
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

IP protection for DSP algorithms' FPGA implementation. IP protection for DSP algorithms' FPGA implementation.

Wei Dai
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Dai, Wei, "IP protection for DSP algorithms' FPGA implementation." (2004). Electronic Theses and
Dissertations. 2517.
https://scholar.uwindsor.ca/etd/2517

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2517?utm_source=scholar.uwindsor.ca%2Fetd%2F2517&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

IP Protection for DSP Algorithms’
FPGA Implementation

b y

Wei Dai

A Thesis
Submitted to the Faculty o f Graduate Studies and Research

Through the Department o f Electrical and Computer Engineering
In Partial Fulfillment o f the Requirements for

The Degree of Master o f Applied Science at the
University o f Windsor

Windsor, Ontario, Canada
August 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96386-1
Our file Notre reference
ISBN: 0-612-96386-1

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fQC% voz

© 2004 Wei Dai
All Rights Reserved. No Part of this document may be reproduced,
stored or otherwise retained in a retrieval system or transmitted in

any form, on any medium or by any means without the prior written
permission o f the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

With today’s system-on-chip (SOC) technology, we are able to design larger and

more complicated application-specific integrated circuits (ASICs) and field

programmable gate array (FPGA) in shorter time period. The key point of the

success of SOC technology is the reuse of intellectual property (IP) cores.

Consequently the copyright protection for these IP cores becomes the major concern

for the development pace of SOC technology.

Watermarking technology has been proved to be an effective way of copyright

protection. In this thesis, the author presents two new watermarking algorithms

respectively at algorithm level and FPGA layout level. The simulations and

implementation results show that the new proposals have much less design and

hardware implementation overheads, lower watermark embedding and extraction

cost, as well as higher security strength, compared to the previously proposed

methods.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

Here I would like to give my sincere thanks to everyone who has help me for the

successful completion o f this thesis.

Firstly I would like to thank my co-supervisors, Dr.H.K.Kwan and Dr.H.Wu.

Dr.H.K.Kwan has rich experience in DSP algorithm development as well as FPGA

implementation. He gives me detail guidance of the research direction. Dr.H.Wu shares

his strong experience in data hiding and data encryption during my research procedure.

He helps me to select the thesis topic, supervises me through the thesis writing procedure

and gives a lot o f valuable suggestions.

Thanks also go to the committee members, Dr.K.Tepe and Dr.H.Hu, for their helpful

advice to improve this thesis.

Finally, I also thank my friends in VLSI lab for their kind help.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents

Abstract .. iv

Acknowledgements ... v

List of Figures ...viii

List of Tables ..ix

List of Abbreviations ... x

Chapter 1 Introduction... 1
1.1. Research Motivations...1
1.2. The Organization of Thesis...2

Chapter 2 Review of Watermarking Technology ...3
2.1. Watermarking Technology Basics...3
2.2. ASIC and FPGA Watermarking Technology... 8
2.3. Filter Watermarking Schemes.. 13
2.4. FPGA Watermarking Schemes ... 18
2.5. ASIC Watermarking Schemes ... 19
2.6. Attack Methods Targeting IP Protection Routine with Watermarking 21
2.7. Importance of Developing New Watermarking Schemes for DSP

Algorithms' FPGA Implementation... 21

Chapter 3 FIR Filter Coefficient Modification Watermarking............................. 25
3.1. Watermarking Scheme.. 25
3.2. Simulation of Coefficients’ LSB Watermarking...27
3.3. Watermarking Performance Analysis... 28

Chapter 4 Watermarking Through FPGA Cell Location Constrain..................... 31
4.1. Watermarking Scheme ... 31
4.2. FPGA cells' location Watermarking Simulation Procedures and Results..36
4.3. Watermarking Simulations for Other FPGA IPs... 47
4.4. Detail Watermarking Steps for Implementation Optimization.................. 51
4.5. Watermarking Performance Analysis ..55

Chapter 5 Summary of Contributions and Possible Future Work........................ 60

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References 61

Appendix A Timing Report for FIR Filter's Original Implementation........................... 63
Appendix B Timing Report for FIR Filter's Implementation with 8-bit Watermark 67
Appendix C Place and Route Report o f FIR Filter Before Watermarking.....................71
Appendix D Place and Route Report o f FIR Filter with 8-bit Watermark.....................73
Appendix E Layout of Comb Filter Before and After Watermarking............................ 75
Appendix F Layout of CDMA Match Filter Before and After Watermarking...............76
Appendix G Layout of DCT Before and After Watermarking.. 77

Vita Auctoris... 78

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List O f Figures

Figure 1 Classification o f Information Hiding Technology..4
Figure 2 Watermark Embedding Scheme.. 7
Figure 3 Watermark Extraction Scheme.. 7
Figure 4 SOC Design Flow and Different Forms o f IP Blocks.. 9
Figure 5 The Magnitude Response of the Filter with 7-Bit Watermark.............................. 13
Figure 6 Filter Equal Function Replacement...15
Figure 7 Who Have Sold the FPGAs to Our Enemy?.. 22
Figure 8 FIR Filter's Magnitude Response Before and After Watermarking,

16-bit Coefficients...27
Figure 9 FPGA Layout with 48*16 Slices Array.. 32
Figure 10 FIR Filter's Schematic Diagram...37
Figure 11 Original Layout o f the FIR Filter, Virtex-II Device... 38
Figure 12 Watermarked Layout o f the FIR Filter, 8-bit Watermark,

Virtex-II Device..39
Figure 13 FIR Filter Watermark Length & Max Net Delay Relation.................................. 42
Figure 14 FIR Filter Embedding Watermark Length and Maxim Frequency Relation...42
Figure 15 FIR Filter Embedding Watermark Length and Hardware Usage Relation 43
Figure 16 FIR Filter Cell Movement Distance Distribution, 128-bit Watermark.............. 44
Figure 17 FIR Filter Watermark Length & Max Net Delay Relation, Reverse Sequence.45
Figure 18 FIR Filter Embedding Watermark Length and Max Frequency Relation,

Reverse Sequence...46
Figure 19 FIR Filter Embedding Watermark Length and Hardware Usage Relation,

Reverse Sequence...46
Figure 20 FIR Filter Cell Movement Distance Distribution, 128-bit watermark, Reverse

Sequence.. 47
Figure 21 Holes and Dense Placement Areas o f CDMA Match Filter................................ 52
Figure 22 FPGA Cell Selection Strategy... 52
Figure 23 FIR Filter Placement Diagram with Pre-solidified Layout Modules..................54

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List O f Tables

Table 1 FIR Filter Coefficients' LSB Watermarking Scheme... 25
Table 2 Comparisons between Filter Coefficient Modification Watermarking and Current
Watermarking Schemes...29
Table 3 FPGA Cell Location Watermarking..32
Table 4 FIR Filter Cell Location Watermarking, 8-bit, Virtex-II Device............................40
Table 5 FIR Filter Cell Location Watermarking, 8-bit, Virtex II-PRO Device..................40
Table 6 FIR Filter Cell Location Watermarking, 8-bit to 128-bit, Virtex-II Device......... 41
Table 7 FIR Filter Cell Location Watermarking, 8-bit to 128-bit, Virtex-II Device,

Reverse Sequence..45
Table 8 Comb Filter Watermarking, 8-bit Watermark... 48
Table 9 CDMA Match Filter Watermarking, 8-bit Watermark.. 48
Table 10 DCT Watermarking, 8-bit Watermark...49
Table 11 Direct Waveform Synthesizer Watermarking, 8-bit Watermark......................... 50
Table 12 Board Interface Circuit Watermarking, 8-bit Watermark..................................... 51
Table 13 Comparisons Between FPGA Cell Location Watermarking and State-of-art

FPGA/ASIC Implementation Watermarking Methods..58

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List Of Abbreviations

ASIC Application-Specific Integrated Circuit
CDMA Code Division Multiple Access
CLB Configurable logic block
DCT Discrete Cosine Transform
DSP Digital Signal Processing
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
LUT Look-up Table
IP Intellectual Property
IPP Intellectual Property Protection
PCB Printed Circuit Board
RAM Random Access Memory
ROM Read Only Memory
SOC System On Chip
VHDL Very-high-speed Integrated Circuit Hardware Description Language
VLSI Very Large Scale Integration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction

1.1. Research Motivations
In the past decade there has been an explosion in the use and distribution of digital

contents such as music, movies, electronic books, software, etc, over Internet. Electronic

commerce applications and online services have also grown rapidly. But at the same time,

digital products and services providers concern themselves about the unrestricted

duplication and dissemination o f copyrighted materials [1][2]. For example, the lack of

effective protection methods for copyright content was the main reason for the delayed

introduction of Digital Video Disks (DVDs) [1], Two complementary technologies have

been developed as countermeasures against copyright violation, one is encryption and the

other is watermarking [1].

More recently, watermarking has been shown as an effective way to protect intellectual

property (IP) o f hardware design. In the past few years, the system-on-chip (SOC)

technology has made it possible and efficient to design complicated DSP ASICs and

FPGAs. The main reason o f the success o f the SOC technology is the reuse of IP cells.

The copyright protection for the IP cells becomes a vital issue for further development of

the SOC technology. Encryption technology can provide copyright protection during the

transmission of the IP cells from the vendor to the customer. It is obvious that encryption

is not enough for the complete IP protection since there is no protection for the IP cells at

the customer's end after the customer receives and decrypts the encrypted IP cells.

Watermarking technology has been used to complement encryption by embedding a piece

o f secret information into the original data to generate the watermarked data. It is

assumed that the watermarked data still keep their proper content or function and this

secret information cannot be removed from the watermarked data without damaging the

proper content/function of the data.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Several watermarking schemes for DSP algorithms and/or their ASIC/FPGA designs have

been presented since late 1990's [3][4][5][6][7][8][9][[10][11]. However, many o f the

watermarking schemes have been shown not secure by recent proposals of attacking

schemes [8] and not efficient due to large overheads and performance degradation

[3][[9][10][11]. Many IP vendors do not use any watermarking scheme and are still trying

to find an efficient enough watermarking scheme to be used for the customer's end.

Market leaders o f ASIC CAD tool and IP providers like Cadence and Synopsys have built

up research teams focusing on ASIC IP's watermarking technology

[4][12][13][14][15][16],

Two pieces o f research work have been proposed in this thesis. Firstly, we apply the

method o f modifying the least significant bit (LSB) to FIR filter and some other DSP

algorithms. The simulation results show that the watermarked filter/DSP algorithms have

very low magnitude distortion. Secondly, a novel watermarking scheme at FPGA layout

layer is proposed. It provides IP protection for FPGA design by utilizing the location

information o f the used FPGA cells. Compared to the previous methods for FPGA, the

proposed watermarking scheme has extremely low overheads and high security strength.

1.2. The Organization of Thesis
There are five chapters in this thesis. In Chapter 1, the motivation of developing new DSP

algorithms' FPGA watermarking scheme is given. Chapter 2 introduces watermarking

technology, watermarking application fields and requirements, current ASIC/FPGA as

well as DSP algorithms' watermarking technologies. Chapter 3 presents the filter

coefficients' LSB watermarking scheme. Chapter 4 proposes the FPGA cell locations'

watermarking scheme. Several FPGA IPs, like FIR filter, comb filter, Code Division

Multiple Access (CDMA) match filter, discrete cosine transform (DCT) IPs are used to

verify the performance o f watermarking scheme. The comparisons between the FPGA

cell location modification watermarking scheme and the current available DSP algorithms

as well as ASIC/FPGA watermarking schemes are also given in chapter 4. Conclusions

are drawn in chapter 5 based on the simulation and analysis presented in the previous

chapters. Several possible future work directions are also mentioned.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter2:
Review of Watermarking Technology

In this chapter, we introduce the concepts o f watermarking and information hiding

technologies. Then the application fields and general requirements for watermarking

technology are discussed. Finally, a review o f the current ASIC/FPGA as well as DSP

algorithms' watermarking schemes is given. A few watermarking attack methods are also

introduced.

2.1.Watermarking Technology Basics
2.1.1. Current Copyright Protection Technologies

Great effort has been made for copyright protection in the past years. We have seen some

legislation act like Digital Millennium Copyright Act, which was effective on October

28,1998, in U.S.A [1]. The European Union is also preparing similar intellectual property

rights protection for digital multimedia products [1]. To provide copyright protection for

digital data, two complemented methods have been developed: encryption and

watermarking.

Encryption technology can be used to protect digital data during the transmission from

the sender to the receiver. After the receiver has obtained the encrypted data and

decrypted it, the decrypted data is no longer protected. Unauthorized copies may be made

from the decrypted data. For example, after downloading the music files from the Internet,

the customer can use the given key to decrypt the music files and make copies by himself,

and then gives them to his friends. The encryption technology cannot protect the

copyright anymore [1],

Watermarking techniques can be used to complement encryption by embedding secret

information, which is imperceptible to the receiver, called watermark, into the original

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data. Watermark is a piece o f information embedded within other objects that shows the

identity o f copyright owner. Watermarks tell us who is the owner of the IP for the object

[1][2]. Watermarking is an old technology that has been used for centuries. This

technology was firstly developed to protect valuable paper documentations, like bank

notes, commercial contracts as well as cash. In this thesis, the discussion o f watermarking

technology will be limited to the digital watermarking field. For example, if a customer

violates copyright protection by making illegal copies o f a watermarked image and freely

distributing them among his friends, then the original copyright owner can suit this

customer and show the copyright information embedded in the image as the watermark in

the court [1][2].

2.1.2. Watermarking as a Sub-field of Information Hiding

Figure 1 Classification of Information Hiding Technology [2]

■ Information Hiding

Information hiding includes covert channels, steganography, anonymity and copyright

marking, see Figure 1. Covert Channels means the hidden secret channels used by two

parties for communication. Anonymity is the technology that investigates the hiding of

information sender's true name. Steganography means hiding information in other

information. This is the technology to conceal the existence o f information within other

data [2]. Steganography is different from Cryptography. Cryptography is the technology

Covert |
Channels Steganography Anonymity Copyright marking

Linoustic T e c h n i c a l R o b u s t Fragile
steganography steganography copyright marking watermarking

Fingerprinting Watermarking

Imperceptible
watermarking

Visible
watermarking

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to protect the content o f messages. People use encryption algorithms to encrypt data and

use decryption algorithms to decrypt the encrypted data [2].

We can see there are two subsets under copyright marking, one is robust copyright

marking and the other is fragile watermarking. Robust copyright watermark is the

watermark that is infeasible to be removed or modified without destroying the object at

the same time [2].

Fragile watermark is the watermark that will be destroyed as soon as the object is

modified too much [2]. We can see that the watermarking technology belongs to robust

copyright marking. Watermarking is the technology or procedure to embed a digital

watermark into a digital IP and detect/extract it from the digital IP that has been

watermarked [2].

Fingerprinting technology also belongs to robust copyright marking. Fingerprint is the

serial number information hidden in the original data. Fingerprinting is the technology or

procedure to embed fingerprint into the original digital IP and detect/extract it from the

digital IP that has been fingerprinted [2]. Fingerprints can enable the intellectual property

owners to identify which customer broke his license agreement and supplied the property

to unauthorized third parties [2].

This thesis focuses on the imperceptible watermarking method since imperceptible

watermark will arouse less suspicion and attacks. Until recently, information hiding

technology received much less attention from the research community and industry than

cryptography (encryption belongs to cryptography). But this condition has changed. The

first academic conference on the watermarking subject was organized in 1996 [2]. The

main driving strength is concern over copyright protection. Law enforcement and counter

intelligence agencies are also very interested in understanding these technologies so as to

detect and trace hidden copyright and serial number information [2]. In this area rapid

strides are being made constantly but general theories are still very tentative.

Copyright marking, as opposed to Steganography, has some additional requirement o f

robustness against possible attacks. Copyright marks can be either visible or invisible,

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depending on the specific application case. But most of the literature has focused on

invisible (or transparent) digital watermarks that have wider applications [2],

Watermarking in paper is a very old anti-counterfeiting technology; more recent

innovations include special ultraviolet (UV) fluorescent inks used in printing traveler's

cheques. In this paper, the discussion will focus on digital watermarking techniques.

2.1.3.Watermarking Application Fields

The watermarking technology can be used for the following purposes:

Copyright Protection: The owner can embed a watermark with copyright information in

the original data. Under the condition that there is any copyright argument or copyright

violation, the original owner can show the copyright information within the watermark to

the judge at court [1][2].

Fingerprinting'. The copyright owner or IP vender also can embed different watermarks

called fingerprints in the copies submitted to different customers. So they can trace the

source o f illegal copies [1][3][5]. For example, the music publisher can embed different

serial number to the CDs that will be sold by different retail agents in different countries.

If the music publisher finds some illegal copies of the CD products, the publisher can

trace the source of the illegal copy by extracting the watermark.

Copy Protection: The watermark information can stop the copy procedure during

unauthorized copy. For example, for some software, there are copy protection codes

embedded. When the customer try to make illegal copies, these copy protection bits will

make the computer to stop execute the copy instructions [1],

Authentication: Fragile watermarks (watermarks that will be modified or removed

without difficulty with the modification o f the original data) can be used to check the

authenticity o f the data. The author o f the electronic books can embed large amount- of

fragile watermarks into the whole electronic book. So if some of the watermarks have

been removed, that means some sections o f the books have been alternated [1].

2.1.4.Watermarking Embedding and Extraction Schemes

The watermarking procedure is to add watermark that contains copyright information into

the original data by using watermark embedding algorithms. The embedded data are the

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

message that one wishes to send secretly. Sometimes secret or public keys are also used

to encrypt the original copyright information. The key is used to control the hiding

processing so as to restrict detection and/or recovery of the embedded data to parties who

know it [2]. After applying the watermarking algorithm we will have the marked data

with watermark inside.

Figure 2 Watermark Embedding scheme [2]

Watermark

Original IP Embedding

algorithm

Marked IP

Key (optional)

Figure 3 Watermark Extraction Scheme [2]

Mark and/or Original IP

Test IP Detection

algorithm

Watermark/confidence measure

Key (optional)

In Figure 3, the watermark inside the IP will be extracted. Let us use the digital photo

image as an example. The watermark extraction procedure is to use the watermark and

the original image, as well as the image that will be tested. After comparing the original

image and the image under test, we can find the watermark inside the tested image, which

is the copyright confidence. Other watermark extraction methods are similar to this

scheme.

2.1.5.General Watermarking Requirements

A few general requirements for a watermarking scheme have been proposed [1][2][3][4]:

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perceptual Transparency: A watermark is imperceptible if humans cannot distinguish the

original data and the data with watermark. Since by comparing the original data and the

watermarked data, people can easily find the difference, that is the watermark, we should

assume that the customer does not have access to the original data [1].

Payload o f the Watermark: This is the amount o f the information that can be stored in a

watermark. For specific data object, if we can embed more information into the original

data, we say this watermark-embedding scheme has higher payload. A good watermark-

embedding scheme should provide high payload [1].

Robustness: This refers to the difficulty to remove/modify the watermark without

degrading or changing the original data. To remove the watermark, the potential attacker

should firstly try to find the watermark. If the watermark is very hard to find, very hard to

forgery and very hard to remove, we say that this kind o f watermarking scheme has good

robustness [1][2][3]. To remove or modify the watermark must require the knowledge of

a secret, like the secret key value, the watermarking procedure and watermarking

algorithm details. The watermark should survive all attacks that do not degrade the IP's

perceived quality. Some attacks include re-sampling, re-quantization, dithering,

compression and the combination of them.

Security: The security o f watermarking scheme means the watermarking scheme's ability

against watermark detection/forgery/modification. We should assume that the method to

encrypt and watermark the data is known to the public and the security must lie in the

choice of a key [1].

Independency: If multiple marks are inserted in a single object, then they should not

interfere each other.

Most watermarking applications have a sharp tradeoff between robustness and watermark

embedding efficiency. This make a single watermarking scheme meeting the

requirements o f all applications to be difficult [2]. At the other side, most real case

applications do not require all of the properties for general watermarking schemes.

2.2.ASIC and FPGA Watermarking Technology
2.2.1. Where We Need to Add Watermark

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4 SOC Design Flow and Different Forms of IP Blocks [17]

SOC Design Flow and Different Forms of IP Blocks

System Level Design(Co-design Level)

‘Algol luuuic Desi ecture.
tafryjftTi

System Level Model

I* lfffsl§

Software Specific atkm ardware Specification

lodin JLTL Implementation
RTL ModelfSoft IP)

Gate ModeK Firm IP)

m m m m :
Layout(Hard IP)

A watermark can be added at different levels such as algorithm level, architecture level,

register level, layout level, etc. At a lower level, payload is usually higher. A watermark

can be added at multiple levels to make an attack even harder.

Figure 4 shows the current SOC design flow and different types o f IP blocks that need to

be protected. For each level, there should be different copyright protection schemes. For

watermarking technology, the watermarking schemes o f these IPs locating at different

levels are also different. The watermark embedded at the higher level will be carried to

the lower levels. For example, if we add watermark to the RTL model (soft IP), the

watermark will be carried to the lower levels, like gate level and layout level. This is the

reason we prefer to add watermark to the design level as high as possible. The reason is if

any attacker wants to remove the watermark and get the high level design, he needs to

remove the watermark embedded at each lower level, if the attacker can only access the

lowest level o f IPs.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The watermark embedded at higher level is often easy to be identified and removed, if the

IP is provided with high-level form modules. Human beings normally will feel much

easier to understand high-level design data. For example, the attacker will feel more

comfortable to understand the structure of the software program written in C or Java,

comparing to the layout data o f all binary format (FPGA bit-stream programming data or

ASIC layout data).

2.2.2. The Importance of ASIC/FPGA IP Watermarking

The fast development o f system-on-chip technology increases the importance o f IP reuse.

Now we can integrate the complete system on a single silicon chip that has all the

functions of those chips on a printed board produced several years ago. Reusable virtual

components or IP blocks are most effective for the purpose of reducing design cycle time,

as well as decreasing design risk. IP owners want to make sure that their IP products will

not be illegally redistributed. Consumers also want to make sure that the IPs they buy are

legitimate. FPGAs become good candidates for fast-to-market products like DSP cores

for wireless communication and computer network applications. Distribution o f the IP

cores through the Internet is the commercial fact but it also increases the risk of IPs being

stolen and forgery [17]. The IP provider can use some technologies like JAVA applets

and JHDL to protect their IPs during the evaluation o f the IPs by potential customers.

Based on the JHDL design tool, these JAVA applets allow structure viewing, circuit

simulation and netlist generation for some cases. Applets can be customized to provide

varying levels o f visibility and functionality [18].

Watermark technology is also needed for AISC/FPGA co-design and co-verification,

which means from the right beginning there should be considerations for the integration

o f different types o f design blocks (including software codes, digital blocks, analog

blocks, as well as IPs with the form of Very-high-speed Integrated Circuit Hardware

Description Language (VHDL)/Verilog source code, black box schematic block or layout

hard blocks) [17][19]. There should be copyright protection schemes for all these kinds o f

design IPs.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IP vendors can protect their copyright by encrypting their source codes (VHDL/Verilog)

when these codes are sent to the buyers. These modules can be loaded into authorized

simulators or synthesis tools without making the source code visible to the system

designer who uses the IP blocks. In this case, the CAD tool maintains the safety o f the

copyright. But in practice, this protection is often broken with attacking the CAD tool

(simulators, synthesis tool) directly. We need to find extra methods to protect the design

IPs. Watermarking technology has shown its ability for ASIC/FPGA IP protection.

The methods o f watermarking for digital images, music and video are quite different from

the methods to protect DSP algorithms and ASIC/FPGA designs. The research about the

DSP algorithm and ASIC/FPGA watermarking just began several years ago and still is a

relatively new area. But we can see this area begin attract more researchers and some

market leader ASIC/FPGA design software companies like Cadence that also begins to

support such kind o f research activities.

2.2.3. ASIC/FPGA Watermarking Evaluation Criteria

Watermarking is a process that hides or embeds data into a design IP that can help deter

theft and counterfeiting. The watermark serves as evidence o f ownership. A complete

ASIC/FPGA IP protection scheme based on watermarking consists of two phases:

watermark synthesis and watermark detection [4] [12].

The synthesis phase is fully characterized by [4]:

(a) Algorithms translating design features onto a unique watermark

(b) Tr: the worst case time required to forge and/delete the watermark

(c) Pu: the odds that a design carries an unintended watermark in part or in its totality. -

The detection phase is characterized by [4]:

(d) Pm: the probability o f a detection miss

(e) Pf=Pu: the probability o f a false alarm.

Typical specification o f a complete IP protection scheme could be [4]:

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tr > = 2 years,

Pu=Pf <= IE-30

Pm <= IE-6

To evaluate certain ASIC/FPGA and DSP algorithms' watermarking scheme, some major

factors need to be considered. The following factors have combined the requirements

presented in [4][12] as well as the general requirements for watermarking schemes [1][2].

These evaluation criteria will be used in the following chapters.

Embedding Efficiency: This item shows the watermarking schemes' efficiency. For

example for the same filter, watermarking scheme A can embed maximum 8-bit

information and watermarking scheme B can embed 16-bit information, we say

watermarking scheme B has better embedding efficiency.

Embedding Cost'. This item reflects the effect o f the watermarking procedure on the

original ASIC/FPGA or DSP algorithm. If the watermarking scheme introduces

comparatively small timing delay increase, hardware cost increase, algorithm complexity

and/or software computational time's increase, we say this scheme has low embedding

cost.

Design Overhead'. This item shows the extra time for the design with watermarking steps.

If the watermarking steps will add small extra design time, we say this watermarking

scheme has low design overhead.

Extraction Cost: This one is related to the difficulty, complicity, as well as the time of

watermark extraction. If the extraction procedure needs less effort, for example, does not

need complicate test equipments, people having strong electronics background or extra

software, we will say this scheme's watermark extraction cost is low.

Extraction Miss Probability. This is the probability that a watermark cannot be extracted.

This item equals to Pm.

Probability o f Coincidence: This item shows the probability that one watermarked IP will

carry the whole or partial watermark as another IP that has not been watermarked. The

smaller this number, the better. Normally this number should be less than IE-30 for

copyright protection applications. This item equals to Pu and Pf.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Security Strength: This item shows the watermarking scheme's ability against potential

attacker's attempt o f detecting, counterfeiting and remove o f the watermark. The higher

the ability, the better the security strength. Also the more transparent the watermark, the

better the security strength. The value o f Tr is one of the indications o f this specification.

Applied Area: This item is related to the application fields o f the watermarking scheme.

Some watermark schemes can be used for ASICs' IP protection, others are for FPGAs

only. Some are for digital designs and others are for analog designs. The wider the

applied area, the better the watermarking schemes.

2.3. Filter Watermarking Schemes
The following three filter watermarking schemes have been proposed: filter magnitude

modification, filter tap’s equal-replacement and windowing function watermarking. In

this section, the watermarking procedures and the major properties o f these three schemes

are mentioned.

2.3.1. Filter Magnitude Modification [9]:

Firstly, the designer separates the filter stop or pass-band to several equal width zones

(i.e., seven zones). Then he modifies the filter magnitude response according to the

watermark bits. If the bit is 1, he will decrease the filter magnitude response by x dB

(here x is a small number like 0.1). If the bit is 0, he will increase the filter magnitude

response by x dB. After that, he uses the modified filter magnitude response as the design

constrains input to the design tool. Finally he obtains the filter coefficients. Now the

filter's magnitude response decided by the new coefficients will contain the watermark

information that is 7-bit as 0110101.

Figure 5 The Magnitude Response of the Filter with 7-bit Watermark [9]:

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Watermarking performance analysis for filter magnitude modification scheme:

The embedding efficiency is less than 8 bit/31taps—0.258 bit/tap. The authors do not give

out clear number of the maxim number o f watermark bits, which can be hidden into the

filter's magnitude response. But the authors do mention that for the hiding o f 7-bit

watermark, the 31-tap filter is not long enough in terms of filter tap number. The filter

with 41-taps can be used to embed such 7-bit watermarks. Since the authors divide the

filter's pass band's magnitude response and modify the magnitude response, the filter's

order may increase. But the authors o f [9] do not mention other simulation results with

more watermarking bits, the author o f this thesis can not exactly evaluate the relation

between the watermark length and the filter's order, as well as the hardware cost increase.

There is 7% hardware increase for the embedding of 7-bit watermark at algorithm level

only.

From [9], the designer needs to re-design the filter for embedding the watermark. So the

design overhead is high. The authors o f this paper do not mention the watermark

extraction flow. It seems that we can plot out the filter's magnitude response and check

the magnitude response, then find the watermark bits related to the magnitude ripples.

And if the original filter already has magnitude ripples in pass-band, it will be more

difficult to extract the watermark from its magnitude response.

The authors o f paper [9] do not provide any information about the possible attack mode

analysis and security strength analysis. The filter performance degradation is related to

the filter magnitude change value. If the filter magnitude change decreases, the filter

performance degradation will decrease, but the filter taps number will increase. This

scheme adds watermark at algorithm level, the highest level for filter design, so it is hard

to be removed from lower level of filter’s implementation, like logic, layout or circuit

level. This watermarking scheme increases the complexity o f filter design. It also

increases the order o f the filer, since we introduce new ripple constrains to the filter

magnitude response, As a result, the hardware cost increases by +7%.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2. Filter Tap’s Equal Function Replacement Method [9]

The designer firstly designs the filter with the original performance specification then he

replaces the filter taps by using equal filter structure replacement. There are three equal

function filter structures, A, B and C. When the watermarking bit is 0, the designer will

use B to implement this tap. When the watermarking bit is 1, the designer will use C to

implement this tap. When there is no watermark to be embedded, the designer will keep

on using A.

Figure 6 Filter Equal Function Replacement [9]

y«< \7°

-0 -e
i /

xfll}

T
V/a/uj

n]

U t

J ,y a/Qi

Watermarking performance analysis:

Since the author can use one tap to embed one bit of watermark information, the

embedding efficiency is 1 bit/tap. After watermarking, the hardware area increases by

29%, which is primarily due to a higher internal word length. The higher word length is

the result o f dividing coefficients introduced by equal filter tap function replacements.

The increase o f hardware area will also increase the power consumption o f the filter,

since we increase the amount o f operations introduced by dividing operations. The design

o f the filter with watermark needs to replace the standard filter taps with equal functional

tap module. This introduces the non-regularity for the filter's hardware design and will

increase the time and effort o f VHDL coding.

The authors o f the paper do not mention the details of how to extract the watermark. The

extraction o f the watermark needs the extractor to review the filter's implementation

layout or logic circuit design or VHDL/Verilog source code, extract the logic functions of

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the filter and extract the watermark according to the equal function replacement

watermarking rules. This will require considerable time and effort. The probability of

coincidence o f this kind will be zero if only the author o f that paper uses this

watermarking method. Since the tap structure o f the filters will be all the same if the filter

is designed in traditional way.

The authors do not mention the security strength o f this method. Layout reverse

engineering may be able to remove this kind o f watermark, as long as the layout

processing technology is visible by the attacker (normally 0.5um or wider metal wire

width). This method can be applied to both ASIC and FPGA design. There is no filter

response performance degradation, since the authors use equal functional module to do

the replacement.

This scheme makes watermarking at algorithm level, so it is hard to remove at the lower

levels and there is no degradation o f filter response performance. But this method

increases hardware cost dramatically by +29. It also makes the filter structure to be not

uniform and increases the design time for implementation on ASIC or FPGA.

2.3.3. Windowing Function Watermarking [10] [11]

Suppose W(n) is the original windowing function, where 1<= n <=N.

Firstly the designer adds random noise to W(n) to obtain Wm(n):

Wm(n)=W(n)+a * r(n), 1 <=n<=N. Here a is a small number like 0.0001.Then the designer

adds watermarking bits c (n) to Wm (n):

_W m (n), 1<= n <= i-1

Wc (n) = Wm (n)+b*c(n-i+l), i<=n<=i+P-l

Wm (n), i+P<= n <=N/2

—W c(N+l-n), N /2+l<= n <=N.

The designer will let b=0.0001. The starting bit o f the P-bit watermark code sequence

c (n-i+1) is bit i o f Wm (n). The sequence Wc (n), n=l,N , is the new window function

which contains the watermark information.

Watermarking Performance Analysis:

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For a classical windowing function with length n, we can embed n bits o f watermark

information, so the embedding efficiency is 1 bit/tap. Since the embedding cost is just to

add random noise sequence as well as watermark bits to the original windowing function,

the embedding procedure is simple and fast at software computational level. The

embedding cost is low. There is no design overhead for this method. Since the watermark

is added to the windowing function after it has been designed.

The authors do not mention the details o f watermark extraction flow. But we can see that

the watermark can be extracted by comparing (subtraction operation) the watermarked

windowing function with the original windowing function. Then by subtracting the

random noise sequence, we can extract the watermark. To do this is simple and fast at

software level. The extraction cost is low. The length of the watermark decides the

probability of coincidence. For the watermark with length n, it equals to l/(2An).

The authors do not provide detail information about the application fields. But if this

method is only carried at algorithm level, the attacker may be able to add extra random

noise to the windowing function and remove the watermark. So the security strength is

low. Since this method is developed specifically for windowing function, it can be

applied to windowing function or similar structure functions. The authors do not mention

this method can be applied to other DSP algorithms' ASIC/FPGA implementation or not.

There will be some degree o f performance degradation, which is caused by the

modification o f the windowing function. The degradation is decided by the comparative

ratio of the windowing function's modification value and the original function value. This

method embeds watermark at algorithm level that is hard to remove at a lower levels. -Its

watermarking scheme is simple and direct. But this method increases design complexity

and the security strength is low.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4. FPGA Watermarking Schemes
In this section, two kinds o f FPGA watermarking schemes are described. The first one

uses FPGA spare LUTs to embed watermarking information and the second one is to

manipulate the FPGA bit-stream programming data directly.

2.4.1.FPGA Fingerprinting by Using Spare LUTs (look-up-table)

This method for watermarking FPGA uses the unused lookup table (LUT) bits to encode

the signature bits. In order to further hide the signature, the constrained configurable logic

blocks (CLBs) are incorporated into the design with unused interconnections and

neighboring CLB inputs. Each unused LUT bit can be used to encode one bit o f the mark.

The inputs o f the marked CLB are taken from the passing signals in adjacent routing

channels and outputs are routed to neighboring don’t care inputs. Upon inspection, it is

not apparent which CLB has been marked [5][6][20][21],

Watermarking Performance Analysis:

From the embedding method, every LUT (look-up-table) can be used to embed 16 bits o f

watermark [21], so the embedding efficiency is 16 bit/LUT. When the FPGA device has

two LUTs in one FPGA slice, the embedding efficiency equals to 32 bit/slice. The

embedding cost for this method is not too large. For embedding 7 bits o f watermark, the

hardware usage increase is less than 1%. [5] The author does not mention the timing

delay change before and after watermarking.

To use this method, the designer needs to assign the locations of the unused LUTs, then

place and route the original design around these watermarked unused LUTs. The authors

o f [5] provide the extraction procedure information. The watermark extractor needs to

find the locations of the watermarked LUTs and read out the contents o f these LUTs. The

length o f the watermark decides the probability of coincidence. If the length o f the

embedded watermark is m, the probability o f coincidence is l/(2Am).

The authors o f paper[5] do not give out the analysis of possible attack methods and the

security strength of this method. Another paper [8] points out that one attack method

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could be used to successfully detect the watermark embedded in this way. Since this

watermarking method uses unused LUTs to embed the watermark, there will be no logic

change connections between these LUTs and the original logic design. So the attacker

may be able to scan the logic changes happening inside the FPGA and separate the

unused LUTs whose output has no effected on the logic changes o f other parts. Since

there is available attach scheme to break this kind of watermarking, new FPGA

watermarking method need to be developed.

2.4.2. FPGA Programming Bit-stream Data Watermarking [3]

This FPGA watermarking method involves substituting watermark bits for some of the

bits in the configuration bit stream that control multiplexers for the unused CLB outputs.

This method involves the modification o f the FPGA bit stream programming data. But in

practice, this kind o f knowledge is not open to the FPGA design engineers. So the

application area o f this scheme is limited.

2.5. ASIC Watermarking Schemes
In this section, several ASIC watermarking methods are mentioned. Compared with

FPGA watermarking technology, there are more papers about ASIC watermarking

methods. ASIC watermarking methods at different design stages like logic synthesis, gate

level and layout level have been proposed.

2.5.1. Finger-marking by Transistor Finger W/L (width/length) Watermarking

In paper [3], the author presents a method called finger marking. It can be applied for

integrated circuit design at the physical (layout) design level. The watermark is embedded

in the transistor layout, making this method applicable to digital, analog and mixed-signal

SOC (system-on-chip) designs [3]. The transistors in the circuit design are uniquely

ordered based on their connectivity. The random bit-stream is then embedded into the

transistor geometries to serve as an indelible mark in the circuit. If the value of the bit

stream bit is 0, the designer then uses even number o f transistor fingers. For example: for

a N-transistor with design specification of W/L=300um/5um, he uses 2 parallel

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150um/5um fingers. If the value of the bit-stream bit is 1, the designer uses odd number

o f transistor fingers. For example, for a N-transistor with design specification of

W/L=300um/5um, he uses 3 parallel 100um/5um fingers.

This method can be applied to analog circuit design and easy to be understood by the

designer. But this watermarking scheme increases the design effort to implement the

layout. It is easy to be removed by layout reverse engineering. The reason is that for

analogy design, the layout processing technology is much bigger than pure digital designs.

It makes it easier for the attacker to observe the layout by optical devices(micorscope, for

example). We can extract the circuit diagram from the layout then re-arrange the finger

configurations to remove the watermarking information. But this kind of reverse

engineering need at nearly the same time to re-design the layout. So this method still has

its value.

2.5.2, Hierarchical Watermarking

Charbon [13][14][15] presents a hierarchical watermarking technique for ASIC designs.

It involves the unique mapping o f design topological information onto a sequence of

symbols called a topological signature. His method has limited applicability in designs

that use more than just standard cells and lacks robustness analysis[4][12]. Charbon and

Torunoglu also present the watermarking technology o f sequential functions [22]. This

method will impose a digital watermark on the state transition graph of the synchronous

circuits [22][23].

2.5.3. Protocols for IP Protection

Protocols for IP protection have also been developed for hiding data at the combinational

logic's behavioral synthesis level [16]. This approach involves embedding a watermark as

a set o f design constrains. The synthesis tool results in solution satisfying both the

original design specifications and the additional set o f constrains. Constraint-based

techniques have been proposed for watermarking at different stages of the VLSI (very

large scale integration) design process. This method can be used well for pure-digital

layouts, but need to be complemented with another scheme when applied for SOC (for

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example, digital-analog-mixed-signal) design. Watermarking protocols added at ASIC

layout place and route stage has also been developed [7].

2.6. Attack Methods Targeting IP Protection Routines

with Watermarking
Several attack methods have been mentioned by different authors [8][17].

An attack method called logic redundancy detection uses logic scan method to scans the

logic transitions happening inside the ASIC or FPGA and try to find the redundancy in

the design. Then the attacker may be able to locate and remove the redundant logics and

the watermark that is implemented by using these redundant logics [8]. Another attack

method is finite state machine reduction. This method is trying to reduce the unused

transitions in the state machine transitions that have been used to embed watermark [17].

The hardware remove method will physically remove the FPGA and ASIC chip that

contains watermark. No existing watermarking scheme can avoid this kind o f attack. But

this method also makes the attacker away from the usage o f the IP. So the copyright

protection purpose also has been realized [17].

Other attack methods include encryption system attacks. This one is the attack o f the DES

and AES cryptographic algorithms. This method is a big challenge o f the security of

many watermarking schemes. The designer needs to keep an eye on the most advanced

technology o f encryption. And the attack for ASIC logic synthesis level watermarking

tries to extract the logic synthesis constrains that contain watermark information. ASIC

layout level reverse engineering is to recover the original circuit design by photographing

the layout, then carry human or computer vision detection for layout to logic extraction.

2.7. Importance of Developing New Watermarking

Schemes for DSP Algorithms’ FPGA Implementation
The author selects the DSP algorithm's FPGA implementation's watermarking as the topic

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the thesis. The reason is the DSP algorithm's FPGA implementations are widely used

for the consumer electronics as well as telecommunication applications. And the

protection o f this kind of IPs is important. To show the importance o f the FPGA

watermarking technology, two real scenarios are used to show its application for FPGA

based IPs' fingerprinting and watermarking.

Scenario One: Who Have Sold the FPGA Chips to Our Enemy?

Figure 7 Who Have Sold the FPGAs to Our Enemy?

AeentMl f Agent .‘‘2

Country AFPGA IP Producer X

i t -jwaa
FPGA Import Ageii

I
Radar RAD Institut

Air-force Radar Base

Country B

In this scenario, FPGA IP producer X in country A produces FPGA chips and develops

high performance DSP IP soft cores. This company also sells FGPAs with DSP IP cores

implemented inside. Company X sells their products through 99 retail agents. The

customer officers o f country A find some mail packages that contained company X's

FPGA products. These mail packages are mailed to the electronics retail agent M in

country B. But the names and addresses o f the sender are false. FBI officers do not find

any valuable human being's fingerprints o f the sender, except those fingerprints o f the

post officers'. So the question here is: How the FBI officer can identify which sales agent

has involved into the illegal export of the FPGAs? Is there any technology that can make

this task much easier?

FPGA watermarking technology is one o f the good candidates that can be used to

fingerprint the FPGAs. For this kind of applications, the watermark is used as fingerprints

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to identify different objects. For our example, there are 99 retail agents and we need at

lest 99 different fingerprints to identify all the sales agents. So we need 8-bit watermark

length, since 2's power 8 is 128. The idea is each sales agent will receive different

watermarks that have been embedded into the FPGAs containing DSP IP cores. Although

the functions of these FPGAs are the exactly the same, the watermark is different. And all

the watermarks have been documented by company X. In this way, the FBI officer will

feel easy to trace the source of the illegal exported FPGAs, by contacting company X and

extracting the watermark inside the FPGAs. In chapter 4, the author's implementation

results o f such kind o f 8-bit watermark into some real world DSP IPs are presented. The

simulations are used to verify the effect of watermark embedding. The simulation results

are encouraging.

Scenario Two: Is Mr. Z the DSP IP Thief?

Mr. Z is the technician who works for company X that produces FPGAs and DSP IP

cores. Mr. Z's job is to program the FPGA chips with the programming data that is stored

in the PC. Mr. Z has ability to read and copy the data. Some sales persons o f company X

report that another company, company Y, also sales the similar products. So the managers

o f company X want to know weather Mr. Z has sold the FPGA programming data to

company Y. If it is true, how can company X suite Mr. Z, as well as company Y in the

court? What kind o f evidence will help company X to win the case? Insiders make many

high-tech IP stealing cases; the law procedures for these cases are normally long and

complicated, partly due to the high-tech background. This makes the suite process time

and money consuming.

So is there any technology that will simplify the situation and help to protect the right- of

the original IP copyright owner? As mentioned in chapter one, watermarking technology

can also be used for copyright information embedding. The watermark length o f this kind

o f application will sometime be longer than the watermark's length for fingerprinting

usages. For this case, we need 128-bit watermark, to provide strong enough witness for

copyright provident. In chapter 4, the simulation results of embedding this kind of 128-bit

watermark are presented.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the review o f the current available DSP algorithms' and FPGA implementation

watermarking schemes, the area of watermarking for DSP algorithms is relatively new.

Although some people have done a lot o f innovative work in this area, the proposals they

have mentioned still have space for improvement, and the application fields o f those

watermarking schemes need to be extended. DSP algorithms' FPGA implementation is

today's hot-point in the consumer electronics market. FPGAs can provide hardware based

fully parallel data processing ability, which makes the FPGAs good candidates for ultra-

high speed and high volume throughout DSP applications, like wireless applications,

wide band network, etc.

The filter magnitude modification scheme will introduce 7% hardware increase. The filter

taps' equal replacement also have 29% hardware increase after watermarking. And the

windowing function' watermarking scheme may be broken by adding false watermark at

algorithm level. The current available FPGA watermarking methods also have some

limitations. The look-up-table (LUT) watermarking scheme has been broken and the

FPGA bit stream modification scheme is not fit for those engineers who do not have

knowledge o f the format o f FPGA bit-stream data. The FPGA producers also announce

that they will not expose such bit-stream format information to the public, for confidential

reason and EP protection considerations. So to develop new and better watermarking

schemes that can protect DSP algorithms' FPGA implementation becomes important.

In chapter 3, the FIR filter coefficients' modification watermarking scheme will be

presented. The idea to modify the original image bitmap data and windowing function

coefficients has been proposed by several papers [1][10][11]. The author o f this thesis

extends the application area o f this idea to filter and other DSP algorithms. By embedding

the coefficients into ASIC and FPGA hardware level, the security strength of

watermarking scheme has been increased. In chapter 4, the watermarking through FPGA

cell locations' constrain is introduced. This is an innovative watermarking scheme that

works at FPGA layout level. This scheme uses the unique layout structure o f FPGA to

embed watermark information into the FPGA cells' layout coordinates.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: FIR Filter Coefficient
Modification Watermarking

3.1. Watermarking Scheme
For the filter coefficients' LSB watermarking scheme, a designer who is responsible for

the watermark embedding firstly needs to have the filter's coefficients' file. The designer

will use the watermark bits to replace the filter coefficients' LSBs. After embedding o f the

watermark, the designer needs to run simulation of the filter with the watermarked

coefficients. If the simulation results are acceptable, the designer will save the filter's

coefficients to a new file and the watermarking flow ends here. For the watermark

extraction, the designer needs to read out the filter's coefficients, find the watermark

locations and extract their LSBs. After that, he can obtain the watermark bit sequence.

Let a FIR filter design be given by:

Y(k)=A0*x(k)+A 1 *x(k-1)+....... +An-l*x(k-N-l), where k=0,l,........ ,N-1.

Here AO, A l , , An-1 are filter coefficients. A watermark, for instance, is 10001010.

Watermark embedding process is to replace the filter coefficients’ LSBs with the

watermark bits. Table 1 shows the procedure o f watermark embedding by replacing filer

coefficients' LSBs.

Table 1 FIR Filter Coefficients' LSB Watermarking Scheme

Original Filter Coefficients Modified Filter Coefficients Watermark bits

A0: 1111-1111-1100-0100 A0: 1111-1111-1100-0101 1

A l: 1111-1111-0100-1101 A l: 1111-1111-0100-1100 0

A2: 1111-1111-1010-1001 A2: 1111-1111-1010-1000 0

A3: 0000-0000-1110-1010 A3: 0000-0000-1110-1010 0

A4: 0000-0011-0111-1000 A4: 0000-0011-0111-1001 1

A5: 0000-1000-1101-1111 A5: 0000-1000-1101-1110 0

A6: 0000-0001-1111-1010 A6: 0000-0001-1111-1011 1

A7: 1111-1110-0101-0110 A7: 1111-1110-0101-0110 0

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The watermark embedding flow o f filter coefficient modification is concluded in the

following paragraph:

Schemel.arWatermark Embedding by Filter Coefficients' Modification

Input: Filter design specifications, watermark bits that need to be embedded

Output: Watermarked filter design

Step 1.Design filter by using filter design specifications.

Step 2:Obtain digitized filter coefficients with specific word length.

Step 3:Modify filter's coefficients' LSBs according to watermark bits

Step 4:Use the modified filter coefficients as the simulation inputs o f the filter design tool.

Verify weather the filter's response satisfies the design specification or not.

4.1.If yes, output the watermarked filter's coefficients, stop the procedure.

4.2.If no, check weather we can increase the filter's coefficients or not.

4.2.1.If yes, go to Step 2.

4.2.2.If no, stop the procedure.

The watermark extraction procedure is as following: The watermark extractor first reads

out the filter's coefficients and get the LSBs of the coefficients. The binary sequence of

the filter coefficients' LSBs is the watermark information. For the improvement of the

watermark scheme's security, the filter's coefficients need to be solidified into FPGA

hardware by using ROM (read only memory) programming or hard-wiring (connect the

signal lines with power or ground). So the designer needs to either read out the filter's

coefficients from the ROM or find the internal hard-wired signals' value that are used as

filter's coefficients. The following scheme shows the watermark extraction procedures.

Schemel.b: Watermark Extraction for Filter Coefficients' Modification

Input: Filter coefficients (binary format), watermark bits that need to be verified

Output: Embedded watermark/copyright confidence

Step 1. Extract the filter coefficients LSBs.

Step 2:Read out the LSBs within the specific range where the watermark supposed to be

added.

Step 3:Compare the LSBs read from the filter coefficients with the original watermark

bits, check how many bits match and get their match rate.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2. Simulation of Coefficients’ LSB Watermarking

To evaluate the effectiveness of proposal one, FIR filter LSBs’ watermarking, the author

makes the simulation to check the filter performance degradation after watermarking.

Commercial filter design and simulation tool is used to carry the simulation. Here are the

filter's original design specifications:

Direct form II transposed equal ripple low pass FIR filter

Order: 8

Fs: 48 KHz

Fpass: 9.6 KHz

Fstop: 12 KHz

Wpass: 1 dB

Wstop: 20 dB

The Matlab FDA (Filter Design and Analysis) tool is used to design the original filter and

create the filter magnitude response before and after the watermarking. By reading out the

magnitude response after watermarking, the difference o f Wpass and Wstop o f the filter

before and after watermarking are less than 0.1 dB.

Figure 8 FIR Filter’s Magnitude Response Before (Left) and After Watermarking

(Right), 16-bit Coefficients

Frequency (Hp:0
Mgnlutt (OB): 4.32

\
tomtind Frequency: 0.781 y: 0.368

MgniuOe (48): <29.31

\ / \ 7
\ : ■ \ /
!l i f

NotbIcw) Frequaney |i*r«Harrpe)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the simulation results, we can see that FIR filter coefficients’ LSB watermarking

method will introduce some degree of performance degradation. The author also carries

the simulation for the watermarking of the same FIR filter with 8-bit coefficients. But the

simulation results show that the magnitude distortion is too large and unacceptable. So for

8-bit coefficients case, the LSB watermarking scheme introduces too large magnitude

response change. 16-bit watermarking case works well, with quite small magnitude

response degradation. Coefficients’ LSB watermarking method can also be extended to

other DSP algorithms that have a sequence o f parameters.

3.3.Watermarking Performance Analysis
To evaluate the watermarking scheme's performance for proposal one, the author uses the

evaluation items that have been introduced in chapter 2. The evaluation results will also

be used for the summarizations that are made at the end of this chapter.

Embedding Efficiency: 1 bit/tap. From the watermarking method, we can embed one bit

o f information with each filter coefficient. The maxim number of watermarking bits that

can be embedded to the filter's coefficients is equal to the number of the filter's taps.

Embedding Cost: The embedding procedure is simple and direct. The designer can

modify the filter's coefficients' LSBs by using normal text editors, like notepad or so.

There is no hardware or timing punishment for this method.

Design Overhead: There is no design overhead for the filter design itself. The watermark

is added after the filter design has been finished. But the designer who embeds the

watermark needs to run simulation after watermarking to verify the filter's performance

degradation is acceptable or not.

Extraction Cost: The extraction procedure is direct and simple. People just need to read

out the filter's coefficients' LSBs and get the watermark bit sequence.

Probability o f Coincidence (Pu):If we use all available coefficients' LSB for

watermarking, the probability o f coincidence equals to l/(2An)), where n is the number of

filter taps. For the 8-bit watermark and 8-tap filter case, this number equals to 1/256. For

128-bit watermark, this number equals to 3.4E-38.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Security Strength: For those DSP algorithms whose coefficients have been programmed

into non-erasable memory (ROM) or implemented through hard wiring, this method

provides very strong security strength. The attacker will have no way to remove the

watermark embedded inside the coefficients' LSBs unless he removes the ASIC or FPGA

chip.

Applied Area: This method can be applied to filter algorithms, as well as DSP algorithms'

ASIC/FPGA implementation that have sequential parameters. The filter coefficients or

other parameters should be solidified into the hardware.

Filter Performance Degradation: The filter performance degradation is decided by the

filter coefficients' word-length. For 16-bit FIR filter case, the magnitude degradation is

less than O.ldB.

Probability o f Detection Miss (Pm): From the watermark detection procedure, we can see

that the probability of a detection miss is O.The extractor can always successfully extract

the watermark information by reading out the filter's coefficients' LSBs.

Table 2 Comparisons between Filter Coefficient Modification Watermarking and

Current Filter Watermarking Schemes

Magnitude

Modification

Tap's Equal

Replacement

Windowing

Function

Watermarking

Filter Coefficient

Modification

Watermarking

Filter

Performance

Degradation

Medium Small Small Small

Hardware

Usage Increase

+7% +29% N/A 0%

Design

Overhead

High Medium Low Low

Extraction

Cost

Low Medium Low Medium

Probability of

Coincidence

Low Low Low Low

Security Medium Medium Low High

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The proposed filter coefficient's modification watermarking scheme shows better

performance than other current available filter watermarking schemes with most

performance items. The filter's hardware usage increase is 0% and is the major strong

point for this new proposal. The design overhead is also low due to little additional design

effort required for watermark embedding. The probability of coincidence is low due to the

large amount o f watermark information that can be embedded inside the filter's

coefficients. The security strength is quite high because o f the hardware solidation o f the

watermark information, so to remove the watermark is physically impossible. All in all,

the proposed filter coefficients' modification watermarking scheme shows good

watermarking performance and has good potential for practical DSP algorithms'

watermarking.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Watermarking Through
FPGA Cell Location Constrain

The FPGA cell location constrain watermarking scheme uses the FPGA cells' x and y

coordinates to embed the watermark information. This method belongs to the physical

constrain watermarking method. By doing so, each selected FPGA layout cell for

watermarking can embed 2 bits o f information. Several real world IPs like FIR filter,

CDMA match filter, discrete cosine transform (DCT) are used to embed 8-bit watermark.

The simulation results are used to verify the watermarking performance. Varied length

watermark embedding are carried for the FIR filter to study the relationship between

design overhead and watermark length.

4.1.Watermarking Scheme
The watermarking flow for this scheme is firstly set up some kind o f watermark

embedding rules. Then the designer needs to select the FPGA layout cells that will be

used for watermarking. After that, the designer makes the original implementation of the

IP without watermarking. After this step, the selected FPGA cells will be moved

according to the watermarking rules. And the FPGA implementation procedure will be

carried again with these new layout location constrains. The finished layout o f the FPGA

will contain the watermark information that the designer has embedded by constraining

the cells' layout locations.

Let a FIR filter design be given by:

Y(k)=A0*X(k)+A 1 *X(k-1)+.......+An-1 *X(k-N-1),where k=0,l,....N -l.

Suppose we need to embed a watermark consists of 8 bits as 10001010. Let the RAM

(random access memory) cells to store Ai be RAM_i, i=0,l,...,7. A RAM cell in FPGA

layout can be identified by its coordinates (x, y). The watermark embedding rules are

described as following:

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the bits are 00, we choose both x and y as even.

If the bits are 01, we choose x as even and y as odd.

If the bits are 10, we choose x as odd and y as even.

If the bits are 11, we choose both x and y as odd.

Table 3 shows the procedure o f embedding watermark to RAM cells' location coordinates.

Table 3 FPGA Cell Location Watermarking

RAM_i for Storing Ai Watermarking Bits New Location o f the

Chosen RAM Cell: (x, y)

RAM_0 1 (1,4)

0

RAM_1 0 (4,4)

0

RAM_2 1 (3,2)

0

RAM_3 1 (3,0)

0

Figure 9 FPGA Layout with 48*16 Slices Array
BEES
Oft Bfe Bit tool*' !gr*ow . ' ■ -'V'' ' -
DIcSlBUat ij- Ell «i I -H alwrmlrW x?ll - 1— g BlSlol ft l 131

('0 ,3 1)
ea a - « e f a a a i

1 (47,31

l:t i s =*l e-J t=S t i t l i.r* rd cJi :\t

i.i s a a s n .t a a a . i n a n ^ ‘I -t
C*> -*1 r* •;-S ■..?> “S r t •“* .-A r 1 <'A % i 1
o-i ^ :Vi i* cs zti M i> r t ..'i m ' «

> sis ca cn ea rs .£■« ra cs -5 * i •* ' ~i

1 ra cri .rs n .-3 n a .n ;,ts ra .™, ;•

i .n a f j n a n ^ a n c i n -i .-•» ,-.-5

(0,0) (4 7 ,0) 1

F0» H*fc, PMH* H . . - 7̂ ^36*4*9*37 ttotoCKChanq**'
;<iwa| ; 0 ̂ 3 ijJ > ” I SKum*.,. (fifr-g-gm!...! BMKn«ift.„[glitoco«»...| I ;4 B3! ^

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For FPGA devices, the whole layout is divided into certain number of slices, (see figure 9)

There are route path between slices. Each slice has some kind o f logic resources, like 16-

bit RAMs, look-up tables, D-type flip-flops and so on. Different types of FPGA devices

will have different number of slices available, as well as the logic cells' type and amount

within each slice. For watermarking purpose, we can use the logic cells like 16-bit RAM,

D-type flip-flop or other kind of logic cells to embed the watermark information. The

selection o f the cells should satisfy that each cell used for watermarking does not occupy

more than one FPGA slice.

Scheme 2.a.Watermark Embedding Flow of FPGA Cell Location Modification

Input: Original FPGA logic and layout design and design specifications, watermark bits

need to be embedded

Output: Watermarked FPGA layout design

Step l.Try to find FPGA layout RAM cells that have sequential relations from the logic

view.

1.1.If we can find, from these RAM layout cells,

1.1.1 .Try to find layout cells that occupy less than 1/4 FPGA slices. If we can

find them, go to step 2.

1.1.2.Try to find layout cells that occupy less than or equal 1 FPGA slices.

If we can find them, go to step 2.

If we cannot, stop the procedure.

1.2.If we cannot, stop the procedure.

Step 2.Select layout cells locating at loose place and route area.

2.1 .From the cells we find in step 1 ,try to find those cells locating at unused

place and route areas.

2.1.1.If we can find them, go to step 3.

2.1.2.If we cannot, go to step 2.2.

2.2.From the cells we find in step l,try to find those cells locating at loose

place and route areas.

2.2.1. If we can find them, go to step 3.

2.2.2.If we cannot, use the cells we find in step 1 and go to step 3.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 3.From the layout cells we find in step 2, select layout cells locating at parallel logic

paths.

3.1 .If we can find them, go to step 4.

3.2.If we cannot, use the cells we find in step 2 and go to step 4.

Step 4.From the layout cells we find in step 3, select layout cells locating at non-critical

logic paths.

4.1.If we can find them, go to step 5.

4.2.If we cannot, use the layout cells we find in step 3 and go to step 5.

Step 5.For every selected watermarking cell, try to find new location for re-locating that

satisfies watermarking bit and watermarking rules.

5.1 .Try to find spare layout slice within one slice distance.

5.1.1.If we can find it, move the layout cell to the new location. Go to step 6.

5.1.2.If we cannot, try to find spare layout slice within two slices distance.

If we can find it, move the layout cell to the new location. Go to step 6.

5.1 .n.If we cannot, try to find spare layout slice within n slices distance. Here

n is the largest slice number o f possible movement.

If we can find it, move the layout cell to the new location. Go to step 6.

5.2.If we cannot find it, try to swap this layout cell with another layout cell that is

not selected as watermarking cell and within one slice location.

5.2.1 .If we can find it, move the layout cell to the new location. Go to step 6.

5.2.2.If we cannot, try to find such layout cell within two slices distance.

If we can find it, move the layout cell to the new location. Go to step 6.

5.2.n.If we cannot, try to find spare layout slice within n slices distance. Here

n is the largest slice number o f possible swap .

If we can find it, move the layout cell to the new location. Go to step 6.

If we cannot, stop the procedure.

Step 6.Run place and route with the watermarked layout cell locations.

Step 7.Read out the place and route report after watermarking. Verify weather the

watermarked layout implementation satisfies the design specification or not.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.If yes, output the layout and create the bit-streaming data, stop the procedure.

7.2.If no, check weather all possible layout cell candidates for watermarking have

been tried or not.

7.2.1.If yes, stop the procedure.

7.2.2.If no, go to step 1 and find new watermarking candidates.

The above paragraph shows the watermarking flow of FPGA RAM cell locations'

watermarking schemes. This watermarking flow can also be applied to DSP algorithms'

watermarking. The requirement is that the DSP algorithm has some kind o f sequence of

parameters that can be implemented with hardware. If the DSP algorithm does not have

such kind o f sequential parameters, only the FPGA cell location modification proposal

can be applied.

Here the FIR filter's coefficients' LSB watermarking and the RAM cell locations'

watermarking are used as examples. The proposal o f FIR filter coefficient modification

watermarking also can be extended to any DSP algorithms that have sequential structure

o f parameters and the parameters can be solidified into the FPGA hardware (For example,

the filter's coefficients are programmed into the ROMs within FPGA chips. Another way

to solidify the parameters with hardware is hard wiring. For example, when the filter's

coefficients' bit is 0, this bit-line will be connected with ground. When the filter's

coefficients' bit is 1, this bit-line will be connected with pow er.) The second proposal can

be extended to any pure digital logic IP's FPGA implementation as long as these digital

IPs have some kind o f sequential structure of layout cells. The DES/AES encryption

function is provided by the FPGA implementation tool [16].

Scheme 2.b.FIR Filter FPGA Cell Location Watermark Extraction Flow

Input: Watermarked FPGA layout design, original watermark bits that have be embedded

Output: Watermark embedded within FPGA layout design

Step l.Find the layout locations o f RAM cells storing FIR filter coefficients

Step 2. Extract RAM cells' (x, y) location labels.

Step 3. Using cell location watermarking rules to extract the embedded watermark.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 4. Compare the embedded watermark with the original watermark, get copyright

confidence measure.

The above scheme shows the watermark extraction flow. Here the FIR filter's coefficients'

LSB watermarking and FPGA RAM cell location watermarking schemes have been used

to embed the watermarks inside the FIR filter's coefficients and RAM cell locations'

coordinates. The extractor needs to extract the watermarks inside the FPGA layout as well

as FIR filter's coefficients. The extractor will be given the complete original logic design

files containing all the schematics and placement/route files. The watermark extractor will

also be given the FPGA design and debug software that are used to design and implement

the original FIR filter design.

During the watermark extraction flow, the extractor firstly needs to find the layout

locations o f the RAM cells that store FIR filter's coefficients. The extractor can use the

original logic and layout design files to search these RAM cells between logic schematic

and layout. Then he will be able to extract the RAM cells' x and y coordinates. After that

the extractor can use the RAM cells' x and y coordinates to get the embedded watermark

information, by referencing the watermark embedding rules. After that he also can read

out the RAM cell's contents by applying correct address and read signals to the FPGA

chip and get the FIR filter's coefficients. After reading out the coefficients' LSBs, he gets

the watermark that has been embedded into the FIR filter's coefficients LSBs.

4.2.FPGA Cell's Location Watermarking Simulation

Procedures and Results
This section describes the simulation results for embedding 8-bit watermark to different

FPGA devices as well as embedding different length watermark (from 8-bit to 128-bit)

into the FIR filter design. The watermarking procedures are described step by step. To

compare with the results from paper [21], the author o f this thesis also selects the Xilinx

FPGA device and its implementation tools.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1. Embedding 8-bit Watermark: Virtex-II device

The FIR filter has the following specifications:

Single rate single channel FIR filter

Number o f taps: 8

Coefficient width: 16-bit

Coefficient data type: signed

Coefficients reload ability: yes

Input data width: 16-bit, signed

Output data width: 32-bit, signed

Implementation type: fully serial, conventional structure

The FPGA implementation software tool environments are:

Design and Implementation tool: Xilinx ISE (integrated silicon environment) 4.2

Design Flow: VHDL

Synthesis tool: XST VHDL

Floor plan tool: Xilinx Floor Planer

Place and route optimization goal: timing

Target FPGA device: Xilinx Virtex-II, XCV250, speed grade -6

Simulation Procedures:

Stepl: Input the FIR filter design into the ISE design tool.

Figure 10 FIR Filter's Schematic Diagram

; d& 2^3 'J l ' : j&)cdjrw_? (Pi) 1 IgJ—nnw>_i..vm... | jpTh* Second Swn... [(SJfha Sacortd Sfn...| l + XHirw-Profct n... | l flBx»r« ec s - ftool .

Filter C oeffic ien ts Shift in

multiplier chain

X(N) shift rbg is te - chain

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 2:Synthesis the FIR filter using XST VHDL

Step 3:Place and route the FIR filter without location constrains. After this step, we will

get the FPGA place and route result with timing optimization.

Step 4:Suppose the registers that store filter's coefficient AO’s 4 LSBs are register 0-3,

respectively. In this case, the registers will be used to embed the watermark. The registers

are used to implement the function o f RAM cells. We will re-assign these 4 registers with

following new slice locations:

RegisterO: Slice (13,26)------->(13,26)

R egisterl: Slice (13,26)------->(12,22)

Register2: Slice (5, 23)-------->(5,20)

Register3: Slice (5, 23)-------- >(5,20)

Step 5:Run placement and route again with watermark location constrains, get the new

layout with watermark inside. In this case, we only move the cells that we need to use for

watermarking and do not change the locations of those cells that have not been used for

watermarking.

Figure 11 Original Layout of the FIR Filter, Virtex-II Device

e*e £cft Xlew lo ob fl|ndow fcftfr______________________________ --t . ' -■ : __________

"oWHI&H *| B is i* | BlBlmlEslftl

{All C oapftM ati
F U t i r - —

3 ESE

iiEi&tlS”
L̂ii* S**TS <8 if
I!!®9 -*IlS’f vfi-ji gyfuli ihphiWb

■ a it ic t r n op u
ai*lJMVLTIMUIT l6«
» m it i z c j'f i i c is
■ u t i f i i c ' f i i c i t

S*“ ■I!!"'5ms.?**™ i •wfitisiEfslaMfeffiaBSRewKi

I
For Help. p r « i F t fxc2v2SO-«fg*» !No Logie Change*-

I j i ^jflr_3_3_naw | -jftW indow eft... j |-+X B na• Projo... | jffiXMnKECS [j >¥1conpe*Uon_... | |^$)q>rt»fPG A e... > £ - ^ 1 (^ 0 ® 19iB9

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 12 Watermarked Layout of the FIR Filter, 8-bit Watermark, Virtex-II

Device
Bgaaa&t-T’

gle t/tk flew lock tfndow tfrfr__________ . ____________________■____________________________ _____ ___

d|i*|b|^| M Ell a 1*1'BlMlmlsiN KMfrlMKIiaiol xf\ -HHI-HEs-WI ÎSIxaiAiE

r » n « r - - •- -

- I n l x i

l i K l ^ ^ ^ # i ^ i i i i V i H B HlwSgSSlEi^ii<i.rr».g i i) v > W M) l | | H lIficS"™ •̂^■wTviflSM^KI
*«j5Sg;f j -I -i " * j1 ■ -'■Filia l»m B M I Î Mdpai'f **Ti "̂ twi'ir̂ -iiriiwi'SBgl̂ HB
i^w^^iCi-?iit*iV«ii^i tm ”v:\H\Mi 'I'WWMntt* -i >*»wwiSwHWM
»rjfSiftMi jB
[{jfimr :i ii'mkwrv a.>iii .™i"-iVttn:'HEr,
F|ji:S5 i *i «i7» - r i . i i ' f i T i l ^ 'A M
fliifca i n» m ** m *. i •*■ i «Yii|jnr ,‘iSii*. i '*"« "in.M "TiTin»ipfA%i*j ISjppMî ixii:! /a'ra ' ■ 7n,=i'i«a*iv«mmm* .«> * '■î .
jfiSjw jlr& f J£ i* src j ■: i M i 'i* v i i« I s H

- I n l x i

1
For Help. Press PI Dcc2v2SO-4fo»S6 IM Logic OvinoM

1 j § O Trifl •■ ftr_3_3_new | j j j w i n d o w t t . . . | |»XHir»x-Pro|e... j g X B nxeC S | E | x«rpt COftE ... | {jQcongesUon,... | |53ftXMnK FPSAE,.! ^ 19:59

From the layouts o f the FIR filter before and after watermarking, it is quite hard to find

the locations o f the watermark by only observing the watermarked layout. This is the

property o f the transparency of the watermark. This property makes it more difficult to

detect and remove the watermark from the FPGA layout by potential attackers. (Here we

suppose the potential attacker does not have access to the original layout of the FIR filter.

Because by comparing the original and after watermarking layouts, the difference can be

easily identified. If the attacker already has access to the original layout, it is not

necessary for him to attack the watermark anymore.)

The selection o f cells' new locations is decided by the author with referencing the original

optimization layout location placement results to make as small distance change as

possible. This will help to achieve better timing performance. After implementing both

the design, the author gets the timing reports, (see appendix A and B), to find the detailed

timing delay information. The author also gets the place and route reports (see appendix

C and appendix D) that show the hardware usage information before and after

watermarking.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following table shows the results o f the two implementations on Virtex II device,

before watermarking and after watermarking, with 8-bit watermark embedding.

Table 4 FIR Filter Cell Location Watermarking, 8-bit, Virtex-II Device

Maxim net

delay

Minim Period Max

Frequency

Hardware cost

(slices)

Before watermarking 4.441 ns 9.289 ns 107.654 MHz 488/1536

After watermarking 4.441 ns 9.392 ns 106.474 MHz 489/1536

So after watermarking, the FIR filter’s

Timing delay increases by :(9.392-9.289)/9.289 = + 1.109 %

Hardware cost increase by :(489-488)/488 = + 0.205 %

The movement o f the registers introduces the timing delay increase from their timing

optimization results. And the hardware cost increase is caused by the movement of

registers to spare slices. Before watermarking, these registers share slices with other logic

cells. When certain register is moved to a spare slice and cannot share with other logic

cells that are not used for watermarking, the hardware cost will increase by one FPGA

slice. If we can find such slice that can satisfy the watermarking rule and is shared by the

logic cells that will not be used for watermarking, the hardware cost will not change.

4.2.2. FIR Filter Cell Location Watermarking, 8-bit watermark, Virtex II Pro device

Table 5 FIR Filter Cell Location Watermarking, 8-bit, Virtex II PRO Device

Maxim net

delay

Minim Period Max Frequency Hardware

cost

(slices)

Before

watermarking

3.210ns 5.593ns 178.795MHz 488/1536

After

watermarking

2.947ns 5.540ns 180.505MHz 490/1536

So after watermarking, the FIR filter’s

Timing delay increases by :(5.540-5.593)/5.593 = - 0.948 %

Hardware cost increases by (490-488)7488 = + 0.410 %

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.3. FIR Filter Watermarking, Watermark Length Varying from 8 bits to 128 bits,

Virtex II Device

To study the relationships of the length o f the watermark and the FPGA implementation

results, several implementations o f the watermark whose length varies from 8 bits to 128

bits are carried. Firstly the author uses Matlab to create 128 bits o f random number

sequence. Then the author uses the FIR filter's registers that store the coefficients to

embed the watermark, using watermark embedding rules. The registers are selected and

used from the register that store FIR filter's coefficient AO, then the register that store FIR

filter's coefficient A l, so on and so forth.

Table 6 FIR Filter Cell Location Watermarking, 8-bit to 128-bit, Virtex II Device

Watermark

length

Max net delay

(ns)

Min Period

(ns)

Max Frequency

(MHz)

Hardware cost (slice)

0 4.441 9.289 107.654 488

8 bits 4.934 13.866 72.119 489

16 bits 4.941 13.866 72.119 488

32 bits 4.934 13.866 72.119 495

64 bits 4.941 13.866 72.119 498

128 bits 5.504 13.866 72.119 510

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following figure shows the relationship between watermark length and maxim net

delay:

Figure 13 FIR Filter Watermark Length & Max Net Delay Relation

Max Net Delay (ns)
l-bit

8-bit 16-bit 32-bit

0-bit(Original Design)

40 60 80 100
Em bedding W aterm arking Length(bits)

20 120 140

From Figure 16 we can see that when the watermark length changes from 8 bits to 64 bits,

the max net delay keeps nearly the same. As the author explains later in this chapter, the

increase o f the timing delay that happens at different logic path will not accumulate all

together according to simple addition operation relation. As long as the timing increase

happening within watermarked logic paths is smaller than the max net delay path's timing

delay, the max net delay for the FPGA will not change. If the later on watermark cells'

movement introduces net delay increase that overpasses the original max net delay, the

final max net delay for the FPGA chip will increase further.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following figure shows the relation between watermark length and Maxim frequency:

Figure 14 FIR Filter Embedding Watermark Length and Max Frequency

Relation

M ax F r e q u e n c y (M H z)

0 -b it(O r ig in a l D e s ig n)
100 \
90

80 1 2 8 -b it1 6 -b it 32 -b it 6 4 -b it
70 8-b it
60

50

40

30

20 -

10

20 40 60 80

E m b e d d in g W a te r m a r k L en gth (b its)
140100 120

From figure 14, we can see that the max frequency does not change when the embedding

watermark length changes from 8-bit to 128-bit. The max frequency is decided by the

minim period o f the FPGA chip.

Figure 15 FIR Filter Embedding Watermark Length and Hardware Usage Relation

H ardw are U sage (FPGA Slices)
550

500

450

400

350

300

250

200

150

100

50

0

8-bitl 6-bit 32,-bit
 m # •--— * —

64-bit
—HU----

12g-bit

0-bit(Original Design)

20 40 60 80 100
Em bedding W aterm ark Length (bits)

120 140

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From figure 15, the after all tendency is that the hardware usage o f the FPGA after

watermarking increases when the watermark length increases. When we need to embed

longer watermark, we need more spare FPGA slices to re-assign the watermarking FPGA

cells. If we cannot find the slices that we can share the watermarking FPGA cells with

the cells that have not been selected for watermarking usage, the hardware usage will

increase.

Figure 16 FIR Filter Cell Movement Distance Distribution, 128-bit Watermark

25 FPG A Slice Num ber (slice) _________

FPG A Slice M ovem ent Distance From Original Location (slice)

The cell movement distance used here means the difference between the cell's original x

coordinate and the cell's x coordinate after watermarking, or the difference between the

cell's original y coordinate and the cell's y coordinate after watermarking, whatever is the

larger. To embed 128-bit watermark information, we need 64 FPGA cells for location

watermarking usage. From Figure 19, we can see that 70%(45 cells out o f 64 cells) of the

cell movements happen within one slice distance. And the longest movement is 11 slices.

4.2.4. FIR Filter Watermarking, Watermark Length Varying from 8-bit to 128-bit,

Virtex II Device, Reverse Sequence

In this simulation, several implementations o f the watermark whose length varies from 8

bits to 128 bits are also carried. The author uses the FIR filter's registers that store the

coefficients to embed the watermark in reverse sequence. The registers are selected begin

from the registers that store FIR filter's coefficient A15 (Firstly we will use the register

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that stores A15's MSB, then we will use the register that store A15's 15th bit, so on and so

forth.) After we use up the registers that store A15, we will use registers that store FIR

filter's coefficient A14. Finally we will use the registers for storing A12. (For 128 bits

watermark embedding, we need 64 registers all together.)

Table 7 FIR Filter Cell Location Watermarking, 8-bit to 128-bit, Virtex II Device,

Reverse sequence

Watermark

length

Max net delay

(ns)

Min Period

(ns)

Max Frequency

(MHz)

Hardware cost (slice)

0 4.441 9.289 107.654 488

8 bits 4.864 9.554 104.668 489

16 bits 4.864 9.554 104.668 489

32 bits 4.859 9.554 104.668 492

64 bits 4.859 9.554 104.668 494

128 bits 4.859 9.554 104.668 503

Figure 17 FIR Filter Watermark Length & Max Net Delay Relation, Reverse

Sequence

M ax N et D e la y (n s)
5.

4.

3.

2 .

1.

0 .

O 20 40 60 80 100 120 140
E m b e d d in g W a te rm a r k L e n g th (b its)

From Figure 17 we can see that when the watermarking length changes from 8-bit to 128-

bit, the max net delay keeps nearly the same.

45

5

s . 8 -b it 1 6 -b it 3 2 -b it 6 4 -b it 128-b itm— * -----------* -------------------------- * ---*

*** 0 -b i t(0 r ig in a l D e s ig n)
4 -

5 -

3

5 -

2 -

5 -

1 -

5

0 I-------------1-------------1------------ 1------------ 1-------------1------------ 1----------

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 18 FIR Filter Embedding Watermark Length and Max Frequency Relation,

Reverse Sequence

M ax F r e q u e n c y (M H z)

80

70

60

50

40

30

20

10

jPBIt 32 -b it
5-bit

0 -b it(O r ig in a l D e s ig n)

20

bit

40 60 80 100
E m b e d d in g W a te r m a r k L en gth (b its)

From figure 18, we can see that the max frequency does not change when the embedding

watermark length changes from 8-bit to 128-bit. The max frequency is decided by the

minim period o f the FPGA chip.

Figure 19 FIR Filter Embedding Watermark Length and Hardware Usage Relation,

Reverse Sequence

H a rd w a re U s a g e (F P G A S l i c e s)
550

8 -b it

0 -b it(O r ig in a l D e s ig n)

400

350

300

250

200

150

100
50

0
20

6 4 -b it
—HU----

1 2 8 -b it
 *■

40 60 80 100
E m b e d d in g W a te r m a r k L en g th (b its)

140

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From figure 19, the tendency is that the hardware usage o f the FPGA after watermarking

increases when the watermark length increases. Comparing with figure 18, we can see

that for embedding same length watermark, the reverse embedding method cause less

hardware usage increase.

Figure 20 FIR Filter Cell Movement Distance Distribution, 128-bit Watermark,

Reverse sequence

F P G A S lic e N u m b er (S l ic e s)
25

20

15

10

-2 10 12 14 16 18
F P G A S lic e M o v em en t D is ta n c e From O riginal L ocation (s l ic e s)

4.3.Watermarking Simulations for Other FPGA IPs
To evaluate the performance o f the FPGA cell locations' watermarking scheme, the

author also makes several simulations for other types o f DSP algorithms' watermarking.

These DSP algorithms include comb filter, CDMA match filter, DCT and waveform

synthesizer. These DSP algorithms are among the most widely used DSP IP cores.

Another non-DSP IP is also used to verify the applicability o f this proposal for general

form digital IP's FPGA implementation's watermarking.

4.3.1. Comb Filter Watermarking, 8-bit watermark

Comb filters are widely used in image processing and signal up-sampling/down-sampling.

Here are the comb filter IP's specifications:

Comb filter type: Interpolator

Input bus width: 16-bit

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number o f stages: 4

Sample rate change: 16000

Differential delay: 2

The following is the comb filter watermarking results with 8-bit watermark.

Table 8 Comb Filter Watermarking, 8-bit watermark

Min

Period

Max frequency Max combinational

path delay

Max net

delay

Hardware

cost (slice)

Before

watermarking

7.568ns 132.135MHz 7.911ns 3.918ns 501/1536

After

watermarking

7.538ns 132.661MHz 8.526ns 4.087ns 504/1536

So after watermarking, the comb filter’s

Timing delay increases by :(7.538-7.568)/7.568 = -0 .3 9 6 %

Hardware cost increases by (504-501)7501 = + 0.599 %

4.3.2.CDMA Match Filter Watermarking, 8-bit Watermark

The CDMA match filter is also watermarked with 8-bit watermark.

The following table shows the implementation results before and after watermarking:

Here the mem-16s cells (16-bit memory blocks) are used for watermarking.

Table 9 CDMA Match Filter Watermarking, 8-bit watermark

Min

Period

Max frequency Max combinational

path delay

Max net

delay

Hardware

cost (slice)

Before

watermarking

14.113ns 70.857MHz N/A 9.329ns 2T33/3072

After

watermarking

13.870ns 72.098MHz N/A 8.868ns 2133/3072

So after watermarking, the C DMA match filter’s

Timing delay increases by :(13.870-14.113)/14.113 = - 1.722 %

Hardware cost increase by: (2133-2133)/2132 = + 0 %

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After watermarking, the FPGA's max frequency has been improved by 1.722% and the

hardware usage does not change. The hardware usage does not change since the original

mem-16 cells do not share slice with any other logic components. So the movements of

these mem-16 cells do not increase the hardware usage.

4.3.3.DCT Watermarking, 8-bit Watermark

The DCT IP is widely used for image processing. Here we use the 1-D DCT IP for

watermarking.

This DCT IP has the following specifications:

Operation mode: Forward DCT (1-D)

Number o f points: 16 enable symmetry

Performance: 9-clock cycles/sample

Coefficients width: 8-bit

Input data width: 8-bit, signed

Precision control: Round

Result width: 20

Table 10 DCT Watermarking, 8-bit Watermark

Min

Period

Max frequency Max combinational

path delay

Max net

delay

Hardware

cost (slice)

Before

watermarking

7.068ns 141.483MHz 7.960ns 4.970ns 1173/1536

After

watermarking

7.804ns 128.139MHz 8.469ns 4.775ns 1173/1536

So after watermarking, the DCT's

Timing delay increases by :(7.804-7.068)/7.068 = +10.4 %

Hardware cost increase by: (1173-1173)/1173 = + 0 %

4.3.4. Direct Waveform Synthesizer Watermarking, 8-bit Watermark

The direct digital synthesizer can produce sine and cosine waveforms, without using

look-up tables. It uses the iteration operations to create the sine and cosine waveforms.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Its design specification are shown below:

Output width: 16-bit

Function :Output both sine and cosine waveforms

Memory type: Distributed ROM

Pipelined operation: Yes

Phase increment: Register based

Data width: 16-bit

Phase angle width: 4-bit

Phase offset: None

Noise shaping: No

In this case, the author uses the 16-bit distributed ROMs to embed the watermark

information.

Table 11 Direct Waveform Synthesizer Watermarking, 8-bit Watermark

Min

Period

Max frequency Max combinational

path delay

Max net

delay

Hardware

cost (slice)

Before

watermarking

4.3000ns 232.558MHz 6.919ns 3.864ns 34/1536

After

watermarking

4.261ns 234.687MHz 6.919ns 4.404ns 37/1536

So after watermarking, the direct waveform synthesizer's

Timing delay increases by :(4.261-4.300)/4.300 = + 0.907 %

Hardware cost increase by (37-34)/34 = + 8.82 %

4.3.5. Board Interface Circuit Watermarking, 8-bit Watermark

From the discussion and simulation procedure, the FPGA cell location's watermarking

method can also be used for other types o f IPs that have sequential logic structures.(For

example, the IP we need to watermark has 8 registers in serial.)The watermarking

simulation for non-DSP IP is also carried. The IP here is the interface circuit between the

FPGA chip and personal computer, for test and debug purpose. The implementation

results are shown as below:(Four D-type flip-flops are used to carry the 8-bit watermark

information)

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 12 Board Interface Circuit Watermarking, 8-bit Watermark

Min

Period

Max frequency Max combinational

path delay

Max net

delay

Hardware

cost (slice)

Before

watermarking

10.410ns 96.061MHz 13.484ns 2.602ns 192/256

After

watermarking

10.548ns 94.805MHz 13.948ns 2.602ns 192/256

So after watermarking,

Timing delay increases by :(10.548-10.410)/10.410 = +1.326 %

Hardware cost increase by (192-192)/ 192 = +0 %

There is 1.326% maxim working frequency decrease and the hardware usage does not

change. The hardware usage does not change since the original D-type flip-flops do not

share FPGA slice with other components. So the movements o f these D-type flip-flops do

not increase the hardware usage.

4.4. Detail Watermarking Steps for Implementation

Optimization
From the simulation, the author concludes that the following watermarking rules might

help the designer to optimize the FPGA's timing performance after watermarking. These

guild-lines give the designer some direction for implementation optimization during the

watermarking procedure.

The designer should try to use the FPGA cells that locate along the border around the

loose placement areas. Some times we will also have placement holes that in this area no

FPGA hardware resource has been used. The designer should try to avoid using the

FPGA cells that locate inside the dense place and route area. (We call these dense place

and route area hot areas, just like the traffic jam areas in modem big cities o f human

being). To make such kind of selections will give us more selections for the new locations

of watermark cells and may improve implementation results. If we use the cells that are

inside the hot area, we will feel more difficult to find available new locations for

watermarking within small slice movement distance.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 21 Holes and Dense Placement Areas of the CDMA Match Filter

1 5*» M* #** lo t* Jg*.**"' , Jijfj »*
OI.OBI4M j j f f l a i i t a l S l f i O . J S B ! . ^1f g (5 B B l *| . CC

m & m

Placement hole Dense placement area

*̂*1 48 & Lti > -■ i I*.***■ •"»■■■ (- I 1 <j>90ŵt.-1 ;sj»"

The designer also should try to use cells that locate at different logic paths.

Figure 22 FPGA Cell Selection Strategy

Figure 22 shows the logic structure o f an IP. We need to use some of the cells in this EP to

embed the watermark. In order to reduce the timing delay as much as possible, we need,to

select the cells smartly. Suppose the modification o f the cells (al, bl...) in this IP will

introduce equal amount of timing delay Td to the final layout implementation. We should

firstly use the cells locate on different path in parallel. For this case, we can use a l, b l,

c l, ..., h i. Then we use a2, b2, c 2 ,..., h2. Then we will use a3, b3, c3, ..., h3. Finally we

will use a6, b6, c6, ..., h6. The reason for this selection method is that the timing delay

happening within the serial path will accumulate according to addition relation. And it

will increase the total delay continuously. If we use a l, a2 and a3, we will get 3Td for the

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

final timing delay increase. But if we use a l, bl and c l, we will have Td only for the final

timing delay increase. For digital logic design, the final maxim working frequency is

decided by the slowest path's maxim timing delay. This makes us to use cells for

watermarking in parallel instead o f in serial. But the fact is every IP design and its FPGA

implementation is different, the effect o f moving the cells will be different. This makes

the problem more complicated. But from the simulation results, most of the cells'

movements happen within 2 slices' distance, so this method still has its value to some

extent.

The designer should try to use small layout modules instead of big and solid layout cells.

There is relationship between the layout design style and the watermarking difficulty. The

higher the hardware usage percentage, the more difficult the watermarking procedure will

be. When the FPGA hardware usage percentage increases, we will have less spare layout

slices for re-assignment o f those watermark cells. And we need to move slices with

longer distance to find the locations that satisfy the watermarking embedding rules. The

worst case is that 100% of the FPGA slices have been used. We have no way but try to

swap the locations o f the FPGA layout cells to re-assign the watermark cells. If we use

big and solid layout cells, for example, the layout module that occupies 16 slices and can

not be separated or re-placed and re-routed, we will have to overpass those large blocks

during watermarking. And the average slice movement distance will increase. This will

cause worse timing performance. In figure 23,we can see some kind o f large and solid

layout cells like carry-chain and shift-register-chain. When we carry the watermarking

operations, we need to overpass these cells to find the available new slices to assign the

cells for watermarking. This increases the watermarking difficulty.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 23 FIR Filter Placement Diagram with Pre-solidified Layout Modules

The designer should try to find the slice to assign the watermarking component (register,

for example) within one slice distance from the optimized location. If there is more than

one slice candidate available, for fast embedding, he should arbitrarily choose one. For

best result, he should try all the available candidates and run implementation for each

case and select the best one. If he cannot find the available slice within one slice distance,

he should try to find such a slice within two slices distance away from the optimized slice

location. Such kind o f search should be carried until one slice has been found or the

search area has touched the boundary o f FPGA chip. This means the search step has

failed. Under this condition, the designer may use cell swap technology to solve the

problem. The designer should try to avoid using the components that are large logic

blocks like multipliers. We should use those small components like gates or latches that

can be implemented within single FPGA slice. The designer should also try to avoid

using the components that are located on the critical path.

We have two different after-watermarking placement flows for the FPGA cell locations

watermarking scheme after layout cell's selection.

The steps for first one are:

1.Place and route the original FPGA IP. 2.Select the cells we prefer to use for

r ;■ -
Qte ' IJife
o i b k ib i a U T W i a l t l f I < a m i a l ,n % > ^ |g ja d < a t« > l

Shift-register chainn/kMi

^ ^ C a n y chainrl«>

ti*i ' i n 1

j i ' lisa-*-

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

watermarking. 3.Re-assign layout slice locations for these cells that have not been used

by the original placement. Tell the place and route tool "do not touch all cells" during

following implementation process. So the place and route tool will not change the

locations o f other cells that have not been selected for watermarking. 4.Run the

implementation flow again and get the final layout with watermark.

The steps for second one are:

1.Place and route the original FPGA IP. 2.Select the cells we prefer to use for

watermarking. 3.Re-assign layout slice locations for these cells, without considering these

locations have been used by the original placement or not. In this step, the designer only

use the smallest slice movement rule to make the selection. Tell the place and route tool

"do not touch these watermarked cells" during implementation process. Let the place and

route optimization tool to decide whether change the locations of other cells that have not

been selected for watermarking or not. The optimization goal is timing. 4.Run the

implementation flow again and get the final layout with watermark.

The difference between the first and second one is whether we allow the tool to change

the locations o f the cells that we do not use for watermarking. If time is allowed, the

designer can try both methods and select the one with better timing implementation

results.

4.5. Watermarking Performance Analysis
Embedding Efficiency: 2 bits/cell. Since we can embed 2 bits to one FPGA cells' x and y

coordinates.

Embedding Cost: The embedding o f watermark by assign FPGA cells with new locations

is simple and fast. The designer can use the FPGA placement tool to carry this operation.

No extra software is needed.

Design Overhead: For the 8-bit watermark and the FIR filter with 8 taps, the timing

increase is 1.1% and the hardware cost increase is 0.2% (Virtex-II device case).

Extraction Cost: The extraction o f the watermark within the FPGA layout is fast and

simple. We can use the design tool to load in the FPGA layout data after place and route,

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as well as the original design schematic files. Then we can use the search function of the

FPGA CAD tool to find the locations o f the cells we have used for watermarking from

schematic diagram. Then by using the embedding rules we can extract the watermark

information from the cells' layout locations. The time to extract 8 bits o f watermark from

the FIR filter layout is less than 5 minutes and no extra software is needed.

Probability o f Coincidence (Pu): This figure is decided by watermark length. For 128-bit

watermark, the probability o f coincidence is: l/(2A128)=3.4*10A(-38).

Security Strength: For anyone who wishes to detect/remove/modify/forgery the

watermark information, they have several ways to do the attack. The first way is to

observe the FPGA layout directly and try to find the watermark inside the FPGA layout.

This method is quite difficult with today's FPGA processing technology. The reason is by

using this method the optical microscope must be used to take the photos o f the FPGA

layouts or using reverse analysis CAD tools to analysis the FPGA layouts. But the optical

microscopes cannot easily be used to observe the layouts that are fabricated under 0.5um

technology, which is the observation limit of normal optical microscopes. (The

observation limit of optical microscopes is decided by the visible light's wavelength. By

using shorter wavelength's light, like x-ray, the observation limit o f the microscope can be

extended. But such kind of x-ray microscopes are much more expensive. For today's

FPGA technology, most products are fabricated using 0.13um technology and the most

advanced devices using 0.09um technology, like IBM and Xilinx's products.) Even the

attacker can find more advanced technology that allows them to observe the FPGA

layouts directly; they also cannot see the logics under 5 levels o f metal wirings. And not

like ASICs, the wiring o f FPGAs is naturally very messy, as we can see from the layout

after place and route. So technically the reverse engineering by optical observation of

FPGA layouts is really difficult.

The second way the attacker can select is to attack the FPGA programming data and try to

reverse out the logic netlist, do the place and route again, with new location constrains.

By this way they can remove the embedded watermark within FPGA layout. By doing so,

the attacker firstly need to break the 3-key 128-bit AES encryption algorithm. There is no

known efficient enough algorithm to break AES encryption algorithm so far. Even the

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attacker can find the keys and can recover the original FPGA programming data; they still

need to extract the logic netlist by using the FPGA programming binary data. Since the

FPGA programming data only provide the connection information of the FPGA, the

attacker need the detail format knowledge o f the FPGA bit-stream data to extract the logic

netlist from the FPGA programming bit -stream data.

The FPGA factories keep this kind of knowledge confidential and do not expose to the

public. And there is no hanker tool have been reported so far that can reverse the FPGA

programming data to logic netlist by 100%. Some tools can reverse the logic netlist from

FPGA programming bit-streams to 80% of the whole logic within reasonable computer

hours. And the rest 15% is very difficult to extract and the final 5% is nearly impossible

to extract.

Applied Area This method can be applied to FPGA implementations of DSP algorithms

Filter or DSP Algorithm Performance Degradation’. There will not be any filter

performance degradation, since we do not change the algorithm of the filter or DSP

algorithms.

Probability o f Detection Miss (Pm): From the watermark detection procedure, we can see

that the probability o f a detection miss is 0. Since by providing the complete design files

including the logic netlist and placement files, route files, the watermark extractor can

always extract the watermark by using the search and debug functions o f the FPGA

design tool.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 13 Comparisons Between FPGA Cell Location Watermarking and

State-of-art FPGA/ASIC Implementation Watermarking Methods
Using

Spare

LUT

Bit-stream

Data

Modifica

tion

Hierarchical

Watermark

ing

Watermark

ing by Using

Protocols

Finger-

mark-ing

Proposal

Two

Add Level Layout Layout RTL RTL Layout Layout

Embedding

Cost

Medium Medium High Medium High Medium

Design

Overhead

Medium Medium Medium Medium High Low

Extraction

Cost

Medium High High High Low Medium

Probability

of

Coincidence

Low Low Low Low Medium Low

Security Low High High Medium Low High

Applied

Area

FPGA FPGA ASIC

(digital)

ASIC

(digital)

ASIC

(mix-

signal)

FPGA

The proposed FPGA cell locations' watermarking scheme shows good watermarking

performance comparing with current ASIC/FPGA watermarking schemes. Since the

watermark is added at layout level, the lowest level o f FPGA design, the robustness o f

watermark has been improved. The design overhead is low since the watermarking

procedure is carried after the original design has been finished. The extraction cost is not

that high, because the person to extract the watermark can use the search function of the

FPGA design CAD tool. The probability o f coincidence is quite low due to the large

amount o f watermark information we can embed into the FPGA layout. And no extra

software is required for the watermark embedding and extraction, making this scheme fit

for companies wish to watermark their design without buying new software. All in all, the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proposed FPGA cell location's watermarking scheme shows good overall watermarking

performance and may be commercially used for protection of today's FPGA designs.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Summary o f Contributions and

Possible Future Work

In this thesis, two new watermarking schemes have been proposed. The first one is the

filter coefficient modification watermarking. This scheme embeds watermark information

into the filter's coefficients. The watermarked filter's coefficients are then embedded into

the FPGA design by hardwiring or ROM programming. The second proposal is the FPGA

layout cell locations' watermarking. This method embeds the watermark information into

the FPGA cells' layout location coordinates. The simulation results show that the both

schemes have relatively high performance and are very suitable for practical FPGA IP

copyright protection.

The main contributions can be summarized as follows:

• Have extended the still image watermarking method o f the pixel’s LSB

modification to filter and other DSP algorithms (at algorithm and lower levels).

We have shown that the new method has much high security strength since the

watermarked data can be hardwired or written into ROM.

• Have proposed a novel FPGA layout cell location watermarking scheme that can

be used for FPGA design IP protection. It has been shown by the simulation

results the proposed scheme has better watermarking performance, extremely low

overheads and high security strength, compared to the previous FPGA methods.

• Have made in depth state-of-art literature survey in the areas o f IP protection and

watermarking technology.

Future work may include ASIC layout watermarking, FPGA watermark embedding

optimization, printed circuit board (PCB) designs' protection, and FPGA/ASIC place and

route algorithms that integrate watermark embedding and optimization procedures.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References:
[1] G.C.Langelaar, I.Setyawan, R.L.Lagendijk, "Watermarking Digital Image and Video
Data, A State-of-the-Art Overview", IEEE Signal Processing Magazine, September 2000,
pp. 20-46

[2] F.A.P.Petitcolas, R.J.Anderson, and M.G.Kuhn, "Information Hiding-A Survey",
Proceedings o f the IEEE, Vol 87,No.7, July 1999, pp .1062-1078

[3] D.L.Irby, R.D.Newbould, J.D.Carothers, J.J.Rodriguez, and W.T.Holman, "Low
Level Watermarking of VLSI Design For Intellectual Property Protection", ASIC/SOC
Conference, 2000, Proceedings, 13th Annual IEEE International

[4] E.Charbon, "Hierarchical Watermarking in IC Design", In Proceedings, IEEE
Custom Integrated Circuit Conference, pp 295-298

[5] J.Lach, W.H.M.Smith, and M.Potkonjak, "Fingerprinting Techniques for Field-
Programmable Gate Array Intellectual Property Protection", IEEE Transactions on
Computer-Aided Design o f Integrated Circuits and Systems, Vol 20, No. 10, October,
2001,pp 1253-1261

[6] A.B.Kahng, J.Lach, W.H.Smith, S.Mantik, I.L.Markov, M.Potkonjak, P.Tucker,
H.Wang and G. Wolfe, "Constraint-Based Watermarking Techniques for Design IP
Protection", IEEE Transactions on Computer-Aided Design o f Integrated Circuits and
Systems, Vol 20,N o.10, October, 2001, pp. 1236-1252

[7] A.B.Kahng, S.Mantik, I.L.Markov, M.Potkonjak, P.Tucker, H.Wang and G.Wolfe,
"Robust IP Watermarking Methodologies for Physical Design", Design Automation
Conference 1998,Proceedings, pp. 782-787

[8] T.Van and Y.Desmedt, Department o f Computer Science, Florida State University,
"Cryptanalysis o f UCLA Watermarking Schemes for Intellectual Property Protection",
F.A.P. Petitcolas (ED.): I H 2002, LNCS 2578, 2003, pp. 213-225.

[9] A.Rashid, J. Asher, W.H.Mangione-Smith and M.Potkonjak, "Hierarchical
Watermarking for Protection o f DSP Filter Cores", IEEE 1999 Custom Integrated
Circuits Conference, pp. 39-42

[10] R.Chapman, T.S.Durrani, A.P.Tarbert, "Watermarking DSP Algorithms for System
On Chip Implementation", Signal Processing Division, Electronics, Circuits and Systems,
1999,Proceedings o fIC E C S’99, The 6th IEEE International Conference on, Volume 1, pp.
377-380,Vol 1.

[11] R.Chapman and T.S.Durrani, "IP Protection o f DSP Algorithms for System on Chip
Implementation", IEEE Transactions on Signal Processing, Vol 48,No.3, March 2000.

[12] E.Charbon, "Intellectual Property Protection Via Hierarchical Watermarking",
Cadence Design Systems Inc, San Jose, California, 1998

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[13] E.Charbon and I.Torunoglu, "Copyright Protection of Design Based on Multi Source
IPs", Computer-Aided Design, 1999,Digest o f Technical Papers, 1999 IEEE/ACM
International Conference, pp. 591-595

[14] E.Charbon and I.Torunoglu, "Watermarking Layout Toplogies", Design Automation
Conference 1999, Proceedings o f ASP-DAC 99, pp. 213-216,Vol 1.

[15] E.Charbon and I.Torunoglu, "Copyright Protection of Designs Based on Multi
Source DPs", Computer-Aided Design, Digest o f Technical Papers, IEEE/ACM
International Conference , pp. 591 - 595,1999.

[16] I.Hong, Synopsys Inc, M.Potkonjak, Department of Computer Science, University of
California, Los Angeles, CA, "Behavioral Synthesis Techniques for Intellectual Property
Protection"

[17] A.T.Abdel-Hamid, S.Tahar and E.M.Aboulhamid, "IP Watermarking Techniques:
Survey and Comparison", Proceedings o f the 3rd IEEE International Workshop on
System-on-chip fo r Real-Time Applications, 2003

[18] M.J.Wirthlin and B.McMurtrey, "IP Delivery for FPGAs Using Applets and JHDL",
Design Automation Conference, Proceedings, 39th,page 2-7, 2002

[19] G.Bollano, G.Cesana, S.Claretto, L.Licciardi, M.Parlini, M.Turolla, "Merging
Hardware and Software: Intellectual Property Cores for Internet Applications",
G.Bollano, S.Clarett, E.Filippi, A.Toriell, M.Turolla, Custom Integrated Circuits
Conference, Proceedings of the IEEE, pp. 537 - 540, 2000.

[20] J.Lach, W.H. M.Smith, M.Potkonjak, "Signature Hiding Techniques for FPGA
Intellectual Property Protection", Computer-Aided Design, 1998.ICCAD98, Digest o f
Technical Papers 1998, IEEE/ACM International Conference, 1998, pp. 186-189

[21] J.Lach, W.H.M.Smith, M.Potkonjak, "Robust FPGA Intellectual Property Protection
Through Multiple Small Watermarkings", Design Automation Conference,
1999,proceedings, 36th, pp. 831-836

[22] I.Torunoglu and E.Charbon, "Watermarking Based Copyright Protection of
Sequential Functions", IEEE Journal o f Solid-State Circuits, Vol 35,No3, 2000, pp. 434-
440

[23] A.L.Oliverira, "Robust Techniques For Watermarking Sequential Circuit Designs",
Design Automation Conference, 1999,Proceedings, 36th, 1999, pp. 837-842

[24] Virtex-II 1.5 V Field-Programmable Gate Arrays, Advanced Product Specification,
Xilinx 2001

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A Timing Report for the FIR Filter's Original Implementation

Release 4.2i - Trace E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

tree -e 3 -1 3 -xml top top.ned -o top.twr top.pcf

Design file: top.ned
Physical constraint file: top.pcf
Device, speed : xc2v250,-6 (ADVANCED 1.96 2002-01-02)
Report level: error report
Timing constraint: Default period analysis
16528 items analyzed, 0 timing errors detected.
Minimum period is 9.289ns._________________________________

Timing constraint: Default net enumeration
1726 items analyzed, 0 timing errors detected.
Maximum net delay is 4.441ns.

All constraints were met.
Data Sheet report:
All values displayed in nanoseconds (ns)
Setup/Hold to clock m ultiplierclk
 + + +

| Setup to | Hold to |
Source Pad elk (edge) | elk (edge) |
------------------+_-------------+.. ----------- +
multipler_sclr 2.836(R)| 0.660(R)|
xn<0> | 0.432(R)| 0.000(R)|
xn<10> | 0.350(R)| 0.000(R)|
x n < ll> j 0.169(R) 0.013(R)|
xn<12> j 0.846(R) 0.000(R)|
xn<13> 0.770(R)| 0.000(R)
xn<14> j 0.440(R)| 0.000(R)|
xn<15> | 0.085(R)| 0.097(R)
xn<l> | -0.319(R)| 0.501(R)|
xn<2> 0.281(R)| 0.000(R)|
xn<3> j 0.460(R)| 0.000(R)|
xn<4> | -0.567(R)| 0.749(R)|
xn<5> | -0.572(R)| 0.754(R)|
xn<6> j 0.563(R)| 0.000(R)|
xn<7> | -0.386(R)| 0.568(R)|
xn<8> j -0.151 (R)J 0.333(R)|
xn<9> j -0.119(R)| 0.301 (R)|

. + — + ..+

Setup/Hold to clock xlxn_150
 + + +

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Setup to | Hold to
Source Pad | elk (edge) | elk (edge) |
----------------- ------------+----- ------- +
xlxn_138<0> | 0.017(R)| 0.165(R)[
xlxn_138<10> | -0.008(R)| 0.190(R)|
xlxn_138<ll> -0.266(R)| 0.448(R)|
xlxn_138<12> | 0.670(R)| 0.000(R)|
xlxn_138<13> -0.438(R)| 0.620(R)|
xlxn_138<14> | 0.029(R)| 0.153(R)|
xlxn_138<15> -0.475(R)| 0.657(R)|
xlxn_138<l> | 0.299(R)| 0.000(R)|
xlxn_138<2> | -0.093(R)| 0.275(R)|
xlxn_138<3> | -0.340(R)| 0.522(R)|
xlxn_138<4> | -0.564(R)| 0.746(R)|
xlxn_138<5> | -0.334(R)| 0.516(R)|
xlxn_138<6> | 0.158(R)| 0.024(R)|
xlxn_138<7> | -0.385(R)| 0.567(R)|
xlxn_138<8> | -0.317(R)| 0.499(R)|
xlxn_138<9> | -0.116(R)| 0.298(R)|
xlxn_147 | 2.314(R)| 0.371(R)|
- ...+ - ----------- +------------- +
Setup/Hold to clock xn_load_clk

— — — — —— --------- 4*

Setup to | Hold to |
Source Pad | elk (edge) elk (edge)

.+------------- +_.----------- +
xlxn_39 | 0.184(R)| 0.000(R)|
xlxn_44 | -0.852(R)| 1.034(R)|
xlxn_45 | -1.138(R)| 1.320(R)|
xlxn_50 | -0.834(R)| 1.016(R)|
xlxn_52 -0.426(R)| 0.608(R)|
xlxn_54 | 0.186(R)| 0.000(R)|
xn<0> | 0.596(R)| 0.000(R)|
xn<10> | -0.359(R)| 0.541 (R)|
xn< ll> 0.456(R)| 0.000(R)|
xn<12> 1 -0.114(R)| 0.296(R)|
xn<13> | 0.397(R)| 0.000(R)|
xn<14> | 0.664(R)| 0.000(R)|
xn<15> | 0.592(R)| 0.000(R)|
xn<l> | 0.045(R)| 0.137(R)|
xn<2> | 0.731 (R)| 0.000(R)|
xn<3> | 0.751 (R)| 0.000(R)|
xn<4> | -0.380(R)| 0.562(R)
xn<5> | -0.179(R)| 0.361 (R)|
xn<6> | -0.378(R)| 0.560(R)|
xn<7> | -0.090(R)| 0.272(R)|
xn<8> | 0.146(R)| 0.036(R)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xn<9> | 0.190(R)| 0.000(R)|
xn_preload | 1.503(R)| 1.253(R)|
xn_serial_in | -0.008(R)| 0.190(R)|
---------------- -f---------------- t ---------- -h

Clock adder elk to Pad
— +-------------+
| elk (edge) |

Destination Pad| to PAD

yn<0> | 8.597(R)|
yn<10> | 8.855(R)|
yn<l1> | 8.671 (R)|
yn<12> | 8.921 (R)|
yn<13> | 8.560(R)
yn<14> | 8.405(R)|
yn<15> 1 9.125(R)|
yn<16> | 9.430(R)
yn<17> | 8.860(R)|
yn<18> | 8.736(R)|
yn<19> | 8.698(R)|
yn<l> | 8.633(R)|
yn<20> | 8.653(R)|
yn<21> | 8.586(R)|
yn<22> 1 9.175(R)
yn<23> | 8.519(R)|
yn<24> | 8.557(R)|
yn<25> | 8.612(R)
yn<26> | 8.697(R)|
yn<27> | 8.040(R)|
yn<28> | 8.620(R)|
yn<29> 8.536(R)|
yn<2> | 8.233(R)
yn<30> | 8.326(R)
yn<31> 8.988(R)|
yn<3> | 8.449(R)|
yn<4> | 8.567(R)
yn<5> | 8.701(R)|
yn<6> | 8.518(R)|
yn<7> | 8.333(R)|
yn<8> | 8.589(R)|
yn<9> | 8.346(R)

Clock to Setup on destination clock adder_clk
 + + + + +

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:RisejDest:Rise|Dest:Fall|Dest:Fall|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 + ----------- + ----------+ -----------+ ------------+

adder_clk | 5.1511 | | |
multiplier_clk | 5.431 j | | |
 + - -------------+ -------------+ -+ —+

Clock to Setup on destination clock multiplier_clk
 +-----------+--------- +---------- + ----------- +

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
- +-----------+ --------- + ---------- +-----------+
multiplier_clk | 9.3931 | | |
xlxn_150 | 3.003| | | |
xn_load_clk | 3.135| | | |
- - + --------------+ -----------+ -------------+ ---------------+

Clock to Setup on destination clock xlxn_150
 --------------- + -------------- + ---------------- 4 ------------------- 4-

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
-----------------f----------- -f----* -f-------- -f----------- +
xlxn_150 | 2.769| | | |
 + ------------+ ---------+ -----------+ ------------ +

Clock to Setup on destination clock xn_load_clk
 + ------------+ ---------+ -----------+ ------------ +

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
 - + ------------- + ---------- + ------------ + --------------+

xn_load_clk | 2.9911 | | |
 +---------+----------+-----------
WARNING:Timing:2554 - Clock nets using non-dedicated resources were found in this
design. Clock skew on these resources will not be automatically addressed during path
analysis. To create a timing report that analyzes
clock skew for these paths, run tree with the '-skew' option.
The following clock nets use non-dedicated resources:
xn_load_clk_IBUF adder_clk_IBUF multiplier_clk_IBUF
xlxn_150_IBUF

Timing summary:
Timing errors: 0 Score: 0
Constraints cover 16528 paths, 1726 nets, and 2993 connections (100.0% coverage)
Design statistics:
M inimum period: 9.289ns (M aximum frequency: 107.654MHz)
M aximum net delay: 4.441ns

Analysis completed Tue Mar 09 21:29:03 2004

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B Timing Report for the FIR Filter Implementation with 8-bit
Watermarking

Release 4.2i - Trace E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved,
tree -e 3 -1 3 -xml top top.ned -o top.twr top.pcf
Design file: top.ned
Physical constraint file: top.pcf
Device,speed: xc2v250,-6 (ADVANCED 1.96 2002-01-02)
Report level: error report

WARNING:Timing:2491 - No timing constraints found, doing default enumeration.
Timing constraint: Default period analysis
16528 items analyzed, 0 timing errors detected.
Minimum period is 9.392ns.___

Timing constraint: Default net enumeration
1726 items analyzed, 0 timing errors detected.
Maximum net delay is 4.441ns.

All constraints were met.
Data Sheet report:
All values displayed in nanoseconds (ns)
Setup/Hold to clock multiplier_clk
 + + +

| Setup to | Hold to |
Source Pad | elk (edge) | elk (edge) |

----------- +
m ultiplersclr | 2.836(R) 0.660(R)|
xn<0> | 0.432(R)| 0.000(R)|
xn<10> | 0.350(R)| 0.000(R)|
xn< ll> | 0.169(R)| 0.013(R)|
xn<12> 0.846(R)| 0.000(R)|
xn<13> 0.770(R) 0.000(R)|
xn<14> 0.440(R)| 0.000(R)|
xn<15> j 0.085(R) 0.097(R)|
xn<l> | -0.319(R)| 0.501(R)|
xn<2> | 0.281 (R)| 0.000(R)|
xn<3> | 0.460(R)| 0.000(R)|
xn<4> -0.567(R)| 0.749(R)|
xn<5> | -0.572(R) 0.754(R)|
xn<6> 0.563(R)| 0.000(R)|
xn<7> | -0.386(R)| 0.568(R)|
xn<8> | -0.151(R)| 0.333(R)|
xn<9> | -0.283(R)| 0.465(R)|

—4'——

Setup/Hold to clock xlxn_150

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— + --------------------- 4 ------------------------ f

Setup to j Hold to |
Source Pad | elk (edge) | elk (edge) |
------------------+~ ----------- +------- -------+
xlxn_138<0> | 0.017(R)| 0.165(R)|
xlxn_138<10> | -0.008(R)| 0.190(R)|
xlxn_138<ll> | -0.266(R)| 0.448(R)
xlxn_138<12> | 0.838(R)| 0.000(R)|
xlxn_138<13> | -0.423(R)| 0.605(R)|
xlxn_138<14> -0.025(R)| 0.207(R)|
xlxn_138<15> | -0.219(R) 0.401 (R)|
xlxn_138<l> | 0.299(R)| 0.000(R)|
xlxn_138<2> | -0.093(R)| 0.275(R)|
xlxn_138<3> | -0.424(R)| 0.606(R)
xlxn_138<4> | -0.564(R)| 0.746(R)|
xlxn_138<5> | -0.334(R) 0.516(R)
xlxn_138<6> | 0.158(R)| 0.024(R)|
xlxn_138<7> | -0.385(R)| 0.567(R)|
xlxn_138<8> | -0.317(R)| 0.499(R)|
xlxn_138<9> | -0.116(R)| 0.298(R)|
xlxn_147 | 1.321 (R)| 0.560(R)|

.+ + +

Setup/Hold to clock xn_load_clk
 + + +

| Setup to | Hold to |
Source Pad elk (edge) | elk (edge)
------------------------+. -----------------+ . . --------------- +
xlxn_39 | 0.184(R)| 0.000(R)|
xlxn_44 j -0.852(R)| 1.034(R)|
xlxn_45 | -1.138(R)| 1.320(R)
xlxn_50 j -0.834(R)| 1.016(R)|
xlxn_52 j -0.426(R)| 0.608(R)|
xlxn_54 j -0.319(R)j 0.501 (R)|
xn<0> | 0.596(R)| 0.000(R)|
xn<10> | -0.359(R)| 0.541 (R)|
x n < ll> | 0.456(R)| 0.000(R)|
xn<12> j -0.114(R)| 0.296(R)|
xn<13> | 0.397(R)| 0.000(R)|
xn<14> | 0.664(R)| 0.000(R)
xn<15> | 0.592(R)| 0.000(R)|
xn<l> | 0.045(R)| 0.137(R)|
xn<2> | 0.731 (R)| 0.000(R)
xn<3> j 1.185(R)| 0.000(R)|
xn<4> | -0.380(R)| 0.562(R)|
xn<5> | -0.179(R)| 0.361 (R)|
xn<6> j -0.378(R)| 0.560(R)|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xn<7> | -0.090(R)| 0.272(R)|
xn<8> | 0.146(R)| 0.036(R)|
xn<9> | 0.156(R)| 0.026(R)|
xn_preload | 1.675(R)| 1.253(R)|
xn_serial_in | -0.008(R)| 0.190(R)|
 +-------------+------------ +

Clock adder_clk to Pad
 +------------- +

| elk (edge)|
Destination Pad| to PAD

.+------------ +
yn<0> | 8.597(R)|
yn<10> | 8.855(R)|
yn<l1> | 8.671(R)|
yn<12> | 8.921 (R)|
yn<13> | 8.560(R)
yn<14> | 8.405(R)|
yn<15> 1 9 .125(R)|
yn<16> 9.430(R)|
yn<17> | 8.860(R)|
yn<18> | 8.736(R)
yn<19> | 8.698(R)|
yn<l> | 8.633(R)|
yn<20> | 8.653(R)|
yn<21> | 8.586(R)|
yn<22> 1 9.175(R)|
yn<23> | 8.519(R)|
yn<24> 8.557(R) j
yn<25> | 8.612(R)|
yn<26> | 8.697(R)|
yn<27> | 8.040(R)|
yn<28> | 8.620(R)|
yn<29> | 8.536(R)|
yn<2> | 8.233(R)|
yn<30> | 8.326(R)|
yn<31> | 8.988(R)|
yn<3> | 8.449(R)|
yn<4> | 8.567(R)|
yn<5> | 8.701(R)|
yn<6> | 8.518(R)j
yn<7> | 8.333(R)|
yn<8> | 8.589(R)|
yn<9> | 8.346(R)|

.+ +

Clock to Setup on destination clock adder_clk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

------------------------------+ ----------------- + ------------------+ ------------------ -f--------------------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
 +---------- + ---------- + ---------- + -----------+
adder_clk | 5.1511 | | |
multiplier_clk | 5.4311 | | |
 +----------+----------+----------+---------- +

Clock to Setup on destination clock multiplier_clk
 + ---------- + ---------- + ---------- +-----------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
 +----------+----------+----------+---------- +
multiplier_clk | 9.3931 | | |
xlxn_150 | 3.003| | | |
xn_load_clk | 3.187| | | |
 +----------+----------+----------+---------- +

Clock to Setup on destination clock xlxn_150
 + ---------- + ---------- + ---------- +-----------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
 +----------+----------+----------+---------- +
xlxn_150 | 2.787J | | |
 +----------+----------+----------+---------- +

Clock to Setup on destination clock xn_load_clk
 +----------+---------- + ---------- + -----------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
 + ---------- + -----------+ -----------+ ----------- +
xn_load_clk | 2.804| | | |
------------------ 4-— -----“I*— —-----+ ---------- 4-— --------4-
WARNING: Timing: 2554 - Clock nets using non-dedicated resources were found in this
design. Clock skew on these resources will not be automatically addressed during path
analysis. To create a timing report that analyzesclock skew for these paths, run tree with
the '-skew' option.The following clock nets use non-dedicated resources:
xn_load_clk_IBUF adder_clk_IBUF multiplier_clk_IBUF
xlxn_150_IBUF
Timing summary:__
Timing errors: 0 Score: 0
Constraints cover 16528 paths, 1726 nets, and 2995 connections (100.0% coverage)
Design statistics:
M inimum period: 9.392ns (Maximum frequency: 106.474MHz)
M aximum net delay: 4.441ns
Analysis completed Tue Mar 09 21:43:53 2004

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C Place and Route Report Before Watermarking of FIR Filter

Release 4.2i - Par E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.
Tue Mar 09 21:26:49 2004
par -f _par.rsp

Constraints file: top.pcf
Loading design for application par from file par_temp.ncd.

"top" is an NCD, version 2.37, device xc2v250, package csl44, speed -6
Loading device for application par from file '2v250.nph' in environment
D:/Xilinx.
Device speed data version: ADVANCED 1.96 2002-01-02.
Device utilization summary:
Number o f External IOBs 78 out o f 92 84%
Number o f LOCed External IOBs 0 out o f 78 0%

Number o f MULT 18X18s 8 out o f 24 33%
Number of SLICEs 488 out of 1536 31 %

Overall effort level (-ol): 5 (set by user)
Placer effort level (-pi): 5 (set by user)
Placer cost table entry (-t): 1
Router effort level (-rl): 5 (set by user)
Extra effort level (-xe): 0 (set by user)

Starting Clock Logic Placement. REAL time: 12 secs
Finished Clock Logic Placement. REAL time: 12 secs
Automatic resolution of clock placement was successful.
It was not necessary to constrain the placement o f any o f the logic driven by
the global clocks with the current clock placement.______________________

Automatic clock placement completed.

Starting clustering phase. REAL time: 13 secs
Finished clustering phase. REAL time: 15 secs
Starting Mincut Placer. REAL time: 15 secs
Finished Mincut Placer. REAL time: 16 secs
Dumping design to file top.ned.
Dumping design to file top.ned.
Total REAL time to Placer completion: 54 secs
Total CPU time to Placer completion: 53 secs
0 connection(s) routed; 2993 unrouted active, 7 unrouted PWR/GND.
Starting router resource preassignment
Completed router resource preassignment. REAL time: 55 secs
Starting iterative routing.
Routing active signals.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End of iteration 1
3000 successful; 0 unrouted; (0) REAL time: 1 mins 15 secs
Total REAL time: 1 mins 15 secs
Total CPU time: 1 mins 15 secs
End o f route. 3000 routed (100.00%); 0 unrouted.
No errors found.
Completely routed.

This design was run without timing constraints. It is likely that much better
circuit performance can be obtained by trying either or both o f the following:

- Enabling the Delay Based Cleanup router pass, if not already enabled
- Supplying timing constraints in the input design

Total REAL time to Router completion: 1 mins 16 secs
Total CPU time to Router completion: 1 mins 16 secs
Generating PAR statistics.
The Delay Summary Report
The Score for this design is: 169
The Number o f signals not completely routed for this design is: 0
The Average Connection Delay for this design is: 1.182 ns
The Maximum Pin Delay is: 4.441 ns
The Average Connection Delay on the 10 Worst Nets is: 2.576 ns

Listing Pin Delays by value: (ns)
d < 1.00 < d <2.00 < d < 3.00 < d < 4 . 0 0 < d < 5 . 0 0 d>=5 . 00

1253 1421 223 93 10 0

Dumping design to file top.ned.

All signals are completely routed.

Total REAL time to PAR completion: 1 mins 24 secs
Total CPU time to PAR completion: 1 mins 23 secs

Placement: Completed - No errors found.
Routing: Completed - No errors found.

PAR done.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D Place and Route Report of FIR Filter with 8-bit Watermark

Release 4.2i - Par E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Tue Mar 09 21:38:33 2004

par -f _par.rsp

Constraints file: top.pcf

Loading design for application par from file partem p.ncd.
"top" is an NCD, version 2.37, device xc2v250, package csl44, speed -6

Loading device for application par from file '2v250.nph' in environment
D:/Xilinx.
Device speed data version: ADVANCED 1.96 2002-01-02.

Device utilization summary:
Number o f External IOBs 78 out o f 92 84%
Number o f LOCed External IOBs 78 out o f 78 100%
Number o f MULTI 8X18s 8 out o f 24 33%
Number of SLICEs 489 out of 1536 31%

Overall effort level (-ol): 5 (set by user)
Placer effort level (-pi): 5 (set by user)
Placer cost table entry (-t): 1
Router effort level (-rl): 5 (set by user)
Extra effort level (-xe): 0 (set by user)

Starting Clock Logic Placement. REAL time: 23 secs
Finished Clock Logic Placement. REAL time: 23 secs
Automatic resolution o f clock placement was successful.
It was not necessary to constrain the placement o f any o f the logic driven by
the global clocks with the current clock placement.______________________

Automatic clock placement completed.

Dumping design to file top.ned.
Starting Optimizing Placer. REAL time: 29 secs
Optimizing
Swapped 0 comps.
Xilinx Placer [1] 301752 REAL time: 30 secs
Finished Optimizing Placer. REAL time: 30 secs
Dumping design to file top.ned.
Total REAL time to Placer completion: 31 secs
Total CPU time to Placer completion: 30 secs

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 connection(s) routed; 2995 unrouted active, 7 unrouted PWR/GND.
Starting router resource preassignment
Completed router resource preassignment. REAL time: 32 secs
Starting iterative routing.
Routing active signals.

End o f iteration 1
3002 successful; 0 unrouted; (0) REAL time: 52 secs
Total REAL time: 52 secs
Total CPU time: 52 secs
End of route. 3002 routed (100.00%); 0 unrouted.
No errors found.
Completely routed.

This design was run without timing constraints. It is likely that much better
Circuit performance can be obtained by trying either or both of the following:

- Enabling the Delay Based Cleanup router pass, if not already enabled
- Supplying timing constraints in the input design

Total REAL time to Router completion: 53 secs
Total CPU time to Router completion: 52 secs
Generating PAR statistics.

The Delay Summary Report
The Score for this design is: 167

The Number o f signals not completely routed for this design is: 0
The Average Connection Delay for this design is: 1.179 ns
The Maximum Pin Delay is: 4.441 ns
The Average Connection Delay on the 10 Worst Nets is: 2.463 ns

Listing Pin Delays by value; (ns)
d < 1.00 < d <2.00 < d <3.00 < d < 4 . 0 0 < d < 5 . 0 0 d>=5.00

1251 1425 225 91 10 0

Dumping design to file top.ned
All signals are completely routed.
Total REAL time to PAR completion: 1 mins
Total CPU time to PAR completion: 59 secs
Placement: Completed - No errors found.
Routing: Completed - No errors found.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E Layout of Comb Filter Before and After Watermarking
\ E* look itfndow tjetp

□|g|BM U ;M iJ£i cslB|ini|B|i5| Kl^l^wi^ltaiol *?j - HH-MIUM n ib ix M aJ (a

laaani

»

• * . • ,->■ - J V - v r l & P ' • } /< ~

1

For Help, press FI |xc2v250-6csl44 fas Logic Changes
j ® C3 33 ■> II |*»nx-Pro|... I jgjwindows ... | Qxilira CORE... | gjtooWm...)|9i!«nxB>GA ..; . ■j4*<l«te®U ■ 20:31

Si £»e £® »ew. loots »ndow Belp_ ■ ._v ■■■'"■_.___ ..V . »•_____________ (________-_Jg]-gJ
D|Gg[H[g| M El i M ralUrola|&f>:j6i.|g iix l 1̂ B l o f x?i! l-lw l-M Is oj |^Ib1% al a IIX |

IH ig ftfiiitS t}& }M iai£K |H,;i a«BMr<»glwj

I
lliSiSSS. u?'^i!E l|EsS |$a!Ifiigjgjf ii t 5 |.-f«a»daK Hi
1 " ir ii? S S 'vi a

fc w n trn «; - s m I H I‘r l i l i if ̂ Ieiwuhmw ■■(
aBw; Sgtetigggp®®

nsdeftr 3 3 fSaHgs&isj
I i h m * t
JK p s j -rin iiiH iiD fii

w m ^EisaS rg m s a s gB nh
l l l l i l l ‘HiSi,s-M IB B liiS II

m2v2SO-6cs!m !No logic Changes>, p re s s P i

e » m * | ; f i s j 2 3 > 1< ig)th<*i_... | f > g » n d .. . | ^ ,a w b j .. . | j%ccmu„, | ‘f j « f t r g s | g > » w B .: . | r» x m » -... | |a t« n » r .. . a * * e - l f i m S ' t e B 20* ~

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix F Layout of CDMA Match Filter Before and After Watermarking
urflllfclJJAU.IU.W.■■■■........ .JaJxJ
91 EH® Ed* S»" xoob Bfindow Udo ' -IJI xl

D l t g j a i a i <l mil g I □;! ■ u n i i i s I s i : . < | ^ [^ ! x i » j m o i w | - l - l w u f s s o l [^ I s l s M A l I I I

p i ») * i i p i M * : * 2 nr. * .rf * ft« »i8!p*ifiw s:- -iSra™?»n w ee

im §w*
S“ 'f I S *1^!'!! ■ I' i iai<,lill%il

* *n̂Hmmi

fTil£®lS8SSHp£*.trr* *»r « - ______...

$ II jP!!W > -rgrI**:* *iKiwji*is?
P <Mpi|Ci»iHMnil«; SBl̂ llllPMlS |

i i i i i f f iisiis»

i l i i l l l 3^
M p S ^ .W W HtS&isiififcSS id ISPMFJ
g |S lB ?tt!S S !!5 l4 .-

l l t p f pjm
H ^ n n K g H i» l s i i a » » W W > l * « W I

i l l l l l l l im 'J 'T w

n m : t i
mtmm

Hwi jSsiS ;i [ggs5?5£*

viK̂ :|s i = 4 E:?.s « :•■■•[
«jrt's!i04<ar

• « * ! * ; : * 3 =5=1 = i t
f i i S i ^ T - « < ! » - ! - I * l * 5 r ; - , . - ; . , t ; j J - X i t w i i j----------------------------

y - f - j b ‘

_ * S!W8i tr-S'-i-ti*'
a ^ ® W i ^ 3 ^ w * i = ; 5 3 $ r -HSLJ'ias a? •.-•'•.■rm-J *Mffl TlBMgieiwS- JaaSHil

Zl

For Help, press F t !*cv300-6bg432 No Logic Changes

I j S C j l ^ ii3 IM | i | » X * n x - P r o je c t . . . I jg w in d o w s | '3 ld a ta jw ld th _ v e . . . | ^ d e m o _ b o e rc l_ o ... | jQ R g O e m o b o a r.. . | |^ f tx ln x F P < S A e d ... ® 22:09

XitiitK FPGA Editor • m fjic d • [A rray I]
9 1 & • E<* i “ * I " * BSndow HrtJ

DMIBISI HaM alB|B|a|ia| xl |̂gilXl«i.|[rilol *11 -l-IH-^-fss^ll^lalgBilAllA 1

' - I t f l X(
. U l x l

B a n r r u
iSHPfiSMf vamv_U P 3. ------- . . . „ ___ ,_....

iiis^wis iiS »h- i»•niiii
S s iii& n

k sssh wm

Hi-r - ;-ir31“ l î ’̂û Tn

sisrai ■
-n t̂ f̂

?

p|*
r i i * iF i?

' m * f r ; p iy - ; « « * < - i p i f ^

ifplSbaiPiiSfaiii*

s.nnpiww
§S iI«!8M p?.iI!3

r r f J M T i f c | g l!!SaBaii,,!!!î l*!FiB!li|S| psspsi^ii-irsr

P'MISIIMS^MSm-w

info

For Help, press F I |xcv300^Sbg432 iNo Logic Changes

I 0 2^3 ^ 3 ► j | | » X in x - P r o j . . . I ^ W in d o w s ... [' l j jd a ta _ w id th ... | f f ig f r n a j j la c c . . . } Fig D em ob ,., | C jw f f jk » w | [^ X « n x F P € A ^ r 22 :39

7 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix G Layout of DCT Before and After Watermarking
Edt SJew looteMndowJfl*

□|cg|H|sl M na|g|^l tBiBlmiEl î xiaMMlfrlialoi wj
.IJIxl

I H i J s f j & J N I 5 I % p i | a

— iiaL ipsm fM sF -—
----- |;.B . —g^jSSW

Bill

S 'a .:»« I» s trs 'S£i -i£*£-<*»«
ii‘-j aa; i iit\ ;« • y ̂ $

"iS fi l5
ghiMO 'i M i ' j g g fpta,:fa'7aiaai »wmt

gagam
« * !* !» MS
ilIHBlSUI! IjJrta-TflWHa If *‘2 jp £Ei»& a odaujM'jiBidiû imUMMt-rn-ann. lafcim-i 1

•ipgsf SlliPiS®® ' X b 1 ~3.d

For Help, pfo«.Ft r : !xc2v250-6csm Sno logic Chenges

lJ> fflH l|| [^ Q BtliH II SQApoe... | fe3<ltt-0f0 | Ejjcdna... 1 £%*}... I '_ jfr_ w a...| |»am ... | gflcornfc... l l^X O nx .. 20:55

■ I J I X I
m f f lm m B H H E B m a a n B e e i™ ™ * ™ ™ ™ * ™ ™ ™ * * * * * * *

Be E* »ew Xool* Mndow tWo _______ .______ ________________ ;______________
D |c s |H | a | x | Ell g | -»| t B l B |B l l l - |^ | X l e L K I X l ^ l B l O l x ? || - I - P hI-a-E F o r . I S I B I S b :! AI |C T

For Help, press Fl |xc2v2S0-6cs144 Ino Logic Changes

j® 55*|j] >■ i; B^thesb... | igjAppe... j ;j|dct-orq 1 ggcdroa... | gyMB... | £3Hrj*>...| |»MMnx ... | gQdct_b... IlgftXinx ... 21:00

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris
Name:
Place o f Birth:
Year o f Birth:
Education:

Wei Dai
Wuxi, China
1974
M.A.Sc, University o f Windsor,
Canada 2002-2004
B.Eng, Nanjing University o f Science
and Technology, Nanjing, China,
1992- 1996

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	IP protection for DSP algorithms' FPGA implementation.
	Recommended Citation

	tmp.1617815231.pdf.xz6t_

