 5 10 15 20 25 30 35 40 45 50 55
P

e

1/Rtfc

Unpunctured turbo codes

Punctured turbo codes

confidence interval for a

95% level of confidence

(b) Error probability using 16 bits to represent
the User I D (k = 16)

10-2

10-3

10-4

10-5

0 5 10 15 20 25 30 35 40 45 50 55

P
e

1/Rtfc

Unpunctured turbo codes

Punctured turbo codes

confidence interval for a

95% level of confidence
confidence interval for a

95% level of confidence

(c) Error probability using 32 bits to represent
the User I D (k = 32)

10-1

10-2

10-3

10-4

0 5 10 15 20 25 30 35 40 45 50 55

P
e

1/Rtfc

Unpunctured turbo codes

Punctured turbo codes

confidence interval for a

95% level of confidence

(d) Error probability using 64 bits to represent
the User I D (k = 64)

Figure 4.4: Effect of puncturing the parity bits generated by the RSC encoders of a
turbo encoder. The turbo fingerprinting code has two identical RSC encoders with
generator polynomials Fs1 , Fs2 , Fs3 , Fs4 , Fs5 . Simulation results obtained using a turbo
code with c = 2, SN R = 10dB and constraint length K = 7.

4.4.4 On the selected algorithm and implementation details of the

watermarking layer

Watermarking is a technique that consists of embedding information into data files.

When using watermarking schemes, all the copies of a file contain a mark, that can be

recovered at any time by a specific software.

86

4.4. Security analysis

From the detection point of view watermarking systems can be classified in two

groups: blind watermarking and non-blind watermarking. In the first group of algo-

rithms it is assumed that the original content is not needed to perform the recovery of

the mark. The algorithms in the second group assume that the original content can be

used by the decoder in order to improve the performance of the whole system. Since

in our scenario it can be assumed that the decoder has access to the original content

we have decided to use non-blind algorithms, which are faster and have fewer secu-

rity issues. An extensive analysis about the problems present in blind watermarking

systems is discussed in [28].

Watermarking in the frequency domain Watermarking can be applied in the fre-

quency domain. After the transformation to the frequency domain the mark is em-

bedded. There are different transforms we can apply, for example, the Fast Fourier

transform (FFT) or the Discrete Cosine Transform (DCT). The one commonly used is

the DCT, since it is proved that is the one that has a better response to the image water-

marking needs. After the transformation to the frequency domain the mark is added

to the signal. The inverse process transforms again the signal to the spatial domain.

In the frequency domain the watermarking process can be seen as a communi-

cation system in which the ideas that Costa presented in [24] can be applied. In this

way, the original document can be seen as the communication channel and the water-

mark can be seen as the signal transmitted over the channel. Attacks or unintentional

transformations will be modeled as noise introduced into the channel.

To embed a mark in the frequency domain we have to modify the coefficients of

the transformed domain. Each frequency coefficient has a perceptual capacity. This

perceptual capacity is the capacity of each coefficient to receive additional informa-

tion (watermark), without introducing perceptual differences in the content. Note that

the Human Visual System model (HVS) naturally works with frequencies. So working

in the frequency domain helps adjusting the addition of information to the HVS sen-

sitivity.

Secure Spread Spectrum Even though a lot of image watermarking systems exist,

and some of them show better performance than secure spread spectrum, the algo-

rithm presented in [27] by Cox et al. has been used in our implementation because it is

easy to combine with a fingerprinting code and it offers a good protection against the

typical distortions produced by video transcoding. Moreover, the computational cost

of this algorithm, which is an important issue to take into account, is lower than others

based on informed embedding or informed coding. In addition, as was presented in

[27], the Spread Spectrum offers enough robustness against scaling, transcoding and

compression, being these the main processes performed during video manipulation.

87

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

Spread Spectrum watermarking is an example of spatial embedding of water-

marks. The watermark is modulated by a pseudo-noise generator in order to produce

a spread spectrum signal, which is then scaled according to the required power. The

modulated signal is then added to the original image to produce the watermarked

image.

To detect the watermark, a high pass/edge detection or Wiener filter is applied

to the watermarked image to remove irrelevant information. The output of the filter

is then correlated with the modulating pseudo-noise signal used at the transmitter

side and compared to a predetermined threshold for the detection of the watermark.

In general, most watermarking techniques are considered a variation of the spread

spectrum technique.

In [27], the mark X = {x1, · · · , xn} is embeded into V = {v1, · · · , vn} to obtain V ′ =
{v ′

1, · · · , v ′
n}. In that proposal, V is a vector which contains all DCT matrix coefficients

to be marked. The three different ways for computing V ′ presented in [27] are

v ′
i = vi +αxi (4.2)

v ′
i = vi (1+αxi) (4.3)

v ′
i = vi (eαxi) (4.4)

Equation 4.2 is always invertible, and 4.3 and 4.4 are invertible if vi 6= 0.

At the decoder, X ∗ is extracted from V ∗ and V . In the original proposal, the simi-

larity of X and X ∗ is computed to measure how similar is the extracted mark and the

original mark. A minimal value of similarity is defined as a threshold T to guarantee

that no false positives are present.

Modified-Cox algorithm implementation details The watermarking process per-

formed by this sequence generator is slightly different from the explained before and

it is based on Equation 4.2. Essentially, theα value takes into account the quantization

process which is applied to each coefficient. Formally, the performed modification is

v ′
i = vi +αQi xi (4.5)

where Qi is the quantizer matrix value, α is a strength factor, and xi is the value of

the i -position of a fingerprint in polar format (that is, +1 for value 1 and -1 for value

0). Finally, the rate is the number of DCT matrices without mark between two marked

matrices minus 1. In other words, when rate has the value 1, all DCT matrices are

watermarked.

Usually, if there are more suitable positions to be marked than bits to be embed-

ded, the fingerprint is repeated along all markable positions on the sequence. Because

of this repetition the embedding system has a behaviour similar to a repetition code.

88

4.4. Security analysis

Finally, the extraction is done by means of comparing the original video with the

received one. If the difference is greater than a given threshold, we will consider that

the originally embedded value was 1. If this difference is lower than another thresh-

old, we will consider -1 as the original value. Otherwise, 0 will be used as the original

value, meaning that we assume that the value has been erased by the attacker. Dur-

ing the next subsections we will discuss the effect of this watermarking layer over the

proposed fingerprinting codes.

4.4.5 Innocent-user framing probability versus Watermarking-to-Noise

Ratio

In these simulations, two users perform a collusion attack by means of comparing

their videos content. A codeword has been embedded in each MPEG2 video. A given

codeword, say ui corresponds to a given user ID, say User I Di . That is, each code-

word identifies a single user. As a result of the collusion attack, the attackers generate

a new MPEG2 video that contains a pirate word. Moreover, as explained at Section

4.4, the colluders add additive gaussian noise to the pirate word z. Therefore, every

symbol that belongs to the pirate word z is modified by the noise in a different way

(ẑ = (ẑ1, ..., ẑn)).

The Watermark-to-Noise Ratio (WNR) of the marks in dB is defined as:

W N R = 10log10

(
Eb

σ2
n

)
(4.6)

where Eb is the energy per bit and σ2
n the noise variance. The innocent-user fram-

ing probability, that is, the error probability Pe , has been obtained for every pirate

word that belongs to ẑ. These simulations have been performed with: Eb = 202, zero

mean gaussian noise and different variances. Figure 4.5 illustrates how the proposed

codes identify colluders with a Pe < 0.01 if Eb ≥ σ2
n (i.e., if the signal level is at least

equal to the noise level). Every Pe result has been obtained by means of 20.000 tests.

4.4.6 Effect of the use of a repetition code in the performance of the whole

system

Since the amount of markable positions in a MPEG2 video is really large, there exist

two strategies to select the code to use. On one hand, the lowest ratio code (so, the

code with better performance) could be used. The problem due to the use of this code

is that it will be more sensitive to cropping attacks. That is to say, the attackers crop

some parts of the video and, with them, some symbols of the mark are lost. On the

other hand, a shorter code could be used in conjunction with a repetition code. It is

89

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

-5 0 5 10 15 20 25 30

WNR (dB)

P
e

confidence interval for a
95% level of confidence

Figure 4.5: Evolution of error probability versus attack noise level (in dB), for a user
group of 28, using a turbo fingerprinting code with c = 2, constraint length K = 7 and
internal convolutional code ratio R = 1

15 .

clear that the individual performance of the code is worse when the overall ratio (Rt f c)

is increased.

If ui is defined as the codeword of the user with identifier User I Di , the extended

codeword ũi is defined as ũi = (ui
1, ...,ui

r), where ui
m = ui for any m ∈ {1, . . . ,r }. That

is to say, the encoder repeats the codeword r times.

In this simulation, two users perform a collusion attack by means of comparing

their videos. A codeword has been embedded r times in each MPEG2 video (e.g. due

to the length of the video used in the simulations, an extended codeword of length 412

could be embedded up to 18,295 times).

As a result of the collusion attack, the attackers generate a new MPEG2 video that

contains r pirate words. So, let z = (z1, ..., zr) the set of the resultant pirate words,

where zp could be different of zq for any p, q ∈ {1, . . . ,r } depending on the collusion

attack strategy. Moreover, as explained at Section 4.4, the colluders add additive Gaus-

sian noise to z. Therefore, every pirate word that belongs to z is modified by the noise

in a different way, that is, ẑ = (ẑ1, ..., ẑr).

The WNR of the marks is of −3.5218 dB (Eb = 202 and σ2
n = 302). The value of

σ2
n = 302 has no practical sense because the video would be extremely degraded with

so much noise.

However, this value of σ2
n allows to find a greater number of iterations r required,

because the error probability associated to σ2
n = 302 is high enough (Pe = 0.1659653).

90

4.4. Security analysis

1

2

3

4

5

6
7

8 9 10
11 12

1

2

3

4
5

1

2
3

1

2
1 2

0%

10%

20%

30%

40%

50%

60%

70%

8 18 28 38 48 58 68 78 88 98 108

P
e

 (
%

)

1/Rtfc

1/R=5 1/R=10 1/R=15 1/R=20 1/R=25

Figure 4.6: Evolution of error probability versus the number r of repetitions of the
codeword of the users (r is indicated near every point in the figure), for a user group
of 28, using different turbo fingerprinting codes with c = 2, constraint length K = 7,
internal convolutional code ratios R = {1

5 , 1
10 , 1

15 , 1
20 , 1

25

}
and WNR=−3.5218 dB.

Repetition decoding outputs the average of each output codeword belonging to ẑ

as 1
r

∑r
k=1

ui
k+u j

k
2 +nk where nk is the amount of noise added in this position. Finally,

the Max-Log-MAP iterative decoding is applied to identify one of the traitors (User I Di

or User I D j).

As Figure 4.6 shows, a lower ratio code could be replaced by another with higher

ratio using repetition (which will produce a code with similar total rate) without a big

impact in the performance. Note that the simulation shown in Figure 4.6 has been

done using a really high WNR as it has been explained before in this subsection.

Moreover, adding this repetition code decreases the effect of the Gaussian noise

added by the colluders on the set of pirate words embedded into MPEG2 videos. Even

thought, in this subsection we analyze how this performance penalty could be over-

come with a repetition code.

Moreover, as Figure 4.7 illustrates, these simulations have been performed for a

different number of repetitions of the codeword of the users, from r = 1 to r = 15.

When the number of repetitions is larger than r = 6, the error probability of identi-

91

4. USE OF TURBO CODES WITH LOW-RATE CONVOLUTIONAL CONSTITUENT CODES

fying a traitor is lower than 0.001. Note that increasing r up to 15 does not decrease

significantly the probability of error Pe . Therefore, the most suitable value to r seems

to be r = 7.

4.5 Conclusions

The work presented in this chapter discusses the use of turbo codes as fingerprinting

codes. Turbo fingerprinting codes based on MFD low-rate convolutional codes have

been proposed as a family of fingerprinting codes secure against coalitions of size 2. It

is shown by simulation that the proposed codes identify traitors with an error proba-

bility of at most 5∗10−4 when the number of users lies between 28 and 232.

Moreover, when the number of colluders is c = 3, our system performance is also

acceptable with a Pe < 0.01 even when the noise added by the colluders degrades the

channel to an SNR of 4dB.

Finally, it is important to stress that the presented codes have an efficient decod-

ing algorithm based on the Max-Log-MAP iterative decoding algorithm. As a future

research, it would be interesting to study a list-decoding algorithm suitable for turbo-

decoding to obtain the two most likely colluders.

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

0 2 4 6 8 10 12 14 16

P
e

r (number of repetitions)

confidence interval for a
95% level of confidence

Figure 4.7: Evolution of error probability versus the number of repetitions of the
codeword of the users (r), for a user group of 28, using a turbo fingerprinting code
with c = 2, constraint length K = 7, internal convolutional code ratio R = 1

15 and
WNR=−3.5218 dB.

92

Part III

Contributions related to secure

e-commerce of multimedia content

C
H

A
P

T
E

R

5
TRAITOR TRACING OVER YOUTUBE VIDEO

SERVICE - PROOF OF CONCEPT

The development explained in this chapter proves that is possible to trace dishonest

users who upload videos with sensitive content to the YouTube service. To achieve

tracing these traitor users, fingerprint marks are embedded by a watermarking algo-

rithm into each copy of the video before distributing it. Our experiments show that if

the watermarking algorithm is carefully configured and the fingerprints are correctly

chosen, the traitor, or a member of a set of traitors who have performed a collusion

attack, can be found from a pirate video uploaded to the YouTube service.

5.1 Introduction

The distribution and playback of digital images and other multimedia products is an

easy task due to the digital nature of the content. The service of broadcasting videos

to lots of users by means of web services has increased in number and quality during

recent years. Nowadays it is extremely easy for a user to upload a video to any of the ex-

isting video broadcasting webs and distribute a link to this video. One of the most used

broadcast services is the well-known YouTube broadcast service. Currently the copy-

right management in the YouTube service is a reactive process, that is, when a distrib-

utor finds some copyrighted work in YouTube, YouTube is informed by this distributor

and the copyrighted media is removed from YouTube service, by the YouTube admin-

istrators. At the early stages of the service, when YouTube banned a video, usually,

this video was reuploaded and the removal process needed to be repeated, in other

words, the distributors needed to find the new copy, inform YouTube,. . . Nowadays,

95

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

YouTube tries to identify copies of already banned videos in order to simplify this pro-

cess. These techniques are also known by the name of fingerprinting but not in the

sense of the fingerprinting techniques that are discussed in this chapter. Some new

contribution from Google researchers are published in [4, 26, 5].

On the other hand, some new Digital Right Management (DRM) systems are in-

cluded into Flash Player, the DRM protections it offers, only aims at the copyright dis-

tribution, for instance, playing a video a limited number of times. The work presented

in this chapter is addressed to trace who has upload a video to YouTube.

Achieving satisfactory copyright protection has become a challenging problem for

the research community. The mechanisms used in protecting intellectual property

from unauthorised copying can be classified into two groups: copy prevention mecha-

nisms and copy detection mechanisms. The failure of copy prevention schemes, such

as the DVD copy prevention system, has shifted many research efforts towards the

search of feasible copy detection mechanisms. These efforts have brought the devel-

opment of new proposals of copy detection systems for many different types of digital

content.

An important number of these new proposals can be grouped under the name

of watermarking. The watermarking technique consists of embedding a set of marks

in each copy of the digital content. The more important issues that watermarking

algorithms have to take into account are the processes in which the digital document

can be involved and how the mark embedded into this digital document is affected by

them. One of the seminal paper about watermarking was presented by Cox et al.. In

[27], the authors present a novel image watermarking algorithm called Secure Spread

Spectrum which seems to be able to resist typical image processing and offers a correct

level of robustness.

Since the embedded set of marks is the same for all copies, watermarking schemes

ensure intellectual property protection but fail to protect distribution rights. In the

proposed scenario, the protection against distribution rights is also required, then the

concept of watermarking needs to be extended further off. The functionality of wa-

termarking can be extended by allowing the embedded set of marks to be different in

each copy of the object. This true original idea is called fingerprinting because of its

analogy to human fingerprints. The concept of fingerprinting was introduced by Wag-

ner in [116] as a method to protect intellectual property in multimedia contents. The

fingerprinting technique consists in making the copies of a digital object unique by

embedding a different set of marks in each copy. Having unique copies of an object

clearly rules out plain redistribution, but still a coalition of dishonest users can col-

lude. A collusion attack consist in comparing the copies of the coalition members and

by changing the marks where their copies differ, they create a pirate copy that tries to

disguise their identities. Observe that in this situation it is possible for the attackers to

96

5.2. Scenario description

frame an innocent user. Thus, the fingerprinting problem consists in finding, for each

copy of the object, the right set of marks that help to prevent collusion attacks.

The chapter is organised as follows. In section 5.2 the working scenario is briefly

described. Section 5.3 provides an overview about watermarking techniques. Sec-

tion 5.4 presents the fingerprinting codes in general and describes how to construct

and decode one particular family of such codes. In section 5.5, the YouTube video

service is introduced. Section 5.6 discusses our implementation. In section 5.7, the

obtained results are explained. Finally, some conclusions are given in section 5.8.

5.2 Scenario description

Figure 5.1 shows the considered scenario. Suppose that a confidential video must be

shown to a reduced group of people. As an example imagine a surveillance camera

video footage which has to be presented in a criminal proceeding. Some copies of this

video are distributed to the judge, members of the jury, etc. . . and one of the copies is

uploaded to Youtube. If all copies are identical, that is, without any protection against

redistribution, detecting who has uploaded it is not feasible.

The whole scenario starts with the distribution step. As has been shown before,

the original video is watermarked with different fingerprints to generate several fin-

gerprinted copies. Each one of these copies is distributed to the users. Then, users A

and B collude in order to avoid the redistribution protection tracing, and they gener-

ate a new copy of the video with a false fingerprint which is not exactly the fingerprint

of neither A and B. Finally, the traitors upload the colluded video to YouTube service.

When a video is uploaded to YouTube, their servers performs some processing to

this video. Therefore, compression and scaling processes have to be taken into ac-

count because both of them can distort the mark causing a fingerprinting information

loss. That is, the original video must be adapted to obtain the correct performance and

to minimize the YouTube service processing effect. In our simulations we use videos in

MPEG-2 format with resolutions and sizes near to the video properties of the YouTube

service so; the distortion produced by the YouTube service processing is lower than

if high resolutions and sizes will be used so, at tracing time, no pre-processing is re-

quired and our simulations are faster. Nevertheless, in a real environment, that is, with

videos in high resolutions, some post-processing will be needed and, it is possible that

more robust watermarking algorithm must be used. However, in our study we assume

that the original videos are in the appropriate resolution and size (this is more deeply

explained in section 5.7).

The next step is to retrieve the video from Youtube and transform it in order to be

able to use it as input for our recovery mark system because the watermarking algo-

rithm which is used is non-blind and it extracts the mark from the watermarked video

97

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

by the comparison with the original unmarked video. When the fingerprint have been

extracted, it is decoded by a fingerprinting decoder thus identifying at least one of the

traitors.

Figure 5.1: Overall system

5.3 Watermarking Layer

Watermarking is the technique of embedding information into data files. It is neces-

sary to make a little distinction between cryptography and watermarking. These two

techniques have different purposes. Cryptography ciphers a message with the inten-

tion of being read just by a specific user. Therefore this particular user decrypts the

ciphered message and gains access to it. After decrypting the message the retransmis-

sion of the same message can be done in clear. In watermarking schemes, in every

copy of the file, in each retransmission, the embedded information is present, and at

any time it can be recovered by some software suitably written.

From the detection point of view, the watermarking systems can be classified in

two groups: blind watermarking and non-blind watermarking. The first one assumes

98

5.3. Watermarking Layer

that, at decoding time, the original document, which is the content without any wa-

termark embedded, is not available. The second kind of systems assume that the orig-

inal content can be used by the decoder in order to improve the performance of the

whole system. Because usually, non-blind algorithms have better performance and

need to deal with less security issues and because in our scenario it can be assumed

that the decoder has access to the original content; non-blind watermarking algorithm

seemed the best choice for us. An extensive analysis about the problems presented by

blind watermarking systems is discussed in [28].

5.3.1 Watermarking in the frequency domain

Watermarking can be applied in the frequency domain. After the transformation to

frequency domain the mark is inserted. There are different ways for transforming

the domain, for example, Fast Fourier transform (FFT) or Discrete Cosine Transform

(DCT). The most used is DCT, since it is proved that is the one that has a better re-

sponse to the watermarking needs. After the transformation to the frequency domain

the mark is added to the signal. The inverse process transforms again the signal to the

spatial domain.

In frequency domain the watermarking process can be seen as a communication

system in which the ideas of Costa presented in [24] can be applied. In this way, the

original document can be seen as the communication channel and the watermark can

be seen as the signal transmitted over the channel. Attacks or unintentional transfor-

mations will be seen as noise introduced into the channel.

There are many advantages in placing the watermark in the frequency domain. As

it also happens in the spatial domain the different frequency values can be modified.

Each frequency coefficient has a perceptual capacity. This perceptual capacity is the

capacity of each coefficient to receive additional information (watermark), without

introducing perceptual differences in the image or audio. Note that the Human Visual

System model (HVS) naturally works with frequencies. So working in the frequency

domain helps adjusting the addition of information together with the HVS sensitivity.

One of the traditional watermarking techniques in frequency domain is the spread

spectrum [27]. Spread spectrum techniques have been widely used in watermarking

applications to embed small amounts of bits given their robustness against different

intentional an unintentional attacks. Quantization Index Modulation (QIM) based

methods have become more popular for their higher data capacity and their property

of presenting zero probability of error decoding error for certain amplitude bounded-

attacks [15]. Nevertheless they may fail in high distortion contexts as in our proposed

scenario. In recent years, a new watermarking model with large data payload has ap-

peared. This scheme is based on the parallel use of two different techniques: Informed

99

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

Coding [80] and Informed Embedding [81]. The same approach is used in both tech-

niques and it is based on the fact that the transmitter knows the original content (cover

work). A deeper study about the joint use of these two techniques can be found in [82].

The main objectives of Informed Embedding technique are to adapt every watermark

to the cover work maintaining a relationship between the watermarks desired robust-

ness and the distortion effect produced in the image. On the other hand, the basis

of Informed Coding is to perform an intelligent message codification depending on

the cover work. One problem of these techniques is excessive time consuming. In

[67], an optimization over this issue is proposed by means of the use of Hadamard

matrix. However, the use of Informed Embedding or Informed Coding with finger-

printing codes presents important problems. In [TBFS07], some improvements in or-

der to adapt these codes to fingerprinting systems are discussed. A more general and

broader discussion on data hiding codes is provided in [84].

5.3.2 Secure Spread Spectrum

Even though there exists lots of image watermarking systems and some of them show

better performance than secure spread spectrum, this algorithm presented in [27] by

Cox et al. has been used in our implementation because it is easy to combine with a

fingerprinting code and it offers a good protection against the distortions produced

by the YouTube service. Moreover, the time consuming of this algorithm is lower than

others based on informed embedding or informed coding so, as during our simu-

lations we needed to send hundreds of marked videos to the YouTube service, the

time consuming was an important restriction to take into account. In addition, as

was presented in [27], the Spread Spectrum offers enough performance against scal-

ing, transcoding and compression, which are the main processes performed by the

YouTube service.

Spread Spectrum watermarking is an example of spatial embedding of water-

marks. The watermark is modulated by a pseudo-noise generator in order to produce

a spread spectrum signal, which is then scaled according to the required power. The

modulated signal is then added to the original image to produce the watermarked

image.

To detect the watermark, a high pass/edge detection or Wiener filter is applied

to the watermarked image to remove irrelevant information. The output of the filter

is then correlated with the modulating pseudo-noise signal used at the transmitter

side and compared to a predetermined threshold for the detection of the watermark.

In general, most watermarking techniques are considered a variation of the spread

spectrum technique. The whole system is briefly presented in figure 5.2.

In [27], the mark X = {x1, · · · , xn} is embeded into V = {v1, · · · , vn} to obtain V ′ =

100

5.4. Fingerprinting Layer

Figure 5.2: Watermarking process schema

{v ′
1, · · · , v ′

n}. In that proposal, V is a vector which contains all DCT matrix coefficients

to be marked. Three natural formulae for computing V ′ presented in [27] are

v ′
i = vi +αxi (5.1)

v ′
i = vi (1+αxi) (5.2)

v ′
i = vi (eαxi) (5.3)

Equation 5.1 is always invertible, and 5.2 and 5.3 are invertible if vi 6= 0.

At the decoder, X ∗ is extracted from V ∗ and V . In the original proposal, the simi-

larity of X and X ∗ is computed to measure how similar is the extracted mark and the

original mark. A minimal value of similarity is defined as a threshold T to guarantee

that no false positives are present.

5.4 Fingerprinting Layer

As it has been introduced before, the fingerprinting problem consists in finding, for

each copy of the object, the right set of marks that help to prevent collusion attacks.

The codes that can resist to collusion attacks are called collusion secure codes. The

construction of collusion secure codes was first addressed in [12]. In that paper, Boneh

and Shaw obtain (c > 1)-secure codes, which are capable of identifying a guilty user in

a coalition of at most c users with a probability ε of failing to do so. The construction

composes an inner binary code with an outer random code. Therefore, the identifica-

tion algorithm involves the decoding of a random code, that is known to be a N P-hard

problem [6]. Moreover, the length of the code is considerably large for small error

probabilities and a large number of users.

To reduce the decoding complexity, Barg, Blakley and Kabatiansky in [6] used

algebraic-geometric codes to construct fingerprinting codes. In this way, their sys-

tem reduces the decoding complexity to O(pol y(n)) for a code length n and only 2

traitors. In [38], Fernandez and Soriano constructed a 2-secure fingerprinting code by

concatenating an inner (2,2)-separating codes with an outer IPP code (a code with the

Identifiable Parent Property), and also with decoding complexity O(pol y(n)). In [107],

Tardos presents a codes which have length O(c2log (n/ε)) and are ε-secure against c

101

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

pirates over n users. These codes represented an important improvement compared

to the Boneh and Shaw proposal.

Another point of view about fingerprinting codes applied to media has been pre-

sented recently by He and Wu. Their proposals take advantage of joint coding and

embedding that is, designing fingerprinting codes taking into account the content in

which will be embedded. In [57], a system, called GRACE, which assumes a small num-

ber of users is discussed. These users are separated in groups of orthogonal finger-

prints, that is, every fingerprint is orthogonal inside his group. In [56], this system is

improved by means of the use of Reed-Solomon codes and it can accommodate more

than ten million users resisting collusions performed by hundreds of users.

In our implementation, the code and algorithms presented in [38] has been used

as fingerprinting code because, in our scenario, there are a small number of users and

the performance, from the time consuming and tracing capacity point of view, is good

enough.

5.4.1 Background on coding theory

A subset C of a vector space Fn
q is called a code. The set of scalars Fq is called the code

alphabet. A vector in Fn
q is called a word and the elements of C are called codewords,

each codeword is of the form x = (x1, . . . , xn) where xi ∈ Fq , 1 ≤ i ≤ n.

The number of nonzero coordinates in x is called the weight of x and is commonly

denoted by w(x). The Hamming distance d(a,b) between two words a,b ∈ Fn
q is the

number of positions where a and b differ. The distance between a word a and a subset

of words U ⊂ Fn
q is defined as d(a,U) := minu∈U d(a,u). The minimum distance of C ,

denoted by d , is defined as the smallest distance between two different codewords.

A code C is a linear code if it forms a subspace of Fn
q . A code with length n, dimen-

sion k and minimum distance d is denoted as a [n,k,d]-code.

If we take a set of n distinct elements P = {ν1, . . . , νn} ⊆ Fq , then a Reed-Solomon

code of length n and dimension k, consists of all codewords of the form (f (ν1),

. . . , f (νn)) where f takes the value of all polynomials of degree less than k in Fq [x]:

RS(P,k) = {(f (ν1), . . . , f (νn)) | f ∈ Fq [x]∧deg(f) < k}

A simplex code or dual binary Hamming code Sr , is a [2r −1,r,2r−1] code, consist-

ing of 0 and 2r −1 codewords of weight 2r−1, with every pair of codewords the same

distance apart.

For any two words a, b in Fn
q we define the set of descendants D(a,b) as

D(a,b) := {x ∈ Fn
q : xi ∈ {ai ,bi },1 ≤ i ≤ n}.

One can see that among the set of descendants of a and b, there are a and b themselves.

102

5.4. Fingerprinting Layer

For a code C , the descendant code C∗ is defined as:

C∗ := ⋃
a∈C ,b∈C

D(a,b).

5.4.2 Construction of a Concatenated Fingerprinting Code

The idea of using code concatenation in fingerprinting schemes to construct shorter

codes, was presented earlier in [12].

A concatenated code is the combination of an inner [ni ,ki ,di] qi -ary code (qi ≥ 2)

with an outter [no ,ko ,do] code over F
q

ki
i

. The combination consists in mapping the

codewords of the inner code to the elements of F
q

ki
i

, that results in a qi -ary code of

length ni no and dimension ki ko . Note that the size of the concatenated code is the

same as the size of the outter code.

In [31], dual binary Hamming codes are proposed as fingerprinting codes. One of

the major drawbacks of that scheme is that the number of codewords grows linearly

with the length of the code. To overcome this situation in [38], code concatenation is

used, and combine a dual binary Hamming code with an IPP Reed-Solomon code.

So, to construct a [n(2r −1),r dn/4e] binary fingerprinting code C , they propose:

• as inner code, a [2r −1,r,2r−1] dual binary Hamming code Sr ,

• as outter code, a [n,dn/4e,n −dn/4e+1] IPP Reed-Solomon code over F2r ,

• together with a mapping φ : F2r → Sr .

The codewords of C are obtained as follows, take a codeword x = (x1, . . . , xn) from

the Reed-Solomon code and compute yi = φ(xi), 1 ≤ i ≤ n. The concatenation of the

yi ’s forms a codeword y ∈C , where,

y = (y1, . . . ,yn) such that yi =φ(xi)

5.4.3 Overview of the Fingerprinting Concatenated Decoding Algorithm

The decoding is done in two stages. First, we decode the inner code to obtain an n-

tuple of sets of codewords. Then, with this n-tuple of sets we construct a reliability

matrix that is used to decode the outter code.

Suppose we want to decode the following fingerprint:

y = (y1,y2, . . . ,yn)

The inner decoding consists in the decoding of each subword yi using the Simpli-

fied Chase Algorithm. The output will be a single codeword {h1}, a pair of codewords

{h1,h2} or three codewords {h1,h2,h3}.

103

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

Then, for i = 1, . . . ,n we use the mapping φ(sm) = hm to obtain the set S(j)
i =

{si1 , . . . , si j }, where the superscript j ∈ {1,2,3} indicates the cardinality of the set. Note

that the elements of the S(j)
i ’s are symbols from F2r . We denote by S (1) the set of the

S(1)’s, by S (2) the set of the S(2)’s and by S (3) the set of the S(3)’s.

We also define the n-tuple of sets S = (S(j)
1 , . . . , S(j)

n), that is used to construct a

reliability matrix. With this matrix we run the Koetter-Vardy algorithm obtaining a list

U of potential parents. If do denotes the minimum distance of the outter code, then

to extract the positive parents out of the list U , we use the following statements:

• If (|S (1)|+ |S (2)|) > 4(n −do), then by Theorem 3 in [38], at least one of the par-

ents is identified with probability 1.

• If |S (2)| > 2(n −do), then by Theorem 3 in [38], both parents are identified with

probability 1.

• If (|S (1)|+|S (2)|) ≤ 4(n−do), then define U3 = {u ∈U : up ∈ S(3)
p , ∀ S(3)

p ∈S }. The

only cases of positive identification are:

– For any S(2)
p ∈S , where S(2)

p = {sp1 , sp2 }, if there are two and only two code-

words {u1,u2} ∈ U3, such that u1
p = sp1 and u2

p = sp2 , then codewords u1

and u2 can be identified as positive parents.

– For any S(1)
p ∈ S , where S(1)

p = {sp1 }, if there is one and only one codeword

u ∈U3, such that up = sp1 , then codeword u can be identified as a positive

parent.

5.5 YouTube Broadcast video service

YouTube is a video sharing website that offers to their users the following features:

• Video embedding: The uploaded videos can be linked by users in other websites

in order to be seen by people who visit this other website.

• Public or private videos: When registered users upload video, they can choose

if this video can be broadcasted to anyone that connects to YouTube or only to

the people who the user authorizes.

• Subscriptions: YouTube offers the option to syndicate to their favorite users’

new videos like in RSS (Really Simple Syndication).

• Quick Capture: YouTube website facilitates to their users a webcam and Flash

software the option of instantly record video and upload it in real time rather

than having to pre-record and then upload the video.

104

5.6. Our implementation

YouTube has been growing in the number of users and video since its appearance

in February 2005. Few statistics are publicly available regarding the number of videos

on YouTube. However, in July 2006, the company revealed that more than 100 million

videos were being watched every day, and 2.5 billion videos were watched in June 2006.

50,000 videos were being added per day in May 2006, and this increased to 65,000

by July. In January 2008 alone, nearly 79 million users had made over 3 billion video

views. It is estimated that in 2007, YouTube consumed as much bandwidth as the

entire Internet in 2000, and that around ten hours of video are uploaded every minute.

5.5.1 Technical notes

One key issue in our proposal is the video technologies that YouTube use and how

YouTube process the upload videos. As it seems logical the videos are compressed in

order to offer a reasonable broadcasting quality. Basically, YouTube accepts videos of

a wide variety (MPEG 1, 2 and 4, Windows Media Video, Audio Video Interleave and

QuickTime File format for instance). The users can play YouTube video by means of

Adobe Flash Player which is distributed as a plugin for web browsers. The standard

video format from YouTube is a Flash Video which is a proprietary file format that

contains a variant of H.263 video standard known as Sorenson Spark video codec [78].

All uploaded videos are converted to 314 kbit/s as a bit rate with a variable frame rate

depending on uploaded video and are scaled to 320 pixels wide by 240 pixels high.

Some uploaded videos are also available in a better video definition since March 2008

but it is YouTube who decides if a specific video is converted to this better quality.

The YouTube also provides to external programmers a set of tools in order to facil-

itate the interaction of the YouTube website with other developments. This tools have

been used to speed up our implementation.

5.6 Our implementation

The aim of this work is to implement a proof of concept that shows how a successful

traitor tracing can be done in video content that has been uploaded to the YouTube

service. There are two different workflows to deal with: pirate copy generation and

traitor tracing process. The first one is summarized in figure 5.3 and consists in the

following steps:

1. A seller, who is the owner of the content-distribution rights, uploads a copy-

righted content to a ContentProvider.

2. A buyer requires a specific content from the ContentProvider.

105

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

Figure 5.3: Collusion attack process.

3. The ContentProvider makes a request to the DRM provider, of the marked (with

the fingerprint embedded) copy of the content that will be assigned to this Buy-

erJ.

4. The DRM provider sends to the ContentProvider the marked copy in which the

fingerprinting that identifies BuyerJ has been embedded.

5. The marked copy is sent to the buyer.

6. Two buyers that have the same content (with different fingerprints embedded)

decide to collude in order to generate a pirate copy.

7. The pirate copy is uploaded to the YouTube service.

The second workflow is shown in figure 5.4 and consists of the following steps:

1. A seller searches for a specific video in the YouTube service.

106

5.6. Our implementation

Figure 5.4: Traitors tracing workflow.

2. We assume that the search is successfull.

3. If the content is copyrighted by this seller, he could request to the YouTube ad-

ministrators a banning of this content.

4. In a normal situation the YouTube administrators will ban the content so, the

content will no longer be available in the Youtube service.

5. The seller sends this content to the ContentProvider in order to discover who

was the user (or users) that uploaded the content to the YouTube service.

6. The ContentProvider asks the DRM provider about the identity of the buyers of

this content.

7. The DRM provider extracts the mark and traces the buyers.

8. The ContentProvider sends the identity of this traitor (or traitors) and also the

evidences of guilt to the seller in order to start the punishment.

Note that the first four steps are usually done in the current Youtube service. Our

contribution proves that it is possible to also identify the buyers who have uploaded

copyrighted contents to YouTube.

107

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

In order to perform our simulations, there are some particular stages which must

be briefly described. These stages are:

1. Video acquisition: In our environment, the videos are acquired with a com-

monly digital camera with recording video option. The camera used has 3.2

Mpixels of resolution and the output is a file in AVI (Audio Video Interleave).

2. First transcoding process: This AVI file is transcoded to a MPEG 2 video, so the

watermarking algorithm works in a DCT domain and MPEG 2 also works in this

domain.

3. Fingerprint embedding: Fingerprinting embedding uses part of the code imple-

mented in the previous work presented in [SFS+05].

4. Collusion attack: Two of the generated copies are colluded to generate a new

pirate copy.

5. YouTube upload: The pirate copy is uploaded to YouTube and YouTube process

as a other normal video. Finally the video is available by all users who visit

YouTube website.

6. YouTube download: The pirate video is found in YouTube and it is download as

a Flash video.

7. Second transcoding process: The Flash video is encoded to a MPEG 2 in a way

that is as similar as possible to the generated videos.

8. Fingerprint recovery: A distorted version of the fingerprint is retrieved from the

pirate video.

9. Traitor tracing: Finally the traitor tracing algorithm is executed over the retrieved

fingerprint.

Other aspects of our implementation are explained in the following sub-sections.

5.6.1 Sequence generator

The sequence generator (fig. 5.5a) is the application that generates the fingerprints

for all users and embeds it into the original sequence to produce the watermarked se-

quences. In our simulations, 10 users are randomly chosen between the available 210

users, and our software creates one marked sequence for each of them. Some values

are requested by the graphical interface. Basically, the original sequence to be pro-

tected, the output directory and the directory that contains some information about

MPEG-2.

108

5.6. Our implementation

(a) Sequence generator

(b) Collusion Attack generator

(c) Traitor Tracing

Figure 5.5: Tools developed to perform our proof of concept.

The watermarking process performed by this sequence generator is a slightly dif-

ferent from the explained in section 5.3.2 and it is based in Equation 5.1. Essentially,

the α value takes into account the quantization process which is applied in each coef-

ficient. Formally, the performed modification is

v ′
i = vi +αQi xi (5.4)

where Qi is the quantizer matrix value (which is also showed in the figure 5.5a), α is

a strength factor, and xi is the mark in polar format, that is +1 for value 1 and -1 for

109

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

value 0. Finally, the rate is the number of DCT matrix without mark are beetwen two

marked matrix minus 1, in other words, when rate has the value 1, all DCT matrix are

watermarked.

As usually there are more positions suitable to be marked than bits to insert, the

mark is repeated during all markable positions along the sequence. In this way, this

embedding system has a behavior similiar to a repetition code.

5.6.2 Collusion attack generator

As has been explained before, the attack that fingerprinting tries to avoid is the collu-

sion attack. In this attack, the traitors (2 in our case) compare their copies of the same

content and look for different positions. After localizing these positions, the traitors

generate a new copy in which the values of these positions are chosen randomly be-

tween the different values of their original copies.

Our implementation (fig. 5.5b) asks for the sequence of the 2 traitors, the place to

put the colluded sequence, and the contribution of every user. The worst case, from

the fingerprinting algorithm point of view, is that every traitor has the same contribu-

tion.

On the other hand, as the attackers do not know which DCT coefficients were used

to embed the watermark, they use all 14 possible DCT coefficients to collude.

5.6.3 Traitor Tracing

After localizing a pirate copy of a video in YouTube, we retrieve it and recode it to the

original format, resolution and bit rate; the the traitor tracing algorithm can be ap-

plied. Our implementation (fig. 5.5c) asks for the colluded sequence and the origi-

nal sequence. Take into account that the implemented watermarking algorithm is a

non-blind algorithm, that is, the original sequence is needed to recover the embedded

watermark.

This algorithm will output at least one traitor if the number of errors added by the

watermarking layer is close to 0.

5.6.4 External tools

Some external tools have been used in order to perform some processes. In the next

points these tools are briefly explained.

5.6.4.1 Video transcoding process:

As it has been explained, our system embeds marks into MPEG-2 video files. But, dur-

ing the whole process, some video recoding processing must be performed (from AVI

110

5.7. Results

to MPEG-2, FLV to MPEG-2). All these operations are done by Mplayer and FFMpeg

tools [97].

5.6.4.2 Video Uploading process:

During our simulations, massive video uploading to the YouTube service has been

necessary. To automate this process, some Application Programming Interfaces from

Google have been used. More specifically Google published the YouTube APIs and

Tools to enable the integration of YouTube’s video content and functionality into web-

sites, software applications, or devices. These APIs are available at [46].

5.6.4.3 Video downloading process:

In the same way, massive video downloading from the YouTube service has been nec-

essary. It is true that, by means of the YouTube APIs, this process can be done but, in

our implementation, the youtube-dl [45] Python script is used.

5.7 Results

In this section, 2 different kinds of results are presented. First of all, in subsection 5.7.1,

some results in order to characterize the YouTube channel are presented. In this way,

the relation between how the increase in watermarking power, which is the value of

α, affects the bit error ratio (BER) and the PSNR. Taking into account these results, a

trade-off between distortion (PSNR) and robustness (BER) appears, and the α value

must be fixed in order to achieve it.

On the other hand, in subsection 5.7.2, the results from uploading videos with em-

bedded fingerprints are shown. In this way, our work has been focused in two aspects.

On one hand, in tracing the traitors in a scenario in which no collusion has been per-

formed. The other is centered in a scenario with collusion of two users. It is clear

to see that more robustness is needed in the second case due to a higher distortion.

However, really satisfactory results have been achieved in both cases.

One aspect to take into account is the characteristics of the sequences used in our

simulations. The corpus for Tektronix[108] has been used in order to employ very stan-

dard sequences. These originals sequences have a resolution of 352×288 pixels, a bit

rate of 1.5 Mbps, 25 frames per second, and are encoded as a MPEG-2 program stream.

The thumbnails of each one of these sequences are shown in figure 5.6.

Another aspect are the parameters of our fingerprinting code. As it is said before,

the minimum number of users in our system must be 210. The fingerprinting algo-

rithm can be constructed by means of fixing the parameters n and r . So we need

that r dn/4e ≥ 10 and, for instance, if n = 7 and r = 6 the inequality is accomplished

111

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

(a) 100b (b) bbc3 (c) cact (d) flwr

(e) mobl (f) mulb (g) pulb (h) susi

(i) tens (j) time (k) v700

Figure 5.6: Corpus of videos used in our simulations. These images have Copyright
(1996) David Sarnoff Research Center, Inc. and are availabel at [108]. All of them are
MPEG-2 elementary streams with a resolution of 352×288 pixels and a bit rate of 1.5
Mbps.

(6d7/4e = 6×2 = 12 ≥ 10). Finally, in our systems, a [441,12] fingerprinting code has

been used (that is [7(26 −1),6d7/4e]).

Last aspect that must be considered is that, in some cases, there are videos in

which the distortion added by YouTube makes impossible to watermark in the correct

way. In order to limit this effect, firstly, the PSNR between the original sequence (with-

out any mark) and the result of sending to YouTube and retrieving it. Table 5.1 shows

these values for the corpus used. In our case, sequences “mobl” with PSNR of 20,99dB

and “bbc3” with PSNR of 12,44 cannot be watermarked in a correct way because they

are too much distorted by YouTube.

5.7.1 How to choose the correctα.

As it has been said before, there exist a trade-off between the value of α, the BER and

the distortion of the resulting image. First of all, our simulations try to establish a

relation between the BER and α. It is clear to see that the greater the value of α is, the

greater the distortion will be. However, not all coefficients cause the same distortion

112

5.7. Results

(a) PSNR between the original image and the water-
marked image versus α values.

(b) Difference between PSNRs of the original image
after YouTube process and watermarked image af-
ter YouTube process versus α values.

(c) Bit Error Ratio versus α values. (d) Bit Error Ratio taking into account that the mark
is embedded n times versus α values.

Figure 5.7: Watermarking layer performance.

Table 5.1: PSNR between original sequences and sequences after YouTube process.

Sequence PSNR Sequence PSNR

100b 43,00 pulb 37,21
bbc3 12,44 susi 30,28
cact 27,08 tens 24,62
flwr 26,11 time 34,36
mobl 20,99 v700 32,53
mulb 27,27

by the same α value. Figure 5.7a shows, in average for each coefficient, how PSNR

between the original sequence and the watermarked sequence decrease as α value

increase. Take into account that only the 14 low-frequency coefficients are considered.

The high-frequency coefficients cannot be used for embedding marks because it will

not be robust, that is, a simple compression process will erase its values. On the other

hand, the DC coefficient cannot be used because a little modification on this position

will cause a really important distortion to the image.

The other side of the trade-off is the BER. Similar to what happens with the PSNR,

113

5. TRAITOR TRACING OVER YOUTUBE VIDEO SERVICE - PROOF OF CONCEPT

(a) Traitor tracing in a scenario without collusion
and α= 2.

(b) Traitor tracing in a scenario with collusion and
α= 2.

(c) Traitor tracing in a scenario without collusion
and α= 3.

(d) Traitor tracing in a scenario with collusion and
α= 3.

Figure 5.8: Results of traitor tracing in scenarios with and without collusion and dif-
ferent α values.

it is clear to see that the greater the value of α is, the lower the BER will be after the

YouTube compression process. In the same way, not all coefficients are equally sensi-

tive to this compression process. Figure 5.7c shows that lower-frequency coefficients

are less affected by the compression, from BER point of view. Another aspect is that

our sequences have near 51000 DCT matrixes and our fingerprints have 441 bits. In

other words, if only one bit is embedded in each DCT matrix, our fingerprint can be

replicated 51000
441 ≈ 115 times. According this, figure 5.7d shows our real BER.

Finally, we need to consider the overall distortion produced by the system. A good

way to measure this is by the difference of the PSNR between original sequence before

and after YouTube process in one hand and, on the other hand, the PSNR between

watermarked sequence before and after YouTube process. Figure 5.7b shows this dif-

ference. Note that the lower PSNR difference value is, more similar are the original

sequence and the watermarked sequence.

5.7.2 Traitors retrieval performance after collusion attacks.

In this section, the traitor tracing is analyzed. The presented results have been ob-

tained embedding the mark in the coefficient 11 with 2 different values of α (2 and

114

5.8. Conclusions

3). When no collusion is present, the user who has uploaded the video to YouTube is

always correctly identified. This is shown in figure 5.8a where α= 2 and in figure 5.8c

where α= 3.

On the other hand, if a collusion attack is performed by 2 traitors, the effectiveness

of the system increases significantly as higher value of α is. In this way, if α= 3 at least

1 traitor is identified with a probability of 95% in the worst case. However, in all cases

the probability of finding the 2 traitors is higher than 50 %. This is shown in figure 5.8b

where α= 2 and in figure 5.8d where α= 3.

5.8 Conclusions

The work presented tries to be a proof of concept that tracing traitors over YouTube

video service is possible. First of all, the relation between bit error probability, wa-

termarking robustness and distortion is deeply studied. Our study shows that a nice

trade-off between these parameters can be achieved.

Next, our conclusions are applied to the problem of traitor tracing. In this way, we

use the watermarking layer (configured taking into account our results) with a finger-

printing code. It is shown that this fingerprinting code can trace traitors if no collusion

is performed, with a really low distortion. If collusion appears, the traitors could be

also traced with a low distortion. Besides, the proposed system does not allow false

positives by design, that is, innocent users cannot be framed.

115

C
H

A
P

T
E

R

6
DEVELOPMENT OF A PLATFORM FOR THE

COPYRIGHT PROTECTION OF MULTIMEDIA

CONTENT

This chapter presents a software platform that consists of a combination of water-

marking and fingerprinting techniques to help protect authorship and copyright of

multimedia content. The software that has been developed, provides content distrib-

utors and authors with a trusted system that allows the former to develop new busi-

ness models while preserving the authorship rights of the latter. The proposed system

offers the distribution of multimedia content via a Web platform, providing mecha-

nisms for tracing dishonest users that illegally redistribute their content.

6.1 Introduction

Distribution and playback of digital content (image, audio, video, text, ...) using a per-

sonal computer has become a trivial matter. This ease of use leads to problems con-

cerning the protection of copyright and distribution rights. The scientific community

has been devoting extraordinary efforts to devise a copyright protection system that

helps to prevent these illegal practices. Of course, data encryption provides protection

up to the transport layer, but when an authorized dishonest user decrypts his/her con-

tent, nothing can prevent him/her from distributing the content without any concern

to be indicted or punished for his/her actions. Watermarking schemes appear to be a

possible solution to this problem. These schemes allow to embed information about

the owner (brand) in a given original content. Unfortunately, watermarking alone does

117

6. DEVELOPMENT OF A PLATFORM FOR THE COPYRIGHT PROTECTION

not protect against illegal re-distribution. However, when combined with digital fin-

gerprinting techniques [11], both mechanisms offer a good solution to deter potential

fraudulent users from re-distributing illegal content. To make distribution systems

work properly, the solution must be robust to attacks such as image processing opera-

tions, lossy compression, geometric transformation, combination with additive noise,

and/or collusion attacks.

The work proposed in this chapter consists on the design and implementation of

an empiric and portable platform that satisfies the following objectives:

• Provide a public and secure platform capable of tracing users that perform ille-

gal digital video re-distribution.

• Check on a practical level the robustness of watermarking and fingerprinting

algorithms working together.

The platform is presented as a content manager system (CMS), liaising between

authors and customers. The aim is to provide a trusted environment that offers pro-

tection against illegal re-distribution of authorized content. The protection provided

is achieved by means of combining watermarking and fingerprinting techniques for

the case of MPEG-2 digital content. The generated watermarks, as well as the inser-

tion algorithm have been designed in such a way that guarantees robustness against

common attacks, while avoiding content degradation.

The chapter is structured as follows; Section 6.2 describes the working scenario,

paying special attention to the platform functional and architectural key points, such

as security, modularity and flexibility. Section 6.3 discusses watermarking mecha-

nisms, as well as the implementation internals of the watermarking layer. Section 6.4

describes the different entities and their interrelationship. Finally, conclusions are

given in Section 6.5

6.2 Working Scenario

Consider an scenario where a digital content provider offers its users copies of digi-

tal video for their amusement. Of course, the provider desires as much protection as

possible against illegal re-distribution of these files to third parties. Authorized users

access the provider’s Web portal to download their favorite movies. Once the user has

purchased a given content he is free to illegally distribute it via P2P platforms or upload

it to content distribution platforms such as Youtube or Fileserve, among others. The

content provider, after detecting that one of its products is freely available on the In-

ternet realizes of a security leak in his business chain, but there is not much more that

he can do. It would be nice for him/her to at least identify the user that purchased the

118

6.2. Working Scenario

copy that has been illegally re-distributed. This user may have incurred in a contract

fault by distributing content without specific authorization, allowing the company to

take internal actions over the user’s account, regardless of the legal actions that could

be taken over the physical person.

The work we present aims at filling the gap between detection of a dishonest dis-

tribution and the actions taken on the accused individual. This may be performed by

identifying the owner of the illegally redistributed copy.

So, in order to be able to identify the owner of a given a video file, there must be an

association between the user and the copy. This can be achieved by means of insert-

ing some information inside the content that may identify the user once the content

is recovered, this embedded information is called a mark. Of course there are some

requirements [27] that this mark has to fulfill:

• Perceptually invisible: perceptual invisibility is a wanted characteristic of the

mark. The process of embedding the information into the data is really impor-

tant. In one hand, the introduced mark cannot be perceptually noticed by view-

ers. On the other hand, once introduced it cannot be easily removed, at least

without much degradation of the original data.

• Statistically invisible: each mark must be statistically uncorrelated to any other

mark or the content itself.

• Robustness: The mark must be robust to modifications as, for example, image

processing.

• Unambiguous: A mark should unambiguously identify the authorized owner of

the content in which has been introduced.

• Complexity: The complexity of a mark is proportional to its degree of efficiency.

A more complex mark is also more difficult to remove.

• Low error bit rate: When recovering the mark it has to be guaranteed that it is

“impossible” to obtain a mark that belongs to a user different than the original

one. “Impossible” here means with very low probability.

Clearly there is a need to embed customer information into delivered multimedia

products to ensure copyright protection. The presented platform pays special atten-

tion to this concern and proposes the usage of user and server Public-Key certificates

to protect user-to-platform and platform-to-platform transactions.

119

6. DEVELOPMENT OF A PLATFORM FOR THE COPYRIGHT PROTECTION

6.3 Implementation Details

The aim of this platform is to guarantee the correct management of digital rights (both

copyright and distribution rights). This goal is accomplished by means of watermark-

ing algorithms and fingerprinting codes. In this section, the implementation of these

mechanisms is discussed. On one hand, the watermarking layer discusses how the

marks are embedded into the video content. On the other hand, fingerprinting algo-

rithms generate the embedded marks.

6.3.1 Watermarking Layer

Watermarking is a technique for embedding information into data files. When using

watermarking schemes, all the copies of a file contain a mark, that can be recovered at

any time.

From the detection point of view watermarking systems can be classified in two

groups: blind watermarking and non-blind watermarking. The first one assumes that

the original content is not needed to perform the recovery of the mark. The second

algorithm assumes that the original content can be used by the decoder in order to

improve the performance of the whole system. Since in our working scenario, it can

be assumed that the decoder has access to the original content, we have decided to

use non-blind watermarking. An extensive analysis about the drawbacks of blind wa-

termarking systems is given in [28].

Usually watermarking is performed in the frequency domain. There are different

domain transforms we can use, for example, the Fast Fourier Transform (FFT) or the

Discrete Cosine Transform (DCT). In [28] has been shown that DCT gives a better

answer to image watermarking needs. After the transformation into the frequency

domain a mark is added to the signal. The inverse process transforms again the signal

to the spatial domain.

There are many advantages of placing the watermark in the frequency domain. As

it also occurs in the spatial domain, different frequency values can be modified. Each

frequency coefficient has a perceptual capacity. This perceptual capacity represents

the capacity of each coefficient to receive additional information (watermark), with-

out introducing perceptual differences in the content. Note that the Human Visual

System (HVS) model naturally works with frequencies. So working in the frequency

domain helps adjusting the addition of information together with the HVS sensitivity.

6.3.2 Fingerprinting Layer

Roughly speaking, the fingerprinting layer will generate a different mark for each dis-

tributed copy of a multimedia content. This mark will be embedded by the watermark-

120

6.3. Implementation Details

ing layer into a verbatim copy of the original content in order to generate a new copy

for a particular user. When one of these copies is illegally re-distributed, this mark

is extracted, and by means of a tracing algorithm, the traitor (the fraudulent user) is

identified.

This first approximation is more or less achievable but the real fingerprinting prob-

lem consists in finding, for each copy of the original content, the right set of marks that

prevent collusion attacks. A collusion attack is performed by a set of users that have

acquired different copies of the same multimedia content. Note that, in order to iden-

tify every user, every single mark embedded into each copy has to be different. Since

the attackers decide to cooperate, they have access to different copies of the same con-

tent so they can generate a pirate copy of this content by mixing their copies. In this

scenario, the pirate copy will have parts of each original mark but it will be different

from any of them. So the aim of a fingerprinting code is find the set of attackers that

have taken part in a collusion attack.

Codes that are robust to collusion attacks are called collusion secure codes. The

construction of collusion secure codes was first addressed in [11]. In that paper, Boneh

and Shaw obtain (c > 1)-secure codes, which are capable of identifying a guilty user in

a coalition of at most c users with a probability ε of failing to do so. The algorithm

composes an inner binary code with an outer random code. Therefore, the identifica-

tion algorithm involves the decoding of a random code, that is known to be a N P-hard

problem [6]. Moreover, the length of the code is considerably large for small error

probabilities and a large number of users.

To reduce decoding complexity, Barg, Blakley and Kabatiansky in [6] used algebraic-

geometric codes together with separating codes to construct fingerprinting schemes.

In this way, their system reduces the decoding complexity to O(pol y(n)) for a code

with length n. In [38], Fernandez and Soriano constructed a 2-secure fingerprinting

code by concatenating an inner (2,2)-separating codes with an outer IPP code (a code

with the Identifiable Parent Property), and also with decoding complexity O(pol y(n)).

In [107], Tardos presents a code which has a length of O(c2l og (n/ε)) and is ε-secure

against c pirates over n users. These codes represented an important improvement

compared to the Boneh and Shaw proposal.

In our implementation, the code and algorithms presented in [38] have been used

as fingerprinting codes mainly because in our scenario there is a small number of

users and the size of the attacking coalitions is assumed to be small also.

6.3.3 Implementation Details of Digital Rights Protection

The watermarking process requires a considerable amount of CPU running time and

computer memory, so it is important to use an efficient encoding/decoding process

121

6. DEVELOPMENT OF A PLATFORM FOR THE COPYRIGHT PROTECTION

to add the mark to the video. This was the most important factor when deciding how

to implement a functional marking software. Implementing an MPEG2 encoder/de-

coder is difficult and would require a lot of knowledge to make it efficient. To solve

this problem we decided to implement the marking algorithm on an already working

MPEG2 encoder/decoder, FFmpeg.

FFmpeg was chosen because it is licensed under the GPL, and because it is highly

efficient. The work presented in this chapter will be mainly focused on adding a new

set of filters that allow the embedding and recovery of a mark inside a video stream.

Libavfilter is an FFmpeg library, designed to simplify the creation of filters that can

be applied to video processing, regardless of the format of the input and output videos.

This is accomplished by decoding the input stream and passing it to the filter a single

frame at a time, then the processed frame is coded and saved in the output stream,

this flow is represented in Figure 6.1.

Video Stream Decoder
Frame

Filters
Frame

Encoder Video Stream

Figure 6.1: Libavfilter working flow

This flow allows developers of filters to focus on the processing of the image, with-

out handling any of the decoding, encoding or muxing. This is specially interesting

when the filter has to be applied in the spatial domain, but in our case the filter has

to be applied in the DCT domain. This might seem like a problem, since AVFilter pro-

vides us with an image divided in 4 planes. The more usual procedure for modifying

the frame would be to perform the DCT of the pixels, modify the desired coefficients

and perform the IDCT to convert the image back to the spatial domain. This however

can be simplified with the following DCT property.

Definition 6.1. (from [95]) Given the integrable functions f (x), g (x) and h(x) we de-

note their discrete cosine transforms by f̂ (ξ), ĝ (ξ) and ĥ(ξ) respectively:

For any complex numbers a and b, if h(x) = a · f (x)+b · g (x), then ĥ(ξ) = a · f̂ (ξ)+
b · ĝ (ξ).

Based on Definition 6.1, the embedding process is less costly, since we no longer

need to perform the DCT of the original image, instead we can create and empty ma-

trix, fill the desired positions with the marking coefficients, perform the IDCT of the

matrix and add it to the original image as seen in (6.1).

122

6.3. Implementation Details


20 · · · 0
...

. . .
...

−30 · · · 40


︸ ︷︷ ︸

M ar ked DC T posi t i ons

−−−−→
I DC T


5 · · · 2
...

. . .
...

−3 · · · 9


︸ ︷︷ ︸

I DC T o f mar ked posi t i ons

−−−−−−−−−−−−→
Add to or i g i nal


200 · · · 154

...
. . .

...

8 · · · 76


︸ ︷︷ ︸

Imag e a f ter w ater mar k

(6.1)

Once the watermarking and recovery filters were implemented, some tests were

conducted in order to prove the robustness of the system. A sample movie with the

following properties was used to conduct these tests:

Movie sample

Duration 101s

Size 47,6MB

Bitrate 4000kb/s

Framerate 23.98fps

Dimensions 848x480

GOP Size 1 12 frames

This video sample corresponds to a movie trailer freely available on the Internet.

All tests where performed trying to simulate an scenario as close to real life as possible.

Therefore, the sample was re-encoded several times. For instance, in the scale tests,

the movie was first watermarked, then scaled to the desired size. Then it was scaled

back to the original size and finally it was processed in order to recover the embedded

mark (the movie was decoded and encoded 3 times). The tests were performed this

way to simulate the behavior of a dishonest user, who might try to scale the movie in

order to remove the embedded mark. Once the movie is recovered, it has to be scaled

back and then compared with the original one in order to extract the mark.

The table with the result of the simulations contains the Bit Error Ratio (BER) of

each recovered watermark. This rate is the number of erroneous bits divided by the

total number of bits that a mark contains.

As we can see in the results table, we obtain a very low BER on most tests, and

the only way to introduce a significant degradation to the mark also has a very high

impact on the image quality, rendering the sample unwatchable (a blur filter with a

factor higher than 7 or a Gaussian filter with a factor higher than 12). Hence we can

assert that the implementation of the watermarking algorithm is robust, portable and

efficient.

1Distance between consecutive I-Frames

123

6. DEVELOPMENT OF A PLATFORM FOR THE COPYRIGHT PROTECTION

Table 6.1: Tests results for movie sample

Mark strength 2

40 35 30 25 20 15 10 5 1
Mark and recover (no filter) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01
Gaussian filter factor 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Gaussian filter factor 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.32
Gaussian filter factor 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
Gaussian filter factor 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.41
Gaussian filter factor 11 0.0 0.0 0.0 0.0 0.0 0.01 0.02 0.1 0.44
Gaussian filter factor 13 0.0 0.0 0.0 0.0 0.004 0.02 0.12 0.23 0.48
Gaussian filter factor 15 0.0 0.006 0.01 0.02 0.07 0.11 0.17 0.3 0.53
Blur filter factor 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
Blur filter factor 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.45
Blur filter factor 7 0.28 0.23 0.26 0.18 0.16 0.24 0.37 0.42 0.49
Scale to 706x400 (5/6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.21
Scale to 636x360 (3/4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.32
Scale to 424x240 (1/2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.37
Scale to 282x160 (1/3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.51

6.4 Entities and Collaboration

In order to achieve the enumerated requirements, the proposed platform has been

divided into the following entities:

• User: consists on the physical person that interacts with the system via the Web

interface. Later, the different roles a user can take will be introduced.

• File server (FS): stores the original files as well as the watermarked copies.

• Marker server (MS): provides marked copies of original files.

• Tracker server (TS): manages the business work flow.

• Web server (WS): provides a Web interface to all platform functionalities.

• Certification authority (CA): manages the certificates that will be used in the

communication process, and has real-time certificate revocation status infor-

mation.

The interaction between these entities provide the end-users with a protected copy

of a digital video file. The flow of the platform is the following: verification, protection

and delivery.

During the verification phase, both client and platform, must validate each other’s

credentials in order to allow further transactions to take place.

Considering the nominal usage of the copyright protection platform, someone

aiming to request digital contents, the user, is required to own a private certificate

124

6.4. Entities and Collaboration

(X.509) delivered by the internal certification authority (CA). This authority provides

valid certificates to both users and services. This way, all communications carried out

with and inside the platform are secured using the provided certificates.

When contacting the platform public URL through a common Web browser, the

client will be requested to specify the certificate to be used in the negotiation. Mean-

while, the platform will provide its server certificate for the client to verify. This mecha-

nism allows the mutual authentication that is going to be carried out in the negotiation

phase.

Once the negotiation phase has been finished successfully, the server presents cus-

tomized contents to the user. As the user presents a valid certificate, the server identi-

fies the user roles and according to this, prepares the layout. Not registered users are

considered new clients and are registered as such during the first negotiation phase.

Once this phase is concluded, the user may request a digital copy of an offered

product. At this stage the protection phase takes place. During this phase, the system

must provide a protected copy of the requested product to the client. So, the WS re-

ceives the request to download a copy of a product identified by a hash. The platform

makes use of hash identifiers in order to avoid inference of other product identifiers.

At this time, the WS checks internally if the user already purchased a copy of the re-

quested film, if so, the WS contacts the FS to get the already marked copy of the prod-

uct. This means that a user that owns a unique certificate, can only have one marked

copy of each original.

If the WS does not find a copy already purchased by the requester, it will contact

the TS to request a new copy. The TS generates then a new copy by first, generating a

new mark and secondly by asking the MS to embed the given watermark in the original

product, generating a unique copy that the TS will then assign to the requester. At this

time the WS finds as a result a marked copy assigned to the user.

The delivery phase starts when the TS notifies the WS that a new copy has been

assigned to the requester, passing the copy hash to the WS as well as the location of

the FS where the copy is located. The WS contacts the FS to download the copy and

forwards it back to the user.

Note that, any interaction between services is carried out using the service certifi-

cates hosted on each service instance. Hence, the WS contacts the TS, and both per-

form a mutual authentication before the transaction is carried out. Every time a con-

nection is established, both ends verify each other’s certificate against the CA OSCP

service [85].

125

6. DEVELOPMENT OF A PLATFORM FOR THE COPYRIGHT PROTECTION

6.4.1 Platform Functionalities

What has been presented above consists on the basic flow of a product request. More-

over, the platform provides a set of functionalities for the different actors that may in-

teract with the system in order to be able to perform the flow presented in the previous

section. Indeed, the platform proposes four different roles:

• Administrator: manages and configures the platform through the administra-

tion functionalities.

• Client: requests new digital contents and navigates through already down-

loaded resources.

• Guest: navigates through published contents but cannot download them.

• Content manager: manages the digital contents and stocks.

Figure 6.2: Graphical representation of platform main functionalities.

Figure 6.2 presents the functionalities available for each of the proposed roles.

Hence, users with administrator’s role have full access to the administration function-

alities;

126

6.4. Entities and Collaboration

• Mark recovery: Allows the extraction of the mark embedded in a digital content.

Via a web form, the user submits the digital copy with an embedded mark and

specifies, from a list of products, the name of the original content that the copy

was made from. As a result, the user obtains a link to the copy managed inter-

nally, together with information about the registered user to whom the copy was

assigned.

• Configuration management: Allows the user to adequate the platform to the

deployment context. There exist static and dynamic parameters that can be

modified before and after the platform is started-up, therefore affecting the plat-

form behavior.

• Certificate generation: As mentioned previously, any actor of the system must

own a valid digital certificate generated by the certification authority (CA). By

means of this functionality, the user can generate new certificates for new clients

or new server instances. This functionality is offered directly by the CA through

the Web interface using the proper client certificate.

• Certificate revocation: In some circumstances, under a security compromise, it

may be recommended to revoke certain certificates. The CA offers a Web inter-

face for that purpose. Considering that all platform services verify client certifi-

cates on each request, a certificate revocation has an immediate effect, offering

fast reactivity to potential security vulnerabilities.

On the other hand, users with content management’s privileges have access to the

following functionalities;

• Manage products: The platform offers a complete Web interface to manage

multimedia contents. A user with proper privileges is able to navigate through

all the products in the catalog browser, search for specific products via the

search form, modify certain products’ attributes and upload new contents.

• Manage stocks: Although stock management will be introduced later, a user

with content manager privileges has access to the Web interface to check the

products stock level. By knowing the actual stock level for each product, and an-

alyzing the latest client interests, the content manager can generate new copies

of certain products by modifying its minimum stock level.

The last set of functionalities are available to those clients with (Restricted ser-

vices) or without (Public services) a valid user certificate.

• Browse catalog: Any user consulting the web site, having or not a user certifi-

cate, can visualize the catalog browser that presents available categories. Cate-

gories are defined and maintained by the content manager and serve to group

127

6. DEVELOPMENT OF A PLATFORM FOR THE COPYRIGHT PROTECTION

the movies according to its typology. For instance, the platform defines twelve

categories. Among others we have: horror, adventure, animation, drama, com-

edy, etc. The catalog, located on the right column, shows all categories with the

number of products available. By following one of the categories link, all prod-

ucts belonging to it are presented.

• Search products: The platform provides all users, having or not having a user

certificate, with a fast search form. Through this fast form, the user may enter

some key text related to the product he/she is looking for. The products match-

ing the search criteria are presented.

• Download products: The download functionality is only available to registered

users, that is, those having a valid user certificate. So, after a user has found the

desired product, either via the search form or the catalog browser, a request can

be made via the download link. A copy of the original product, with an embed-

ded mark will be returned. Successive downloads of the same product return

the same copy, stored in the platform repository.

6.4.2 Stock Management

Considering that the main functionality of the copyright protection platform is to pro-

vide marked digital copies, the management of the product life cycle is a very impor-

tant aspect to consider. The content manager is responsible for the product life cycle

management, providing the original copies of the video files as well as the support at-

tributes that serve to define the product: name, description, video cover, categories

and minimum stock level. As already mentioned earlier, when a user requests a new

product from the catalog, a watermarked copy is provided. But the watermarking pro-

cess is not immediate, therefore, if the system generates copies of the original prod-

uct on-the-fly, the user would be waiting for too long. As an order of magnitude, wa-

termarking a DVD quality sample with a bit rate of 7500 kb/s and a duration of 110

minutes (video stream size of 4,89GB) on an Intel(R) Core(TM) Xeon E5645 CPU @

2.40GHz takes 17 minutes using a single thread and 10 minutes when using 4 threads,

long enough to avoid having the user waiting for his/her brand new purchase.

To avoid the generation of copies based on user requests, the platform generates

a given number of copies when the content manager uploads a new product. So, ac-

cording to the “minimum stock level” attribute of the new product, the system gener-

ates this precise number of marks and embeds them into the same number of copies.

Later, when a user requests a copy of a given content, the platform identifies a non

assigned copy. Such copy is then assigned to the requester and returned as an attach-

ment. Afterwards, a stock level verification is performed on all existing products. The

stock level of a particular product consists on the number of generated copies not yet

128

6.4. Entities and Collaboration

assigned to any user. When the stock level of a product reaches the minimum defined

as a parameter on a product upload, new copies are created as to reach such level. On

the other hand, the content manager has the ability to control the stock level manu-

ally. Therefore, the minimum stock level of certain products can be modified to satisfy

a specific user demand.

Although the system architecture will be presented in following section, the mark-

ing service consists on a number of modules that can provide copies of original prod-

ucts concurrently. More over, according to this design principle, if multiple users re-

quest the same product, and possibly deplete the stock, the system will generate new

copies in order to regenerate the stock level by launching multiple requests to avail-

able watermarking services, and thus satisfying peak demand points.

6.4.3 System Architecture

The proposed platform has been designed and developed as a distributed JEE appli-

cation. The platform is basically made up of two software modules; web modules and

service modules. Figure 6.3 shows the basic components that conform each module.

Figure 6.3: Diagram of the generic platform modules

Both modules are build up around the Spring 3 JEE framework 3 which powers up

the development cycle of Web applications. Moreover, the database repository is ac-

3http://www.springsource.org/

129

6. DEVELOPMENT OF A PLATFORM FOR THE COPYRIGHT PROTECTION

cessed via Hibernate 4 components which are published as a JAR library. The Objec-

t/Relational (O/R) mapping components consist on the basic Plain Old Java Objects

(POJO) that map the relational database tables to Java objects using Hibernate Java

Persistence Annotations (JPA). The upper layer offers a set of Java objects to facilitate

the POJO management, the so called Data Access Objects (DAO).

The Web module consist on a set of controller components in charge of manag-

ing the user requests, each controller maps a set of URLs the user may follow when

accessing the Web portal. The controller dispatches the business logic execution to

the proper services, when concluded, the services provide information in the form of

POJO that are rendered dynamically by Java Server Pages (JSP). The whole view layer

is build up using Spring 3 tiles, which facilitates the graphical design and maintenance

of the Web portal.

Although the service module architecture is very similar to the web module’s, the

interface changes from HTTP/HTML to HTTP/SOAP [13]. This way, the platform ser-

vices publish their functions externally as standard Web Services. All platform com-

ponents are packaged as Web archives (WAR) and can be deployed on any servlet con-

tainer.

The available type of services were slightly introduced on the preliminary sections,

indeed, the platform offers, besides the TS, a File Server (FS) and a Marker Server (MS).

Although there is a single instance of the TS, there may be multiple instances of FS

and MS services depending on the system needs. The platform proposes a service

registration process in order for a process to be active and public.

So, when a service starts-up, the first thing it does is to contact the TS to register on

duty. When the connection is established between the new candidate and the TS, and

by means of mutual authentication, the TS validates the candidate certificate against

the CA, as explained in the previous section. If the validation is successful, the TS

registers the service in a UDDI [7] (Universal Description Discovery and Integration)

repository. This will allow the TS to query for active services later. When a service

closes in a controlled manner, the de-registration process takes over, eliminating the

service from the UDDI repository.

Figure 6.4 shows the deployment diagram of all components considered in the

platform. Each dashed box represents a deployment container, indeed there are two

different containers; Apache Tomcat 7 5 and JBOSS 5 6. Tomcat holds all platform ser-

vices while JBOSS holds the Certification Authority (CA) which is implemented using

an Open Source PKI Certificate Authority called EJBCA 7.

4http://www.hibernate.org/
5http://tomcat.apache.org
6http://www.jboss.org/jbossas
7http://www.ejbca.org

130

6.4. Entities and Collaboration

Figure 6.4: Deployment diagram of the services proposed in the platform

The figure shows as well the communication protocols used between the com-

ponents. Basically, the figure shows only two communication protocols; OCSP and

SOAP. OCSP, which stands for Online Certificate Status Protocol, and it is represented

as a blue dashed line, is carried out between all platform services and the CA to check

the validity of a given certificate.

The rest of interactions between services are carried out using the SOAP protocol.

For simplicity, the figure shows only two orange lines representing the SOAP commu-

nication between services. Moreover, the representation of the public interfaces in the

Web Service clients helps infer the rest of missing lines. As an example, on certain user

requests, the WS contacts the TS via the TS Interface, this interface consists on the Java

classes generated at client side given the server’s WSDL [32] (Web Service Definition

Language). Therefore, any module holding a TS Interface requires an orange line be-

tween the interface and the TS. The TS delegates the task of marking to the MS, which

is done via the MS Interface.

Note as well that all communication carried out under SOAP protocol requires

131

6. DEVELOPMENT OF A PLATFORM FOR THE COPYRIGHT PROTECTION

both client and server valid certificates. This allows for mutual authentication and

data encryption in both directions.

The figure represents as well the number of permitted instances for each service,

represented as a number inside brackets. As mentioned before, the number of FS (m),

WS (k) and MS (n) instances can be configured depending on the context scenario,

and it has to be done at deployment time.

6.4.4 Platform User Interface

The figure 6.5 shows the user interface presented to an authenticated user when first

login. The left figure 6.5a presents a set of the most popular product covers. The cover

image link redirects to the product detailed information 6.5b. Below the cover flow, all

products are presented, by default, in name alphabetical order. The sort criteria can

be modified through the combo options located on top of the products list.

(a) Most popular product covers (b) Product detailed information

Figure 6.5: System welcome page and product detailed information view

The product information page presents detailed information not available on the

products list page (Figure 6.6). Depending on the user role, the page presents basic

or full attributes. The basic attributes are available to clients and provide information

about the product itself, such as the name of the film, a description, the categories

it belongs to, the author, the publication date, the purchase date in case already has

been purchased and the product size.

The administrator role can visualize extra product attributes; minimum stock

level, product sequence number (considered to identify the next fingerprint to embed

on the next copy), the DCT matrix positions where the watermark is inserted, distance

between marked frames, coding, mark depth, and specific coefficients for watermark

generation. Moreover, if the user has the content manager role, the view provides a

link to modify the product attributes.

132

6.4. Entities and Collaboration

Figure 6.6: Products list and available menu options (right side)

The Web page displays the menu options grouped in four categories, as presented

in Figure 6.6; user specific options, categories, search and administration. Obviously,

depending on the user role, some of the options may be hidden, as are specific for

administrators or content managers. For instance, a basic user or a guest has access to

user specific options, categories and search options. On the other hand, administrator

and content manager roles have access as well to the administration group.

The administration menu provides a set of options for the platform management.

The following is only available for administrators and content managers:

• Servers: this option provides the administrator with a list of all available servers

offering a platform service, that is, a tracker service, a marker service or a file

system service. The list of services is extracted from the UDDI registry and pre-

sented as a plain list with some extra attributes. Through this list, the adminis-

trator can check the number of existing services of a given type.

• Categories: the content manager can update the list of categories through this

functionality. Categories can be extended or modified to satisfy the available

133

6. DEVELOPMENT OF A PLATFORM FOR THE COPYRIGHT PROTECTION

offer. Categories are offered to the content manager to classify new products or

to update existing ones.

• Users: the administrator can, through this view, take a look at the list of regis-

tered users. This list presents the user certificate name, the serial number and

the state (whether the user is active or not). Through this list, the administrator

may cancel a user account by de-activating it, this will trigger a certificate revo-

cation as well as an account cancelation. The following user login attempts with

a deactivated certificate will be denied.

• Parameters: Some of the services activity can be parameterized, therefore

adapting the system to certain context conditions. These parameters can be

managed through this view. There are parameters related to the watermarking

process as well as the Web interface layout.

• Stock: as already explained in Section 6.4.2, the platform provides a functional-

ity for the manual management of stocks. Through this link, the content man-

ager visualizes the list of products with the number of available watermarked

copies as well as the minimum configured stock level. At any time, the mini-

mum stock level can be updated to force a later stock regulation.

• Upload: the content manager has the responsibility of providing new content

by uploading, describing and categorizing multimedia contents. This link offers

a Web form to define the characteristics of the new product that will be available

to registered users for download.

• Mark recovery: in order to ensure copyright protection the administrator

and/or content manager can use a tool to recover the watermark that has been

embedded on a product copy. This link provides access to a Web form where

the user introduces the recovered copy location and the name of the original

product the copy was made from. The result of the analysis process consists on

the list of users involved in the dishonest copy distribution. There may be more

than one dishonest user if a confabulation process has taken place.

6.5 Conclusion

This chapter has presented the implementation of a platform for the delivery of copy-

right protected digital content. The copyright protection is based on a combination

of watermarking and fingerprinting techniques that allow the generation of protected

copies that can be distributed in a trusted environment. The dishonest redistribution

of the purchased contents can be traced by means of watermarking extraction and

134

6.5. Conclusion

fingerprinting analysis. Both techniques result in the identification of the malicious

users involved in the unauthorized redistribution process. The solution is presented

as a distributed JEE application based on standardized frameworks such as Spring and

Hibernate. As a result the system offers loosely coupled Web services with a high cohe-

sion. The independence and modularity of the services invite for good maintainabil-

ity and high scalability. The platform presents a demonstrable evidence of a copyright

protection system that proves the feasibility of the implementation of watermarking

and fingerprinting algorithms on a real life scenario.

135

Part IV

Contributions related to Mobile

Agent Protection

C
H

A
P

T
E

R

7
EXECUTION INTEGRITY OF MOBILE AGENTS

IN INTRUSSION DETECTION SYSTEMS

In an agent’s environment, the most difficult problem to solve is the attack from a

platform against the agents. The use of software watermarking techniques is a possible

solution to guarantee the integrity of mobile agents’ execution. In this chapter these

techniques are use to protect Intrusion Detection Systems (IDS) based on agents. To

achieve this goal, two different approaches are proposed. On one hand, a watermark is

embedded in the agent by means of the Dynamic Graph Watermarking algorithm [23,

22]. This watermarking is stored into the structure of a graph which is created during

the agent execution. This graph could be retrieved throughout the agent life in order to

check that it is being built correctly. When the agent’s execution is modified, the graph

is altered so the system can conclude that an attack has been performed. On the other

hand, the use of Self-validating Branch-Based Software Watermarking algorithm [87]

is proposed in order to embed a matrix of marks in each transceiver of the IDS, that

are the software entity responsible of control all the agents which have been executed

by a host. Every time that a CIA arrives in a host, it requests the fingerprinting mark

to the transceiver and this mark is sent to the monitor who can decide if the mark

is correct. If any error occurs, the platform initiates the necessary actions to isolate

the compromised host. Moreover, obfuscation techniques are included to difficult a

possible code analysis by an unauthorized entity.

139

7. EXECUTION INTEGRITY OF MOBILE AGENTS IN INTRUSSION DETECTION SYSTEMS

7.1 Introduction

The security of systems based on software has become an important subject due to

most of them controls critical infrastructures like disaster prevention centres, intel-

ligent buildings, planes’ functions automation, etc. So, many human lives and huge

amount of money could depend on the confidentiality, integrity and availability of

these critical systems. There are several tools to achieve these security requirements

such as firewalls, honeynets, honeypots, intrusion detection systems, etc. Due to the

high dependability of the systems in this type of tools, they become objectives suscep-

tible of being attacked and therefore in critical systems that also need to be protected.

Particularly, the Intrusion Detection Systems (IDS) have as a goal to detect suspi-

cious activities and prevent a network or system from possible intrusions at the mo-

ment when they happen. Therefore, it is important to keep in mind the integrity of the

information, authentication and access control. The different entities that compose

the IDS need to be communicated among them and cooperate to achieve the system’s

goal. So, the use of agents inside IDS has been proposed due to they can perform

simple actions, that joining them resolve complex tasks [92].

On the other hand, one of the reasons that have held back the generalized use of

the mobile agents is precisely their security. In this chapter we focus our attention in

the agent’s protection as part of an IDS. In particular, we improve the work presented

in [94] in order to make the system more resistant against replay attacks.

7.2 Background

In an IDS based on autonomous agents it is necessary to combine different tools to

guarantee the required security level. We propose to use software watermarking and

software obfuscation techniques. Likewise, we have analyzed possible threats to pro-

vide a solution.

7.2.1 Software watermarking and fingerprinting

Watermarking techniques have been basically used in the protection of digital con-

tents. With these techniques, some information (usually called mark), is embedded

into a digital content like video, audio, software, etc. . . The main objective is to keep

this information imperceptible in all copies of the content that is protected in such a

way that the author can later demand the authorship rights over these copies.

In software watermarking, the mark must not interfere with the software function-

alities. The mark can be static, when it is introduced in the source code, or dynamic,

when it is stored in the program execution states. In the same way, the aim of soft-

ware fingerprinting techniques is to identify the author of copies, as in watermarking

140

7.2. Background

scenarios, and also identify the original buyer of each copy. In other words, a different

mark is embedded in every copy before distribution. The main attack to fingerprint-

ing schemes is the collusion attack, meaning that, some malicious users compare their

copies and they can try to construct a new copy with a corrupted mark which can not

blame any of them.

In the scenario presented in this chapter, the fingerprinting techniques are used

to include different marks in each copy. As a consequence of using fingerprinting and

watermarking techniques, these marks will be imperceptible against inspection at-

tacks and it provides a consistent tamperproof protection.

7.2.2 Intrusion Detection Systems

An Intrusion Detection System (IDS) tries to detect and alert about suspicious activi-

ties and possible intrusions in a system or particular network. An intrusion is an unau-

thorized or undesired activity that attacks confidentiality, integrity and/or availability

of the information or resources. In order to reach its goal, IDS monitor the traffic in

the network or gets information from another source such as log files. The IDS anal-

yses this information and sends an alarm to the system administrator. The system

administrator decides to avoid, correct or prevent the intrusion.

The basic architecture of IDS is conformed by the data collection module, detec-

tion module and response module [47]. The data collection module contains the event

generator sub-module which can be the operating system, the network or a particu-

lar application. The events generator sends the packets to the events collection sub-

module which collects the data and sends the information to the detection module.

The analysers or sensors which filter the information and discard irrelevant data are

located inside the detection module. Finally, the data are sent to the response mod-

ule. The response module decides if an alarm will be sent to the system administrator

basing on predefined policies.

7.2.3 IDS based on autonomous agents

According to [62, 72, 30], the mobile agents are suitable to IDS since they offer scal-

ability, resilience to failures, code independency, network traffic reduction, facility to

perform previous proves to the agents in an independent manner before deploying

them to the system, among others.

The architecture for IDS based on autonomous agents is built by the following

components:

Monitors: They are data processing entities and the main controllers of the system.

Monitors have an overall vision of the state of the network and can detect sus-

picious activities. They can also raise alarms and are hierarchically connected

141

7. EXECUTION INTEGRITY OF MOBILE AGENTS IN INTRUSSION DETECTION SYSTEMS

to other monitors. In addition, monitors offer an interface that allows users to

interact with the system.

Transceivers: They control all the agents in a host and can process data sent to them

from the host. A transceiver communicates with the monitor on which it de-

pends, within the hierarchical structure. Moreover, it can start, stop or eliminate

the agents that are dependent on it.

Agents: They can be distributed at points within the network in order to monitor par-

ticular traffic in this network segment. An agent is a separate process that stores

states, carries out simple or complex actions and exchanges data with other en-

tities. Each agent generates a report and sends it to the transceiver but it cannot

generate an alarm.

Filters: They make a selection of data and send the registers to the agents that corre-

spond to the given selection criteria. There is only one filter for each data origin

and the agents can be subscribed to some of them.

AAFID system [3] includes a user interface as a component of its architecture. User

interfaces use APIs exported by the monitor, to ask for information and to provide

instructions.

7.2.4 Risks in an IDS based on agents

The internal security of an IDS based on autonomous agents is an important factor to

keep in mind, therefore it is necessary to protect the access to the platform and to the

agents to ensure the privacy and the integrity of the data exchanged among them.

Although the mobile agents offer many advantages, because of their nature they

also incur risks. Possible threats are the following: agent against the platform, platform

against the agents, agents against other agents and other entities against the agent’s

system. There are different solutions to reduce these risks [63]. In this work we analyze

the threats of the platform against the agents to offer a possible solution because they

are the more difficult to prevent. This is because the platform has access to the data,

code and results of the agents located on it. In this way, if a host is malicious, it can

perform an active or passive attack.

In the case of a passive attack, the host obtains secret information as electronic

money, private keys, certificates or secrets that the agent utilizes for his own requests

of security. On the other hand, to perform an active attack, the host would be able to

corrupt or to modify the code or the state of the agents. A malicious host can also carry

out a combination of passive and active attacks, for example, by analyzing the oper-

ation of the agent and applying reverse engineering to introduce subtle changes, so

142

7.3. Mobile Agent integrity System

the agent shows malicious behaviour and reports false results. Our two proposals are

focused on verifying the integrity of the agents, transceivers or monitors in runtime.

7.3 Mobile Agent integrity System - A security system to IDS

based on autonomous agents

In an IDS based on autonomous agents, a monitor controls a network segment

and it sends a transceiver to each host. Likewise, various agents are generated by

a transceiver in order to monitor a determined type of traffic and they send alerts of

suspicious activities to the transceiver on which they depend within the tree structure.

One of the existing threats in these systems is when an intruder attempts to replace

any IDS entity by another with similar characteristics but subtly modified in order

to avoid a particular suspicious activity. So, if an agent or transceiver is modified or

replaced, they will not report their correct results to their correspondent monitor and

likewise, if a monitor is replaced it will not avoid or prevent the forthcoming attack.

Security solutions in IDS based on agents are the same that are offered for any en-

vironment that use agents. However, all the requirements are not covered; in particu-

lar, the threats against the IDS, its components and communications are not faced. So,

in this section we propose to detect attacks against any IDS entity with a new security

scheme named MAIS.

7.3.1 Scheme proposal

We propose a new system to verify not only the integrity of transceivers located in

different hosts of the IDS architecture, but the correct execution of the transceivers

during its operation. The MAIS system architecture is similar to AAFID system, but

the transceivers and monitors behave like mobile agents and their mobility is limited,

they only can displace to their corresponding trusted entity, that is to say, the upper

level entity from which they depend. The data collection agents are static and they

conserve the same characteristics of the AAFID system agents.

7.3.1.1 MAIS Architecture

The MAIS architecture has three essential components: monitors, transceivers and

data collection agents. The monitors are agents that are located in the high levels of

the infrastructure, they carry out correlation of information of high level and they con-

trol a network segment. There is a root monitor located in the higher level. It has the

ability to communicate with an administrator interface and it also can provide the

access point for the whole MAIS system. The administrator interface is independent

of the IDS entities, in order to permit different implementations. The monitors can

143

7. EXECUTION INTEGRITY OF MOBILE AGENTS IN INTRUSSION DETECTION SYSTEMS

also control other monitors and besides they are in charge of emitting and controlling

another type of agents called transceivers. In MAIS, the monitors are also Trusted Par-

ties, which are in charge of identifying the entities that they control and to carry out

the process of watermarking recognition. The watermark allows us to verify not only

the transceiver’s or monitor’s integrity but also their correct execution (a wrong execu-

tion generates a wrong watermark). Transceivers carry out correlation functions and

they send the information to the monitor which they depend from. Transceivers have

information about the host where they reside and also control the underlying agents.

The main differences between an AAFID transceiver and a MAIS transceiver are the

mobility and the mark. The data collection agents inside the MAIS infrastructure are

in charge of monitoring a host and its behaviour. The agents and their transceivers

are located in the same host. In the MAIS system, the transceivers and monitors must

be mobile because they have to displace from its host to their TTP. This TTP is the

immediately superior entity in the infrastructure, which will be able to do the mark

verification; therefore, it is necessary to establish new characteristics for the system.

The first one is that all the monitors and transceivers of the IDS must be mobile. The

second one is that an entity which controls other entities must behave as a trusted

party when thus be required, that is, to perform the mark verification. The third one

is that each host must have at least two transceivers being able to carry out the same

function, so when an agent is sent to the TTP to verify the integrity of its code and

of its execution, another agent replaces its functionality. The transceivers depend on

monitors and monitors likewise can depend on other monitors (figure 7.1), but the

transceivers can only control their underlying static agents (data collection agents).

So, the monitors are required to be trusted parties and they control the marking and

verification processes to its underlying entities. The monitors have an overview of a

network segment and the transceivers have an overview of a host.

7.3.1.2 MAIS system operation

The system operation protocol is as follows:

1. A monitor generates an entity and its corresponding support entity.

2. Subsequently it performs the watermarking process on each entity and sends

them to the destination host conserving its timestamp.

3. The entities move to its destination host to carry out its function.

4. The agents periodically move to their generating entity according the estab-

lished time (timestamp). While an entity goes to verify the integrity of its code

and of its execution, the support entity continues carrying out their work.

144

7.3. Mobile Agent integrity System

Administration
Interface

Network Segment 1

M2

CIA1

T1 T2

CIA1

T3 T4

Host 1 Host 2

CIA1

T5 T6

Host 3

Network Segment 2

M1

T

M Monitor

Transceiver

Agent

Figure 7.1: MAIS System Architecture

5. When an agent arrives to verify its integrity, the issuing entity performs func-

tions of third trust party verifying the mark of the agent. If the agent has been

compromised, the TTP eliminates it and isolate the host in which was residing,

considering it malicious.

6. In case that an agent do not arrive on the established time to perform the verifi-

cation process, the host is isolated and the agent is eliminated.

The issuing entity conserves the timestamp to verify that each agent arrives on

time to control its integrity in determined periods of time. In each host there will

be at least two entities executing the same function to provide service continuity

while an entity displaces to carry out the verification of its integrity. When the agent

arrives to the verifier, the mark is checked. Is important to note that an incorrect

145

7. EXECUTION INTEGRITY OF MOBILE AGENTS IN INTRUSSION DETECTION SYSTEMS

transceiver’s execution generates a wrong mark; so, the system administrator can

detect the anomalous behaviour and perform the corresponding security measures.

On the other hand, watermarking techniques are used instead of digest techniques

because the transceivers are constantly being self modified to incorporate the new

collected information.

7.3.1.3 Watermarking layer

The algorithm that we use to embed the mark is the Dynamic Graph Watermarking [23,

22] discussed in section 2.4, but others watermarking algorithms may be considered.

The main characteristic of the Dynamic Graph Watermarking algorithm is that it

offers protection against distortive de-watermarking attacks as obfuscation or opti-

mization. The basic idea is to embed the mark into a graph topology. If the agent is

correctly executed, this graph is dynamically built during run-time; otherwise, a bad

graph will be generated. As it is well known, dynamic graph structures are hard to

analyse. On the other hand, semantic source code modification does not affect these

algorithm performances because execution results must be the same, in other words,

the agent has to generate the same graph structure of its watermark. From this point

of view, the efforts to solve the watermarking problem will be concentrated in mark

embedding and extracting methods.

Embedding process: The monitor selects a number n as product of two big prime

numbers p and q . The number n is embedded in the topology of a graph by using

Radix-K . After that, a source code which builds the graph is constructed. This code

is embedded into the original agent producing the watermarked agent. When the wa-

termarked agent is run with a fixed input, the graph will be built and the recognizer

is constructed. The objective of the recognizer is to identify the graph on the heap of

the agent execution. After that, tamperproofing and obfuscation techniques can be

applied. Finally, the recognizer is extracted from the application and the watermarked

agent is sent to its destination host. When a manipulated agent is moved to their gen-

erating entity, a monitor for instance, this entity can identify if the execution of this

agent has been modified by linking this agent with the recognizer and executing them

with a fixed input. As result, the modified watermark n′ is obtained and this entity can

verify that the original factors p and q can not factorize n′ and it allows to detect the

malicious agent. In other words, if n and n′ does not match; the agent execution has

been modified with high probability.

Mark extraction: As was commented before, the idea is to construct a graph in

memory which topology embeds the mark. To recover this mark, an extraction process

is needed. One method can be to examine all reachable heap objects but this can be

a hard computational problem. Instead of this, the fixed input is divided in parts an

146

7.4. Improvement of Cooperative Itinerant Agents platform

every part builds a portion of the watermark. As a result of the last part, the recognizer

returns the root node of the watermark.

Watermarking justification: Digital signatures are widely used to guarantee the

code integrity and authenticity. The digital signature can be used to verify, at a given

moment, that a software code is exactly as created. However, it cannot assure that

the code was properly executed over a period of time. In the IDS, given that the

transceivers are changing continuously because they are collecting information, dig-

ital signatures techniques are inappropriate. Moreover we want to provide not only

transceivers integrity but the correct execution of the transceiver. Therefore, we pro-

pose to use a watermarking technique which is suitable because the mark is dynami-

cally built during run-time and if the semantic source code is modified the agent has

to generate the same graph structure of its watermark, otherwise it indicates that the

agent execution has been modified.

7.3.2 Discussion

The attacks of malicious hosts against the agents are considered one of the problems

most difficult to solve and there is not a form of protection that eliminates them com-

pletely. To offer a determined security level in an IDS based on agents is necessary

to combine different techniques that permit to detect an attack although it cannot be

avoided. The drawback to send an agent to a malicious host is that this can be at-

tacked, because of the host has total access to the code and data, therefore, to carry

out a verification of its integrity, we propose the use of trusted monitors using water-

marking techniques to verify the proper working of the IDS software components.

7.4 Improvement of Cooperative Itinerant Agents platform

A drawback of MAIS system is the fact that the agent has only been verified by a mon-

itor so, the agent has to move on to the monitor. During this time, the platform needs

a support entity which will assume the task of the agent during its verification. An

improvement of this proposal is the use of a Cooperative Itinerant Agents in order to

make some part of the verification in the same host in which the agent is executed.

The CIA security scheme, which consists in using itinerant cooperative agents,

was proposed in [94] to verify the integrity of the monitors and transceivers in an IDS

based on autonomous agents. In this section, the correct use of software watermark-

ing techniques is discussed to achieve the desired security level required by CIA se-

curity scheme. In this scheme, each monitor in the system generates a transceivers

agent for each host in the network segment that it controls. Similarly, the monitor em-

beds a watermark onto each transceiver and keeps a copy. The transceivers generate

147

7. EXECUTION INTEGRITY OF MOBILE AGENTS IN INTRUSSION DETECTION SYSTEMS

information-collection agents that are located in the lower level of the IDS infrastruc-

ture. The monitor generates a cooperative-itinerant agent with a previously defined

itinerary. Thus, the agent travels through the network segment that is controlled by

the monitor that generated this agent.

Administration
Interface

T T T

M

Network Segment 1

T T

M

Network Segment 2

T T T

M

Network Segment 3

CIA1 CIA2 CIA3

T

M Monitor

Transceiver

Agent

Figure 7.2: Transceivers verification by cooperative agents.

In figure 7.2, the process of CIA agents is illustrated. The network segment con-

trolled by a CIA corresponds to the underlying level of an issuer monitor within the

tree infrastructure. Every time that the CIA arrives at a host, it requests its fingerprint

mark via the corresponding transceiver; subsequently the agent forwards the response

to the monitor. The monitor verifies that the mark requested is correct by comparing it

against each mark belonging to its set of marks. If the mark does not match any of the

marks in the set, then it is assumed that the agent was manipulated, so the monitor

will be able to act. This consists in eliminating the suspicious transceiver or isolating

the malicious host.

The monitors’ verification is performed in a similar way to that of the transceivers;

when the CIA moves from one host to another, it reports its new destination to

the monitor and continues its itinerary, repeating the process in each host. Each

CIA can be configured to monitor entities with given profiles, for example, to verify

transceivers located in a rank of directions or only to verify monitors. The agent can

be programmed to cover either a previously defined route or a random one

A special case of verification occurs when monitors are located at a high level

within the hierarchy but there is no upper entity to verify them. In this situation, a

148

7.4. Improvement of Cooperative Itinerant Agents platform

cross verification of the monitors in the same level must be performed. This means

that there must be at least two monitors in the root level. Each monitor within the up-

per level then generates a cooperative agent to verify the integrity of the neighbouring

monitors.

7.4.1 Protecting agents against replay attacks

Because the malicious host has access to the code and state of the agent, the agent is

exposed to such attacks, which is a disadvantage of the CIA security scheme. If the host

performs an active attack, the monitor will be able to detect it because it will either not

receive a notification on time or it will receive an incorrect notification. However, if the

host performs a passive attack, it can, for example, detect and copy the response sent

by the transceiver or CIA. Thus, when the agent is verified again, a malicious host can

replace the response to deceive the monitor (i.e., perform a replay attack).

In order to avoid this kind of attack we propose using a particular mark. This mark

is a matrix that identifies each monitor and transceiver in the IDS. The matrix is in turn

split into various submarks; when a CIA arrives at a host it requests a set of submarks

through a particular function. The corresponding entity (monitor or transceiver) re-

sponds with the result of another function. In this way, if a malicious host intercepts

the communication, the information obtained cannot later be used to deceive the ver-

ifier. We also propose using software obfuscation techniques to prevent or hinder

the process of reverse engineering or code analysis by a malicious host (see subsec-

tion 7.4.3).

7.4.2 Using a matrix of marks

Software can be identified by a mark; thus it is possible to prove not only its integrity

but also to reclaim copyright. This mark should be embedded in a place known by

the verifier and must seem like part of the results, that is, it should be imperceptible

and resistant to transformation attacks. However, the mark should not influence in

the operation of the marked code. The marks are static when they are stored in the

application code and dynamic when they are constructed at runtime and stored in

the dynamic state of the program [20, 21].

To identify transceivers and monitors from an IDS based on agents, we propose a

matrix be used as a mark. The matrix has a fixed, previously determined dimension:

m×n. Each cell contains a prime value; prime values are considered submarks. To re-

quest the mark we use a cooperative itinerant agent (CIA). The CIA uses the following

function to request a set of submarks from the IDS entity:

f1(x) = {(xp + r1), (xq + c1), (xr + r2), (xs + c2)} (7.1)

149

7. EXECUTION INTEGRITY OF MOBILE AGENTS IN INTRUSSION DETECTION SYSTEMS

where x is an integer greater than or equal to zero and represents the module used

by the agent; it masks the values and is known by the transceiver. The values p, q , r

and s are random prime numbers that change every time the agent uses the function.

The values (r1,c1) and (r2,c2) correspond to row and column numbers of two prime

numbers of the matrix (r ow1,column1,r ow2,column2), which are chosen randomly

every time the agent attempts to verify a transceiver.

The submarks requested by the CIA are located in the cells (r1,c1) and (r 2,c2).

The transceiver receives the four parameters and applies the corresponding modular

reduction (mod x) to obtain the coordinates of the matrix. In this way, the transceiver

obtains the values w1 and w2 located in these positions and multiplies them. The

transceiver applies the following function:

f2(y) = {y t +w1w2} (7.2)

where t is a random prime number that changes every time the transceiver uses the

function and y is an integer that represents the previously established module that

will be used in the function. This module is known by the monitor and is used to mask

the submarks. Thus, if the function’s result is obtained by a malicious user, no infor-

mation will be revealed. The CIA receives the result and forwards it to the monitor.

The monitor applies the reverse process using the module y and compares this result

against a second result. This second result is obtained by applying the same module to

the result of w1w2. If the operation does not match, it means that the transceiver has

been modified and should therefore be considered malicious. Otherwise, it is highly

probable that the agent has not been modified.

7.4.2.1 Example

Next, the process of marking a transceiver will be explained. The first step is to issue a

matrix to be used as a mark with a size calculated by m ×n (each matrix is unique to

each transceiver). Each cell contains different prime numbers w j and these are con-

sidered submarks. A module x must be assigned to be used with equation 7.1, which

is fixed during the process. In contrast, various random values must be issued by the

monitor each time the CIA begins the verification process; these values are issued to

multiply the module and to select two positions in the matrix. The matrix of marks

and values are shown in tables 7.1, 7.2 and 7.3.

Matrix of marks: Firstly, a monitor generates a transceiver and assigns a matrix to

mark it. The monitor stores a copy of the matrix. The matrix remains fixed and when

a CIA arrives at a host, the monitor gives it the masked coordinates, where the values

to be verified are located.

150

7.4. Improvement of Cooperative Itinerant Agents platform

0 1 2 3

0 68813 79687 36599 98663

1 59879 16993 98689 36997

2 79657 11383 35729 21991

3 78643 41299 86323 59693

Table 7.1: Matrix of marks

Fixed values used in the process: After that, the modules that will be used by

functions f1 and f2 have to be fixed.

Variable Value Description

x 17 Module of the function f1(x)

y 53 Module of the function f2(y)

Table 7.2: Fixed values used in the example.

Random values issued every time that the CIA arrives at a host: the values

(r1,c1) = (0,2) and (r2,c2) = (2,3); correspond to the positions of the values 36599

and 21991 in the matrix of marks that we are using.

The CIA agent utilizes the function 7.1:

f1(x) = {x ·p + r1, x ·q + c1, x · r + r2, x · s + c2}

= {17 ·37+0,17 ·13+2,17 ·7+2,17 ·23+3}

= {629,223,121,394}

The transceiver utilizes the values and applies the reversed process to obtain the

positions of the matrix where are located the requested values:

C = {629,223,121,394} mod x

= {629,223,121,394} mod 17

= {0,2,2,3}

These values correspond to the row 0, column 2 and row 2, column 3 of the matrix;

in these positions are located the values 36599 and 21991. The transceiver utilizes the

function 7.2. We are going to use y = 53 and t = 3571.

151

7. EXECUTION INTEGRITY OF MOBILE AGENTS IN INTRUSSION DETECTION SYSTEMS

Variable Value Description

p 37

Random values, which multiply to the module of function 7.1.
q 13
r 7
s 23

t 3571 Random values, which multiply to the module of function 7.2

r1 0 Row of the matrix where the first submark (w1) to be verified is
located (r1 < m: where m corresponds to the number of rows
in the matrix).

c1 2 Column of the matrix where the first submark (w1) to be veri-
fied is located (c1 < n: where n corresponds to the number of
columns in the matrix).

r2 2 Row of the matrix where the second submark (w2) to be veri-
fied is located (r2 < m: where m corresponds to the number
of rows in the matrix).

c2 3 Column of the matrix where the second submark (w2) to be
verified is located (c2 < n: where n corresponds to the number
of columns in the matrix).

Table 7.3: Random values issued every time that the CIA Matrix of marks

f2(y) = {t · y + (w1 ·w2)}

= {3571 ·53+ (36599 ·21991)}

= {805097872}

The CIA applies the reversed process and obtains the module of the received value:

S1 = f2(y) mod y

= 805097872 mod 53

= 43

Subsequently, it obtains the module by multiplying the requested sub marks:

S2 = 36599 ·21991 mod y

= 804848609 mod 53

= 43

Afterwards, the CIA verifies that the module sent by the transceiver is equal to the

module of the result obtained by multiplying the requested values (36599,21991), that

152

7.4. Improvement of Cooperative Itinerant Agents platform

is to say, S1 = S2. In our example, the comparison is correct, so there is a high proba-

bility that the transceiver’s execution has not been modified.

In this example, we are using a matrix with a size of four rows by four columns; in

this way the possible combinations of obtaining the same pair of sub marks is given

by:
n!

w !(n −w)!
= 16!

2!(16−2)!
= 120

Each time that the CIA goes to verify the integrity of a transceiver, it chooses ran-

domly a set of different sub marks and ask for them to the transceiver or monitor.

Thus, with a matrix with size of 16 positions and requesting only two marks, a CIA

agent has a low probability of request the same pair of values (1/120). By simplicity,

we have chosen as mark a matrix with 16 positions and small values to fill the matrix

and to utilize as module in the functions 7.1 and 7.2. Likewise, in this example, only

two sub-marks have been chosen to verify the transceiver’s execution, but there is the

possibility of request more sub-marks; in this case, the CIA must provide the different

positions of the values to be verified. On the other hand, the transceiver must utilize

the values in function 7.2 and perform the multiplication among them. In spite of us-

ing a module’s function to mask the results, in order to avoid that a host malicious can

deduce the operations performed by the transceiver or monitor; there is a possibility

that the sub-marks can be detected when a CIA request it (although the probability

of requesting the same marks combination is very low). This drawback can be solved

using sub-marks of single use, that is to say, each time that a sub-mark is requested, it

must be blocked when the verification process finish. So, the CIA does not request a

mark twice, and when all the sub-marks of a determined entity have been requested

by a CIA, it notifies to the monitor. So it will issue another transceiver with its corre-

sponding matrix of marks to replace the previous. This is an additional measure to

avoid the analysis and possible detection of the sub-marks by a malicious host. The

following table shows the possible combinations with matrixes of 16, 32, 64 and 128

positions choosing 2, 3 or 4 sub-marks to verify the integrity of a transceiver.

of positions 2 sub-marks 3 sub-marks 4 sub-marks

16 120 560 1820

32 496 4960 35960

64 2016 41664 635376

128 8128 341376 10668000

Table 7.4: Matrix Positions versus set of possible sub marks to verify.

According to the table 7.4, using a matrix with size of 16 positions there are 120

possible combinations of choosing two different sub marks to verify them; if the ma-

153

7. EXECUTION INTEGRITY OF MOBILE AGENTS IN INTRUSSION DETECTION SYSTEMS

trix has 128 positions, the maximum number of combinations is 8128. Requesting

the same number of sub marks but with matrixes of different size, the combinations

number grows significantly. It is important to note that depending on the number of

requested sub marks and the size of the prime numbers (modules, numbers of the

matrix, multipliers random numbers), the function’s results used by the transceiver

can be too large and it would induce an overflow error.

The previous verification process of a transceiver or monitor can be considered as

a Zero-Knowledge Proof (ZKP). The ZKP is an interactive protocol between two parts,

the part which provides the proof (prover) and the part which verify it (verifier). The

prover must convince to the verifier that he knows the solution of a theorem given

without revealing any type of additional information [100]. The verifier can ask to the

prover in several times about the solution and these questions are different and ran-

dom in order to avoid a sequence; thus, is not possible to memorize it. Likewise, if an

attacker intercepts the exchanged messages between prover and verifier, no confiden-

tial information is revealed to him.

In our case, the transceiver must solve the function 7.2 with the sent parameters

by the CIA, and on the other hand, the CIA must verify if the transceiver’s response is

correct. There is a low probability of guessing correctly the response without knowing

the protocol operation and the operations of the corresponding functions. Moreover,

each time that the CIA goes to verify an entity’s integrity (transceiver or monitor), it

sent different and random matrix positions; in this way it is not possible to deduce a

sequence in order to memorize it and to perform a posterior attack; thus it reduces the

deceive probability. Another additional measure to protect the IDS’s entities integrity

from malicious host is using obfuscation techniques to avoid code analysis or reverse

engineering.

7.4.3 Code obfuscation

Code obfuscation is a technique utilized for altering the structure of a program to dif-

ficult its reading and thus harder to understand its operation for unauthorized users.

From the computer’s point of view, it is simply a translation to be performed and the

compiler can process easily the obfuscated code. To do code obfuscation, it is neces-

sary to use an obfuscator program, which transforms the application in another that is

functionally identical to the original. The obfuscator program inserts irrelevant code

into loops, unnecessary calculations, performs data consult that will not be used, etc.

This technique is suitable to protect secret marks but it does not can avoid reverse

engineering, because a programmer with enough knowledge and time could recover

the algorithms and data structures of the analyzed code [21]. In this case, the strategy

154

7.4. Improvement of Cooperative Itinerant Agents platform

is to discourage unauthorized entities doing the information analysis more expensive

than the information itself. There are several algorithms to perform code obfusca-

tion [21, 76] and they can be applied to the static and mobile agents. In this way, if

a malicious user analyzes the code of an obfuscated agent, it will not be able to un-

derstand it easily or simply, the process will be so expensive. Moreover, if an attacker

obtains the used functions or the values returned by an agent, this information will not

reveal important data because the functions results are masked by different modular

functions.

7.4.4 Mark embedding

The algorithm used in order to embed the mark was proposed in [87] (see section 2.4).

This algorithm contributes with copyright protection and it is a tool to distinguish

each copy of specific software, in other words, it provides the system with fingerprint-

ing properties. This algorithm is based in the use of branch functions to generate, in

run time, the appropriate fingerprinting. The original formulation can be summarized

with these two processes (embedding and extracting process):

embed(P, AM ,ke y AM ,ke yF M) ⇒ P ′,F M

r ecog ni ze(P0,ke y AM ,ke yF M) ⇒ AM ,F M

The first process requires as input the program (P), the Authorship Mark (AM) and

copyright and fingerprinting keys. Note that, while the copyright key will be the same

for all copies, the fingerprinting key will be different for each of them. As result of

this process, the correctly marked program (the agent in our scenario) and the corre-

sponding fingerprinting code are obtained. On the other hand, the recognize function

have as input a piece of marked code (or a function of the program) and 2 keys. As

output, this function retrieve the Authorship Mark (AM) and Fingerprint. In the sce-

nario presented in this section, this algorithm is used in order to embed the matrix

presented in the section 4. The aim of the mark embedding is to obtain a system that

retrieve a value from two input values (in our case, obtain a value in the matrix from

values r and c). In the embedding process we can use r as ke y AM , c as ke yF M , and

P as a pointer to piece of source code that will embed the value in the row r and in

the column c in the marks’ matrix. Note that the embedding process must be done

for each value in the matrix. In the same way, the recognize function will be adapted.

The new formulation can be summarized with these two processes (embedding and

extracting process):

embed(P, AM ,r,c) ⇒ P ′, M(r,c)

r ecog ni ze(P0,r,c) ⇒ M(r,c)

155

7. EXECUTION INTEGRITY OF MOBILE AGENTS IN INTRUSSION DETECTION SYSTEMS

where M(r,c) is the value in the row r and column c of the marks’ matrix and P and P0

are pointers to a piece of the program.

7.4.5 Discussion

The security of the agents in an IDS can be faced in a particular way, taking advantage

of the tools provided by the environment, because in this case the system permits to

issue verification agents through the upper entities in the tree infrastructure. In this

way, using fingerprinting and watermarking, the risks of attacks from malicious host

can be reduced. Likewise, code obfuscation is an additional tool which can be used to

avoid code analysis and reverse engineering or to protect the entities’ integrity from

malicious host.

7.5 Conclusions

On one hand, attacks from malicious host against agents are considered one of the

most difficult problems to solve and there is not a way to avoid them. On the other

hand, the use of mobile agents in IDS is increasingly common so, in order to offer

the required security level in IDS based on agents, it is necessary to combine different

techniques to detect a possible attack although it can not be avoided. The drawback

of sending an agent to a host is that the host could be malicious and it can attack the

agent because it has whole access not only to the agent data but the code. Two differ-

ent alternatives based on the use of software watermarking techniques are presented

in this chapter. The first one is the use of 2 entities for each network segment which

control the activity of this network. After a fixed period of time, one of these enti-

ties is moved on to the monitor in order to be verified. The second proposal uses a

cooperative itinerant agent to verify into the monitored host the agent in charge of a

network segment. This system uses a matrix of marks and it determines if an agent

was modified by asking subsequently a set of sub-marks. Moreover, in these propos-

als, tamperproofing and obfuscation techniques are used to make harder the work of

modifying an agent execution.

156

C
H

A
P

T
E

R

8
PROTECTION OF MOBILE-AGENT EXECUTION

USING A MODIFIED SELF-VALIDATING

BRANCH-BASED SOFTWARE WATERMARKING

WITH EXTERNAL SENTINEL

Critical infrastructures are usually controlled by software entities. To monitor the cor-

rect functioning of these entities, a solution based in the use of mobile agents is pro-

posed. Some proposals to detect modifications of mobile agents, as digital signature

of code, exist but they are oriented to protect software against modification or to ver-

ify that an agent has been executed correctly. The aim of our proposal is to guarantee

that the software is being executed correctly by a non-trusted host. The way proposed

to achieve this objective is the improvement of the Self-Validating Branch-Based Soft-

ware Watermarking by Myles et al. [87]. The proposed modification is the incorpora-

tion of an external element called sentinel which controls branch targets. This tech-

nique applied in mobile agents can guarantee the correct operation of an agent or, at

least, can detect suspicious behaviours of a malicious host during the execution of the

agent instead of detecting when the execution of the agent have finished.

8.1 Introduction

Nowadays, software entities control most of the critical infrastructures. Usually, these

systems must have an accurate exactitude due to the importance of its task but, what

happens when these systems are compromised? Some mechanisms are applied in or-

157

8. PROTECTION OF MA EXECUTION USING AN EXTERNAL SENTINEL

der to protect or increase the security level of these kinds of infrastructures. Com-

monly used systems like firewalls, intrusion detection systems, honeypots or hon-

eynets,. . . are useful to detect and counteract security incidents but, these methods are

as necessary as the systems which control that these security systems work correctly.

It seems logical that these systems must be constantly monitored.

The logs were the first tool typically utilized to monitor systems but its have turned

a slow and not enough real-time monitoring system. Over last years, the systems

based on alerts have been presented as the alternative because its can detect anoma-

lies in the systems and send alerts to the central control to inform the manager. In this

scenario, mobile agents can be a good solution because its use implies low resources

wasting from the point of view of central control since it is the monitored system which

provides these resources. In other words, an agent is sent to a critical infrastructure to

control the software which manages this infrastructure. If there are not security inci-

dents, the agent will not send information to central control and, as a consequence,

it will not spend bandwidth or CPU time of this central control. Otherwise, if a secu-

rity incident is detected by the agent, it will send the relevant information about the

security incident to central control.

Since the idea of mobile agents appeared, some related security challenges have

arisen. These security challenges can be basically divided into 2 major groups: how

to protect a host from a malicious agent and how to protect an agent from a mali-

cious host. Some proposals try to solve the first problem. In this case, these proposals

guarantee that the agent which will be executed is the agent which the host thinks.

In other words, these are a priori security systems. On the other hand, the proposals

which try to solve the second problem are a posteriori protection system. That is to say,

these systems are methods which can use the origin host to verify that the host which

have been executed the agent have been proceed honestly. The aim of the system pre-

sented in this paper is to guarantee the well-function of an agent in a malicious host

or, at least, to detect that something is adulterating the normal operation of this agent.

The main novel contribution is that this detection is done while the agent is being ex-

ecuted by the malicious host. The technique presented is based in an original use of

watermarking mechanism and the use of branch functions. The algorithm presented

is a modification over the algorithm presented by Myles et al. in [87]. The designed

modification is the inclusion of a sentinel element which controls the targets of the

branch functions.

In the following section, the basic concepts are introduced. Section 8.3 explains

the modifications done to the Self-Validating Branch-Based Software Watermarking

by Myles et al., presented in section 2.4.4, in order to protect mobile agent execution.

Section 8.4 deals with the security aspects. Some implementation aspects are com-

mented in section 8.5. Finally, some conclusions are given.

158

8.2. General Concepts

8.2 General Concepts

Some general concepts used below will be introduced in this section. A brief explana-

tion about how each technique is used in this proposal is also given. Software agents

can be defined as software entities that migrate between hosts in order to obtain data

or perform operations autonomously of user action. Taxonomy of the existent agents

can be found in [40]. The main attack to mobile agent environments is performed

when the host that executes the agent carries out a malicious action in order to pro-

duce a dysfunction of the agent.

One of the used technique is software watermarking. The aim of digital water-

marking techniques is to embed information into any digital content. The main char-

acteristic is that the embedded information will be imperceptible for the users of this

digital content. A taxonomy of software watermarking and knew attacks was pre-

sented by Christian Collberg and Clark Thomborson in [22] and [23]. In this approach,

a watermarking technique is used in order to insert information by means of an im-

perceptible mode into the code of the agent without affecting the normal behaviour

of the agent.

In parallel to watermarking techniques, there exist similar techniques which are

known as fingerprinting techniques. The concept of fingerprinting was introduced by

Wagner in [116] as a method to protect intellectual property in multimedia contents.

The fingerprinting technique consists in making the copies of a digital object unique

by embedding a different set of marks in each copy. In this approach, this technique

is used in order to produce different and differentiable copies from the same agent. In

this way, the agents can be reused several times by means of watermarking copies of

the same agent with different fingerprints.

8.3 Self-Validating Branch-Based Software Watermarking

with external sentinel

As has been introduced in section 2.4.4, the authors of SVBBSW algorithm, Myles et

al., defined a special type of branch functions that is named Fingerprinting Branch

Function (FBF). In addition to normal branch functions behaviour, this kind of func-

tion modifies the ki value, which is an integrity check of some part of the code of the

agent, every time that this function is called. This value is used to obtain the destina-

tion of the branch in each iteration. Moreover, in the last iteration, kn will take as value

the fingerprint (F M). Taking into account its functionality, the original Fingerprinting

Branch Function can be divided in three different modules:

• ki calculator: the aim of this module is to calculate ki with any prefixed one-

159

8. PROTECTION OF MA EXECUTION USING AN EXTERNAL SENTINEL

way function which involves ki−1, an code integrity check vi and authorship

mark AM .

• Mapping between the different values of ki and the pointers to next instruction

to execute in the program execution flow.

• Execution control transferrer: This part is in charge of redirecting the program

execution flow to the target instruction that is pointed out by the pointer which

has been supplied by the previous mapping.

In the original algorithm, these three parts were indivisible and its stayed in the

same function which did these three operations. In this proposal, these parts are dif-

ferentiated and divided. The ki calculator and the Execution control transferrer will

be in the same function but the Mapping is moved from the mobile agent to another

host that is named sentinel so, the agent, has to request these information to this ex-

ternal entity in order to continue its execution flow.

The main difference between the typical embedding process of Myles et al. al-

gorithm and the proposed embedding process is in the third step. In the modified

algorithm, the mapping is not included into the code. This information is located into

the sentinel host instead of embedding it into the code.

The ki calculation module is invoked when the Modified Fingerprinting Branch

Function (MFBF) is called. This process is the same as the original algorithm and it

must also depend on the code integrity check vi , the previous value of ki and the au-

thorship mark (AM). The obtained value is used to find the next instruction in the

normal execution process of the agent. This value is used by the Execution Control

Transferrer module to do a request to the sentinel about the pointer to the next in-

struction. This request is sent through a secure channel between the audited host

and the sentinel (see subsection 8.4 for the secure channel justification). The sentinel

uses the information contained in the request as the index to search in the mapping

between the possible values of ki and its corresponding pointer. When the pointer

is found, it is sent through the same secure channel to the Execution Control Trans-

ferrer and this module transfers execution control to the instruction indicated by the

pointer. A more graphical explanation can be found in figure 8.1.

The sentinel can be a third trusted part but it can be adapted to a hierarchical

structure in a mobile agent architecture which controls critically distributed infras-

tructures. In this case, the sentinel is the server in charge of controlling some part of

the infrastructure and it can be simultaneously audited by another mobile agent with

another sentinel as is shown by figure 8.2.

160

8.4. Security analysis

HOST

Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1: call B

j2: call B

j3: call B

jump t1

jump t2

jump t3

SENTINEL

Mapping for
Mobile Agent j

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Figure 8.1: Schema of self-validating branch-based software watermarking with exter-
nal control operation.

8.4 Security analysis

Note that the proposed system assumes that exists a secure channel from the mon-

itored host to the sentinel. This is because assuming that a mobile agent can built

a secure channel to an external host (the sentinel in this case) it is very unrealistic.

In this way, the security analysis is centred in the vulnerabilities between the secure

channel and the agent, in other words, the main problems against the system pro-

posed are generated when the host which lodges the agent makes actions in order to

produce dysfunctions in the correct execution of the agent. In this way, it seems a real-

istic approach to consider that it exists a secure channel between the monitored host

and the sentinel because, in a critical infrastructure, the security of the communica-

tions between the different parts have to be guarantee.

Next, some aspects related to the security are commented:

ki interception or modification: The ki values can be intercepted and modified by

the host when the agent sends its to the sentinel. If the host only performs a

161

8. PROTECTION OF MA EXECUTION USING AN EXTERNAL SENTINEL

passive attack, it can not obtain any critical information from this values so ki

is the result of one way function. In this case the sentinel never can detect this

action. If the host performs an active attack, that is to say, ki value is modified by

the host, the sentinel can identify this action as an attack and will start actions

to punish this host or simply isolate the part of the infrastructure that depends

of this agent. In both cases, an alarm will be generated.

Returned pointer interception or modification: The returned pointer to the mobile

agent from the sentinel can be intercepted or modified. The first case can not be

detected by the sentinel but this action does not have dangerous consequences

to the system. The modification of the returned pointer can cause a dysfunction

in the agent but this dysfunction will produce an erroneous ki value or will stop

the agent execution. In both cases, this action will be detected by the sentinel

with the new request from the agent or by an execution time control system like

proposed in [58] or in [34].

loop-process attack: The malicious host can try to perform a loop-process attack, that

is to say, sending always the same ki to the sentinel. As ki is calculated taking

into account the value of ki−1, loop processes to confuse the sentinel are not

possible because the one way function which takes part in ki calculation will

never repeat the value so, in a natural loop processes, the agent will produce a

new ki every time. In the same way, if the host try to perform a deny of service

attack, this will be detected by the sentinel.

Debugging or disassembly: This algorithm includes code verifications and integrity

SENTINEL abc
Mapping for

Mobile Agent a

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Mapping for
Mobile Agent b

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Mapping for
Mobile Agent c

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

SENTINEL xyz
Mapping for

Mobile Agent x

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Mapping for
Mobile Agent y

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Mapping for
Mobile Agent z

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

SENTINEL ijk
Mapping for

Mobile Agent i

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Mapping for
Mobile Agent j

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Mapping for
Mobile Agent k

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

HOST
Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1:
call B

j2:
call B

j3:
call B

jump
t1

jump
t2

jump
t3

HOST
Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1:
call B

j2:
call B

j3:
call B

jump
t1

jump
t2

jump
t3

HOST
Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1:
call B

j2:
call B

j3:
call B

jump
t1

jump
t2

jump
t3

HOST
Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1:
call B

j2:
call B

j3:
call B

jump
t1

jump
t2

jump
t3

HOST
Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1:
call B

j2:
call B

j3:
call B

jump
t1

jump
t2

jump
t3

HOST
Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1:
call B

j2:
call B

j3:
call B

jump
t1

jump
t2

jump
t3

HOST
Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1:
call B

j2:
call B

j3:
call B

jump
t1

jump
t2

jump
t3

HOST
Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1:
call B

j2:
call B

j3:
call B

jump
t1

jump
t2

jump
t3

HOST
Mobile Agent j

Modified Fingerprinting Branch Function

Ki
Calculation

Execution
Control

Transferrer

j1:
call B

j2:
call B

j3:
call B

jump
t1

jump
t2

jump
t3

CONTROLER SENTINEL
Mapping for SENTINEL abc

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Mapping for SENTINEL ijk

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

Mapping for SENTINEL xyz

Pointers
to next step

.

.
Ki-1

Ki

Ki+1
.
.

HOST a

HOST b

HOST c

HOST i

HOST j

HOST k

HOST x

HOST y

HOST z

Figure 8.2: Control of critically distributed infrastructures with mobile agents and dif-
ferent sentinels.

162

8.5. Implementation aspects

checks in order to identify if the mobile agent has been subjected to semantics-

preserving transformation or even if a debugger is present. Moreover, the

branch functions are the typical solution against static disassembly of native

executables so the malicious host is not able to perform this kind of attacks

without to be detected by the sentinel.

Break or stop agent execution: These actions can be detected with execution time

control system. Exist a lot of proposal about this techniques as [58] or [34].

Mobile agent renovation: Renewing periodically the agent by another copy of the

same agent but with another fingerprint can be extremely recommendable be-

cause the new agent will have new ki values which will be different from the old

agent values. This action adds security to the system to prevent that the host

can obtain enough information from the agent to perform a success attack to

the system. This functionality has been taken into account in this proposal and

it is easy by means of changing ke yF M (see section 2.4.4).

8.5 Implementation aspects

There are some aspect that must be taken into account before apply this proposal in a

practical system. These aspects may determine or can influence the design.

Off-line and autonomous execution: In the proposed system, the mobile agent needs

a periodically connection to the sentinel in order to continue with its normal

operation. But this is not a problem in a critical infrastructures control because

the intercommunication between the controlled system and the controlling

systems is always necessary. Nevertheless, the amount of bytes that the systems

interchange can be minimised with this proposal.

Latency: Another aspect is the latency which is caused by the transmission time of

requests and responses, from agent to sentinel and vice versa and the process

time that is spent by the sentinel. Fortunately, the speed of the critical infras-

tructures networks is the appropriate and this time would be usually considered

negligible.

Execution time: Obviously, when the number of calls to MFBF increases, the execu-

tion time also increases. So a threshold must be defined at the design time by

the required security level and the maximum delay which the monitored system

can tolerate between the moment when the incident occurs and the moment

when it is detected.

163

8. PROTECTION OF MA EXECUTION USING AN EXTERNAL SENTINEL

8.6 Conclusions

A novel approach to guarantee the security of the mobile agents execution in a com-

promised host is presented. This approach is based in the algorithm presented by

Myles et al. in [87]. This algorithm has, as well as authorship protection capacities,

integrity code check, tamper detection and fingerprinting capacities. The original al-

gorithm is based in branch functions that transfer the agent execution to the correct

point in the program execution flow from a calculation obtained of one way function

which depends on an authorship mark and an integrity check. Our improvement is

the incorporation of an external element called sentinel which keeps the relation or

mapping between the values obtained from the one way function (ki) and the pointer

to the next instruction in the program execution flow. The controlled host needs to

send the value of the appropriate ki to the sentinel and waiting for the response to

execute the agent in the correct way. On the other hand, the sentinel can control pe-

riodically the agent execution because it knows the correct sequence of ki for each

agent. Additionally, a security analysis of the proposed schema is presented and some

aspects related to its implementation are commented.

164

C
H

A
P

T
E

R

9
AN INFRASTRUCTURE FOR DETECTING AND

PUNISHING MALICIOUS HOSTS USING

MOBILE AGENT WATERMARKING

Mobile agents are software entities consisting of code, data and state that can migrate

autonomously from host to host executing their code. In such scenario there are some

security issues that must be considered. In particular, this chapter deals with the pro-

tection of mobile agents against manipulation attacks performed by the host, which is

one of the main security issues to solve in mobile agent systems. An infrastructure for

Mobile Agent Watermarking (MAW) is introduced in this chapter. MAW is a lightweight

approach that can efficiently detect manipulation attacks performed by potentially

malicious hosts that might seek to subvert the normal agent operation. MAW is the

first proposal in the literature that adapts software watermarks to verify the execution

integrity of an agent. The second contribution of this chapter is a technique to pun-

ish a malicious host that performed a manipulation attack by using a Third Trusted

Party (TTP) called Host Revocation Authority (HoRA).

9.1 Introduction

Mobile agents are software entities that consist of code, data and state, and that can

migrate from host to host performing actions on behalf of a user. Chapters 7 and

8 have dealt with the protection of mobile agents which are utilized for supervising

Intrusion Detection Systems or to monitor critical infrastructures. This chapter will

tackle the use of mobile agents as it is described in chapter 2, that is to say, when a

165

9. AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS

user wants to perform some tasks using mobile agents. Section 2.5 presents as exam-

ple a user who wants to arrange a meeting with other people. In this kind of situation,

mobile agents are used for obtain information from others hosts, which have the in-

formation of the people invited to the meeting, in order to find the best suitable option

taking in account the restrictions specified by the user who have launched the agent

and the availability information of guests contributed by others hosts.

In this chapter, the detection and punishment of manipulation attacks performed

by malicious hosts are addressed. A malicious host performs a manipulation attack

when, trying to achieve a certain purpose, modifies any part of the mobile agent to

disrupt its proper execution. In the previous example, a possible manipulation attack

could be that a malicious host modifies the execution of the agent to impose the date

of the meeting without taking into account the agendas of the rest of invitees. As pre-

viously mentioned, a pessimistic view is assumed, considering the execution of the

agent in a non-trusted community of hosts. In case that the hosts can be considered

trusted, no protection mechanism is needed against manipulation attacks. The aim is

to avoid manipulation attacks by dissuading hosts, because detection can lead to pun-

ishment. Taking into account these objectives, this chapter explains two mechanisms

that work together to achieve an effective and usable protection mechanism against

manipulation attacks.

In first place, an infrastructure for Mobile Agent Watermarking (MAW) is pro-

posed. MAW is a lightweight approach to detect manipulation attacks. MAW is the

first proposal in the literature that adapts software watermarks to verify the execu-

tion integrity. It must be clarified that the primary goal of MAW is not to develop

a new software watermarking scheme but to use and adapt existing watermarking

techniques to detect manipulation attacks against mobile agents. The novelty of this

proposal is that the watermarks are used and embedded in a different way and for a

different purpose than traditional software watermarking systems. Indeed, different

types of watermarking techniques can be used in the presented infrastructure, and

these techniques might also be changed in the future according to advances in the

watermark research area.

The second contribution of this proposal is a mechanism to punish the malicious

hosts by using a Third Trusted Party (TTP), that is, a trusted entity for all the entities

of the system. This TTP is called Host Revocation Authority (HoRA from here on). The

HoRA stores in a database the information of those hosts that have been proven mali-

cious in order to avoid new attacks from them. The punishment mechanism proposed

is based on the idea of host revocation, which essentially consists in avoiding sending

mobile agents to the hosts that previously attacked other agents. Both detection and

punishment working together can achieve an effective protection mechanism against

manipulation attacks.

166

9.2. Background

In this chapter, the guidelines about how to choose the watermarks to embed into

the code of the agent are explained. From this point of view, this chapter introduces

a new application of watermarking that may open a new research area. The rest of

the chapter is organized as follows: Section 9.2 provides the reader with a quick re-

view of the required background which is explained in depth in chapter 2; section 9.3

explains how to detect manipulation attacks using MAW; section 9.4 details the HoRA

functionalities and, finally, the conclusions of this proposal can be found in section

9.5.

9.2 Background

This section summarizes some background topics that are necessary to easily under-

stand our proposal. First, we review the problem of the malicious hosts and some of

the published countermeasures to alleviate it. In particular, we emphasize the cryp-

tographic traces approach [112] because we will compare it with our attack detection

proposal MAW. Next, the main objectives of software watermarking schemes are sum-

marized. Special attention has also been paid to the Collberg-Thomborson (CT) algo-

rithm [23] because we use it in our implementation.

9.2.1 Malicious Hosts

The problem of malicious host has been addressed before in section 2.5. As it has

been commented, the literature about countermeasures for malicious host attacks

can be divided in two kinds of approaches: attack avoidance and attack detection ap-

proaches. Regarding attack avoidance approaches, they try to avoid attacks before

they happen [119, 79, 58, 99]. However, published attack avoidance techniques are

difficult to implement or computationally expensive. For this reason, it is considered

that attack detection techniques are more promising because they are usually easier

to implement. The objective of attack detection approaches is detecting manipulation

attacks. One of the main representative approach is the use of cryptographic traces as

propose Vigna in [112]. Vigna introduces the idea of the cryptographic traces, which

are logs of the operations performed by the agent. The operations of the agent can

be categorized in white statements, which modify the state of the agent due to inter-

nal variable values; and black statements, which alter the agent’s state due to exter-

nal variables. These traces contain the changes performed to internal variables as a

consequence of black statements. A re-execution of the agent can be performed with

these traces. Instead of sending the traces, the hosts must store them to save network

bandwidth. This is due to their size depends on the amount of input data, which can

be huge. If the origin host suspects that a host modified the agent and wants to verify

the execution, it asks for the traces and executes the agent again. If the new execution

167

9. AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS

does not agree with the traces, the host is cheating. The approach not only detects

manipulation attacks, but it also proves the malicious behavior of the host. However,

this approach has two main drawbacks: (1) verification is only performed in case of

suspicion, but the way in which a host becomes suspicious is not explained, and (2)

for an indefinite period of time, each host must reserve enough capacity to the storage

of traces of past transactions because the origin host can ask for them. These draw-

backs can be relieved by controlling the execution time of the agent in the hosts [33],

but even with this complement, the use of traces might be still too expensive for all the

entities involved.

9.2.2 Software Watermarking

Software watermarking was designed to protect software copyright. In this sense, a

watermark is embedded into software in such a way that, a trusted third party could

check that this software belongs to a company. However, the mechanism presented

in this chapter uses software watermarking techniques not to protect the copyright of

programs, but to protect the execution of a mobile agent in an untrusted host, the Mo-

bile Agent Watermarking (MAW) infrastructure. The objective of the owner of an agent

is to assure that this agent has been properly executed by embedding a software wa-

termark in the code of the agent. On her side, the objective of malicious hosts is also

different, modifying the execution of the agent to obtain a certain profit. As we will

discuss later in Section 9.3.5, attacks based on semantic preserving program transfor-

mations against watermarked agents are useless for the attacker in this scenario. This

is because these transformations only affect the code appearance, not code behaviour.

In this case, the modified code will be executed in the proper manner, so the execution

integrity is assured. In this chapter, the design of the MAW proposal is also presented.

It is based on a particular data structure watermark, the Collberg-Thomborson (CT)

algorithm [23], which is also known as Dynamic Graph Watermarking. This algorithm

is based on embedding watermarks within the topology of graphs built dynamically in

memory during the execution of a program. How works the CT algorithm is summa-

rized in section 2.4. The next section will address the concrete CT-based modification

of MAW.

9.3 Mobile Agent Watermarking (MAW)

MAW is a lightweight approach to detect manipulation attacks. That is to say, with

MAW one can verify whether an agent was or was not properly executed by a host.

It must be stressed that this infrastructure is the first approach that adapts software

watermarks to solve the problem of the malicious hosts.

168

9.3. Mobile Agent Watermarking (MAW)

The MAW infrastructure works as follows: the original agent is modified by in-

troducing a dynamic software watermark. Watermarked agents generate output data

according to a set of rules. These rules are named “integrity rules”. Integrity rules

are secret, that is to say, they are only known by the origin host. The watermarked

agent generates output data organized in what “data container”. The organization of

the data container is performed according to the integrity rules. In this sense, it is said

that the watermark is transferred to the data container. For instance, the process could

be illustrated with one very simple integrity rule. It could be assumed that the agent

generates an integer as a piece of output information. To introduce the integer in the

container, it is multiplied by two if a certain global variable is even. The associated

integrity rule is to check that this piece of data in the container is even if the global

variable is even. In general, integrity rules are related with input data, internal values

(heap, stack etc.), dummy data and data from external communications. Therefore, it

can say that this proposed infrastructure is based on dynamic software watermarking

(since watermarks are created at runtime depending on the state of the program).

Finally, the origin host receives the agent, which has been executed by all the hosts

of the itinerary. Then, the origin host applies the set of integrity rules to all the data

containers (there is one container for each host in the itinerary). These integrity rules

are a set of logical properties that a container must fulfill (if it has not been tampered).

These rules are responsible for demonstrating that the presence of the watermark is

the result of deliberate actions. If a container does not fulfill the rules, this means that

the corresponding watermark has been modified, and hence the corresponding host

is malicious.

In summary, the process has three phases: (1) watermark embedding: modify

the agent to embed the watermark generation code (see section 9.3.1); (2) watermark

transference: create the container during the agent’ss execution to transfer the water-

mark and hide the results (see section 9.3.2); and (3) detecting manipulation: water-

mark verification using integrity rules (see section 9.3.3).

9.3.1 Watermark Embedding

Current software watermarking techniques must be adapted to our scenario because

they were not originally designed for creating execution integrity proofs (containers).

As explained in section 2.4, there are two main kinds of software watermarking tech-

niques: static and dynamic watermarks [23]. The nature of static watermarks makes

it impracticable to transfer the embedded watermark to the container. As static wa-

termarks are embedded in the executable file itself (i.e. they are not related to the

program state), they cannot be used to build our dynamic containers. Hence, we need

to use a dynamic watermark approach to generate the containers at runtime taking

169

9. AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS

into account the program state. Among the existing dynamic software watermarking

approaches, the appropriate one for MAW is the “data structure watermark” because

it is the one that takes into account the program state to generate the watermark (see

section 2.4 and references [23, 19, 88]). In particular, in this design, it have been uti-

lized the Collberg-Thomborson (CT) algorithm [23], which was summarized in Sec-

tion 2.4.3.

Regarding the size of the MAW watermark, it is important because it determines

the probability of detecting manipulation attacks. In the proposed scheme, the size of

the marked code is determined before sending the agent. This size is limited and it is

the same for all the hosts in the itinerary of the agent. Moreover, the container (output

data) generated by each execution has also a limited size. The maximum size of con-

tainers is not arbitrary, it can be decided by the programmer to control the accuracy

to detect manipulation attacks. If this proposal wants to improve detection ability and

to prevent an attacker from modifying the code of the agent without being detected, it

must increase the size of containers. Obviously, increasing the size of the watermark

is also more costly in terms of transmission resources consumption. This is because

the size of the agent is increased since on one hand, the marked code is bigger than

the original one, and on the other hand, the containers are also bigger because they

contain more redundancy. This last effect is even more significant since the agent car-

ries a container for each execution in a host. This implies that the size of the agent

grows as it traverses more hosts, and therefore this size depends on the length of the

itinerary of the agent.

9.3.2 Watermark Transference

To detect manipulation attacks, the mobile agent must create at runtime the proofs,

and send them back to the origin host to assure the execution correctness. In MAW,

these proofs are stored in a logically-structured data “container“ that is created in each

host during execution. The container is created using dummy data, input data, inter-

nal values (heap, stack etc.) and data from external communications. The agent can

diffuse and confuse all this information into the container to hide the actually desired

execution results. Diffusing values means repeating these values into several differ-

ent places, and confusing values means modifying these values to different ones, for

example by adding constant values.

Obviously, all these data are not organized into the container at random. The way

this information is incorporated into the container is essential to extract the water-

mark when the agent returns to the origin host. As it was said previously, the trans-

ferred watermark must be reliably located and extracted from the container and, it

must let the agent owner demonstrate that its presence into the container is the result

170

9.3. Mobile Agent Watermarking (MAW)

of deliberate actions. In short, each executing host creates a container, which is the

digital cover where the agent transfers the watermark. Then, each host must digitally

sign its container. When the agent finishes traveling its itinerary, it returns to the ori-

gin host. All containers arrive at the origin host together with the mobile agent. Next,

the origin host uses them to verify the execution integrity and to extract the desired

execution results of each host.

9.3.3 Detecting Manipulations

The origin host must verify the execution integrity when the agent comes back with all

the containers. To do so, the origin host uses its secret set of integrity rules related to

the previously-embedded watermark. These integrity rules are a set of logical proper-

ties that a container must fulfill to demonstrate that it has not been tampered. They

are also responsible for demonstrating that the presence of the watermark is the result

of deliberate actions. These actions are inferred from the modifications performed

over the original code of the agent code during the watermark embedding process. If

a container does not fulfill the integrity rules, this means that the watermark has been

modified, and the corresponding host is malicious. A tampered container can be used

as a proof of the malicious behavior of a host. The host cannot repudiate this situation

since it digitally signed the container.

It is worth to mention that the embedded watermark is the same for all the hosts,

that is, all hosts execute the same marked code. In the same sense, the integrity rules

are the same for all the hosts, because they are inferred directly from the code of the

agent. This means that the origin host uses the same integrity rules to demonstrate the

presence of the watermark into the containers. However, this does not mean that all

the containers have the same data. Each container is different because it depends on

the execution in each host, and hence the data used to fill in the container is different

(input data, internal data, data from communications, dummy data, etc.). This could

lead to think that this proposal uses fingerprinting instead of watermarking, because

the data structure is different for each host (container). However, we consider that our

approach uses watermarking because the embedded mark is the same for all the hosts

despite the representation of this mark is different for each container.

Finally, our infrastructure also allows an origin host to prove, in front of an external

third party, that a certain host of the itinerary performed a modification attack over the

agent. However, the integrity rules cannot be treated as a proof directly. Instead, the

origin host must send them together with the code of the agent and the signed con-

tainer of the accused host to the third party. Then, the third party executes the agent

several times with random input data. As any honest execution of the agent (indepen-

dently of the input data) will generate valid containers, the new containers created

171

9. AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS

during these random executions should fulfill the integrity rules. This procedure as-

sures that the integrity rules are valid. Then, the external entity can verify whether the

host being accused is in fact malicious by applying the integrity rules to its container.

9.3.4 Advantages and Drawbacks of MAW

MAW is a lightweight attack detection approach if it is compared to the most widely

known proposal of the cryptographic traces [112]. These are some of its advantages:

• Size of the proofs: in MAW, the size of the proofs to check the execution in-

tegrity is limited. The maximum size of the containers is determined by the pro-

grammer to control the accuracy to detect manipulation attacks. The containers

can be little enough to let the agent carry them. In the cryptographic traces ap-

proach, the size of the traces depends on the amount of input data of the mobile

agent, which can be quite big.

• Proof storage: in MAW, the executing hosts do not need to store any kind of

proof. In the cryptographic traces approach, the hosts must store the traces for

an indefinite period of time.

• Hosts to verify: in MAW, the origin host can verify the execution integrity of all

the hosts of the itinerary. In the cryptographic traces approach the verification

is performed in case of suspicion.

• Verification tasks: in MAW, the origin host has to apply the integrity rules to

the containers to verify the execution integrity. In the cryptographic traces ap-

proach, the origin host must ask for the traces to the suspicious host and execute

the agent again.

MAW has also some drawbacks, which affect mainly performance:

• Watermark embedding: the origin host must embed the watermark into the

code of the agent by using software watermarking techniques and must infer

the integrity rules.

• Code size: there is an increase in the code size. Embedding a watermark means

that some overhead is added to the original code. This enlargement will de-

pend on the embedded watermark and therefore, creating, storing and sending

marked agents consume more resources.

• Execution time: the execution of marked agents consumes more CPU.

172

9.3. Mobile Agent Watermarking (MAW)

• Mobile agent size: the mobile agent in MAW must carry the containers. This

implies an additional load. This load grows up each time the mobile agent visits

a host. The maximum size is reached when the agent returns to the origin host.

9.3.5 Design of the Watermarks for MAW

This section discusses the motivations of malicious hosts, the attacks that can per-

form, and also the properties and requirements that the software watermarks should

have to implement the MAW infrastructure.

9.3.5.1 Threat Model for MAW

As we mention in Section 2.4.2, the objective of an attacker in the copyright protec-

tion scenario is to make the watermark of a program invalid to illegally redistribute

this program later. To do so, the main attacks against software watermarks are sub-

traction, addition and distortion. On the other hand, the motivations of an attacker

in the mobile agent scenario are different. A malicious host may have several reasons

to attack a mobile agent. For instance, it can attack the mobile agent to obtain some

benefits from the execution, to damage the reputation of another host, or just for fun.

There are several kinds of attacks in this scenario (denial of service, eavesdropping,

impersonation, etc). However, we will focus on manipulation attacks because MAW

has been designed to detect this particular kind of attacks. Just remind that manipu-

lation attacks are those in which a malicious host tries to manipulate the proper exe-

cution of the agent to achieve a certain purpose. So then, the objective of an attacker

will be not to make the watermark invalid, but to manipulate the execution without

altering the transferred watermark, because any change in the transferred watermark

will cause the detection of the attack.

The malicious host may try to manipulate the code of the agent to obtain a certain

benefit. However, all the attacks that are used in the copyright protection scenario to

manipulate code are totally useless to attack a mobile agent protected with the MAW

infrastructure. Distortive attacks, which are usually based on semantic preserving pro-

gram transformations (translation, optimization, obfuscation, etc.), are useless to at-

tack MAW because these transformations only affect the code appearance, and not

the code behavior. Hence, the modified code will be executed in the proper manner

(which is precisely the objective, assuring the execution integrity). On the other hand,

if a malicious host tries to remove the embedded watermark or to add a new one to

the agent’s code, the changes in the transferred watermark produced by these attacks

will reveal that the agent has been modified.

The host can also try to attack containers. However, a host cannot manipulate the

containers of previous executed hosts because they are signed by their creators. Thus,

173

9. AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS

a malicious host can only try to manipulate it own container. In this case, the objective

of the attacker is manipulating the container to obtain a certain profit, but without

altering the transferred watermark. However, this will be hard to achieve thanks to

MAW because the host does not know which parts of the container are part of the

watermark (this would be equivalent to know the integrity rules, which are secret).

Therefore, before changing any part of the container the host should infer where the

watermark is.

To infer where the watermark is, a malicious host can also try to analyze the inputs

and outputs to extract information from the mobile agent. Unfortunately, it is unfeasi-

ble to detect or prevent that a host changes its own input data, which are located in its

internal database. In fact, this should be considered an eavesdropping attack because

the host does not alter the proper execution of the agent. As a conclusion, MAW can-

not detect this because it is not a manipulation attack. However, MAW can avoid the

attacker to extract information from the execution. Let us suppose that a malicious

host introduces fake input data and executes the mobile agent to analyze the gener-

ated container. Despite this can be done many times obtaining different containers,

this does not mean that the malicious host can generate a container at its discretion

(containers must fulfill the integrity rules if the execution of the agent has not been

modified). For this reason, a malicious host performing different executions cannot

infer the integrity rules by comparing these containers because any change in the in-

put data will cause that most data within the container will also change. In the same

sense, colluding hosts that share their containers cannot infer where is the watermark.

Even if a malicious host is successful obtaining some piece of information about how

the containers are constructed, it would be unfeasible to construct a valid container

that achieves the purposes of the attacker. This is due to the watermark being large

and distributed within the whole container, and also because the attacker does not

know all the integrity rules.

9.3.5.2 Watermark Properties

These are the most important properties of the watermarks to be embedded into the

mobile agent:

1. the stealth. This is the most important property of the watermark, because a

malicious host without knowledge about where the watermark is can only try

random changes, which affect the transferred watermark;

2. the data rate is also quite important because it improves the security of the wa-

termark. A bigger watermark makes manipulating the container without alter-

ing the transferred watermark more difficult. However, this affects adversely the

174

9.3. Mobile Agent Watermarking (MAW)

cost of the watermark, especially in terms of transmission resources as contain-

ers are sent back to the origin host;

3. the resilience is not as important as the previous properties, because the use

of semantic preserving transformations does not affect the code behaviour. As

a consequence, watermarks with little resilience can be used in the proposed

scenario.

So, this proposal does not require maximizing all the properties. This allows us to

use simpler and less costly watermarks.

9.3.6 Implementation of MAW using the CT Algorithm

The rest of this section introduces a brief description about how the MAW infraestruc-

ture have been designed. The Collberg-Thomborson (CT) algorithm [23] has been

adapted to the mobile agent scenario. Again, it has been remarked that other different

software watermarking algorithms could also be used to detect manipulation attacks.

Obviously, the different peculiarities of each algorithm must be taken into account.

As it is explained in 2.4.3, the CT algorithm builds dynamically a graph in memory

when the program is fed with a special input. The recognizer program is able to find

this graph in memory, and to extract from this graph (for instance using the Radix-k

encoding) a number N , which is the product of two large primes. As it is computation-

ally unfeasible to factor a number which is the product of two large prime numbers,

the creator demonstrates authorship by simply publishing the two factors.

In the design of MAW, all the executions build this graph in memory, indepen-

dently on the input data that feeds the agent. So, the agent just needs to transfer this

graph in memory to the container. The recognizer can also find N using the container

as its input, instead of memory. In fact, the recognizer should be considered part of the

integrity rules, which are more general as they also describe some more relationships

among data within the container.

For simplicity, the proposed design is explained by means of a simple example.

Suppose that we are executing the agent in the host n. The agent is fed with some

input data that come from the previous execution host n − 1. Also suppose that the

initial state of the agent in this host has six values of this kind sn = (sn
0 , · · · , sn

5). After

the execution, the agent will obtain some output data. In this example, suppose that

the output have five of these values on = (on
0 , · · · ,on

4), which should be included within

the container together with the transferred watermark.

The following steps have to be followed to construct the container:

1. The agent must calculate a binary initial sequence I S that will be used to estab-

lish the starting position of the watermark, and also to obscure the container.

175

9. AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS

This initial sequence I S should reflect that this execution has been performed

in a certain host, that depends on the initial state, and that it is time dependent.

In this example, I S is calculated as the hash of the concatenation of the identi-

fier of host n (I Dn), a subset of the initial state (some values in clear and some

hashed), and a timestamp T Sn :

I S = hash(I Dn ||sn
2 ||sn

3 ||hash(sn
5)||T Sn) (9.1)

This time stamp T Sn should also be sent to the origin host together with the

container to make possible to re-calculate I S from these values.

2. After that, the agent fills out the cells of the container with random values. Figure

9.1a shows the container at that moment. c j represents the random data stored

in the j position of the container.

(a) Container with random data (b) Container after embedding
the output data

(c) Container before XOR

Figure 9.1: Container generation process.

3. In this step, the agent starts transferring the watermark to the container. The

first thing is locating the initial cell, pn , of the graph into the container. In this

example, the agent calculates pn by hashing the initial sequence I S modulus 25

(25 is the number of cells of the container):

pn = hash(I S) mod 25 = 7. (9.2)

In this case, the initial sequence I S is the extra pointer which provides the po-

sition within the container of the first node within the circular linked graph (in

this case, cell 7).

4. Next, the agent start transferring the rest of the graph from memory to the con-

tainer. In this example, the watermark is the same of equation 2.14, which codi-

fies the number N = 4453 with these Radix-6 coefficients

176

9.3. Mobile Agent Watermarking (MAW)

a = {a0, a1, a2, a3, a4} = {1,4,3,2,3} (9.3)

We denote the graph with the following set of tuples:

wn =< {xn
0 , yn

0 }, {xn
1 , yn

1 }, {xn
2 , yn

2 }, {xn
3 , yn

3 }, {xn
4 , yn

4 } > (9.4)

As in Figure 2.7, each node is formed by two elements (each of these element is

mapped s in one cell, so it will need two consecutive cells for each graph node).

The first cell is used to store the xn
i value in base k, and it will be used to obtain

the ai Radix-6 coefficients. In this example, as I S = 7, cell 7 is the first cell of

the first node of the graph, and hence it contains xn
0 . The second cell stores yn

i ,

which is the index of the cell that corresponds to the next node of the graph. So

then, cell 8 contains yn
0 = 11, which is a pointer to the second node of the graph

(located in cells 11 and 12). Except the first node (that depends on I S), the agent

can put the rest of nodes randomly in any place of the container, because we

can reconstruct the complete graph using the pointers. Finally, the last node

points to the first one (it is a circular linked graph). To difficult the location of

the mark, the agent does not store the values directly into the container, but

it calculates them as the subtraction of the value of the cell and the index of

the cell ai = xn
j − j (being j the index of this cell). For instance, a0 = 8−7 = 1,

a1 = 15−11 = 4, a2 = 22−19 = 3, and so on.

5. After the graph embedding, the agent must store the result of the execution

on = (on
0 , · · · ,on

4). In this example, the agent chooses the positions to store these

output values into the container using, another time, the value pn (7, in our

case). Basically, this value will indicate the number of empty cells between two

different output values. The last node of the graph (in our case, cell 18) will be

used as the starting point. So then, cell 4 stores the first output value on
1 because

it is 8th empty cell starting from cell 18. Figure 9.1b shows the container after

transferring these values.

6. The following step is to generate an additional vector that will enhance the dif-

fusion of the output data by storing them in some extra positions. In this case,

we use a vector of 5 positions o′ n = (o′ n
0 , · · · ,o′ n

4), in which o′ n
i = (on

i) j mod pn .

These values will be stored using the same rule than the on
i values (7 empty cells

between different values), and starting from the last value added to the con-

tainer (in this case on
5). Figure 9.1c shows the container after embedding the o′ n

values. These relationships will also be part of the integrity rules.

177

9. AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS

7. Finally, all the container is XOR with I S to obscure all these data, so only the

entities that know I S can know the real contents of the container.

To detect manipulations, the origin host should have the container, the initial state

values sn = (sn
0 , · · · , sn

5) (sent by the previous host and acknowledged by host n), and

the timestamp T Sn . Having all these data, the origin host can calculate I S. With that

value, the origin host XOR the container using I S to recover the data within the con-

tainer. Knowing I S, the initial cell of the watermark is also known. If host n has been

honest, then I S = 7, and applying the recognizer to the container we can obtain that

the Radix-6 values are a = {1,4,3,2,3}, so N = 4453. Just emphasize that N is not a

random number but the product of two primes, and that the only entity capable of

factoring it is the origin host (N = 61×73). The origin host also verifies that the output

values on and o′ n are properly located into the container and that the relationships

among them are correct. If so, the infrastructure can consider that host n is honest,

and the results can be extracted from the output values.

The security of this example lies on the impossibility of knowing which kind of data

is storing each cell (watermark, output data, random data, etc). The executing host

does not know how the initial sequence I S has been calculated, nor how the container

has been constructed, nor the relationships among cells.

As it has been shown, data within the container are very dynamic, and they change

as it changes the executing host, the time, the initial state of the agent or any other type

of input data. However, the simplicity of this particular example must be stressed,

which should be considered mainly didactic. The mechanisms used are preliminary,

but that can be easily generalized and made more sophisticated to use in other sce-

narios that require more robustness. For this reason there are some vulnerabilities in

this example. For instance, notice that we have put some order in the way to construct

the container (first introduce the watermark, after that introduce the results, and at the

end XOR the container). However, in a real scenario all these steps should be mixed, so

the attacker cannot infer how the container has been constructed. In addition, some

other relationships among the output values could be added to enhance diffusion and

robustness, o′′ n , o′′′ n (for instance using arithmetical operations among them). Also,

the watermark has been constructed using a Radix-k encoding that needs pointers, so

all the cells that compose the graph has values in the range [0−25]. This can help an

attacker to locate the watermark. In a real scenario these values should be obscured

for instance by using any kind of arithmetical operation. Finally, a malicious host that

provide the same initial state, the same host identifier, and the same timestamp to the

agent will always obtain the same I S, so the position of the watermark will always be

the same. Obviously, in a real example I S should change depending on other different

parameters, so the attacker cannot infer where is the starting point of the watermark.

178

9.4. Punishing Attacks with the HoRA

9.4 Punishing Attacks with the HoRA

This section introduces a punishment mechanism based on a new entity: the Host Re-

vocation Authority (HoRA). The HoRA must be considered a Trusted Third Party (TTP)

in the mobile agent system. In this sense, the HoRA must be considered a TTP in the

mobile agent system like the Certification Authority (CA) is considered in the Public

Key infrastructure (PKI). It seems logically that attack detection approaches should

be accompanied with some punishment policies. Little attention has been paid to

punishment mechanisms in mobile agent systems. In fact, this proposal is the only

punishment system that can be found in the literature.

The HoRA uses a punishment mechanism based on host revocation. The aim of

host revocation is to distinguish the malicious hosts from the honest ones. For this

purpose, the HoRA stores a database with all the information related to past attacks.

The main job of the HoRA is providing this information to the origin hosts to avoid

new attacks from malicious hosts. In this chapter, the tasks that the HoRA has to carry

out (status checking and host revocation) are summarized.

9.4.1 Status Checking

Before sending the agent, the origin host must consult the revocation information in

order to delete malicious hosts from the itinerary of the agent. Assuming that the

HoRA works in a similar way as the Certification Authority regarding certificate re-

vocation, there are two possible ways of consulting the status of the hosts: online or

offline. The decision of which of these policies must be used depends on multiple

factors, like the available transmission resources, the number of origin hosts that may

launch requests, or the computational capacity of the entities.

9.4.1.1 Offline Status Checking

In offline status checking, a reasonable assumption is considering that an origin host

may lose the connectivity to the HoRA. If this happens, the origin host will not have

any revocation information available. The idea behind the offline system is to make

accessible the revocation information available in a given moment using a black list:

the Host Revocation List (HRL). An HRL is a list, which is signed by the HoRA and, that

contains all the identifiers of the hosts that have been revoked. The origin hosts can

download the HRL and store it for some time. Then, the HRL can be used to remove

revoked hosts from itineraries before sending agents. To take into account new ma-

licious hosts, the origin hosts have to update the HRL periodically. In this sense, the

HRL works in a similar way as the traditional Certificate Revocation List (CRL) in the

PKI [60]. The origin hosts can download the HRL directly from the HoRA, but this may

179

9. AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS

cause a bottleneck in the system. To solve this problem the HoRA can put the HRL

in repositories1. The repositories must also update the HRL periodically. The offline

status checking mechanism does not avoid attacks completely. A host that is detected

as malicious can attack agents until it is introduced in the HRL and the origin hosts

update their lists. The less time between updates of the HRL, the less attacks can be

performed by the new malicious hosts. However, frequent updates affect adversely the

network bandwidth.

9.4.1.2 Online Status Checking

In the online status checking policy, origin hosts request revocation information di-

rectly from the HoRA. To do so, the origin hosts use the Online Host Status Protocol

(OHSP). When a request arrives, the HoRA consults its internal database and sends a

signed response pointing out the state of each host. This mechanism works in a simi-

lar way as the Online Certificate Status Protocol (OCSP) used in the PKI [86]. There are

several reasons that can lead an origin host to use the online mechanism. For instance,

origin hosts that send agents sporadically do not need to store and update the HRL pe-

riodically. Furthermore, the risk of suffering attacks from malicious hosts is minimized

since the status is checked online which allows immediate detection and rejection of

malicious hosts from itineraries. However, with the online policy, the HoRA may be-

come a bottleneck in the system because it receives requests from all the origin hosts,

and it must answer each request with a digitally signed response which is computa-

tionally expensive. For this reason, the HoRA can also delegate online checking to

authorized entities called responders2.

9.4.2 Host Revocation

The second task of the HoRA is managing the revocation information. As the revoked

hosts are not removed from the database, this task consists mainly in adding new

hosts. If the origin host has detected malicious hosts using MAW, it starts a proto-

col to revoke them. The objective of any revocation protocol is delivering in a reliable

way all the proofs to the HoRA in order to demonstrate that an executing host is ma-

licious. A proof is a piece of evidence that a TTP can use to verify that an attack was

performed by a malicious host. In the case of MAW, the proofs are the containers, and

the way to detect manipulation attacks are the set of integrity rules. Hence, the HoRA

can only revoke a host in case there are proofs of its malicious behavior, that is, the

HoRA needs evidences that demonstrate unmistakably that this host was malicious.

1A repository is a non-trusted location in the network where it is possible to store contents to make
them available to download.

2A responder is a trusted location in the network that can send signed responses.

180

9.4. Punishing Attacks with the HoRA

In this sense, the containers can be used to detect manipulation attacks because they

have been signed by the hosts, so a malicious host cannot repudiate that it generated

a certain container. The HoRA must verify that the set of integrity rules matches the

code of the agent. This can be done by executing the agent several times with random

input data (as explained in Section 9.3.3). A revocation protocol for MAW can be found

in [35].

9.4.3 Summarizing the Overall Process

AGENT CREATION

Code
(Watermarked)

Data

Itinerary
(filtered)

Code

Data

Itinerary

2. Watermark Embedding

1. Status Checking

w

Host 1

Host i

w

w

w

w

3. Watermark
transference

AGENT
SENDING

PROOF CHECKING

AGENT EXECUTIONHOST REVOCATION

Input

w

C
o

n
ta

in
e

r
i

w

C
o

n
ta

in
e

r
i

Container 1

Container N

List of
Malicious

hosts

HoRA

5. Attack punishment

w

Host N

Origin Host

S
e

n
d

in
g

 o
f

p
ro

o
fs

4. Attack detection

Figure 9.2: Working of MAW proposal

The lifetime of the agent can be divided in four phases (see Figure 9.2):

• Agent Creation: in this phase the origin host prepares the agent before sending

it. This includes performing the status checking to filter the malicious hosts

from the itinerary of the agent, and also embedding the watermark into the its

code.

• Agent Sending: in this phase the origin host sends the mobile agent to perform

its tasks. The agent will migrate from host to host executing its code and per-

forming the actions that the user has programmed (for instance, arranging a

meeting). During the agent’s execution in each host, the agent must create and

181

9. AN INFRASTRUCTURE FOR DETECTING AND PUNISHING MALICIOUS HOSTS

store the containers, which are the proofs that will assure the execution integrity.

The embedded watermark has been transferred to these containers during the

execution. Hence, all the containers (one for each host) will return with the mo-

bile agent to the origin host.

• Proof Checking: in this phase the origin host looks for malicious hosts. When

the agent returns to the origin host, it extracts the containers of all the hosts and

it verifies the signatures to detect possible errors in communications. These er-

rors must not be considered manipulation attacks because they could be pro-

duced by the communication channel. If the containers do not have communi-

cation errors, the origin host applies the integrity rules to them in order to verify

the correctness of the transferred watermarks. If a container does not fulfill the

rules, this host is malicious and hence the origin host can start a revocation pro-

tocol.

• Host Revocation: in this phase the origin host sends the proofs of the execution

integrity to the HoRA using a revocation protocol. The HoRA verifies the valid-

ity of these proofs, that is, it verifies that the signature of the container is valid

and that the integrity rules correspond to the code of the agent by executing the

agent again with random input data. If these proofs are valid, the HoRA revokes

the malicious host, so this host will not receive agents any more.

9.5 Conclusions

In this chapter, the integration of two techniques are introduced to achieve an effec-

tive and usable protection mechanism for mobile agents against manipulation attacks

performed by a malicious host during execution. On one hand, MAW has been pre-

sented as an effective and lightweight attack detection mechanism. The main ideas

behind MAW have been explained, and a discussion about which are the most appro-

priate software watermarks to protect mobile agents is performed. In this way, the

guidelines to correctly implement MAW using the CT algorithm have been also in-

troduced. On the other hand, the HoRA has been presented as a generic TTP with

punishment capabilities. The combined use of the two security mechanisms leads to

a reliable environment for honest users and hosts, which is worth even at the expense

of introducing some overhead.

182

Part V

Final remarks

C
H

A
P

T
E

R

10
CONCLUSIONS AND FUTURE WORK

This chapter summarizes the conclusions of this thesis (section 10.1) and outlines fu-

ture lines of research (section 10.2).

10.1 Conclusions

The main contributions related to fingerprinting codes and schemes could be con-

densed in the following points:

• A new problem in Collusion Secure Convolutional Fingerprinting Information

Codes that generates false positives has been shown. As a result of analysing

the work by Zhu et al. in [122], the drawbacks of not considering false pos-

itive have been enlightened. The original results in [122] have been revisited

from the point of view of the false positive problem. Moreover the probability

of false positives has been quantified formally and contrasted with simulations.

Furthermore some guidelines for a correct design of Collusion Secure Convolu-

tional Fingerprinting Information Codes are given.

• After analysing the turbo fingerprinting codes presented by Zhang et al. in [121],

we showed that the probability of tracing one of the traitors tends to 0 when

the alphabet size of the outer turbo code increases. This is because the symbol-

by-symbol collusion attack performed by pirates is not treated efficiently by the

decoding algorithm proposed in [121]. Note that, from the point of view of the

turbo decoder, the error probability of the equivalent channel tends to 1/2, be-

cause it takes as input symbols one of the symbols retrieved by the Boneh-Shaw

185

10. CONCLUSIONS AND FUTURE WORK

decoder chosen at random. The new problem found in the turbo fingerprint-

ing codes renders them inapplicable in many cases unless the design takes into

account our new contribution. Moreover, our studies indicate that, the more

efficient the turbo fingerprinting code design is, from the point of view of the

length requirement, a far worse performance is obtained from the tracing al-

gorithm. In other words, to find a traitor will be more complicated when the

(n,k)-turbo code used has large values of n. Besides, two different ways to im-

prove the performance of turbo fingerprinting codes are given. These two ways

use the likelihood of the turbo decoder to perform the improvements. The first

proposal modifies this likelihood at the input of the turbo decoder and the other

uses the turbo decoder output likelihood to correlate it with the user IDs in or-

der to find the traitors. Moreover, these two improvements can be integrated in

the same scheme.

• Turbo fingerprinting codes based on MFD low-rate convolutional codes have

been proposed as a family of fingerprinting codes secure against coalitions of

size 2. It is shown by simulation that the proposed codes identify traitors with

an error probability of at most 5∗10−4 when the number of users lies between

28 and 232. Moreover, when the number of colluders is c = 3, our system per-

formance is also acceptable with a Pe < 0.01 even when the noise added by

the colluders degrades the channel to an SNR of 4dB. Finally, it is important to

stress that the presented codes have an efficient decoding algorithm based on

the Max-Log-MAP iterative decoding algorithm.

The contributions related to secure e-commerce of multimedia content, could be

put in a nutshell as:

• We have developed a proof of concept that tracing traitors over YouTube video

service is possible. First of all, the relation between bit error probability, wa-

termarking robustness and distortion is deeply studied. Our study shows that a

nice trade-off between these parameters can be achieved. Next, our conclusions

are applied to the problem of traitor tracing. In this way, we use the watermark-

ing layer (configured taking into account our results) with a fingerprinting code.

It is shown that this fingerprinting code can trace traitors if no collusion is per-

formed, with a really low distortion. If collusion appears, the traitors could be

also traced with a low distortion. Besides, the proposed system does not allow

false positives by design, that is, innocent users cannot be framed.

• A platform for the delivery of copyright protected digital content has been im-

plemented. The copyright protection is based on a combination of watermark-

ing and fingerprinting techniques that allow the generation of protected copies

186

10.1. Conclusions

that can be distributed in a trusted environment. The dishonest redistribution

of the purchased contents can be traced by means of watermarking extraction

and fingerprinting analysis. Both techniques result in the identification of the

malicious users involved in the unauthorized redistribution process. The solu-

tion is presented as a distributed JEE application based on standardized frame-

works such as Spring and Hibernate. As a result the system offers loosely cou-

pled Web services with a high cohesion. The independence and modularity of

the services invite for good maintainability and high scalability. The platform

presents a demonstrable evidence of a copyright protection system that proves

the feasibility of the implementation of watermarking and fingerprinting algo-

rithms on a real life scenario.

Finally, in relation to mobile agents protection, the following contributions have

been done:

• Attacks from malicious host against agents are considered one of the most dif-

ficult problems to solve and there is not a way to avoid them. Furthermore, the

use of mobile agents in IDS is increasingly common so, in order to offer the re-

quired security level in IDS based on agents, it is necessary to combine different

techniques to detect a possible attack although it can not be avoided. The draw-

back of sending an agent to a host is that the host could be malicious and it

can attack the agent because it has whole access not only to the agent data but

the code. Two different alternatives based on the use of software watermark-

ing techniques are presented. The first one is the use of 2 entities for each net-

work segment which control the activity of this network. After a fixed period of

time, one of these entities is moved on to the monitor in order to be verified.

The second proposal uses a cooperative itinerant agent to verify into the moni-

tored host the agent in charge of a network segment. This system uses a matrix

of marks and determines if an agent was modified by asking subsequently set

of sub-marks. Moreover, in these proposals, tamper-proofing and obfuscation

techniques are used to make harder the work of modifying an agent execution.

• A novel approach to guarantee the security of the mobile agents execution in a

compromised host is presented. This approach is based on the algorithm pre-

sented by Myles et al. in [87]. This algorithm has, as well as authorship pro-

tection capacities, integrity code check, tamper detection and fingerprinting ca-

pacities. The original algorithm is based upon branch functions that transfer the

agent execution to the correct point in the program execution flow from a cal-

culation obtained of one way function which depends on an authorship mark

and an integrity check. Our improvement is the incorporation of an external el-

187

10. CONCLUSIONS AND FUTURE WORK

ement called sentinel which keeps the relation or mapping between the values

obtained from the one way function (ki) and the pointer to the next instruction

in the program execution flow. The controlled host needs to send the value of

the appropriate ki to the sentinel and waiting for the response to execute the

agent in the correct way. On the other hand, the sentinel can control periodi-

cally the agent execution because it knows the correct sequence of ki for each

agent. Additionally, a security analysis of the proposed schema is presented and

some aspects related to its implementation are commented.

• The integration of two techniques are introduced to achieve an effective and us-

able protection mechanism for mobile agents against manipulation attacks per-

formed by a malicious host during execution. On one hand, MAW has been pre-

sented as an effective and lightweight attack detection mechanism. The main

ideas behind MAW have been explained, and a discussion about which are the

most appropriate software watermarks to protect mobile agents is performed.

In this way, the guidelines to correctly implement MAW using the CT algorithm

have been also introduced. On the other hand, the HoRA has been presented as

a generic TTP with punishment capabilities. The combined use of the two se-

curity mechanisms leads to a reliable environment for honest users and hosts,

which is worth even at the expense of introducing some overhead.

10.2 Future research work

As future research work, we present a list of open problems

• It would be interesting to study a list-decoding algorithm suitable for turbo-

decoding to obtain the two most likely colluders.

• A basic element in the turbo-codes is the interleaver. In this thesis we have fo-

cused on the constituent codes. It would be interesting to study what should be

the best interleaver for a turbo-fingerprinting code.

• During this thesis we have seen that the convolucional codes can be modified in

order to be used in fingerprinting. On the other hand it has been seen that the

concatenation of algebraic codes can give a good result in this area. A possible

future line could be to study how a concatenation of convolutional codes with

algebraic codes would be adapted to the problem of tracing traitors.

• With regard to the integration of watermarking and fingerprinting it seems inter-

esting to study how to scale the marking process in order to be able to distribute

large amounts of video in real time correctly marked with the user information

of the buyer and thus prevent redistribution.

188

10.2. Future research work

• The marking software developed in this thesis focuses on the MPEG-2 format.

Although we have tried to recover the mark despite various format changes, it

would be interesting to see how to take advantage of the properties of the new

video formats to embed marks.

• It would be interesting to see how to bring all the logic of protection and reputa-

tion of mobile agents to the Internet of Things. This new paradigm has similar-

ities with mobile agents since we have a number of code elements that run on

networks or devices that may have an interest in manipulating the execution of

this code.

189

OWN REFERENCES

JCR

[EMTBS11] O. Esparza, J. L. Muñoz, J. Tomàs-Buliart, and M. Soriano. An infrastruc-

ture for detecting and punishing malicious hosts using mobile agent wa-

termarking. Wireless Communications and Mobile Computing, 11:1446 –

1462, 11 2011.

[TBFS09] Joan Tomàs-Buliart, Marcel Fernández, and Miguel Soriano. Traitor trac-

ing over youtube video service - proof of concept. Telecommunication

Systems, 45(1):47–60, 2009.

LNCS

[PTBFS07] Rafael Pàez, Joan Tomàs-Buliart, Jordi Forné, and Miguel Soriano. Secur-

ing agents against malicious host in an intrusion detection system. In Crit-

ical Information Infrastructures Security (CRITIS 2007), volume 5141/2008

of Lecture Notes in Computer Science, pages 94–105. Springer Berlin / Hei-

delberg, 2007.

[SFS+05] Miguel Soriano, Marcel Fernandez, Elisa Sayrol, Joan Tomas, Joan Casanel-

las, Josep Pegueroles, and Juan Hernández-Serrano. Multimedia copy-

right protection platform demonstrator. In Trust Management (iTrust ’05),

volume 3477/2005 of Lecture Notes in Computer Science, pages 159–178.

Springer Berlin / Heidelberg, 2005.

[TBFS07] Joan Tomàs-Buliart, Marcel Fernandez, and Miguel Soriano. Using in-

formed coding and informed embedding to design robust fingerprinting

embedding systems. In Knowledge-Based Intelligent Information and En-

gineering Systems(KES 2007), volume 4694/2007 of Lecture Notes in Com-

puter Science, pages 992–999. Springer Berlin / Heidelberg, 2007.

[TBFS08a] J. Tomàs-Buliart, M. Fernández, and M. Soriano. New considerations

about the correct design of turbo fingerprinting codes. In Computer Se-

191

OWN REFERENCES

curity - ESORICS 2008, volume 5283/2008 of Lecture Notes in Computer

Science, pages 501–516. Springer Berlin / Heidelberg, 2008.

[TBFS08b] J. Tomàs-Buliart, M. Fernández, and M. Soriano. Protection of mobile

agents execution using a modified self- validating branch-based software

watermarking with external sentinel. In Critical Information Infrastructure

Security (CRITIS 2008), volume 5508/2009 of Lecture Notes in Computer

Science, pages 287–294. Springer Berlin / Heidelberg, 2008.

[TBFS09] Joan Tomàs-Buliart, Marcel Fernandez, and Miguel Soriano. Improve-

ment of collusion secure convolutional fingerprinting information codes.

In Information Theoretic Security (ICITS’ 07), volume 4883/2009 of Lec-

ture Notes in Computer Science, pages 76–88. Springer Berlin / Heidelberg,

2009.

International conferences

[PTBFS07] Rafael Pàez, Joan Tomàs-Buliart, Jordi Forné, and Miguel Soriano. Mais:

Mobile agent integrity system. a security system to ids based on au-

tonomous agents. In Proceedings of the International Conference on Se-

curity and Cryptography (SECRYPT’07), 2007.

[SFT+05] Miguel Soriano, Stephan Flake, Juergen Tacken, Frank Borman, and

Joan Tomàs-Buliart. Digital rights management specification for no-

madic services. In Proceedings of the 16th International Workshop on

Database and Expert Systems Applications (DEXA 2005), 2005.

[SSF+05] Elisa Sayrol, Miguel Soriano, Marcel Fernandez, Joan Casanellas, and

Joan Tomas. Development of a platform offering video copyright pro-

tection and security against illegal distribution. In Security, Steganogra-

phy, and Watermarking of Multimedia Contents, pages 76–83, 2005.

[TBGMFS11] J. Tomas-Buliart, A. Gomez-Muro, M. Fernandez, and M. Soriano. Use

of turbo codes with low-rate convolutional constituent codes in finger-

printing scenarios. In Information Forensics and Security (WIFS), 2011

IEEE International Workshop on, pages 1–6, 2011.

Spanish conferences

[TBCFS06] Joan Tomàs-Buliart, Marc Ciurana, Marcel Fernández, and Miguel Sori-

ano. Watermarking de software: Estado del arte. In IX Reunión Española

sobre Criptología y Seguridad de la Información, 2006.

192

Spanish conferences

[TBCSF05] Joan Tomàs-Buliart, Joan Casanellas, Miguel Soriano, and Marcel Fer-

nández. Diseño de una plataforma de protección del copyright de vídeo.

In III Simposio Español de Comercio Electrónico (SCE’05), 2005.

[TBdCSP07] Joan Tomàs-Buliart, Juan Vera del Campo, Miguel Soriano, and Josep

Pegueroles. Diseño seguro de una plataforma de e-gobierno. In VI Jor-

nadas de Ingeniería Telemática, 2007.

[TBSF05] Joan Tomàs-Buliart, , Miguel Soriano, and Marcel Fernández. Integrando

watermarking y fingerprinting para protección de mpeg-2. In Telecom

i+d 2005, 2005.

[VTBFS10] Sergi Vendrell, Joan Tomàs-Buliart, Marcel Fernandez, and Miguel Sori-

ano. Estudio sobre el uso de códigos ldpc en esquemas de fingerprinting.

In XI Reunión Española sobre Criptología y Seguridad de la Información,

2010.

193

REFERENCES

[1] R.J. Anderson and F.A.P. Petitcolas. On the limits of steganography. Selected Areas

in Communications, IEEE Journal on, 16(4):474–481, May 1998.

[2] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for

minimizing symbol error rate (corresp.). Information Theory, IEEE Transactions

on, 20(2):284–287, Mar 1974.

[3] J. S. Balasubramaniyan, Garcia J. O. Fernandez, D. Isacoff, Eugene H. Spafford,

and Diego Zamboni. An architecture for intrusion detection using autonomous

agents. In ACSAC, pages 13–24, 1998.

[4] S. Baluja and M. Covell. Audio fingerprinting: Combining computer vision &

data stream processing. In Proc. IEEE International Conference on Acoustics,

Speech and Signal Processing ICASSP 2007, volume 2, pages II–213–II–216, 15–

20 April 2007.

[5] S. Baluja, M. Covell, and S. Ioffe. Permutation grouping: intelligent hash func-

tion design for audio &image retrieval. In Proc. IEEE International Conference on

Acoustics, Speech and Signal Processing ICASSP 2008, pages 2137–2140, March

31 2008–April 4 2008.

[6] Alexander Barg, G. R. Blakley, and Gregory A. Kabatiansky. Digital fingerprint-

ing codes: problem statements, constructions, identification of traitors. IEEE

Transactions on Information Theory, 49(4):852–865, 2003.

[7] Tom Bellwood, David Ehnebuske, Yin Leng Husband, Alan Karp, Keisuke

Kibakura, Jeff Lancelle, Sam Lee, Sean MacRoibeaird, Barbara McKee, Tammy

Nordan, Dan Rogers, Christine Tomlinson, and Cafer Tosun. Uddi version 2.03

data structure reference, July 2002.

[8] W. R. Bender, D. Gruhl, N. Morimoto, and A. Lu. Techniques for data hiding.

In W. Niblack and R. C. Jain, editors, Proc. SPIE Vol. 2420, p. 164-173, Storage

and Retrieval for Image and Video Databases III, Wayne Niblack; Ramesh C. Jain;

195

REFERENCES

Eds., volume 2420 of Presented at the Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference, pages 164–173, March 1995.

[9] C. Berrou and A. Glavieux. Near optimum error correcting coding and decod-

ing: turbo-codes. Communications, IEEE Transactions on, 44(10):1261–1271,

Oct 1996.

[10] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-

correcting coding and decoding: Turbo-codes. 1. Communications, 1993. ICC

93. Geneva. Technical Program, Conference Record, IEEE International Confer-

ence on, 2:1064–1070 vol.2, 23-26 May 1993.

[11] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. Informa-

tion Theory, IEEE Transactions on, 44(5):1897 –1905, September 1998.

[12] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data (ex-

tended abstract). In CRYPTO ’95: Proceedings of the 15th Annual International

Cryptology Conference on Advances in Cryptology, pages 452–465, London, UK,

1995. Springer-Verlag.

[13] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendel-

sohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object ac-

cess protocol (soap) 1.1. Technical report, May 2000.

[14] D. Chase. A class of algorithms for decoding block codes with channel measure-

ment information. Information Theory, IEEE Transactions on, 18(1):170–182, Jan

1972.

[15] Brian Chen, Gregory W. Wornell, and Senior Member. Quantization index mod-

ulation: A class of provably good methods for digital watermarking and infor-

mation embedding. IEEE Trans. on Information Theory, 47:1423–1443, 2001.

[16] D. Chess. Security considerations in agent-based systems. In First IEEE Confer-

ence on Emerging Technologies and Applications in Communications (etaCOM),

1996.

[17] D. Chess. Security issues in mobile code systems. In Mobile Agents and Security,

volume 1419 of LNCS. Springer-Verlag, 1998.

[18] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. IEEE

Transactions on Information Theory, 46(3):893–910, 2000.

[19] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn, and

M. Stepp. Dynamic path-based software watermarking. SIGPLAN Not.,

39(6):107–118, 2004.

196

[20] C. Collberg, G. Myles, and A. Huntwork. Sandmark - a tool for software protec-

tion research. IEEE Security and Privacy, 1(4), 2003.

[21] C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfusca-

tion - tools for software protection. IEEE Transactions on Software Engineering,

28(8):735–746, 2002.

[22] Christian Collberg and Clark Thomborson. On the limits of software watermark-

ing. Technical Report 164, Department of Computer Science, The University of

Auckland, August 1998.

[23] Christian Collberg and Clark Thomborson. Software watermarking: Models and

dynamic embeddings. In Principles of Programming Languages 1999, POPL’99,

San Antonio, TX, January 1999.

[24] Max H. M. Costa. Writing on dirty paper. IEEE Transactions on Information

Theory, 29(3):439–, 1983.

[25] J. Cotrina-Navau and M. Fernandez. A family of asymptotically good binary fin-

gerprinting codes. IEEE Trans. Inform. Theory, 56(10), 2010.

[26] M. Covell and S. Baluja. Known-audio detection using waveprint: Spectrogram

fingerprinting by wavelet hashing. In Proc. IEEE International Conference on

Acoustics, Speech and Signal Processing ICASSP 2007, volume 1, pages I–237–I–

240, 15–20 April 2007.

[27] I.J. Cox, J. Kilian, F.T. Leighton, and T. Shamoon. Secure spread spectrum water-

marking for multimedia. Image Processing, IEEE Transactions on, 6(12):1673–

1687, Dec 1997.

[28] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker.

Digital Watermarking and Steganography. Morgan Kaufmann, 2007.

[29] Ingemar Cox, Matthew L. Miller, and Jeffery A. Bloom. Digital watermarking.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[30] Dorothy E. Denning. An intrusion-detection model. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, 13(2):222–232, 1987.

[31] J. Domingo-Ferrer and J. Herrera-Joancomarti. Simple collusion-secure finger-

printing schemes for images. Information Technology: Coding and Computing,

2000. Proceedings. International Conference on, pages 128–132, 2000.

[32] Greg Meredith Erik Christensen, Francisco Curbera and Sanjiva Weerawarana.

Web services description language (wsdl) 1.1, March 2001.

197

REFERENCES

[33] O. Esparza, J.L. Muñoz, M. Soriano, and J. Forné. Punishing malicious hosts with

the cryptographic traces approach. New Generation Computing, 24(4):351–376,

2006.

[34] O. Esparza, M. Soriano, J.L. Munoz, and J. Forne. A protocol for detecting mali-

cious hosts based on limiting the execution time of mobile agents. In Computers

and Communication, 2003. (ISCC 2003). Proceedings. Eighth IEEE International

Symposium on, pages 251–256 vol.1, 2003.

[35] O. Esparza, M. Soriano, J.L. Munoz, and J. Forne. Punishing manipulation at-

tacks in mobile agent systems. In Global Telecommunications Conference, 2004.

GLOBECOM ’04. IEEE, volume 4, pages 2235–2239 Vol.4, 2004.

[36] William M. Farmer, Joshua D. Guttman, and Vipin Swarup. Security for mobile

agents: Issues and requirements. In In Proceedings of the 19th National Infor-

mation Systems Security Conference, pages 591–597, 1996.

[37] W.M. Farmer, J.D. Guttmann, and V. Swarup. Security for mobile agents: Authen-

tication and state appraisal. In European Symposium on Research in Computer

Security (ESORICS), volume 1146 of LNCS. Springer-Verlag, 1996.

[38] M. Fernandez and Miguel Soriano. Fingerprinting concatenated codes with ef-

ficient identification. In ISC ’02: Proceedings of the 5th International Conference

on Information Security, pages 459–470, London, UK, 2002. Springer-Verlag.

[39] Jr. Forney, G. Convolutional codes i: Algebraic structure. Information Theory,

IEEE Transactions on, 16(6):720–738, 1970.

[40] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy

for autonomous agents. In ECAI ’96: Proceedings of the Workshop on Intelligent

Agents III, Agent Theories, Architectures, and Languages, pages 21–35, London,

UK, 1997. Springer-Verlag.

[41] Elke Franz, Anja Jerichow, Steffen Möller, Andreas Pfitzmann, and Ingo Stierand.

Computer based steganography: How it works and why therefore any restric-

tions on cryptography are nonsense, at best. Information Hiding, pages 7–21,

1996.

[42] Pål Frenger, Pål Orten, Pal Frenger, Pal Orten, and Tony Ottosson. Code-spread

cdma using maximum free distance low-rate convolutional codes. IEEE Trans-

actions on Communications, 48:135–144, 2000.

198

[43] Jiri Fridrich. A new steganographic method for palette-based images. In PICS

1999: Proceedings of the Conference on Image Processing, Image Quality and Im-

age Capture Systems (PICS-99), pages 285–289. IS&T - The Society for Imaging

Science and Technology, 1999.

[44] Robert G. Gallager. Low Density Parity-Check Codes. PhD thesis, MIT, Cam-

bridge, 1963.

[45] Ricardo Garcia Gonzalez. youtube-dl: Download videos from youtube.com.

http://www.arrakis.es/ rggi3/youtube-dl/.

[46] Inc. Google. Youtube apis and tools. http://code.google.com/apis/youtube/overview.html.

[47] B. Goyal, S. Sitaraman, and S. Krishnamurthy. Intrusion detection system: An

overview. SANS Institute 2001, as part of the Information Security Reading

Room., 2003.

[48] K. Gracie and M.-H. Hamon. Turbo and turbo-like codes: Principles and appli-

cations in telecommunications. Proceedings of the IEEE, 95(6):1228–1254, 2007.

[49] Hans-Jürgen Guth and Birgit Pfitzmann. Error- and collusion-secure finger-

printing for digital data. In IH ’99: Proceedings of the Third International Work-

shop on Information Hiding, pages 134–145, London, UK, 2000. Springer-Verlag.

[50] J. Hagenauer and P. Hoeher. A viterbi algorithm with soft-decision outputs and

its applications. Global Telecommunications Conference, 1989, and Exhibition.

’Communications Technology for the 1990s and Beyond’. GLOBECOM ’89., IEEE,

pages 1680–1686 vol.3, 27-30 Nov 1989.

[51] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and

convolutional codes. Information Theory, IEEE Transactions on, 42(2):429–445,

1996.

[52] J. Hagenauer and L. Papke. Decoding turbo-codes with the soft output viterbi al-

gorithm (sova). Information Theory, 1994. Proceedings., 1994 IEEE International

Symposium on, pages 164–, 27 Jun-1 Jul 1994.

[53] R. W. Hamming. Error detecting and error correcting codes. Bell System Techin-

cal Journal, 29:147–160, 1950.

[54] Frank Harary and Edgar M. Palmer. Graphical Enumeration. Academic Press,

1973. Academic Press, New York.

199

REFERENCES

[55] S He and M Wu. Performance study on multimedia fingerprinting employing

traceability code. In IEEE International Workshop on Digital Watermarking, vol-

ume 3710, pages 84–96, Siena, Italy, September 2005.

[56] Shan He and Min Wu. Collusion-resistant video fingerprinting for large user

group. Image Processing, 2006 IEEE International Conference on, pages 2301–

2304, Oct. 2006.

[57] Shan He and Min Wu. Joint coding and embedding techniques for multime-

diafingerprinting. Information Forensics and Security, IEEE Transactions on,

1(2):231–247, June 2006.

[58] Fritz Hohl. Time limited blackbox security: Protecting mobile agents from ma-

licious hosts. In Mobile Agents and Security, pages 92–113, London, UK, 1998.

Springer-Verlag.

[59] Henk D. L. Hollmann, Jack H. van Lint, Jean-Paul Linnartz, and Ludo M. G. M.

Tolhuizen. On codes with the identifiable parent property. Journal of Combina-

torial Theory, Series A, 82(2):121–133, May 1998.

[60] R. Housley, W. Ford, W. Polk, and D. Solo. Internet x.509 public key infrastructure

certificate and crl profile, 1999. RFC 2459.

[61] W. Jansen and T. Karygiannis. Mobile agent security. Special publication 800-19,

National Institute of Standards and Technology (NIST), 1999.

[62] W. Jansen, P. Mell, T. Karygiannis, and D. Marks. Mobile agents in intrusion de-

tection and response. In Proc. 12th Annual Canadian Information Technology

Security Symposium, Ottawa, 2000.

[63] Wayne A. Jansen. Countermeasures for mobile agent security. Computer Com-

munications, 23(17):1667–1676, November 2000.

[64] Neil F. Johnson and Sushil Jajodia. Steganalysis of images created using current

steganography software. In Proceedings of the Second International Workshop

on Information Hiding, pages 273–289, London, UK, 1998. Springer-Verlag.

[65] N.F. Johnson and S. Jajodia. Steganalysis: the investigation of hidden informa-

tion. Information Technology Conference, 1998. IEEE, pages 113–116, 1-3 Sep

1998.

[66] Jean-François Jourdas and Pierre Moulin. High-rate random-like spherical fin-

gerprinting codes with linear decoding complexity. Trans. Info. For. Sec., 4:768–

780, December 2009.

200

[67] Taekyung Kim, Taesuk Oh, and Yong Cheol Kim. Fast informed embedding in

dirty-paper trellis-code with orthogonal arcs. In MCPS ’06: Proceedings of the 4th

ACM international workshop on Contents protection and security, pages 47–52,

New York, NY, USA, 2006. ACM Press.

[68] D. Kinny. Reliable agent communication - a pragmatic perspective. New Gener-

ation Computing, 19(2):139–156, 2001.

[69] R. Koetter and A. Vardy. Algebraic soft-decision decoding of reed-solomon

codes. Information Theory, IEEE Transactions on, 49(11):2809–2825, Nov. 2003.

[70] C. Kurak and J. McHugh. A cautionary note on image downgrading. Computer

Security Applications Conference, 1992. Proceedings., Eighth Annual, pages 153–

159, Dec 1992.

[71] Matthew Kwan. The gifshuffle home page.

[72] Danny B Lange and Mitsuru Oshima. Programming and Deploying Java Mobile

Agents with Aglets. Addison-Wesley, Reading, MA, 1998.

[73] S. Lin and D. J. Costello, Jr. Error Control Coding: Fundamentals and Applica-

tions. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[74] Shu Lin and Daniel J. Costello. Error Control Coding, Second Edition. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[75] T. Lindkvist. Fingerprinting of digital documents. Dissertation, 2001.

[76] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve

resistance to static disassembly. In CCS ’03: Proceedings of the 10th ACM confer-

ence on Computer and communications security, pages 290–299, New York, NY,

USA, 2003. ACM Press.

[77] Romana Machado. Ez stego. http://www.fqa.com.

[78] Macromedia. Macromedia and sorenson media bring video to macromedia

flash content and applications. Macromedia Press Room, 2002.

[79] A. Maña, J. Lopez, J.J. Ortega, E. Pimentel, and J.M. Troya. A framework for

secure execution of software. International Journal of Information Security,

3(2):99–112, 2004.

[80] Matthew L. Miller, Gwenaël J. Doërr, and Ingemar J. Cox. Dirty-paper trellis

codes for watermarking. In ICIP (2), pages 129–132, 2002.

201

REFERENCES

[81] Matthew L. Miller, Gwenaël J. Doërr, and Ingemar J. Cox. Informed embedding

for multi-bit watermarks. In Digital Watermarking: First International Work-

shop, IWDW 2002, Seoul, Korea, November 21-22, 2002. Revised Papers, pages

13–21, November 2002.

[82] Matthew L. Miller, Gwenaël J. Doërr, and Ingemar J. Cox. Applying informed

coding and embedding to design a robust high-capacity watermark. IEEE Trans-

actions on Image Processing, 13(6):792–807, 2004.

[83] Y. Minsky, R. van Renesse, F. Schneider, and S.D. Stoller. Cryptographic sup-

port for fault-tolerant distributed computing. In Seventh ACM SIGOPS European

Workshop, 1996.

[84] P. Moulin and R. Koetter. Data-hiding codes. Proceedings of the IEEE,

93(12):2083–2126, Dec. 2005.

[85] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 internet

public key infrastructure - online certificate status protocol - ocsp. June 1999.

[86] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 internet

public key infrastructure online certificate status protocol - ocsp, 1999. RFC

2560.

[87] Ginger Myles and Hongxia Jin. Self-validating branch-based software water-

marking. In Information Hiding, pages 342–356, 2005.

[88] Jasvir Nagra and Clark D. Thomborson. Threading software watermarks. In In-

formation Hiding, pages 208–223, 2004.

[89] Josep Cotrina Navau, Marcel Fernandez, and Miguel Soriano. A family of collu-

sion 2-secure codes. In auro Barni, Jordi Herrera-Joancomartí, Stefan Katzen-

beisser, and Fernando Pérez-González, editors, Information Hiding, 7th In-

ternational Workshop, IH 2005, Barcelona, Spain, June 6-8, 2005, Revised Se-

lected Papers, volume 3727 of Lecture Notes in Computer Science, pages 387–397.

Springer, 2005.

[90] G. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. In Mobile

Agents and Security, volume 1419 of LNCS. Springer-Verlag, 1998.

[91] Koji Nuida. An improvement of short 2-secure fingerprint codes strongly avoid-

ing false-positive. In Stefan Katzenbeisser and Ahmad-Reza Sadeghi, editors,

Information Hiding, volume 5806 of Lecture Notes in Computer Science, pages

161–175. Springer Berlin / Heidelberg, 2009.

202

[92] Hyacinth S. Nwana. Software agents: An overview. Knowledge Engineering Re-

view, 11:205–244, 1996.

[93] R. Oppliger. Security issues related to mobile code and agent-based systems.

Computer Communications, 22(12):1165–1170, 1999.

[94] Rafael Paez, Cristina Satizabal, and Jordi Forne. Cooperative itinerant agents

(cia): Security scheme for intrusion detection systems. In ICISP ’06: Proceedings

of the International Conference on Internet Surveillance and Protection, page 26,

Washington, DC, USA, 2006. IEEE Computer Society.

[95] Mark A. Pinsky. Introduction to Fourier Analysis and Wavelets (Brooks/Cole Series

in Advanced Mathematics). Thomson Brooks/Cole, 2001.

[96] I. Pitas. A method for signature casting on digital images. Image Processing,

1996. Proceedings., International Conference on, 3:215–218 vol.3, Sep 1996.

[97] FFmpeg Project. Ffmpeg. http://ffmpeg.org/.

[98] Reihaneh Safavi-Naini and Yejing Wang. Collusion secure q-ary fingerprinting

for perceptual content. In DRM ’01: Revised Papers from the ACM CCS-8 Work-

shop on Security and Privacy in Digital Rights Management, pages 57–75, 2002.

[99] Tomas Sander and Christian F. Tschudin. Protecting mobile agents against ma-

licious hosts. In Mobile Agents and Security, pages 44–60, London, UK, 1998.

Springer-Verlag.

[100] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without in-

teraction. Foundations of Computer Science, Annual IEEE Symposium on, 0:427–

436, 1992.

[101] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and

source code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[102] Francesc Sebé and Josep Domingo-Ferrer. Short 3-secure fingerprinting codes

for copyright protection. Information Security and Privacy, pages 279–283, 2002.

[103] Claude Elwood Shannon. A mathematical theory of communication. The Bell

System Technical Journal, 27(3):379–423, 7 1948.

[104] Jessica Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinatorial prop-

erties of frameproof and traceability codes. IEEE Transactions on Information

Theory, 47(3):1042–1049, March 2001.

203

REFERENCES

[105] D. R. Stinson, Tran van Trung, and R. Wei. Secure frameproof codes, key dis-

tribution patterns, group testing algorithms and related structures. Journal of

Statistical Planning and Inference, 86(2):595–617, May 2000.

[106] D. R. Stinson and R. Wei. Combinatorial properties and constructions of trace-

ability schemes and frameproof codes. SIAM J. Discret. Math., 11(1):41–53, 1998.

[107] Gábor Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2):1–24, 2008.

[108] TEKTRONIX. Mpeg-2 elementary streams corpus. URL:

ftp://ftp.tek.com/tv/test/streams/Element/index.html.

[109] R.G. van Schyndel, A.Z. Tirkel, and C.F. Osborne. A digital watermark. Image

Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, 2:86–90

vol.2, Nov 1994.

[110] R. S. Veerubhotla, A. Saxena, V. P. Gulati, and A. K. Pujari. Gossip codes for finger-

printing: Construction, erasure analysis and pirate tracing. Journal of Universal

Computer Science, 11(1):122–149, 2005.

[111] R. Venkatesan, V. Vazirani, and S. Sinha. A graph theoretic approach to software

watermarking. In 4th International Information Hiding Workshop, 2001.

[112] Giovanni Vigna. Cryptographic traces for mobile agents. In Mobile Agents and

Security, pages 137–153, London, UK, 1998. Springer-Verlag.

[113] Andrew J. Viterbi. CDMA: principles of spread spectrum communication. Addi-

son Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1995.

[114] Andrew J. Viterbi and James K. Omura. Principles of Digital Communication and

Coding. McGraw-Hill, Inc., New York, NY, USA, 1979.

[115] Branka Vucetic and Jinhong Yuan. Turbo codes: principles and applications.

Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[116] Neal R. Wagner. Fingerprinting. In SP ’83: Proceedings of the 1983 IEEE Sympo-

sium on Security and Privacy, page 18, Washington, DC, USA, 1983. IEEE Com-

puter Society.

[117] Z. J. Wang, Min Wu, Hong Zhao, K. J. R. Liu, and W. Trappe. Resistance of or-

thogonal gaussian fingerprints to collusion attacks. In ICME ’03: Proceedings

of the 2003 International Conference on Multimedia and Expo, pages 617–620,

Washington, DC, USA, 2003. IEEE Computer Society.

204

[118] Z.J. Wang, Min Wu, H.V. Zhao, W. Trappe, and K.J.R. Liu. Anti-collusion forensics

of multimedia fingerprinting using orthogonal modulation. Image Processing,

IEEE Transactions on, 14(6):804–821, June 2005.

[119] Bennet S. Yee. A sanctuary for mobile agents. In Secure Internet Program-

ming, Lecture Notes in Computer Science, pages 261–273, London, UK, 1999.

Springer-Verlag.

[120] Katsunari Yoshioka, Junji Shikata, and Tsutomu Matsumoto. Systematic treat-

ment of collusion secure codes: Security definitions and their relations. In In-

formation Security, 6th International Conference, ISC 2003, Bristol, UK, October

1-3, 2003, Proceedings, pages 408–421, 2003.

[121] Zhiguang Zhang, Xiaosu Chen, and Miao Zhou. A digital fingerprint coding

based on turbo codes. Computational Intelligence and Security, 2007 Interna-

tional Conference on, pages 897–901, 2007.

[122] Yan Zhu, Wei Zou, and Xinshan Zhu. Collusion secure convolutional finger-

printing information codes. In ASIACCS ’06: Proceedings of the 2006 ACM Sym-

posium on Information, computer and communications security, pages 266–274,

New York, NY, USA, 2006. ACM Press.

205

	
	Agraïments
	Acronyms
	Abstract
	I Overview
	1 Introduction
	1.1 About this thesis
	1.2 Motivation and objectives
	1.2.1 Objectives on fingerprinting codes and schemes
	1.2.2 Objectives on secure e-commerce of multimedia content
	1.2.3 Objectives on mobile agents protection

	1.3 Main contributions of this thesis
	1.3.1 Contributions related to fingerprinting codes and schemes
	1.3.2 Contributions related to secure e-commerce of multimedia content
	1.3.3 Contributions related to mobile agents protection

	2 State of the art
	2.1 Digital Watermarking
	2.1.1 Differences between watermarking and cryptography
	2.1.2 Classical image watermarking systems
	2.1.3 Common concepts in actual watermarking schemes
	2.1.4 Spread Spectrum Modulation

	2.2 Digital Fingerprinting
	2.2.1 Properties of fingerprinting codes
	2.2.2 Types of fingerprinting codes
	2.2.3 Comparison of the most significant existing fingerprinting schemes

	2.3 Codes with iterative decoding
	2.3.1 Turbo Codes

	2.4 Software Watermarking
	2.4.1 Classification of Software Watermarks
	2.4.2 Threat Model for Software Copyright Protection
	2.4.3 Dynamic Graph Watermarking
	2.4.4 Self-Validating Branch-Based Software Watermarking by Myles et al.

	2.5 Mobile agents

	II Contributions related to fingerprinting codes and schemes
	3 Improvements of existent convolutional-like fingerprinting codes
	3.1 Introduction
	3.2 Definition
	3.3 Boneh-Shaw fingerprinting model
	3.3.1 n-secure codes
	3.3.2 Logarithmic Length c-Secure Codes

	3.4 Impr. of Collusion Secure Convolutional Fingerprinting Information Codes
	3.4.1 Collusion Secure Convolutional Fingerprinting Information Codes
	3.4.2 A new critical performance analysis
	3.4.3 Guidelines for minimizing the effect of false positives

	3.5 New considerations about the correct design of Turbo Fingerprinting Codes
	3.5.1 Turbo Codes
	3.5.2 Turbo Fingerprinting Scheme
	3.5.3 A new critical performance analysis
	3.5.4 Proposed improvements and open problems

	3.6 Conclusions

	4 Use of Turbo Codes with Low-Rate Convolutional Constituent Codes
	4.1 Introduction
	4.1.1 The novel contribution

	4.2 Definitions and previous results
	4.2.1 Turbo Codes
	4.2.2 Maximum free distance low-rate convolutional codes
	4.2.3 Traceability Codes

	4.3 Family of turbo fingerprinting codes for coalitions of size two
	4.3.1 Code construction
	4.3.2 Family construction

	4.4 Security analysis
	4.4.1 Study about the performance of the presented codes depending on constituent codes and the number of supported users
	4.4.2 Length comparison with other well-known fingerprinting constructions
	4.4.3 Puncturing effects on proposed codes
	4.4.4 On the selected algorithm and implementation details of the watermarking layer
	4.4.5 Innocent-user framing probability versus Watermarking-to-Noise Ratio
	4.4.6 Effect of the use of a repetition code in the performance of the whole system

	4.5 Conclusions

	III Contributions related to secure e-commerce of multimedia content
	5 Traitor tracing over YouTube video service - Proof of concept
	5.1 Introduction
	5.2 Scenario description
	5.3 Watermarking Layer
	5.3.1 Watermarking in the frequency domain
	5.3.2 Secure Spread Spectrum

	5.4 Fingerprinting Layer
	5.4.1 Background on coding theory
	5.4.2 Construction of a Concatenated Fingerprinting Code
	5.4.3 Overview of the Fingerprinting Concatenated Decoding Algorithm

	5.5 YouTube Broadcast video service
	5.5.1 Technical notes

	5.6 Our implementation
	5.6.1 Sequence generator
	5.6.2 Collusion attack generator
	5.6.3 Traitor Tracing
	5.6.4 External tools

	5.7 Results
	5.7.1 How to choose the correct alpha.
	5.7.2 Traitors retrieval performance after collusion attacks.

	5.8 Conclusions

	6 Development of a platform for the copyright protection
	6.1 Introduction
	6.2 Working Scenario
	6.3 Implementation Details
	6.3.1 Watermarking Layer
	6.3.2 Fingerprinting Layer
	6.3.3 Implementation Details of Digital Rights Protection

	6.4 Entities and Collaboration
	6.4.1 Platform Functionalities
	6.4.2 Stock Management
	6.4.3 System Architecture
	6.4.4 Platform User Interface

	6.5 Conclusion

	IV Contributions related to Mobile Agent Protection
	7 Execution integrity of mobile agents in intrussion detection systems
	7.1 Introduction
	7.2 Background
	7.2.1 Software watermarking and fingerprinting
	7.2.2 Intrusion Detection Systems
	7.2.3 IDS based on autonomous agents
	7.2.4 Risks in an IDS based on agents

	7.3 Mobile Agent integrity System
	7.3.1 Scheme proposal
	7.3.2 Discussion

	7.4 Improvement of Cooperative Itinerant Agents platform
	7.4.1 Protecting agents against replay attacks
	7.4.2 Using a matrix of marks
	7.4.3 Code obfuscation
	7.4.4 Mark embedding
	7.4.5 Discussion

	7.5 Conclusions

	8 Protection of MA execution using an external sentinel
	8.1 Introduction
	8.2 General Concepts
	8.3 Self-Validating Branch-Based Software Watermarking with external sentinel
	8.4 Security analysis
	8.5 Implementation aspects
	8.6 Conclusions

	9 An infrastructure for detecting and punishing malicious hosts
	9.1 Introduction
	9.2 Background
	9.2.1 Malicious Hosts
	9.2.2 Software Watermarking

	9.3 Mobile Agent Watermarking (MAW)
	9.3.1 Watermark Embedding
	9.3.2 Watermark Transference
	9.3.3 Detecting Manipulations
	9.3.4 Advantages and Drawbacks of MAW
	9.3.5 Design of the Watermarks for MAW
	9.3.6 Implementation of MAW using the CT Algorithm

	9.4 Punishing Attacks with the HoRA
	9.4.1 Status Checking
	9.4.2 Host Revocation
	9.4.3 Summarizing the Overall Process

	9.5 Conclusions

	V Final remarks
	10 Conclusions and future work
	10.1 Conclusions
	10.2 Future research work

	Own References
	JCR
	LNCS
	International conferences
	Spanish conferences

	References

