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Abstract

Mobile wireless communication systems have rapidly and globally become an integral
part of everyday life and have brought forth the internet of things. With the evolution
of mobile wireless communication systems, joint communication and positioning becomes
increasingly important and enables a growing range of new applications. Humanity has
already grown used to having access to multimedia data everywhere at every time and
thereby employing all sorts of location-based services. Global navigation satellite systems
can provide highly accurate positioning results whenever a line-of-sight path is available.
Unfortunately, harsh physical environments are known to degrade the performance of
existing systems. Therefore, ground-based systems can assist the existing position esti-
mation gained by satellite systems.

Determining positioning-relevant information from a unified signal structure designed
for a ground-based joint communication and positioning system can either complement
existing systems or substitute them. Such a system framework promises to enhance the
existing systems by enabling a highly accurate and reliable positioning performance and
increased coverage. Furthermore, the unified signal structure yields synergetic effects.

In this thesis, I propose a channel estimation-based joint communication and position-
ing system that employs a virtual training matrix. This matrix consists of a relatively
small training percentage, plus the detected communication data itself. Via a core semi-
blind estimation approach, this iteratively includes the already detected data to accu-
rately determine the positioning-relevant parameter, by mutually exchanging information
between the communication part and the positioning part of the receiver. Synergy is
created. I propose a generalized system framework, suitable to be used in conjunction
with various communication system techniques.

The most critical positioning-relevant parameter, the time-of-arrival, is part of a physi-
cal multipath parameter vector. Estimating the time-of-arrival, therefore, means solving a
global, non-linear, multi-dimensional optimization problem. More precisely, it means solv-
ing the so-called inverse problem. I thoroughly assess various problem formulations and
variations thereof, including several different measurements and estimation algorithms.

A significant challenge, when it comes to solving the inverse problem to determine the
positioning-relevant path parameters, is imposed by realistic multipath channels. Most
parameter estimation algorithms have proven to perform well in moderate multipath envi-
ronments. It is mathematically straightforward to optimize this performance in the sense
that the number of observations has to exceed the number of parameters to be estimated.
The typical parameter estimation problem, on the other hand, is based on channel esti-
mates, and it assumes that so-called snapshot measurements are available. In the case of
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realistic channel models, however, the number of observations does not necessarily exceed
the number of unknowns. In this thesis, I overcome this problem, proposing a method to
reduce the problem dimensionality via joint model order selection and parameter estima-
tion. Employing the approximated and estimated parameter covariance matrix inherently
constrains the estimation problem’s model order selection to result in optimal parameter
estimation performance and hence optimal positioning performance. To compare these
results with the optimally achievable solution, I introduce a focused order-related lower
bound in this thesis. Additionally, I use soft information as a weighting matrix to enhance
the positioning algorithm positioning performance.

For demonstrating the feasibility and the interplay of the proposed system components,
I utilize a prototype system, based on multi-layer interleave division multiple access. This
proposed system framework and the investigated techniques can be employed for multiple
existing systems or build the basis for future joint communication and positioning systems.
The assessed estimation algorithms are transferrable to all kinds of joint communication
and positioning system designs. This thesis demonstrates their capability to, in principle,
successfully cope with challenging estimation problems stemming from harsh physical
environments.

Keywords: Positioning, navigation, communication, estimation, optimisation, particle
swarm optimisation, model order selection, information theoretic criteria



Kurzfassung

Mobile drahtlose Kommunikationssysteme sind schnell und global zu einem festen Be-
standteil des Alltags geworden und haben das Internet der Dinge hervorgebracht. Mit
der Entwicklung mobiler drahtloser Kommunikationssysteme wird die gemeinsame Kom-
munikation und Positionierung immer wichtiger. Die Menschheit hat sich bereits daran
gewöhnt, jederzeit und überall auf Multimediadaten zuzugreifen und dabei alle Arten
von ortsbezogenen Diensten zu nutzen. Globale Navigationssatellitensysteme sind in der
Lage, hochpräzise Positionierungsergebnisse zu liefern, wenn eine direkte Sichtverbindung
verfügbar ist. Leider ist bekannt, dass schwierige physikalische Umgebungen die Leistung
bestehender Systeme beeinträchtigen. Hier können aber andere, bodengestützte Systeme
die bestehende, durch Satellitensysteme gegebene, Positionsschätzung unterstützen.

Das Ermitteln von positionsrelevanten Informationen aus einer einheitlichen Signal-
struktur, die für ein bodengestütztes gemeinsames Kommunikations- und Positionsbestim-
mungssystem entwickelt wurde, kann vorhandene Systeme entweder ergänzen oder erset-
zen. Ein solches Systemgerüst verspricht, die vorhandenen Systeme zu verbessern, indem
es eine sehr genaue und zuverlässige Positionierungsleistung und eine erhöhte Abdeck-
ung ermöglicht. Darüber hinaus führt die einheitliche Signalstruktur zu synergetischen
Effekten.

In dieser Arbeit schlage ich ein auf Kanalschätzung basierendes gemeinsames Kommu-
nikations- und Positionierungssystem vor, das eine virtuelle Trainingsmatrix verwendet:
Diese Matrix besteht aus einem relativ kleinen Trainingsprozentsatz plus den erfassten
Kommunikationsdaten. Über einen zentralen semi-blinden Schätzansatz können die er-
fassten Daten iterativ einbezogen werden, um den positionsrelevanten Parameter genau
zu bestimmen, indem Informationen zwischen dem Kommunikationsteil und dem Or-
tungsteil des Empfängers ausgetauscht werden, wodurch Synergie entsteht. Ich schlage
ein verallgemeinertes Systemgerüst vor, das die Verwendun verschiedener Kommunika-
tionssystemtechniken erlaubt.

Der wichtigste positionsrelevante Parameter, die Signalankunftszeit, ist Teil eines
physikalischen Mehrweg-Parametervektors. Das Schätzen der Ankunftszeit bedeutet da-
her, ein globales nichtlineares, mehrdimensionales Optimierungsproblem zu lösen, genauer
gesagt, das sogenannte inverse Problem zu lösen. Ich stelle eine gründliche Untersuchung
verschiedener Problemformulierungen und deren Variationen vor, die verschiedene Mes-
sungen und Schätzalgorithmen vorstellt und bewertet.

Eine große Herausforderung bei der Lösung des inversen Problems zur Ermittlung
der positionsrelevanten Pfadparameter stellen realistische Mehrwegekanäle dar. Es zeigt
sich, dass die meisten Parameterschätzungsalgorithmen in moderaten Mehrwegumge-
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bungen gut funktionieren. Hier ist es mathematisch verhältnismäßig einfach, die zu-
grundeliegende Kostenfunktion zu optimieren, wenn nur die Anzahl der Beobachtun-
gen die Anzahl der geschätzten Parameter überschreitet. Das typische realistische Pa-
rameterschätzungsproblem dagegen basiert auf Kanalschätzungen und geht davon aus,
dass sogenannte Schnappschussmessungen verfügbar sind. Bei realistischen Kanalmod-
ellen überschreitet allerdings die Anzahl der Beobachtungen nicht immer die Anzahl der
Unbekannten. In dieser Arbeit schlage ich eine Methode zur optimalen Reduzierung
der Problem-Dimensionalität als Problemlösung vor: Durch die gemeinsame Auswahl
der Modellordnung und Parameterschätzung, unter Verwendung der approximierten und
geschätzten Parameterkovarianzmatrix, wird die Modellordnung des Schätzproblems da-
rauf optimiert, eine optimale Parameterschätzung zu gewährleisten und damit auch opti-
male Positionierungsergebnisse. Um diese Ergebnisse mit der optimal erreichbaren Lösung
zu vergleichen, definiere ich in dieser Arbeit eine fokussierte, modellordnungs-spezifische
Untergrenze. Darüber hinaus verwende ich die Soft-Informationen als Gewichtungsma-
trix, um die Positionierungsleistung des Positionierungsalgorithmus zu verbessern.

Um das Zusammenspiel und die Durchführbarkeit der vorgeschlagenen Systemkom-
ponenten zu demonstrieren, begutachte ich in dieser Arbeit einen Systemprototypen,
welcher auf Multilayer-Interleave-Division-Mehrfachzugriff basiert. Das vorgeschlagene
Systemgerüst und die untersuchten Techniken können für verschiedene bestehende Sys-
teme eingesetzt werden oder bilden die Basis für zukünftige gemeinsame Kommunikations-
und Ortungssysteme. Diese Arbeit zeigt, dass die vorgestellten Schätzalgorithmen prinzip-
iell auf alle Arten von gemeinsamen Kommunikations- und Positionierungssystemen über-
tragbar sind und schwierige physikalische Umgebungen und daraus resultierende schwierige
Schätzprobleme bewältigen können.

Stichwörter: Positionierung, Navigation, Kommunikation, Schätzung, Optimierung,
Partikelschwarmoptimierung, Auswahl der Modellordnung, informationstheoretische Kri-
terien
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Chapter 1

Introduction

1.1 Motivation

In the era of ubiquitous, almost unlimited access to information and connectivity via
communication devices, it becomes increasingly important to be able to rely on accurate
position information, always and everywhere. Rapidly emerging positioning capabilities
go hand in hand with a rapid increase in location-based services. It is straightforward that
joining communication and positioning yields synergy. Joint international cooperation
projects like the wireless hybrid enhanced mobile radio estimators (WHERE) project
[RP08] and especially its successor, the WHERE2 project [NPD+13, RSS+13] emphasize
that joint communication and positioning (JCAP) is an emerging, diverse and complex
research area.

Mobile communication devices nowadays are already known to provide ubiquitous po-
sitioning information [SDM14]. First approaches to equip communication devices with
additional positioning capabilities have been realized by incorporating a standalone com-
munication system as well as a standalone positioning system within a single device.
Nowadays, communication systems, like the long-term evolution (LTE) and 5G stan-
dards, are designed to provide positioning capabilities of their own by utilizing so-called
positioning reference signals. Furthermore, today, many different positioning technolo-
gies assist and complement each other. Hence, state-of-the-art JCAP systems already
offer accurate position information in the majority of all transmission scenarios. There
is, however, room for improvement in terms of accuracy, reliability, coverage, latency,
complexity and synergy. In the presence of multipath and in the absence of a line of sight
(LOS) connection, location estimation reliability is a challenging goal and the accuracy
also suffers from harsh physical environments. Since standalone communication systems
and standalone positioning systems are designed based on inherently opposing demands,
any interplay between the two inevitably leads to a tradeoff.

Novel JCAP system designs potentially allow to optimize both, the communication
as well as the positioning unit, equally. They promise synergetic effects: Communica-
tion algorithms can be optimized by utilizing positioning information and, in return,
positioning algorithms can be improved by utilizing communication information. Regard-
ing the communication part resource allocation, cell handover and beamforming benefit



2 Chapter 1. Introduction

from positioning information. On the other hand, from a positioning point of view the
communication system may be used to provide positioning reference signals and further
positioning relevant information, like reference object coordinates.

Typical positioning-relevant information, like the time of arrival (TOA) or the angle
of arrival (AOA) can be extracted from channel measurements. Communication systems
inherently provide channel measurements, called channel estimates. Therefore, the ap-
proach to employ channel estimates in order to yield accurate position information is
appealing. Moreover, since channel estimation is crucial for both communication and
positioning, from a JCAP perspective it can be understood as the crucial link and also as
the bottleneck of the JCAP system as envisaged in this thesis. For TOA and channel es-
timation based JCAP, high resolution parameter estimation, model selection, the system
design, modeling and the theoretical performance limits are all factors having an impact
on the overall system performance. Furthermore, all these factors depend on each other.
Although, all of these factors on their own are rather matured research areas that have
evolved over several decades, contributions on investigating them for JCAP purposes are
rare and they still are an emerging development that requires deeper insights.

Data transmission and positioning each on their own have some at first sight different
system requirements. For example, considering synchronization for communication, only
coarse delay estimates are required at the receiver. A TOA based positioning system,
however, requires accurate delay estimates. In favor of high data rates, for communication
purposes, it is beneficial to keep the overhead due to transmitting known sequences, so-
called pilot sequences, as low as possible. On the other hand, for positioning purposes,
increasing the pilot power is principally beneficial.

Despite such contradictory demands, channel estimation based JCAP promises to be
highly synergetic and a joint design approach can target to overcome opposing demands
or at least find a reasonable tradeoff.

1.2 Context, Scope and Aim

Since channel estimation can be employed as the link between communication and po-
sitioning, the fundamental equations can be formulated in a generic manner. The idea
of a generic channel estimation based JCAP system framework fundamentally yields the
following questions:

• How accurately can the positioning relevant information be estimated theoretically
in such frameworks under the assumption of realistic physical environments (se-
vere multipath) in conjunction with a limited amount of observations to solve the
underlying estimation problem?

• Which modeling approaches, parameters, system components and algorithms lead
to optimal and realistic designs?

• Which tradeoffs regarding communication and positioning requirements have an
impact on such frameworks?
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• Do the proposed estimation techniques asymptotically approach the associated the-
oretical limits and are the typical theoretical performance bounds sufficient for joint
communication and positioning?

• How can soft information improve positioning?

This thesis targets the clarification of these questions, paving the way to the greater
goal: To improve existing and to learn for possible alternative future JCAP designs.
Therefore, the aim of this thesis is to formulate a generic system, to derive, to assess and
to exploit theoretical limits thereof, to assess possible estimation and detection algorithms
and finally to demonstrate a prototype system design. Note that this thesis partially builds
upon the results in [Sch12] and it takes up at the for this thesis most relevant insights
provided in the dissertation and related publications [SBKH10], [SAH11b], [SAH11a],
[SAH12] that are briefly summarized here:

• The TOA estimation performance for a scenario with a single-input single-output
(SISO) framework, snapshot channel measurements and a interleave-division mul-
tiplexing prototype communication system [Sch12] indicate: Although the position
can be estimated accurately in simplified two-path channel models, the system pro-
posal fails to achieve accurate positioning results in realistic multipath channel sce-
narios. The framework proposed in [Sch12] requires modification in order to tackle
the challenges in more realistic channel scenarios.

• Position estimates can be improved by estimating and employing soft reliability
information for the positioning-relevant estimates [SAH11b].

• Targeting high resolution positioning-relevant parameter estimation problems leads
to the formulation of multi-dimensional, non-linear global optimization problems
that can be solved by a wide range of available solutions from the literature. In most
cases, these solutions require some kind of initial guess for the parameter estimates.
Alternatively, they can be solved via heuristic global optimization strategies, like
particle swarm optimization (PSO) [SBKH10], which do not require any initial guess.

• Among other parameters, the positioning performance limits depend on the sam-
pling frequency and the number of available observations [SAH12] of the channel
estimates.

Therefore, in this thesis I

• formulate and theoretically and numerically assess a channel estimation based JCAP
framework and the related estimation and optimization algorithms (the framework
is generalized to cover different communication signal structures and hence is ap-
plicable to different broadband cellular network technologies, 2G-5G and possibly
beyond).

• extend the single snapshot channel estimation approach to a single input multiple
output (SIMO) and time series measurement setup and theoretically and numer-
ically assess the involved benefits in terms of the positioning-relevant estimation
performance.
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• propose and assess joint model selection and parameter estimation solutions to en-
able reliable high-resolution parameter estimation in more realistic channel scenar-
ios.

• draft how positioning relevant reliability or soft information can be employed ben-
eficially in multiple ways.

• discuss the range of different receiver modeling approaches, problem formulations
and theoretical related bounds, estimation algorithms and their applicability.

• provide overall results for a prototype system.

1.3 Thesis Outline

This thesis is structured in the following manner:

Chapter 2 embeds this work into a scientific context and provides JCAP basics. It briefly
summarizes positioning principles, introduces state-of-the-art JCAP systems, drafts en-
visaged future system concepts and relates these topics to open questions and challenges.
Afterwards it motivates channel estimation based JCAP, the fundament of this thesis and
outlines associated challenges.

Chapter 3 introduces the mobile radio channel modeling as used in this thesis. Note
that the system performance in this thesis critically depends on the underlying channel
model.

Chapter 4 introduces the proposed system design. This chapter builds the required
theoretic fundament for the generalized channel estimation-based system framework in
this thesis.

Chapter 5 is this thesis’ main chapter. This chapter introduces and assesses the cho-
sen estimation algorithms and the parameter estimation method developed to tackle the
estimation problem specific obstacles, which are typically imposed due to the presence
of realistic multipath channels. All required Cramer-Rao lower bounds are provided as
the theoretically optimally achievable MSE estimation performance under the assumption
that the assessed estimator belongs to the class of minimum variance unbiased estima-
tors. Moreover, I show how to determine soft information. More specifically I show how
to determine the estimate’s covariance matrix and for what this is useful. I numerically
assess channel estimation, joint model selection, parameter estimation and system exten-
sions and compare these results to the theoretical lower bounds in this chapter. Finally,
positioning and the related theoretical bounds are introduced.

Chapter 6 assesses a range of information theoretic criteria and their applicability to
this thesis. A joint model selection and parameter estimation approach based on soft
delay estimates is introduced. Due to the fact that the classical lower bounds, namely the
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Cramer-Rao lower bound, fails to be an appropriate bound in case of joint model selection
and parameter estimation, I propose a novel bound called the focused order-related lower
bound, which I show can successfully be used to formulate the optimally achievable MSE
performance for such problems.

Chapter 7 introduces a possible prototype system that, without loss of generality, is
in this thesis is based on multi-layer interleave division multiple access, a non-orthogonal
combination of multiple access and multiplexing. The numerical results demonstrate the
channel estimation based JCAP system proposal feasibility.

Chapter 8 briefly concludes this thesis.

For the sake of brevity and as a reference to the reader, all abbreviations, symbols and
mathematical definitions used througout the thesis are summarized in the Appendices B
and C. Longer derivations and calculations are provided in Appendix A.
The work in this thesis was part of and furthermore builds upon a joint project on
interleave-division multiple access based joint communication and navigation. Parts of
the work in this thesis have been already been published in [AH13, SBKH10, SAH11b,
SAH11a, SAH12] or are currently under review in [AH20].
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Chapter 2

Joint Communication and
Positioning (JCAP)

The purpose of this chapter is to substantiate the research of this thesis by putting it
thematically into a wider context with respect to research projects and ongoing develop-
ments in the related research areas. In order to understand JCAP systems, one has to
understand a few basics of communication systems, positioning principles, state-of-the-
art systems, ongoing research, the special role of channel estimation, challenges and open
problems.

JCAP system approaches are designed to optimize many different performance metrics
for communication as well as positioning. For communication systems the bit error rate,
the channel capacity, the data rate, the coverage, the energy consumption, the cost and
the complexity are important performance metrics. For positioning, on the other hand,
the most critical performance metrics are accuracy and coverage, followed by scalability,
cost and complexity, adaptiveness and responsiveness [FNI13]. Figure 2.1 attempts to
visualize the network of related topics.

2.1 Communication Systems

A typical communication system consists of a number of transmitters, equal to or larger
as one, and a number of receivers, equal to or larger than one. Both ends are connected
by the physical channel in-between.

As shown in the second subfigure of Figure 2.2, in this thesis we assume

• the physical channel is a wireless channel model

• either the transmitter is a base station and the receiver is a mobile device (downlink)
or the transmitter is the mobile device and the receiver is a base station (uplink)

• LOS signal propagation and multipath propagation

• more than three reference objects (e.g. base stations) are available for positioning
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Transmitter Channel Receiver

Noise

(a) The main components of a single-user communication system setup are the transmitter, the
channel and the receiver.

LOS

Multipath

(b) The scenario that I assume in this thesis is a ground-based communication system setup
connected by a wireless channel. The signals are assumed to propagate via multiple paths
including a LOS path.
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(c) The schematic visualizes the different concepts how to separate multiple users mathematically
in the three domains time, frequency and power/code. Each color represents a different user.

Figure 2.2: The subfigures show a communication system in a), assumptions of this thesis
in b), and multiple access schemes in c)



10 Chapter 2. Joint Communication and Positioning (JCAP)

Multiple transmitters, or multiple users, are modelled according to the various math-
ematical principles of multiple access. The last two decades of mobile communication
standardization have brought forth different multiple access schemes: a combination of
time-division multiple access (TDMA) [FAG95] and frequency-division multiple access
(FDMA) for 2G, code-division multiple access (CDMA) for 3G Universal Mobile Telecom-
munications System (UMTS) [SvROL99], orthogonal frequency-division multiple access
(OFDMA) for 4G LTE [Erg09] and the potential setup for non-orthogonal multiple ac-
cess (NOMA) for 5G [DLK+17, DWY+15]. All these different multiple access schemes
operate in different mathematical domains, like the time domain, the code domain or
the frequency domain, to superimpose and to allocate and separate the user data math-
ematically. Thereby TDMA, CDMA and OFDMA are all orthogonal schemes employing
the mathematical orthogonality definition for user separation either in the time-domain,
the code-domain or the frequency-domain. These schemes have the drawback that the
number of users is limited by the orthogonality constraint. It is noteworthy that there is
no consensus among researchers on categorizing CDMA as an orthogonal multiple access
scheme [VDV19, page 168]. Here, I choose to categorize CDMA as an orthogonal multiple
access scheme, if it is based on orthogonal codes.

Theoretically, the problem of a limited user number due to the orthogonality constraint
is overcome by non-orthogonal schemes. This is the main reason for considering NOMA
as a 5G multiple access candidate. Note that interleave-division multiple access (IDMA)
[PLL03, PWW07] as well belongs to the non-orthogonal schemes. Since it is based on the
idea that users can be separated by different permutations, called interleavers, IDMA can
also can be classified as a special form of a code-division multiple access scheme. Like
IDMA the closely related multiplexing concept interleave division multiplexing (IDM) has
a few advantages in comparison with competitive multiplexing schemes. The combination
of IDM and IDMA is dubbed multi-layer IDMA, as investigated in [HSF08]. To this end
the preceding work to the research in this thesis was driven by the motivation to unify
IDM/IDMA based communication and positioning [SH08, Sch12]. Visionary contributions
in the realm of 5G listed IDMA among other NOMA approaches as a candidate for 5G
multiple access [DWY+15, ARS16, VDV19]. Recently, the fifth generation decided to use
both orthogonal multiple access (OMA) as well as NOMA. The fifth generation is continu-
ing to use OFDMA, due to the ongoing usage of the cyclic prefix, frequency domain signal
processing and the resulting manageable receiver complexity thereof [VDV19, page 33].
Furthermore, NOMA is considered by the 3rd generation Partnership project (3GPP) in
Release 16 [VDV19, page 34]. NOMA’s applicability in systems lacking centralized control
or accurate channel state information is stated as it’s actual attractiveness together with
iterative processing and a simple implementation via IDMA offering comparably lower
detection complexity than alternative solutions [VDV19, page 445]. The authors also
demonstrated that IDMA offers a significant performance gain in random access as well
as MIMO systems. In the document for discussion and decision the company Sony made
the observation that ”IDMA-based NOMA is suitable based on the agreed performance
metrics and implementation related metrics” and proposed that ”IDMA-based NOMA
should be supported” [R1-18].
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2.1.1 Transmitters

Each transmitter commonly has the purpose to transmit data error free and with a high
data rate. Therefore, coding, modulation, multiplexing, pulse shaping and multiple anten-
nas are usually employed on the transmitter Whereas coding has the purpose to prevent
data detection errors by adding redundancy, higher order modulation and multiplexing
is used to increase the data rate. Pulse shaping that meets the typical requirements for
optimal data detection is needed as well. Furthermore, multiple antennas enable spatial
multiplexing or instead the advantages of spatial diversity or beamforming can be For the
purpose of channel estimation, synchronization and positioning at the receiver side pilot
symbols can be transmitted together with the data. Thereby it is desirable that the over-
all pilot power is as small as possible in favor of a higher data rate from a communication
point of view. From a positioning point of view a larger pilot power is desirable.

2.1.2 Receivers

The receiver has the purpose to receive signals and detect data. Therefore, the receiver
can have multiple antennas and typically comprises functionalities like matched filtering,
channel estimation, synchronization, demodulation, decoding, user and data detection.
The choices of detection and estimation algorithms are crucial for the receiver design
and for the performance in terms of bit error rate (BER). Hence the transmitter design
has to be matched to the receiver design. Channel estimation is inherently needed for
data detection in communication systems. Since channel estimates also bear positioning-
relevant information like the TOA they additionally can be exploited for positioning.

Channel estimation can be employed as the link between data detection (communica-
tion) and parameter estimation (positioning) and hence this thesis concentrates on channel
estimation based joint communication and positioning with a focus on positioning relevant
parameter estimation. Obviously, the channel estimation performance is crucial and can
be seen as a system bottleneck. Whatever specific communication system structure is ap-
plied, should therefore allow accurate channel estimation. Apart from this, obviously, var-
ious multiple access techniques and multiplexing and modulation schemes can be applied.
Results of earlier contributions related to this research [AH13, Sch12, SAH12, SAH11b]
substantiate the view, that the special communication signal design part is less critical
than positioning-relevant estimation strategies. Note, that typical positioning systems like
GPS are special forms of communication systems with the special purpose to estimate
the position.

2.2 Positioning Principles

Note that there are two categories of positioning, network based and mobile based posi-
tioning. The term mobile refers to a person, an object or a device. The term network
stands for multiple reference objects, objects with known coordinates and some kind of
communicating processing unit. These network reference objects could refer to a satellite
system, a set of base stations of a cellular wireless system or a set of connected Wi-Fi
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access points or routers. In the network-based scenario a mobile device transmits a signal
to the reference objects, the receivers, that are capable of positioning by utilizing the
received signals. A comprehensive overview on network-based positioning is provided in
[STK05]. If I refer to mobile positioning, or self-positioning, I mean the person’s or the
object’s functionality to determine the person’s or the objects own location. Then the
mobile unit is the receiver and the reference objects are the transmitters. From a phys-
ical and mathematical viewpoint location-dependant information has an impact on the
electromagnetic signal propagation such that a channel impulse response function can be
formulated relating any received signal to the location determining parameters and the
transmitted signal. Specifying this mathematical relationship the following parameters
constitute the location-dependant information: The propagation delay, the propagation
angle (angle of departure and angle of arrival), the propagation attenuation as well as
multipath propagation delays and angles. Consequently, the most popular three different
positioning principles are: Positioning based on the propagation time estimation (time-of-
arrival, time-difference-of-arrival (TDOA) and Time-of-flight (TOF)), positioning based
on the angle-of-arrival (AOA) and positioning based on fingerprinting, that is positioning
based on the received signal strength or the power delay profile (PDP). An overview is
provided in [Gez08] as in Figure 2.3.

Positioning
Principles

Magnetic

Map-based

Deadreackoning

Fingerprinting
PDP
RSS

Angle-based AOA

Delay-based

TOF

TDOA

TOA

Figure 2.3: The overview shows the different categorisation of positioning principles.

2.2.1 Propagation Delay-based Positioning

In this chapter I will interchangeably use the expression reference object and basestation
without loss of generality. Let (xi, yi, zi) denote the ith base station Cartesian coordinates
and let (xMS, yMS, zMS) be the unknown device position. Further, let NB be the number
of base stations. For now, consider a downlink scenario, where the base stations transmit
a signal and the mobile device receives the signals, if not said otherwise.
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BS1

MSMS

Ambigous Solution
BS2

(a) Ambiguous TOA solution

BS1 BS3

MS

BS2

(b) Distinct TOA solution

Figure 2.4: The TOA positioning principle requires three distance measurements and
hence ≥ 3 reference objects in order to find an unambiguous distinct solution.

2.2.1.1 Time of Arrival (TOA)

The TOA principle first of all is based on the assumption that the line-of-sight (LOS)
is not obstructed. Furthermore, it is based on the assumption that via some kind of
estimation step at the receiver side the estimated propagation delays of at least three
transmitter-to-receiver links for 2-dimensional positioning (four links for 3-dimensional
positioning) are known and hence can be used to determine the transmitter (TX)-to-
receiver (Rx) distances. Let the ROs be base stations and the number of base stations
be NB. Then this is achieved by employing the linear relationship between the ith of the
NB links Tx and RX distance di and LOS propagation delay τtoa,i, the TOAs, to estimate
the distances also called pseudoranges by

d̂i = c0τtoa,i ∀i ∈ {1, . . . ,NB}, (2.1)

where c0 denotes the speed of light, which is known to be c0 = 3× 108 m/s. In the 3-
dimensional setup, a set of three nonlinear system equations, which later can be used to
determine the MS position, can be formulated. The true distances di are related to the
positions p = [xMS, yMS, zMS] via

di =
√

(xMS − xi)2 + (yMS − yi)2 + (zMS − zi)2. (2.2)

The necessity of a third and fourth equation, hence additional reference objects, for 2-
dimensional and 3-dimensional positioning, respectively, introduced to prevent ambiguity,
results from the system equation’s nonlinearity. Obviously, the pseudoranges di are gained
by employing some LOS delay estimation step at the receiver side. Consequently, these
estimated distances stacked in a vector depending on the coordinates will always be cor-
rupted by an unbiased, or a zero mean, estimation error ε = [ε1, . . . εNB ] with covariance
matrix Cε = diag{[σ2

ε1
, . . . ,σ2

εNB
]}:

d̂ = d(p) + ε. (2.3)
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BS1 BS3

MS

BS2

BS1 BS3

MS

BS2

Figure 2.5: Erroneous TOA measurements lead to an intersecting area instead of a unique
solution.

These errors will destroy a unique solution. More specifically the intersection point of
three circles, as can be seen in Figure 2.5, instead widens to a whole intersecting area as
a remaining solution area. To deal with the reality of distorted measurements, it is well
known, that the error has to be included in the set of equations such that

c2
0(Ti − T0)2 = (xMS − xi)2 + (yMS − yi)2 + (zMS − zi)2 − ε2i , ∀i ∈ {1, . . . ,NB}. (2.4)

A unique optimal solution in the least squares and in the maximum likelihood sense then
can be found by choosing the position that minimizes the sum of all quadratic errors εi:

p̂ = arg min
p̃

{(
d̂− d(p̃)

)T
C−1
ε

(
d̂− d(p̃)

)}
. (2.5)

Another well known and practically more problematic TOA positioning error source is
introduced by not perfectly synchronized clocks at the BSs and the MS, since accurate
distance measurements (2.1) depend on the time difference τ1,i = Ti− T0. This means all
clocks have to be synchronized. This especially poses a problem for the MS. Hand-held
devices are usually mass-market products and therefore their development commonly is
constrained using to low cost hardware solutions. Typically, T0 has to be treated as an
additional unknown, requiring another additional equation and hence another reference
object. On the network side employing highly accurate and hence costly clocks is more
reasonable than in the MS. Moreover, on the network side errors due to asynchronous
clocks can be measured and can be integrated into the equations.

2.2.1.2 Time Difference of Arrival (TDOA)

As already mentioned, asynchronous clocks between the BSs and the MS pose a seri-
ous problem in reality. More specifically, the value T0 is unknown and annoying. By
employing the TDOA principle instead of TOA, one cleverly circumvents actually using
T0 in the following manner: Instead of calculating the BS to MS distances directly, one



2.2. Positioning Principles 15

MS

BS1

BS2

BS3

(a) TDOA principle

BS1

BS2

(b) Example hyperbola

Figure 2.6: Measuring TDOAs instead of TOAs yields intersecting hyperbolas instead of
intersecting circles as can be seen in a). Thereby the base stations coordinates are the
hyperbola foci as can be seen in b).

builds another set of equations by using time differences and thereby cancelling out the
undesirable variable T0

c0∆Ti,j = c0(Ti − T0)− c0(Tj − T0) = c0(Ti − Tj) ∀i, j ∈ {1, . . . ,NB}. (2.6)

Let NBS = 3 and assume that TDOA measurements between BS i ∈ {2, 3} and are
available. Then

c0 ·∆Ti,j =
√
xMS − xBSi)2 + (yMS − yBSi)2 + (zMS − zBSi)2

−
√
xMS − xBS1)

2 + (yMS − yBS1)
2 + (zMS − zBS1)

2. (2.7)

Each of the distance differences ∆di,1 = c∆Ti,1 to BS1 related to a TDOA in (2.7) can
geometrically be associated with a hyperbola in two dimensions and with a hyperboloid
in three dimensions. Considering the two-dimensional case, every point on the hyperbola
yields an equal distance difference ∆di,1 to the two foci given by the locations of BSi
and BS1. Note that in contrast to TOA where two circles intersect at two points, two
hyperbolas intersect in only one distinct point intersect In Figure 2.6 the actual TDOA
positioning principle as well as the hyperbolic nature of a single TDOA associated distance
difference is outlined.

Obviously, apart from the advantage that TDOA even works when the MS and the
BSs clocks are asynchronous, TDOA is susceptible to the same error sources as the TOA
method. with the only difference that, in case of errors, the intersecting area will have a
different shape than in case of TOA.
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2.2.1.3 Round Trip Time of Arrival (RTTOA)

Assuming channel reciprocity, the RTTOA principle employs round-trip delay measure-
ments between two transceivers of any kind:

dRTTOA = c0(TR − TP ). (2.8)

Here TR denotes the round trip time and TP denotes the processing time. The transceiver
clocks do not have to be synchronized. For further details, I refer to [SDM14]. The
overall setup measures time delays and the associated distances, hence the measurements
geometrically specify circles similar to the ones of TOA measurements.

2.2.2 Angle-based Positioning

For the sake of simplicity and without loss of generality let us consider a two-dimensional
downlink scenario, where a device provides angle of arrival (AOA) ϕi measurements of
at least two, that is i ∈ {1, 2} reference objects,i.e. base stations. Note that, in order to
obtain these measurements, usually, multiple receive antennas are required. These angles
specify straight lines, describing possible locations for the device. The unique position is
the intersection of these lines. Obviously, for known base station positions (xi, yi) and
an unknown device position (x,y) this geometrically leads to a system of equations that
has to be solved. Additionally, taking into account an unknown device orientation ϕ,
more than two equations are needed, that is more than two reference objects, in order to
dissolve all ambiguities. Then the system of equations reads:

(y − yi) = tan(ϕi)(x− xi + ϕ), for all i ∈ {1,NB}. (2.9)

The principle is visualized in Figure 2.7.
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Figure 2.7: The AOA principle

2.2.3 Fingerprinting

The term fingerprinting related to positioning covers all methods that are based on the
following principle: In a first step a fingerprint database for specified locations on a
grid are measured and collected in an offline phase. Afterwards, in a second step, these
fingerprints are then compared to online measurements. The best match is chosen via
different approaches. A fingerprint measurement can be measurement that qualifies as
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a fingerprint, e.g. an impulse response measurement or the power delay profile. Often
it is a received signal strength. A comprehensive survey on the subject can be found in
[KGA17]. A shorter mathematical introduction is provided in [HPALP09].

2.2.4 Dead Reckoning

The principle of dead reckoning is to combines apriori knowledge about the last determined
position with directional information and velocity estimates, in order to estimate the new
position [FNI13]. This principle has the drawback that estimation errors are cumulative
over time.

2.3 State of the Art

Obviously, the most popular omnipresent JCAP system is embodied in all the mobile
devices providing location based services, allowing us to navigate by determining the
devices position and to be found in case of an emergency call. The ongoing evolution of
positioning techniques in cellular networks, from 2G to 4G [Cam17] and also 5G, has led
to a geared cooperation of different systems and hybrid techniques, working together and
complementing each other to yield a high accuracy and coverage. Besides satellite based
navigation, today, cell-ID based techniques, further techniques like the assisted global
navigation satellite system and the capability to use specified positioning reference signals
ensure a high reliability and accuracy. Next-generation techniques will more than before
operate as a whole complex joint communication and positioning network unifying various
varying techniques and concepts. An important novelty for the next generation will be
that standalone positioning capabilities are specified directly from the beginning and not
just as add-ons like before. [DRZ15]. Thereby, state-of-the-art joint communication and
positioning entities can be categorized into

• parallel systems provided in a single device

• communication system extensions

• positioning system extensions

• systems based on an unified signal structure.

The usage of GPS on mobile phones embodies two parallel systems the communication
system and the positioning system in a single device. Since the typical communication
signal structure bears positioning relevant information, different approaches have been
employed for position estimation via standalone communication systems, like for instance
wireless local area network (WLAN)-based positioning. WLAN and the 1G-4G of mo-
bile communication are examples for communication systems, which have been extended
in order to additionally provide positioning information. On the other hand, the typi-
cal satellite navigation signal structure is utilized to also transmit data like for instance
the reference objects’ position, although it was designed for pure positioning purposes.
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Although the standardized signal structures for communication and positioning show sim-
ilarities typically communication and positioning systems conflict considering the system
requirements and demands. Being optimally designed solely for either communication
or positioning constitutes the main drawback for either a communication or a position-
ing system extension. Another approach is to design a joint communication system and
positioning system, based on a unified signal structure.

2.3.1 Global Navigation Satellite Systems and Mobile Commu-
nication

The most popular, well known global navigation satellite system (GNSS) is the American
global positioning system (GPS). Although globally the significance of GPS is unchal-
lenged, other less famous GNSS systems coexist with GPS: The European system Galileo,
the Russian Global Navigation Satellite System (GLONASS), the Chinese system called
Beidou, the Japanese system Quasi-Zenith Satellite System as well as the Indian system
called the Indian Regional Navigational Satellite System (IRNSS). Note that, today, at
first the commercial and civil purpose of a GNSS system leaps to our mind. GPS, how-
ever, was originally developed and launched in the seventies as a military system, followed
then during the cold war by the GLONASS system as a competitor to GPS also primarily
for military use. Therefore, it is noteworthy that the European system Galileo has been
initiated for civil use.

All the mentioned GNSS systems have in common that they employ the TOA or
TDOA to further determine distances and the desired position information. Obviously,
the challenges related to deploying satellites placed in orbits in space are different from
than those related to ground-based positioning systems. Nonetheless, these issues are
essential for GNSS systems. More specifically, note that the authors of [SDM14] address
and discuss issues like satellite visibility, coverage, power, launch cost and so forth. The
authors of [SDM14] also provide further insight on the GPS architecture, which can be
categorized into a space segment, a user segment and a control segment.

Over the last two decades hand held mobile devices became smaller and cheaper.
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Nowadays smart phones have replaced cell phones as a mass market product. Commonly,
smart phones are equipped with a GPS-chip, since they also have become a mass market
product, enabling permanent location awareness as well as location-based services of all
kind and improved handover from one cell to another and so forth. Nonetheless, integrat-
ing a GPS-chip into a smart phone or any other communication device means employing
two systems in one device, having two different signal structures and hence receiver algo-
rithms for the communication and the positioning side. GPS is known to use 24 satellites,
whereas Galileo uses 30 satellites in order to broadcast their signals. Each signal is re-
ceived by the mobile station MS that has to separate the signals and that has to estimate
the TOA or TDOA. The accuracy of the propagation time estimates is directly related to
the positioning error. Additionally, data that comprises information about the satellites
position information, has to be detected at the receiver, the MS, since it has to be known
at the receiver side to be utilized as a reference object (RO). The signal separation for GPS
as well as the European Galileo system is performed by employing code devision multiple
access (CDMA), the Russian system uses frequency devision multiple access (FDMA). In
GPS, CDMA is used in combination with pseudo random noise (PRN) sequences, that is,
two code types are used, the so called coarse/acquisition (C/A) codes for civil use and the
encrypted more accurate precision/encryption (P/Y) codes for military use. Thereby, the
C/A codes enable a resolution of approximately 293 m, modern receivers increase this res-
olution to 1% thereof to approximately 2.93 m. The codes that are employed for military
purposes, the P/Y codes are approximately ten times more accurate yielding a resolution
of approximately 30 cm due to a ten times higher so-called chip rate, a value measuring
how many CDMA-codebits, or chips, are transmitted per time unit. The C/A codes used
in GPS receivers have good autocorrelation properties, which are necessary for accurate
propagation time estimation as well as good cross correlation properties that are needed
to guarantee orthogonality between different signals from different ROs. Being named af-
ter their inventor they are called Gold codes [Gol67], and are constructed by using linear
feedback shift registers (LFSR) and especially designed generator polynomials. At the
transmitter side the signals are modulated by binary phase shift keying (BPSK).

The propagation time estimates are corrupted by typically either randomly occurring
errors like thermal noise or by systematic errors like clock errors, or by errors due to
the speed of light variability in the ionosphere. Systematic errors can be combated by
utilizing the fact that they usually are known to be highly correlated in time and space
and hence can be measured in reference stations and then again be transmitted to the
MS via augmentation systems like Differential GNSS (DGNSS) [SDM14] .

Depending on the required positioning accuracy, DGNSS can be utilized as a ground-
based augmentation system in order to achieve higher accuracies by combating systematic
errors. Further globally operating augmentation systems are listed in [SDM14].

Without doubt GNSS systems have evolved to matured, powerful and in most scenarios
that come to our mind accurate positioning systems. There still are, however, NLOS and
multipath scenarios, in which classical GNSS systems fail to perform as good as possibly
desired. GNSS systems assume first of all that a LOS path exists between transmitter and
receiver and second of all that the signal does not travel via other paths than the shortest
LOS path. Consequently, non-line-of-sight (NLOS) as well as multipath propagation
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deteriorates the GNSS positioning accuracy severely due to these receiver-sided modelling
errors. Especially for GNSS systems, as already mentioned earlier, utilizing that the
speed of light equals 3× 108 m/s constitutes an idealized assumption, which is violated
depending on the physics of the atmosphere, for instance it is violated in the ionosphere.
Strong signal attenuations like for instance indoors also lead to a reduced positioning
accuracy. In such environments additional systems, which assist the GNSS systems can
be immensely helpful.

2.3.2 Today’s Mobile Communication Standard Stand-alone Po-
sitioning Capabilities

Today’s mobile communication standard has reached the fourth generation (4G) and is
well known under the name long term evolution (LTE) or its extension LTE-Advanced
(LTE-A). Besides traditionally employing GPS, the 4G standard specifies different stan-
dalone positioning capabilities [Cam17] that allow to determine the position of a MS,
or as they are called in 4G the user equipment (UE). Partially, earlier generations, the
global system for mobile communication better known as GSM and the Universal Mo-
bile Telecommunication System better known as UMTS (2-3G), have breeded positioning
techniques such as assisted GNSS (AGNSS), the Cell-ID and the Enhanced Cell-ID-based
method, that are the predecessors to those used in LTE and therefore should be mentioned
here. The LTE positioning techniques can be categorized into network-based, UE-based,
UE-assisted and network-assisted approaches.

2.3.2.1 Assisted Global Navigation Satellite System (AGNSS)

AGNSS was specified in order to yield a better GNSS performance with respect to the weak
signal reception in harsh physical environments like indoor scenarios and urban canyons,
faster times to first fix and decreasing signal acquisition times and consequently saving
power. The approach is based on connecting to a GNSS reference network equipped with
receivers that have a clear LOS vision. Integrated in the cellular network this reference
network is able to harvest all sorts of useful information like the approximate BS position,
satellite visibility, ephemeris, clock correction, Doppler and so forth [SDM14]. This data
is communicated back to the cellular network in case it is needed.

A GNSS equipped UE can make use of AGNSS. The UE assisted setup aims at mea-
suring the positioning relevant information, reference signal time-difference (RSTD) for
the observed TDOA (OTDOA) technique, in the UE, thereby being assisted by data
transmitted from a location server, in order to hand the measurements over to the loca-
tion server [Fis14] in return.Hence, although the measurements are carried out in the UE
communication between the UE and a location server is required.

2.3.2.2 Cell-ID and Enhanced Cell-ID

Compared to AGNSS, the Cell-ID principle is rather simple, determining whether differ-
ent nearby BS signals are or are not received. More precisely, the Cell-ID method only
has to extract the transmitter ID information of commonly ≥ 3 signals from NB different
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Figure 2.9: The Cell-ID positioning principle can be outlined by the intersection of BS
coverage areas.

BSs, assuming that the position solution lies then in the intersecting area AMS of the
coverage areas ABSi for the 1 ≤ i ≤ NB signals of these BSs. Hence, the MS position
is determined by evaluating the coverage information of the nearest BSs. Naturally this
approach only yields a rough positioning accuracy depending on the sizes ABSi as well
as the number of Bs NB. Nonetheless the Cell-ID and the Enhanced Cell-ID methods
are known to be reliable and therefore they have been preferred for a long time over
other standalone positioning capabilities. The authors of [TV04] provide an experimental
study and a further discussion on how the Cell-ID can be exploited in an efficient manner.

2.3.3 WLAN-based Positioning

The well-known drawback of GNSS based positioning, is its bad performance indoors due
to the high probability for NLOS propagation. WLAN signals are able to penetrate walls
and they are often available on mobile devices. Fortunately, WLAN-based positioning,
whenever possible, alternatively is used by some devices in order to achieve a high posi-
tioning accuracy indoors as well as in urban areas. WLAN positioning principally can be
categorized by techniques that are based on angle estimation, techniques that are based
on TOA or TDOA and trilateration, techniques that are based on RSS estimation and
trilateration and techniques based on fingerprinting. Thereby, positioning via multilater-
ation by employing AOAs [PS06], RSSs [KK04], TOAs [LP04] or TDOAs rquires a LOS
component. Hence, these methods have the drawback that they are prone to errors due
to multipath and NLOS conditions. Especially indoors this effect is very pronounced,
and the accuracy is rather low. Better accuracy is achieved by fingerprinting and it can
further be enhanced by additionally employing digital map data if available. In their re-
view paper the authors of [KGA17] name two important reasons that explain the growing
popularity of indoor fingerprinting with WLAN signals: The large WLAN signal deploy-
ment in public buildings and the receivers inherent ability to provide RSS measurements
without extra hardware. Obstacles like walls, furniture and humans are the reason for
shadowing, reflection, diffusion and diffraction and that indoors a material related signal
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attenuation as well as multipath propagation has to be taken into account [STK08]. Since
fingerprinting requires off-line measurements for the fingerprint database and the envi-
ronment realistically often changes over time various techniques to update changes have
been implemented. In large cities different self-sufficient technologies unifying have been
developed and are used or at least available [Sky, awi]. Future systems will collect and
unify relevant data from a homogenous network to ensure a high seamless coverage and
accuracy. Another comparative study of WLAN location fingerprinting methods provides
mathematical formulations [HPALP09]. In review contributions [KGA17] and others deal-
ing with practical issues like [HJLY14] it is reported that for conventional WLAN signal
fingerprinting issues like heterogenous devices, the map construction, correlated access
point measurements, limited coverage and outlier detection are especially challenging.
Motivated by the increasing number of mobile devices indoors, combinations of TOA and
fingerprinting positioning has been proposed [KK15, KK04].

2.4 Future 5G Positioning

Note that visionary contributions located in the research realm of next generation mo-
bile networks (NGMN) promise high speed, a high capacity, fairness, full coverage, high
accuracy, scalability, high backward compatibility for the next generation 5G compared
to its predecessors. Consequently, 5G currently is especially important, since it will be
a seamless patchwork integrating and combining a multitude of existing and upcoming
communication and positioning systems and hence it certainly will be the most widely
used and important JCAP system on earth.

The next generation mobile networks alliance (NGMN) envisaged 5G to support po-
sitioning capabilities in three-dimensional space with an outdoor accuracy from 10 m to
< 1 m at 80 % of the time, an indoor accuracy below 1 m and real-time high speed track-
ing capabilities [Nex15, KCW+17]. Thereby, the localization is supposed to cooperate
and communicate with external techniques and should offer positioning information to an
application programming interface. The authors of [ABC+14] also outline a prospective
5G framework and predict that it will be highly integrative with respect to LTE and
WLAN for seamless user experience and high-rate coverage. They emphasize the impor-
tance of millimeter wave and massive MIMO related issues and challenges, such as path
loss, architectural requirements and pilot contamination. Another issue for 5G will be
a weather-related change of channel conditions. Rain is known to attenuate in the mil-
limeter wave range [ZL06]. Additionally, the survey in [ARS16] addresses that 5G will be
identified with an anywhere at anytime availability and coverage for an enormous number
of connected devices, ranging in the order of thousands of connected devices, and at the
same time it is proposed to enable a reduction in power consumption and energy usage.
The authors of [DRZ15] illuminate the vision of 5G from a positioning perspective and
point out that integrating positioning capabilities from the beginning is crucial, since this
would enable a joint system with lower costs, yielding higher accuracy and coverage and
further allowing the communication system to fully benefit from the available position
information. Further, the authors of [DRZ15] stress that the communication system itself
will be better suited than the preceding generations to combat the challenges involved with
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positioning: A higher line of sight (LOS) and less harmful multipath probability will be
achieved by a denser network. Furthermore, higher frequency and signal bandwidths will
ease the challenges to accurately perform high resolution parameter estimation to deter-
mine positioning relevant information like the time of arrival (TOA). Another important
feature named in [DRZ15] is the device-to-device (D2D) communication that enables co-
operative and hence accelerated positioning [WLW09] with enhanced accuracy due to a
larger amount of observations. Massive multiple input multiple output (MIMO) systems
are investigated to assess localization and orientation estimation [SGD+18, SGD+15].
Proposals how to make good use of non-line-of-sight NLOS multipath components can
already be found [MWBAS19]. Note that in [NLW+17] channel parameter estimation is
predicted to be performed by using the space-alternating generalized expectation maximi-
sation (SAGE) [FTH+99] or the joint iterative maximum likelihood estimation (RIMAX)
[RSK06] algorithm. Note, that actually a multitude of high-resolution parameter estima-
tion algorithms principally qualify for these kinds of problems and hence for 5G.

Concerning the 5G communication signal structure design among all users non-orthogonal
multiple access (NOMA) has become a widely accepted viable candidate for dealing with
the predicted large number of users in 5G. This credo is reasonable, since NOMA promises
typical limitations of its orthogonal competitors: Orthogonal multiple access is limited
by the resource block and the related orthogonality itself. Further, orthogonal schemes
require synchronization, which becomes unpractical and difficult to deal with for an in-
creasing number of users. NOMA can be interpreted as a framework that does not require
synchronization and can be used to serve multiple users within the same orthogonal re-
source block regardless, which specific multiple access scheme is actually used [DLK+17].

2.5 Channel Estimation and JCAP

The channel impulse response, and consequently channel estimates, are mathematically
related to positioning relevant information like the TOA τ1 or AOA ϕ1 and further pa-
rameters collected in the vector θ, which are not relevant for positioning:

τ1,ϕ1,θ 7→ h(τ1,ϕ1,θ). (2.10)

This relationship commonly is highly non-linear and it is determined by the instantaneous
physical environment. Unfortunately, the relationship to τ1 and ϕ1 is at least partially
inseparable to the relationship to the other parameters in θ. More specifically this means
that extracting the TOA or AOA commonly requires at least partially extracting θ as
well. Hence, high resolution parameter estimation and multi-dimensional nonlinear global
optimization is required. Consequently, it still is a challenge to find a system design to
exploit this relationship between channel estimates and positioning relevant information
optimally for JCAP. Nonetheless, channel estimation is inherently required in communi-
cation systems and the channel estimates can be used to determine positioning relevant
information.

If a communication system design is already specified, researchers investigate, how the
channel estimates can be used efficiently to provide additional positioning information.



24 Chapter 2. Joint Communication and Positioning (JCAP)

Especially, in the realm of 4G research, due to the predefined so called positioning refer-
ence signals implemented in the 4G standard, the idea to use the communication signal
structure at hand additionally for positioning became more pronounced. The authors of
[DLSSG+12] proposed to estimate the channel and the positioning relevant time delays
directly from the received values at the receiver side in a joint manner, and they also
discussed issues regarding channel modelling for that purpose. In [dPRLSSG+14] the au-
thors addressed the issues related to receiver sided channel modelling and joint channel
and time delay estimation.

If, on the other hand, the communication system is not designed as a foregoing step,
but instead is designed jointly with the positioning system this obviously is advantageous
in that sense that the positioning performance is not limited by a predefined system design.
Apart from that, it is desirable to have results that obviously are portable to different
kinds of communication system designs with only few modifications. These are the main
reasons why, in this thesis, I choose to stick to an (as far as possible) generalized and
simplified system framework, whenever this is reasonable and possible to do. Focusing
on aspects and most of all estimation techniques related to multiple antenna systems
the entanglement of channel estimation and positioning was investigated in [Mia07] in a
rather general manner and provides a good overview on this subject.

Preceding work, with partial intersections to the work and findings of this thesis, is pre-
sented in [SBKH10, SAH11b, SAH11a, SAH12, Sch12, AH13] as it belonged to the same
research project. This project targeted to investigate, design and assess a ground-based
joint communication and navigation system based on an interleave-division multiple acces
(IDMA) and an interleave-division multiplexing (IDM) signal structure. With increasing
project progress, we learned that the specific signal structure design is not as critical for
the positioning performance as the limitations, obstacles and in general issues related to
efficiently estimating the multipath propagation path parameters in a realistic scenario.
From a positioning point of view the specific multiplexing and multiple access design
turned out to be more or less interchangeable under the condition that accurate channel
estimates are available. This especially is emphasized by splitting the processing steps of
channel estimation and multipath parameter estimation into sequential processing units.
The idea is that the parameters estimates are obtained in a second step by employing the
channel estimates, which are estimated in a first step, as observations, or measurements.
Therefore, by reviewing [Sch12] it becomes clear that the preciseness of channel estimation
itself is critical for positioning and hence can be interpreted as the overall performance
bottleneck, without relating it to a specific communication signal structure. Note that,
limitations and challenges become evident when the performance limits and optimal de-
lay estimation results of the system proposal in [Sch12] are reviewed. Algorithms that
already earlier extensively had been shown to yield optimal results in simplistic low order
multipath channels, like the two-path channel, were presented and investigated for the
special IDM-based system structure. Especially, the results presented for the more realis-
tic WINNER like channel models [KMH+08], indicate that not the parameter estimation
algorithms pose the actual problems but the theoretically best achievable performance.
As a lower variance bound for unbiased estimators the well-known Cramer-Rao lower
bound embodies the best achievable performance (CRLB). In [Sch12] it can be seen that
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in realistic scenarios this bound turns out to have unreasonably high values. Those values
indicate that the assumption that only a single path is present would results in a lower
estimation error. Hence, this bound indicates that the receiver-sided modelling is too
complicated for the amount of information the receiver has to work with. Therefore, one
of the goals in this thesis is to revise the receiver-sided modelling and to assess and pro-
pose less complicated estimation strategies. The dissertation [Sch12] elaborates on tuning
the parameters like the oversampling factor in order to obtain lower bounds. Although
the results show that this is beneficial they also show that this alone is not enough to
obtain accurate parameter estimates in realistic channel conditions. This in return shows
that both the choice of the specific parameter setup as well as the modelling for estima-
tion should be revised. Only tuning the parameters responsible for the presented system,
like e.g. the sampling duration T and the oversampling factor J , is clearly not enough.
Consequently, this thesis addresses this problem and provides possible solutions to solve
this problem. To this end I extend the parameter estimation problem to a joint model
order and parameter estimation problem in this thesis.

Apart from the fact that a significant part of the project and findings presented in
[Sch12] as well as in this thesis shows that estimating reliability information, more pre-
cisely meaning estimating how large the parameter estimation error is going to be, can
be beneficial for the purpose of joint communication and positioning and hence it should
and can be employed for different purposes.

2.6 Challenges, Design Issues and Open Questions

For JCAP systems the most important challenges are multipath propagation, NLOS con-
ditions and limitations due do predefined systems and standards. Ground-based JCAP
systems are especially promising, since, depending on the density of deployed base sta-
tions as potential ROs, they will be less prone to multipath, NLOS conditions and strong
signal attenuation, as compared to their satellite-based competitor systems.
GNSS and ground-based positioning systems and system extensions, however, that em-
ploy the TOA or TDOA, have in common that both, multipath propagation and NLOS
conditions, are still major challenges, although these problems are more pronounced for
GNSS systems. Besides the advantages of 5G positioning systems listed earlier there are
also challenges that have to be dealt with like a severe path loss and a resulting signal to
noise ratio (SNR) loss and hence more sophisticated beamforming and knowledge about
the physical channel due to the higher carrier frequencies [SGD+15]. For channel estima-
tion based joint communication and parameter estimation to obtain and maintain a high
resolution for the positioning relevant parameters in realistic scenarios is challenging.

2.6.1 Multipath Propagation

The GNSS system performance is degraded by multipath propagation. Under the assump-
tion that the receiver algorithms and significant parameters like the sampling duration
are similar to those in GNSS systems, ground-based systems principally experience the
same problems as GNSS systems, only less severe. Furthermore, for ground-based sys-
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tems like 5G it is already known that weather-specific conditions, like rain, will entail
more multipath components. If high resolution parameter estimation is performed this
will be challenging, since, obviously, a higher number of multipaths results in a higher
number of estimates and therefore a higher complexity and higher estimation variance.

Generally, for channel-estimation-based JCAP accurate parameter estimation is re-
quired. Hence, for such JCAP systems multipath propagation is challenging, since it
requires algorithms that are more complex than delay estimation via pure signal correla-
tion. In multipath channels delay estimation via pure signal correlation is only useful for
a coarse delay acquisition. Even if the receiver algorithms would be aware of the correct
multipath propagation model and additionally they would principally be capable of esti-
mating all the physical path parameters with a high resolution, the number of receiver
measurements and the system design itself can yield a low positioning accuracy. Conse-
quently, realistic channel scenarios with a huge number of multipath components require
a suitable modelling with a flexible possibility to simplify the model at the receiver side.
Especially the TOA CRLBs for a practical JCAP system proposal assessed in a multi-
path propagation scenario like in [Sch12] motivate both a revised overall optimal JCAP
system proposal and parameter estimation strategies, which are tailored to work well for
the instantaneous channel conditions, like for e.g. joint model selection and parameter
estimation. Including multipath propagation into the estimation strategies comes with
the price of a high computational cost and also often with a lack of robustness.

2.6.2 Non-line-of-sight (NLOS) Scenarios
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Figure 2.10: Example for NLOS as a TOA error source.

Furthermore, NLOS propagation scenarios constitute another TOA and AOA error
source. Considering a TOA based system, assume that only a propagation delay larger
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than the theoretical LOS delay (shortest path) is measured at a receiver. Without hav-
ing additional a priori information about the physical environment the receiver wrongfully
treats the measured distance as if it would be the targeted LOS distance as it is depicted in
Figure 2.10. Delay-based positioning in NLOS conditions commonly leads to a positively
biased NLOS estimation error, which is the distance between the first observed delay and
the LOS delay. Different methods to mitigate the NLOS error are reviewed in [GC09].
Typical NLOS scenarios can be found indoors or in urban canyons, where the LOS signal
is obstructed by large buildings with a high probability. At least indoors WLAN-based
positioning via fingerprinting is a reasonable alternative solution to delay-based position-
ing. Despite the network densification envisaged for 5G, the authors of [ARS16] note that
a LOS link cannot be guaranteed in dynamic outdoor environments and they therefore
emphasize that it is important to explore possibilities of partially obstructed line-of-sight
(LOS) and NLOS links. It is common practice to employ separate channel models as well
as different estimation strategies for LOS and NLOS conditions. In this thesis we assume
that a LOS component is available.

2.6.3 Why an Overall Optimal JCAP System Design from Scratch
is Challenging

All the state-of-the-art JCAP systems that are used frequently are optimally designed
for either communication or positioning. Positioning reference signals complement the
LTE communication signal structure. GNSS signal structures on the other hand are
optimized for positioning. Nevertheless, they can also be used to transmit communication
data like the satellite position. Wi-Fi/WLAN signals can be employed for positioning
indoors as well, however, the signal design was developed and optimized for the purpose
of communication. Designing a JCAP system with an optimal unified signal structure
for both communication and positioning from scratch is actually more a challenging goal
than it is a completely realistic goal, due to different reasons: Apart from the limitations
that will always go hand in hand with any standardization process, it would be difficult
to optimally design a complete JCAP system, even without such limitations. An optimal
system design for instance amongst other goals would aim at optimizing the theoretical
lower performance limits like the well-known Cramer-Rao lower bound (CRLB) for the
positioning relevant information. This bound is at least partially determined by the
system design itself and hence only valid for this special chosen underlying setup and
fixed parameters. So, to at least target an optimal system to some extent a fixed design
is the prerequisite in order to define optimality. Unnecessary specifications, however,
needlessly limit the performance. Consequently, in this thesis, I formulate a to a certain
extent generic system framework.
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Chapter 3

Mobile Radio Channel Modeling

The mobile radio channel model combines the modeling of various physical phenomena like
path loss, shadowing, multipath propagation, and the Doppler effect. Therefore, to begin
with, this chapter briefly reviews a few channel modeling basics. Path loss and shadowing
belong to the so-called large-scale effects, describing the received signal strength variations
over km ranges, while the so-called small-scale effects, like multipath propagation and
the Doppler effect, cause received signal strength variations over sub-meter scales (not
more than a few wavelengths). Depending on the signal parameters symbol duration and
bandwidth, the small-scale effects lead to four sub-types of a phenomenon called fading,
i.e., flat, frequency-selective, fast, and slow fading.

3.1 Mobile Radio Channel Modeling Basics

3.1.1 Large-Scale Effects

Large-scale channel models relate the received signal strengths to distances. Including
the transmit and receiver side antenna gains GTx and GRx, a path loss model for the
free-space scenario combines the distance d, the wavelength λ, the transmit power PTx
and the received power PRx in the following manner, via the Friis transmission equation:

PRx = PTxGTxGRx

(
λ

4πd

)2

. (3.1)

Therefore, path loss models can be used to estimate the received signal strengths roughly.
This scenario is valid for GNSS. For terrestrial systems, on the other hand, these models
fail, since small-scale effects have a more significant impact. Substituting the exponent
2 in (3.1) by the exponent p, the model for the path loss PTx/PRx can be generalized
to other topologies. Further extending and generalizing this model by a term modeling
shadowing effects (fluctuations), employing an (in the logarithmic domain) normally dis-
tributed random variable Xσ ∈ N (0,σ), with the distance-dependent variance σ further
described in [Gol05, p. 51], then yields

PTx
PRx

[dB] = 10 log

(
PTx
PRx

)
= −10 log

(
GTxGRx

(
λ

4π

)p)
+ 10p log(d) +Xσ. (3.2)
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Figure 3.1: Multipath and line-of-sight signal propagation example: obstacles between
transmitter and receiver reflect, diffract, and scatter.

3.2 Small-Scale Effects

3.2.1 Multipath

Signal reception via two or more paths is called multipath, caused by obstacles between
transmitter and receiver. These obstacles lead to reflection, diffraction, and scattering
(Figure 3.1). In a line-of-sight (LOS) multipath channel, besides the direct path, there
is at least one other indirect path present. A non-line-of-sight (NLOS) channel refers to
a channel, where the LOS path is blocked, and only multipath is received. We model
multipath transmission via the channel weight function.

3.2.1.1 Channel Weight Function and Channel Impulse Response

The physical channel impulse response c0(t, t′) expresses the time-dependent re-
sponse versus time t to an excitation via a Dirac-Impulse for an excitation time t′.
For wireless channel modeling, it is a standard practice to eliminate the excitation time
dependency and use the so-called resulting channel weight function instead of the channel
impulse response [Höh13, p. 573].

The channel weight function c(τ , t) substitutes τ = t − t′ in the channel impulse
response and it is defined as

c(τ , t) = c0(t− τ , t). (3.3)

Considering that the channel consists of NMP different transmission paths, the different
path distances are related to different delays. Hence, the channel weight function c(τ , t)
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at time t consists of a sum of attenuated delayed Diracs with, in general, a time-varying
delay τn(t) ∈ R and complex amplitude fn(t) ∈ C.

c(τ , t) =

NMP∑

n=0

fn(t)δ(t− τn(t)). (3.4)

Stochastic channel modelling is needed to model the delays and complex path weights.

3.2.2 Stochastic Channel Modeling

For positioning a deterministic channel model that accurately describes the relationship
to the device position is theoretically desirable. However, deterministic channel modeling
is known to be unfeasible. Complex ray tracing methods are possible in the case of sim-
plistic scenarios and geometries for channel modeling. For communication, it is common
practice to statistical channel models instead. Via solving the inverse problem and apply-
ing nonlinear high-resolution parameter estimation techniques, the positioning-relevant
multi-path parameters of a stochastic channel model can also be estimated. Hence, I
only use stochastic channel models in this thesis. The statistical behavior, or channel
characteristic, is based on random processes, commonly described via auto- and cross-
correlation. The group of so-called wide-sense stationary uncorrelated scattering models
covers the following usually applicable stochastic models.

3.2.2.1 Required Fundamentals

Since this thesis applies stochastic channel modeling, the following definitions are required.

The Doppler frequency shift fd describes the frequency shift occurring due to re-
ceiver movement relative to the transmitter, such that

fd =
fcv

c0

cos(φ− θvel). (3.5)

Thereby, fc, c0, v,φ and θvel denote the carrier frequency, the speed of light, the mobile
device velocity, the angle of arrival and the travel direction.

The scatter function S(τ , fd), also called delay Doppler power density spectrum,
unifies the Doppler and the delay dependencies. It models the power density versus the
delay domain as well as the power density versus the Doppler frequency.
Integrating over either the frequencies or the delays yields the power delay profile and the
Doppler power spectrum, which are both used for stochastic channel modeling as applied
in this thesis.

The power delay profile S(τ) is defined as

S(τ) =

fdmax∫

−fdmax

S(τ , fd) dfd. (3.6)
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The doppler power spectrum S(fd) is defined as

S(fd) =

fτmax∫

0

S(τ , fd) dτ , (3.7)

where τmax denotes the maximum excess delay. The Doppler spread is the bandwidth for
which S(fd) 6= 0.

3.2.2.2 A Stochastic Channel Weight Function

Simultaneously arriving transmit signal replicas have a similar delay (τn ≈ τm, m 6= m)
if the delay difference is small compared to the symbol duration. Then these multipath
components are classified as non-resolvable. They cause constructive and destructive
interference.
If only non-resolvable components are present NMP is replaced by NRays. If, on the
contrary, resolvable path clusters (τc 6= τm, c 6= m), as well as non-resolvable paths, are
present, the sum of NMP components is replaced by a sum of C so-called multi-path
clusters, comprising sum of NRays rays, in the following manner:

c(τ , t) =
C∑

c=1

√√√√√
Pc
C∑
c=1

Pc

· 1

NRays

NRays∑

n=0

fn,c(t)

︸ ︷︷ ︸
βc

δ(t− τc(t)), (3.8)

=
C∑

c=1

βcδ(t− τc(t)). (3.9)

Note that the powers Pc for all clusters 1 ≤ c ≤ C can be determined from the power
delay profile S(τ) given by

S(τ) =
C∑

c=1

Pcδ(t− τc(t)). (3.10)

The complex path weights depend on the Doppler frequency

fn,c(t) = ej(2πfD,n,ct+θn,c), (3.11)

where θn,c denotes the random starting phase drawn out of a uniform distribution in the
range [0, 2π], and fD,n,c denotes the Doppler frequency for cluster c and ray n.

The distinction between resolvable and non-resolvable paths is typically chosen in the
literature on high-resolution parameter estimation since, for parameter estimation, it is
only interesting whether a path is resolvable in a mathematical sense and not whether it
physically constitutes of a cluster or a single ray.
Note that it is common practice to eliminate the LOS delay τ1. For positioning, the
LOS delay belongs to the essential parameters, and hence in this thesis τ1 will not be
eliminated.
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3.2.2.3 Fading

Long-term versus short-term fading: Long-term fading models model the signal
fades caused by topological variations like it is the case for shadowing. The additional
term log-normal distributed term in (refeq:pathlossplusshadowing) modeling shadowing
can be classified as long-term fading. Shadowing occurs due to obstacles attenuating
the signal power through absorption, reflection, scattering, and diffraction between the
transmitter and the receiver [Gol05, p. 27]. Typically, the variation occurs over distances
that scaled by the sizes of the blocking obstacles. Short-term fading, on the other hand,
models deep fades caused by constructive and destructive interference due to multipath
propagation. They can be observed in a distance that maximally equals ten wavelengths
[Höh13]. For example, Rayleigh and Rice fading are such short-term fading models and
will be briefly introduced, since they are employed for this thesis.

Flat versus frequency-selective fading: Whether a channel can be classified as flat
or frequency-selective requires us to compare the maximum channel excess delay and the
symbol duration of the transmit symbol: A channel weight function can be classified as
a flat fading channel if the maximum excess delay is negligible compared to the sym-
bol period of the transmission signal. Otherwise, the channel is classified as frequency
selective:

c(τ , t) is

{
frequency-flat, if τmax � T

frequency-selective, else
. (3.12)

Equivalently, flat fading can also be characterized via the so-called coherence bandwidth
Bc = 1/τmax and the signal bandwidth Bs = 1/T : The property Bc � Bs. Rayleigh and
Rice channel models are frequency-flat channel models.

Note that for realistic terrestrial outdoor and indoor channel models, it is common practice
to combine the concepts of frequency-flat fading and frequency-selective fading by em-
ploying the so-called clustered delay line model, introduced in (3.9). This model makes
use of excess delay multipath clusters, for which the maximum excess delay for all clusters
is τmax ≥ T . Hence, the model is frequency-selective since the channel is dispersive. Each
cluster models Rayleigh or Rice fading like introduced in (3.13). Therefore, we gain each
cluster component by modeling a sum of rays with approximately the same delay. Each
cluster on its own is frequency-flat.

Rayleigh and Rice fading: Rayleigh fading is commonly used to model NLOS mul-
tipath propagation. A typical scenario is an indoor environment. On the other hand,
Rice fading is used for modeling multipath propagation if an LOS component is present,
which is typically the case for outdoor channels. Both channel models are closely related
to each other, and they can be described via a single modeling approach, by introducing
the so-called Rice factor KR, allowing for varying between the two models smoothly. Let
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θn be uniformly distributed in [0, 2π). Then the model for the channel weight function is

c(t) =

√
KR

KR + 1︸ ︷︷ ︸
LOS component

+ lim
NRays→∞

1√
KR + 1

1√
NRays

NRays∑

n=1

ej(θn+2πfdn t)

︸ ︷︷ ︸
multipath components

. (3.13)

A Rice factor KR 6= 0 states that a LOS component is present. In this case, a Rician
channel model applies. A Rice factor of KR = 0 means that an NLOS channel is modeled,
and pure Rayleigh fading applies. Another noteworthy case is KR →∞, which approaches
the additive white Gaussian noise channel model [Höh13, p. 280]. The real and the
imaginary part of c(t) are Gaussian distributed random variables, where the mean of the
real part is

√
KR/(KR + 1), and the imaginary part is zero-mean. In the Rayleigh model

case, the amplitude of c(t) is Rayleigh distributed, while in the Rice model case, it has a
Rician distribution [Gol05, Höh13, PL05]. Rice fading and Rayleigh fading are flat fading
models. They are often used to model path clusters. If more than one cluster is present,
each cluster is frequency-flat, whereas the complete channel model, containing all clusters,
is frequency-selective.

Fast versus slow fading: A channel varies only slowly over time (slow fading) if the
maximum Doppler frequency fdmax is significantly smaller than the signal bandwidth Bs:
fdmax � Bs. Or, changing the perspective by taking the inverses, the so-called coherence
time Td = 1/(2fdmax) is required to be significantly larger than the symbol duration, such
that

c(τ , t) is

{
slow fading, if Td � Ts

fast fading, else
. (3.14)

3.2.2.4 Wide-Sense Stationary Uncorrelated Scattering

The Gaussian Wide-Sense Stationary Uncorrelated Scattering (WSSUS) model is a widely
used model to short-term fading [Bel63, Höh13]. Consider a time-variant channel weight
function and its spectrum via Fourier transform

c(τ , t) d C(τ , fd). (3.15)

According to the Wiener-Chintchin theorem, the associated autocorrelation function, de-
fined as

rCC(τ , τ ′, fd, f
′
d) = E {F (τ , fd)F

∗(τ ′, f ′d)} , (3.16)

is related to the power spectrum. A wide-sense stationary (WSS) channel has an autocor-
relation function that only varies over a time difference δt. If the channel statistics fulfill
the property to be wide-sense stationary (WSS) as well as fulfilling the property of un-
correlated scattering, the channel is called a WSSUS channel, and the following property
holds:

rCC(τ , τ ′, fd, f
′
d) = δ(fd − f ′d)δ(τ − τ ′)S(τ , fd). (3.17)
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A common assumption [Höh13] for the GWSSUS channels is that the scatter funtion can
completely be described via a factorization of the Doppler power density spectrum and
the power delay profile such that

S(τ , fd) = S(τ) · S(fd). (3.18)

The Rayleigh and Rice channel model are only depending on S(fd), and hence are covered
by this model, emphasizing the importance of this stochastic channel model category.

3.3 Channel Modeling for JCAP

Realistic channel models are commonly developed with the purpose to build and optimize
wireless communication systems and not primarily to enable positioning via employing
the same signal as used for communication. For instance, a typical assumption is that the
sampling phase is zero due to perfect synchronization. For positioning, perfect synchro-
nization would mean that τ1 is already known. In this thesis, I target to estimate τ1 by
employing the channel estimates as observations and solving the inverse problem. There-
fore, here τ1 6= 0. For communication systems, it is sufficient to evaluate a single link.
As explained in Chapter 2, TOA/TDOA-based positioning requires multiple reference
objects. Therefore, for positioning, multiple links are necessary.

3.4 The WINNER Channel Model

For the sake of clarity, I will consider a 2-dimensional geometry. Let u, v stand for the uth
and vth transmit and receive antenna, respectively. Furthermore, I define the so-called
clustered delay line model according to the models provided in [KMH+08]. That is, I
assume that sums of multipath rays with similar excess delays build a so-called cluster
like in (3.9). The distinction between rays and clusters will prove to be helpful in terms
of resolvability, considering parameter estimation. Each ray is associated with index n,
where a search cluster is associated with index c. Furthermore, I consider the angle of
departure φc,n, the angle of arrival ϕc,n, Doppler frequencies fDn , transmit and receive
antenna spacings dTx, dRx, and starting phases θc,n uniformly distributed within [−π, π].
Further, assume that uniform linear arrays (ULA)s are applied. Figure 3.2 depicts the
angular relationships, and Figure 3.3 shows the MIMO-specific geometry.
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Figure 3.2: Relationship between the angle of incidence (departure or arrival) and location
vector r1,u for antenna element u of a uniform linear array: If the coordinate system is
chosen such that the x-axis equals antenna broadside, the channel angular dependencies
can be described via the spacing of the antenna elements only.
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Figure 3.3: MIMO specific geometric dependencies in case two ULAs are employed: The
LOS delay τLOS, angle of departure φLOS and angle of arrival ϕLOS are specified by the
Cartesian coordinates of the ULA elements. It is assumed that the antenna geometry
is small compared to the distance dLOS. Hence, the same τLOS, φLOS, and ϕLOS are
considered for each link between the antennas u, v.
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Table 3.1: WINNER B1 LOS/NLOS Clustered delay line model.

Cluster # excess delay cluster power AOA
in [ns] in [dB] in [◦]

L
O

S
W

IN
N

E
R

-B
1

R
=

3.
3,

A
S
A

18
◦

1 0 0 0
30 -10.5

2 in [KMH+08] 35 -12.7 45
40 -14.5

2 here 30 -7.5 45
3 55 -14.8 63

60 -13.6
4 65 -15.8 -69

70 -17.6
4 60 -10.6 -69
5 105 -13.9 61
6 115 -17.8 -69
7 250 -19.6 -73
8 460 -31.4 92

Table 3.2: Ray offset angles.

Ray number n offset angles αn
1, 2 ±0.0447
3, 4 ±0.1413
5, 6 ±0.2492
7, 8 ±0.3715
9, 10 ±0.5129
11, 12 ±0.6797
13, 14 ±0.8844
15, 16 ±1.1481
17, 18 ±1.5195
19, 20 ±2.1551

Find the cluster’s excess delays, powers, and arrival angles in Table 3.1. Then the WIN-
NER model, as used in this thesis, can be emulated by the following steps:

1. Choose the scenario (B1,C1,...)

2. Assign reference, transmitter and receiver Cartesian coordinates

p0 = [0, 0], pTx = [xTx, yTx], pRx = [xRx, yRx].

3. Calculate distances dLOS between transmitter and receiver, LOS angle of departure
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and angle of arrival φLOS,ϕLOS
1.

dLOS =
√

(xTx − xRx)2 + (yTx − yRx)2, (3.19)

α = arctan

(
yTx − yRx
xTx − xRx

)
= − arctan

(
yRx − yTx
xTx − xRx

)
(3.20)

ϕLOS =





− arctan

(
yRx − yTx
xRx − xTx

)
+ π

2
− ΩTx, if xRx ≥ xTx

− arctan

(
yRx − yTx
xRx − xTx

)
− π

2
− ΩTx, else.

(3.21)

φLOS =





− arctan

(
yTx − yRx
xTx − xRx

)
+ π

2
− ΩRx, if xTx ≥ xRx

− arctan

(
yTx − yRx
xTx − xRx

)
− π

2
− ΩRx, else

. (3.22)

4. Assign transmitter and receiver antenna array orientations with respect to the as-
signed north direction.

5. Assign the speed and motion direction of the mobile station (receiver).

6. Assign the systems carrier frequency fC .

7. Assign propagation condition (LOS/NLOS).

8. Assign Rice factor KR and angular spreads ∆ϕ, ∆φ.

9. Assign tabulated cluster powers in dB from clustered delay line model P ′c and and
calculate and normalize cluster powers such that

Pc =
10P

′
c/10

C∑
c=1

10P ′c/10

.

10. Assign tabulated AODs and AOAs ϕc, φc.

11. Calculate AODs and AOAs for each ray in each cluster via Table 3.2 and 
set

ϕc,n =ϕc + ∆ϕαn.

φc,n =φc + ∆φαn.

12. Generate the fading components fu,v,c for each cluster c. Given the Doppler fre-
quency

fdn,c =
|v| cos(ϕn,c − θvel)

λ
(3.23)

1Note, that the information associated with dLOS ,φLOS,ϕLOS
is equivalent to specifying the exact

locations of transmitter and receiver
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and the two auxiliary arguments αn,c,αLOS

αn,c =

(
θc,n + 2πfDn,ct+

2πudTx
λ

sin(ϕc,n) +
2πvdRx
λ

sin(φc,n)

)
(3.24)

αLOS =

(
θLOS + 2πfDLOS t+

2πudTx
λ

sin(ϕLOS) +
2πvdRx
λ

sin(φLOS)

)
(3.25)

for each ray n and each cluster c the complex amplitude γu,v,c is determined via

γu,v,c =





√
Pc√

NRays+1

(√
1

K+1

NRays∑
n=1

exp (jαn,c) +
√

K
K+1

exp (jαLOS)

)
, if c = 1

√
Pc√

NRays+1

NRays∑
n=1

exp (jαn,c) else

.

(3.26)

Thereby, polarisation is not considered in this thesis. Then the overall channel
impulse response can be modelled by

c =
C∑

c=1

γu,v,cδ(τ − τc). (3.27)

13. Apply path loss and shadow fading. This step is omitted in this thesis, since the
simulation results are shown for varying signal-to-noise ratios rather than varying
distances. Path loss and shadow fading are proportional to a signal-to-noise ratio
variation.

3.4.0.1 Delay and Path Amplitude Time Variability

Note that for positioning it is worthwhile to consider that the parameters’ time vari-
ability is different for the complex path amplitudes β = [β1, . . . , βC ] than for the actual
parameters of interest, the delays collected in τ = [τ1, . . . , τC ]. It is essential to observe
that τ varies significantly slower than β. More precisely, the variation ∆τ1 in the TOA
parameter τ1 can be quantified by

∆τ1 =
∆d

c0

=
vIKT

c0

. (3.28)

Here c0 denotes the speed of light, v the relative mobile velocity, T denotes the sampling
duration without oversampling, K a number of samples for which the complex path
amplitudes β can be assumed quasi-invariant, and I shall be the number of blocks of
length KT for which the delays can be considered quasi-invariant. This can easily be
understood by defining an upper limit ∆τmax by inserting the maximum values Kmax =
1000, Imax = 100, Tmax = 200 ns,vmax = 100 m

3.6 s
as applied in (3.28) such that

∆τmax =
∆d

c0

=
vmaxImaxKmaxTmax

c0

≈ 2 ns (=̂∆d ≈ 0.55 m). (3.29)
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This means that a positioning error of 0.55 m for this setup would be unavoidable. If a
higher precision is required, one of the parameters must be chosen even smaller.
Note that similarly to the block-fading assumption I am using, from now on, I will assume
that τ does not vary for a time series of I blocks.



Chapter 4

A Channel-Estimation-based JCAP
System Framework

In this thesis the system framework includes the main functionalities like

• the transmission or system model,

• multipurpose channel estimation,

• data detection,

• parameter estimation,

• positioning,

including their structure and mutual relationships. Thereby, I target a formulation that
can be directly applied to different multiplexing schemes or transmission concepts or
needs only slight modifications. Regarding detection and estimation, I provide both, a
time domain and frequency domain description system model, to later allow different
estimation strategies, since the experience I gained shows that depending on the physical
environment and design goal, different techniques can be applied.

4.1 System Model

The core system model consists of the composition of a so-called virtual training matrix
V, comprising data and training. It depends on the specific multiplexing and transmitter
structure (coding, modulation, pulse shaping, and so forth . . .). Furthermore, it consists
of the physical channel and on the receiver modules: Channel estimation, data detection,
parameter estimation, and positioning, as can be seen in Figure 4.1. Note that at this
point it is not important whether OFDM, CDM, IDM or another multiplexing scheme is
used. At this point, the idea is that via semi-blind channel estimation it is possible to
employ both data and training, combined as virtual training for data detection as well
as for high-resolution parameter estimation. Elements of these high-resolution parameter
vector estimates are the TOA estimates, which, in return, are employed to enable high
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Figure 4.1: The system framework consists of a transmitter, a channel and a receiver
concept. Thereby the transmitter arranges data and pilots according to the applied mul-
tiplexing and modulation scheme. The equivalent discrete time channel model comprises
the physical channel as well as the pulse shaping and the receive filtering gTx, gRx and
adds noise. Finally, the JCAP receiver consists of a core channel estimation module,
feeding the data detection unit as well as the parameter estimation unit, which calculates
positioning relevant data to be fed into the positioning algorithm.

precision positioning. Parameter estimates can be used to improve the channel estimation
accuracy and hence the data detection performance. The output gained by data detection
algorithms at the receiver when interpreted as virtual additional training is supposed to
improve the parameter estimation accuracy in return. To obtain high precision positioning
results, choosing optimal estimators for the preceding steps is an absolutely necessary
prerequisite, other than choosing a specific transmission or estimation concept.

4.2 Overall Channel and Transmission Model

I will begin with the channel model formulation as it is needed. It can be employed by a
parallel time-domain and frequency-domain description.

4.2.1 The Continuous Physical Channel Model

The continuous physical channel model can be described via the channel weight function
c(τ), as previously introduced in Chapter 3 in (3.9) in the time domain, or as the channel
transfer function in the frequency domain:
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c(τ) =
C∑

c=1

βcδ(τ − τc) d C(f) =
C∑

c=1

βce
−j2πτcf . (4.1)

Note that, for now, block-fading is assumed, meaning that the physical path parameters
do not vary over the time t, that is the amplitudes and dealys time-dependency can be
omitted and c(τ , t) = c(τ).

4.2.2 Pulse Shaping and Receiver Filtering

Let the convolution of pulse shaping filter gTx(τ) and receive filter gRx(τ) be given by

g(τ) = (gTx ∗ gRx)(τ) d G(f) = gTx(f)gRx(f). (4.2)

Given any delay shift τs, this leads to:

gτs(τ) = g(τ − τs) d Gτs(f) = G(f)e−j2πτsf , . (4.3)

by the time-shift property of the Fourier transform.

4.2.3 The Continuous Overall Channel

The overall channel impulse response h(t, τ) is given by the convolution of the pulse
shaping filter gTx(τ), the physical channel impulse response c(τ), and the receive filter
gRx(τ). It can be expressed in terms of g(τ), since the convolution is commutative.

h(τ) = (gTx ∗ c ∗ gRx)(τ) = (g ∗ c)(τ),d d d

H(f) = gTx(f)C(f)gRx(f) = G(f)C(f).

(4.4)

Executing the convolution by using (4.1) leads to

h(τ) =
C∑

c=1

βcg(τ − τc) d H(f) =
C∑

c=1

G(f)βce
−j2πτcf . (4.5)

4.2.4 The Equivalent Discrete-Time Channel Model

The equivalent discrete-time channel model (EDTCM) (Figure 4.2) shows the discretiza-
tion of the left hand side of (4.5), embodied in the channel coefficients h0, . . . ,hL. More
precisely, the EDTCM in Figure 4.2 shows that the input-to-output behaviour for any
transmit symbol v[k] and any recived symbol y[k] can be modeled conveniently via a
discrete convolution with the channel vector, indicated by the delay elements z−1. The
sampling duration, in case of symbol-rate sampling, coincides with the symbol duration
denoted by T . In the case of oversampling with oversampling factor J , the sampling
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kTs

y[k]gRx(τ )c(τ )

AWGN
z−1z−1

y[k]

n[k]

v[k]

v[k]

h0 h1 hL

gTx(τ )

Figure 4.2: Equivalent discrete-time channel model (EDTCM) shown for J = 1.

duration is T/J . In this thesis, the function g, without loss of generality, is realized as
a windowed delayed raised cosine with roll-off factor 0.3. Then, the window width 2W
(W is an integer multiple of T ) and the maximum channel delay τc specify the num-
ber of discrete samples in the channel vector, the so-called channel memory length L for
symbol-rate sampling:

L =
⌈τC + 2W

T

⌉
. (4.6)

Furthermore, let the the oversampled channel length be LJ = JL + 1. Sampling the left
hand side of (4.2) at the time instants τ ∈ {0T ,T/J , 2T/J · · · ,LT} and transforming via
Discrete Fourier Transformation (DFT) provides the vectors

g =[g0, . . . , gLJ ]
LJ

ğ = FLJg = [ğ0, . . . , ğLJ ], with

gl =g

(
lT

J

)
∀l ∈ {0, . . . ,LJ} and ğn =

LJ−1∑

l=0

gne
−j2πnl
LJ ∀n ∈ {0, . . . ,LJ}, (4.7)

for the pulse samples without delay. Sampling the delayed pulses yields a pulse matrix
with the elements given by ∀l ∈ {0, . . . ,LJ − 1} ∀c ∈ {1, . . . ,C}:

[G(τ )]l,c =gτc(l) = g

(
lT

J
− τc

)
, (4.8)

gτc =[g(0− τc)], . . . , g(LT − τc)] LJ
ğτc = FLJgτc = [ğ(0− τc), . . . , ğτc(LT − τc)],

G(τ ) =[gTτ1 , . . . , g
T
τC

]
LJ

Ğ = FLJG(τ ) = [FLJg
T
τ1

, . . . , FLJg
T
τC

].
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Sampling at time instants {0T ,T/J , · · · ,LT} and transforming via DFT yields the vectors

h =[h0, . . . ,hLJ−1] = G(τ )β
LJ

h̆ = [h̆0, . . . , h̆LJ−1]T = FLJh = Ğ(τ )β, with

hl =
C∑

c=1

βcg(lT − τc) ∀l ∈ {0, . . . ,LJ} and

h̆n =

LJ−1∑

l=0

hle
− j2πnl

LJ =

LJ−1∑

l=0

(
C∑

c=1

βcg(lT − τc)
)
e
−j2πnl
LJ ∀n ∈ {0, . . . ,LJ − 1}. (4.9)

Sampling the physical channel weight function in the time domain doesn’t make any
sense. Only the transfer function can be sampled in the frequency domain. Later, we will
see, that a separation of g and τ is desirable for the purpose of parameter estimation.
Obviously, sampling the transfer function yields a discrete expression, allowing to separate
the dependencies of g and τ in the frequency domain. Hence, in the following, I prepare
an expression that allows to eliminate the channel vector’s dependency on g. Sampling
the right hand sides of (4.1) and (4.5) at the frequencies fn = n/((L + 1)T ) ∀n ∈
{0, 1, . . . ,LJ} yields the DFT approximations

c̆n ≈
C∑

c=1

βce
−j2πτcn/((L+1)T ), (4.10)

h̆n ≈
C∑

c=1

ğnβce
−j2πτcn/((L+1)T ). (4.11)

Written in the more convenient matrix vector notation and defining the matrix S with
the entries [S]n,c = e−j2πτcn/((L+1)T ) this results in

c̆ ≈ Sβ and h̆ ≈ diag(FLJg)Sβ. (4.12)

Please note, that due to the fact that signal transmission and sampling are actually carried
out in time domain, finite filter lengths lead to aliasing effects in the case of a discrete
transformation to frequency domain. The resulting signals then are not bandlimited
and the sampling theorem cannot be met exactly. Nonetheless, oversampling mitigates
aliasing and can be helpful with respect to the sampling theorem. Therefore, if parameter
estimation is carried out in the frequency-domain for a raised-cosine pulse, it will be
required that J > 1. The definition of h̆n in (4.11) has a greater theoretical than practical
value. It provides a useful formulation in order to remove the pulse and to obtain a
formulation that only depends on the delays. Furthermore, note that the definition of
c̆n has a practical value from an algorithmic point of view, since time-domain sampling
with subsequent DFT would only lead to a reasonable approximation of the c̆n given in
(4.11), if τc

T
∈ Z ∀c ∈ {1, . . . ,C}, which, in general, does not apply. Hence, sampling

in the frequency domain and transforming back to the time domain can yield a better
approximation.

Keeping in mind that (4.12) is only an approximation, it nevertheless allows us to
formulate a time-domain representation of the channel coefficients with a separable de-
pendency of τ and the actual pulse g(τ)

h̆ ≈ diag(FLJg)Sβ
LJ

h ≈ F−1
LJ

h̆ ≈ F−1
LJ

diag(FLJg)Sβ. (4.13)
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If it is desired to remove the dependency of the g(τ) completely, this is easier in the
frequency domain than in the time domain, as can be seen later. Nonetheless, it is pos-
sible in the time domain as well, by defining an auxiliary matrix F−1

LJ+1diag(FLJ+1g) and
multiplying the channel vector with it’s pseudoinverse.

For now, let us assume no oversampling is applied (J = 1). For pure communication
purposes employing the vector h of the equivalent discrete-time channel model (EDTCM)
depicted in Figure 4.2 provides a sufficient tool for a linear system model. Transmitting
symbols vk for time instants k ∈ {0, . . . ,K− 1} over a tapped delay line channel model is
performed by employing the discrete convolution, which in return is performed by utilizing
a Toeplitz matrix V determined by the vector v = [v0, . . . , vK−1]

V =




vL vL−1 . . . v0

vL+1 vL . . . v1
...

. . . . . .
...

...
...

... vL

vK−L
...

...
...

vK−L+1 vK−L . . .
...

...
. . . . . .

...
vK−1 vK−2 . . . vK−L




. (4.14)

This leads to a sequence of received values stacked in the vector y = [y[0], . . . , y[K − L]]
such that

y = VGβ + n = Vh + n
K − L y̆ = FK−Ly. (4.15)

Thereby, FK−L denotes the DFT matrix. Note that the matrix V is constructed in order
to model only the transient behaviour. As visible from (4.1), 4.9), (4.5) and (4.11) the
positioning relevant information, which actually corresponds to τ1 is contained in the
physical channel weight function c(τ) as a part of the vector τ .

Since the channel weight function is not observed or measured, we employ the discrete
channel coefficients to determine the delay vector via parameter estimation.

4.2.5 Special Cases

Let us here treat two special cases, which allow algorithmic simplifications. The first
special case arises, if the delays are integer multiples of the sampling duration, and the
second one arises, if the virtual training matrix is a circulant matrix in the time domain
(the convolution with the channel coefficients is circular) and processing is carried out in
the frequency domain. Therefore, note that:

Remark 1. For any square rank or period N circulant matrix C (defined in Appendix
B), being a special kind of Toeplitz matrix, which is specified by its first column c:

C =F−1
N diag(FNc)FN

⇔ diag(FNc) =FNCF−1
N . (4.16)
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Furthermore, the definition of the circulant matrix in Appendix B.6 means that

Ch = c ~ h (4.17)

Property 1 (DFT of a circulant matrix). The DFT of a circular convolution can be
expressed via a pointwise multiplication in the following manner:

FN(c ~ h) = FNc� FNh = c̆� h̆. (4.18)

4.2.5.1 Case 1: Delays are Integer Multiples of the Sampling Duration

If the delays are integer multiples of the sampling duration, firstly a straighforward im-
plication is

τcJ

T
∈ Z ∀c ∈ {1, . . . ,C} ⇒ S = FLJ . (4.19)

Secondly, the pulse matrix G(τ ) becomes circulant and by using (4.18) and defining
βTzp = [β, 0, . . . , 0]T ∈ C(LJ )×1 we can directly write

h = G(τ )β
LJ

h̆ = ğ � β̆zp. (4.20)

4.2.5.2 Case 2: Virtual Training Matrix is Circulant

Let hzp = [h, 0, . . . , 0]T ∈ CK×1 denote the zero-padded channel coefficent vector. Then
the Property (4.18) also indicates that if the virtual training matrix V is designed to be
a circular matrix by employing a cyclic prefix, as it is the case for OFDM signals, the
following simplification is met:

y = Vh + n
K

y̆ = v̆ � h̆zp + n̆. (4.21)

Note that the right hand side of (4.21) consists of a simple pointwise multiplication, which
allows for simple detection and estimation techniques. Obviously, this strongly motivates
techniques like OFDM. The OFDM signal is constructed in the frequency domain to begin
with. In this case the length K will be determined by the numbers of subcarriers and
the length of the cyclic prefix. It is implemented via fast Fourier transform (FFT) and
inverse fast Fourier transform (IFFT). If OFDM is chosen as a multiplexing scheme, we
can additionally make use of the separability of the influence of g and τ , without any
further effort.

4.3 System and Model Extensions

4.3.1 Oversampling

If oversampling is applied, a sparse length KJ = JK sequence of virtual training symbols
has to be defined:

ν[k] =

{
v[k′] if k/J ∈ Z
0 else

. (4.22)
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Up to this moment I formulated the system equations including the possibility to do
oversampling (J > 1). Formulating both, discrete time samples and their DFTs, this was
necessary. Preceding research in [Sch12] elaborately showed that oversampling is desirable
for positioning purposes and rather undesirable for communication purposes. Apart from
that, oversampling has the drawback to entail the necessity of using whitening filters, since
oversampling leads to correlated noise samples. Furthermore, numerical results indicated
that oversampling factors exceeding J = 2 do not suffice to yield high resolution TOA
parameter estimates and do not measurably improve the performance for a reasonable
SNR region and a realistic channel scenario. Consequently, assuming that oversampling
is the only way to obtain the desired positioning accuracy, [Sch12] suggests to employ
J = 2.

In order to mitigate aliasing effects transforming to the frequency domain, setting J =
2 suffices as well [vdVVP98]. The results also show that for communication purposes the
performance degrades with increasing oversampling factor J . Employing K measurements
provides a sufficient statistic for optimal detection. In [Sch12] it is suggested to always
up- and downsample between communication and positioning relevant processing in order
to use the benefits of oversampling for positioning and to circumvent the drawbacks for
communication. This complicated measure obviously requires higher cost and energy.
Therefore in this thesis other approaches to yield an increase in the number of available
channel measurements than employing oversampling are preferred. The DFTs above and
hence oversampling was taken into account, in order to provide a system description that
allows frequency-domain parameter estimation. Now, note that the requirement (J > 1)
for frequency domain parameter estimation solutions is a first indicator to prefer time-
domain solutions over frequency-domain based solutions. From now on, if not explicitly
stated otherwise, J = 1 and hence LJ = L+ 1 and a time-domain solution I will present.

4.3.2 Multiple Input Multiple Output (MIMO) Systems

Apart from oversampling, a MIMO setup is an alternative approach to increase the number
of available channel measurements. Given that we consider an NT ×NR MIMO system,
the system equation becomes

Y = HVT + N, (4.23)

where Y ∈ CNR×(K−L) denotes the channel output matrix, H ∈ CNR×NT (L+1) denotes
the channel matrix itself, VT ∈ CNT (L+1)×(K−L) denotes the virtual training matrix, and
N ∈ CNR×(K−L) denotes the noise matrix. The matrices are constructed in the following
manner:
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∀k ∈ {0, . . . ,K − L}, ∀l ∈ {0, . . . ,L}, ∀u ∈ {0, . . . ,NT − 1}, ∀v ∈ {0, . . . ,NR − 1}:
[Y]v,k = yv[k + L] (4.24)

[N]v,k = nv[k + L] (4.25)

[Vu]k,l = vu[k − l + L], V = [V1 . . .VNT
], (4.26)

H =




hT1,1 . . . hT1,NT
...

. . .
...

hTNR,1 . . . hTNR,NT
.


 , hu,v = [hu,v,0, . . . ,hu,v,L]T . (4.27)

Note that the matrices are constructed in order to model the transient behaviour only.
Let φc,n := [φ]c,n denote the angle of arrival (AOA) and let ϕc,n := [ϕ]c,n denote the
angle of departure (AOD), associated with multipath cluster c ∈ {1, . . . ,C} and ray
n ∈ {1, . . . ,NRays}. The vectors

φc = [φc,1, . . . ,φc,NRays ], ϕc = [ϕc,1, . . . ,ϕc,NRays ], ∀c ∈ {1, . . . c} (4.28)

build the rows of the matrices φ and ϕ, respectively. Let aT, aR be the so-called steer-
ing vectors, sometimes also referred to as the array response vectors, belonging to the
transmit and receive antenna array, respectively. They are defined for each impinging
wave. Thus, let us define these vectors for each multipath cluster c ∈ {1, . . . ,C} and ray
n ∈ {1, . . . ,NRays} such that

aTc,n(φc,n) = [1,φ, . . . ,φNT ]T , with φ = ej2π
dT
λ

sin(ϕn,c) and aT ,c(φc,n) ∈ CNT , (4.29)

aRc,n(ϕc,n) = [1,φ, . . . ,φNr ]T , with φ = ej2π
dT
λ

sin(φn,c) and aR,c(ϕc,n) ∈ CNR . (4.30)

The channel model can be adjusted by taking into account the cluster c specific transmitter
and receiver array response matrices ARc(φc) ∈ CNR×NRays and ATc(ϕc) ∈ CNT×NRays .
The transmit and receive antenna array spacings are modelled by dT and dR, respectively.
Then the uth and vth transmit and receive antenna array response matrix entries are

[ATc(ϕc)]u,n = e(j
2πdT
λ

(u−1) sin(φc,n)dT ), (4.31)

[ARc(φc)]v,n = e(j2π
dR
λ

(v−1) sin(ϕc,n)dR), (4.32)

Or the matrices can be described via the steering vectors as

ATc(ϕc) = [aTc,1(ϕc,1), . . . , aTc,NRays(ϕc,NRays)], (4.33)

ARc(φc) = [aRc,1(φc,1), . . . , aRc,NRays(φc,NRays)]. (4.34)

(4.35)

Introducing an auxiliary variable fc,n and revisiting and reformulating the summands of
(3.26)

exp

(
θc,n + 2πfdc,nt+

2πudTx
λ

sin(ϕc,n) +
2πvdRx
λ

sin(φc,n)

)
(4.36)

= exp
(
θc,n + 2πfdn,ct

)
︸ ︷︷ ︸

fn,c

exp

(
2πudTx
λ

sin(ϕc,n)

)
exp

(
2πvdRx
λ

sin(φc,n)

)
, (4.37)
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it can be directly seen that for each cluster c the spatial signature matrix Γc ∈ CNR×NT

can be defined as

Γc(t,φc,ϕc) =

NRays∑

n=1

fc,n(t)aRc,n(φc,n)aT
T
c,n(ϕc,n) (4.38)

=ARc(φc)diag(fc)AT
T
c (ϕc), with fc = [fc,1, . . . , fc,NRays ] (4.39)

=[γc,1(φc,ϕc), . . . ,γc,NT (φc,ϕc)]. (4.40)

Here γc,u(t,φc,ϕc) = [γ1(t,φc,ϕc), . . . , γNr(t,φc,ϕc)]
T is the uth column vector of matrix

Γc(t,φc,ϕc).
Note that the elements γc,u,v(t,φc,ϕc) := βc,u,v if βu,v := [β1,u,v, . . . , βC,u,v]

T is defined as
the complex path amplitude vector for transmit antenna u and receive antenna v for all
u ∈ {1, . . . ,Nt} and v ∈ {1, . . . ,Nr}. In the MIMO case, the complex path amplitudes
are renamed to γ. Collecting and rearranging all cluster contributions in a matrix with
transmit antenna index u such that Γ′u(t,φ,ϕ) ∈ CNR×C :

Γ′u(t,φ,ϕ) = [γ1,u(t,φ1,ϕ1), . . . ,γC,u(t,φC ,ϕC)]. (4.41)

Further I store these matrices in an overall matrix Γ(t,φ,ϕ) ∈ CNR×CNT , defined by

Γ(t,φ,ϕ) =[Γ′1(t,φ,ϕ), . . . , Γ′NT (t,φ,ϕ)], (4.42)

γ =vec{ΓT}. (4.43)

This leads to the cluster parameter-dependent and ray parameter-independent simplified
time-continuous channel matrices H(τ , τ , Γ(t,φ,ϕ)) ∈ CNR×NT , specified by

H(τ , τ , Γ(t,φ,ϕ)) =
C∑

c=1

Γc(t,φc,ϕc)g(τ − τc). (4.44)

Let ⊗ denote the Kronecker product. Sampling with a sampling duration T leads to the
matrix H(τ , Γ(t,φ,ϕ)) ∈ CNR×NT (L+1):

H(τ , Γ(t,φ,ϕ)) =
C∑

c=1

Γc(t,φc,ϕc)⊗ gTc (τc), (4.45)

where gTc = [g(0 − τc), . . . , g(LT − τc)]
T . Let us make use of the property that the

Kronecker product of an identity matrix and any other matrix yields a block-diagonal
matrix such that in this case we construct an auxiliary matrix GMI(τ ) by

GMI(τ ) = INT ⊗GT (τ ) =




GT (τ ) 0 . . . 0
0 GT (τ ) . . . 0
...

...
. . .

...
0 0 . . . GT (τ )


 . (4.46)
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Keeping in mind that later, for estimation purposes, solving the equations might be
easier if H(τ , τ , Γ(t,φ,ϕ)) is represented via a simple matrix multiplication, we employ
the structure of Γ(t,φ,ϕ) and reformulate (4.45) by using (4.46)

H(τ , Γ(t,φ,ϕ)) = Γ(t,φ,ϕ)GMI(τ ). (4.47)

Alternatively, vectorize this matrix expression as

hMIMO(τ , Γ(t,φ,ϕ)) = GMIMO(τ )γ(t,φ,ϕ), (4.48)

by using standard rules1, concerning a vectorized matrix multiplication, as follows:

hMIMO(τ , Γ(t,φ,ϕ)) =vec(HT (τ , Γ(t,φ,ϕ))) (4.49)

=vec(GMI(τ )ΓT (t,φ,ϕ)) (4.50)

=(INR ⊗ GMI(τ ))vec(ΓT (t,φ,ϕ))

=(INR ⊗ (INT ⊗G(τ ))) vec(ΓT (t,φ,ϕ))︸ ︷︷ ︸
:=γ(φ,ϕ)

=(INRNT ⊗G(τ )︸ ︷︷ ︸
:=GMIMO(τ )

)γ(t,φ,ϕ)

=GMIMO(τ )γ(t,φ,ϕ). (4.51)

4.3.2.1 SIMO

One can consider the single-input multiple-output (SIMO) case as a special case of the
MIMO scenario given that NT = 1. Let the Kathri-Rao product of two arbitrary matrices
(•)�(•) be defined as the column-wise Kronecker product of these two matrices.The pulse
matrix simplifies to: GMI = G. Then the channel matrix is determined by

H(τ , Γ(φ)) = AR(G � βT )T = (AR � βT )GT = ΓGT (τ ) or (4.52)

hMO(τ , Γ(φ)) = GMO(τ )γ(φ). (4.53)

4.3.3 Time Series Measurements

Note that for the channel models applied in this thesis, τ (t) varies slower in time than
β(t) and Γ(t,φ,ϕ), which measurably vary from block to block (block-fading assumption
for the time span KT ). Depending on the transmitter and receiver velocities, for the
duration of a certain number of blocks, the variation of τ (t) is negligible. We can use this
property to our advantage later in the following manner: Modeling parameters in τ (t) = τ
as quasi-static for a time series of I bocks leads to a substantially increased number of
channel measurements that can be further employed for model selection and parameter
estimation. The performance of the employed model order selection as well as the TOA
estimation crucially depends on the available number of channel estimations. The time
variability of the parameters is shown in subfigure a) of Figure 4.3. The variability of

1Given any arbitrary matrices A, B and C, vec(ABC) = (CT ⊗A)vec(B) holds true.
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β(t) = β,
Γ(t) = Γ

τ (t) = τ , β(t) 6= β, Γ(t) 6= Γ

t

KT IKT

· · ·

(a) The physical path parameter time variability.
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(b) The Doppler frequency depends on the carrier frequency and on the velocity.
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(c) Channel power for a WINNER B1-LOS Rician fading channel with Rice factor K = 3,
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Figure 4.3: Parameter time variability



4.4. Channel Estimation for JCAP 53

the Doppler frequency is shown in subfigure b) and the complex path amplitude fading
characteristic is shown in subfigure c). This variability indicates that it is not possible to
collect an unlimited number of samples.
The continuous time-dependant channel matrix is

H(t, τ , Γ(t,φ,ϕ)) = Γ(t,φ,ϕ)GMI(τ ), ∈ CNR×NT (L+1). (4.54)

It is assumed that I blocks of estimates of H[i] with i ∈ {0, . . . , I − 1} are available.
Therefore, the time duration between two consecutive snapshot measurements is KT and
the measurement is carried out over a total time duration of IKT . We simply redefine or
extend the definition of Γ and H

Γ(φ,ϕ)) = [ΓT (0,φ,ϕ), . . . , ΓT (I − 1,φ,ϕ)]T ∈ CNRI×NTC (4.55)

H(τ , Γ(φ,ϕ)) = Γ(φ,ϕ)GMI(τ ), ∈ CNRI×NT (L+1). (4.56)

Similar as for the MIMO setup we can vectorize the matrix series to obtain a length
((L+ 1)NRNT I) complex channel vector

γ(φ,ϕ)) =vec{ΓT (φ,ϕ)}, (4.57)

h(τ , Γ(φ,ϕ)) =(INRNT I ⊗G(τ ))γ = GTS,MIMO(τ )γ(φ,ϕ)). (4.58)

Modelling the delays in τ (t) as quasi-static for I symbols embodies a simplified approxi-
mated channel model. Therefore, we have to keep in mind that, in the worst case, while
performing delay estimation, we actually limit the delay estimation accuracy to an ac-
curacy of (vmax/c0)IKT . Another property to keep in mind regarding the time series
extension is the dependency on the receiver mobility. Note that whenever the receiver is
not moving (velocity vmax = 0) or moving very slowly, the time series extension will lead
to a series of constant or highly correlated measurements, which only differ in their in-
stantaneous noise values, and therefore will not be helpful to improve the delay estimates.

4.3.4 Multiple Access

Different users u ∈ {1, . . . ,U} are physically separated and hence user specific channels
have to be taken into account. They are constructed via user specific complex path
weights γ = [γ1, . . . ,γU ] and user specific delays τ 1, . . . , τU :

h =




INRNT I ⊗G(τ 1) 0 0

0
. . . 0

0 0 INRNT I ⊗G(τU)


γ = GMA,TS,MIMOγ. (4.59)

Then the channel vector is h ∈ CU ·I·NT ·NR·(L+1).

4.4 Channel Estimation for JCAP

Channel estimation is inherently implemented in most available communication receiver
structures, for the purpose of accurate and robust data detection. A broad range of
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publications over the past two decades has been devoted to the subject, addressing differ-
ent underlying communication signal architectures [vdBES+95, SH06, YLCC01, MKS04,
MdCD02], time-variant versus time-invariant channel scenarios [SMH03, Lin08], differ-
ent estimation strategies, including sparse and compressive techniques [BHSN10, HT08,
CVM07, RS16], MIMO and training symbol design [NJU15, ZFY+16, BG06]. A rela-
tionship to positioning is established in [Mia07, AH13]. In [AH13] it is pointed out that
especially for positioning using both training and data is desirable. Often, the underlying
principle of linear least squares estimation based on or at least aided by training symbols
is employed. Regardless, whether different multiplexing or modulation formats, or SISO,
SIMO, MIMO, a time-series measurement or multiple acess systems are investigated: For
the purpose of channel estimation, the underlying system equation (4.15) can often be
formulated as a linear equation:

SISO : y︸︷︷︸
(K−L)×1

= V︸︷︷︸
(K−L)×(L+1)

· h︸︷︷︸
(L+1)×1

+ n︸︷︷︸
(K−L)×1

, (4.60)

TS,MIMO,MA : Y︸︷︷︸
NR×I(K−L)

= H︸︷︷︸
NR×UNT (L+1)

· VT

︸︷︷︸
UNT (L+1)×I(K−L)

+ N︸︷︷︸
NR×I(K−L)

.

(4.61)

Stacking matrix columns in long vectors via vectorizations as performed similar to (4.48),
(4.58) it can easily be shown that the first vector-matrix formulation suffices to model
SISO, MIMO, TS and MA system equations:

vec{YT} =vec{VH}+ vec{NT}, (4.62)

y = INR ⊗V︸ ︷︷ ︸
V

h + n, (4.63)

y = Vh + n. (4.64)

Obviously, the representations (4.60) and (4.64) coincide. The only difference is the length
and (4.60) is a special case of (4.64). Here, V is a matrix, which I dubbed virtual training
matrix, since it either fully represents training symbols or can be decomposed into two
parts, a typically and comparably small training part as well as part containing virtual
training symbols, that is data symbols, which can be detected and then be used as training
symbols as well. Since the exact configuration does not matter up to this point, let us
assume that V consists of training only. The following subsection shortly introduces a
linear least squares closed form solution for the channel estimates.

4.4.1 Linear Least Squares Channel Estimation

The classical and well known linear least squares (LLS) estimator here corresponds to the
maximum likelihood (ML) approach and is given by multiplying the received vector with
the pseudoinverse for the SISO representation in (4.60) [Kay10]:

ĥ = arg min
h̃
{(y −Vh̃)H(y −Vh̃)} = (VHV)−1VH

︸ ︷︷ ︸
V†

y = V†y. (4.65)
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The LLS estimator does not require any a priori information about the channel statistics.
Knowledge about the physical path parameter behaviour is not something that can be
assumed to be a priori available for JCAP. The goal here is to determine these parameters.

4.4.2 Weighted Linear Least Squares Channel Estimation

In case the signal is distorted by correlated noise, for instance in the case of oversampling,
it is beneficial to introduce a weighting matrix W that weights the residual least squares
error appropriately such that W = C−1

n . The weighted linear least squares (WLLS) reads

ĥ = (VHWV)−1VHWy. (4.66)

It is straightforward to see that in the case of additive white Gaussian noise or in any
case where W = γI, where γ here uniquely stands for an arbitrary constant, the WLLS
and the LLS estimator in (4.66) and in (4.65) are equivalent.

4.4.3 Linear Minimum Mean Squared Error Estimation

Another approach that is known to yield a better performance in terms of the mean
squared error (MSE) is the so called linear minimum mean squared error (LMMSE) es-
timator. Since it employs additional a priori information about the channel statistics, it
is here only suited to be applied after parameter estimation has been already performed,
to optimize the detection and estimation performance. For the purpose of joint commu-
nication and positioning, the TOA, being part of the delay vector, is sought. Let Ch

be the autocovariance matrix of the channel coefficients stored in h. Further, let Cn be
autocoveriance matrix of the noise, which is the noise covariance matrix related to the
noise vector n. Then the MMSE estimator [Kay10] is given by

ĥMMSE =E{h}+ (VHC−1
n V + C−1

h )−1VHC−1
n (y − E{h}) (4.67)

=E{h}+ ChVH(VChV + Cn)−1(y − E{h}).

Furthermore, the error covariance matrix is given by

Ce = (VHC−1
n V + C−1

h )−1. (4.68)

Note that a LMMSE estimator (4.68) can be interpreted as a weighted least squares
estimator, given that the a priori information becomes less accurate, such that Ch ≈ ∞I.
Given an infinite uncertainty for a zero-mean channel, it is easy to see that (4.68) and
(4.66) are equal.

4.4.4 Covariance Matrix Estimation

A well known approach to gather information about the covariance matrix Ch is to esti-
mate it. Channel covariance matrix estimates are later required for parameter estimation.
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Figure 4.4: The idea is to virtualize the complete signal to training via an iterative semi-
blind channel estimation approach. The different resource blocks show data (white) and
training (gray). Especially JCAP profits from this approach.

This can be achieved by observing the LS channel estimates sequentially for I time in-
stants and then calculating the sample covariance matrix by

Ĉĥ =
1

L+ 1

I∑

i=1

(ĥ− E{ĥ})(ĥ− E{ĥ})H . (4.69)

4.4.5 Pulse Deconvolved Channel Estimates

The later presented frequency-domain high-resolution parameter estimation solutions re-
quire pulse deconvolved channel estimates. A deconvolution of the pulse, if desired,
can easily be performed in the frequency domain. This particularly can be desirable,
if frequency-domain parameter estimation strategies are applied in a further step. These

pulse deconvolved channel estimates ˆ̆hd can be obtained by

ˆ̆hd = (diag(FLg))−1FLV†y. (4.70)

4.4.6 Training-based, Blind and Semi-blind Channel Estimation

Channel estimation for JCAP as outlined in this thesis, has a central functionality serv-
ing both the communication side as well as the positioning side. Obviously, the TOA
estimation accuracy directly translates into the positioning accuracy. The system pro-
posal here assumes that parameter estimation is performed by treating the output of the
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channel estimator as measurements, employed to formulate a set of equations to estimate
the TOA. Hence, the TOA estimation error is strongly related to the channel estimation
accuracy. Consequently, for this JCAP system framework, it is reasonable to perform
accurate channel estimation.

Training symbols are symbols that are known a priori to the receiver. The more
training is employed, the more accurate channel estimation can be. For the communication
side it is desirable to yield a high data rate. Any form of overhead is undesirable. To this
end, purely training-based channel estimators are designed to have a low ratio of training
symbol energy versus overall symbol energy. This ratio is denoted by ρ. In communication
systems setting ρ = 1 is no option due to this conflict.

A completely blind channel estimation approach assumes that no training symbols are
available. Such methods are known to circumvent a training-based overhead on the one
hand. On the other hand, they either require a large number of observations to make the
problem identifiable, or they suffer from error propagation and hence are not reliable on
the other hand.

Another approach yielding a tradeoff between training overhead, reliability and ac-
curacy, is semi-blind channel estimation: Training symbols are complemented or aided
by detected data symbols. Then as shown in Figure 4.4 with the iterations ρ iteratively
approaches 1, meaning that the complete detected communication signal can be assim-
ilated as training for accurate positioning [AH13, Mia07]. Different semi-blind channel
estimation approaches for various signal models are proposed in [MM01, WH05, WSH06,
MdCD02, SH06]. Here, the general virtual training matrix Vgen ∈ Crows×cols is composed
of a data part Dgen and a training part Tgen. Then, the system equation has the form:

ygen = (Dgen + Tgen)h + w = Vgenh + w. (4.71)

Note that this description applies for different multiplexing schemes as summarized in the
following table:

CDM/IDM/TDM OFDM

(Toeplitz Matrix) (stacked diagonal matrices times DFT matrix)

Vgen [Vgen]k,l = v[k − l + L] [diag{v}]m,n =

{
vm if m = n

0 else

∈ CK−L×L+1 ∈ CNsN×NsN (Ns: subcarrier length, N symbol number)
rows K − L NsN
cols L+ 1 L+ 1
ygen y = Vgenh + n (CIR) y̆ = VgenFNsh + n (CFR)

ĥ V†y (diag{v}FNs)
†y̆

ˆ̆
h (FV)†y̆ V†geny̆ = (diag{v})−1y̆ (pointwise division)

Obviously, for this generalised system equation the channel estimator is

ĥ = V†genygen. (4.72)
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Figure 4.5: The CRLB(hl) V only depends the noise variance (or signal-to-noise ratio Υb)
and the number of rows of Vgen for ρ → 1 and is the best achievable performance that
can be fed to the parameter estimation unit.

Consequently, the CRLB for this estimation problem is

CRLB(ĥ) = σ2
wtrace{(VH

genVgen)−1}. (4.73)

For constant amplitude signals VHV ∼ I the CRLB can be simplified to only depending
on the noise covariance Cn = σ2

nI, rows and L+ 1 for the overall vector

CRLB(ĥ) =
σ2

n(L+ 1)

rows
and CRLB(hl) =

σ2
n

rows
. (4.74)

If we consider what the number rows represents for the different multiplexing schemes,
we see that it equals the number of time symbols that actually have to be transmitted.
Therefore, note, that this implies the following: In case the virtual training matrix can
somehow be used almost fully, (ρ → 1) and it is chosen optimally with constant ampli-
tudes, then the channel estimation performance will be similar for different mutliplexing
schemes like IDM and OFDM (compare [MKS04],[vdBES+95] and [SH06]). As will be
shown later, the delay estimation performance, and hence the positioning performance,
depend on the channel estimation performance. All this indicates that the actual com-
munication signal design is not as important for the positioning performance as choosing
an optimal semi-blind estimation technique instead of emloying only training symbols.

4.4.7 MA, TS, MIMO Channel Estimation

In this thesis, MIMO channel estimation is desirable for two reasons: First of all, it is well
known, that by employing multiple antennas the AOD and AOA can be estimated. This
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is extra positioning information. Further, MIMO can be used to collect more measure-
ments to yield a better delay estimation accuracy. In this thesis, we will employ SIMO
measurements. It is straighforward to see that for a SIMO system equation the channel
ML/LS channel estimator is

Ĥ = YVH(VVH)−1. (4.75)

Employing (4.64)

ĥ = V†y. (4.76)

For the theoretical analysis presented in this thesis, lower bounds for the estimation
results are an important tool to show the estimator performance and to detect room for
possible improvements. Therefore, in the following sections, I assess the required error
metrics, lower bounds and their derivations.

4.5 Theoretical Limits

4.5.1 Variance, Bias and MSE

For upcoming theoretical analysis I will use variance and MSE calculations as well as
lower bounds. Therefore the following relationships are considered to be helpful. Let ξ̂
be an arbitrary scalar estimate and ξ̂ be an arbitrary vector estimate. Then

MSE(ξ̂) = E{(ξ̂ − ξ)2} = (Bias(ξ̂))2 + Var{ξ̂}.
In the vector case, this translates to

MSE(ξ̂) = trace(Cξ̂) + Bias||ξ̂||2.

In the scalar case, the variance of an arbitrary random variable ξ is determined by

Var{ξ} = E{(ξ − µ)2}, with µ = E{ξ}.
In the vector case, the covariance matrix, belonging to an arbitrary random column vector
ξ, is denoted by Cξ and calculated by

Cξ = E{(ξ − µ)(ξ − µ)H}, (4.77)

where µ denotes the vector of component-wise expected values E{ξ} for the vector ξ.
Thereby, the scalar and vector biases are defined as

Bias(ξ̂) = E{ξ̂} − ξ and Bias(ξ̂) = E{ξ̂} − ξ.

Therefore, an unbiased estimator fulfills the property

E{ξ̂} = ξ.

Consequently, in the unbiased case, the MSE for each vector entry coincides with the
covariance matrix, such that

MSE(ξ̂) = trace(Cξ̂).
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4.5.2 Cramer-Rao Lower Bound (CRLB)

A suitable and well known lower performance bound for an arbitrary observation vector
s and desired parameter vector ξ is the Cramer-Rao lower bound (CRLB), which, in
general, is defined by

crlb (ξ) =diag (F (ξ)) , (4.78)

F (ξ)−1 ≤Cξ̂, with (4.79)

[F (ξ)]i,j =− E

[
∂2 ln p(s; ξ)

∂ξi∂ξj

]
, (4.80)

where F is the Fisher information matrix (FIM). To find optimal parameters, two suc-
cessive CRLBs have to be taken into account, namely the channel estimation CRLB and
the delay estimation CRLB.

4.5.3 Linear Least Squares Estimation Covariance

Consider any linear system determined by an arbitrary matrix X, a complex-valued vector
ξ, an additive white Gaussian noise vector n ∈ N (0,σ2

n), an observation vector y, such
that

y = Xξ + n. (4.81)

Let the X be an M×N -dimensional matrix and ξ an N -dimensional column vector. Then
it is easy to show that the maximum likelihood estimate ξ̂ coincides with the linear least
squares estimate

ξ̂ = X†y. (4.82)

Let µ be the component-wise column vector for the expected values E{ξ̂}. Then, the
covariance matrix [Kay10] is given by

Cξ̂ = σ2
n

(
XHX

)−1
. (4.83)

4.5.4 Channel Estimation Cramer-Rao Lower Bound

Optimally, the whole energy of the virtual training matrix V ∈ C(K−L)×(L+1) is available

and
(
VHV

)−1 ∼ 1
K−LI(L+1)×(L+1) and (4.65) simplifies to

ĥ = V†y. (4.84)

Then, the lowest possible estimation error is bounded by the CRLB, such that

crlb (h) =
σ2
n

K − L ≤ msehl . (4.85)

In [AH13] it was shown that this bound is approached asymptotically with increasing
signal-to-noise ratio (SNR) in a multipath scenario, which indicates, that ideally the
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complete signal energy of the communication signal can be exploited for positioning as
well. In the case of a purely training-based estimator, this bound is modified by dividing
by the ratio of the training power to the overall transit power ρ. To preserve the quasi-
time invariance during the observation, the length K should be limited such that K �
1/(fdmaxT ).
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Chapter 5

Parameter Estimation

Parts of the fundamentals in this chapter have been published in [SBKH10, SAH12,
SAH11b, SAH11a].

In this section, we assume that we have estimated the channel coefficient vector h as
in (4.65). The noisy estimate consists of the channel vector h and an additive white
Gaussian noise vector with statistical description w ∼ N (0,σ2

wI), such that it can be
modelled as

ĥ = h + w. (5.1)

The channel estimates h potentially bears positioning relevant information like the TOA,
which can be seen from revisiting the underlying channel model function for each element
hl of h in (4.9):

hl =
C∑

c=1

βcg(lT − τc).

Since the channel estimates collected in ĥ like in (5.1) are inherently available in communi-
cation systems, they can additionally be exploited for parameter estimation, in particular,
for TOA estimation, by solving the inverse problem. The accuracy of solutions to inverse
problems depends on the amount of available information and on whether a priori infor-
mation, like for instance statistical information such as the power delay profile, is known
beforehand (or not), or whether the model function for the channel coefficients introduced
in (4.9) is known (or not). To begin with, let us assume that the channel coefficient model
function is known beforehand and the power delay profile isn’t. This choice is reasonable,
since it makes sense that the receiver knows the convolution of the pulse shape as well
as the receiver filter g and does not know, which channel scenario momentarily applies.
However, it is noteworthy that in case we assume that the model in (4.9) is known a pri-
ori, the correct model order C has to be known a priori as well. Otherwise, C could and
possibly should be substituted by an model order estimate Ĉ. Whether the assumption
that the correct model order is known is the most reasonable choice to begin with, or
whether it is not, is discussed in the later sections of this thesis. Moreover, Figure 5.1
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Figure 5.1: The example shows the real and imaginary parts of a typical signal superpo-
sition channel measurement snapshot: The upper pictures show the continuous channel
impulse response, whereas the lower pictures show the samples h = [h0, . . . ,hL]. The re-
ceiver “sees” L+1 estimated (noisy) samples (lower two plots: superimposed signals). The
challenge is to estimate the positioning relevant information τ1 from these noisy samples.

outlines a typically occurring channel scenario and emphasises three important difficulties
assumed throughout this thesis:

• If not stated otherwise only a small number of snapshot measurements, that is
channel coefficients, are available for parameter estimation.

• Typically, the excess delay to symbol duration ratio is assumed to be so small that
classical correlation-based TOA estimation methods would fail.

• The roughly exponentially decaying power delay profile, varying instantaneous com-
plex fading amplitudes combined with the difficulties mentioned above result in a
high noise sensitivity.

Due to these harsh varying channel conditions, it becomes intuitively clear that the under-
lying estimation problem can range from being difficult to solve (considering the non-linear
underlying structure and the high problem dimensionality) to being impossible to solve,
without modifying the problem (considering that the problem may reveal singularities,
or, at least, an ill-conditioned nature).
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Note that, if a large amount of measurements is available (large sample case), the com-
plex amplitudes βc can be modelled by viewing them as either deterministic or stochastic
variables. In the latter case, the sample covariance matrix is determined by

Cβ = lim
n→∞

1

N

N∑

n=1

β(n)βH(n). (5.2)

Two measurements taken at different times indices i and j are assumed to be independent,
such that

Cβδi,j = E{β(i)βH(j)}. (5.3)

Thereby, δi,j denotes the Kronecker delta, being 1 for i = j and 0 otherwise. The accurate
way to model the components of β is to interpret them as deterministic variables. If not
stated otherwise, I will proceed by interpreting β as a deterministic parameter vector.
For now I assume that I only have one single estimated channel snapshot measurement
to use for parameter estimation.

5.1 Maximum-Likelihood and Least Squares Estima-

tion

Preferentially, we desire to estimate the parameters that can be used for the purpose of
positioning. Here this is the TOA, in the single antenna scenario. In this thesis, the TOA
is divided into a coarse part κ and a sampling phase τ1

τtoa = κ+ τ1. (5.4)

It is assumed that that κ is pre-estimated in a coarse delay estimation step during a
synchronization phase. Therefore, the part, which we are actually interested in, is τ1.
However, the channel function depends on multiple different parameters. Therefore, they
cannot be estimated optimally in terms of a one-dimensional parameter estimation prob-
lem. Additionally, to its dependence on the τ1,the channel depends on the complex path
amplitudes collected in β = βi + jβq and on the excess delays τ2, . . . , τC . Therefore, let
us merge all of these inevitably desirable parameters in the overall vector

θ = [βi,βq, τ ]. (5.5)

Let the noise covariance matrix Cw, belonging to the channel estimation error, be specified
by

Cw =
σ2
n

K − LI = σ2
wI. (5.6)

In the case that the noise samples in w are white and Gaussian distributed, it is known
[Kay10] that the ML approach corresponds to the LS problem as is shown subsequently.
The likelihood of a parameter vector θ given the observation vector ĥ is defined by

L(θ|ĥ) = p(ĥ|θ). (5.7)
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The maximum likelihood approach then aims at solving the problem

θ̂ = arg max
θ̃
{L(θ|ĥ)}. (5.8)

Note that

• for any function f it holds true that arg max{f} = − arg min{f} and most opti-
mization algorithms minimize a cost function instead of maximizing it,

• exploiting the monotonicity of the logarithm is often known to lead to simpler
optimization cost functions. Hence, instead of maximizing the likelihood directly, it
is often preferable to maximize the logarithmic likelihood,

• constant factors and additive terms in optimization cost functions can often be
omitted for the sake of simplicity, since omitting them leads to equivalent problems,

• it should be kept in mind that all optimization cost function changes, yielding
equivalent optimization problems, do not necessarily maintain the exact equality to
the likelihood function.

This yields the more comfortable equivalent problem

θ̂ = − arg min
θ̃
{lnL(θ|ĥ)}. (5.9)

Further, following the standard manipulations on optimization functions mentioned above
the typical and well-known negative log-likelihood for this thesis can be formulated and
simplified by

− ln(p(ĥ|θ) = −ln

(
1

|πL+1Cw|
exp

(
(ĥ− h̃(θ̃))HC−1

w (ĥ− h̃(θ̃))
))

= ln
(
|πL+1Cw|

)
︸ ︷︷ ︸

const

+(ĥ(θ̃)− h̃)HC−1
w (ĥ− h̃(θ̃)) (5.10)

(5.6)
= ln

(
(πσ2

w)L+1
)

︸ ︷︷ ︸
const

+
1

σ2
w

(ĥ− h̃(θ̃))H(ĥ− h̃(θ̃)) (5.11)

= const · (ĥ− h̃(θ̃))H(ĥ− h̃(θ̃)) + const. (5.12)

For the purpose of minimising the negative log-likelihood function, the constant terms in
the cost function (5.12) can be omitted. For other purposes than optimization, like model
selection for instance, it will become necessary to maintain the constant terms and hence
to evaluate (5.11) instead of (5.12). Now, recall that the modelling function that builds
the hypothesis vector h̃(θ̃) is equal to

h̃(θ̃) = G(τ̃ )β̃. (5.13)
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Figure 5.2: For additive white Gaussian noise the LS error’s probability density function
(PDF) and cumulative density function (CDF) are known functions (χ2-distribution),
uniquely specified by their degrees of freedom µDOF .

Finally, omitting the constant terms and inserting (5.12) into (5.9), the estimator may be
formulated as

θ̂ = arg min
θ̃
{(ĥ− h̃(θ̃))H(ĥ− h̃(θ̃))} (5.14)

= arg min
θ̃
{(ĥ− G̃(τ̃ )β̃)H(ĥ− G̃(τ̃ )β̃)}. (5.15)

Note that in case of Gaussian distributed observations the least squares error

ΩLS = (ĥ− G̃(τ̃ )β̃)H(ĥ− G̃(τ̃ )β̃) (5.16)

is a χ2-distributed random variable. If not specified otherwise, the channel observations
ĥ are Gaussian distributed in this thesis. A χ2-distribution can be described by the
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probability density function (PDF) and cumulative density functions (CDF). The χ2-
distribution is a special case of the Γ-distribution, such that if a variable x ∼ χ2(k) then
x ∼ Γ(k

2
, 1

2
). In general, the χ2-probability density function is defined by

pχ2(x,µDOF ) =
x
µDOF

2
−1e−

x
2

2
µDOF

2 Γ(µDOF
2

)
, (5.17)

where Γ denotes the Γ-function, defined by

Γ
(µDOF

2

)
=

∞∫

0

t
µDOF

2
−1e−tdt. (5.18)

Here, µDOF denotes the number of degrees of freedom (DOF). Later, I will explain how to
determine the number of degrees of freedom for the assessed LS problem. The χ2-PDF,
as well as the CDF, are shown in Figure 6.7. Figure 6.7 shows that, with increasing
µDOF , the LS error distribution peak shifts more and more to the right and widens.
It can be seen that for µDOF → ∞ the distribution can be approximated by a normal
distribution. Furthermore, it becomes clear the least squares error exhibits known, varying
PDFs and CDFs for a varying number of degrees of freedom. This special property will be
exploited later for model selection and parameter estimation. Note, that later the residuals
relationship to the χ2-distribution can be exploited for different purposes. In Figure 5.8 it
will be shown that experimentally the error distribution verifies the theoretically expected
behaveiour.
Furthermore, note that this particular ML parameter estimation problem is in general
without further specification a multi-dimensional non-linear LS problem with multiple
local minima. Therefore, the optimization problem given in (5.15) is treated as a global
optimization problem. If no initial guess is available, global optimization methods can be
employed to solve this problem. In the case of an initial guess local optimization strategies
can be considered as well. A short discussion regarding the cost function and algorithmic
choice is given in Subsection 5.6.

5.2 Weighted Least Squares

The weighted least squares method proves beneficial when some entries of the observed
data vector are more reliable than others. Then, a weighting matrix can be included
to increase the impact of reliable observations and decrease the impact of the unreliable
observations. Let a weighting matrix be defined by the matrix W, a square positive
definite matrix with a size determined by the size of the observation vector. Then, the
weighted least squares problem can be formulated as

θ̂ = arg min
θ̃
{(ĥ− G̃(τ̃ )β̃)HW(ĥ− G̃(τ̃ )β̃)}. (5.19)

For example it is straightforward to see that, if the covariance matrix for the error on the
channel estimates is denoted by Cw, a reasonable choice for the weighting matrix is

W = C−1
w . (5.20)
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In this thesis, if not specified otherwise, the covariance matrix for the channel estimation
error can be approximated by (5.6). In this case the weighted non-linear least squares
estimator is the same as the unweighted estimator, since

arg min
θ̃
{ 1

σ2
w

(ĥ− G̃(τ̃ )β̃)HI(ĥ− G̃(τ̃ )β̃)} = arg min
θ̃
{(ĥ− G̃(τ̃ )β̃)H(ĥ− G̃(τ̃ )β̃)}.

5.3 Separable Non-linear Least Squares

Two reasons can be named to reconsider and relax the problem given in (5.15). The first
reason I mentioned earlier: Only the minor part of the estimate θ̂ is actually desired in the
JCAP sense. Thus it would be beneficial to be able to reduce the problem dimensionality.
The second reason to relax the problem becomes obvious if we distinguish between the
linear and the non-linear parameter dependencies, recalling the model function

h = G(τ )β, with [G(τ )]l,c = g(lT − τc).

The model function depends on τ via a nonlinear and on β via a linear relationship.
Thus, it is well known [GP73, Kau75, RW80, OR13, Kay10] that such partially linear
relationships can be exploited in the following manner: Momentarily ignoring that τ is
in fact an unknown, we are able to estimate the complex path amplitudes via the simple
linear least squares estimator

β̂ = G(τ̃ )†ĥ. (5.21)

Thus, the complex path amplitude dependency in the optimization problem in (5.15)
can be eliminated by substituting β with the solution (5.21), such that τ instead of the
complete θ can be estimated by

τ̂ = arg min
τ̃
{(ĥ−G(τ̃ )(G(τ̃ ))†ĥ)H(ĥ−G(τ̃ )(G(τ̃ ))†ĥ)}. (5.22)

Introducing the matrices PG = G(τ̃ )(G(τ̃ ))† and P⊥G = I−PG, a reduced dimensionality
optimization problem, only depending on the delays in τ , can be formulated:

τ̂ = arg min
τ̃
{−ĥ

H
G(τ̃ )(G(τ̃ ))†ĥ}

= arg min
τ̃
{−ĥ

H
PGĥ}

= arg min
τ̃
{ĥHP⊥Gĥ} (5.23)

= arg min
τ̃
{ΩSNLLS}.

These equalities can be understood by the stepwise estimator simplification as shown in
the Appendix (A.1). Note that minimization of functions with the structure of (5.23)
have been dubbed variable projection functional by Golub and Pareyra [GP73, GP03].
Minimizing ΩSNLLS instead of ΩLS is much simpler in terms of feasibility and computa-
tional complexity due to the dimensionality reduction, or as it is further put in [OR13]:



70 Chapter 5. Parameter Estimation

the beauty related to solving the separated problem instead of the full problem lies in
the improved efficiency, due to less parameter dimensions and the higher probability of
finding the global optimum over a local optimum, which can be understood by seeing
that the cost function (5.23) has less local optima than (5.15) to begin with. Golub and
Pareyra also claim in their topical review [GP03] that the separated problem is known to
be less ill-conditioned than the full problem, and that it will converge faster. Nonethe-
less, assuming an unlimited source of computational capabilities, being equivalent, the
two metrics will lead to the same performance regarding the parameter estimation MSEs.
This has been seen by examining multiple simulation results carried out in the context of
this thesis and has been also confirmed in [GP03]. Obviously, if τ is estimated via (5.23),
the complex path amplitudes finally can be estimated by (5.21) such that

β̂ = G(τ̂ )†ĥ. (5.24)

5.4 Parameter Estimation-Aided Channel Estimation

If the complete vector θ is estimated, enhanced channel estimates can be obtained via
the matrix vector multiplication

ĥ = G(τ̂ )β̂. (5.25)

5.5 Detecting Estimation Success

In order to further utilize the gained parameter estimates, for instance for positioning or
for improving channel estimation, it is crucial to know whether the parameter estimation
has been successful or not. Here, successful means that estimated parameters should be
close to the actual parameters, which, unfortunately, are not known at the receiver. More
specifically, the solution should be at least equal to, or should outperform the purely
correlation-based solution. Taking into account that the noisy estimation problem at
hand yields a global, non-linear and multi-dimensional optimization problem, depending
on the algorithmical choice it will be more or less difficult to guarantee success. Although
the distance between θ and θ̂ is not known at the receiver side, there are indicators,
which can be exploited to tell, whether the parameter estimation has been successful or
not. Considering that we know that the least squares error can be modeled as the known
χ2-distribution, we can easily define a rule, which allows us to identify those parameters,
which are and which aren’t associated with a least squares error that, with a certain
confidence, is covered by the known χ2-distribution. This is emphasized by the results
shown in Figure 5.8.

Mathematically speaking, this can be described as follows: Let Ω be the least squares
error associated with the parameter estimates θ̂. Further, let α specify the probability
close to 1 (here I choose α = 0.999) for which the least squares error is χ2-distributed, and
let εχ2 denote the associated least squares threshold value found by either table lookup
[PTVF07] or calculation of the inverse CDF. Another indicator for a possible estimation
failure is that one of the parameters has converged to the search space bounds, assuming
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that it is a priori possible to define a bounded confined search space. Usually, that is a
reasonable assumption and the upper and lower bounds are given by bu and bl, each of
the vector entries specifying an upper and lower bound for each parameter of the search
space. Additionally let ŝ denote the binary value determining success (s = 1) or failure
(s = 0). Then

ŝ =





1, if
Ω

σ2
hl

≤ εχ2 , bl + εl ≤ θi ≤ bu − εu, ∀θi, i ∈ {1, . . . ,D}

0, else.

(5.26)

Thereby, D denotes the search space dimension provided by the length of θ̂ and εb is a
user-specified very small value. Here, it is set to εb = 0.01. Whenever the χ2-based outage
detection fails, because the error cannot be appropriately modelled via a χ2 distribution
the outage detection reduces to the method of checking wether one of the parameters has
converged to the bounds.

5.6 SNLLS/ML Optimization Problem Discussion

When searching for suitable optimization methods, it is important to note that unfortu-
nately there is no such thing as a ”swiss army knife” for optimization: An all-in-one for ev-
ery cost function applicable and universally optimally performing optimization algorithm
does not exist. This insight was thoroughly and theoretically assessed by formulating and
proving the so called ”No Free Lunch Theorems” in [WM97]. The theorems establish that
the performance of all optimization and random search algorithms, assessed for all pos-
sible optimization functions, is equivalent. More precisely, the authors of [WM97] firstly
provide information theoretic tools to relate the efficiency of optimization algorithms to
the problems they are solving. Secondly they proclaim that the presented ”No Free Lunch
Theorems” say that, if any algorithm A yields a superior performance compared to any
other algorithm B for a special problem type, there exists another subset of problems for
which it is the other way around: Algorithm B will outperform algorithm A. Another
noteworthy implication of the findings in [WM97] is the importance of using problem-
specific a priori knowledge to adjust the optimization algorithms that are used to solve
that problems. Bergh remarks that finding optimization methods that work superior for
specific problems is nonetheless constructive and suggests in [Ber01] to seek for a subset
of functions, for which the ”No Free Lunch Theorems” do not hold.

So far we established that there is no perfect optimization method for all problems.
As a straightforward consequence, we take a closer look at the optimization problems,
we want to solve in this thesis, to find a suitable candidate. Fortunately, the optimiza-
tion problems addressed in this thesis have a specific structure and therefore specify a
small subset of all optimization functions. Obviously the problems in (5.15), (5.23) can
be classified as non-linear and multi-dimensional. Both problems (5.15), (5.22) can also
be classified as global optimization problems. The reasoning is not obvious, though espe-
cially not in case of the reduced problem (5.23), and therefore it is shortly discussed in
the following paragraph.
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Global

Local Local

(a) Global and local optima (b) Convexity

Figure 5.3: Optimization problems showing global and local minima and convexity.

Figure 5.3 shows the difference between a global and a local optimium and it further
shows a convex function.

Definition 1 (Local and global optimimum). For any function f : I → R, a value xg
is called the global optimum (in this case minimum), if ∀x : f(x) ≥ f(xg). A value xl is
called a local optimum in case ∃ε : f(x) ≥ f(xl) for all x in the distance ε.

The following definition and property yield a method to verify that an optimization
is a local optimization problem.

Definition 2 (Convexity). Geometrically thinking, convexity means, that the line drawn
between any two function values has to lie above or exactly on the function values. A
method to check whether a function is convex, is to calculate its second derivative and
to check whether it is always positive. In the multidimensional case that is equivalent to
calculating the Hessian matrix of the cost function and showing that it is positive semi-
definite.

Property 2 (Convexity). If a function is convex, then any local minimum of this function
will be equal to the global minimum xl = xg, if the function is strictly convex, it further
means that the global minimum found is unique.

Therefore, the question to raise is, whether the cost functions in this thesis are convex
or not, or more specifically speaking, whether the cost function’s Hessian is always positive
semi-definite.

Remark 2 (Separable non-linear LS and local minima). In [OR13] emphasizes that sep-
arating the linear and non-linear parameters, such that, (5.23) is optimized instead of
(5.15), definitely yields at least less local optimization function optima, which again indi-
cates that in general we have to deal with more than one local minimum.

The Hessians associated with the cost functions evaluated in this thesis are known
matrices, as they are required for many other purposes anyway. They are required for
calculating the theoretical performance via the well known Cramer-Rao Lower bound, or
estimating the covariance of the estimates, or being interested in the Fisher information
matrix as being a popular information theoretic measure for multiple other purposes. A
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Table 5.1: Simulation setup for random sample cost function plots.

Channel

Scenario WINNER B1-LOS
C 2
ϕ1 π/4
φ1 π/4
τ [0.6, 0.75]

System

Signal
gRC with αRC 0.3
T 200 ns
Lg 7

Time/Frequency

fc 2 GHz
J 1
K 1000
I 1

second interesting fact mentioned in [OR13] is that calculating the Hessian matrix for
the separated problem (5.23) is actually based on calculation of the Hessian for the full
problem (5.15). The Hessian derivation based on the full problem, but applicable to the
separable problem, is known from [GP03, PTVF07]. It can be summarized in the following
manner: Consider any non-linear least squares objective function with a residual vector
r = [r1, . . . , rN ], N momentarily denoting the number of measurements in this subsection,
such that the optimization problem corresponds to

θ̂ = arg min
θ̃
||r||22 (5.27)

similar to (5.15). Then it follows that the exact Hessian is determined by

∇2f(θ) = J(θ)TJ(θ) +
N∑

i=1

ri(θ)∇2ri(θ), (5.28)

J denoting the Jacobian of r(θ). The first dominant term only contains first derivatives,
whereas the second term consist of a multiplication with the residuals them self. Assuming
that the underlying modeling function is chosen correctly and further reasonably assuming
that close to the actual optimum these residuals are small, the Hessian commonly is
approximated by neglecting the second term in (5.28) to JTJ, in favor of stable processing.
This approximated matrix is positive semi-definite by definition. Hence it is commonly
employed for calculating the Fisher matrix or for instance in Gauss Newton type local
optimization algorithms. Nevertheless, this matrix does not correspond to the actual
exact Hessian, especially not for parameters far from the actual global optimum. It is
merely an approximation, only valid close to the true minimum and therefore it should
be always be used with caution. There is no way of guaranteeing that the exact Hessian
is positive semi-definite due to the unpredictable nature of the residuals considering all
possible parameter choices in the overall search space, including those not close to the
actual optimum.
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Without further insight, we should handle the problem like a global optimization
problem. Having a closer visual look at the cost functions’ random samples, we are
dealing with, can at least provide some experience regarding the problems nature and
properties. Further, seeing more than one local minimum in any cost function realization,
would reinforce the decision to handle the problem as a global optimization problem.
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(a) 3d view
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(b) 3d zoom in

Figure 5.4: The random sample cost function surface plot and its zoom-in indicate that
there are not many minima. The diagonal separation by the wall is due to the fact that
the cost functions dependence is the same for all τc, c ∈ {1, . . . ,C}. Each side of the wall
is therefore the mirrored version of the other side and hence a minimum on each side is
to be expected.

Thanks two the dimensionality reduction via the separability of the linear and non-
linear parameter components, at least for the two-path channel the cost function can be
visualised. Note that the cost function depends on the channel measurements and there-
fore on the random channel elements. It further depends on the chosen function g(τ)
and the channel estimation error. Therefore, the Figures 5.4, 5.5 and 5.6 only represent
random samples, and conclusions on how to handle the optimization problem have to be
drawn with caution. They are based on the simulation parameters given in Table 5.1.

The surface plot and its zoom-in Figure 5.4 indicate twofold: Firstly, the cost func-
tion, as expected, is not convex over the entire search space. Secondly, it shows to distinct
bassins divided by a diagonal wall. The diagonal wall can be interpreted as a mirror, which
can be understood by seeing that the dependence of the cost function on each delay is
the same. Therefore one side of the diagonal will be identical to the other side and it is
not important on which side the minimum is found, since the elements of τ are sorted
in increasing order after optimization anyway. So we should only have a look at one
side of the diagonal only. Comparing the contour plots of three different random cost
function samples in Figure 5.5 we further see, that at least for these special two-path
channel examples the optimization problem does not suffer from many local minima, and
at least in these cases local optimization methods would be a good choice. Rarely it is
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(a) Example 1): 2d contour
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(b) Example 1): contour zoom

0 0.5 1
0

0.5

1

τ1

τ 2

−10
−20
−30
−40
−50
−60

10
lo
g
10
(Ω

S
N
L
L
S
)

(c) Example 2): 2d contour
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(d) Example 2): contour zoom
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(e) Example 3): 2d contour
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(f) Example 3): contour zoom

Figure 5.5: The left column shows contour plots for random cost function, enables an
impression of the cost function properties and hence yields insight in how to choose the
optimization algorithm. It becomes clear that although not being convex over the entire
search space, the function does not bear many non-global minima. The right hand side
column shows zoom ins of the left hand side plots, showing smooth bassins, a convex
behaviour, near to minima.
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Figure 5.6: This random sample cost function plot shows that there exist rarely occurring
snap shot measurements, which result in cost functions bearing more than one local
minimum.

possible to find random cost function samples that have two local minima on each side
of the diagonal as can be seen finally in Figure 5.6. This proves that there exist cases for
which the optimization problem at hand is a global optimization. The insight yielded by
visually examining the cost functions, however, indicates that a good solution might be
to switch to a local optimization method after quickly exploring the search space with a
global optimization method at the beginning. Consequently, it can be concluded that we
are generally dealing with a global optimization problem, for which it seems as though
usually there are not many local minima.

5.7 Optimising the SNLLS/ML Problem

To tackle optimization problems like (5.15), (5.22) a non-linear, multi-dimensional global
optimization algorithm is required. Based on my gained experience comparing poten-
tially competitive algorithms, I chose particle swarm optimization as the most promising
and practical candidate in this thesis. This choice has further been motivated by the
following considerations. Global optimization algorithms are typically categorised into
deterministic, stochastic and (meta-)heuristic algorithms. Deterministic algorithms qual-
ify whenever the possibility of failure is not an option, that is, in cases the global minimum
is required to be found with certainty. Unfortunately, finding the global optimum with
certainty by employing a deterministic global optimization algorithm, depending on the
problem, involves indefinitely long run times, which contradict the wireless JCAP sys-
tem nature. Another reason not to choose a deterministic global optimization method
was that nonlinear optimization problems are still challenging to solve in this manner.
More information on deterministic global optimization methods can be found in [Neu04].
A heuristic intelligent algorithm, also bearing stochastic elements regarding the search
space exploration, seemed to be a reasonable choice. The most popular and suitable
candidates are simulated annealing [KGV83], genetic algorithms [Mit96, SD08] and par-
ticle swarm optimization. All three algorithms have in common that they are all able to
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explore the search space in an intelligent manner, inspired by nature in some kind.

5.7.1 Simulated Annealing

Simulated annealing, as originally proposed in [KGV83], targets finding solutions for dis-
crete and combinatorial optimization problems, such as the well-known traveling salesman
problem [PTVF07]. It is further shown in [PTVF07] that combining it with the downhill
simplex method [NMN64] it can be used as a global optimization method for continuous
optimization problems. Annealing, a thermodynamic concept used in metallurgy, stands
for the controlled material heating and cooling and affects the thermodynamic free energy
and temperature. Slow material cooling leads to an ordered atom arrangement, yielding a
low (in terms of optimization ”optimal”) energy state. In terms of optimization the slow
material cooling represents the slow probability decrease of allowing worse cost function
values than in the preceding iterations. In thermodynamics, a Boltzmann probability
distribution describes the system state depending on the energy and the temperature
and therefore is employed in the optimization algorithm. Contrary to local optimization
algorithms all global optimization algorithms, are required to be able to not only move
”downhill”. To have the ability to escape local minima, they should allow to explore
the search space. Therefore, from time to time, over the iterations they should allow to
accept worse cost function values than the preceding ones. Simulating a high temperature
at the beginning leads to such desired down- and uphill movements that, in return, yield
an exploration of the overall search space. With increasing iterations, the temperature
is slowly decreased and the probability of going mainly downhill, that is, performing a
mainly local search, is increased.

5.7.2 Genetic Algorithms

Genetic algorithms are also meta-heuristic algorithms and also copy intelligent behaviour
from nature. More specifically, they copy an evolution following the principle ”survival
of the fittest”: A population of randomly generated individuals, the candidate solutions,
have a set of properties (chromosomes or genotypes) and they explore the search space
iteratively as introduced in [Mit96]. The population of each iteration, representing a new
generation, is determined by the laws of genetics: Evaluation and comparison of a cost
function, here called fitness function, for all the members of the population allows to more
often select fit individuals for recombination and random mutation to obtain the next gen-
eration. The iterations proceed until a maximum number of iterations is exceeded or a
stopping criterion is met. A stopping criterion could be to terminate in case the change
of fitness values lies beneath a certain tolerance value. Similar to simulated annealing due
to the partially stochastic nature the algorithm allows to escape local minima and is able
to find the global optimum.
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(a) Particle Swarm Optimization
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(b) i = 40
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(c) i = 20
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(d) i = 0

Figure 5.7: The particle swarm optimization visualization shows for a two-path scenario
that the 10 particles only need a few iterations to converge to ascending order solution.
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Figure 5.8: Experimental verification for L = 9, that the PSO estimation calculated LS
error coincides with the χ2−distribution simulated for the case Es

N0
= 60 dB and a varying

path number C = 1, 2, 3, 4, 5 (black, red, green, blue, purple, light blue).
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Table 5.2: Simulation setup.

Np 10D
IMax 20000
IStopMax 20
εtol 10−6

Swarm Initialization ∀p ∈ {1, . . . ,Np}: ∀d ∈ {1, . . .D}: τd,p ∈ U(bl(d), bu(d))

5.7.3 Particle Swarm Optimization

Particle swarm optimization is yet another metaheuristic a global optimization algorithm
mimicking the social behaviour of bird or fish swarms. It was originally proposed by
Kennedy and Eberhart 1995 in [KE95]. Roughly ten years later Kennedy and Bratton
defined a standard for PSO in [BK07], based on the most important developments in the
PSO research area. The fundamental idea of PSO was that particles explore a search space
by determining subsequent particle positions, by employing a partially random weighted
combination

• of moving towards a so called individual best position pIB,i, taking into account the
particles’ history,

• and of moving towards a so-called local1 best position pLB,i, the best position com-
pared for each particle and a specified set of the particles’ neighbours.

Let the number of particles be defined by Np. Further let the optimization problem dimen-
sionality be denoted by D. The absolute maximum number of iterations the algorithm is
allowed to carry out is denoted by IMax. Let further vi be the velocity vector specifying
the particles’ movement direction.

Firstly, the algorithm has to be initialized appropriately. Hence, the particles’ posi-
tions pi, if not specified otherwise, are initially randomly uniformly distributed within
the specified search space lower and upper bounds given by Ul = [bl(1), . . . , bl(D)] and
Uu = [bu(1), . . . , bu(D)] such that

pi ∈ U(ul, uu). (5.29)

Like the particle positions, at the beginning, this vector v1 is initialized by random values
drawn out of the uniform distribution, such that

v1 ∈ U(−(Uu −Ul), (Uu −Ul)). (5.30)

The size of the neighborhood is given by

NN = max(1, brN ·Npc), (5.31)

1Depending on the specified topology, sometimes, as it is proposed in the original algorithm instead of
local best the so-called global best position is used. Using the global best leads to a full neighbourhood
topology: Every particle can communicate with every other particle. For global optimization problems,
due to premature convergence properties, this topology is known to be outperformed by choosing less
neighbours and using the local best position.
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which again is determined by the user choosing 0 < rN ≤ 1. If not specified otherwise, in
this thesis I chose rN = 0.25. In favor of an improved balance between global and local
exploration [BK07] the original PSO in [KE95] was modified by proposing two slightly
different velocity update rules involving two slightly different parameters designed to limit
the velocity. Namely, these parameters are the inertia weight ω proposed in [SE98] and
the constriction factor χ [CK02]. If the inertia weight is used, it is initially set to

ω =

{
max(rI) if ri > 0

min(rI) else,

where rI denotes the inertia range, that is, the upper and lower bounds, for an adaptive
adjustment of the inertia weight over the iterations as proposed in [SE98]. If not specified
otherwise it is set to rI = [0.1, 1.1] in this thesis. Then these particles iteratively move
through the search space by updating each of the n = {1, . . . ,Np} particle velocities either
if the inertia weight is used by

vi+1
n = wvin + c1ε

i
1 � (piIB,n − pn) + c2ε

i
2 � (piLB,n − pn), (5.32)

or if the constriction factor is used by

vi+1
n = χ(vin + c1ε

i
1 � (piIB,n − pn) + c2ε

i
2 � (piLB,n − pn)). (5.33)

In both cases, the position is then updated according to

pi+1
n = pin + vi+1

n . (5.34)

Note, that εi1, εi2 are vectors of length D, with independently randomly generated elements
drawn out of U(0, 1). Further note, that the weights c1, c2 correspond to a self and a
social adjustment weight. To ensure convergence [BK07] proposes to use χ ≈ 0.72984 and
c1 = C2 + 2.05. In this thesis, if not specified otherwise, I chose to use the inertia weight
and c1 = c2 = 1.49. However, for a further discussion about how the choice of χ, c1, c2

impacts the convergence properties, I refer to [BK07].
The tradeoff between global and local search capabilities is given due to the partly ran-

dom, partly deterministic updating strategies in (5.32), (5.33). The cost function values
for PSO are called fitness values, as it is done in genetic algorithms. Via communication
of so-called neighboring particles a local best position pi+1

LB,n is determined for each particle
p ∈ {1, . . . ,Np}. Then the globally best position is determined. The choices made in this
thesis for the algorithms tuning parameters are summarized in Table 5.2. Due to PSO’s
heuristic nature and due to the fact that in this thesis the algorithm is employed to tackle
multi-dimensional non-linear global optimization problems, conversion to the global opti-
mum cannot be guaranteed. Therefore, a strategy to identify algorithmic failure proves to
be helpful. To this end, recall that the least squares error supposedly is χ2−distributed. In
case this property is valid for the least squares error resulting from the PSO optimization
procedure, this knowledge can be used to identify PSO’s optimization failure. In Figure
5.7 an exemplary particle swarm optimization is shown over the iterations for a two-path
channel. After a few iterations a swarm converges to one of the two global optima. An
experimental verification that the LS error coincides with the analytical χ2-distribution
is shown in Figure 5.8.
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Algorithm 1 Particle Swarm Optimization

1: Initialize τ̃ 0
p, v0

p for all particles p.
2: while stopping criterium is not fulfilled do
3: for all particles p do
4: vi+1

p ← χ(vip + λ1ε
i
1 � (τ̃ iIB,p) + λ2ε

i
2 � (τ̃ iLB,p)).

5: τ̃ i+1
p ← τ̃ ip + vi+1

p .

6: Evaluate fitness Ω(τ̃ i+1
p ).

7: Determine individual and local best positions τ̃ i+1
IB,p, τ̃

i+1
LB,p.

5.7.4 The Levenberg-Marquardt Method as a Local Search Al-
ternative and for Hybrid use with PSO

The Levenberg-Marquardt method is a good alternative, if an initial guess is available or
if it is supposed to by used in a hybrid manner together with PSO. The Levenberg-
Marquardt method is an iterative local optimization method that intelligently varies
between behaving like the Gauss-Newton algorithm and the steepest descent method
[PTVF07]. The Gauss-Newton algorithm bases on Newton’s method of finding the roots
of the first derivative of a function. Thereby the function is approximated by a second-
order Taylor expansion

Ω(ξ̃) ≈ Ω(ξ̃i) + (ξ̃ − ξ̃i)︸ ︷︷ ︸
∆ξ̃

∇Ω(ξ̃i) +
1

2
(ξ̃ − ξ̃i)THΩ(ξ̃)(ξ̃ − ξ̃i), (5.35)

where ∇Ω(ξ̃) and HΩ(ξ̃) denote the nabla operator for the gradient and the Hessian
matrix, respectively. The Jacobian of the model function h̃(ξ̃) is defined by

[J(ξ̃)]l,m =
∂h̃l

∂ξ̃ m

. (5.36)

The gradient is defined elementwise as

[∇Ω(ξ̃)]m =
∂Ω(ξ̃)

∂ξ̃m
(5.37)

=− 2Re

(
∂h̃H(ξ̃)

∂ξ̃m
(ĥ− h̃(ξ̃))

)
, or (5.38)

∇Ω(ξ̃) =− 2Re
(
J(ξ̃)H(ĥ− h̃(ξ̃))

)
. (5.39)
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The derivation can be found in the Appendix A.3. By applying the product rule, it is
straightforward to see that the Hessian is defined elementwise as

[HΩ(ξ̃)]m,n =
∂2Ω(ξ̃)

∂ξ̃m∂ξ̃n
(5.40)

=− 2
∂

∂ξ̃m
Re

(
∂h̃H(ξ̃)

∂ξ̃n
(ĥ− h̃(ξ̃))

)
(5.41)

=2Re

(
∂h̃H(ξ̃)

∂ξm

∂h̃(ξ̃)

∂ξn
− ∂2h̃H(ξ̃)

∂ξm∂ξn
(ĥ− h̃(ξ̃))

)
. (5.42)

This exact formulation depends on the estimation error, the residual, that is small enough
to be neglected, close to the exact solution. Hence, the problem is called a small-residual
problem. In the large residual case the term cannot be neglected. Far away from the
exact solution, the residuals can become large. Approximating the Hessian by neglecting
the right hand side term of the exact solution in (5.42) such that

[HΩ(ξ̃)]m,n =2Re

(
∂h̃H(ξ̃)

∂ξm

∂h̃(ξ̃)

∂ξn

)
or (5.43)

HΩ(ξ̃) =2Re(JH(ξ̃)J(ξ̃)) (5.44)

≈HΩ (5.45)

has the advantage that the approximated Hessian terms are forced to be positive semi-
definite. Positive definiteness is required when it comes to solving the constructed lin-
earized system of equations. The Hessian corresponds to the Fisher Information matrix
[Kay10].
The derivative of (5.35) is

∂Ω(ξ̃)

∂ξ̃
≈ ∇Ω(ξ̃i) + HΩ(ξ̃i)(ξ̃ − ξ̃i). (5.46)

Setting the right hand side of (5.46) to zero and reorganising the equation yields

∆ξ̃ = −H−1
Ω (ξ̃i)∇Ω(ξ̃i). (5.47)

This is the step size that can be used to find the minimum by iteratively updating the
hypothetical parameter vector

ξ̃i+1 =ξ̃i + ∆ξ̃ (5.48)

=ξ̃i −H−1
Ω (ξ̃i)∇Ω(ξ̃i). (5.49)

Using the approximated Hessian in (5.49) instead of the exact Hessian leads to the Gauss-
Newton setup. The Levenberg-Marquardt method yields an improvement in that (5.49)
is slightly modified by using a tuning factor to vary between the actual Gauss-Newton
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algorithm and the steepest descent, whenever this is reasonable to do in the following
manner:

ξ̃i+1 = ξ̃i − (HΩ(ξ̃i) + ηI)−1∇Ω(ξ̃i). (5.50)

If η is chosen close to zero it behaves similar to the Gauss-Newton algorithm. If η is chosen
large the approximated Hessian matrix is negligible compared to the terms including η
and it can be seen that the method behaves like the steepest descent algorithm.
Belonging to the class of local optimization algorithms, the method requires a good initial

Algorithm 2 Levenberg-Marquardt Method

1: Initialize ξ̃m for all parameters m and choose a moderate value for the tuning factor
like η = 0.001 and set i = 0.

2: while stopping criterium is not fulfilled and i < IMAX do
3: Determine Ω(ξ̃i), J(ξ̃i) and HΩ(ξ̃i)
4: ξ̃i+1 ← ξ̃i − (HΩ(ξ̃i) + ηI)−1∇Ω(ξ̃i).

5: if Ω(ξ̃i+1) ≥ Ω(ξ̃i+1) then

6: ξ̃i+1 ← ξ̃i (go back to old hypothesis)
7: ηi+1 ← ηi · 10 (substantially increase tuning factor)

8: if Ω(ξ̃i+1) < Ω(ξ̃i+1) then

9: ξ̃i+1 ← ξ̃i − (HΩ(ξ̃i) + ηI)−1∇Ω(ξ̃i) (choose new hypothesis)
10: ηi+1 ← ηi · 0.1 (substantially decrease tuning factor)

11: i← i+ 1

guess. I define a good initial guess as a guess that is closer to the global optimum than it
is close to any other local optimum. Obviously finding such good starting points is almost
impossible. Using a global optimization algorithm on the same problem for the major part
of the iterations and afterwards using the parameter estimates of the global optimization
strategy as the initial guess for the local strategy can be a reasonable approach. Then,
however, it will be an art of its own to define the number of iterations used for the global
and the number of iterations used for the local strategy. An alternative approach could
be to find a sub-optimal closed-form solution and to use the solution as an initial guess to
the optimal local solver. Both methods would not guarantee to find the global optimum
after all. That is why I, if possible, would prefer to use the global optimization algorithm
to begin with. For

Ω = ΩSNLLS, θ = τ , (5.51)

the nabla operator and the Hessian are

∇ΩSNLLS =− 2Re
{

ĥHP⊥GJGdiag
(
G†ĥ

)}
, (5.52)

HΩSNLLS =2Re
{

diag
(
ĥHG†

T
)

JTGP⊥GJGdiag
(
G†ĥ

)}
. (5.53)
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5.8 Derivation of the Hessian Matrix for SNLLS

To provide the derivation for (5.52) and (5.53), the following auxiliary mathematical
properties are required:

Property 3. (Auxiliary Matrix Calculus Rules:)
Let X and Y be arbitrary matrices and a be an arbitrary column vector.
General auxiliary properties:

PG and P⊥G are idempotent and symmetric. (5.54)

P⊥GG†
T

= 0, G†P⊥G = 0 GTP†G = 0, PGG = 0 (5.55)

XJm,n selects the mth column. (5.56)

Jm,nX selects the nth row. (5.57)

XJm,ma = [Xdiag (a)](:),m (5.58)

X + XH = 2Re{A} if X is symmetric. (5.59)

General matrix derivative rules:

∂(XY) =(∂X)Y + X(∂Y) (5.60)

∂(X−1) =−X−1∂(X)X−1 (5.61)

∂((XHX)−1X) =−X†∂(X)X† + X†X†
T

(∂XT )(I−XX†) (5.62)

Problem specific matrix derivatives:

∂

∂τm
(PG) = P⊥G

∂G

∂τm
G† + G†

T ∂GT

∂τm
P⊥G (5.63)

∂

∂τm
(P⊥G) = − ∂

∂τm
(PG) (5.64)

∂

∂τm
G = Jg(τ )Jm,m,

[
∂

∂τm
G

]

l,n

=
∂g(lT − τn)

∂τm
(5.65)

[Jg(τ )]l,m =
∂g(lT − τm)

∂τm
(5.66)

The general matrix derivation rules (5.60), (5.61) can be found in [PP12] and [Lue96].
By employing (5.60), (5.61) it is easy to see that (5.62) is true, which can also be found
in [GP73]. A compact derivation is given in the Appendix in A.4. Using (5.60), (5.62)
the problem specific projection matrix derivative is straightforward to derive and also can
be found in [GP73]. Given these auxiliary calculation tools, the Jacobian Jh̃, the SNLLS
function derivative and the approximated Hessian HΩSNLLS can be calculated.
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5.8.1 The Jacobian

[Jh̃(τ )]l,m =
∂h̃l
∂τm

(5.67)

=

[(
∂PG

∂τm

)
ĥ

]

l

(5.68)

(5.63)
=

[(
P⊥G

∂G

∂τm
G† + G†

T ∂GT

∂τm
P⊥G

)
ĥ

]

l

(5.69)

(5.65)
=
[(

P⊥GJg(τ )Jm,mG† + G†
T

Jm,mJg
T (τ )P⊥G

)
ĥ
]
l

(5.70)

=

[[
P⊥GJg(τ )diag

(
G†ĥ

)]
(:,m)

+
[
G†

T

diag
(
Jg

TPG
⊥ĥ
)]

(:,m)

]

l

(5.71)

=
[
P⊥GJg(τ )diag

(
G†ĥ

)
+ G†

T

diag
(
Jg

TPG
⊥ĥ
)]

l.m
. (5.72)

5.8.2 SNLLS Derivative Derivation

∂

∂τm
ΩSNLLS

(5.39)
= − 2Re

{
Jh

T (τ )
(
ĥ− h̃(τ )

)}
(5.73)

=− 2Re{Jh
T (τ )PG

⊥ĥ} (5.74)

(5.70,5.55)
= − 2Re

{
ĥHG†

T

Jm,mJg
T (τ )P⊥GPG

⊥ĥ
}

(5.75)

(5.54)
= − 2Re

{
ĥHG†

T

Jm,mJg
T (τ )P⊥Gĥ

}
(5.76)

B∈C1×1

= − 2Re
{

ĥHP⊥GJGJm,mG†ĥ
}

(5.77)

Further employing (5.58) yields (5.52).

For the further calculations let us use the auxiliaries A and B in order to work with
a compact notation for the summands in (5.72).

A = P⊥GJg(τ )diag
(
G†ĥ

)
(5.78)

B = G†
T

diag
(
Jg

TPG
⊥ĥ
)

(5.79)
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5.8.3 SNLLS Approximated Hessian Derivation

In order to derive the approximated Hessian I use (5.42):

[HΩSNLLS ]m,n =
[
2Re

(
JH

h̃
(τ )Jh̃(τ )

)]
m,n

(5.80)

=
[
2Re

(
A + B)T (A + B)

)]
m,n

(5.81)

=
[
2Re

(
(AHA + AHB + BHA + BHB)

)]
m,n

(5.82)

(5.55)
=
[
(AHA + BHB)

]
m,n

(5.83)

=
[
2Re

(
diag

(
G†ĥ

)
JHg P⊥GJgdiag

(
G†ĥ

))

+ diag
(
ĥHPG

⊥Jg

)
G†G†Tdiag

(
Jg

TPG
⊥h
))]

m,n︸ ︷︷ ︸
≈0

. (5.84)

The second under-braced summand in (5.84) contains the residual term

PG
⊥ĥ = ĥ−GG†ĥ = ĥ− h(τ̃ ), (5.85)

which is zero-mean and becomes very small close to solution for τ . Hence it is easy to
see that the second term is negligible, so that the approximated Hessian can further be
approximated as

HΩSNLLS = 2Re
[
diag

(
G†ĥ

)
JHg P⊥GJgdiag

(
G†ĥ

)]
. (5.86)

5.9 Alternative Approaches to SNLLS/ML

A large variety of approaches in the realm of multipath propagation parameter estimation
has been studied over the past five decades, targeting the special needs of special prob-
lems, system requirements and hardware setups. Parameter estimation can be roughly
categorized into algorithms that are employed in the frequency domain and such that can
be employed in the time domain. Furthermore, they either can belong to the category
acquisition or to the category of tracking like shown in Figure 5.9. Two sub-optimal
approaches are discussed in the following.

5.9.1 Expectation Maximization (EM) and Space-Alternating
Generalised Expectation Maximization Method (SAGE)

The SAGE algorithm [FH94] can be seen as an improved version of the EM algorithm
proposed earlier by [DLR77]. The performance for JCAP was thoroughly investigated in
[Sch12]. Consequently, I will only briefly summarize the underlying concept and advan-
tages and disadvantages of the SAGE and the EM algorithm.

Like the LM algorithm, EM and SAGE yield local optimization results. Hence, as in
the LM method they require an initial guess. Note that both EM and SAGE are designed
to have the advantageous property that the likelihood increases, meaning that the cost
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FREQUENCY-
DOMAIN
Algorithms

(→ Oversampling
required)

TIME-
DOMAIN
Algorithms

(→ Oversampling
not required)

PARAMETER AKQUISITION
Algorithms

(→ No initial guess or
a priori information)

TRACKING
Algorithms

(→ Initial guess/ a priori information required)

ML/SNLLS with PSO,
EM, SAGE

RELAX

ESPRIT,
MUSIC

Extended Kalman-filter/
Particle filtering

Figure 5.9: Different algorithms are suitable to solve the multipath parameter estimation
problem as discussed in this thesis. ML/SNLLS with PSO does not require oversampling,
or an initial guess, or a priori information, and at the same time finds the optimal solution
for the specified problem.

function decreases, monotonically with each iteration, that is with each update of the
parameter estimate. Consequently, it is guaranteed that the EM algorithm converges to
a stationary point. The main advantage of both EM and SAGE algorithm over a local
optimizer like LM can be explained by the underlying concept that allows to simplify
the underlying non-linear C-dimensional optimization problem in the LM algorithm by
splitting this problem into C 3-dimensional suboptimal subproblems via the model

ĥ =
C∑

c=1

ĥc with ĥc = hc + wc. (5.87)

The components of the component-wise noise are assumed to be statistically independent,
zero-mean Gaussian processes w ∈ NC(0, ιcCw). The introduced auxiliary value ιc is

constrained to
C∑
c=1

ιc = 1. In an iterative manner, each component is determined via the
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expectation (E-step):

ĥic =hc(θ̂
i
c) + wi

c (5.88)

=hc(θ̂
i
c) + ιic

(
ĥ−

C∑

c′=1

hc′(θ̂
n
c′)

)
, (5.89)

and a new parameter update is reached via the maximization step (M-step):

θ̂i+1
c = arg min

θ̃c

{
(ĥic − hc(θ̃c))

H
(
ιicCw

)−1
(ĥic − hc(θ̃c))

}
. (5.90)

By performing the updating step sequentially instead of parallelly in the SAGE algorithm,
the convergence rate is improved compared to the EM algorithm. More specifically, each
estimation result does not only depend on θ̂nc , but also on the other estimated components.
Moreover, note that the SAGE algorithm is designed to maximize the Fisher information,
due to the fact that the estimation error is considered for each multipath component.
Investigations carried out in [Sch12] indicate that the EM and SAGE algorithm are less
sensitive to choosing an initial guess far from the optimum.

5.9.2 Estimation via Deconvolution and a Frequency-Domain
Suboptimal Closed-Form Solution

Another approach to estimate the parameters is based on examining the channel co-
efficients in the frequency domain. This yields two advantages. The frequency domain
channel coefficients can simply be divided by the DFT of sampled g(τ), to obtain a decon-
volved time-domain signal. Secondly, the frequency-domain deconvolved signal exhibits
an underlying rotational invariance among its subspaces. This can be exploited to find
a set of linear equations, which, in return, yield a closed-form search-free solution for
the delay estimates, called estimation of signal parameters via rotational invariance (ES-
PRIT) [RK89], [Saa97]. Hence, it is very attractive for the delay estimation in a JCAP
framework.
In case g(τ) is bandlimited and sampled at or above the Nyquist rate

g = [g(0) g

(
Tc
J

)
. . . g

(
(L+ 1− 1

J
)Tc

)
],

the model function for h̄ can be expressed by a rank M × LJ Vandermonde matrix S as
in [vdVVP98] and introduced in (4.12) as an approximation:

h̆ = diag{ğ}STβ, with [S]m,l = e−2πjτml/((L+1)T ). (5.91)

Since a time domain convolution corresponds to a frequency-domain multiplication and
the shifted Dirac impulses in c(τ) translate to rotations, solely S in (5.91) depends on the
multipath delay information comprised in the cisoids e−2πjτm , whereas ḡ is independent
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of τ . Hence, a deconvolution via Fourier transformation is applicable, and the decon-
volved frequency-domain channel estimates can be written similar as introduced in 4.70
by including a selection matrix:

h̆d = h̆
TJ (diag{J ğ})−1 with J =




0 IdLW
2

e
0 0

IbLW
2

c 0


 ,

chosen such that no division by zero occurs in the deconvolution process and the selected
frequency components appear in increasing order. W denotes the selection window width
and J ≥ W . As suggested in [vdVVP98], we choose W = 1, since the window width is
supposed to correspond to the signal main lobe. Deconvolving the channel estimates by g
in (5.91) is a necessary signal preparation in order to proceed with the ESPRIT algorithm
steps as will be summarized briefly.
The auxiliary construction of a rank ς × Ldiv Hankel matrix Ψ, by shifting and stacking
sub-vectors of h̆d with length ς, enables a robust channel correlation matrix estimation
via a forward-backward approach [YLCC01, SM97]:

[Ψ]n,l = h̆dn+l−1, ĈΨΨ =
1

2Ldiv

(ΨΨH +B(ΨΨH)∗BH).

Here, Ldiv = L − ς − 1 and B represents a matrix consisting of 1s on its anti-diagonal
and 0s elsewhere.
Let $i ∈ {1...ς} be the eigenvalues of ĈΨΨ. Without loss of generality, we can assume
$1 ≥ $2 ≥ . . . ≥ $ς = σw. Here, σw denotes the channel coefficient variance. Let U be
the matrix, whose columns consist of the corresponding eigenvectors. Two overlapping
submatrices Us and Ud, related by a rotation matrix Φ, can be constructed by defining

Us = [Iν−1 0(ν−1)×1]U
Ud = [0(ν−1×1) Iν−1]U

, Us = UdΦ. (5.92)

The frequency-domain physical channel inherent rotational invariance is exploited by for-
mulating and solving the last equation in (5.92). The desired delays τc are related to the

eigenvalues ζ1, ..., ζC of Φ by µm = e−
2πjτmc
(L+1)T . Consequently, the delays can be estimated

by calculating the eigenvalues ζ1, ..., ζC of the estimated least squares solution

Φ̂ = Ud
†Us, (5.93)

such that

τ̂c = −j(L+ 1)

2π
arg(ζc) ∀c ∈ {1, . . . ,C}. (5.94)

A slight model mismatch has to be taken into account, since g has a finite length Lg. Con-
sequently, the estimator is biased. This bias decreases whenever Lg or J are increased.
Proposing ESPRIT for delay estimation as an alternative to the ML solution exhibits a
desirable diversity amongst the options with respect to complexity and performance in
JCAP systems. All proposed algorithms do not depend on an initial guess. Yet, although
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no iterative search is required for the ESPRIT-based method and a solution is guaranteed
to be found, the computational cost for this closed-form solution comprises the cost for
complex eigen-decomposition, calculation of a pseudoinverse, a matrix multiplication and
DFT, not to forget the computational cost required by fractional sampling in order to
decrease the modelling mismatch.

5.10 MIMO Channel Parameter Estimation

5.10.1 Delay Estimation

By extending the parameter definition of the SISO case to the SIMO case, such that in
this chapter ξ = {ϕ,φ, Γi, Γq, τ}, it is straightforward to see that the MIMO parameter
estimation problem can be extended to the joint estimation including the AOA ϕ and the
AOD φ:

θ̂ = arg min
θ̃
||Ĥ− H̃(θ̃)||2F ,

= arg min
θ̃
||Ĥ− ΓG||2F . (5.95)

Whereas the reformulation of the extended parameter estimation to the SIMO case is as
straightforward as it seems, let us begin with considering the case of pure delay estimation,
assuming that the estimated delays provide sufficient information for an accurate position
estimate. Hence, let us revise the simplified channel (4.52) model

H = ΓG.

Again, the concept of separability into linear and nonlinear parameters can be applied
using that

Γ̂ = HGT (GGT )−1. (5.96)

This formulation enables the formulation of a pure delay estimation problem, which does
not depend on but allows to jointly estimating the angles of arrival. Hence, the delay
estimation problem can be formulated via insertion of (5.96) in (5.95):

τ̂ = arg min
τ̃
||Ĥ− ĤG†G||2F . (5.97)

Consider the SIMO case NT = 1. Then, we can reformulate (5.97) in the following
manner:

τ̂ = arg min
τ̃

NR∑

v=1

||ĥv −GG†ĥv||2F , (5.98)

with ĥv = [h0,v, . . . ,hL,v]
T . Further let us extend the expression to a weighted least

squares problem by employing a weighting matrix W to emphasize the channel estimates

τ̂ = arg min
τ̃

NR∑

v=1

(
ĥv − ĥvGG†

)H
W
(
ĥv − ĥvGG†

)
. (5.99)
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5.10.2 Spatial Signature Matrix Estimation

It is straightforward to see that the spatial signature matrix can be estimated by

Γ̂ = H(G(τ̂ ))†. (5.100)

5.10.3 Angle of Departure and Angle of Arrival Estimation

Already ten years ago, angle estimation was called a mature research area [Mia07]. There-
fore I restrict myself to summarizing methods suitable for this framework and that have
an impact on the further results in this thesis. Suitable are high resolution methods,
rolling out the classical beam-forming methods [Cap69], known to be less accurate than
ML estimators. Further I do not discuss the well-known and also well-suited sub-optimal
subspace-based solutions based on methods like the MUSIC [Sch86], root-MUSIC [RH89],
the ESPRIT [RK89] algorithm and improved variants thereof [HN95]. For more compre-
hensive tutorial-like introductions into the topic refer to [KV96, Mia07] or [Rib08]. Let us
begin with assessing the SIMO case (NT = 1). In order to do that, revisit the definition
of the spatial signature matrix described by (4.40,4.41,4.43) and the dependence to the
angular vector [ϕc]n = ϕc,n and [φc]n = φc,n given by

γc =ARc(φc)diag(fc)(ATc(ϕc))
T

=

NRays∑

n=1

fc,naRc(φc,n) for c = 1, . . . ,C. (5.101)

At first consider the case in which all angular spreads are assumed to be equal to zero and
hence the steering matrices ATc(ϕ) and ARc(φ) can be replaced by vectors aTc(ϕ) and
aRc(φ), not depending on a specific ray number. In case the angular spreads are assumed
to be zero, that is, assuming that ϕc,n = ϕc and φc,n = φc and hence ϕ = [ϕ1 . . . ϕC ]T and
φ = [φ1 . . . φC ]T , the following simplification applies here:

γc = aRc(φ)

NRays∑

n=1

e2πj(θc,n+fDc )

︸ ︷︷ ︸
βc

= aRcβc for c = 1, . . . ,C. (5.102)

Given this simplified model and employing the concept of separability of linear and nonlin-
ear estimation components as in the previous sections on delay estimation, it is straightfor-
ward to see that an ML type angle of arrival estimator for the vector φc can be formulated
as a one-dimensional optimization problem

φ̂c = arg min
φ̃c

||γ̂ − γ̃c(φ̃c)||2

= arg min
φ̃c

||γ̂ − βcãRc(φ̃c)||2

= arg min
φ̃c

γ̂Hc (INR − aRc(φ̃c)aR
†
c(φ̃c))γ̂c. (5.103)
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Next, consider the case that the angular spread σα = αn∆ is unequal to zero. Assuming
the direction of arrival angular spread is unequal to zero, the number of rays NRays has
to either be known or to be estimated. In matrix vector notation, the underlying system
equation for angular estimation then is given by

γc = ARcfc. (5.104)

Then, it is also straightforward, assuming that a sufficient amount of observations is
available, that the resulting estimator for the vector φc corresponds to

φ̂c = arg min
φ̃c

||γ̂ − γ̃c(φ̃c)||2

= arg min
φ̃c

γ̂Hc (INR −ARc(φ̃c)AR
†
c(φ̃c))γ̂c. (5.105)

Obviously, (5.103) is covered by (5.105), being a special one-dimensional case thereof.
These estimators have been proposed in [Lee98] as useful direction of arrival methods in
case the source signals are scattered.

Nevertheless, strictly following the channel modeling construction rules provided ear-
lier in this thesis, one can conclude that either a huge number of receive antennas is
necessary to identify the parameters in question or the involved number of rays in the
channel model must be comparably small to yield a higher number of equations then
elements of the desired parameter vector. Rayleigh and Rician fading channel models
are usually obtained by superimposing only 20 rays, since due to the central limit the-
orem this number, for many cases, yields a sufficient approximative channel. In reality
though, an infinite number of rays is actually contributing. Taking this into account, the
parametrization into a finite number of ray angles, to be estimated, is not reasonable and
another parameterization, closer to reality, regarding channel modeling, should be taken
into account. Further, recall that for the purpose of positioning we are only interested
in estimating φLOS. The fact that we are not actually interested in estimating every
single ray angle φc,n and we know from estimation theory, that the more parameters we
estimate, the more accuracy we compromise, is another reason to find the most simple
parameterization satisfying our needs. Fortunately, such alternative parametrization are
provided by [TO96]. The parameterization proposed in [TO96] takes into account that
local scattering leads to a non-zero angular spread and is based on the assumption that
multiple measurements, that is, a whole time series of measurements, is available. Con-
sequently, a system equation based on correlation matrices therefore can be employed.
Further it is based on the assumption that the distribution of rays around the nominal
direction is known and can be approximated by a normal distribution N (0,σα). Based
on that setup the authors of [TO96] suggest to estimate the parameters specified by the
parametrization, given by a set containing the φLOS, the angular spread σ2

α and the signal
power S. If σα = αn∆ is small, approximating sin(∆αn) and cos(∆αn) via only employing
the Taylor series expansion’s first terms, it is easy to see that

sin(αn∆) = αn∆ and cos(αn∆) = 1. (5.106)
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Consequently, this leads to the following approximation:

sin(φc + ∆αn) = sin(φc) cos(∆αn) + cos(φc) sin(∆αn) =︸︷︷︸
αn∆→0

sin(φc) + cos(φc)αn∆.

(5.107)

Reviewing [TO96] it can be understood, that based on this approximation, the underlying
approximate system model that is further employed for parameter estimation is given by

Cγ1 ≈ SaRxa
H
Rx �B + σ2

γ1
I. (5.108)

The auxiliary matrix B is constructed by

[B]k,l = e−2[pi∆(k−l)]2σ2
α cos2(φ). (5.109)

Then the full ML estimator of the parameter vector stacking η = [S,σγ1
,φ,σα] is obtained

by minimizing the negative likelihood given by

L(S,σγ1
,φ,σα) = log |Cγ1

|+ trace{C−1
γ1

Ĉγ1
}. (5.110)

Thereby, Ĉγ1
denotes the sample correlation matrix of γ1 yielded by the time series

measurements

Ĉγ1
=

1

I

I∑

i=0

γ1(ti)γ
∗
1(ti). (5.111)

Alternatively, aiming to find less complex solutions that approximately yield the ML per-
formance as shown in [TO95, TO96], a least squares and weighted least squares estimator
can be formulated. Fortunately, since S and σγ1

are quadratic, they can be calculated
in closed form as a function of the remaining two parameters in η and consequently the
parameter estimation problem is separable in resulting in a two-dimensional instead of
four-dimensional optimization problem with a weighted least squares cost function

Ŝ =
trace{CĈ−1

γ1
}trace{Ĉ−2

γ1
} − trace{Ĉ−1

γ1
}trace{Ĉ−2

γ1
C}

trace{CĈ−1
γ1

CĈ−1
γ1
}trace{Ĉ−2

γ1
} − trace{CĈ−2

γ1
}trace{CĈ−2

γ1
}

, (5.112)

σ̂γ1
=

trace{CĈ−1
γ1

CĈ−1
γ1
}trace{Ĉ−1

γ1
} − trace{Ĉ−2

γ1
C}trace{CĈ−1

γ1
}

trace{CĈ−1
γ1

CĈ−1
γ1
}trace{Ĉ−2

γ1
} − trace{CĈ−2

γ1
}trace{CĈ−2

γ1
}

, (5.113)

[φ̂, σ̂α] = arg min
φ̃,σ̃2

α

trace{((ŜC(φ̃, σ̃2
α) + σ̂2

γ1
I)Ĉ−1

γ1
− I)2}. (5.114)

Less complex and also two-dimensional is the pure least squares estimator

Ŝ =
trace{Ĉγ1

C} − trace{Ĉγ1
}

trace{C2} −Nr

, (5.115)

σ̂γ1
=

1

Nr

trace{Ĉγ1
− Ŝ}, (5.116)

[φ̂, σ̂α] = arg min
φ̃,σ̃2

α

trace{(Ĉγ1
− ŜC(φ̃, σ̃2

α)− σ̂2
γ1

I)2}. (5.117)
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Although both proposed least squares estimators are not efficient, applying them as an
alternative to the full ML estimator is nevertheless worth consideration due to the com-
plexity reduction [TO95].

In [TO96] the authors propose to employ a Newton-type search algorithm for op-
timization and indicate that the algorithm then has to be initialized carefully to con-
verge to the global optimum. A comprehensive overview about this and other similar
parameterization-based approximations is provided in [Rib08]. The authors of [AOS97]
and [AO99] show that local scattering has a huge impact on the direction estimation
accuracy and consequently also propose to replace the parametrization by making use
of a spatial signature matrix approximation. Furthermore they investigate how local
scattering effects direction estimation with MUSIC.

5.11 Time Series Extension

Employing a time series of measurements instead of a single-shot measurement ĥ for
parameter estimation is suggested due to more than one reason: For starters, the number
of snapshot measurements is increased by the factor I. Apart from that, time series
measurements allow for a deterministic as well as a stochastic parametrization and ML
(DML and SML) parameter estimation approach. Depending on the applied approach
the problem dimensionality varies. Recalling the extended channel model construction for
the time series measurement case, we can construct a compact matrix vector notation via
defining a matrix HTS and W concatenating the column vectors h(i), ∀i ∈ {0, . . . , I}
horizontally to a size (L+ 1)× I matrix such that

HTS = G(τ )Γ + W. (5.118)

Equation (5.118) alternatively can be vectorized2, such that we obtain a potentially long
time series extension vector similar to (4.58):

hTS =vec(HTS) = (II ⊗G(τ ))︸ ︷︷ ︸
GTS

vec(Γ)︸ ︷︷ ︸
γTS

+ vec(W)︸ ︷︷ ︸
wTS

=GTSγTS + wTS. (5.119)

For (5.119) it seems more intuitive than it might be from looking at (5.118) how to
formulate the corresponding PDF p(ĥ|θ) for parameter estimation later.

5.11.1 Deterministic Parametrization and ML Parameter Esti-
mation

Now let us treat the Nr complex amplitudes γ as deterministic magnitudes. That more
precisely means that we make no underlying assumptions about the complex path am-
plitudes possibly being some kind of stochastic variables. Then, taking into account that

2For vectorization of the multiplication of three arbitrary matrices vec(ABC) = (CT ⊗ A)vec(B)
holds true, as before. Further, for any two arbitrary matrices vec(A + B) = vec(A) + vec(B).
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the measurements are fully and the unknowns are partially complex, we obtain a set of
2NrI(L + 1) equations with 2NrIC + C unknowns. The latter value corresponds to the
length of the vector

θdml = {τ , Re(vec(Γ), vec(Im(Γv)))} (5.120)

associated with the underlying parametrization. By choosing this deterministic parametriza-
tion, we aim to estimate each of the I complex amplitudes. In this case, the ML approach
can be extended to

θ̂DML = arg min
θ̃DML

{−ln(p(ĥ(0), . . . , ĥ(I − 1)|θ̃DML))}

= arg min
θ̃DML

{−ln(p(ĥTS|θ̃DML))}. (5.121)

Inserting the PDF into (5.121) and simplifying the equation as far as possible, or directly
employing (B.1.13), it is straightforward to see that the ML/LS problem solution for
the single measurement case can be extended by a summation over all I individual least
squares errors. Further, as before, substituting the linear unknowns by their closed-form
solution leads to the reduced dimensionality time series deterministic ML or LS solution

τ̂ = arg min
τ̃

(
ĥTS − GTS(τ̃ )(GTS(τ̃ ))†ĥTS

)H (
ĥTS − G(τ̃ )(GTS(τ̃ ))†ĥTS

)
. (5.122)

Often this kind of deterministic ML approach is also referred to as the conditional ML
[OVSN93]. The cost function in (5.122) can alternatively be replaced by a concentrated
form leading to

τ̂ = arg min
τ̃
{trace(P⊥GĈĥ)}, (5.123)

where the matrix Ĉĥ is the estimated so called sample covariance matrix

Ĉĥ =
1

I

I∑

i=0

ĥ(i)(ĥ(i))H . (5.124)

A derivation is provided in the Appendix A.2.

5.11.2 Stochastic Parametrization

Alternatively, exploiting the large amount of available observations, a stochastic or un-
conditional approach may be formulated as well, based on interpreting the complex path
amplitudes as stochastic variables. Instead of indirectly employing a large number of es-
timates for each complex path amplitude β̂i for all i ∈ {0, . . . , I−1}, like it is done in the
deterministic approach. This enables a problem formulation based on using parts of the
channel statistics, that is, the unknown amplitudes and the known or estimated channel
estimation covariance matrix, Cβ and Cĥ, respectively. More precisely, that means we use
apriori knowledge, like knowing that the complex path amplitudes are a stochastic variable
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being drawn out of a known distribution. The most popular and thoroughly documented
case is, that the complex path amplitudes are zero mean complex Gaussian-distributed,
and also independent and identical (IID) distributed. The latter means, that over time,
the measured snapshots are distributed with the same probability distribution and further
they are mutually independent. To formulate a stochastic Maximum Likelihood (SML)
problem, we aim to build an equation system based on the channel covariance matrix.
The covariance is defined as

Cĥ = E{(ĥ− E{ĥ})(ĥ− E{ĥ})H} (5.125)

in general. If the complex path amplitudes have zero mean, (5.125) simplifies to Cĥ =

E{ĥĥ
H}. To begin with let us assume, that the complex path amplitudes under investi-

gations, may be modelled as circular complex Gaussian signals. If I becomes large, the
statistical average represents the expected value, that is

E{(ĥ− E{ĥ})(ĥ− E{ĥ})H} = lim
I→∞

1

I

I∑

i=0

(ĥ(i)−mĥ)(ĥ(i)−mĥ)H . (5.126)

Thereby mĥ is the mean of ĥ. Hence (5.2) holds true as well. As can be found in [PP12]
given any constant arbitrary matrix A and any other random vector x the following
property is fulfilled:

Var{Ax} = AVar{x}AT . (5.127)

It is further stated in [PP12] that given any arbitrary matrices A and B, any linear com-
bination of two Gaussian-distributed random vectors x ∼ N (mx, Cx), y ∼ N (my, Cy)
with means mx, my and covariance matrices Cx, Cy will again be Gaussian-distributed,
that is

Ax + By + c ∼ N (Amx + Bmy + c, ACxAT + BCyBT ). (5.128)

With (5.127) and (5.128) it is easy to see that the covariance matrix of the channel
estimates ĥ = Gβ + w is determined by

E{ĥ(i)ĥ
H

(i)} = GRβGT + Cw. (5.129)

Let us furthermore assume that the amplitudes β(t) are zero-mean, that is, they are
temporally and spatially uncorrelated.

5.11.3 Zero-Mean Fading

Note that the zero-mean assumption, in combination with the assumption that the con-
sidered signals are Gaussian-distributed, is a typical assumption in the whole theory that
has evolved around the field of sensor array processing. In our special parameter esti-
mation problem at hand, the combination of both assumptions is reasonable, when the
complex path amplitudes for cε{1, . . . ,C} are assumed to be Rayleigh fading amplitudes.
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If Rice fading applies for c = 1, this assumption is partially violated. The ML estimator
corresponding to the scenario βi,βq ∼ N (0, I) can be formulated as

τ̂ = arg max
τ̃
{p(ĥ(1), . . . , ĥ(I)|RβCw, τ )}. (5.130)

In the SISO case the joint complex multivariate Gaussian PDF is determined via a product
of the Gaussian PDF for the snapshot measurements

p(ĥ(1), . . . , ĥ(I)|RβCw, τ ) =
I∏

i=1

1

|πL+1Cĥ|
e−ĥ

H
(i)C−1

ĥ
ĥ(i). (5.131)

In the SIMO case it reads,

p(Ĥ(1), · · · , Ĥ(I)|RβCw, τ ) =
Nr∏

v=1

I∏

i=1

1

|πL+1Cĥ|
e−ĥ

H
v (i)C−1

ĥ
ĥv(i). (5.132)

Let the so-called sample covariance matrix be the estimate

Ĉĥ =
1

INr

Nr∑

v=0

I∑

i=1

ĥv(i)ĥ
H

v (i). (5.133)

Since the snapshot measurements are temporally independently identically distributed,
via some well known standard maximum likelihood manipulations, like taking the (mono-
tonic) logarithm and minimizing the negative PDF, the likelihood can be defined and
simplified as follows, by inserting (5.131) in (5.130):

arg max
τ̃ ,C̃β

{
Nr∏

v=1

I∏

i=1

1

|πL+1Cĥ|
e−ĥ

H
(i)C−1

ĥ
ĥ(i)

}

= arg min
τ̃ ,C̃β

{
−

Nr∑

v=1

I∑

i=1

ln

{
1

|πL+1Cĥ|
e−ĥ

H
(i)C−1

ĥ
ĥ(i)

}}

= arg min
τ̃ ,C̃β

{
INr(L+ 1)ln{|π}+ INrln{|Cĥ|}+

Nr∑

v=1

I∑

i=1

ĥ
H

(i)C−1

ĥ
ĥ(i)

}

= arg min
τ̃ ,C̃β

{
NrIln{|Cĥ|}+

NrI

NrI

Nr∑

v=1

I∑

i=1

ĥ
H

(i)C−1

ĥ
ĥ(i)

}

= arg min
τ̃ ,C̃β

{
NrIln|Cĥ|+NrItrace{C−1

ĥ
Ĉĥ}

}
. (5.134)

Note that the following equalities are used in this thesis:

1

NrI

Nr∑

v=1

I∑

i=1

ĥ
H

(i)C−1

ĥ
ĥ(i) = trace{C−1

ĥ
Ĉĥ}, (5.135)
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and in case NrI is large

trace{C−1

ĥ
Ĉĥ} = L+ 1. (5.136)

To maintain compact and readable equations, I omitted the dependencies on the minimiz-
ing arguments in (5.134). Further note that although the equations in (5.134) seem not
to be directly related to the minimizing arguments τ̃ , C̃β, by reviewing the structure of
Cĥ it becomes clear that indirectly the equations are related to the minimizing arguments
via the relationship to Cĥ and the delay-dependent matrix G:

Cĥ = GCβGH + σ2
wI. (5.137)

Momentarily treating τ as a known constant vector, obviously, the signal covariance
matrix estimate can be obtained in closed form by

Ĉβ = G†(Ĉĥ − σ2
wI)G†H . (5.138)

In this approach, Cβ and τ are unknown and hence a C2 + C-dimensional problem has
to be solved. An alternative solution, for which the dependence on Cβ is eliminated and
hence the problem is reduced to a C-dimensional problem, was proposed in [Jaf88] such
that the resulting separable estimation probem, formulated with proof originally for the
purpose of direction finding in array processing, can be translated here to the problem of
delay estimation in the following manner:

τ = arg min
τ̃

{
− 1

σ2
w

Trace{PGĈĥ}+ ln|PGĈĥPG + σ2
w(I−PG)|

}
. (5.139)

Thereby, PG = GG† denotes the orthogonal projection matrix. For a detailed derivation
of (5.139) refer to the full proof provided in [Jaf88]. Inserting (5.137) in (5.134) it also
can be understood that a so-called concentrated form of the minimization problem can
be formulated as

τ = arg min
τ̃

{
ln|GĈβGH + σ2

wI|
}

. (5.140)

It is shown below that a simplified cost function with a reduced complexity is given by

τ = arg min
τ̃

{
ln(σ2((L+1)−C)

w |G†ĈĥG|)
}

. (5.141)
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Inserting (5.138) into (5.140) yields s simplfied cost function:

τ = arg min
τ̃

{
ln|GĈβGH + σ2

wI|
}

= arg min
τ̃

{
ln|ĈβGHG + σ2

wI|
}

= arg min
τ̃

{
ln(σ2(L+1)

w |σ−2
w ĈβGHG + I|)

}

= arg min
τ̃

{
ln(σ2(L+1)

w |σ−2
w G†(Ĉĥ − σ2

wI) G†HGHG︸ ︷︷ ︸
G

+I|)
}

= arg min
τ̃

{
ln(σ2(L+1)

w |σ−2
w σ2

wG†(σ−2
w Ĉĥ − I)G + I|)

}

= arg min
τ̃

{
ln(σ2(L+1)

w |G†σ−2
w ĈĥG−G†G︸ ︷︷ ︸

I

+I|)
}

= arg min
τ̃

{
ln(σ2((L+1)−C)

w |G†ĈĥG|)
}

. (5.142)

Here, I used the following two determinant properties:

Property 4. Given any matrices A, B it holds true that |AB + I| = |BA + I|. Secondly,
for any matrix A ∈ Cn×n and any scalar b it further holds true that |bA| = bn|A|.

5.12 Channel Parameter Tracking

Channel parameter tracking lies not within the focus of this thesis. Nevertheless, to keep
the global optimization capabilities provided by particle swarm optimization, I hence
suggest to implement a hierarchical particle swarm optimization for dynamic environ-
ments, following the proposed strategy in [JM06]. For a certain number of observations,
a hierarchical concept of dividing the swarm into sub-swarms is proposed to cope with
the dynamically changing cost function. Furthermore, [YOJ07] summarizes dynamical
mechanisms to track dynamic environments, developed for particle swarm optimization
so far.

5.13 Delay-/Parameter Estimation CRLB

For positioning, the theoretically lowest achievable TOA estimation error is especially
interesting. Due to multipath propagation, the CRLB for the TOA and the associated
FIM depend on a vector parametrization, which again depends on the underlying prob-
lem formulation or parametrization. The full parameterization yields a different bound,
with significantly higher dimensionality and hence computational complexity, than the
bound belonging to the parametrization with separated linear and nonlinear parameters.
Furthermore, the SISO, SIMO and time-series-based parametrizations will yield different
Fisher matrix dimensions as well.
Therefore, I assess loose TOA CRLBs crlb (τ1) as investigated in [SAH12] for this work.
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Refer to [YB92] for a full problem description. It can be calculated via employing either
the

• full SISO problem parametrization

θ =[βi,βqτ ]), FFULL (θ) ∈ R3C×3C , that is

θ̂ = arg min
θ̃

{
1

σwl
|ĥ−G(τ̃ )β̃|2)

}
yielding

CRLBFULL (τ1) =
[
diag

(
F(θ)−1

)]
2C+1

with (5.143)

CRLBFULL (τ ) =
σ2
wl

2

[
Re
{

diag
(
βH
)
JTGPG(τ )⊥JGdiag (β)

}]−1
(5.144)

= [CRLBFULL (θ)]2C+1:3C , or the (5.145)

• SISO SNLLS problem parametrization

θ =τ , FSNLLS (τ ) ∈ RC×C , that is

τ̂ = arg min
τ̃

{
1

σwl
ĥ
H

PG(τ̃ )⊥ĥ

}
, yielding

CRLBSNLLS (τ1) =[diag
(
F(τ )−1

)
]1 (5.146)

CRLBSNLLS (τ ) =
σ2
wl

2

[
Re
{

diag
(
ĥHG†

T
)

JTGPG(τ̃ )⊥JGdiag
(
G†ĥ

)}]−1

(5.147)

• full TS-SIMO problem parametrization

Γ =[Γ(0), . . . , Γ(I − 1)] with Γ ∈ CC×NRI (5.148)

θ =[τ , vec
{
Γi
}

, vec {Γq}]), FFULL (θ) ∈ R(2NRIC+C)×(2NRIC+C), that is

θ̂ = arg min
θ̃

{
NR−1∑

v=0

I−1∑

i=0

1

σwl
|ĥv,i −G(τ̃ )β̃v,i|2

}
, yielding

CRLBFULL (τ1) =
[
diag

(
F(θ)−1

)]
1

, with (5.149)

CRLBFULL (τ ) =
σ2
wl

2

[
Re
{
JTGPG(τ )⊥JG � (ΓHΓ)T

}]−1
, the (5.150)

• SNLLS TS-SIMO problem parametrization

θ =τ , FSNLLS (θ) ∈ RC×C , that is

τ̂ = arg min
τ̃

{
NR−1∑

v=0

I−1∑

i=0

1

σwl
|ĥv,i −G(τ̃ )G (τ )† ĥv,i|2

}
, yielding

CRLBSNLLS (τ1) =
[
diag

(
F(θ)−1

)]
1

, with (5.151)

CRLBSNLLS (τ ) =
σ2
wl

2

[
Re
{

JTGPG(τ )⊥JG � ((G(τ )†Ĥ)HG(τ )†Ĥ)T
}]−1

.

(5.152)
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Firstly, to be able to calculate a loose bound, I approximate and substitute the channel
estimation error by its lower bound

σ2
wl
≈ crlb(hl). (5.153)

Secondly, the SISO SNLLS and the full CRLB are special cases of the TS-SIMO SNLLS
and of the full CRLB. The full and the SNLLS bounds differ in employing estimates as
substitutes for the actual parameters. Additionally, the Fisher information matrix for the
full problem has a higher dimensionality: a size 3C × 3C (SISO) and (2NRIC + C) ×
(2NRIC +C), whereas the Fisher information for the separated parametrization for both
SISO as TS-SIMO has the reduced size C × C. Nevertheless, in the full problem it is
also possible to find a separated formulation for the delay parameters only by dividing the
complete Fisher matrix into sub-block matrices, as can be seen in the following derivations.

Since the delay estimation CRLB increases proportionally with the channel estima-
tion CRLB, the latter has a major impact on the TOA estimation and therefore on the
positioning performance. Consequently, the channel estimation error should be as low as
possible. Given a typical and feasible amount of employed training, employing semi-blind
channel estimation instead of a purely training based estimator ideally leads to a delay
estimation error, which is smaller by a factor of 5 − 20, as can be seen in (5.154) and
(4.85).

5.13.1 Delay CRLB Derivation (SNLLS Parametrization)

It is noteworthy, that although the approximation for the resulting delay CRLB is similar
apart from that the actual parameters are substituted by estimates, the derivation for
both matrices is not similar: The derivation for the full problem CRLBs is based on
applying a rule for inversion of partitioned matrices, whereas the SNLLS-based CRLBs
are based on pseudo-inverse derivatives. The derivation for the separable parametrization
is already provided as the derivation for the Hessian matrix calculation crlbSNLLS(τ ) =
[FSNLLS(τ )]−1 = [HSNLLS(τ )]−1 in (5.53) and Section 5.8.

5.13.2 Delay CRLB Derivation (Full Parametrization)

In [YB92] a CRLB for superimposed signals is derived, which is partially similar to the
CRLB for the complete vector θ given in [SAH12] and to the CRLB given here. Since I
am mainly interested in the vector τ , however, I will provide a compact calculation for
the separable delay CRLB below. The vector CRLB derivation is based on the Fisher
matrix calculation and inversion:

crlb (τ1) =[F(θ)−1]2C+1,2C+1

=
σ2
n

K − L︸ ︷︷ ︸
crlbhl

[(2Re{J(θ)HJ(θ)})−1]2C+1,2C+1, with

[J(θ)]l,m =
∂hl(β

i,βq, τ )

∂θm
and J(θ) = [JβiJβqJτ ]. (5.154)
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Revisiting (4.9), the entries of the Jacobian matrix J can be calculated as

[Jβi ]l,c =[G]l,c =
∂hl
∂βic

=g(lTs − τc)

[Jβq ]l,c =j[G]l,c =
∂hl
∂βqc

=j · g(lTs − τc)

[Jτ ]l,c =[JgB]l,c =
∂hl
∂τc

=βc
∂g(lTs − τc)

∂τc
(5.155)

with

B = diag{β} and [Jg]l,c =
∂g(lTs − τc)

∂τc
. (5.156)

Note that, despite the notational abuse, F corresponds to an approximate and not to the
exact FIM. Calculating (5.156) finally leads to

F =
2

crlbhl
Re{JHJ}

=
2

crlbhl
Re




JH
βi

Jβi JH
βi

Jβq JH
βi

Jτ
JH
βqJβi JH

βqJβq JH
βqJτ

JH
τ Jβi JH

τ Jβq JH
τ Jτ




=
2

crlbhl
Re




GTG 0 GTJgB
0 GTG −jGTJgB

BHJT
g G jBHJT

g G BHJT
g JgB




=
2

crlbhl




GTG 0 GTJgBi

0 GTG GTJgBq

BiTJT
g G BqTJT

g G Re{BHJT
g JgB}


 . (5.157)

Let

Jβ =

(
G 0
0 jG

)
. (5.158)

Here the following auxiliary rule [PP12] can be applied for inversion of the Fisher matrix.

Auxiliary Rule for the Inversion of Partitioned Matrices:

Let A11, A12, A21, A22 be matrices of any size with A11 and A22 being square
matrices and let A11 and the so called Shur complement A22 − A21A11

−1A12 be
non-singular. Then

(
A11 A12

A21 A22

)−1

=

(
S1
−1 −A11

−1A12S2
−1

−S2
−1A21A11

−1 S2
−1

)
with (5.159)

S1 = A11 −A12A22
−1A21 (5.160)

S2 = A22 −A21A11
−1A12. (5.161)
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The block-matrix in (5.157) has the structure

(
A11 A12

A21 A22

)
=




GTG 0 GTJgBi

0 GTG GTJgBq

BiTJT
g G BqTJT

g G Re{BHJT
g JgB}


 . (5.162)

Obviously block entries A11 as well as A22 are square matrices. Consequently, employing
the auxiliary matrices C11, C12, C21, C22 it follows that

F−1 =
crlbhl

2
Re

(
C−1

11 C12

C21 C−1
22

)
, (5.163)

given the block-wise entries of the block matrix above:

C22 =Re{JH
τ Jτ} −

(
BiTJT

g G BqTJT
g G
)

(JHβ Jβ)−1(GTJgBi GTJgBq)T . (5.164)

Note that the well known rule for the inversion of block-diagonal matrices allows to
calculate the inverse of JHβ Jβ as

(
GTG 0

0 GTG

)−1

=

(
GTG

−1
0

0 GTG
−1

)
. (5.165)

Further note that, considering any complex vector βεCC×1 and any auxiliary square ma-
trix A, the following equality holds true:

(diag{β})HAdiag{β} = RT
ββ �A = A�RT

ββ with Rββ = ββH . (5.166)

The second part of the equality is true since the Hadamard product is commutative in
general. Additionally, note that the Hadamard product is distributive in general. Finally,
note that

Re{RT
ββ} = RT

βiβi
+ RT

βqβq . (5.167)
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Consequently, inserting (5.158) and (5.155) into (5.164) results in

C22 =Re{BHJT
g JgB} −

(
BiTJT

g G BqTJT
g G
)(GTG 0

0 GTG

)−1(
GTJgBi

GTJgBq

)

(5.165)
= Re{BHJT

g JgB} −
(
BiTJT

g G(GTG)−1 BqTJT
g G(GTG)−1

)(GTJgBi

GTJgBq

)

=Re{BHJT
g JgB} −


BiTJT

g G(GTG)−1GT

︸ ︷︷ ︸
G†

JgBi + BqTJT
g G(GTG)−1GT

︸ ︷︷ ︸
G†

JgBq




=Re{BHJT
g JgB} −

(
BiTJT

g GG†JgBi + BqTJT
g GG†JgBq

)

(5.166)
= Re{RT

ββ} � JT
g Jg −

(
RT
βiβi
� JT

g GG†Jg + RT
βqβq � JT

g GG†Jg

)

=Re{RT
ββ} � JT

g Jg − (RT
βiβi

+ RT
βqβq)� JT

g GG†Jg (5.168)

(5.167)
= Re{RT

ββ} � JT
g (IL+1 −GG†)Jg

=Re{RT
ββ � JT

g (IL+1 −GG†)Jg}, or (5.169)

=Re{BHJT
g (IL+1 −GG†)Jg}B}, or (5.170)

=Re{JHτ (I− JβJ†β)Jτ}. (5.171)

Again, from a positioning point of view, we are basically interested in the TOA CRLB,
which can be calculated by evaluating the single entry block C−1

22 in the lower right part
of the partitioned matrix in (5.163). The overall CRLB separability into a CRLB part for
the linear and a part for the nonlinear parameter dependencies becomes clear in (5.162)
and matches well with the search space reduction addressed in (5.22). Consequently, C22

is the FIM of τ denoted by Fτ and the TOA CRLB can be written compactly as

crlbτ1 =
crlbhl

2
[F−1
τ ]1,1, with

Fτ =JT
τ (I− JβJ†β)Jτ

=Re{JH
τ (I− JβJ†β)Jτ}. (5.172)

5.13.3 MIMO Delay CRLB Derivation

The channel estimation CRLB is calculated like in the SIMO case via

CRLB{hu,v,l} =
σ2
n

K − L . (5.173)

Let us consider the SIMO spatial signature and delay estimation case. Then, considering
some substitutions due to a slightly different signal model in [Lee98, Mia07], the delay
estimation CRLB is calculated as follows:

CRLB(τ̂ ) =
CRLB(hl,u,v)

2
Re{Jg

T (τ )P⊥GJg(τ )� (ΓHΓ)T}−1. (5.174)
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The derivation of (5.174) can be understood by revising the underlying signal model, such
that we rearrange the channel matrix in a single long vector

vec{HT} = vec{(ΓGT )T} = vec{GΓT} = (INR ⊗G) vec{ΓT}︸ ︷︷ ︸
γ

. (5.175)

Note that the vec{·} operator concatenates column-wise. Let J denote the Jacobian for
multiple antennas and

[J ]l,c =
∂hl(γ

i,γq, τ )

∂θc
and J = [JγiJγqJτ ]. (5.176)

Then, the sub-blocks of the Jacobian can be calculated as

Jγi =INR ⊗G with
∂Ω

∂γiv,c

=
∂hl,v′

∂γiv,c

=

{
g(lT − τc) v′ = v

0 v′ 6= v,
(5.177)

Jγq =jINR ⊗G with
∂Ω

∂γqv,c
=
∂hl,v′

∂γqv,c
=

{
jg(lT − τc) v′ = v

0 v′ 6= v,

Jτ =




JgC1
...

JgCNR


 with

∂Ω

∂τc
=
∂hl,v′

∂τc
= γv′,c

∂g(lT − τc)
∂τc

and (5.178)

C =
[
C1 . . . CNR

]T
with Cv = diag{γv} ∀vε{1, . . . ,NR}. (5.179)

Consequently, proceeding as in the SISO case, the Fisher matrix derivation yields the
SIMO Fischer matrix

F = 2
crlbhl

Re{JHJ } = 2
crlbhl

Re

(
JH
γ Jγ JH

γ Jτ
JH
τ Jγ JH

τ Jτ

)

with

Jγ =

(
INR ⊗G 0

0 jINR ⊗G

)
. (5.180)

Inserting (5.179) and defining GNR = INR ⊗G into the Fischer matrix expression leads to

F =
2

crlbhl



GT
NR

GNR 0 GT
NR

Jiτ
0 GT

NR
GNR GT

NR
Jqτ

JiTτ GNR JqTτ GNR Re{JHτ Jτ}


 . (5.181)

For the following derivations note that

NR∑

v=1

RT
γvγv

=
(
ΓTΓ∗

)T
= ΓHΓ. (5.182)



5.13. Delay-/Parameter Estimation CRLB 107

Then, similarly as in the SIMO case, the CRLB for the delay estimation is derived as
follows:

crlbτ =crlbhl,vF
−1
τ , with (5.183)

Fτ =Re




(
CH

1 Jg
T . . . CH

NR
Jg

T
)



JgC1
...

JgCNR








−
(
CiT(INR ⊗ Jg)TG CqT(INR ⊗ Jg)TG

)(GTG 0
0 GTG

)−1(GT (INR ⊗ Jg)Ci

GT (INR ⊗ Jg)Cq

)

=Re{CH(INR ⊗ Jg)T (INR ⊗ Jg)C}

−
(
CiT(INR ⊗ Jg)TG(GTG)−1 CqT(INR ⊗ Jg)TG(GTG)−1

)(GT (INR ⊗ Jg)Ci

GT (INR ⊗ Jg)Cq

)

=Re

{
NR∑

v=1

CH
v Jg

TJgCv

}

−
(

NR∑

v=1

CiT
v Jg

TG(GTG)−1GTCi
v +

NR∑

v=1

CqT
v Jg

TG(GTG)−1GTCq
v

)

=Re

{(
NR∑

v=1

RT
γvγv

)
� Jg

T (IL+1 −GG†)Jg

}

(5.182)
= Re{ΓTΓ∗ � Jg

T (IL+1 −GG†)Jg}. (5.184)

The CRLB variation over the SNR and the symbol duration T is shown in Figure 5.10.
For higher cluster numbers C the Fisher information matrix becomes ill-conditioned and
a meaningful CRLB cannot be calculated anymore. With increasing symbol duration T
the resolution of the pulse superposition decreases and therefore the CRLB increases.

5.13.4 Time Series Extension

If the observations of a whole time series are employed, we can either formulate a CRLB
based on the deterministic maximum likelihood estimator, or we can formulate a CRLB
based on the stochastic maximum likelihood estimator. I begin by utilizing the conditional
likelihood, thus the deterministic estimator, analogous to the SIMO case. In case multiple
time series channel measurements are available, the delay CRLB is straightforward to be
determined as

CRLB(τ̂ )conditional =
CRLB(hl,u,v)

2
Re{Jg

T (τ )P⊥GJg(τ )� (ΓH
I ΓI)

T}−1, (5.185)

with ΓI =[ΓT
1 , . . . , ΓT

I ]T . (5.186)

If, on the other hand, the unconditional likelihood or the stochastic maximum likelihood
estimator is used to formulate a CRLB, the following formulation provided in [CY03] can
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Figure 5.10: The delay estimation CRLB(τ1) varies with the SNR, the symbol duration
and the number of multipath clusters C.
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be translated to the delay estimation problem in the following manner:

CRLB(τ̂ )unconditional =

{
σ2

w

2I
[Re{JgPG

⊥Jg
T � (CβGHR−1

ĥ
GCβ)T}]−1

}
. (5.187)

If the full Fisher matrix is needed, it needs to be derived. Although, when dealing with
the stochastic maximum likelihood, the modeling function given in [Ric05] is not the same
as the one here. We can adapt the derivations for the stochastic CRLB up to the point,
where the required derivatives are employed. Therefore recall that the likelihood can be
written as

L(H|θ) = −NRIln|Cĥ(θ)| − trace(HHC−1

ĥ
(θ)H). (5.188)

The parametrization via the parameter vector θ summarizes the unknowns, that is, the
delays τ and the physical channel covariance matrix Cβ. Taking into account that the
covariance matrices are symmetric and hence the upper triangular matrix of Cβ suffices
to parametrize Cĥ properly, let η be the vector comprising all real and imaginary part
elements of the upper triangular matrix of Cβ. Consequently, due to splitting the matrix
into an upper and lower triangular and also splitting into real and imaginary part, and
noting that the main diagonal only has real values, the size of

η =[[C]1,1, . . . , [C]C,C︸ ︷︷ ︸
C

, Re [[Cβ]1,2, . . . , [Cβ]1,C , [Cβ]2,3, . . . , [Cβ]2,C , . . . , [Cβ]C−1,C ]︸ ︷︷ ︸
C2−C

2

, . . .

. . . , Im [[Cβ]1,2, . . . , [Cβ]1,C , [Cβ]2,3, . . . , [Cβ]2,C , . . . , [Cβ]C−1,C ]︸ ︷︷ ︸
C2−C

2

] (5.189)

adds up to 2
2
(C2 − C) + C = C2. Then, the parametrization of the overall parameter

vector θ has a size of C2 + C and it is given by

θ = [τ ,η]. (5.190)

After elaborately employing some matrix derivation rules and successively simplifying the
relevant terms in the equations according to [Ric05], the CRLB for θ can be calculated
in the following manner:

CRLBSML(θ) = F−1 =
1

NRI
(DH(θ)D(θ)) ≤ E{(θ̂ − θ)(θ̂ − θ)T}, (5.191)

with the matrix

D(θ) =

[
vec{L−1(θ)

(
∂

∂θ1

Cĥ(θ)

)
L−H(θ)} . . . vec{L−1(θ)

(
∂

∂θC2+C

Cĥ(θ)

)
L−H(θ)}

]
,

(5.192)

given the Cholesky decomposition Cĥ = L(θ)L(θ)H . Up to this point I summarized the
stochastic CRLB calculations as provided in [Ric05]. The relevant derivative calculations
as applicable to this thesis can be found in the Appendix A.8.
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5.14 Soft Information for Estimates

Soft information is another expression for estimation reliability. If parameters are esti-
mated, it is useful to know how reliable these estimates are. Especially in more sophis-
ticated cases as the ones discussed here, e.g. high dimensional, non-linear, non-convex,
global optimization problems, which cannot be guaranteed to find a reliable solution in
every case, it is crucial to know whether the estimate is reliable or not. Furthermore,
reliability information can be obviously employed to improve any further estimates. A
straightforward way to quantify reliability information, or soft information, is to calculate,
or, if this is not possible, to estimate the estimation vector’s covariance matrix. The main
diagonal covariance matrix entries represent the parameter variances and hence they can
be interpreted as soft information. The inverse Fisher matrix, or inverse Hessian, of the
actual estimate ξ̂ for an arbitrary parameter vector ξ is the estimates’ covariance matrix

Ĉξ̂ = F(ξ̂)
−1

. (5.193)

This matrix indicates how reliable the hard estimate of ξ is. Instead of calculating the
CRLB for an estimate by utilizing the correct parameter vector, here, the estimate is
employed. Note, that for an unbiased estimator it holds:

ξ̂ ∼ N
(
ξ, Cξ̂

)
. (5.194)

5.15 Identifiability and Overfitting

Given an infinite number of observations, an error-free mathematical model is said to be
identifiable, if the underlying model parameters can be theoretically determined [JG85].
Hence, the issue of identifiability should be addressed prior to parameter estimation. A
necessary condition to enable parameter identifiability is the one requiring that the un-
derlying model provides more equations, that is, observations, than it has parameters
to be estimated. Therefore, intuitively, we can formulate a necessary identifiability con-
dition in terms of constraining the model’s degrees of freedom to be larger than zero.
The degrees of freedom corresponds to the number of observations minus the number
of parameters that are supposed to be estimated. Keeping in mind that the estimation
problem at hand consists of a real as well as a imaginary part for the observations and
partially for the parameters, it is straightforward that the number of observations cor-
responds to 2NRI(L + 1) and the number of parameters is given by the dimension of
θ = [τ , Re{vec{Γ}}, Im{vec{Γ}}], being C+2NRIC. This leads to the following inequal-
ity:

2NRI(L+ 1)− C − 2NRIC > 0, (5.195)

which, in return, is equivalent to the following condition:

C <
1

1 + 1
2NRI

(L+ 1). (5.196)
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Figure 5.11: Maximum identifiable multipath components Cmax.

The maximum number of estimable multipath components consequently reads Cmax =⌊ 1

1 + 1
2NRI

(L + 1)
⌋
. From (5.196) and Figure 5.11 one can see that for a low number

of observations the number of estimable multipath components theoretically are signifi-
cantly smaller than the number of channel taps given by L+ 1. Reviewing the literature,
two mathematically more thorough identifiability theorem formulations applicable to the
model assessed in this thesis, can be found in [Lee98, WZ89a]. The issue of identifiability
assuming a slightly different model than the one in this thesis is investigated in [WZ89a].
Fortunately, the author of [Lee98] clarifies that the findings presented in [WZ89a] can
be adopted to a signal model corresponding to the one considered in this thesis. The
main difference regarding the two contributions lies in the parameters that are supposed
to be estimated. Whereas the authors of [WZ89a] refer to an angle of arrival and signal
matrix estimation, [Lee98] addresses a delay and signature matrix estimation, as do we.
Consider twofold: Firstly, the mathematical model structures in both contributions are
similar. Secondly, as explained before, the delay estimation problem in the time domain
can be represented by a phase shift estimation in the frequency domain. Therefore the
applicability of [WZ89a] to [Lee98] makes sense. Consequently, recall that the underlying
error-free model in this thesis is formulated such that it is similar to the one given in
[Lee98]. It is described by

HT = G(τ )ΓT . (5.197)

Assessing (5.197), it becomes clear that we are actually interested in estimating a set of
linearly given parameters represented by the spatial signature matrix ΓT , as well as we
are interested in estimating a non-linearly dependent vector τ . To assure that the model
parameters are identifiable, the following condition has to be fulfilled according to [Lee98]:

HT = G(τ )ΓT 6= G(τ ′)Γ′T for all τ 6= τ ′ and Γ 6= Γ′. (5.198)
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In the following I will summarize the identifiability conditions as stated in [Lee98]. The
proof is identical to that given in [Lee98] and hence also identical to the proof given
in [WZ89a], provided that the model and the parameters are replaced appropriately, as
suggested in [Lee98].

Theorem 1. Suppose an NR element array receives C identical waveforms with distinct
delays τ . If the signal is non-ambiguous, then τ and the spatial signature Γ may be
uniquely determined, provided that

C <
L+ 1 +m′

2
, (5.199)

where m′ = rank(Γ). If, instead

C <
2m′

2m′ + 1
(L+ 1), (5.200)

then τ and Γ may be uniquely determined with probability one.

The authors of [Lee98] also point out that, assuming Γ has full rank, such that m′ =
min(C,NR), if C < NR (that is m′ = C), and substituting m′ by C, it follows that the
parameters are identifiable if C < L+1. On the other hand, if NR < C (that is m′ = NR),
then the upper bound in (5.199) approaches C < L+1

2
for large numbers L+ 1. Note that,

in this thesis, however, L + 1 does not tend to become very large. Further note that,
considering both the SIMO and the time series extension case instead of having simply
the dimension C ×NR, the matrix Γ has the dimension C ×NRI. Finally, applying this
theorem 1 to the similar and yet more complicated model proposed in this thesis, via the
substitution m′ = min(C,NRI), we can formulate the following

Theorem 2. Within the framework proposed in this thesis, the parameters of interest τ
and Γ, if τ is distinct and the signals are non-ambiguous, are identifiable for

C <

{
L+ 1 if C < NRI
L+1+NRI

2
else,

(5.201)

and else they are identifiable with probability one for

C <




L+ 1

2
if C < NRI

1

1 + 1
2NRI

(L+ 1) else.
(5.202)

Note that (5.202) is the practically relevant case in this work. Interestingly, in case
C ≥ NRI, condition (5.202) is the same as the condition yielded by arguing that the
model’s degrees of freedom have to be larger than zero in (5.196). This means that not
in every case, we can estimate as many multipath components as we have channel taps
L+ 1.
In practice, (5.201) and (5.202) can be interpreted as follows: If the amount of observations
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is limited, considering the single snapshot SISO case for any other than the single path
scenario, it follows that C > NRI = 1, and consequently in the ambiguous signal case:

C <
2

3
(L+ 1). (5.203)

If we are, however, able to employ a large amount of observations evaluated by observing
a whole time series and employing multiple antennas at the receiver side, then, given the
channel models assessed in this thesis, we can conclude that NRI ≥ C. Then, at least
in the idealized error-free case, the number of identifiable multipath components would
approach L+ 1/2.
More realistic, error-prone scenarios, however, might lead to estimator failure, even if the
error-free model fulfills the above identifiability conditions. The matrix Γ is determined
by the antenna array geometry and the complex fading amplitudes. Therefore, values in
Γ, which are comparably small due to instantaneous fading effects, might either cause
numerical problems due to close-to-singular matrices, or they might be too small to be
separable from the additive channel estimation error.
In presence of noise, even less multipath components will be identifiable. Consequently,
in realistic scenarios, both |[Γ]c,i|2 and |[G(τ )]l,c|2 should be significantly larger than the
channel estimation error as can be understood from Figure 5.12.

5.16 Parameter Estimation Performance Analysis

5.16.1 The Simulation Setup

Table 5.3: Parameters for the simulations.

Category Subcategory Parameter if static if variable

Channel

Scenario WINNER B1-LOS
C 2 ∈ {1, . . . , 8}
ϕ1, φ1 ∈ U [−π, π]
v 50 km/h
τ1 ∈ U [0,T ]

System

Signal
gRC with αRC 0.3
T 200 ns ∈ {50, . . . , 200}
Lg 7

Time/Frequency
fc 2 GHz
J 1 ∈ {1, 2, 4, 8}
I 1 ∈ {1, 100}

Input/Output
Nt 1
NR 1 ∈ {1, 2, 4, 8}
dtx, dRx,λ/2 7.5 cm

Simulation Runs 1000
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Figure 5.12: The fading plotted for each multipath component c, for the example of a
WINNER B1-LOS SISO channel and v = 50 km/h, shows that with increasing c, due to
the increasing attenuation, the sensitivity to noise becomes increasingly severe.

EDTCM +

Channel Estimation Error

Parameter
Estimation

hg(τ),T , c(τ) ĥ θ

w

Figure 5.13: Basic simulation setup, valid for different signal designs and channel estima-
tion methods.
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To demonstrate how the parameter estimation algorithms applied in this thesis per-
form, I introduce a basic simulation framework. At this point I will use a generic model as
shown in Figure 5.13, applicable to a wide range of communication system structures and
channel estimation methods. The single shot measurement EDTCM channel coefficients
are directly distorted by the uncorrelated Gaussian distributed channel estimation error,
such that the system equation is

ĥ = h + w. (5.204)

Choosing this basic model over a specifically designed JCAP system has the advantage,
that the results are valid for any kind of system. The parameter values for the different
system categories are tabulated in Table 5.3. Here the “if static” column represents the
simulation values for parameters that do not vary in the simulations, the “if variable”
column harbors the values for the parameter being toggled in a specific simulation.

In the following subsections I show squared error distributions expressed via so-called
violin-plots. Similar to a boxplot, a violinplot has the purpose to visualize data distribu-
tions. The violinplot shows rotated kernel densities to both sides, often shaped as a violin.
Instead of summarizing particular statistical features of the data distributions it visually
captures the complete distribution. Furthermore, some errors are shown as boxplots. The
boxes are shown representing 25 to 75 percent of the data.

5.16.2 SNLLS Estimation via PSO

The results for the SISO single shot measurement case for C ∈ {1, 2, 3} and T = 200 ns
and for T = 50 ns are shown in Figure 5.14. It can be seen that the squared error
median converges to the CRLB asymptotically, and hence it can be concluded that the
SNLLS parameter estimator optimized with particle swarm optimization works properly.
Furthermore, Figure 5.14 confirms that, as expected, the performance varies depending
on T as well as on the present number of paths C.

5.16.3 Estimation via ESPRIT

Compared to the PSO results for delay estimation, the ESPRIT-based solution requires
oversampling. Even with oversampling it can be seen in the squared error distribution
shown in the violin-plots in Figure 5.15, that the solution converges to an error floor
with increasing SNR. This error floor is expected due to the finite pulse-induced model
mismatch. Nevertheless, one can argue that this model mismatch, in all shown cases, is
so low that it still allows a high positioning accuracy - at least for the shown two-path
channel model. In the low SNR region the error has a significant amount of outliers. Both
effects can be decreased by either increasing the oversampling rate J or by decreasing the
sampling duration T (compare Figure 5.15).
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(f) T = 50ns, C = 3

Figure 5.14: Violin-plots with inter-quartile ranges depicting the delay estimation squared
error distributions show that, ignoring outliers, the performance converges to the CRLB
for varying C and T if the PSO algorithm is applied.
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(c) T = 100ns, J = 2
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Figure 5.15: The SE(τ1)/T 2 violin-plots show twofold: Firstly that the CRLB is ap-
proached for higher SNRs and secondly that due to the model mismatch caused by an
finite pulse an error floor is approached in the high SNR regime, for the ESPRIT al-
gorithm. This error floor can either be lowered by oversampling with higher frequency
or by choosing a smaller sampling duration, which yields an easier-to-solve parameter
estimation problem.

5.16.4 Parameter-Aided Channel Estimation

It is straightforward that, after parameter estimation has been performed, improved pa-
rameter estimation-aided channel estimates (PEACE) can be calculated via

ĥPEACE = G(τ̂ )β̂. (5.205)

Comparative results for a sampling duration of T = 200 ns and T = 50 ns and for a
single-path and a two-path channel are shown in Figure 5.16. The performance gain is
visible. Nonetheless, it is less pronounced for the two-path channel than for the single-
path channel. With an increasing number of paths the error for the PEACE estimation
error will obviously increase due to the higher problem dimensionality versus the same
number of observations.
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Figure 5.16: The parameter estimation aided channel estimation clearly outperforms the
EDTCM channel estimation. The more multipath components added, the less pronounced
is the improvement.
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5.16.5 Detecting Estimation Success

In order to assess the estimation success and failure detection performance we need to de-
fine the term success precisely to use it as a reference. The delay estimation squared error
should be lower than the squared error of the coarse estimation step obtained by perform-
ing purely correlation-based delay estimation. Demanding this would be one reasonable
choice to classify parameter estimation performance as “succesfull”. Nevertheless, tak-
ing into account that the purely correlation-based performance is known to be not more
accurate than T/2, it is reasonable to demand a higher precision to be classified as ”suc-
cessful”. Another ”success” and ”failure” classification is, to demand that, in case many
estimates are observed, the squared error lies within a predefined percentile range, that
is, the squared error should not be marked as an outlier when being visualized via a box-
plot. Comparing two box plot visualizations of the same measurements, without and with
estimation success detection in the Figure shows that the extreme outliers are found via
the success estimation technique I propose here. If the method is not applied, it can be
seen that the delay estimation MSE asymptotically converges to an error floor, due to the
outliers. If, on the other hand, the method is applied, the MSE asymptotically converges
to the CRLB. In Figure 5.17 b) it becomes clear that the χ2-based success estimation
efficiently filters in the high SNR regime, whereas the strategy to filter outliers that have
converged to the search space bound works well in the low SNR regime. Both methods
utilize a reliability threshold. Joining both methods determines the estimation success
for all SNRs. The medium SNR regime shows a minimum, since this is the area for that
both methods are still not as effective as desired.

5.16.6 MIMO Channel Parameter Estimation

For delay estimation increasing the number of exploitable observations yields significant
performance gains. This is either achieved by oversampling, MIMO or time series measure-
ments. More MIMO results will be shown for joint model order selection and parameter
estimation.

5.17 Positioning Algorithms

In Chapter 2 I discussed a range of positioning principles. Previously, the TOA method
was already outlined in Subsection 2.2.1. Here, channel estimates are used to determine
the TOA in a first step (together with a coarse delay estimation). Afterwards the TOA
estimates for all reference objects are then used in a second step in the positioning al-
gorithm. The distances used in the positioning algorithm are calculated by substituting
the delays in (2.1) by delay estimates. The relationship between the distances and the
position was given by (2.2) and the position estimation itself was already stated in (2.5). I
will shortly introduce the investigated positioning algorithms that will be used in Chapter
7. In the presented results I calculate the positioning error as in (2.5):

p̂ = arg min
p̃

{(
d̂− d(p̃)

)T
C−1
ε

(
d̂− d(p̃)

)}
.
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Figure 5.17: The magenta-colored box-plots depict the results for detecting estimation
success and dismissing unsuccessful estimates, whereas the blue box plots are the reference
results without detecting estimation success. The violet and teal-colored lines show the
resulting MSE in case success detection + dismissing failed estimates is applied and in
case it is not applied. It can be seen that critical outliers are asymptotically successfully
filtered with this detection, particularly in the high SNR regime.
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Figure 5.18: The MSE results show a decreasing MSE with increasing number of employed
receive antennas NR. For NR > 2 a performance gain of 3 dB can be seen. The results do
not indicate any influence on the outage rate.

An LM-algorithm-based iterative non-linear method, introduced as the Taylor series al-
gorithm, is known to provide accurate positioning results [GZT08]. Alternatively, or as
the input for the initial guess for the mentioned Taylor series algorithm, a suboptimal
closed-form approach can be applied as well [STK05, GZT08].

5.17.1 Weighted Least-Squares Algorithm

The algorithm builds upon the idea to transform the non-linear equations into linear
equations by ignoring the distance error. The authors of [STK05] explain in detail how
this transformation is achieved. The linearized problem formulation can be outlined as
follows:

Ap =b with (5.206)

A =




x2 − x1 y2 − y1

x3 − x1 y3 − y1
...

...
xNB − x1 yNB − y1


 , (5.207)

b =− 1

2




d̂2
2 − d̂2

1 − (x2
2 + y2

2) + (x2
1 + y2

1)

d̂2
3 − d̂2

1 − (x2
3 + y2

3) + (x2
1 + y2

1)
...

d̂2
NB
− d̂2

1 − (x2
NB

+ y2
NB

) + (x2
1 + y2

1).


 (5.208)
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The straightforward closed form solution to this problem then reads:

p̂ =
(
ATA

)−1 ATb. (5.209)

The soft information estimated here for the base station delay estimates can be used to
improve the positioning accuracy via the weighting matrix

W = diag

(
1

c4σ4
ε2

, . . . ,
1

c4σ4
εNB

)
. (5.210)

5.17.2 Taylor-Series Algorithm

The Taylor-series (TS) algorithm aims at solving the problem (2.5), via for instance,
the Levenberg-Marquardt method that is based on a Taylor series approximation. The
iterative position updates are obtained similarly to the introduction in Section 5.7.4, via

JΩpos(p̃i) =− 2 · JT (p̃i)C−1
ε (d̂− d(p̃i)), (5.211)

HΩpos(p̃i) =2 · JT (p̃i)C−1
ε J(p̃i), (5.212)

p̃i+1 =p̃i −
(
HΩpos(p̃i) + ηI)

)−1 · (JΩpos(p̃i))T . (5.213)

5.17.3 Positioning CRLB and Geometric Dilution of Precision
(GDOP)

Let us consider a 2D scenario and let Fp denote the positioning Fisher information matrix.
Further, let J(p) denote the Jacobian matrix, with

J(p) =
∂d(p)

∂pT
, with (5.214)

∂di(p)

∂xMS

=
xMS − xi√

(xMS − xi)2 + (yMS − yi)2
, (5.215)

∂di(p)

∂yMS

=
yMS − yi√

(xMS − xi)2 + (yMS − yi)2
. (5.216)

Following the standard calculations of determining the CRLB, the positioning CRLB in
this thesis reads:

crlb(p) = trace{F−1
p (p}) = trace

{
(2JT (p)J(p))−1

}
. (5.217)

Furthermore, a measure for the geometric effect that the base station arrangement impacts
the positioning accuracy, is called geometric dilution of precision (GDOP)[Lan99, Zhu92].
It is determined by assuming an identical estimation error varinace σ2

epsilon = 1 on all
pseudo-ranges, such that

GDOP(p) =
√

CRLB(p)|Cε=I. (5.218)
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Figure 5.19: The GDOP map, exemplarily shown for a square array of four base stations,
demonstrates that the GDOP is minimal at the center between all base stations, the so-
called GDOP valley. Outside the square region defined by the base stations the GDOP
becomes very large.

Figure 5.19 exemplarily visualizes the GDOP in a, for this thesis, typical scenario of four
base stations arranged in a square array. It demonstrates that the GDOP is minimal
at the center between all base stations, the so-called GDOP valley. Outside the square
region defined by the base stations, the GDOP potentially becomes very large, severely
affecting the positioning accuracy. The figure shows how the geometry impacts the GDOP,
which is high in difficult geometric setups (MS lies outside the area spanned by the base
stations) and lower in optimal geometric setups (MS lies within the area spanned by the
base stations).
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Chapter 6

Model Selection

Parts of this chapter are currently submitted for publication and under review in [AH20].

The extraction of positioning-relevant information, like the time or angle of arrival, from
the channel estimates, requires high-resolution parameter estimation. To perform that
task, knowing the number of multipath components is a mandatory prerequisite. Unfor-
tunately, this information is not available at the receiver and therefore has to be estimated.
Apart from that, the parameter estimation error and hence the positioning accuracy de-
pends on the chosen model and model order. Choosing the correct model order does not
always lead to the best estimation performance (see, for instance, pages 74 and 124 in
[Sch12]). This dependence provides another reason to assess model selection for this frame-
work. Either model order estimation has to be performed before, that is separately, or
simultaneously, in a joint manner with parameter estimation. Therefore, it is interesting to
study how the interplay of model selection and parameter estimation impacts the estima-
tion performance. Model order estimation classifies as a typical model selection problem.
The range of available algorithms accumulated over the last decades related to the subject
of model selection is broad. Surprisingly, many of these algorithms are derived based on
different theoretical approaches and therefore have slightly different interpretations. The
range covers well known and hence matured strategies employing classical information-
theoretic criteria [Aka73, Aka74, Sch78, Ris78, HT89, WK85, WZ89b, Saa98, BA02] and
optimized extensions thereof [Boz00] as well as an approach that relates the model order to
a known least-squares error distribution [QY97] and algorithms that select the model order
by determining and thresholding the components relevance [Chu05, CM08, Ric05, SS15].
The latter strategies involve defining some more or less subjective, albeit efficient, thresh-
old, based on the present amount of noise or user-specified tuning parameters. Those
other criteria, based on utilizing different information-theoretic aspects, were derived by
employing a robust theoretical framework and hence promise to be more objective.

Each model selection method is constrained to a set of assumptions regarding the
underlying system. Hence, not every method is genuinely applicable to every model
selection problem at hand. Therefore, model selection like parameter estimation should
be designed problem-specifically by evaluating the signal structure and further taking into
account the system-specific envisaged goals.

Engaging in the basics of information-theoretic criteria [WK85, WZ89b], one soon
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learns that at least asymptotically (with a high SNR and a high number of measurements
versus the number of unknowns) some estimators are proven to be consistent, meaning
that the estimated model order approaches the correct model order. In our case the
model order is given by the number of multipath clusters. Consistency would then mean
that Ĉ = C. Nevertheless, as I already mentioned earlier, Ĉ = C does not necessarily
implicate the best achievable parameter estimation performance in terms of MSE. Nev-
ertheless, any other choice than Ĉ = C inevitably leads to a modeling error and hence
an asymptotically occurring parameter estimation MSE error floor. Still, depending on
the setup, this modeling error can lead to a better performance than a more complex,
albeit accurate, model order. Consequently, we first of all ask ourselves, whether this
asymptotical behavior and hence consistency is realistic for the system setup assessed in
this thesis.

This thesis aims to design a JCAP system, which is not necessarily supposed to op-
erate under ideal asymptotical conditions (high SNR plus a relatively high number of
observations versus the number of free unknowns), but instead to robustly and accurately
provide parameter estimates given both high and low SNR and any number of observa-
tions. The following scenario is likely: A reasonable SNR can be assumed and a rather
low number of observations versus the number of parameters, which are supposed to be
estimated. In the designed JCAP system the number of complex-valued measurements,
or overall observations, is determined by the number of channel coefficients L + 1, the
oversampling factor J , the number of transmit antennas Nt, the number of receive an-
tennas Nr as well as the number of blocks I. The number of channel coefficients L + 1
usually ranges between 10− 20. Oversampling is not desirable at all. Hence, if not spec-
ified otherwise, I assume J = 1. Furthermore, since it is not desired to limit the system
design to a minimum number of transmit or receive antennas, I assume Nt = Nr = 1, if
not specified differently. Additionally, I assume that the single measurement case I = 1
is the standard case. In this work, the different applied WINNER channel scenarios de-
termine the number of estimated parameters. The actual number of paths C can vary
between 8 − 20. The number of parameters estimated is a multiple of C. These num-
bers demonstrate that, concerning the standard scenario investigated in this thesis, the
ratio between the number of observations and the number of unknowns in the resulting
parameter estimation problem cannot be considered a large-sample scenario. Therefore,
it cannot be considered as a scenario leading to asymptotical performance when it comes
to applying information-theoretic criteria. The parameter estimation MSE monotonically
increases with an increasing number of unknowns. The dissertation [Sch12] shows that
assuming the actual number of unknowns (Ĉ = C) can lead to such high MSEs that
the reader can interpret these settings as a failed receiver-sided modeling and hence as a
failed estimation. It further shows that assuming a constant Ĉ = 2 instead already can
lead to a reasonably low parameter estimation MSE, but it appears unreasonably harsh
to do so. Going further, this leads to the idea that obtaining robust high-resolution pa-
rameter estimates is most likely achievable by jointly performing model order estimation
and parameter estimation. This idea, in return, leads to the question of how to perform
model selection or joint model selection and parameter estimation in an optimal way re-
garding the presented and assessed JCAP design. In the following, I will therefore briefly
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summarize the classical information-theoretic criteria for model selection.

6.1 Information-Theoretic Criteria

low high
model order
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Figure 6.1: The left plot shows that the residual error decreases with increasing model
order, whereas the estimates error variance increases with increasing model order. A
tradeoff function can be used to find the optimum model order. The right plot shows the
implementation of [MKH10] depicting an elephant constructed of 4 complex parameters
and 5, in case the trunk wiggles. The modelled elephant refers to the famous quote
[Dys04] and visualizes that given a certain number of parameters the possibility to model
an arbitrary shape increases and therefore gives an intuitive feeling for the tradeoff between
under and overfitting.

Let θ̂C̃ denote the estimated parameter vector for all hypothetical model orders C̃ ∈
{1, . . . ,Cmax}

θ̂C̃ = arg min
θ̃C̃

{ΩC̃(θ̃C̃)}. (6.1)

It is important to understand that the maximum likelihood, in case of noisy measure-
ments, monotonically increases with C̃ and hence the negative likelihood monotonically
decreases with C̃. Therefore, minimizing over all possiblehypothetical optimal parameter
estimation solutions alone neither yields the true model order nor the optimal estimation
performance. Firstly, minimization over all estimated solution candidates always yields
the largest possible order Cmax

arg min
C̃
{ΩC̃(θ̂C̃)} = Cmax ≥ C. (6.2)

This can be explained by the fact that increasing the candidate model order leads to
overfitting: When more components C̃ > C than actually have been used to create the
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measurements are used as a candidate solution like in (6.2) the extra components, which
exceed C will model noise as components and therefore virtually suggest a better model
fit, that is, a higher likelihood, or equivalently, a smaller least-squares residual value. Sec-
ondly, it is important to note that, although the data is fitted tighter to the measurements
by increasing C̃, the estimation error increases at the same time, due to the estimator’s
higher degree of sophistication. It is genuinely known that the theoretical parameter esti-
mation covariances increase with increasing model complexity, that is, with increasing C̃.
Conseqeuntly, some kind of tradeoff between goodness of fit and model order complexity
is required.

Principle of Parsimony as Basis to Classical Model Selection

Proposed by [MKH10], Figure 6.1 provides an illustrative implementation to the
famous quote [Dys04] of von Neumann ”With four parameters I can fit an ele-
phant, and with five I can make him wiggle his trunk.” In 1975, [Wei75] already
had successfully modelled an elephant with 30 parameters. The modeled elephant
visualizes the underlying problem in model selection, which is to find the optimal
tradeof between under- and overfitting. Classical model order selection methods
are designed to maximize the likelihood, while preventing overfitting. According to
[BA02], Albert Einstein supposedly once said ”everything should be made as simple
as possible, but no simpler.” In the context of mathematical modeling this point of
view agrees with the by William Occam proposed concept of parsimony ”to shave
away all that is unnecessary”, nowadays referred to as Occam’s razor [BA02]. Thus,
the underlying concept is to find a good fit and at the same time to strive for par-
simony in a way that is somehow optimal. Finding the optimal tradeoff tailored to
fulfill specific estimation problem requirements and contraints is the core challenge
when it comes to (joint) parameter estimation and model selection. Commonly, this
optimal tradeoff is achieved by adding a suitable penalty term to the likelihood.

Consider an arbitrary parameter vector ξ with the model order m, containing k free
adjustable parameters and any observed data matrix X, containing N independent mea-
surements. Let L(X|ξ) be the associated likelihood. Typically, an information theoretic
criterion embodies the optimal tradeoff between adding the negative log-likelihood and a
model-order-dependent penalty term. It can be used for joint parameter estimation and
model order selection in the following manner:

C (ξm) =− ln (L(X|ξm)) + P (m) , (6.3)

ξ̂m = arg min
ξ̃
{−ln (L(X|ξ))} , (6.4)

m̂ = arg min
ξ̂m

{
C
(
ξ̂m

)}
. (6.5)

The most popular information-theoretic criteria for model order selection known from
literature were proposed by Akaike [Aka73, Aka74], who proposed the so-called Akaike
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information criterion (AIC), and by Schwartz [Sch78] and Risannen [Ris78], who paral-
lelly proposed the minimum description length criterion (MDL). These criteria aim at
minimizing a criterion-dependent value with respect to the number of the problem’s free
adjustable parameters. This value combines the model’s likelihood function and some
term combatting overfitting. Both information-theoretic criteria are similar in the sense
that they all were inspired by the philosophy of parsimony, while maintaining goodness
of fit. Nonetheless, although they were derived basing on rather different strategies and
backgrounds, they mainly differ in the choice of the penalty added to the likelihood term.
These different penalty terms may, in all cases, be interpreted as terms penalizing the
number of estimated parameters. Let p(·) denote the probability density function.

• Akaike’s Information Criterion
Akaike’s information criterion is given by [Aka73]

C−AIC(k) = −2ln
(
L
(
X|ξ̂

))
+ 2k. (6.6)

This criterion origins in the idea to minimize the Kullback Leibler divergence be-
tween any hypothesis model and the true model. In [BA02], the Kullback-Leibler
information or distance is explained as ”the information lost” when any model g
is used to approximate any other model f . Since the true model and the optimal
hypothetical parameters, and therefore the true Kullback-Leibler distance are not
known in the process of model selection, the hypothetical optimal parameters have
to be replaced by estimates. Instead of minimizing the actual Kullback-Leibler dis-
tance the expected Kullback-Leibler distance is minimized in Akaike’s information
criterion. The employed maximized log-likelihood is biased and this bias can be
approximated by the number of estimated parameters k [Aka74]. The criterion is
valid in case of large samples and ”good models”, according to [BA02]. Nevertheless,
estimates yielded by employing this criterion have a tendency to be overfitted. This
can be explained by the fact that with increasing sample sizes, the likelihood cost
term in (6.6) increases whereas the penalty term doesn’t. Therefore with increasing
sample sizes penalizing the number of estimated parameters looses its weight in the
overall cost function.
Another modified version, the so-called second-order version of Akaike’s information
criterion (c-AIC) [HT89] was designed for small sample sizes:

Cc−AIC(k) = −2ln
(
L
(
X|ξ̂

))
+ 2k +

2k(k + 1)

N − k − 1
. (6.7)

• Minimum Description Length Criterion
The minimum description length is given by [Sch78, Ris78]

CMDL(k) = −ln
(
L
(
X|ξ̂

))
+

1

2
klnI. (6.8)

Although similarities regarding the structure of both AIC and MDL are apparent,
the derivations of both criteria are based on rather different approaches. Whereas
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the idea behind the AIC was to minimize the information lost between the estimated
version of a true model and the hypotheses, the minimum description length criterion
aims at choosing the model providing the shortest description of measurements and
has its origin in the area of coding theory. The description length in that context may
be understood as the number of digits used to code binary data streams. Risannen
shows in [Ris78] that describing data can be interpreted as coding. The penalty
here not only depends on number of parameters that have to be estimated, but
also on the sample size I. In contrast to the AIC, MDL does not tend to overfit
asymptotically.

• Information Complexity Criterion
All the criteria above have in common that they allow a reasonable tradeoff regarding
goodness of fit and parameter complexity. Unfortunately, the criteria above do not
directly relate their complexity measure with the delay estimate error variances in
Cξ̂, although this would be the most reasonable choice to make. Choosing the
complexity measure for the penalty based on the resulting estimation error variance
and its correlation provides a natural method to decide how many components
are a reasonable choice. A criterion, handling this dependency is the information
complexity criterion:

CICOMP = −2ln (L (X|ξ)) + 2
k

2
ln

(
tr(Cξ)

k

)
− 1

2
ln|Cξ|. (6.9)

Let λi denote the ith eigenvalue of Cξ̂ for 1 ≤ i ≤ m. Acknowledging that the
following two properties are valid:

Property 5. For any square matrix A ∈ Cn×n with eigenvalues λ1, . . . ,λn [PP12]:

tr (A) =
n∑

i=1

aii =
n∑

i=1

λi, (6.10)

det (A) =
n∏

i=1

aii =
n∏

i=1

λi. (6.11)

Consequently, the criterion (6.9) can more compactly be written as

CICOMP = −2ln (L (X|ξ)) + k · ln




1
k

k∑
j=0

λj

(
k∏
j=1

λj

)1/k




. (6.12)

The presented information theoretic criteria above have one assumption in common: They
assume that the sample size I, a number of independently identically distributed time se-
ries measurements, is large. The special case, I = 1 is not considered at all, due to the
underlying large-sample assumption. Note that for the MDL in (6.8) the penalty term
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would vanish in case I = 1 and the criterion would not make any sense. Other model
order estimation approaches do not require a large amount of independent measurements
like [QY97, Ric05], and hence can be applied for a single snapshot measurement as well
as in the large-sample case.

Further note that in this thesis we are interested in an optimal positioning performance
and hence we seek for the information-theoretic criterion, or model selection method,
yielding the best positioning performance in the end. Obviously, the best positioning
performance is directly related to the best TOA estimation performance in terms of MSE.

Given this special perspective, overfitting should be prevented. For reliable position-
ing results, it is crucial to determine reliable, accurate TOA delay estimates. Overfitting
could lead to modeling noise and mistakenly interpreting it as the TOA. Under-fitting on
the other hand, will most likely lead to exclusion of the excess delays, having weaker path
weights than the TOA. Hence, from an optimal positioning performance point of view,
overfitting is worse than under-fitting. Overfitting, as already mentioned, either means
modeling noise as system components or indicates path-splitting. Path splitting occurs,
when one actual path is split into two half-energy paths with the same delay. If noise is
modelled as an actual component, this can accidentally happen at the smallest estimated
delay, which then is automatically and falsely interpreted as the TOA and therefore will
lead to an undesirable TOA MSE. Path splitting is also not desirable, since it leads to over
complex calculations, less accuracy, unnecessarily high loads and unpredictable run times.

Due to these considerations, we rule out Akeike’s information criterion and variants
thereof, since it is known to overfit, even asymptotically. This leaves us with the MDL
criterion, the information-complexity criterion, or with choosing a threshold-based, more
subjective, method to solve the problem. Theoretically, comparing the penalty terms of
the MDL and the ICOMP criterion, ICOMP promisses to choose the model order most
judiciously. Nevertheless, ICOMP has disadvantages in terms of practical considerations:
First of all: the problem’s Fisher information matrix has to be known and then it also has
to be inverted for all hypotheses. Depending on the parameter vector size, this matrix can
be large and hence the computational complexity could become large as well. Another
point is that in this thesis I actually do not aim to solve the overall problem judiciously,
but to choose that model order that results in the lowest TOA error. Although ICOMP
is the only criterion that calculates a penalty related to the predicted TOA estimation
accuracy, it is not directly designed to discard low energy components. It tries to judi-
ciously decide whether low energy components, that also could be noise, are supposed
to be modelled as a component or not. So overfitting still can happen. This, in return,
for the time being, leaves us with the MDL criterion or an alternative subjective, based
threshold method.

In the following, I will assess an approach to solve the multiple-measurement case first.
Afterwards, I will present a method that also can be used in the single-measurement case.
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6.2 Multiple Measurement Case

One straightforward approach of utilizing (6.6), (6.8), (6.7) would be to try using the
least-squares error, as we know it corresponds to the deterministic maximum likelihood.
The size of independent samples NS would be calculated as NS = NrI, whereas the
number of free adjustable parameters in θ̃ (the number of degrees of freedom in θ̃) would
be determined via k = C̃(2NrI + 1). Note that, [Saa98] pointed out that this number of
degrees of freedom is problematic: It violates the vital assumption that the sample size is
large compared to the number of free adjustable parameters. This assumption is required
for employing information-theoretic criteria like MDL and it would be violated, since

lim
Ns→∞

k

logNs

6= 0. (6.13)

The problem of being confronted with an inappropriate parametrization for the information-
theoretic criteria has been solved by formulating an alternative parametrization, which is
related to the original parametrization, for arbitrary signals in [WZ89b] and for a stochas-
tic ML problem formulation and circular complex Gaussian signals [WK85].
In the latter contribution, the model selection problem and the estimation problem can
be separated such that the model selection problem can be determined in closed form.

Let us review the channel model vector h(t), which can be described by the following
model equation

ĥ(t) = G(θ)β(t) + w(t).

Now let us suppose, the complex path amplitudes β can assumed to be complex, station-
ary, ergodic and zero-mean Gaussian random processes with positiv-definite covariance
matrices[WK85]. In general, this assumption is valid if the complex path amplitudes β(t)
are modeled as independent Rayleigh fading multipath components like in NLOS condi-
tions.

Based on these assumptions the separable closed form approach [WK85] is derived in
the Appendix A.6 and is based on an eigenvalue-decomposition-based parametrization

ξ = [λ1, . . . ,λC̃σ
2
w, VT

1 , . . . , VT
C̃

]. (6.14)

The eigenvalues λ1, · · · ,λC̃ and the eigenvectors V1, · · · , VC̃ belong to Cĥ
(C̃). Applied

to finding the number of multipath components and given that the estimates λ̂i = li for
all 0 ≤ i ≤ L the criterion reads

CMDL(C̃) = −ln




L+1∏
i=C̃+1

l
1/(L+1−C̃)
i

1
L+1−C̃

L+1∑
i=C̃+1

li




(L+1−C̃)NrI

+
1

2
C̃(2(L+ 1)− C̃)lnINr. (6.15)
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Like in [WK85], the number of free adjustable parameters of ξ is calculated in the following
manner: Given that the eigenvalues associated with the covariance matrix are real and

the eigenvectors are complex, ξC̃ bears C̃+ 2(L+ 1)C̃+ 1 (1 is added if the error variance
is also estimated) in total. Additionally, considering that the eigenvectors are constrained
to have unit norm, yields a reduction of 2C̃ parameters. A further reduction of 21

2
C̃(C̃−1)

has to be considered taking into account that the eigenvectors are supposed to be mutually
orthogonal. Consequently, the number of free adjustable parameters is

C̃ + 2(L+ 1)C̃ + 1− 2C̃ − 2
1

2
C̃(C̃ − 1) = C̃(2(L+ 1)− C̃) + 1. (6.16)

Note that the addition of 1 in (6.16) can be neglected when further used for minimization.

The term in the brackets in (6.15) is the ratio of the geometric to the arithmetic mean.
In order to see that the likelihood term in (6.15) can be expressed in this manner, note
that the estimates given by (A.44) have to be inserted into the likelihood function (A.41)
and the likelihood expression is further manipulated by targeting the expression given by
the ratio of the geometric to the arithmetic mean as is shown in the Appendix A.5. Note
that in case I = 1,Nr = 1 the second summand is equal to zero. Finally, the estimated
number of source signals is

Ĉ = arg min
C̃

{
CMDL(C̃)

}
. (6.17)

Further, the authors of [CY03] claim that the number of free parameters, if a forward-
backward smoothed covariance matrix is used, is C̃(L+ 1 + C̃ + 1) + 1.
In [WK85] it is argued that the MDL is preferable compared to the AIC since it is
consistent and the latter is not. Consistency is given if, by asymptotically increasing the
sample size, the estimator approaches the real number of source signals. Furthermore,
note that the sample size is finite from a practical point of view, due to the channel
variability over time.

Up to this moment, the employed parametrization assumed identically distributed,
zero mean, circular complex Gaussian signals for the complex path weights. Especially
in the LOS scenario, which is an important scenario, when it comes to positioning, this
assumption is not valid. Hence, the signals should be modeled as deterministic signals
instead of modelling them as stochastic signals. Unfortunately, if we try to use the
deterministic parametric model in combination with the MDL criterion, the large sample
assumption is violated. Fortunately, the author of [WK85] proposed a solution [WZ89b]
to anyway use the deterministic ML estimator in combination with MDL, by relating the
actual parametrization to another eigendecomposition-based parametrization. Contrary
to the approach proposed in [WK85], this estimator does not only estimate the model
order. It also performs a joint parameter and model selection and therefore complies with
(6.3)-(6.5). The drawback of this approach is that the negative likelihood optimization
has to be carried out for every candidate model order. The approach was later applied to
the estimation of number of multipaths in DS-CDMA in [Saa98]. The underlying system
presented in [Saa98] is therefore almost equal to the system assessed here. Instead of a
signal matrix depending on τ constructed according to the rules of DS-CDMA, we have
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a matrix G(τ ) constructed by using samples of the delayed convolved pulse. Similar to
[WZ89b, Saa98] we can devide the observations into a signal and a noise subspace and
can formulate a likelihood based on an eigenparametrization.

Table 6.1: Parameters of simulation setup

Channel

Scenario WINNER B1-LOS
C ∈ {1, . . . , 8}
ϕ1 π/4
φ1 π/4
v 50 km/h
τ1 ∈ U [0, (L+ 1)T ]

System

Signal
gRC with αRC 0.3
T 200 ns
Lg 7

Time/Frequency

fc 2 GHz
J 1
K 1000
I 100

Input/Output
Nt 1
Nr 1
dtx, dRx,λ/2 7.5 cm

model selection
criterion

MDL
Akaike

parametrization Eigen based (λ, V ) SML
TOA estimation DML/SNLLS with PSO

Simulation Runs 1000

Simulation results shown in the figures 6.2-6.5 emphasize the usefulness of joining model
selection and parameter estimation. The simulations for these figures have been carried
out for the simulation setup provided in Table 6.1. The results show that for a small
choice of C (C = 1, C = 2) the detection algorithm almost never fails despite that a
LOS channel is used although zero-mean path weights are assumed for the model order
detection. The estimation results are the same as if we would have assumed Ĉ = C. For
larger C the model selection failure probability only converges to zero for high SNRs.
Assessing the TOA estimation MSEs shown in the second rows of the Figures, it can
be seen that this failure is beneficial in the sense of parameter estimation, since the
MSEs for the TOAs, estimated on the basis of estimating C via MDL beforehand, are
significantly lower than the MSEs for zero failure (Ĉ = C). It can be seen that the results
approximately approach the CRLBs associated with the estimated model order in a step-
wise fashion. This property can be understood by having a look at probability Ĉ = C for
all c ∈ {1, . . . ,Cmax} shown in the last rows of the Figures 6.2-6.5. Nonetheless, note that
for a number of multipath components C that are close to or even larger than the number
of theoretically identifiable multipath components the TOA MSEs do not monotonically
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Figure 6.2: Comparing the probability of failed detection (Ĉ 6= C) in the first row with
the actual delay estimation MSEs for such small values of C the model order detection
is almost completely correct. The subfigures a,c,e on the left side show the results for
C = 1, the subfigures b,d,f on the right side show te results for C = 2.
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Figure 6.3: Comparing the probability of failed detection (Ĉ 6= C) in the first row with
the actual delay estimation MSEs it becomes clear that employing a simpler model than
the correct one improves the estimation accuracy. The subfigures a,c,e=f on the left side
show the results for C = 3, the subfigures b,d,g on the right side show the results for
C = 4.
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Figure 6.4: Comparing the probability of correct detection in the first row with the actual
delay estimation MSEs it becomes clear that employing a simpler model than the correct
one improves the estimation accuracy. The figures on the left side show the results for
C = 5, the ones on the right side show the results for C = 6.
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Figure 6.5: Comparing the probability of correct detection in the first row with the actual
delay estimation MSEs it becomes clear that employing a simpler model than the correct
one improves the estimation accuracy. The figures on the left side show the results for
C = 7, the ones on the right side show the results for C = 8.
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Figure 6.6: The violin-plots depicted on the left for C = 4 and on the right for C = 8
show the squared TOA estimation error distributions. The three thin lines in each violin
show the median, the 25 and the 75 percentiles. It becomes clear that the major part of
the error distribution lies within an error region that indicates a successful joint model
order and parameter estimation.

decrease with increasing the SNR. In order to understand this behaviour a more detailed
TOA error examination is required like shown in Figure 6.6. Contrary to Figure 6.5 Figure
6.6 indicates a successful model order selection and parameter estimation for the major
part of the distributions. The effect, that for severe multipath like C = 8, the model
order is overestimated and hence leads to poor TOA estimation results, can be explained
by the fact that with a higher SNR a higher model order is potentially possible, which in
return comes with the price of less reliability.

6.3 Single Measurement Case

6.3.0.1 Threshold-based Least Squares Approach

A threshold-based least squares joint model order selection and parameter estimation ap-
proach, working for both the single measurement case as well as the multiple measurement
case, was applied to the special problem of cissoid detection in [QY97]. Note that we can
easily transform the parameter estimation problem we have to deal with into one, which
corresponds to a cissoid detection problem. This can be understood by acknowledging
that the channel observations used for parameter estimation can be deconvolved by G(f)
after applying a DFT and then can be approximated by a sum of cisoids in the frequency
domain. Nevertheless, the approach introduced in [QY97] is similarly applicable without
any transformation and deconvolution. Hence, the detection algorithm can be adjusted
to the signal model and settings used in this thesis and will be briefly introduced in the
following.
The joint detection and estimation algorithm exploits the property that, when the ad-
ditive noise is assumed to be Gaussian, the least-squares ΩSNLLS error is χ2-distributed
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Figure 6.7: For additive white Gaussian noise the LS error’s probability density function
(PDF) and cumulative density function (CDF) are known functions (χ2-distribution),
uniquely specified by the number of degrees of freedom and hence the number of multipath
components. The dashed and solid arrows show how decision regions are determined in
order to estimate Ĉ for α = 0.8 and α = 0.975. It can be seen that the user-specified
threshold can lead to a different decision for Ĉ. Since α is specified the probability for
the channel estimates having a LS error below the assigned threshold, the value should
be chose close to 1.

such that

ΩSNLLS ≈
σ2
w

2
χ2. (6.18)

The distribution is depending on the number of degrees of freedom µDOF present to the
assessed least-squares problem like shown in Figure 6.7. Figure 5.8 shows that this is
a valid assumption for the estimator used here.The number µDOF is determined by the
number of measurements, or equations, minus the number of parameters, that is, the
dimension of the parameter estimation problem. The parameter estimation problem di-
mension is specified by the number of hypothetically assumed multipaths. Let us consider
the deterministic maximum likelihood scenario. Having both, a real and imaginary part of
the observations, we can count 2(L+1)NrI real-valued observations. For each snapshot a
compound of the complex path amplitudes and the delays are estimated jointly. Thereby
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the complex path amplitudes real and imaginary part each constitute for an unknown.
This is resulting in a total number of 2NRIC unknowns for the complex path amplitudes
plus C unknowns for the delays. Consequently, µDOF for the deterministic case is

µDOF = 2(L+ 1)NrI − (2NrIC̃ + C̃). (6.19)

This huge dimensionality emphasizes the feasibility of employing a lower dimensionality
stochastic ML estimator, if possible (large-sample case). In the single measurement case
we have

µDOF = 2(L+ 1)− 3C̃. (6.20)

For example, the relation between µDOF and C̃ is tabulated for the case L = 10, Nr = 1,
I = 1 here:

C̃ 1 2 3 4 5 6 7
µDOF 19 16 13 10 7 4 1

ΩSNLLSC̃
(τ̃ C̃) = ĥHPG

⊥
C̃

(τ̃ )ĥH , with (6.21)

τ̂ C̃ = [τ̂ C̃1 . . . τ̂ C̃
C̃

], (6.22)

τ̂ C̃ = arg min
τ̃ C̃

{ĥHPG
⊥(τ̃ C̃)ĥH}. (6.23)

Then, by choosing a confidence parameter α via table-lookup [PTVF07, PH65] or via
calculation, ∀C̃ ∈ {1, . . . ,Cmax} thresholds εC̃ can be defined such that

P

(
σ2
w

2
χ2
µDOF

≤ εC̃

)
= α. (6.24)

If the lookup-tables have to be calculated, that means the εC̃ has to be calculated by
considering the inverse cumulative density function such that

εC̃ =p−1
CDF (α|µDOF ) = {εC̃ : p(εC̃ |µDOF ) = α},

α =pCDF (εC̃ |µDOF ) =

εC̃∫

0

t(µDOF−2)/2e−t/2

2µDOF /2Γ(µDOF/2)
dt. (6.25)

With εC̃ a joint model order and parameter estimator can be formulated as

Ĉ = min{C̃| 2

σ2
w

ΩSNLLS(C̃, τ̂C̃) ≤ εC̃}, (6.26)

τ̂ C̃ = arg min
τ̃
{ΩSNLLSC̃

(τ̃ C̃)}. (6.27)

Note that thereby the maximum number of multipath components Cmax, which we can
reliably estimate, is limited and determined by µDOF , since C̃max can be obtained by
setting µDOf ≥ 0 in (6.19). This yields the limiting number of

C̃max =

⌊
L+ 1

1 + 1
2NRI

⌋
(6.28)
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estimable multipaths. More specifically, that means for the singleshot measurement case
and for the large sample case:

C̃max =

{⌊
2
3
(L+ 1)

⌋
, if NrI = 1,

L+ 1 if NrI →∞.
(6.29)

Note that this restriction can cause problems in the single-measurement case, considering
that the typically applied channel memory lengths L are rather small (typically L ∈
{10, . . . , 20}). Since those L + 1 channel taps, which significantly differ from zero, are
given by the number

L = Lg − 1 +
⌈τmax
T

⌉
, Lg = 2W + 1, (6.30)

it is clear that this number cannot be chosen arbitrarily large. Thereby, W denotes the
factor for which WT represents the half window width of the window for the overall pulse
impulse response g(τ). On the other hand, depending on the applied channel scenario the
actual number of multipath components C typically rather ranges from 8 to 15. However,
according to (6.29), it becomes clear that depending on which actual channel scenario, we
are confronted with, we might not be able to reliably estimate all components (C̃max < C).
For instance, in case C = 8 and L = 10, it follows that C̃max = 7. Therefore, increasing
the number of samples either by employing multiple receive antennas or observing a time
series might be necessary depending on the channel scenario. However, the algorithm is
summarized in the following. Lines 1− 3 are not necessary if table-lookup is used.

Algorithm 3 χ2-based joint Model Selection and Parameter Estimation

1: for all C̃ ∈ {1, . . . ,Cmax} do
2: Calculate µdof (C̃) via (6.20).
3: Calculate εC̃ via (6.25).
4: Calculate τ̂ C̃ via (6.23) and the associated ΩSNLLSC̃

.
5: if ΩSNLLSC̃

≤ εC̃ then

6: Ĉ = C̃.
7: τ̂ = τ̂ C̃ with C̃ = Ĉ.
8: break

Apart from setting I = 1, the simulation results for the single-measurement case are
shown for a similar setup to the one specified in Table 6.2. The results in the Figures
6.8 and 6.9 show that the proposed method for joint model selection and parameter
estimation also works in the single measurement scenario. Similarly to the multiple-
measurement case results for lower SNRs Υb, the algorithm prefers smaller model orders
than the correct model order. Hence the delay estimation MSEs are lower than for the
estimator based on the correct model order. The MSEs even are slighly lower than the
CRLBs. This mismatch can be explained by the fact that the CRLB is calculated for
an unbiased estimator and the applied estimator is not exactly unbiased. By using the
reasonable assumption that the search space is bounded we introduce a estimation bias.
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Figure 6.8: Similar to the multiple-measurement case, it can be seen that the higher C
the higher the SNR is for P (Ĉ = C)→ 0. Furthermore, the TOA MSEs improve if model
selection and parameter estimation is applied. Increasing the number of measurements
has the opposite effect as increasing the number of parameters.
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Figure 6.9: Distributions for P (Ĉ), with Ĉ ∈ {1, . . . , 8} show similar behaviour as the
distributions obtained by applying information-theoretic criteria. Increasing the number
of measurements via Nr > 1 or I > 1 increases Ĉ.
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Table 6.2: Parameters of the simulation setup for the χ2-based joint model selection and
parameter estimation.

C
h
an

n
el

Scenario WINNER B1-LOS
C ∈ {2, 3}
ϕ1 π/4
φ1 π/4
v 50 km/h
τ1 ∈ U [−0.0,T ]

S
y
st

em

Signal
αRC = 0.3
T 100 ns
Lg 7

Time/Frequency

fc 2 GHz
J 1
K 1000
I ∈ {1, 100}

Input/Output
Nt 1
Nr ∈ {1, 2, 4}
dtx, dRx,λ/2 7.5 cm

Model Selection χ2-based α = 0.9999
& Parametrization DML (θ = [τ , vec(Γ)])
Parameter Estimation Cost ΩSNLSS

Optimization PSO+LM

Runs 10000

6.4 The Focused Order-Related Lower Bound

The CRLB depends on the model order. It is calculated based on the assumption that the
underlying model order is correct. For model selection this assumption is unreasonable.
Our goal is to find a model order that yields the lowest delay estimation error and not
necessarily the correct model order. Therefore, whenever the model order is not correct
and yet nevertheless preferable, since it results in a lower delay estimation MSE, the
associated CRLB will not be correct. If the model order is underestimated the CRLB will
be too optimistically low. Increasing the model order for the same SNR means increasing
the CRLBs. The estimation bias introduced by the erroneous preferable model is missing
in the CRLB. Conseqeuntly, for the purpose of model selection the CRLB is not the most
useful tool. Therefore, I introduce a more suitable and practically motivated bound that
I dub the focused order related lower bound (FORLB). Whereas the CRLB calculation
requires the correct model order, the FORLB does not. Instead I tailored it to require
parameter estimates, here delay estimates τ̂1,C̃ , that I trust to be optimal or at least close
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to optimal, for the different hypothetical model orders C̃:

Ĉopt = arg min
τ̂1,C̃

{(τ1 − τ̂1,C̃)2} (6.31)

FORLB(τ1) =(τ1 − τ̂1,Ĉopt
)2 (6.32)

The bound is focused, since it prefers models that result in a good TOA MSE, instead of
balancing the overall delay estimation MSE. Note that focusing on a special parameter
is here desirable for model selection as well, similarly as envisaged in [CH01, LPRU19]
Therefore both bounds, the CRLB and the FORLB, can be seen as an aid to optimize
estimation and detection algorithms on the basis of specific models and available informa-
tion. They should both not be seen as the absolute lowest bound that can be achieved,
since changing the estimator, or the modeling, or the apriori knowledge, always changes
the bounds as well.

6.5 Model Selection based on Soft Information
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Figure 6.10: MDL, ICOMP and the χ2-based method are compared to the case Ĉ = C
and to the FORLB for C = 4. ICOMP is closest to the optimal FORLB.

For the joint parameter estimation and model order selection problem here, the aim is
to penalize those models more that lead to a high estimation error, especially those models
that lead to a high TOA estimation error. A directly related measure used to penalize
estimation errors is the estimates covariance matrix Cθ̂ related to the parametrization θ,
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Figure 6.11: The probability distributions for Ĉ for the different model order selection
methods and the FORLB show that optimal distribution for each model order is wider
than the distributions obtained via algorithms.

given by:

full problem: Cθ̂ =F(θ)−1 (6.33)

SNLLS: Cτ̂ =
σ2
w

2

[
Re

{
JG

TPG(τ̂ )⊥JG �
((

G(τ̂ )†Ĥ
)H

G(τ̂ )†Ĥ

)T}]−1

(6.34)

Thereby, the matrix F(θ) is the so-called Fisher information matrix of the full problem.
Note that the calculation of the Fisher matrix, and the estimates covariance matrix and
the related lower bound, the CRLB, is determined and assessed in Chapter 5.

Note that this matrix has to be used with caution, like we assessed and explained
in [SAH11b] due to different reasons: The matrix derivation is based on using an ap-
proximated version of the Hessian matrix instead of using the exact Hessian. The exact
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Figure 6.12: The split violin-plots show the SE distribution for a SNR range for the χ2-
based method. MDL and ICOMP compared to the optimal performance given by the
FORLB.
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Hessian might lead to a non-positive-definite matrix and hence disqualifies for the re-
quired Hessian inversion. Assessing the covariance estimates, related confidence regions
and curvature measures, verifies that such soft information estimates are often inexact.
Nevertheless, the results in [SAH11b] indicate that using them yields performance gains
at least when applied to improve the positioning results by weighting the delay estimates
by their estimated variances.

Recall that λi denotes the ith eigenvalue of the estimated parameter covariance matrix
Ĉξ. Let k = 2NrIC̃ + C̃ denote the model order. The information complexity criterion
provides a straightforward method to incorporate soft information for a joint parameter
estimation and model order selection approach by utilizing the trace and the determinant
of Ĉξ:

CICOMP (θ̂C̃) =− 2ln
(
L(Ĥ|θ̂C̃)

)
+ k̃ln




1
k̃

k̃∑
j=0

λj

(
k̃∏
j=1

λj

)1/k̃




, (6.35)

θ̂C̃ = arg min
θ̃C̃

{
ln
(
L(Ĥ|θC̃)

)}
, (6.36)

Ĉ = arg min
k̃
{CICOMP(θ̂C̃)}. (6.37)

Comparative results for a simulation setup as in Table 6.2 (just PSO and no LM is em-
ployed) show the performance of the discussed and proposed algorithms in the Figures
6.10, 6.11 and 6.12. Firstly, note that the probability P (Ĉ 6= C) for the optimal per-
formance is the FORLB. The FORLB is unequal to zero for the complete SNR range
Υb. Moreover, the the probability as well as the MSE corresponding to Ĉ = C has the
largest distance to the optimal performance in terms of the FORLB. Secondly, the MSE
(Figure 6.10, right plot) shows that the ICOMP criterion is closest to the FORLB. This
behaviour was expected, since the joint model order selection and parameter estimation
via ICOMP is the only criterion that employs soft information about the delay estimates.
For joint parameter estimation and model selection the violin plots in Figure 6.12 bear
more information than the MSEs in Figure 6.10. The split violin plots show the SE dis-
tributions for a SNR range. Every algorithm is compared to the FORLB. The violin plot
distribution show that all compared algorithms yield a TOA estimation accuracy that sig-
nificantly outperforms the error achieved by correlation with g for the major part of the
distribution, even for a realistic scenario with C = 8. For the realistic scenario and an in-
creasing SNR, the violin plots exhibit widening error distributions. This can be explained
by Figure 6.11, the estimated model order probability distributions. With higher SNR
estimating a higher model order becomes more likely. At the same time the likeliness that
either the delay estimation, the model order estimation or the soft information estimation
has errors increases as well. Constraining the estimator to be even more parsimonious
promises to be beneficial. This is not further investigated in this thesis, since there are
different simple ways to achieve this. In principle it can be seen that joint model order
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selection and parameter estimation is a useful tool in case of realistic multipath scenarios
in combination with a limited amount of channel estimates.

Minimizing the remaining distance to the FORLB can be achieved by designing a
criterion that focuses more on the TOA. An interesting approach called the focused in-
formation criterion is formulated by [CH01]. This approach is based on employing the
estimation error bias. Whereas the estimator’s variance increases with the model order,
the estimation bias decreases. Therefore adding the bias to the variance yields a tradeoff
and hence a criterion. That means, if we could estimate the delay estimation bias for
all model orders, this criterion could improve the joint parameter estimation and model
selection. Another idea also based on utilizing soft information is proposed in [Ric05].
The idea is to demand that the relative reliability associated to the estimated complex
path weights is large enough. Then overestimating in every estimation step and excluding
complex path weights that

σ2
βc

|βc|2
≤ ε2

|βc| < 1 (6.38)

provides a method to discard components via monitoring the estimates soft information.
Nevertheless, for JCAP, the experience shows that overfitting entails the risk of high TOA
estimation errors and hence I will not further investigate this approach.



Chapter 7

A Prototype JCAP Design

In this chapter I present a prototype system design, showcasing the overall system per-
formance. After introducing the necessary theoretical background on interleave-division
multiple access and interleave-division multiplexing, and shortly explaining the setup for
the employed JCAP components, I will present the numerical results for this setup.

7.1 Multiplexing

S/P IDFT/IFFT Add CP P/S pulse shaping

physical channel

matched filtering

EDTCM

OFDM transmitter

S/PRemove CPDFT/FFT

OFDM receiver

P/S

Equivalent parallel ISI-free subschannels

ã[k′] ∈ C d̃[k] ∈ CN d[k] ∈ CN dCP [k] ∈ CN+LC x[k]

y[k]cCP [k] ∈ CN+LCc[k] ∈ CNc̃[k] ∈ CNâ[k′] ∈ C

Figure 7.1: The OFDM block diagram shows that the system equations for the signal
design are formulated in the frequency domain.

Multiplexing enables a user-specific flexible resource allocation, a feature especially de-
sirable for JCAP. Multiplexing also separates different data streams of a single user. Two
multiplexing schemes are especially suitable for JCAP: Firstly IDM and secondly OFDM.
IDM is closely related to interleave division multiple access, a non-orthogonal multiple ac-
cess scheme, which is highly desirable for future communication systems. Non-orthogonal
access schemes theoretically promise to allow a higher number of simultaneous users. Fur-
thermore, IDM offers flexible power allocation. OFDM, shown in Figure 7.1, on the other
hand, offers a signal structure that is formulated in the frequency domain and hence is
most suitable to be combined with techniques like ESPRIT. This can be interpreted as an
advantage for JCAP, since delay estimation via ESPRIT can be carried out in a closed-
form. Another advantage is that channel estimation for OFDM is simple. Due to the fact
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that the cyclic convolution results in a point-wise multiplication in the frequency domain,
channel estimation simplifies to parallel scalar divisions. Unfortunately, we learnt that the
ESPRIT closed form solution requires oversampling. Consequently, I nevertheless prefer
IDM for the prototype in this thesis and emphasize that OFDM can be used instead.

7.1.1 Interleave-Division Multiplexing (IDM)

The interleave division multiplexing (IDM) theoretical background is closely related to the
principles of interleave-division multiple access (IDMA) [HSF08, SH04, Sch08]. If a single
communication data sequence is transmitted, this resource is serial-to-parallel converted
to Nd layers. Especially for JCAP, flexibility and adaptivity regarding the signal and
training resource distribution are targeted.

7.1.1.1 IDM Transmitter

BPSK
u1[k]

ENC + SCR INT1

⊗x1[k]

a1e
jη1

BPSK
u2[k]

...
ENC + SCR INT2

...

⊗x2[k]

a2e
jη2

BPSK
uNd

[k]
ENC + SCR INTN

⊗xNd
[k]

aNd
ejηNd

+
x[k]

Figure 7.2: IDM transmittter

The conventional IDM transmitter signal has Nd parallel info bit sequences un[k],
with 1 ≤ n ≤ Nd, parallely processed as so-called layers (Figure 7.2). First, they are
modulated by binary phase-shift keying (BPSK). Then, the output is fed to an encoder
(ENC), which, if not specified otherwise, is a simple repetition code with spreading factor
S, followed by an scrambler (SCR) to generate a zero-mean data stream via statistically
determined flipping. The scrambler output is interleaved by specific random interleavers
(INTn), leading to output xn[k]. Finally, for each data layer, xn[k] is multiplied by
complex weighting factors, built of layer-specific amplitudes an and a phase rotation ejηn ,
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the power allocation, before the layers’ signals are superimposed:

x[k] =

Nd∑

n=1

ane
jηnxn[k], (7.1)

an =
1

Nd

, ηn =
πn

Nd

∀n : 0 ≤ n < Nd. (7.2)

7.1.1.2 Receiver: Elementary Signal Estimator

INT−1
1

EXT{x1[k]}
SCR−1 +DEC

INT1
LLRax1[k]

ENC + SCR

...
INT−1

EXT{xNd
[k]}

SCR−1 +DEC

INTN
LLRa{xNd

[k]}
ENC + SCR

MLD
y[k]

Figure 7.3: IDM receiver

The IDM receiver mainly consists of two parts: The multi-layer detector (MLD) that
calculates single layer log-likelihood ratios (LLR)s and the iterative feedback cycle in-
cluding the deinterleavers, the descramblers, the decoders, the encoders, the scramblers
and the interleavers, for all layers, and feeding the extrinsic layer information back to the
MLD (Figure 7.3). The LLR and the extrinsic information reads

LLR{xn[k]} = ln
p(y|xn[k] = +1)

p(y|xn[k] = −1)︸ ︷︷ ︸
EXT{xNd [k]}

+ ln
p(xn[k] = +1)

p(xn[k] = −1)︸ ︷︷ ︸
LLRa{xn[k]}

(7.3)

The MLD consists of Nd multi-layer interference cancellations, serially concatenated with
Nd single-layer detectors, to estimate the Gaussian noise mean and variance that can be
calculated for each single layer.

7.2 Multiple Access

This section introduces the applied multiple access scheme in this thesis and explains the
interplay with IDM.
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7.2.1 IDMA and ML-IDMA

IDMA was originally proposed by the authors of [PLL03], [PLWL06] as a promising non-
orthogonal code divsion multiple access (CDMA) alternative to classical orthogonal meth-
ods like the related direct sequence code division multiple access (DS-CDMA). Recently,
it has gained a lot of attention as a suitable 5G candidate, due to its non-orthogonal
nature. Orthogonality principally limits the number of users due to a limited number of
code sequences, and non-orthogonal schemes are supposed to overcome these limitations.
Therefore, I chose IDMA as a suitable candidate for my prototype simulations.
The concept of IDMA and IDM are related. Separating different users by different in-
terleavers is called IDMA. Separating different data streams, called layers, by different
interleavers is called IDM. A typical IDMA transmitter block diagram is shown in Figure
7.4 a). Each user’s data is first coded and scrambled (for zero-mean sequences), then
interleaved by random user-specific interleavers. The user-specific interleavers are ran-
dom permutations of the data sequence itself. Afterwards, the chosen mapping is applied.
Each user is physically separated and hence is transmitted over user-specific channels.
The received signal is the summation of all the user-specific transmissions with AWGN.
The combination of both IDM and IDMA is called Multi-layer IDMA (ML-IDMA). The
concept is outlined in Figure 7.4 b).

7.3 Transmitter: Pilot Layer plus ML-IDMA

Here, in this thesis I choose ML-IDMA for multiplexing and multiple access in order to
provide non-orthogonal prototype like simulation results. Figure 7.4 b) shows the com-
plete transmit unit including a pilot layer for each user that serves both communication
and positioning purposes. The pilot layer is required for channel estimation, which, in
return, is required for data detection (communication) as well as for high-resolution de-
lay estimation (positioning). Each user is physically separated and therefore each user
is transmitted via distinct EDTCMs. The received signal is obtained by the summa-
tion of the different user signals transmitted over distinct channels, and adding WGN.
Considering equidistant time sampling, the IDM signals can be expressed as

vu[k] =

Nd∑

n=0

ane
jηnxu,n[k] =

Nd∑

n=1

ane
jηnxu,n[k]

︸ ︷︷ ︸
data

+ a0e
jη0pu[k]︸ ︷︷ ︸
pilot

︸ ︷︷ ︸
virtual pilot

= vu[k]. (7.4)

Consequently, the overall number of layers is N = Nd + 1. I choose the user-specific pilot
sequence design in such a manner that it meets the optimal autocorrelation properties as
proposed in [Chu72], as a possible realization of complex optimal sequences [NLM98]:

pu[k] = pn =

{
ejπ(n2r/(UK) if UK is even

ejπ(n·(n+1)r/(UK) else,
(7.5)

n =(u− 1)K + k, 1 ≤ u ≤ U , 0 ≤ k ≤ K − 1, (7.6)
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Figure 7.4: a) IDMA transmitter and b) ML-IDMA transmitter.
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where r is a length that is relative prime to the observation length K. Let us stack all
the user-specific EDTCM channels in a redefined overall channel vector

h = [hT1 . . .h
T
U ]T . (7.7)

Then, the ML-IDMA signal can be expressed as

y[k] =
U∑

u=1

L∑

l=0

vu[k − l]h(u−1)·(L+1)+l + n[k], (7.8)

for user 1 ≤ u ≤ U and for discrete time indices 0 ≤ k ≤ K + L. Let us define the
following matrices in order to obtain a matrix vector notation. Let V be the horizontal
concatenation of the users’ IDM signal matrices, in Toeplitz structure, such that it can
be interpreted as a virtual training matrix

V = [V1 . . .VU ] (7.9)

[Vu]k,l =

{
vu[k − l] if L+ 1 ≤ k ≤ K

0 else
, for 1 ≤ u ≤ U . (7.10)

Then, this can be put as

y = Vh + n = (X + P)h + n. (7.11)

7.4 Receiver Design: Iterative JCAP Estimator

The chosen prototype receiver design (Figure 7.5) unifies communication and positioning
by feeding as well an MLD algorithm for IDM(A) (for communication) as the multipath
parameter delay estimation (for positioning) with semi-blind channel estimates. There-
fore, the channel estimation performance is crucial for this system approach.

7.4.1 Pilot Interference Cancellation

In a first pilot interference cancellation (PIC) step, the known pilot interference is sub-
tracted from the received signal to further pass this signal to the MLD as the input for
the ith iteration:

yi+1 = y −Pĥi+1. (7.12)

This interference cancellation becomes more accurate with an increasing number of iter-
ations.

7.4.2 Iterative Elementary Signal Estimator for Multi-User and
Multi-Layer Detection

Each layer’s data of each user is estimated iteratively according to the elementary signal
estimator principle: The MLD estimates the LLR of each layer n ∈ {1, . . . ,Nd} for each
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û1,1

...
INT−1

Nd,U

LLR{xNd,U [k]}
SCR−1 +DEC

INTNd,U
EXT{xNd,U [k]}

ENC + SCR

MLDPIC
y[k]

Semi-blind
Channel

Estimation

Model
Order and
Parameter
Estimation

Position
Estimation

h τ 1, . . . , τU
p̂
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Figure 7.5: The JCAP ML-IDMA receiver uses a semi-blind core channel estimation,
to simultaneously serve data detection, parameter estimation and model selection. Via
iteratively exchanging mutual information, the data energy is used for high-resolution
parameter estimation and therefore it enhances the positioning performance.

user u ∈ {1, . . . ,U}, gained by treating the superposition of other layers and users as a
distortion, for which the mean and variance can be estimated. Based on these estimates,
the LLR values for each layer and each user are calculated iteratively, via employing the
extrinsic information due to coding and decoding. More specifically, this means that the
LLRi+1

n,u [k] is calculated according to the following principle:

y̆i+1
n,u,l[k] =hu,lxu,n[k] + si+1

u,n,l[k] (7.13)

=yi+1[k]−




U∑

u′=1
u′ 6=u

L∑

l′=0
l′ 6=l

h(u′,l′

Nd∑

n′=1
n′ 6=n

an′e
jηn′xu′.n′ [k]


 . (7.14)

By determining the distortion’s su,n,l[k] mean value E{su,n,l[k]} and variance σ2
su,n,l[k]

E{su,n,l[k]} =0, (7.15)

σ2
su,n,l[k] =

U∑

u=1

L∑

l=0

σ2
hu,l

[k]

Nd∑

n=1

σ2
x̃i+1
u.n

[k − l] + σ2
n, (7.16)
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the log-likelihood ratios for user u, layer n, time instant k at iteration i + 1 reads as in
[SH06]

LLR{x̃i+1
n,u }[k] =

L∑

l=0

4 ·
Re{ĥ∗,i+1

u,l [k + l] · y̆i+1
u,n,l[k + l]}

σ2
su,n,l

[k + l]
. (7.17)

7.4.3 Core Iterative Semi-Blind Channel Estimation for Both
Communication and Positioning

The channel estimation is used for both communication and positioning. Its performance
is indirectly related to the positioning performance via the delay estimation error, which
is affected directly. The channel estimates are calculated as

ĥi+1 = Vi†y. (7.18)

7.4.4 Joint Model Order Selection and Delay Estimation

7.4.4.1 Model Order is known Beforehand

For delay estimation it is reasonable to assume that a coarse delay estimation was suc-
cessfully carried out beforehand, meaning that the delay relevant for positioning that we
have to estimate lies within the range [−T

2
, T

2
]. If we assume that the number of multi-

paths is known, we can obtain the high-resolution multipath delay estimates by solving
the SNLLS problem equivalent to the ML problem, introduced in (5.23), by

τ̂ = arg min
τ̃
{ĥHP⊥Gĥ}. (7.19)

7.4.4.2 Jointly Estimating the Model Order and the Parameters

For every hypothetical model order m̃, I first estimate the delays, the associated linear
complex path weights, and the associated likelihoods of these events. Then I substitute
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these likelihoods into the information criterion to choose the model order:

τ̂ m̃ = arg min
τ̃ m̃
{ĥHP⊥Gĥ}, (7.20)

β̂m =G†ĥ, (7.21)

θ̂m =[τ̂m, Re{β̂}, Im{β̂}], (7.22)

Ĉθ̂m̃
=F−1

full

(
θ̂m̃

)
, (7.23)

calculate the eigenvalues λ1, . . . λm̃ of Ĉθ̂m̃
. (7.24)

CICOMP(θ̂m) =− 2L
(
θ̂m̃

)
+m · ln




1
m̃

m̃∑
j=0

λj

(
m̃∏
j=1

λj

)1/m̃




(7.25)

m̂ = arg min
θ̂m̃

{CICOMP

(
θ̂m̃

)
}. (7.26)

7.4.5 Theoretical Bounds

In the following I briefly summarize the bounds required for the prototype system design.

7.4.5.1 Channel Estimation CRLBs

In [SH06], training based (TB), TB channel estimation with interference cancellation (TB-
IC), and semi-blind (SB) channel estimation methods were compared. The TB method is
non-iterative and reveals the worst performance. It is used to initialize the data detection
in the first iteration step, to calculate soft data estimates, which are iteratively exchanged
via the TB-IC and sb estimators. With the power normalization as chosen in this thesis,
these bounds can be expressed as

σ2
n +

U∑
u=1

σ2
hu
σ2
x̃iu

K · S · (ρ+ (1− ρ)
U∑
u=1

|x̃iu|2)

︸ ︷︷ ︸
crlb(hl,u)sb

≤
σ2
n +

U∑
u=1

σ2
hu
σ2
x̃iu

K · S · ρ︸ ︷︷ ︸
crlb(hl,u)TB-IC

≤
σ2
n +

U∑
u=1

σ2
hu

K · S · ρ︸ ︷︷ ︸
crlb(hl,u)TB

. (7.27)

Figure 7.6 strikingly exposes the difference in the theoretically approachable mean squared
error performance for the three estimators. Both the TB-IC and the sb estimator depend
on the soft chip variance σ2

x̃iu
= 1−|x̃iu|2. Depending on the iteration count and the signal-

to-noise ratio, the chip variance approaches a value close to zero. For high SNRs and after
a sufficient number of MLD iterations, this value becomes negligible, and the loose sb
bound becomes valid. The performance difference between the semi-blind estimator, the
TB-IC, and the tb estimator explains the choice to use the sb estimator for JCAP, that
relies on an optimal channel estimation MSE performance. The loose lower bound can be
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Figure 7.6: The difference of the theoretical CRLBs for channel estimation is shown for
ρ = 0.1 and depends on the chosen method (training-based: TB, training based with
interference cancellation TB-IC or semi-blind: SB). The black loose SB bound provides
the lowest bound.

approached for high signal-to-noise ratios and a certain number of iterations (σ2
x̃iu
→ 0),

as can be seen in the numerical results.

7.4.5.2 Delay Estimation CRLBs and FORLB

The delay CRLB is then, with (7.27) and (5.152, 5.147), determined by

crlbTS,SIMO
SNLLS,τ (τ ) =

crlbsb(hl,u)

2

[
Re
{

JTGPG(τ )⊥JG � ((G(τ )†Ĥ)HG(τ )†Ĥ)T
}]−1

(7.28)

crlbSNLLS,τ (τ ) =
crlbsb(hl,u)

2

[
2Re

{
diag

(
ĥHG†

T
)

JTGPG(τ̃ )⊥JGdiag
(
G†ĥ

)}]−1

.

(7.29)

The bound that yields a lower performance measure for the joint model order selection
and parameter estimation is the focused order-related bound:

Ĉopt = arg min
τ̂1,C̃

{(τ̂1 − τ̂1,C̃)2} (7.30)

forlb(τ1) =(τ1 − τ̂1,Ĉ)2. (7.31)
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7.5 Numerical Results

The numerical results I present in the following have the purpose to give an overall
impression about JCAP components performance and their mutual impact.

7.5.1 The Basic Simulation Setup

As a lower performance bound and reference, I will first provide error plots for the BER for
IDM and a complex-valued single-path channel. Afterwards results for a two-path channel
and a WINNER B1-LOS model are assessed. The samples g(lT − τ1) are obtained by
employing a windowed sampled raised cosine pulse with rolloff factor 0.3 and half window
width W = 4T , leading to Lg = 2W = 8. To cope with the later investigated multipath
scenario the channel memory length is set to L = 10 > Lg. The information sequence with
length Kd = 100 is spread by S = 10 to K = SKd = 1000. The bit load B = RNdU is here
specified by B = NdU/S. In the single-path channel a zero delay is assumed, otherwise
τ1 ∈ U(−T/2, /T/2). The MLD uses 20 receiver iterations before hard estimates for τ̂ u
and ûn,u[k] 0 ≤ k ≤ K, 1 ≤ n ≤ Nd, 1 ≤ u ≤ U are calculated. The interleavers in the
MLD are random interleavers. All data sequences are generated randomly.

7.5.2 Power Normalization for ML-IDMA, SNR and PNR

The symbol-wise signal-to-noise ratio (SNR) per user Υs consists of the pilot-to-noise
ratio (PNR) and the data-to-noise ratio by weighting it via the pilot power ratio ρ. For
a single user, the weighting is

Υs = ρΥs + (1− ρ)Υs = Υp + Υd. (7.32)

The layer-specific symbol-wise and data-wise SNR is calculated by

Υs,n,u =
Pn,u

σ2
n

. (7.33)

Consequently, the overall SNR sums up to

ΥΣs =
Es
σ2
n

=
U∑

u=1

N∑

n=1

Pn,u

σ2
n

. (7.34)

The user- and layer-specific power is calculated via

Pn,u =|an,ue
jηn,u|2 =

{
ρ if n = 0
(1−ρ)
Nd

else,
(7.35)

ΥΣd =
U∑

u=1

Υd,u =
U∑

u=1

Nd∑

n=1

Υs,n,u. (7.36)
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Here, every user has equal data power Υd,u = Υd. Note that I further normalize the
channel power per user to 1. The bit-wise SNR or the bit-to-noise ratio is calculated by

Υb,m =
1

BΥd =
S

Nd · U
Υd =

S

Nd · U
(1− ρ)Υs, (7.37)

⇔ Υs =
Nd · U
S

1

1− ρΥb,m, (7.38)

since Υd = (1 − ρ)Υs. For the simulations in this thesis I assume that
N∑
n=1

Pn,u = 1 and

hence Es = U . Consequently the following equations hold:

Υb =
S

Nd · σ2
n

, (7.39)

ΥΣs =
U

σ2
n

, Υs =
1

σ2
n

, (7.40)

ΥΣd =
U(1− ρ)

σ2
n

, Υd =
(1− ρ)

σ2
n

, (7.41)

ΥΣp =
Uρ

σ2
n

, Υp =
ρ

σ2
n

. (7.42)

Therefore, we get

Υs[dB] = Υb,m[dB] + 10 · log 10

(
1

1− ρ ·
Nd

S

)
(7.43)

With (7.32) and (7.38) it is easy to see that

Υp =
Nd

S
· ρ

1− ρΥb,m, (7.44)

ΥΣp =
Nd · U
S
· ρ

1− ρΥb,m, (7.45)

and

Υ∑
p[dB] = Υb,m + 10 · log 10

(
ρ

1− ρ ·
Nd · U
S

)
. (7.46)

7.5.3 IDM and IDMA for AWGN

To begin with, the BER performance for a single-path AWGN channel, without delay, is
investigated in Figure 7.7. For perfect channel knowledge, all BER curves converge to
the single-layer performance for increasing SNR and bit loads B < 2, as expected. For
bit loads B ≥ 2, the BER curves do not converge to the single layer performance with
increasing SNR [Sch12]. Furthermore, the TB-IC, and SB channel estimation BER results
show a similar behavior, that is, nearly as good as the perfect channel knowledge scenario.
Naturally, the TB channel estimation results in the poorest BER performance compared
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to the other two approaches. Nevertheless, one could argue, that the TB results may be
interpreted as satisfactory to employ it for pure communication receiver purposes, taking
into account that it has the smallest complexity, due to the fact that channel estimation
is not included in the iterative receiver processing. How PEACE can yield synergy here
was already investigated thoroughly for the case of IDM in [Sch12]. The impact on the
BER was so insignificant that it has to be decided from scenario to scenario, whether the
performance gain is worth the extra computational cost.

Investigating the BER plots for IDMA, we similarly see that, for perfect channel knowl-
edge, the BER plots for multiple users converge to the single-user scenario with increasing
SNR. Furthermore, to maintain this behavior, the bit load B should be kept below 2,
which can be seen by comparing Figure 7.8 a) and b). Employing purely training-based
channel estimation results in a comparably poor convergence behavior, which can be seen
in Figure 7.8 c). Here, employing semi-blind channel estimation can obtain a convergence
behavior close to the single-layer performance, for all simulated user scenarios.
The channel estimation MSE performance, plotted in Figure 7.9, indicates: Firstly, com-
paring the performance gains for IDM TB, IDM TB-IC channel estimation MSEs with the
MSEs of IDM SB semi-blind channel estimation should clearly be applied for positioning
via channel estimation. Furthermore, it becomes clear that for the channel estimation per-
formance increasing the number of layers degrades the performance more than increasing
the number of users. Finally, it can be seen that all MSEs approach the CRLB with an
increasing PNR.
For the ML-IDMA single path case shown in figure 7.10 U ·Nd is kept constant.

7.5.4 Two-path Channel

The numerical results shown for the two-path example in Figure 7.11 and in Figure
7.12 have the purpose to demonstrate the chosen algorithms’ uncompromised theoretical
performance. All error plots asymptotically attain the lower bounds. As expected, it
can be seen that the BER is flatter compared to the single-path example, due to fading
and imperfectly calculated LLRs in the multi-layer detector. Note that, due to a delay
estimation bias, induced by a practically bounded search space, the delay estimation
distribution plotted as violin plots lie slightly below the CRLB. For the RSE positioning
results it can be seen twofold: Firstly, employing soft information enhances the RSE.
Secondly, a further slight enhancement is achieved by sequentially employing the WLS
and the TS positioning algorithm. Note that, due to the fact that the soft information
for the positioning algorithm is gained by calculating the estimate’s inverse approximate
Fisher information matrix, this information is inexact for an insignificant percentage of
all delay estimates. Either the estimates themself are flawed, or the Fisher information
was inexact. This leads to outliers, resulting in a broad range within the violin plot
distribution. Mechanisms to better detect the soft information reliability can further
improve this comparison in favor of the estimation relying on soft estimates.
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Figure 7.7: BER for IDM with complex AWGN without delay: The BER performance
shows that employing SB-CE or TBIC-CE performs almost as well as having perfect
channel knowledge. For communication purposes TB-CE is also able to perform well for
a low number of layers.
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Figure 7.8: BER performance for IDMA with a complex valued AWGN channel without
delay: For convergence the plots indicate that keeping the bit-load below 2 and employing
SB CE is advisable.
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Figure 7.9: MSE TB, TB-IC and SB channel estimation performance comparison for IDM
and IDMA for a complex-valued AWGN channel without delay: For both IDM and IDMA
TB CE MSE plots attend an error floor for increasing SNR (a) and c)). As expected SB
CE shows the best performance, although for IDM it can be seen that in order to attend
the CRLBs with increasing layer number the SNR has to be increased as well.
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Figure 7.10: The BER and MSE performance for channel estimation and delay estimation
is summarized for a complex-valued AWGN channel with zero delay: Whereas for the BER
plots we see that keeping U · Nd constant confirms that IDMA has worse convergence
properties than IDM, for the MSE performance the behavior is the other way around:
IDM shows worse convergence behavior than IDMA.
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Figure 7.11: The BER, the channel estimation MSE and the SE distributions for the
TOA estimation error all asymptotically approach the CRLBs. Due to a bounded search-
space-based bias the TOA SE lies even below the CRLB.
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(a) Positioning RSEs with versus without soft information (SI).
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(b) Positioning RSEs with SI and determined via WLS versus TS.

Figure 7.12: For the example of four reference objects, the violin plots show a slight
improvement for the case with soft information. The chance of outliers is increased when
soft information is applied. As expected, the TS positioning algorithm outperforms the
WLS method.
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7.5.5 WINNER Channel Model

The WINNER B1-LOS channel model scenario is chosen to demonstrate that the pro-
posed strategy can be applied successfully to harsh physical environments, even if only
a limited amount of snapshot channel estimates are available. The comparison to the
FORLB demonstrates twofold: Firstly, it shows the optimally achievable performance
and that the chosen methods are at least close to this bound. Secondly, it shows that for
realistic scenarios and biased estimators the well known CRLB is not a well-suited perfor-
mance measure. In [Sch12] [page 74] it was even shown numerically that calculating them
for realistic environments leads to completely meaningless results due to ill-conditioned
matrix inversion imposed by matrix singularities. The FORLB, on the other hand, is
a powerful tool to determine a lower bound that provides a smooth transition from one
model order’s CRLB to the next higher model order’s CRLB for increasing SNR. With
increasing SNR or PNR, the more paths can be successfully estimated whereas, at the
same time, the estimation error itself increases with increasing model order. The differ-
ence between the TOA SE and the FORLB, as well as the difference between the position
RSE and the FORLB can be explained by the FORLB’s complete focus on the TOA.
Strategies to incorporate mechanisms that focus even more on the TOA promise to en-
hance the proposed method. Nevertheless, the closeness to the FORLB that is visible in
Figure 7.13 is gained by employing the estimated approximated Fisher information, that
yields that the model order resulting in the lowest multipath delay estimation error is
chosen, which is not necessarily the correct model order or the maximum allowed model
order (in case this is chosen lower that the correct model order). As expected, the BER
and the channel estimates’ MSE performs well (Figure 7.14).
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(b) Positioning RSE versus the FORLB for joint model order selection and
parameter estimation for the WLS algorithm without soft information.

Figure 7.13: The performance of all depicted errors shows that the proposed joint model
order and parameter estimation via exploiting the approximated inverse Fisher informa-
tion matrix successfully overcomes the challenge to find the tradeoff between under- and
overfitting for harsh realistic environments and a comparably small amount of available
measurements.
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Figure 7.14: BER and channel estimation MSE.



Chapter 8

Summary and Outlook

This chapter briefly summarizes the most relevant contributions of this thesis to a state-
of-the-art JCAP system, and it gives a short outlook on where to go from here.

Summary

Especially the mobile wireless communication systems evolution during the past decade
has led to the expectation of highly reliable, low latency, high precision position esti-
mation everywhere at every time. The approach to combine different parallelly imple-
mented positioning techniques based on different signal structures and channels targets
to fulfill this expectation. Particularly investigating the overall system performance of
ground-based JCAP alternatives to GNSS, based on a unified signal structure become
increasingly important, due to the massive use of handheld mobile communication de-
vices, which inherently provide the possibility of doubly exploiting the signal structure
for communication and positioning. The expected growth of the internet of things, based
on future wireless communication and positioning systems, underlines the necessity to
investigate novel JCAP approaches.

JCAP system proposal: This thesis focuses on a terrestrial synergetic unified signal
structure-based approach: It proposes and assesses a generic channel estimation-based
JCAP system. Via a doubly exploitable iterative semi-blind channel estimation, the posi-
tioning side and the communication side can mutually exchange information. For position-
ing, I propose high-precision channel estimates, using the complete communication signal
energy as virtual training. These accurate snapshot channel measurements are employed
to improve the data detection accuracy iteratively and to carry out the high-resolution
TOA estimation. The proposed approach applies to different multiplexing, modulation,
and multiple access strategies. Since accurate channel estimation is crucial for accurate
positioning, the chosen channel estimation and hence also the channel modeling itself can
be interpreted as the bottleneck. At the same time, the systems turns out to be robust
against changes in communication algorithms. Processing can be carried out in the time
domain and the frequency domain.
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Parameter Estimation and Algorithms: This thesis demonstrates that the TOA es-
timation is part of a multi-dimensional global non-linear optimization problem. Further,
it shows how to state this problem as a separable non-linear least squares approach, either
formulated in the time domain or the frequency domain. Moreover, I assessed a rotational
invariance-based closed-form solution, performed in the frequency domain. The alterna-
tive approach, proposed here, operates in the time domain and relies on an iterative global
optimization method, namely particle swarm optimization (PSO). The presented theory,
in combination with the numerical results in this thesis, show that PSO yields a simplis-
tic and, due to its parallelizability, practical approach that additionally results in a TOA
MSE approaching the TOA CRLB with increasing SNR. PSO has outperformed alter-
native algorithms assessed here due to various reasons: The LM and SAGE algorithms
require the availability of an initial guess close to the global optimum. PSO performs suc-
cessfully without this initial guess. The ESPRIT algorithm requires over-sampling in the
time domain. Unfortunately, oversampling is known not to yield any performance gain
for data detection algorithms. Hence it entails an unnecessarily high processing overhead.

Joint Model Selection and Parameter Estimation: The multipath model order is a
key parameter determining the underlying model complexity and hence the theoretically
achievable best performance. Unfortunately, this model order is, in general, unknown
and has to be estimated. It is known for decades that information-theoretic criteria can
be successfully applied to find the model order for superimposed signals. The common
assumption thereby is that the correct model order is sought. In this thesis, however,
the ultimate goal is to find the lowest TOA MSE for realistic channel models, as opposed
to finding the correct model order, which turned out not to coincide: The number of
multipath components in realistic models (i.e., the correct model order) is usually close
to the number of observations (channel taps). The optimal TOA MSE in such scenarios,
on the other hand, turns out to be obtained by a less complicated parametrization, that
is, a smaller model order. Hence, this thesis’ goal was to find the model order minimizing
the TOA MSE. To this end, I proposed an approach combining well suited information-
theoretic criteria or threshold-based model selection methods for the single measurement
case with the ML optimization problem to estimate the parameters and the model order
jointly. To tailor my approach to focus on an optimized TOA accuracy instead of finding
the correct model order, I introduced a soft information-based approach, called the in-
formation complexity criterion. This approach uses the approximated Fisher information
matrix to find a model order that yields a low TOA MSE. To demonstrate its efficiency,
I introduced a lower performance bound for the joint model selection and parameter esti-
mation called the focused order related lower bound (FORLB). The associated numerical
results show that, even for the realistic WINNER multipath channel scenario and snapshot
channel estimates without oversampling, a TOA MSE performance close to the FORLB
can be achieved.

Theoretic Performance Limits and Soft Information: This thesis introduces and, if
necessary, derives all required lower MSE performance bounds, the so-called Cramer-Rao
lower bounds (CRLBs). Particularly, the SNLLS CRLB derivation can be exploited as
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well for the approximated Hessian, required in the LM algorithm and soft information de-
termination. The thesis further assesses how the approximated Fisher information matrix
can be employed to determine multipath parameter soft information for positioning as well
as for model selection. The numerical results for the chosen prototype system demonstrate
that employing this soft information outperforms positioning without soft information.
The newly introduced FORLB for the joint model order selection and parameter esti-
mation problem offers a suitable lower bound, where the CRLB fails for ill-conditioned
problems, typical in realistic physical channel scenarios.

Prototype System: As a prototype system, I proposed an ML-IDMA based transmitter
and receiver structure. At the receiver side, I employed an iterative multi-layer detector,
semi-blind channel estimation, and multipath parameter estimation formulated as the
SNLLS problem and solved via PSO. The results show the applicability of the chosen
components. The generic theoretic framework described beforehand suggests that the
communication components can be flexibly substituted by other components without
severe positioning performance loss. The system assessment, however, shows that an
accurate channel estimation is required for positioning. The results further show that a
realistic channel model, like the B1-LOS WINNER setup investigated in this thesis, in
combination with the small amount of snapshot channel estimates, requires a joint model
order selection and parameter estimation tailored to find the lowest achievable TOA MSE
for the assumed channel model. The results show that utilizing the approximated Fisher
information in the information-theoretic criteria used to determine the optimal model
order yields the best TOA performance among the investigated alternative approaches.
Moreover, the numerical results show that even for the realistic B1-LOS-WINNER channel
scenario high-resolution delay estimates are achieved by enforcing higher parsimony for
the parameter estimation when this optimizes the TOA MSE.

Outlook

At the stage of submitting this thesis, I foresee several interesting points worthwhile to
be further investigated:

Further improving the TOA MSE: At this point, it seems straightforward that de-
termining a method of estimating the delay estimation bias would potentially lead to a
further optimized version of a focused information criterion for joint model order selection
and parameter estimation. I foresee that this would yield a TOA MSE even closer to the
FORLB. Another seemingly promising approach to yield an enhanced TOA MSE per-
formance in realistic scenarios would be to formulate the parameter estimation and joint
model selection as a sparse estimation problem and to relate the optimal model order to
the degree of sparsity.

System Considerations: All numerical investigations in this thesis and the theoretic
performance bounds rely on the chosen channel model. Investigating alternative channel
models will most certainly have a high impact on the investigated system concept, includ-
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ing the applied algorithms, and therefore is very interesting. Finding other receiver-sided
modeling attempts to optimize the TOA estimation performance is interesting as well.
Another point worth investigating is how much performance can be gained by additionally
employing the angle of arrival and departure estimates of all multipath components. Nu-
merical results based on the latest mobile communication standard would be interesting
as well.

Positioning: Since the positioning problem is inherently time-varying, it is customary
to employ tracking algorithms to improve positioning efficiency. While this is classically
implemented via extended Kalman-filtering, a promising competitive solution in the given
scenario would be to employ a hierarchical particle swarm-based optimization method to
track the estimated channel parameters.



Appendix A

Derivations and Calculations

A.1 Seperable Non-linear Least Squares Cost Func-

tion Derivation for a Single Snapshot Measure-

ment

τ̂ = arg min
τ̃
{(ĥ−G(τ̃ )(G(τ̃ ))†ĥ)H(ĥ−G(τ̃ )(G(τ̃ ))†ĥ)} (A.1)

= arg min
τ̃
{((I−G(τ̃ )(G(τ̃ ))†)h)H(I−G(τ̃ )(G(τ̃ ))†)ĥ} (A.2)

= arg min
τ̃
{ĥH(I−G(τ̃ )(G(τ̃ ))†)H(I−G(τ̃ )(G(τ̃ ))†)ĥ} (A.3)

= arg min
τ̃
{ĥH (I−G(τ̃ )(G(τ̃ )†)︸ ︷︷ ︸

A

)2ĥ} (A.4)

A idempotent

A2=A︷︸︸︷
= arg min

τ̃
{ĥH(I−G(τ̃ )(G(τ̃ ))†)ĥ} (A.5)

= arg max
τ̃
{ĥHG(τ̃ )(G(τ̃ ))†ĥ}. (A.6)

= arg min
τ̃
{−ĥ

H
G(τ̃ )(G(τ̃ ))†ĥ}. (A.7)

A.2 Seperable Non-linear Least Squares Cost Func-

tion Derivation for Multiple Measurements

The deterministic maximum likelihood cost function corresponds to the least squares
error. Not neglecting the constant terms as it is usually done to obtain a simple cost
function version the deterministic maximum likelihood can be written as

Ldml(τ̂ ) = −(L+ 1)NrIln(σ2
w)− 1

σ2
w

Nr∑

v=1

I∑

i=1

(
ĥv,i −GG†ĥv,i

)H (
ĥv,i −GG†ĥv,i

)
.

(A.8)
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and as it is pointed out in Chapter 5, assuming that σ2
w is a further unknown, then

σ̂2
w =

1

(L+ 1)NrI

Nr∑

v=1

I∑

i=1

(
ĥv,i −GG†ĥv,i

)H (
ĥv,i −GG†ĥv,i

)
(A.9)

=
1

(L+ 1)
trace(PG

⊥Ĉĥ) (A.10)

Inserting (A.10) into (A.8) and multiplying with −1 in order to turn the maximization
into a minimization results in

Ldml(τ̂ ) = (L+ 1)NrIln(
1

L+ 1
trace(PG

⊥Ĉĥ)) (A.11)

For the minimization taking the logarithm is not necessary. Therefore the cost function
can be reduced to (5.123).

A.3 Derivation of Nabla Operator for the Levenberg-

Marquard Method

The equality

∇Ω[(ξ̃)]m =
∂Ω(ξ̃)

∂ξ̃m
= −2Re

{
∂hH(ξ̃)

∂ξ̃m
(h− h̃(ξ̃))

}
(A.12)

is derived below. Let hi, hq denote the real and the complex part of the channel coefficient
vector. Note that the least squares error Ω(ξ̃) can be formulated as

Ω(ξ̃) =(ĥ− h̃(ξ̃))H(ĥ− h̃(ξ̃)) = |ĥ− h̃(ξ̃)|2 (A.13)

=
(
ĥ
i − h̃i(ξ̃)

)2

+
(
ĥ
q − h̃q(ξ̃)
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(A.14)

=
L∑
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+
(
ĥql − h̃ql (ξ̃)
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(A.15)

The derivative is

∂Ω
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l=0

∂

∂ξ̃m

((
ĥil − h̃il(ξ̃)

)2
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(
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)2
)

(A.16)
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Employing either chain or product rule
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(A.23)

A.4 A Tall’s Matrix Pseudo-Inverse Derivative Deriva-

tion

∂(X†) =∂((XHX)−1XH) (A.24)

(5.60)
= ∂((XHX)−1)XH + (XHX)−1∂(XH) (A.25)

(5.61)
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XHX

)−1
)

(XHX)−1 + (XHX)−1∂XT (A.26)

(5.60)
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(A.28)
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)
(A.29)

=−X†∂(X)X† + X†X†
T

(∂XT )(I−XX†) (A.30)
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A.5 Likelihood Derivation for MDL Criterion Under

Eigendecomposition-based Parametrization

The likelihood based on the eigendecomposition is formulated and simplified via

L(Θ(C̃)) =−NrIln|C(C̃)

ĥ
(ΘC̃)|+ const (A.31)
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A.6 Closed-Form Solution Derivation Summary to

Information Theoretic Criterion

Due to underlying assumptions the observations covariance matrix Cĥ can be expressed
as

Cĥ = Ψ + σ2I, where Ψ = GRβGH (A.37)

In case the matrix G has full column rank and Rβ is nonsingular, the rank of Ψ corre-
sponds to C̃ and the L+ 1− C̃ smallest eigenvalues of Ψ are equal to 0 and consequently
the L + 1 − C̃ eigenvalues of Cĥ are equal to σ2. The eigenvalues of Cĥ are denoted by
λ1 ≥ λ2 ≥ . . . ≥ λL+1. Namely, the smallest L+ 1− q eigenvalues are

λq+1 ≥ λ2 ≥ . . . ≥ λL+1 = σ2. (A.38)
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Therefore, in theory the number of source signals can be determined via the number of
the smallest eigenvalues of Cĥ[Bar54, Law56]. Unfortunately, Cĥ is unknown and has to
be estimated. In this case the calculated eigenvalues will all be different and therefore
the exact number of smallest eigenvalues cannot be detected properly anymore, without
introducing some subjective thresholding. Nevertheless [WK85] demonstrated how to
exploit the covariance matrix and its eigendecomposition for model order estimation in
a more objective manner based on information theoretic criteria. In order to understand
this we have to acknowledge that in line with linear algbera’s spectral theorem the channel
estimate covariance matrix can also be modelled or decomposed such that

Cĥ
(C̃) =

C̃∑

i=1

(λ1 − σ2)ViVi
H + σ2I. (A.39)

Recall that H = [h(1), . . . , h(I)] is the set of I observations and a model given by the prob-
ability density function f(H|Θ), where Θ is a parameter vector for the new parametriza-
tion, comprising the parameters

Θ(C̃) = [λ1, . . . ,λC̃ ,σ2, VT
1 , . . . , VT

C̃
]. (A.40)

The eigenvalues λ1, · · · ,λC̃ and the eigenvectors V1, · · · , VC̃ belong to Cĥ
(C̃). Hence they

can be estimated as the eigevalues and vectors obtained from an eigen decomposition of

the estimated, that is the sample covariance matrix Ĉĥ

(C̃)
, calculated via (5.133). Then

the idea is to select the model, which best fits the data that is, which minimizes the
information theoretic criteria, more specifically the aim is to find the otimal model order
C̃opt. Since we have assumed that the observations are statistically independant zero mean
complex Gaussian vectors the joint probabilty density is well known and is constructed
according to (5.131,5.132) and lead to the same negative loglikelihood expressions as in
in (5.130) and (5.134)

L(Θ(C̃)) = −NrIln|Cĥ
(C̃)| − trace[Cĥ

(C̃)]−1Cĥ. (A.41)

Note that in case NrI is large the second term in (A.41) is constant such that [CY03]

trace[Cĥ
(C̃)]−1Cĥ = INr(L+ 1).

Obviously this term being independant of C̃ consequently does not contribute to the
maximization of the likelihood and therefore subsequently may be neglected. Minimizing
(A.41) leads to the maximum likelihood estimates [And63]

λ̂i = li, i = 1, · · · , C̃ (A.42)

σ2 =
1

L+ 1− C̃

L+1∑

i=C̃+1

li (A.43)

V̂i = Ci, i = 1, · · · , C̃ (A.44)
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with the eigenvalues l1 > l2 > · · · > lL+1 and eigenvectors C1, · · · , CL+1 associated with
Cĥ. Via the simplifications in the subappendice A.5 derivation and via inserting (A.44)
into (A.41) and further inserting this result together with (6.16) into (6.8) then leads to
the results

CMDL(C̃) = −ln
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1

2
C̃(2(L+ 1)− C̃)lnINr. (A.45)

A.7 Calculations Related to Theoretical Limits

A.7.1 Linear Least-Squares Covariance Matrix Estimation

The covariance matrix can be calculated as follows:

Cξ̂ = E{(ξ̂ − µ)(ξ̂ − µ)H} (A.46)

Since ξ̂ = ξ + w with w ∈ NC ∼ (0,σ2
w) the channel estimation error can be modelled

as addtitive white gaussian noise and therefore the estimator is assumed to be unbiased.
Hence, it is easy to see E{ξ̂} = ξ and

Cξ̂ = E{(ξ̂ − ξ)(ξ̂ − ξ)H}. (A.47)

Employing

ξ̂ − ξ =X†y − ξ
=X†(Xξ + n)− ξ
= (XHX)−1XHX︸ ︷︷ ︸

I

ξ + X†n− ξ

=ξ + X†n− ξ
=X†n (A.48)

and substituting the result of (A.48) in (A.47) yields

Cξ̂ =E{(X†n)(X†n)H} = E{X†nnHX†H = X† E{nnH︸ ︷︷ ︸
σ2
nIM×N

}X†H = σ2
nX
†X†H

=σ2
n(XHX)−1XH((XHX)−1XH)H = (XHX)−1XHX︸ ︷︷ ︸

I

(XHX)−1H = σ2
n(XHX)−1

(A.49)

A.8 Relevant Derivatives for the TS SML CRLB

Remember that the underlying model for Cĥ is determined by

Cĥ = G(θ)CβGT + σwIL+1. (A.50)
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The derivative of any matrix A by any scalar x is defined as
[
∂A
∂x

]
i,j

= ∂
∂x

[A]i,j. Conse-

quently, the relevant partial derivatives are calculated as follows

[
∂Cĥ(θ)

∂τc

]

l,l′
=

∂

∂τc

[
G(θ)CθG

H(θ)
]
l,l′ . (A.51)

The element of a matrix multiplication of any two matrices A ∈ Cm×n and B ∈ Cn×p

is known to be [AB]i,j =
n∑
k=1

[A]i,k[B]k,j. Thus, it is easy to see that applying this rule

repeatedly, we get

[
G(θ)CβGT (θ)

]
l,l′ =

C∑

k=1

[G(θ)]l,k

C∑

k′=1

[Cβ]k,k′ [G
T ]k′,l′ (A.52)

=
C∑

k=1

g(lT − τk)
C∑

k′=1

[Cβ]k,k′g(l′T − τk′) (A.53)

=
C∑

k=1

C∑

k′=1

[Cβ]k,k′g(lT − τk)g(l′T − τk′). (A.54)

Further inserting (A.54) into (A.51) yields:

[
∂

∂τc
Cĥ(θ)

]

l,l′
=

∂

∂τc

(
C∑

k=1

C∑

k′=1

[Cβ]k,k′g(lT − τk)g(l′T − τk′)
)

(A.55)

Applying the chain rule for derivatives, this equation becomes

[
∂

∂τc
Cĥ(θ)

]

l,l′
=





2 [Cβ]c,c g(lT − τc)
∂

∂τc
(g(lT − τc))

+
C∑

k′=1
k′ 6=c

[Cβ]c,k′ g(lT − τk′)
∂

∂τc
g(lT − τc)

+
C∑

k=1
k 6=c

[Cβ]k,c g(lT − τk)
∂

∂τc
g(lT − τc) if l = l′

C∑

k′=1

[Cβ]c,k′ g(l′T − τk′)
∂

∂τc
g(lT − τc)

+
C∑

k=1

[Cβ]k,c g(lT − τk)
∂

∂τc
g(l′T − τc) else

.
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With [Cβ]c,k′ = [Cβ]k,c and cβc and Jgc denoting the cths columns of Cβ and Jg, respec-
tively, this equation can be simplified to

[
∂

∂τc
Cĥ(θ)

]

l,l′
=

C∑

k′=1

[Cβ]c,k′ g(l′T − τk′)
∂

∂τc
g(lT − τc)

+
C∑

k=1

[Cβ]k,c g(lT − τk)
∂

∂τc
g(l′T − τc)

=[Jgc(Gcβc)
T + GcβcJG

T
c ]l,l′ . (A.56)

Recall that according to the parametrization in (5.189) the matrix elements of Cβ are
related to η in the following manner:

[Cβ]m,n =
[
CT
β

]
m,n





ηm if m = n

η
C+n−m−1+

m∑
k=1

(C−k)
+ jη

C+(C2−C)/2+n−m−1+
m∑
k=1

(C−k)
if n > m

η
C+m−n−1+

n∑
k=1

(C−k)
+ jη

C+(C2−C)/2+m−n−1+
n∑
k=1

(C−k)
else

.

(A.57)

This leads to the following representations of the involved partial derivatives:

[
∂

∂[Cβ]m,m

Cĥ(θ)

]

l,l′
=g(lT − τm)g(l′T − τm)

=[gTmgm]l,l′ , (A.58)

[
∂

∂ Re[Cβ]m,n

Cĥ(θ)

]

l,l′
=g(lT − τm)g(l′T − τn) + g(lT − τn)g(l′T − τm)

=[gTmgn + gTngm]l,l′ , (A.59)

[
∂

∂ Im[Cβ]m,n

Cĥ(θ)

]

l,l′
=j(g(lT − τm)g(l′T − τn) + g(lT − τn)g(l′T − τm))

=j[gTmgn + gTngm]l,l′ . (A.60)
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With (A.58) to (A.60) it becomes clear that

[
∂

∂θi
Cĥ(θ)

]

l,l′
=





[
∂

∂τi
Cĥ(θ)

]

l,l′
if i ≤ C

[
∂

∂[Cβ]c,c
Cĥ(θ)

]

l,l′
if C < i ≤ 2C,

i = c+ C

[
∂

∂ Re[Cβ]m,n

Cĥ(θ)

]

l,l′
if C < i ≤ C2 − C

2
+ 2C,

i = 2C + n−m− 1 +
m∑

k=1

(C − k)

[
∂

∂ Im[Cβ]m,n

Cĥ(θ)

]

l,l′
if
C2 − C

2
+ C < i ≤ 2C2,

i = 2C +
C2 − C

2
+ n−m− 1 +

m∑

k=1

(C − k)

(A.61)

With (A.56), (A.61), m,n ∈ {1, . . . ,C} and n ≥ m let for all i ∈ {1, . . . ,C2 + C}

[
∂

∂θi
Cĥ(θ)

]

l,l′
=





[Jgi(Gcβi)
T + GcβiJg

T
i ]l,l′ if i ≤ C

[gTmgm]l,l′ if C < i ≤ 2C,

i = m+ C

[gTmgn + gTngm]l,l′ if 2C < i ≤ C2 − C
2

+ 2C,

i = 2C + n−m− 1 +
m∑

k=1

(C − k)

j([gTmgn + gTngm]l,l′) if
C2 − C

2
+ 2C < i ≤ C2 + C,

i = 2C +
C2 − C

2
+ n−m− 1 +

m∑

k=1

(C − k)

(A.62)
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Appendix B

Notation

B.1 Mathematical Definitions

B.1.1 DFT Matrix

The Vandermonde structured length N DFT matrix can be computed via

Fn =
1√
N




1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω2·2 ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) ω3(N−1) . . . ω(N−1)(N−1)




, with ω = e−
2πj
N . (B.1)

B.1.2 The Jacobian Matrix

The Jacobian matrix Jf is defined as the matrix of all partial derivatives of an arbitrary
length M vector-valued function f : RM → RN that is parametrized by ξ ∈ RN such that

[Jf (ξ)]m,n =
∂fm
∂ξn

(B.2)

B.1.3 The Single-entry Matrix

The single-entry matrix is defined by:

[Jm,n]i,j =

{
1 if i = m and j = n

0 else
(B.3)

B.1.4 Toeplitz Matrix

Let a Toeplitz A matrix be specified by two subvectors, namely c and r, of the vector
a = [a−K+1, . . . , a−1, a0, a1, . . . , aN−1]. Thereby, c = [c0, . . . , cN−1] determines the first
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column and r = [r0, . . . , rK−1] the first row of A such that

[a0, . . . , a−K+1] = [ r0︸︷︷︸
=c0

, . . . , rK−1] and [a0, . . . , aN−1] = c = [ c0︸︷︷︸
=r0

, . . . , cN−1]

A =




a0 a−1 . . . . . . a−K+1

a1 a0
. . .

...
...

. . . . . . . . .
...

...
. . . . . . a−1

aK−1 . . . . . . a1 a0
...

. . .
...

...
...

...
...

...
...

...
. . .

...
aN−K . . . . . . . . . aN−2K+1




=




c0 r1 . . . . . . rK−1

c1 c0
. . .

...
...

. . . . . . . . .
...

...
. . . . . . r1

cK−1 . . . . . . c1 c0
...

. . .
...

...
...

...
...

...
...

...
. . .

...
cN−1 . . . . . . . . . cN−K+1




or

[A]n,k = an−k =

{
cn−k if n ≥ k

rk−n else
, ∀n ∈ {0, . . . ,N − 1} and ∀k ∈ {0, . . . ,K − 1}.

(B.4)

B.1.5 Circulant Matrix

A square circular matrix is a special Toeplitz matrix, where the vector, which determines
the complete matrix is build by concatenating a cyclic prefix such that

a = [a−N+1, . . . , a−1︸ ︷︷ ︸
cyclic prefix

, a0, a1, . . . , aN−1] = c = [cN−1, . . . , c1︸ ︷︷ ︸
cyclic prefix

, c0, c1, . . . , cN−1]. (B.5)

Then the first column and the first row of the matrix are determined by c = [c0, . . . , cN−1]
and r = [cN−1, . . . , c1], repectively. Consequently, a square N × N circulant matrix C
is completely determined by its first column, corresponding to the vector C, such that
∀n, k ∈ {0, . . . ,N − 1}

C =




c0 cN−1 . . . c2 c1

c1 c0 cN−1 . . . c2
... c1 c0

. . .
...

cN−2
...

. . . . . . cN−1

cN−1 cN−2 . . . c1 c0




or [C]n,k =

{
cn−k if n ≥ k

ck−n+N else
. (B.6)
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B.1.6 Frobenius Norm

Let A be an arbitrary matrix with [A]m,n = am,n. Then the Frobenius Norm ||A||F is
defined by

||A||2 =

√∑

m

∑

n

|am,n|2. (B.7)

B.1.7 Kronecker Product

Let A be an M × N arbitrary matrix with [A]m,n = am,n and B be an U × V arbitrary
matrix with [B]u,v = au,v. Then the Kronecker product is a MU ×NV matrix defined as

A⊗B =



a1,1B . . . a1,NB

...
. . .

...
aM ,1B . . . aM ,NB


 = (am,nB)m,n (B.8)

B.1.8 Kathri-Rao Product

Let A be an M×N arbitrary matrix with a partitioning of submatrices Ai,j with the sizes
Mi,Nj. Further let B be an U × V arbitrary matrix with a partitioning of submatrices
Bi,j with the sizes Ui×Vj. The number of row partitions of A is the same as the number
of row partitions of B. Similarly, the number of column partitions of A and B is the
same. Then the Kathri-Rao product is a

∑
MiUi ×

∑
NjVj matrix defined as

A �B = (Ai,j ⊗Bi,j)i,j (B.9)

Note that the Kathri-Rao product is a special case of the Tracey-Singh product.

B.1.9 Hadamard Product

Let A, B be M ×N arbitrary matrices. Then the Hadamard product is defined as

[A�B]m,n = am,nbm,n. (B.10)

B.1.10 Multiplication of Block Matrices

Let A be an arbitrary matrix with a partitioning of M×N submatrices Am,n. Let further
be B be an arbitrary matrix with a partitioning of N × P submatrices Bn,p. Then the
multiplication of these block matrices is defined as a matrix with M×P submatrices such
that

(AB)m,p =
N∑

n=1

Am,nBn,p (B.11)

B.1.11 Matrix Vectorization

The operator vec{·} concatenates the columns of a matrix.
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B.1.12 Square Root of a Matrix

The square root of an arbitrary matrix square matrix A is defined as

A
1
2 = VAdiag{d 1

2}VA
−1. (B.12)

Here VA is a matrix composed of a columnwise concatenation of the eigen vectors of A
and d denotes a vector containing all the eigen values of A. Note that in case A is a
Hermitian matrix VA

−1 = VA
H is valid.

B.1.13 On Multivariate Complex Gaussian Random Variables
and their Probability Density Functions

A multivariate complex Gaussian can be thought of as a more dimensional normal distri-
bution. Let and a multivariate Gaussian zero mean random vector n ∼ N (0, Σn) of size
K × 1, where Σ is the covariance matrix. Then the K-variate complex Gaussian random
vector probability density function is defined as [Goo63]

p(n) = p(n1, . . . ,nK) =
1

πK |Σn|
exp(−nHΣ−1

n n). (B.13)

Now, let x denote any deterministic arbitrary vector. Further, consider a vector y that
is constructed in the following manner

y = x + n. (B.14)

Then y is a multivariate Gaussian distributed vector. This equation type typically occurs
in communication systems. For Maximum Likelihood problems a typical PDF that has
to be formulated is the conditional pdf of some observations stacked in y given a set
of parameters of any parametrization stacked in the vector θ that y depends on. This
conditional pdf is the same as p(n)

p(y|θ) =p(y1, . . . , yK |θ) = p(n) (B.15)

=
1

πK |Σn|
exp(−(y − x)HΣ−1

n (y − x)). (B.16)

Another often needed term is the negativ loglikelihood function belonging to this pdf and
parametrization, which is given by

−ln(p(y|θ)) = Kln{π}︸ ︷︷ ︸
constant

+ln(|Σn|)− (y − x)Σ−1(y − x) (B.17)

For optimization purposes the constant is expendable and hence often is omitted.
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B.2 Notational Conventions

Symbol Short Description
∀ for all
∃ It exists
∈ Element of
(•)∗ Conjugate transpose
(•)H Hermitian transpose
(•)† Pseudo-inverse
(•)⊥ Orthogonal matrix
P• Projection matrix (•)(•)†
P⊥• Orthogonal projection matrix I− (•)(•)†
(•)i in-phase part (real part)
(•)q quadrature-phase part (complex part)
∗ Convolution
~ Circular convolution
� Pointwise multiplication
⊗ Kronecker product
� Kathri-Rao product
diag{X} selects main diagonal of matrix X as row vector
diag{x} builds diagonal matrix from vector x

N
Length N discrete Fourier transformation

N
Length N Discrete inverse Fourier transformationd Fourier transformationd Inverse fourier transformation

IN size N ×N identity matrix
tr(•) Trace
x Scalar variable
x Bold lower case letters denote vectors
X Bold upper case letters denote matrices
FN size N discrete Fourier transform matrix
X This font denotes sets
vec {•} concatenates matrix column-wise
U [a, b) Uniform distribution within the one sided open interval [a, b)

B.3 Arabic Lower Case Letter Notation

Symbol ∈ Short Description
aTc,n R1×NT array steering vector for cluster c and ray n
aRc,n R1×NR array steering vector for cluster c and ray n
bl R• lower bound vector for parameter estimation cost

function
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bu R• upper bound vector for parameter estimation cost
function

c0 R+ speed of light
c(τ , t) C physical channel weight function
c1 R+ Self adjustment weight for PSO
c2 R+ Social adjustment weight for PSO
dLOS R+ distance between transmitter and receiver
dTx R+ transmit antenna spacing for ULA
dRx R+ receive antenna spacing for ULA

d̂ R1×• pseudoranges
fn(t) C complex fading amplitude
fdn R+ Doppler frequency
gTx R+ pulse shaping filter
gRx R+ receive filter
h C(L+1)×1 SISO EDTCM channel coefficients
hMO CNR(L+1)×1 Stacked SIMO measurements of the EDTCM

channel
hTS CI(L+1)×1 Stacked time series snapshot measurements of the

EDTCM channel coefficients (hTS = vec(HTS))
ˆ̆hd,

ˆ̆hd C(L+1×1 pulse deconvoluted channel estimate
k N+ time index (if used for sytem description)
k N+ number of free adjustable parameters (if used for

information heoretic criteria)
m N+ model order
pin R• PSO specific particle position in iteration i and

dimension n
piIB,n R• PSO specific individual best particle position in

iteration i and dimension n
piLB,n R• PSO specific local best particle position in itera-

tion i and dimension n
p0 = [0, 0] R1×2 reference point in cartesian coordinates
pTx =
[xTx, yTx]

R1×2 cartesian transmitter coordinates

pRx =
[xRx, yRx]

R1×2 cartesian receiver coordinates

p R+ topology dependent exponent in path loss model
p R1×2 cartesian coordinate
s {0, 1} binary value determining parameter estimation

success
r residual vector
rI vector specifying the Inertia range for PSO
rN N+ user specified value to choose the neighborhood

size for PSO particles
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su,n,l[k] C distortion value for layer n, user u and tap l for
MLD

t R+ time
vin R• PSO specific particle velocity vector in iteration

i for particle n
v R+ Mobile velocity
vmax R+ Maximum mobile velocity
w CL+1 Channel estiation error
xMS R+ x Device position component in a carthesian co-

ordinate system
xi R+ x Reference object position component in a

carthesian coordinate system for the ith base sta-
tion

xRx R+ x position component in a carthesian coordinate
system for a receiver

xTx R+ x position component in a carthesian coordinate
system for a transmitter

yMS R+ Second device position component in a carthesian
coordinate system

yi R+ Second reference object position component in a
carthesian coordinate system for the ith base sta-
tion

y[k] C received value at time intant k
yi+1[k] C received value without interference of pilot sym-

bols in iteration i
y̆i+1
u,n,l C layer, user and tap specific modelled received

value for MLD

B.4 Arabic Upper Case Letter Notation

Symbol ∈ Short Description
AMS R Intersectiong coverage areas of NBS BSs (Cell-ID

and Enhanced Cell-ID)
ABSi R ith BS coverage area (CellID- and Enhanced Cell-

ID)
AT RNt×NRays transmitter array response matrix
AR RNRays×NR receiver array response matrix

B auxiliary matrix [B]k,l = e−2[pi∆(k−l)]2σ2
α cos2(φ)

C N+ number of cluster in clustered delay line model

C̃max N+ maximum hypothetical number of theoretically
assessable multipath components

Cε RNb,Nb covariance matrix for pseudoranges estimation er-
ror

Cw R(L+1)×(L+1) channel estimation error covariance matrix
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Cξ R(L+1)×(L+1) Soft estimation matrix used in ICOMP
D N+ Number of optimization problem dimensions
Dgen C•×• generalized data matrix
G(τ ) R(L+1)×C Pulse matrix: [G(τ )]l,c = g(lT − τc)
Grx(f) C+ pulse shaping filter transfer function
Grx(f) C+ receive filter transfer function
GRx R+ receive antenna gain
GTx R+ transmit antenna gain
H CNr×NT (L+1) MIMO EDTCM channel coefficient matrix
HTS CI×(L+1) Stacked time series snapshot measurements of the

EDTCM channel
I N+ number of blocks
IMax N+ Maximum Number of PSO Iterations
IStopMax N+ Maximum Number of iterations PSO stopping

criterium has to be fulfilled
K N+ number of samples in one block
KR R+ Rice factor
L N+ overall channel memory length
Lg N+ length of windowed convoluted transmit and re-

ceive filter
NB N+ number of base stations
NMP N+ number of resolvable and non-resolvable multi-

pathes
NRays N+ number of multipath rays with similar
NR N+ number of receiva antennas
NT N+ number of transmit antennas
Np N+ number of particles for PSO
NN N+ Neighborhood size for PSO
P (•) R+,≤ 1 probability
Pc R+ mean power of cluster c
PG R(L+1)×(L+1) G(τ )(G(τ )† (see G) orthogonal projection ma-

trix
P⊥G R(L+1)×(L+1) I−PG (see PG)
PRx R+ received power
PTx R+ transmit power
R R+ coderate
S N+ spreading factor for repetiton code
S CLJ×C phase rotation matrix for delays in frequency do-

main
T R+ sampling time
Tgen C•×• generalized training matrix
ul R1×D lower search space bound for PSO
uu R1×D upper search space bound for PSO
U N+ number of users
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U eigenvector matrix used in ESPRIT
Us used for ESPRIT (see U)
Ud used for ESPRIT (see U)
vi+1
n R1×Np velocity vector for PSO
V R(K−L)×(L+1) virtual training matrix
W N+ integer factor times T specifying half pulse win-

dow width
Xσ R log-normal distributed variable accounting for

shadowing.

B.5 Greek Lower Case Letter Notation

Symbol ∈ Short Description
α R+ confidence parameter (0 < α < 1), typically close

to 1
β CC×1 complex cluster path weights.
γR,c CNr×1 receive antenna array spatial signature vector for

cluster c

δi,j {0, 1} Kronecker delta δi,j =

{
1 if i = j

0 else

εχ2 R+ threshold for determining parameter estimation
success/failure

εC̃ R+ threshold for algorithm (3)
εb R+,<<1 small value near zero for lower and upper bound
εi1, εi2 UD(0, 1) values for PSO
εtol R+,<<1 PSO stopping criterium tolerance
εi R+ random weighting factors in PSO
ζc R cth rotation matrix eigenvalue for ESPRIT
η R+ tuning parameter for Levenberg-Marquardt

method
η R+ parameter vector for upper triangular covariance

matrix elements in TS SML CRLB
ηn CN phase for equal power allocation phase rotation

of layer n
θ R1×2·NR·I·C+C full ML parameter vector
θvel R+ mobile device’s direction of travel
ϑTx,Rx,ϑRx,Tx R+ Tx and Rx angles between LOS direction and an-

tenna broadside
ιnc R+ auxiliary value for appropriately weighting for

EM and SAGE
κ R coarse delay estimate part
λ R+ wavelength
λi R+ ith eigenvalue of Cξ in ICOMP
µdof N+ degrees of freedom
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ν[k′] C oversampled virtual data sequence at index k′

ξ R• arbitrary parameter vector

$ Eigenvalues of ĈΨΨ

ρ R+ ratio of training to signal power
σ2
n R+ noise variance on received values
σ2
w R+ error variance on channel estimates
ς N+ value < L+ 1 for FB and ESPRIT
τTOA R+ TOA
τ R1×C multipath delay vector
τ toa,b R1×C TOA for base station b
τmax R+ maximum excess delay
ϕi R+ Angle of arrival associated with the ith reference

object
ϕc R+ Angle of departure associated with cluster c
φc R+ Angle of arrival associated with cluster c
ϕc,n R+ Angle of departure associated with cluster c and

ray n
φc,n R+ Angle of arrival associated with cluster c and ray

n
χ R+ Constriction factor for PSO
χ2 R+ Symbol for χ2 distribution
ψ
ω R+ Inertia weight for PSO

B.6 Greek Upper Case Letter Notation

Symbol ∈ Short Description
Γ(·) Gamma function
Γ(t,φ,ϕ) CNR×CNT overall spatial signature matrix
Γc(t,φc,ϕc) CNR×NT spatial signature matrix for cluster c
Γ′

u(t,φ,ϕ) CNR×C spatial signature matrix for transmit antenna u
Λ R wavelength
Φ C•×• Rotation matrix for ESPRIT
Ψ Cς×(L+1) Hankelmatrix for FB in ESPRIT
υb R bit-to-noise ratio
Υb R symbol-to-noise ratio
Υd R data-to-noise ratio
Υp R pilot-to-noise ratio
Ω R cost function for LS and ML
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B.7 Calligraphic Upper Case Letter Notation

Symbol ∈ Short Description
A matrix used in TS-positioning algorithm
B Bit-load
B {0, 1}Ldiv×(L+1) auxiliary matrix for ESPRIT and FB
C(•) R information theoretic criteria
CICOMP R Information complexity criterion

Ĉĥ R(L+1)×(L+1) Channel estimates sample
D Search space dimension
GMI Multiple input pulse matrix (INT ⊗G)
J RLJ×(L+1)W Selection matrix for ESPRIT
GMI MIMO pulse matrix (INRNT ⊗G)
L Likelihood
G RNRI(L+1)×NRIC SIMO TS extended pulse matrix (= INRI ⊗G)
GMI RNT (L+1)×NTC Multiple input extended pulse matrix (= INT⊗G)
GTS RI(L+1)×IC TS extended pulse matrix (= II ⊗G)
GMO RNR(L+1)×NRC SIMO extended pulse matrix (= INR ⊗G)
H(τ , τ , Γ) CNR×NT Continuous MIMO channel matrix
P(•) R penalty term (for instance for ITC)
V CINR(K−L)×INRNTU(L+1) MA,TS, MIMO virtual training matrix
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Appendix C

List of Abbreviations

Numbers:
3GGP Third generation partnership project

A:
AIC Akaike’s information criterion
AGNSS Assisted GNSS
AWGN Additive white Gaussian noise

B:
BS Base station
BPSK Binary phase shift keying

C:
CDF Cumulative density function
CDM Code-division multiplexing
CDMA Code-division multiple access
CRLB Cramer-Rao lower bound

D:
DML Deterministic maximum likelihood
DFT Discrete Fourier transfomation
DGNSS Differential GNSS
DOF Degrees of freedom

E:
ESPRIT Estimation of parameters via rotational invariance techniques

F:
FDM Frequency-division multiplexing
FDMA Frequency-divison multiple access
FFT Fast Fourier transform

G:
GALILEO Europian GNSS
GDOP Geometric delution of Precision
GLONASS Russian GNSS
GNSS Global navigation satellite systems
GPS Global positioning system
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H:
I:

ICOMP Information complexity criterion
IDM Interleave-division multiplexing
IDMA Interleave-division multiple access
IFFT Inverse fast Fourier transform
IRNSS Indian regional navigational satallite system

J:
K:

LFSR Linear feedback shift registers
LLR Log-likelihood Ratio
LLS Linear least squares
LOS Line of sight
LS Least Squares
LTE Long term evolution
LTE-A LTE-Advanced

M:
MDL Minimum description length
ML Maximum-likelihood
MS Mobile station

N:
NGMN Next generation mobile networks
NLLS Non-linear least squares
NLOS Non line of sight

O:
OFDM Orthogonal frequency-division multiplexing
OFDMA Orthogonal frequency-division multiple access
OMA Orthogonal multiple access

P:
PDF Probability density function
PDP Power delay profile
PRN Pseudo random noise sequence

Q:
R:

RO Reference object
S:

SML Stochastic maximum likelihood
SNLLS Separable Non-linear least squares

T:
TDM Time-division multiplexing
TDMA Time-division multiple access
TDOA Time-difference of arrival
TOA Time of arrival
TOF Time-of-flight
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U:
UE User equipment
UMTS Universal mobile telecommunications system
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