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A Survey on Acoustic Positioning Systems for
Location-Based Services

Joaquı́n Aparicio, Member, IEEE, Fernando J. Álvarez, Senior Member, IEEE, Álvaro Hernández, Senior
Member, IEEE, and Sverre Holm, Senior Member, IEEE

Abstract—Positioning systems have become increasingly pop-
ular in the last decade for location-based services such as
navigation and asset tracking and management. As opposed
to outdoor positioning, where the Global Navigation Satellite
System became the standard technology, there is no consensus
yet for indoor environments despite of the availability of different
technologies, such as radiofrequency, magnetic field, visual light
communications, or acoustics. Within these options, acoustics
emerged as a promising alternative to obtain high-accuracy
low-cost systems. Nevertheless, acoustic signals have to face
very demanding propagation conditions, particularly in terms of
multipath and Doppler effect. Therefore, even if many acoustic
positioning systems have been proposed in the last decades, it
remains an active and challenging topic. This paper surveys the
developed prototypes and commercial systems that have been
presented since they first appeared around the 1980s, to 2022.
We classify these systems into different groups depending on the
observable they use to calculate the user position, such as the
Time-Of-Flight, the Received Signal Strength, or the acoustic
spectrum. Furthermore, we summarize the main properties of
these systems in terms of accuracy, coverage area and update
rate, among others. Finally, we evaluate the limitations of these
groups based on the link budget approach, which gives an
overview of the system’s coverage from parameters such as source
and noise level, detection threshold, attenuation, and processing
gain.

Index Terms—acoustic positioning systems; link budget; RSS;
spread-spectrum; Time-Of-Flight; ultrasounds;

I. INTRODUCTION

THE Global Navigation Satellite System (GNSS) provides
nowadays a standard positioning solution for outdoor

environments. However, it does not work properly indoors, due
to the high attenuation and complex reflections experienced
by the transmitted electromagnetic waves in buildings. As
people nowadays can spend up to around 90% of their time
indoors [1], [2], this situation strengthens the need for a similar
solution to that available outdoors. As a consequence, in-
door positioning systems and indoor Location-Based Services
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(LBS) are experiencing a growing interest by both academics
and industry: A recent market report predicted a compound
annual growth rate of 22.5% between 2020 and 2025 [3].
This growing interest has been observed in a variety of use
cases, such as: healthcare, where they increase productivity
by locating more efficiently people or assets [4], [5]; retail
stores, where they are used to evaluate shopper behavior, mar-
keting techniques and inventory management [6], [7]; provide
navigation of people and autonomous vehicles in search and
rescue missions [8], [9]; cargo tracking and fleet management
in logistic and transportation services [10], [11]; provide way-
finding, multimedia guides and content recommendation for
augmented reality applications in museums [12], [13]; smart
environments, where it can support ambient assisted living in
addition to navigation guidance [14], [15]; and more recently,
contact tracing applications in a pandemic, aiding the health
services by automatically identifying close contacts [16], [17].

In all these cases, an underlying positioning system is
required to calculate the user/target position. Currently, there
are different technologies that have been employed to that
end, such as Wi-Fi [18]–[20], Bluetooth [21]–[23], Ultra-
Wide Band (UWB) [24]–[26], Radio Frequency Identifica-
tion (RFID) [27]–[29], cell towers [30]–[32], camera [33]–
[35], visible light communications (VLC) [36]–[38], Inertial
Measurement Units (IMU) [39]–[41], magnetic fields [42]–
[44] and acoustics [45]–[47]. All these technologies have
advantages and disadvantages, and in general, different con-
siderations about the desired accuracy, deployment cost, in-
frastructure availability, area to monitor, privacy concerns and
the availability of local companies providing that service, will
decide for one particular technology.

Systems based on radiofrequency (RF) waves such as Wi-
Fi, Bluetooth or cell towers, have a long useful range and can
benefit from existing infrastructure, so they can be interesting
for LBS in large environments. However, they usually have
position errors around a few meters [48], and they can locate
the target in a different room or floor, as RF waves propagate
through walls. Within RF systems, UWB can provide better
accuracies, but their dedicated infrastructure can be costly
and be affected by scalability issues [49]. Acoustic systems
can also provide high positioning accuracy, as the nominal
sound speed in air of 343 m/s is six orders of magnitude
smaller than the speed of light, which translates to lower
errors when converting time measurements into distances.
These systems usually work at frequencies between some kHz
and 50 kHz, so the required sampling frequencies are not
as high as those required for RF systems, reducing the cost
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of the associated hardware to be deployed. Moreover, micro-
phones had been readily available in Commercial Off-The-
Shelf (COTS) smartphones for some time, as opposed to the
lack of embedded UWB sensors in those devices, so nowadays
people do not need to carry any additional dongles. Therefore,
acoustic positioning systems are considered to be less costly
to deploy than UWB systems. Another advantage of acoustic
systems with regard to RF systems is that acoustic waves
do not propagate through walls, so it is easy to distinguish
between adjacent rooms and floors. Also, they do not suffer
from challenging light conditions, as opposed to camera-based
and VLC systems, and they have no position drift, like IMU
systems [49]. Systems based on the measurement of the Earth
magnetic field are sensitive to changes in the operation area,
such as adding or removing metal structures [49], which have
no effect on acoustic systems. All in all, acoustic positioning
systems are very versatile and usually provide better accuracy
than RF systems, including easy room and floor identification,
so they are particularly relevant when accuracy is the most
important factor, as can be precise navigation of unmanned
vehicles or unequivocal room presence.

Nevertheless, acoustic positioning systems also have disad-
vantages:

• The small sound speed means that these systems are more
sensitive to the Doppler effect caused by the movement
between emitter and receiver.

• Multipath is originated by the nature of wave propagation
and the corresponding multiple reflections in a confined
environment. Its influence depends on the complexity of
the room.

• The high absorption ir air limits the range between
emitters and receivers.

The first two effects worsen the performance of acoustic
positioning systems, and thus, some of the latest research
deal with the mitigation of these phenomena [50]–[52]. The
high absorption experienced by acoustic waves implies that
more beacons are needed to provide enough coverage in large
environments, compared to RF systems.

A. Design considerations for acoustic indoor positioning sys-
tems

There are different requirements that must be taken into
account when designing an acoustic indoor positioning system.
The most relevant ones are:

• Synchronization: Some systems require all nodes (emit-
ters and receivers) to be synchronized, whereas others do
not. Synchronized systems use additional technologies,
such as RF communication links, so all nodes are aware
of the transmission times and identity of the transmitters.
These systems calculate the Time-Of-Flight (TOF) of the
acoustic signal as the difference in the arrival times of
the acoustic signal relative to a synchronization pulse,
or a known emission time given by the RF link. Non-
synchronized systems do not require the target to be syn-
chronized with the other nodes. As these systems cannot
calculate TOF, they use one arrival as a reference, and
calculate Time-Difference-Of-Arrival (TDOA) instead.

• Accuracy: This is the error in the obtained position with
regard to a ground truth. A high accuracy (low error)
is obviously desired, although how much is needed is
determined by the application. The accuracy depends
on the acoustic frequency, and on the distribution of
transmitters in the environment and the position of the
receiver, an effect that is known as Dilution of Precision
(DOP) [53].

• Update rate: It is the number of position updates per
second, given in Hz. A high update rate is required for
systems that have to track continuously a moving target,
but an asset management system can operate with a lower
update rate, since the targets will not often move. There
is a trade-off with power consumption.

• Coverage area: This is the size of the system operating
area, which in indoor environments is commonly the
room size where the system is deployed. The actual cov-
erage is affected by the DOP, and therefore, it depends on
the number of transmitters/receivers and their distribution
over the environment.

• Privacy: Positioning systems can be classified into two
groups, as illustrated in Fig. 1. In centralized positioning
systems (Fig. 1a), a central unit calculates the position of
the user to be located. In privacy-oriented systems (Fig.
1b) the user calculates the position, without communi-
cating it to a central server. The intended application,
together with compliance with data privacy laws, will
decide: An asset management and tracking system in
a warehouse should be centralized, whereas an LBS
for people in a department store could be designed as
privacy-oriented to safeguard the user’s privacy.

• Deployment effort: The desired coverage area and the
measurement technique will influence how costly, both
economically and in time, it is to deploy and maintain
the system.

• Multi-user capability: The total number of users that
can be located depends on the nature of the transmitter
(the infrastructure or the users), and on additional tech-
niques and communication protocols that can be applied,
such as assigning different codes to different targets
(Code-Division Multiple Access, CDMA), or assigning
them different time slots (Time-Division Multiple Access,
TDMA).

• Scalability: Depending on the measurement technique
and desired accuracy, it can be more or less costly to
expand the system to new areas. For example, a system
offering room-level localization based on received signal
strength typically needs one beacon per room, so it is
easier to extend to more rooms than a more accurate
system based on TOF, as they need several beacons per
room.

B. Survey methodology

Here we review acoustic positioning systems in the context
of LBS for indoor and outdoor environments, developed by
both academic institutions and the industry, between the 1980s
until 2022. Although there are several reviews of indoor
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Figure 1: Illustration of a centralized (a), and a privacy-
oriented (b) localization system.

positioning systems [54]–[71], they cover different technolo-
gies, so they do not provide a more in-depth coverage of
acoustic systems, compared to this work. Other reviews have
focused on acoustic sensing in a broad sense [72], but they
have the same issue as acoustic indoor localization is one
application among many. The closest review that we have
found is [47], which categorized acoustic indoor localization
systems into two main groups, absolute and relative range
systems. The authors focused on the different measurement
techniques rather than on performance, so no information
was given about key figures of merit such as coverage area,
update rate or accuracy. As opposed to the aforementioned
reviews, we focus here on the performance provided by the
positioning systems. In order to do so, we consider only
those systems in which enough information is given about the
design, operation, and evaluation by means of experimental
results. We make an exception for commercial systems, as
they typically do not provide detailed information about signal
design or experimental results. Nevertheless, we believe they
should be included in this survey, as they are relevant for
the field, so we gather them into their own section. As
we focus on LBS applications, this review does not include
acoustic systems designed for other applications such as sound
source localization [73], [74], Simultaneous Localization and
Mapping (SLAM) [75], [76], human-computer interfaces [77]–
[79], motion-capture [80], [81] or collision avoidance [82].

We classify the acoustic positioning systems into different
groups, based on which observed magnitude, or observable,

has been used to calculate the position. The most common
observables are TOF, Received Signal Strength (RSS), and
the acoustic spectrum, although there are other observables
that can be leveraged too. We think that this structure gathers
positioning systems that employ similar algorithms, and that
exhibit similar advantages and disadvantages. Inside each
group, we follow a coarse chronological order and we describe
the main features of the systems, the experimental design
and the provided results, so the reader can put these results
into context. At the end of each group, a table summarizes
some important properties, such as update rate and accuracy,
when this information is available. Some of these properties,
such as the accuracy, have no consensus when reported in
the literature. Therefore, we specify the default criteria for
each table, and annotations indicate when a different figure
of merit is used. By default, area refers to room size, unless
specified otherwise. As for privacy, we consider the intended
final system and not the prototype status, which in many cases
are evaluated on a computer. Additionally, we compare the
expected coverage of each group based on the link budget,
which relates such performance with magnitudes such as
source level, system bandwidth, and noise level.

Section II covers systems based on TOF measurements,
whereas RSS systems are reviewed in Section III. Systems that
use the acoustic spectrum and other observables are gathered
into Section IV, whereas commercial systems are described in
Section V. Section VI compares the different groups based on
their link budgets, and Section VII gathers the lessons learned
and main challenges that remain to be solved. Table I gathers
the main abbreviations that have been used in this work.

II. TIME OF FLIGHT

The measurement of TOF to or from different beacons
has been the most exploited technique to calculate the target
position in indoor environments. The TOF is the time it
takes for the transmitted signal to reach the receiver, and it
depends on the distance between the two, and the wave speed.
The idea of sending ultrasonic pulses for TOF estimation
can be traced back to the 1970s, where spark generators
were used in ultrasonic digitizing systems [83]. This idea
was later popularized with the introduction of the pulse-echo
systems from Polaroid and Yodel Technologies [84], [85].
These systems measured the round-trip TOF, from which the
TOF could be obtained just dividing by 2. One of the earliest
examples was presented in 1986, and aimed to localize the
end-effector of a robot in an industrial environment, up to a
range of 3 m [86].

To obtain the TOF, a synchronization between the trans-
mitter and receiver is assumed. This approach requires a
minimum of 3 beacons to calculate the 3D position of the
target. If no synchronization is available, a positioning system
that consists of many beacons can use one of them as a time
reference, and calculate instead the TDOA. Unsynchronized
systems therefore require one extra beacon to calculate the
target position, compared to synchronized systems. Fig. 2
shows a transmission/reception example for a synchronized
system, where the transmitted signal is shown in blue, and
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Table I: Main abbreviations.

Abbreviation Meaning
ADC Analog-to-Digital Conversion
AOA Angle-Of-Arrival
BLE Bluetooth Low Energy
BPSK Binary Phase-Shift Keying
CCK Complementary Code Keying
CDMA Code-Division Multiple Access
COTS Commercial Off-The-Shelf
CSMA Carrier-Sense Multiple Access
CSS Complementary Set of Sequences
DOA Direction-Of-Arrival
DOP Dilution of Precision
DSSS Direct-Sequence Spread Spectrum
EKF Extended Kalman Filter
FDMA Frequency-Division Multiple Access
FFT Fast Fourier Transform
FHSS Frequency-Hopping Spread Spectrum
FPGA Field-Programmable Gate Array
FSK Frequency Shift Keying
GCC-PHAT Generalized Cross-Correlation with Phase Transform
GNSS Global Navigation Satellite System
ID Identifier
IEKF Iterated Extended Kalman Filter
IFW Interference-Free Window
IMU Inertial Measurement Unit
LBS Location-Based Services
LED Light-Emitting Diode
LFM Linear Frequency Modulation
LOS Line-Of-Sight
LPS Local Positioning System
LS Loosely Synchronous
LTE Long-Term Evolution
MFCC Mel-Frequency Cepstral Coefficients
MSE Mean Squared Error
MUSIC Multiple Signal Classification
NLOS Non-Line-Of-Sight
OFDM Orthogonal Frequency-Division Multiplexing
OOK On-Off Keying
PDA Personal Digital Assistant
PDR Pedestrian dead-reckoning
PLL Phase-Locked Loop
QPSK Quadrature Phase-Shift Keying
RF Radio-frequency
RFID Radio-Frequency Identification
RFNN Region-Feature Neural Network
RH Relative humidity
RMS Root Mean Square
RMSE Root-Mean-Square Error
RSS Received Signal Strength
RTOF Round-trip Time-Of-Flight
SLAM Simultaneous Localization and Mapping
SNR Signal-to-Noise Ratio
SPL Sound Pressure Level
SSID Service Set Identifier
TDMA Time-Division Multiple Access
TDOA Time-Difference-Of-Arrival
TOF Time-Of-Flight
USB Universal Serial Bus
UWB Ultra-Wide Band
VLC Visible Light Communication
WLAN Wireless Local Area Network

the received signal is depicted in red. The TOF between them
is approximately 3.5 ms. The TOF/TDOA is then converted
into distance by multiplication with the sound speed, which
depends primarily on temperature, and to a lesser extent on
humidity, pressure, and frequency, and these variations may
need to be compensated for. Appendix A will describe this
dependence in more detail, but a nominal value is 343 m/s
for a temperature of 20◦C. After the calculation of ranges, the

target position is commonly obtained by different techniques,
such as multilateration or triangulation [87], [88] or signa-
ture matching (fingerprinting) [89]. Alternatively, the position
equations can be solved by non-linear least squares algorithms
[90], [91], or by a Kalman filter [92].
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Figure 2: Plot of normalized amplitudes for a transmitted
40 kHz pulse of 16 periods (blue), and the received echo (red),
measured with an Agilent DSO6014A oscilloscope with 8-bit
resolution.

We have divided the systems based on TOF measurement
into four different subgroups, depending on how they use
the information, the signal bandwidth compared to the center
frequency, and the use of encoding sequences, as illustrated
by Fig. 3. The selected categories are depicted in blue blocks.
The first distinction has been made between systems based on
the received echo structure and the rest, since the former use
the full echo pattern, as opposed to the detection of the first
arrival employed by the other systems. This latter group has
been subdivided attending to the bandwidth of the transmitted
acoustic signal into narrowband and wideband systems. In this
work, we have considered a system to be narrowband when
the bandwidth of the transmitted signal is less than 10% of
the carrier frequency, and wideband otherwise. The bandwidth
has been calculated for a 3 dB fall from the signal spectrum
maximum. Acoustic transmitters are commonly characterized
by a small bandwidth, as opposed to RF systems. Narrowband
systems typically use a bandwidth of tens or hundreds of hertz,
and wideband systems have a bandwidth of few kilohertz at
best. This situation impose different transmission strategies
in both groups, where narrowband systems usually employ
several cycles of sine waves and therefore longer signal dura-
tions, whereas wideband systems can transmit more complex
signals of shorter duration. This situation has an impact on the
influence of multipath on the received signal and the update
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rate of the system. Finally, attending to the complexity of the
transmitted wideband signals, wideband systems have been
further subdivided into uncoded and coded systems, where
the latter transmit modulated binary sequences, as opposed to
short pulses or chirps.

Time-of-flight 
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Figure 3: Classification followed in this work of Time-of-
Flight systems based on echo information used, bandwidth
BW , center frequency fc, and the use of binary sequences.

A. Received echo structure

Considering the received signal (red line) in Fig. 2, the
TOF method uses the timing of either the rising flank, or the
signal’s maximum amplitude. But as it can be observed in
the figure, the received signal contains more information that
could be utilized by the system. In indoor environments, this
received signal typically contains reflections from the room
surfaces, such as walls, ceiling and floor. This reception from
different paths is known as multipath, and in principle, it would
be possible to implement 3D positioning with only a single
transmitter/receiver pair, if this additional information could
be leveraged. Each location of interest in the room is assigned
a unique signature, and a signature matching process provides
the positioning.

The first step is to characterize the room, which can be done
in different ways:

1) By obtaining a map of the room with a sonar device.
2) By using an acoustical model of the room and the

devices to compute the signatures.
3) By measuring signatures on a fine grid throughout the

room.
Sonar devices arose as a popular method at the end of the

1970s and beginning of the 1980s in order to avoid collisions
in robot navigation [93]–[95]. As opposed to stereo vision nav-
igation systems, which were computationally expensive, sonar
range measurements provided denser information with lower
computational cost, although with lower accuracy. Using sonar
devices, mobile robots obtained maps of the surroundings in
systems developed in the 1980s at the University of Tsukuba,
Yale University, Carnegie-Mellon University, General Motors

Research Laboratories or more recently, CCS Robotics [96]–
[100]. These maps could be later used in SLAM systems.

The first approach of those mentioned above was used by
MIT [101]. They mounted a Polaroid ultrasonic rangefinder
on a mobile robot to obtain a 360◦ sonar contour of rooms.
After data acquisition, different algorithms were applied to
extract line segments (walls) from the sonar data, to pair those
segments to walls, to remove erroneous locations that imply
sonar rays crossing walls, and finally a heuristic algorithm
could choose between location candidates based on the great-
est amount of the sonar contour in contact with the walls,
based on available maps of the rooms. The system was tested
against a total of 24 experiments in three different rooms,
achieving a 70.8% success: in 17 tests the location error was
less than 30.5 cm, with an orientation error less than 5◦,
whereas in the other 7 tests either the location was wrong,
or no location was provided by the algorithm.

Reflective cylinders at known locations were used as artifi-
cial landmarks in [102] to calculate the position and orientation
of a mobile robot. The robot was equipped with 18 Po-
laroid transducers, which were used to sense the environment.
From the TOF measurements, different regions of constant
distance were obtained, corresponding to reflections from the
environment, such as walls, but also from the cylinders. All
these regions provided candidate locations for the cylinders.
Since the cylinders’ locations were known, the theoretical
distance between them was compared with the one obtained
from the potential candidates, and the candidate pair providing
the minimum error was used to calculate the position and
the orientation of the robot. Experimental tests following
different trajectories provided location errors below 3 cm, and
orientation errors below 2◦.

Learning algorithms were used as early as 1996 to identify
rooms based on sonar measurements from mobile robots [103].
In this experiment, a K2A base from Cybermotion, and a
Nomad 200 mobile robot platform were used to collect data
by using rings of ultrasonic sensors distributed in two different
heights and locations around the robots body. The echoes from
the sonar were translated to pixels in a 2D map, and a Region-
Feature Neural Network (RFNN) was used to classify those
measurements to the available maps of the rooms. Ten different
rooms were considered, where the robots would first collect
the data, and then train the network. Processing time could be
reduced by using the features previously learned by the other
robot platform, obtaining then classification rates between 77
and 88%.

More recently, [104] provided room-level localization using
a sonar device on a ActivMedia Pioneer 3 AT mobile robot
platform. The ring-projection histogram method was used as
feature descriptor since it provides rotation invariance but it is
sensitive to scale. The key idea was to leverage the room-
level sparsity and to combine multiple sets of readings in
the model. Experimental tests were conducted in 10 different
areas. Samples were collected during 10 days for training,
and test samples were collected afterwards during three days.
Under situations where the rooms stayed in similar condition
as during the training phase, accuracy was around 90%. This
accuracy reduced to approximately 75% under significant
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changes in room conditions.
The aforementioned second signature matching method was

tested in [105]. In this work, a single base station transmitter
and a mobile receiver were considered. Different 3D candidate
positions were then evaluated by computing and comparing
their expected TOF signatures with the measured one at the
mobile receiver. According to Fig. 2, the TOF signatures
would include in this case the arrivals at 5, 6 and 8 ms,
in addition to the first one at 3.5 ms. A key part of this
approach was to calculate the Line-Of-Sight (LOS) range,
which was provided by the first TOF and a synchronization
process via RF link. Several signal processing steps were also
involved, such as attenuation compensation. The results were
obtained with a base station placed near the ceiling, and taking
20 measurements at different positions in the room with the
receiver at a height of 1.3 m. Most of the times, the error was
below 20 cm.

The RoomSense positioning system was developed as an
app for Android phones [106]. As the transmitter and receiver
were the same device, it can be considered an infrastructure-
free system. It calculated the impulse response of rooms at
different locations by means of m-sequences with a duration of
0.68 s, thus following the third approach. The Mel-frequency
cepstral coefficients (MFCC) where extracted then from the
impulse response, and training data were classified accord-
ingly. A Samsung Galaxy SII was used in the experiments,
where 20 rooms in two different buildings were considered,
under controlled conditions (windows and doors closed, and
no furniture moved). A Support Vector Machine classifier
provided the estimated position in less than 1 s, using the
leave-one-sample-out method. Room classification rate was
98.2%, which dropped to 85.1% if the orientation of the
smartphone was not trained. Similarly, when considering fewer
locations inside a room for the training, performance dropped
to 49.8%. For sub-room-level accuracy, the classification rate
was 96.4%, which dropped to 51.3% when the orientation
was not trained. When increasing the noise level so the
Signal-to-Noise Ratio (SNR) dropped from 50 to 10 dB, the
classification rate decreased to 66.6 and 65.9% for room-level,
and sub-room-level accuracy, respectively.

Table II summarizes the main characteristics and results of
these systems. Note that the system’s accuracy refers to the
absolute error when a numeric value is given, and that a dash
(–) means that the information was not available.

B. Narrowband systems

A narrowband spectrum is obtained when transmitting a
pulse consisting of several cycles of a sinusoidal wave. One of
the main advantages of narrowband systems is the simplicity
of the detector, which is usually designed as a more or less
complex version of a tone or envelope detector, such as the
one depicted in Fig. 4. The price to pay for this simplicity is
trifold, though: low accuracy, poor update frequency, and high
sensitivity to in-band noise. Alternatively, linear frequency
modulated signals, or chirps, could be designed with a narrow
bandwidth of less than 10% of the carrier frequency, so those
systems fall into our narrowband category. In those cases

though, the detector usually performs a correlation process,
such as the one depicted in Fig. 5.

Figure 4: Typical detector of a narrowband system.

MELODI was one of the first positioning systems [107]. It
had three beacons fixed at known locations, and a receiver
device that consisted of three different pairs of sensors,
which measured the Angles-of-Arrival (AOA) to the beacons.
Frequency-Division Multiple Access (FDMA) was considered
in transmission to avoid collisions, with each beacon transmit-
ting at a different frequency, whereas each pair of sensors was
matched to only one beacon. By obtaining the phase difference
at each pair of sensors, the three angles to the transmitters
could be obtained and a triangulation operation provided the
location of a robot carrying the receiver device, as well as the
heading. In experimental tests placing the robot in different
locations inside a room, absolute location errors were usually
below 5-10 cm under good coverage conditions.

The system by Monash University also consisted of different
beacons fixed at known positions, which transmitted 2.5 ms
ultrasonic pulses [108]. An array of eight receivers was used to
detect those pulses. The beacons were controlled by a central
system and transmitted sequentially to avoid collisions, where
one of them, which transmitted two pulses instead of one, was
used as a reference at the receiver. This way, TDOA could be
used in the array to calculate the position and the orientation.
An early prototype provided location errors around 5 cm, and
orientation errors around 10◦, using six beacons deployed in
a room. A later version [109] employed an Iterated Extended
Kalman Filter (IEKF) for the positioning of a robot. It used the
dead-reckoning on board the robot to get the change of angular
velocity and speed between two consecutive measurements, so
drift effects could be reduced. Once the IEKF had converged,
multipath arrivals could be also filtered out by observing the
observation error in the filter equations. Maximum errors of
10 cm where obtained in a trajectory followed by a mobile
robot equipped with the receiver array.

Cricket used an RF signal to synchronize the emission
and to identify the transmitting beacon [110]. Concurrently
with the RF signal, an ultrasonic pulse was emitted by the
beacon, which was detected by a simple tone detector circuit
at the receiver. This receiver was synchronized to the beacon
via the RF signal, being then able to calculate the TOF.
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Table II: Summary of systems based on received echo structure.

Name / Developers Year Frequency (kHz) Synch. Update rate (Hz) Accuracy (cm) Area (m2) Privacy Reference

M.I.T. 1987 55 No – 30.5 – Yes [101]

Gold Star Industrial Systems
KAIST 1995 50 No – 3 31 Yes [102]

North Carolina State Univ. 1996 – – – Room-level 256 Yes [103]

Eindhoven Univ. of Tech.
Philips Research Lab. 2003 40 Yes – 20-100 ≈ 29 Yes [105]

RoomSense 2013 Audible No – Sub-room-level 15-65 Yes [106]

Tsinghua Univ. 2017 – No – Room-level 20.1-311 Yes [104]

Only coarse-grained location information to the nearest beacon
was obtained. In a later work [111], the authors evaluated a
hybrid configuration of the system, where the target became
active when detecting high uncertainty in its position tracking,
provided by the state of an Extended Kalman Filter (EKF). In
this hybrid approach the target pinged the beacons with an RF
message and an ultrasonic pulse, and the beacons replied then
also via RF with their measured distance to the target. This
procedure allowed to reset the target’s EKF. Under this hybrid
configuration, 90% of the errors were below 20 cm when the
target moved at a speed of 0.78 m/s, and below 47 cm when
moving at 1.43 m/s. In both cases the hybrid approach reduced
the errors obtained using a purely passive system, especially
at low speeds.

A similar approach was followed by the positioning system
from the University of Bristol [112], where four ceiling
mounted beacons were synchronized to a receiver by an RF
signal. These beacons transmitted pulses sequentially, and they
were detected by the receiver, which was attached to a hand-
held device. The three shortest TOF were used to calculate
the user location, and the application interface averaged the
last two positions, in order to smooth the trajectory shown on
screen. The maximum error at the center of the test room was
10 cm, degrading up to 25 cm when placing the receiver at the
perimeter. A later version of this prototype system removed
the RF signal [113], reducing the receiver size to a single
ultrasonic microphone and its associated amplification circuit.
Knowledge of the periodic transmissions from the beacons and
their locations was leveraged in an EKF to calculate the user
location. The obtained standard deviation in a 3-minutes test
with a moving user was between 5 and 10 cm.

WALRUS consisted of two components: a server beacon,
and a mobile client [114]. The server beacon was a computer
with attached speakers, which could send packets over a Wi-
Fi access point containing information about the room, while
transmitting a 10 ms sound pulse through the speakers. The
mobile client had an integrated microphone and should be able
to receive Wi-Fi packets. Every time the receiver detected a
Wi-Fi location packet, it recorded an audio window from the
microphone and looked for the pulse. A localization algorithm
matched then the reception times of the Wi-Fi packet with
the ultrasound detection, considering the potential reception of
multiple packets from different rooms. For 2 server beacons

correct detection was achieved almost 100% of the time,
but this number dropped to 84% for 6 server beacons, and
approximately 45% for 25 server beacons.

Beep was designed to locate COTS mobile devices such as
Personal Digital Assistants (PDA) and cellphones based on the
transmission of short pulses [115]. As opposed to the previous
approaches, it transmitted in the audible frequencies with an
intensity similar to a cellphone ring in order to make use of
the best sensitivity band of the receivers. These receivers were
connected to a desktop computer, and synchronized with the
user either by a Wireless Local Area Network (WLANBeep),
3G (3GBeep), or a pure acoustic protocol (PureBeep). Upon
a user transmission, the receivers measured the TOF, trans-
formed them to distances, and reported them to a server, which
then applied a lateration algorithm using the three smallest
distances, sending the calculated 2D position back to the user.
In the experimental tests, 100 measurements were taken at 48
equally distributed points throughout a room. An iPAQ HP
5550 was used with the WLANBeep and PureBeep protocols,
and an Audiovox SMT 5600 cellphone was employed for
3GBeep. The results were similar for all protocols. Under
quiet conditions and considering 90% of the measurements,
WLANBeep and PureBeep provided positioning errors below
70 cm.

The low-cost privacy-oriented synchronous system pre-
sented by the Bristol Robotics Laboratory [116] was based
on an architecture of eight beacons that periodically emitted
ultrasonic pulses using Murata transducers. This system was
aimed to track and perform loop control of drones in 3D,
and it used an RF signal to synchronize the beacons with the
receiver, that detected the ultrasonic emission by means of a
high-gain amplifier plus a microcontroller. In the experiments,
the beacons were placed on the floor, and were used to track
a drone. For fixed positions of the drone, a standard devia-
tion around 0.3 cm was obtained for the (x, y) coordinates,
whereas a standard deviation of 2.3 cm was obtained for the
z coordinate, for measurement periods of 500 s.

FLASH provided the 2D location of sensors based on the
reception of audible pulses generated in turns by buzzers [117].
These pulses were received by the sensors to be located,
which detected the TOF on the peak-to-peak amplitude of the
signal, combined with a moving-average filter and a dynamic
threshold. Experiments were conducted using two nodes as
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beacons, obtaining the 2D position of another 10 nodes with
a maximum error of 36 cm.

SpiderBat combined distance with AOA measurements,
obtained from the TOF [118]. This positioning system was
designed as an extension board to be attached to the nodes
of sensor networks, in order to provide location capabilities.
All nodes were synchronized with an RF link, and they sent
the collected range and AOA information from neighbouring
nodes to a central computer for the calculation of the locations.
This calculation was done in two steps. In the first one, the
nodes with unknown position got information about the closest
anchor node, and the measured range and AOA provided a
rough location estimation. A second step using the ranges
in a least mean square algorithm provided the final position.
Starting with only one anchor node to locate three more nodes
in 2D, standard deviations of the calculated locations varied
between 2.2 and 5.7 cm in an indoor environment, and between
37.7 and 51.6 cm outdoors.

The system proposed by the Autonomous University of
Madrid used semi-custom electronics based on Xilinx Spartan
3/3A Field-Programmable Gate Arrays (FPGA) in the design
of the emitter and receiver modules of a synchronous system
[119]. A three-beacon structure was used to sequentially emit
squared pulses, which were captured, amplified and digitalized
at the receiver. The main novelty was the use of a state ma-
chine to accomplish the detection of the ultrasonic emissions
in order to measure the TOF. This solution avoided the delay
and uncertainty typically introduced by envelope detection.
The authors reported average errors around 3.3 cm in the
estimation of 2D coordinates, and an average error of 5.6 cm
for the height.

The prototype presented by the National Institute of In-
formatics and Hokkaido University used a combination of
two pulses at different frequencies to distinguish between the
different beacons used in transmission [120]. As three beacons
were used to calculate the TDOA, a total of six pulses were
used with a separation of 500 Hz. These pulses were received
by a smartphone, and the TDOA were extracted by evaluating
the phases of the different components. Two points were used
to evaluate the prototype, where 100 measurements were taken
for each of them. The average error was around 10 cm.
Increasing the noise level slightly worsened the accuracy to
around 12 cm. A later prototype, called SyncSync, employed
Light-Emitting Diode (LED) signals for synchronization [121].
Experiments were conducted in a room equipped with a LED
floodlight of 56 white LED, while turning the ceiling lights
off. Four speakers transmitted the acoustic signals following an
FDMA scheme, and the errors were calculated at 10 different
points, measuring 150 positions at each of them. The mean
error ranged between 4.7 and 17 cm, with a maximum standard
deviation of 1 cm.

A coordinator node was connected to a computer in the
TELIAMADE system, in order to control a set of wireless
battery-powered end nodes equipped with ultrasound trans-
ducers and ZigBee chips, which provided synchronization and
communication capabilities [122]. The transducers transmitted
pulses of 1 ms using a TDMA protocol to avoid collisions.
After propagation, the mobile node received these pulses and

calculated the TOF after amplification, filtering, sampling and
quadrature detection. The mobile node sent this information
back to the coordinator, which fed it to the computer in order
to calculate the position of the node. In the experiments, four
end nodes were deployed in the center of a room to avoid
multipath from the walls, and the mobile node was placed at
17 different locations in two different heights (10.8 and 62.8
cm). Three hundred measurements were taken at each point,
obtaining locations with a Root-Mean-Square Error (RMSE)
of 0.93 cm and 0.98 cm for the points at 10.8 cm and 62.8 cm
height, respectively.

ASSIST was designed to locate smartphone users in a
centralized fashion [123]. It ran an Android app, which con-
nected to an evaluation unit using the Long-Term Evolution
(LTE) network. It then obtained a unique identifier (ID), and
transmitted a 50 ms chirp with a bandwidth of 1 kHz. This
signal was received by a set of fixed microphones, which
applied a high-pass filter, amplification and digitalization,
calculated the TDOA and extracted the user ID. TDOA and
user ID were later sent to the evaluation unit, which calculated
the position. In an experiment using 7 receivers placed at a
height of 1 m, and a person walking along a predefined track,
the obtained average deviation from the track was 34 cm. A
later improvement used the inertial sensors embedded in the
smartphone by means of a Kalman filter [124]. This addition
allowed to obtain a location when the acoustic signal was lost,
and to correct the drift when there was an acoustic position fix.
Two experiments were conducted in a hangar, considering six
receivers and different Non-Line-Of-Sight (NLOS) conditions,
obtaining RMSE values for the locations between 16.9 and
22 cm, when using the inertial sensors and a Fuzzy Inference
System.

The so-called ALPS system had the same purpose, but it fol-
lowed a privacy-oriented approach [125]. It consisted of three
or more beacons, which contained an ultrasound transceiver
board and a Bluetooth Low Energy (BLE) daughter board. The
beacons employed a TDMA protocol with slots of 100 ms to
transmit 50 ms chirps between 20 and 21.5 kHz for ranging,
where up and down chirps were transmitted alternatively to
further reduce the interference terms between consecutive
transmissions. The beacons also transmitted periodic BLE
packets so the user could synchronize to the TDMA cycle.
Another novelty was the addition of a room mapping algorithm
assisted by the user, in order to generate the floor plan by using
landmarks such as corners, locating the beacons in the floor
plan afterwards after taking a few measurements. An iPhone
5S was used in the experiments, and the data were processed
offline. An EKF fused the range data with compass and step
values from the phone, obtaining location errors less than
30 cm for 90% of the measurements under LOS conditions.

One of the most recent narrowband systems is from Harbin
Institute of Technology [126]. The main novelty of this work
was a TOF detection algorithm based on the least squares
estimation of the maximum signal amplitude. The system con-
sisted of different anchor nodes deployed at known positions
acting as receivers and connected to a server, and a mobile
node as a transmitter. Upon detection of an RF synchronization
signal, the anchor nodes calculated the TOF and sent this
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information to the server for position calculation. The system
was tested by a robot following small circular trajectories
at low speed to avoid multipath and Doppler, achieving a
maximum error of approximately 1 cm.

Table III summarizes the main results and configuration
parameters from the narrowband positioning systems. Note
that accuracy refers here to the maximum error considering
90% of the measurements in the reported experiments. A dash
(–) means that the information was not available.

C. Wideband, uncoded systems

As has already been mentioned, positioning techniques
based on lateration require the determination of the TOF from
each emitter to the receiver. Therefore, the more accurate
the determination of TOF is, the more accurate the final
position is. For that purpose, wideband transmissions have
been applied to improve the accuracy in TOF estimation,
as signal bandwidth is inversely proportional to the standard
deviation of the TOF estimator due to receiver noise [127].

Typically, there are two ways to obtain a wideband spec-
trum: 1) by transmitting very short pulses, since bandwidth is
inversely proportional to pulse duration; and 2) by transmitting
long signals, spanning a wide bandwidth. The first option
would make use of a detector such as the one depicted in
Fig. 4, so it does not fully make use of the benefits of
wideband signals, as it can be sensitive to in-band noise.
The improvement in accuracy is commonly achieved by the
second option. In this case, transmissions usually consist of
Linear Frequency Modulated (LFM) signals, or chirps, and
the receiver employs a correlator, or matched-filter, to look
for the transmitted signals, as illustrated in Fig. 5. These
filter provides a peak when the transmitted signal is detected,
compressing its energy in a narrow interval around its arrival
time, increasing then the range resolution and the robustness to
noise. This pulse compression technique for the determination
of echoes appeared in ultrasonic and sonar systems coming
from radar applications [128], and in telecommunications, it
is also known as Direct-Sequence Spread Spectrum (DSSS)
when used to demodulate spread spectrum signals.

In summary, compared to narrowband systems, wideband
uncoded systems provide the following main benefits:

• Higher accuracy in the determination of TOF.
• Higher immunity against noise, being possible to deal

with significantly reduced SNR.
Short pulses to obtain wideband transmissions were used

in pioneer works such as the ultrasonic location system from
the University of Cambridge and Olivetti and Oracle Research
Laboratory (ORL) [129]. A target emitted a 50 µs pulse that
was detected at fixed receivers. The system operation was
controlled by a central computer that sent a reset signal to
the receivers via a serial network, and synchronized emitter
and receivers via RF. The system architecture was formed by
16 receivers uniformly distributed in a square grid, and errors
below 10 cm for 90% of the measurements were reported.

The Spanish National Research Council (Consejo Superior
de Investigaciones Cientı́ficas, CSIC) also presented an early
prototype of a wideband uncoded positioning system [130].

Figure 5: Example of a detector for a wideband uncoded LPS
employing a chirp.

The novelty of this work was the use of a spark generator
mounted on a mobile robot, which was used as a transmitter.
At certain time intervals, the spark generated both acoustic
and electromagnetic pulses, where the maximum amplitude in
the acoustic spectrum was around 40 kHz, although there was
energy leaking into the audible bands. Different elements were
connected to the same acquisition board in the receiver: 1) an
RF antenna detected the electromagnetic wave and provided
synchronization of the system; 2) three ultrasound receivers
to calculate the TOF, which were mounted on a wall; and 3)
a temperature sensor placed close to the receivers was used
to correct for the potential variation in the speed of sound.
The received acoustic waves were stored in a computer and
processed offline. The calculated position deviated from the
given trajectory by a maximum of 3 cm.

A later work from CSIC focused on outdoor environments,
and it was used to locate archaeological findings [131]. This
was, to the best of the authors’ knowledge, the first system
specifically designed for outdoor operation that included a
wind compensation algorithm. There were three targets in this
system: two installed in a portable rod, and one placed at a
fixed position to compensate for the wind effect. The targets
emitted several cycles of a 25 µs pulse, smoothly modulated
in amplitude. This signal was detected by correlation with a
reference signal captured from a typical reception, and the
target position was estimated by minimizing a cost function us-
ing the Levenberg-Marquardt recursive algorithm. Accuracies
around 0.4 cm were obtained when considering eight beacons
installed in the top and central positions of four fixed posts,
with no wind conditions. This accuracy worsened to 1 cm for
maximum wind speeds of 5 m/s.

The ZUPS system was design to be deployed in extended
environments, such as a residence for elderly people, in order
to monitor their behavior and ring an alarm when needed
[132]. The design consisted of a set of beacons deployed
at known fixed positions that transmitted chirps following a
TDMA protocol, and of mobile tags carried by the users.
All nodes were synchronized by ZigBee, forming a sensor
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Table III: Summary of narrowband systems.

Name / Developers Year Frequency (kHz) Synch. Update rate (Hz) Accuracy (cm) Area (m2) Privacy Reference

MELODI 1983 25-40 No – 5-101 4-6† Yes [107]

Monash Univ. 1989 40 No 0.25-0.33 51 10 Yes [108]

Cricket 2000 40 Yes ≈ 4 Sub-room level2 – Yes [110]

Cricket v2 2004 – No – ≈ 20-47 ≈ 4† Yes [111]

Univ. of Bristol 2001 40 Yes – 10-251 ≈ 27 Yes [112]

Univ. of Bristol v2 2003 40 No 5 5-103 2† Yes [113]

WALRUS 2005 21 Yes – Room-level – Yes [114]

WLANBeep 2006 4.01 Yes – 70 207 No [115]

Bristol Robotics Lab. 2007 40 Yes 4-20 3-41 36-84 Yes [116]

FLASH 2009 2.3 Yes 0.1 11-361 25 Yes [117]

SpiderBat 2011 40 Yes – 2.2-51.63 50-60 No [118]

Autonomous Univ. of Madrid 2012 40 Yes 1.66 3.3-7.34 ≈2† Yes [119]

National Inst. of Informatics
Hokkaido Univ. 2013 14.75-17.25 No – 10-124 0.04† Yes [120]

SyncSync 2015 10.75-15.25 Yes – 4.7-173 0.52† Yes [121]

TELIAMADE 2013 40 Yes 1.25 ≈ 15 ≈ 0.6† No [122]

ASSIST 2015 18-20 No – 25-344 80 No [123]

ASSIST v2 2016 – – 3.3 8.9-184 ≈ 128 No [124]

ALPS 2015 20-21.5 Optional – 30-50 ≈ 72 Yes [125]

Harbin Inst. of Tech. 2017 40 Yes 5 ≈ 11 ≈ 0.2-0.8† No [126]

1 Maximum error.
2 Granularity of approximately 1.5 m2.
3 Standard deviation.
4 Average error.
5 RMSE.
† Area of the grid/trajectory.

network where a coordinator node was responsible for starting
the localization process, and then to gather all the information
from the nodes. This system also included a NLOS detection
algorithm to improve the measurements used in the localiza-
tion process, which reduced the effect of blocked signals on the
obtained accuracy [133]. The system was evaluated in a test
area with 6 beacons, and the location of a tag was calculated
at 750 different points, obtaining a 2D error below 5 cm, and
3D error below 10 cm, for 99% of the measurements.

Wideband uncoded systems have also been applied to locate
smartphone users. One example, applied to the particular
context of driving safety, was presented by Stevens University
of Technology and Rutgers University, where the objective was
to detect if a phone was located in the driver or passenger side
inside a car [134]. To that end, the phone connected to the in-
ternal Bluetooth network and sent the pulses to be transmitted
by the car stereo speakers. These speakers employed a TDMA
scheme to avoid collisions, and calculated in which side of the

car the phone was by measuring the relative delay obtained
between the left and right speaker signals. Two phones (iPhone
3G and Android Developer Phone 2) were tested inside a
non-moving car, and the Android phone was also tested on a
highway. The correct classification of driver or passenger side,
considering a calibration procedure that took into account the
dimensions and layout of the speakers inside the cars, varied
between 92 and 98%, using a two-channel stereo system and
placing the phone in the front seats.

The Whistle system consisted of a set of receivers, which
listened to a chirp in the audible band transmitted by the
target to be located [135]. The novelty of this work was
the lack of synchronization in the receivers to calculate the
TDOA. In order to obtain the TDOA they used two con-
secutive measurements: one by the target, and the other by
one of the receivers (base node). This procedure removed
the need of a common clock, and it was used together with
an outlier removal algorithm and redundant receivers. Several



11

experimental tests were conducted both outdoors and indoors,
using a smartphone as the transmitter, and seven others as
receivers, including one acting as base node. All of them
were connected to an access point, which gathered the TDOA
and sent this information to a laptop for location calculation.
The transmitter was placed in a grid of 16 points, both in
3D and 2D, and 10 measurements were taken at each of
them. For the indoor experiment and the 3D grid, 12.5%
of the measurements were discarded as outliers, obtaining a
maximum error of 28.2 cm for 90% of the measurements.
Fewer outliers (0.6%) but slightly higher errors were obtained
for the 2D grid, with 90% of the measurements below 29.9 cm.

The LOSNUS positioning system dealt with NLOS mea-
surements by means of a proximity based grouping algorithm,
leveraging information from the DOP and TDOA uncertainties
[136]. The system consisted of 10 transmitters mounted on
opposite walls of a room, which transmitted chirps sequentially
together with a transmitter ID. The receiver applied a matched
filter to obtain the TDOA and minimize the impact of NLOS
outliers with the aforementioned algorithm. Experimental tests
were conducted placing the receiver in different points, where
some of the direct paths to the transmitters were blocked by
an object, or by directly facing the receiver to one of the walls.
Positioning errors were usually below 3 cm.

The positioning system for smartphones developed by the
University of Aveiro consisted of a synchronized wireless
sensor network of acoustic beacons, which transmitted chirps
following a TDMA protocol [137]. After detecting the chirps
from the beacons by a correlation process, the smartphone
used the TDOA to obtain its location in 2D as an optimization
problem. The location error was below 13 cm for 95% of the
measurements using 4 beacons.

The prototype developed by the University of Perugia
in collaboration with the Società Delle Fucine S.R.L. also
transmitted chirps in a TDMA scheme [138]. This system
was designed with the aim to be deployed at large industrial
environments, so their main novelty was to use a set of fixed
beacons with known positions, together with a portable beacon
grid. This grid could locate itself by performing measurements
to the fixed beacons. This configuration would allow to im-
prove LOS conditions with regard to the mobile object to be
located. The performance of the beacon grid was evaluated
experimentally in a lab. Seven transmitters were used to obtain
the position of a mobile node located at four different points.
The maximum positioning error was 3.9 mm.

In the context of file-sharing applications on smartphones,
the AMIL system was designed to obtain the relative local-
ization of Android devices referred to a master user [139], in
order to allow file sharing based on proximity. This master
user transmitted a linear chirp that was received by a set
of smartphone users. Both the master and users calculated
the intervals between successive transmissions and receptions,
respectively, in order to calculate TDOA. The key idea in this
work was to use virtual anchors by moving the transmitter to
different points, forming the shape of a triangle with a base of
61 cm, obtaining then three anchor nodes. The movement and
location of the transmitter was tracked by the internal IMU of
the phone. By drawing three different triangles, average errors

were kept below 50 cm for all the 12 users considered.
ARABIS consisted of a location server and several anchor

nodes [140]. The anchor nodes, deployed at known locations,
contained an acoustic board attached to a Raspberry Pi 3,
and transmitted periodically an acoustic message by chirp
modulation, which included the anchor ID and a sequence
number. The user detected the chirps and decoded the message,
obtained the timestamps and communicated this information
back to the location server via network (such as Wi-Fi),
which then computed the position based on an iterative Gauss-
Newton algorithm. Experimental tests were conducted using
a Samsung Galaxy phone, obtaining location errors below
35 cm when using 4 anchor nodes, and below 13 cm when
using 8 nodes, both considering 90% of the measurements. A
later evolution of the system, called AALTS [141], introduced
an asynchronous transmission scheme, the use of orthogonal
chirps to increase the transmitted data rate of the acoustic
messages, and multiple tones in the preamble to compensate
for Doppler shift. 2D localization was evaluated by experi-
mental tests in different rooms and noise conditions, where 4
anchors were used to calculate the location of both static and
mobile targets. 90% of the errors were below 22 cm for static
targets. This value increased to approximately 60 cm under
impulsive loud noises. For a mobile target, 90% of the errors
were below 22 cm when following a straight trajectory at low
walking speed (0.3 m/s), and below 49 cm for a U-shaped
trajectory performed at 1 m/s.

SAILoc used a combination of range and Direction-Of-
Arrival (DOA) to calculate the position of a smartphone, by
deploying a single array node [142]. This array, whose location
was known, consisted of a speaker and multiple microphones
forming a linear array. The smartphone transmitted a 50 ms
chirp, which was recorded at the array as well as in the
smartphone. The array proceeded then to transmit the same
chirp back to the smartphone, and the arrival time was also
recorded by both sensors. A server gathered all the informa-
tion, and calculated the range and angle between both nodes.
Experiments were conducted in a room and a corridor, at 6
different points recording 50 measurements at each of them.
90% of the errors were below 50 cm in the room, and below
60 cm in the corridor.

The prototype developed by the Mediterranea University of
Reggio Calabria consisted of a master unit and a central unit
equipped with the beacons [143]. The master unit, connected
to a computer, had RF communication capabilities. The central
unit stored a 2.56 ms chirp signal, which was fed sequentially
to four beacons. The mobile units, synchronized to the master
and central units, acquired the received chirps and a correlation
process provided the TOF to the beacons. Experimental tests
were done by taking 100 measurements at 18 different points.
Reported errors were below 0.45 cm for the most favorable
point, and below 1 cm for the worst point, considering 90%
of the measurements.

The University of Science and Technology of China pre-
sented a system consisting of four beacons as transmitters,
and a smartphone acting as receiver [144]. In this system
the beacons followed a TDMA-FDMA transmission protocol,
where two of them emitted simultaneously at a time, avoiding



12

collisions by using chirps at different frequency bands. Two
steps were needed then for a full transmission cycle. Upon
receiving the chirps, the smartphone calculated the TDOA,
and calculated an estimated position using the shrinking-circle
method. A Doppler shift correction based on the knowledge
of the previous position was applied to that initial estimate to
obtain the final position. Experiments were conducted under
static and dynamic conditions. Forty test points were used
for the static tests, obtaining absolute errors below 20 cm
for 90% of the experiments. Three different trajectories were
considered for the dynamic tests, with walking speed between
0.4 and 0.9 m/s. Mean Squared Errors (MSE) varied between
12 and 27 cm.

PALS combined acoustics with pedestrian dead-reckoning
(PDR) [145]. The acoustic positions were obtained with a
ranging method that iteratively removed multipath components
[146]. These acoustic positions were fused in an EKF with data
calculated from the inertial sensors embedded in the phone,
such as the stride length. Experimental tests were performed
using six synchronized beacons and a Huawei Mate 9 as
receiver, where the user followed two different trajectories
inside the area of interest. 90% of the measurements had errors
below 27 cm.

In the system developed by the University of Tsukuba and
the National Institute of Technology (Japan) [147], chirps
were transmitted by four beacons at known locations using
an FDMA scheme to avoid collisions. The system calculated
the AOA measured at two pairs of microphones. For the
experiments, the receiver pairs were placed facing upwards
in a mobile robot, forming a cross. The microphones recorded
the received signals, which were later processed offline. The
location was calculated by a particle filter, using a likelihood
function based on envelope detection of the cross-correlation
functions obtained from each of the two microphone pairs.
This particle filter also incorporated information from the
wheel rotation to estimate the initial position of the particles,
as well as velocity and angular velocity. In the harshest
experiment with reflections from a wall next to one of the
beacons, 90% of the calculated positions showed an error
below 23 cm.

Chirps were also used by the system developed by Wuhan
University [148]. In this system, synchronized beacons were
used to send chirp signals at scheduled times and with different
rates and frequency bands, to minimize interference. These
chirps were received by a smartphone, and a detection method
based on the GCC-PHAT and a time-frequency analysis se-
lected the first arrival path from each transmitter, reducing the
effect of reverberation. The estimated TDOA were fed to a
least-squares algorithm, which was combined with an EKF for
tests under dynamic conditions. Experiments were performed
in two different testing areas (hall and parking lot), and using
different phones as receivers. Four beacons were used in the
hall, and 8 in the parking lot, due to its larger size. For the
static tests, 41 points were considered across the hall, whereas
56 points were considered in the parking lot, where both
testing areas included NLOS and signal blockage conditions.
The results varied notably with the used smartphone: 95% of
the positioning errors were below 0.89 m using a OnePlus

6, and below 1.92 using a Pixel 3. Errors increased under
dynamic conditions, obtaining maximum errors between 1.6
and 1.85 m, depending on the smartphone, considering 95%
of the measurements.

The main novelty of one of the most recent wideband
uncoded systems was to leverage the reflected signal from sur-
faces in order to reduce the number of transmitters down to a
single speaker [149]. This speaker transmitted chirps that were
received at a smartphone, held sideways to utilize the top and
bottom microphones for yaw and pitch estimation. Different
outlier detection methods were applied for peak detection and
pair selection at the microphones, and arrival angles were used
to classify the paths. Experiments were performed in a corridor
placing the smartphones on 12 positions, at two different
heights. By considering the reflections from the left wall, the
right wall and the floor, a single speaker provided 4 peaks that
allowed to position the smartphone. The reported errors were
below 5.5 cm and 11.4 cm for 90% of the measurements, for
a smartphone height of 1.4 and 1.1 m, respectively.

Table IV summarizes the main parameters and the results
for the wideband uncoded positioning systems. Note that the
accuracy refers to the maximum error considering 90% of the
measurements. A dash (–) means that the information was not
available.

D. Wideband, coded systems

An alternative technique to obtain a wideband spectrum is
to transmit a distinctive sequence of data. At the receiver, a
filter matched to the original sequence provides the peak when
it is detected.

At the beginning of the 1990s some started to apply the
pulse compression technique based on pseudo-random noise
to the determination of TOF in ultrasonic sensory systems.
Most of them were based on the use of Barker codes to encode
the ultrasonic transmissions [150]–[152]. The encoding of ul-
trasonic transmissions by these sequences always requires the
use of a wide bandwidth [153]. This can be a significant issue
to deal with, when most commercial ultrasonic transducers
are characterized by a bandwidth of few kHz. This bandwidth
constraint often results in a reduction of performance, since
the correlation functions are not that close to the ideal ones.
In order to deal with this problem, a modulation is often
proposed, so the final transmitted signal can be adapted in
a better way to the frequency response of the sensory system.
In previous work, the Binary Phase-Shift Keying modulation
(BPSK) has been considered as one of the most suitable
options for local positioning systems [154].

The selection of appropriate sequences according to the ap-
plication is an important point in the design of ultrasonic rang-
ing systems. Whereas Barker codes were a popular first choice,
subsequent studies employed different kinds of sequences
[155], [156]. Kasami codes seem to provide better auto-
and cross-correlation functions (see Fig. 6) [157], with lower
sidelobe-to-mainlobe ratio (the lower this value, the better the
reception and discrimination of transmissions). Nevertheless,
it is also necessary to keep in mind the computational load
required by the corresponding matched filters in reception.
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Table IV: Summary of wideband uncoded systems.

Name / Developers Year Frequency (kHz) Synch. Update rate (Hz) Accuracy (cm) Area (m2) Privacy Reference

ORL 1997 40 Yes 5 5-10 75‡ No [129]

CSIC 1999 40 Yes 40 31 ≈ 0.4† No [130]

CSIC-Outdoor 2005 40 Yes – 0.4-11 16† No [131]

ZUPS 2008 – Yes 1.66 5-102 80 No [132]

Stevens Univ. of Tech.
Rutgers Univ. 2011 16-18, 18-20 No 0.5-1 92-98%3 3.2-3.8 Yes [134]

Whistle 2011 2-6 No – 21.9-38.1 81 No [135]

LOSNUS 2014 35-65 No – 54 36 Yes [136]

Univ. of Aveiro 2015 18-22 No 2.86 13-165 30† No [137]

Univ. of Perugia
Società Delle Fucine S.R.L. 2015 38-42 Yes 0.2 0.39 ≈15 No [138]

AMIL 2016 18-22 No – ≈ 611 15 No [139]

ARABIS 2017 17.5-21.5 No 0.06 13-35 82.8-225 No [140]

AALTS 2020 17-22 No 5 25-49 ≈ 27.5† No [141]

SAILoc 2017 1-3 No – 50-60 ≈ 11-13† No [142]

Mediterranea Univ.
of Reggio Calabria 2019 30-50 Yes 2 ≈ 0.4-1 16 Yes [143]

Univ. of Science and
Technology of China 2019 15-22 No 1 20 ≈ 62 Yes [144]

PALS 2019 – Yes – 27 – Yes [145]

Univ. of Tsukuba
Nat. Inst. of Technology 2019 12-21.5 No 5 19-23 16† Yes [147]

Wuhan Univ. 2021 15-21 No 1-2 0.89-1.925 180-900 Yes [148]

Hokkaido Univ.
Nat. Inst. of Informatics 2021 12-18 No 2 5.5-11.4 4 Yes [149]

1 Maximum error.
2 99% confidence interval.
3 Percentage of correct detections.
4 Errors were grouped into categories. A few errors were categorized as > 5 cm.
5 95% of measurements.
† Area of the grid/trajectory.
‡ Operating volume (m3).

From the hardware implementation point of view, sequences
derived from Complementary Set of Sequences (CSS) often
have efficient structures for correlation, where the number
of multiplications and additions can be significantly reduced
[158]–[161]. Some work have studied the performance figures
of the more common sequences [162].

Other coding schemes such as Loosely Synchronous (LS)
codes, derived from CSS, could be remarked [161], [163].
These codes provide perfect auto- and cross-correlation func-
tions inside a certain window around the main lobe (time
of arrival), which is called the Interference-Free Window
(IFW) -see Fig. 7-. Outside this IFW the correlation values
are quite high, potentially degrading the system performance,
but these codes are very useful when it is possible to know
that all signals should be received in a certain interval inside
the IFW. More recently, complex sequences with Doppler
resilience such as Zadoff-Chu have been tested for indoor

localization [164]. In that work, more advanced modulation
techniques as Quadrature Phase-Shift Keying (QPSK) or Or-
thogonal Frequency-Division Multiplexing (OFDM) were used
to transmit Zadoff-Chu sequences with a carrier frequency of
40 kHz, and a bandwidth of 10 kHz. Promising results were
obtained when using QPSK-modulated Zadoff-Chu sequences
of 257 symbols.

Summing it up, pulse compression techniques based on
encoded signals provide some advantages to sensory systems.
As wideband uncoded systems, it also provides higher accu-
racy in TOF determination and higher immunity against noise,
compared to narrowband systems. And additionally, wideband
coded systems allow for simultaneous emissions with low
crosstalk, known as Code-Division Multiple Access (CDMA),
which is more difficult to achieve in wideband uncoded
systems. Because of these properties, encoding techniques
have been applied not only in ultrasonic systems, but also
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Figure 6: Example of a) auto-correlation function of a 255-
bit Kasami code, and b) cross-correlation function of two
orthogonal 255-bit Kasami codes.
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Figure 7: Example of a) auto-correlation function and b) cross-
correlation function of a 287-bit LS code.

in other sensory technologies [165]–[169]. Nevertheless, there
are also some drawbacks:

• High computational load, even when efficient correlation
architectures are available.

• All the analog blocks related to the emitter and the
receiver become more complex, since they have to meet

certain requirements in linearity and bandwidth.
Taking into account the previous considerations, a general

block diagram of the processing usually involved in pulse
compression techniques is proposed in Fig. 8 for the emission,
and in Fig. 9 for the reception. For the emission module,
it is necessary to generate the sequence for each beacon, to
modulate it to meet the bandwidth requirements of the sensory
system, to convert it into the analog domain, and finally, to
amplify it before driving the ultrasonic emitter (beacon). Fig.
8 shows a 255-bit Kasami sequence ci[n] in a system with four
ultrasonic beacons (i = 1, . . . , 4), where the emitted Kasami
ei[n] has a carrier frequency of 40 kHz.

Beacons 
Bi

ci[n] ei[n] ei(t)

DAC
Sequence 
generation Modulation DAC

Sequence 
generation Modulation DAC

Sequence 
generation Modulation DAC
Sequence 
generation Modulation

Figure 8: General block diagram for emission in an ultrasonic
system based on pulse compression.

In the reception stage, after Analog-to-Digital Conversion
(ADC), the second block computes the demodulation. Assum-
ing a BPSK modulation, the computation is described by (1):

d[n] =

M−1∑
k=0

r[k + n] · sc[k], (1)

where d[n] is the demodulated signal, r[n] is the received
signal, sc[n] is the modulation symbol formed by a period of
the carrier, and M is the oversampling value, equal to the ratio
between the sampling frequency fS and the carrier frequency
fc: M = fS/fc.

After demodulation, a correlation is computed to search for
the emitted sequences. This process is described in (2), al-
though it can be optimized depending on the kind of sequences
applied:

ti[n] =

L−1∑
k=0

d[M · k + n] · ci[k], (2)

where ti[n] is the correlation signal for the sequence ci emitted
by the beacon i; d[n] is the demodulated signal; ci[n] is the
searched sequence; L is the length of the sequence ci[n]; and
M is the oversampling parameter again.

One of the earliest wideband coded systems was Dolphin
[170]. The transmitted signal was encoded with a 511-bit
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Figure 9: General block diagram for reception in an ultrasonic system based on pulse compression.

Gold code, and a set of eight receivers were deployed in
the ceiling. The receivers captured the encoded signal and
fed it to a data acquisition card, which performed analog-
to-digital conversion, and sent it to a workstation for further
processing and position calculation. This setup allowed to
achieve errors below 2.34 cm in 3D positioning for 95% of
the measurements. In a later work, a privacy-oriented version
of Dolphin was presented [171]. In this case, seven units
transmitted simultaneously 511-bit Gold codes, which were
captured by a mobile receiver. The system was tested in 64
different points, taking 500 measurements at each of them. A
Successive Interference Cancellation algorithm was applied to
reduce the errors caused by cross-correlation, increasing the
number of valid readings. 95% of the 3D position errors were
below 4.9 cm when emitters and receiver were synchronized,
and below 26.6 cm when they were not.

A similar approach was followed in [172], where a set
of 4 beacons with known locations were used to locate a
mobile target. In this case, the beacons transmitted a 63-
bit m-sequence. Synchronization was achieved by a trigger
signal, which allowed to compute to TOF on a computer. An
experimental test provided a positioning accuracy of 5 mm.

In contrast to this conventional deployment of several
beacons in the room ceiling, the system from Eindhoven
University and Philips Research Laboratories consisted of
a compact single unit which contained an array of three
elements, with a baseline of 11.5 cm [173]. Each element of
the array transmitted a unique m-sequence of 127 bits, which
was used to phase-modulate a sinusoidal signal. Both the
array and the mobile receiver were synchronized by a trigger
signal. Experimental results, considering different orientations

of the mobile receiver to test for occlusions and the effect
of multipath, provided 3D position errors that varied between
1.14 m in the best case, to 3.20 m in the worst one, considering
95% of the measurements.

The 3D-LOCUS system [174] can be considered an exten-
sion of the wideband uncoded system for outdoor environ-
ments presented in [131]. In this later work, seven beacons
were used to locate a receiver, and the system could com-
pensate for temperature gradients and airflows in the room by
using one additional node. The transmission consisted of 32-
bit Golay codes modulated in BPSK. Twenty-two test points
were considered, and more than 100 measurements were taken
at each of them. The performance was tested for different
emission protocols (CDMA and TDMA), as well as privacy-
oriented, centralized and bidirectional configurations. Position
errors for 90% of the measures were below 0.41 cm for a
privacy-oriented TDMA system, and below 1.37 cm for a
centralized CDMA with an airflow present.

University College Dublin developed a location and ori-
entation estimator [175], [176]. In this system, the beacons
transmitted Kasami codes by using Frequency-Hopping Spread
Spectrum (FHSS), instead of a phase modulation. One beacon
was defined by two Kasami codes: one to build the sequence,
and the other one was used to generate the hopping pattern.
A mobile device was equipped with a circular array of
receivers, and it was synchronized with the beacons by means
of an RF link. The orientation estimator was based on the
calculation of the angle of arrival on the array by applying
the Multiple Signal Classification (MUSIC) algorithm. The
achieved location accuracy was lower than 1 cm for 95% of
the measurements, with maximum errors of 4.5◦, 3◦ and 3.5◦
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in yaw, pitch and roll, respectively.
Another system that obtained 2D position and orientation

was developed by KAIST [177]. It consisted of a group of
transmitters at fixed locations, and an array of three receivers
that should be mounted on top of a robot. All transmitters
and receivers were synchronized by an RF link. The robot
selected a transmitter and activated it, and the transmitter
replied with its ID, position and temperature via RF, together
with an ultrasonic modulated code. This code was detected
at the receivers with a matched filter, obtaining the TOF and
calculating the 2D coordinates and the heading angle. A later
version of the system was tested for the dynamic positioning
of a Pioneer P3-DX mobile robot [178]. In this case, the
ultrasonic system was fused with the odometric information
in an extended Kalman filter. Real tests were conducted using
6 and 10 transmitters, with the robot following different
trajectories. When the robot was moving at a speed of 1 m/s,
the maximum error was 25.7 cm. In general, the RMSE values
for different trajectories and speeds varied between 5.4 and
8.6 cm.

An alternative approach to the typical signal design can be
found in the system developed by Carnegie Mellon University
[179]. Each beacon was assigned a different ID, which was
encoded as a sequence of two Hamming codes. The codes
were then modulated by concatenating two upchirps with
different rates, in the frequency band between 19 and 24
kHz. These chirps were transmitted after a downchirp that
indicated the beginning of the transmission. The experimental
setup was based on commercial smart devices (iPhone 3GS),
which recorded the received signal and sent it back to a server
for processing. At the receiver, a first matched filter detected
the downchirps and the TDOA, and knowing the downchirp
position, different matched filters were applied subsequently
to search for the upchirps, which allowed to recover the
transmitter ID. Experimental tests were done with four beacons
in two different environments, office and atrium, obtaining
errors below 10 and 100 cm, respectively, considering 95%
of the measurements.

FX Palo Alto Laboratory and the University of California
Irvine exploited the idea of using low-power pseudo-random
signals emitted by speakers to provide localization inside
rooms [180]. These pseudo-random signals spread throughout
the spectrum from 0 to 22.05 kHz, but their low SNR was
intended to disturb as less as possible. For the evaluation
of the system, six speakers were deployed in the ceiling of
a room, and 20 ground truth points were defined inside. A
Google Nexus S smartphone running an app was used as the
receiver, and sent a request each time it required a position.
It recorded the received signal three times at each point,
and uploaded the data to a server using the Wi-Fi. There,
the TOF were calculated by means of the generalized cross-
correlation with phase transform (GCC-PHAT). For pseudo-
random signals of 10 s long, the system provided a 3D
position with an error below 1.5 m for approximately 85%
of the measurements, when using the four best speakers. A
privacy-oriented continuous tracker mode was also tested by
connecting a microphone to a laptop. Performing a similar
study, the system provided 2D positions with errors below

20 cm for approximately 95% of the measurements.
511-bit Gold codes were used in the positioning system

tested at the Izmir Institute of Technology [181]. This system
consisted of a computer working as a central unit, an external
sound card, amplifier, four tweeters and a digital thermometer
to accurately calculate the speed of sound. The main novelty
of this work was the use of two receivers synchronized with
the transmissions: one was placed at the center of the working
area, and it was used to calculate transmission delays between
the theoretical and the actual transmission time, in order
to correct time lags; the other microphone was the target
to localize. After cross-correlation, a trilateration algorithm
was applied to calculate the position by averaging triplets of
distances. The receivers were placed in different points inside
one quadrant of the projected area of the tweeters, reporting
accuracies below 1.5 cm for 90% of the measurements.

The localization system by Kyoto University, System Watt
and NIRO was designed to be used by an agricultural robot
in an outdoor setting [182]. A robot was equipped with a
transmitter that sent a 1023-bit m-sequence modulated in
BPSK, together with a pulse for Doppler compensation and a
trigger signal. After reception of the trigger signal, the Doppler
shift was calculated and a new replica of the transmitted
sequence was generated at the receivers to recalculate the
correlation in order to remove the Doppler effect. Experimental
tests were conducted by deploying four receivers, and making
the transmitter follow a circular trajectory of 1 m radius. After
outlier rejection, RMSE location errors were below 2 cm.
A more recent, privacy-oriented version was developed by
Kyoto University and National Fisheries University [183]. This
system was used to locate a quadcopter in a greenhouse, and
employed four transmitters at the corners of the greenhouse,
and one receiver at the quadcopter, where all nodes were
synchronized with an RF link. The best performance was
obtained when the transmitters used a TDMA protocol, when
requested by the quadcopter. The transmitted signals were
2047 m-sequences modulated in BPSK, which were correlated
to obtain the TOF, followed by position calculation by a least
squared algorithm. The 2D RMSE errors after 50 repetitions at
8 points inside the greenhouse were 1.6 and 2.3 cm, depending
on the noise conditions caused by the thrusters.

Guoguo consisted of beacons deployed in an office envi-
ronment, connected via Zigbee with a server [184]. In this
system, the beacons transmitted a combination of different
m-sequences at a center frequency of 18 kHz with 5 kHz
bandwidth, so a part of the signal fell into the audible
spectrum. A power control system was used to limit the energy
of the transmitted signals, so they could not be distinguish
from background noise. A smartphone performed a matched-
filter operation, calculated the TDOA and sent this information
back to the server, which estimated the location. An inter-
esting feature of this system was the use of advanced error
pruning techniques based on Root Mean Square (RMS) delay
spread or kurtosis analysis to detect outliers or NLOS channel
conditions, assigning lower weights to those measurements
during the location estimation. An iPhone 4S was used for
the experimental tests, obtaining errors that were below 5 and
11 cm for 90% of the measurements, which were taken in 12
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different environments.
The system developed by the University of Alcalá was

designed for real-time operations by means of FPGA devices,
both at the beacons (Xilinx XC2S50E) and receiver (Xilinx
XC2S200E) [185]. The beacons were synchronized by a
wire, and they transmitted orthogonal 255-bit Kasami codes
simultaneously and periodically. A static receiver was placed
at four different points in an area of approximately 1 m2,
obtaining location errors in the order of millimeters. This
system was later extended to cover an area of 442 m2 by
combining six individual Local Positioning Systems (LPS)
deployed at different locations [186]. The receiver, aboard a
Pioneer DX5000 robot, used the odometric information when
there was no coverage from an LPS, and an H-infinite filter
fused both location information when the robot detected the
1023-bit Kasami codes transmitted by the beacons. Inside the
coverage area of the LPS, the mean error on the absolute
position was below 3 cm. The last version of this positioning
system was named LOCATE-US, and consisted of a set of
five transducers connected to a central unit deployed in the
ceiling [187]. The architecture of the central unit is still
based on an FPGA device, consisting of an ARM processor
and advanced peripherals to manage the ultrasonic emissions,
which can be adapted to any type of modulation, as well as any
sequence used to identify the different beacons. A combination
of TDMA and CDMA (T-CDMA) was used, transmitting 255-
bit Kasami sequences modulated in BPSK in different slots.
The system was tested by measuring 100 positions at different
points in a grid, obtaining location errors below 20 cm for 90%
of the measurements. A recent experiment considered five sets
deployed over a large area [188]. Ultrasonic measurements
were used together with an external bluetooth-linked inertial
sensor, in order to obtain positions in those regions with no
coverage from the ultrasonic units. Both sensors were fused
in an EKF. A 57-meter-long trajectory was repeated four
times at normal walking speed, obtaining maximum errors
between 35 and 65 cm, approximately, considering 90% of
the measurements.

In [189] the objective was to take advantage of existing
infrastructure, so the system could be used through common
speakers available in public spaces, employing smartphones
as receivers. In the experimental tests, four computer speakers
were used as transmitters, and a condenser microphone as a re-
ceiver. Different correlation methods, medium access protocols
and positioning algorithms were evaluated. The best results
were obtained for the transmission of pseudo-random signals,
correlated with a GCC-PHAT filter, and fed to a Gauss-Newton
algorithm. 95% of the errors obtained in a 23-point grid were
below 10 cm.

In the positioning system from the University of Ex-
tremadura, the transmissions from four beacons were en-
coded with 63-bit Kasami sequences, modulated in BPSK
and transmitted simultaneously [190]. The receiver was a
third generation iPad. The main novelty of this work was
the use of a parallel interference cancellation algorithm to
deal with the inter-symbol interference caused by the limited
bandwidth of the receivers, as well as the multiple-access
interference originated from stronger emissions from nearby

beacons, compared to far-away ones, which is known as the
near-far effect. After detecting the four beacons by correlation,
hyperbolic multilateration was used to obtain the location of
the receiver. Experimental tests provided errors below 10 cm
for SNR above 0 dB. In a more recent work in collaboration
with the University of Oslo, the authors exploited a different
approach in the signal design to deal with the Doppler effect,
near-far effect and low coverage areas [191]. The signals were
transmitted sequentially from five beacons, and consisted of
three parts: a chirp, a pulse and a distinct 63-bit Kasami code
modulated in OFDM. The chirp provided arrival candidates in
a window frame containing the signals from all the beacons,
the pulse was used to correct the Doppler effect caused by
a moving receiver on the received signal, and the correlation
with the demodulated Kasami code allowed to validate (or
discard) the arrival, and to identify the transmitting beacon.
A multipath detection algorithm based on data from previous
successful positioning instances identified multipath condi-
tions and corrected erroneous peaks, and the system was also
robust to the loss of one or two beacons, by searching through
the best combination of the remaining beacons to provide a
valid 2D position. Experimental tests were conducted under
static and dynamic conditions, using 5 beacons with fixed
positions that transmitted sequentially following a T-CDMA
protocol. For the static tests, a 49-point grid was considered,
and 100 measurements were taken at each of them, obtaining
mean errors between 0.2 and 8.9 cm, depending on the test
point. Different trajectories were taken next with a mobile
robot, and the proposed system was compared with a classic
design of up-down chirps. For a 2-meter-side trajectory, the
classic system was able to obtain a valid position in 50.19%
of the points, whereas the proposed system increased the
coverage to 97.89%.

The University of Stuttgart recently presented an opto-
acoustic system to be used in an industrial setting for the
accurate tracking of tools [192]. A printed circuit board with
four transmitters and an infrared LED was attached to the
object to be tracked. This object synchronized with a set of
fixed receivers by an infrared signal, which was transmitted at
the same time than the ultrasonic signal. The ultrasonic signals
consisted of 127-bit Gold codes modulated in BPSK, which
provided orthogonality to detect the different transmitters in
the same board, as well as with other 30 objects. The receivers
contained a bank of correlators with different replicas at sev-
eral carrier frequencies, in order to compensate the amplitude
decay of the correlation peak caused by the Doppler effect.
Distance measurements were combined with accelerometer
and gyroscope data from the object, which allowed to obtain
its pose by using a particle filter. When using four transmitters
and four receivers in an electrical axis moving at different
speeds, the median position error was below 2.6 cm, and the
median orientation error was below 10◦.

The main parameters that characterize the previous systems
are summarized in Table V, together with the obtained re-
sults. Note that the system’s accuracy refers to the maximum
error obtained for 90% of the measurements in the reported
experiments. A dash (–) means that the information was not
available.
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Table V: Summary of wideband coded systems.

Name / Developers Year Frequency (kHz) Synch. Update rate (Hz) Accuracy (cm) Area (m2) Privacy Reference

Dolphin 2002 40-60 Yes – ≈ 1.75-1.9 9.1 No [170]

Dolphin (privacy-oriented) 2006 40-60 Optional 40 4.9-26.61 9.1 Yes [171]

Univ. of Magdeburg 2005 39.2-41.2 Yes – 0.52 6.25† No [172]

Eindhoven Univ.
Philips Research Lab. 2004 40 Yes 0.3 114-3201 28.7 Yes [173]

3D LOCUS 2009 15 Yes 2-10 0.41-1.37 4† Optional [174]

Univ. College Dublin 2009 40 Yes – ≈ 0.75 8 Yes [175]

KAIST 2013 35-45 Yes 5 5.4-8.63 38.4-84 Yes [178]

Carnegie Mellon Univ. 2012 19-23 No – 10-200 25-400 Yes [179]

FX Palo Alto Lab.
Univ. of California at Irvine 2012 0-22.05 No 2 20 31.6 Optional [180]

Izmir Inst. of Tech.
Joseph Fourier Univ. 2012 7 Yes – 1.5 3 No [181]

Kyoto Univ., NIRO
System Watt Co., Ltd. 2013 24 Yes 4 ≈ 23 ≈ 3† No [182]

Kyoto Univ.
National Fisheries Univ. 2020 24 Yes 1 1.6-2.33 72 Yes [183]

Guoguo 2016 15-20 No ≈ 1.4 5-15 – No [184]

Univ. of Alcalá 2018 34-47 No 10 20 12.6† Yes [187]

INESC TEC
Univ. of Porto 2016 Audible Yes – 2.5-7.5 42 Yes [189]

Univ. of Extremadura 2018 16 No 2 ≈ 10 1† Yes [190]

Univ. of Extremadura
Univ. of Oslo 2021 36-44 No 5 0.2-8.94 5.76† Yes [191]

Univ. of Stuttgart 2020 40 Yes 15 2.6-3.65 0.6† No [192]

1 95% of measurements.
2 Absolute error.
3 Root Mean Square Error (RMSE).
4 Mean error.
5 Median error.
† Area of the grid/trajectory.

III. RECEIVED SIGNAL STRENGTH

Received Signal Strength (RSS) systems evaluate the re-
ceived energy in order to estimate the location of the user,
where this calculation can be done with different levels of
complexity:

1) The simplest systems can check for the presence or
absence of an ultrasonic signal, in order to provide
coarse room-level localization.

2) The received energy could be also compared to an
existing template measured at different locations (fin-
gerprinting [89]), in order to pick the location with a
value closer to the one measured.

3) Alternatively, an attenuation model can be used to
estimate the distances between emitters and receivers,
followed by a lateration algorithm [87], [88].

These systems can also be interpreted as having coded
pulses, which are used for a communication link. This is a key
part that is required by all RSS systems, so that each tag or

room can be differentiated by transmitting a unique signature.
However, unlike the wideband coded systems presented in
Section II-D, which integrated the energy over the entire pulse
length to obtain a correlation peak and calculate TOF from
it, these systems integrate each bit (chip) independently. That
is, these systems do not obtain correlation peaks to calculate
TOF, only the communication link is needed to identify the
bits from the room/tag signature. They are more robust than
TOF-wideband systems and cover larger areas, since they use
a much narrower bandwidth, having larger tolerance to noise.

Some work on ultrasound communications links have been
reported before based on Frequency Shift Keying (FSK) [193].
FSK was compared with other modulation methods such as
On-Off Keying (OOK) and BPSK in [194], and the same
group later analyzed QPSK [195]. However, in the evaluation
of BPSK and QPSK they only considered stationary point-to-
point links with continuous communications. For positioning
purposes, it is necessary to have multiple transmitters and
receivers in the same room, and there is almost always
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relative movement. Although other modulation methods may
be more efficient for sustained communications, based on the
experience from underwater communications when only short
burst of data without training sequences are to be sent, FSK
has been found to be robust and reliable [196], [197].

As part of the detection process, Doppler shift needs to
be estimated. Doppler shifts can be particularly challeng-
ing for a narrowband system. This problem is very similar
to that experienced by FSK communications in underwater
acoustics, where Doppler shifts are also relatively high [196],
[197]. Notwithstanding, potentially useful information about
the movement can be extracted from the Doppler shift as a
side-effect. If ±v is the maximum velocity, the maximum
Doppler shift can be calculated from (3):

fD = ±f0v/c, (3)

where v is the velocity component along the ultrasound beam.
Considering v = 6 km/h or 1.67 m/s, which corresponds to
fast-paced walking, and a sound speed c = 340 m/s, a Doppler
shift of ±200 Hz is obtained. To solve this issue, the system
in [198] derived different frequencies from a 8 MHz master
clock. Therefore, dividing this clock frequency by factors 195,
197,..., 205, resulted in frequencies of approximately 41.026,
40.609,..., and 39.024 kHz, i.e. about 400 Hz apart. It was then
possible to separate zeroes from ones even when there was
maximal Doppler shift. For a 3-bit system, three frequency
pairs were used for signaling, one for each bit, where each
frequency represented either a value of 0 or 1.

The Doppler bandwidth must be divided in order to make
the most from a small detection bandwidth. Bins of size
35 Hz were considered in [198], resulting in approximately
2·400 Hz/35 Hz = 23 bins that had to be checked using
a processor based on the Fast Fourier Transform (FFT). A
detection in the upper half of the bins was classified as a 1,
whereas a detection in the lower half was classified as a 0.
Additionally, the bin with the maximum signal provided an
estimate of the Doppler shift.

Reusing frequencies might be necessary if more than 3 bits
are required for data transmission. Because of the typically
low bandwidth of the transducers (usually 10% relative band-
width), there is a finite number of available frequencies. This
solution would work as long as the reuse interval is longer
than the reverberation time of the room. A system of this kind
was described in [199], where four frequency pairs were used,
together with a symbol length of 40 ms and a reuse interval
of 160 ms (reuse after four symbols). Even if the data rate
of this system was only 25 bits/s, this was enough for many
indoor location applications.

An example of the measured velocity component along the
ultrasound beam is depicted in Fig. 10 (adapted from [200]).
The experiment was conducted in an office with dimensions
2.6×5.6×2.7 m3 (width, length, height), where the transmitter
moved but the receiver remained stationary. The transmitter
was initially placed at a distance of approximately 0.4 m from
the receiver, and it was then moved 2 m to a distance of about
2.4 m away from the receiver before stopping. Afterwards, it
was moved two more meters to about 4.4 m and stopped again.
Finally, it was moved back following the same two steps.

These movements can be observed in Fig. 10. The curves at
around 10 and 20 s with negative velocity correspond to the
two instances where the transmitter was moved away from
the receiver. The next two instances (positive velocities) are
caused by the transmitter being moved back in two steps. This
velocity curve is accurate enough to be integrated to estimate
the distance between transmitter and receiver, given an initial
distance between them [200]. This property could potentially
be used to enhance other forms of position information.
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Figure 10: Measured velocity component along ultrasound
beam, where negative values mean “away from transmitter”
(adapted from [200]).

Next, different types of systems based on RSS will be
reviewed.

A. Binary signal strength

These ultrasound location systems give a binary “yes/no”
decision, corresponding to the presence or absence of signal,
being the simplest system based on RSS. The utility of such
a simple concept resides on the difference on how RF and
ultrasound waves propagate indoors, as illustrated in Fig. 11.
This figure shows the layout of an institution floor with many
rooms, with two RF sources on the left side of the floor, in
blue color, and two ultrasound sources (US) on the right side,
in green. It can be seen how the RF signals spread out despite
the walls, floor or ceiling. In this kind of environments, RF
propagation models need to consider spreading, reflections,
and attenuation in the walls, ceiling or floor [201]. However,
the ultrasound signals are confined in the transmitter rooms,
with the exception of some potential leakage through an open
door. Therefore, the ultrasound source will be a reliable and
simple indicator of the presence or absence of the transmitter
in a room. It is worth noting that root mean square positioning
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errors do not necessarily correlate well with the user experi-
ence. For example, an error of 1 m within the room usually
does not have much consequence for the user, but on the
other hand, an error of 1 m that locates the user in a different
room, or floor, might have a considerable impact on the user
experience. This is where the binary ultrasound positioning
system finds its role and usage.

US US

RF

RF

Figure 11: Indoor map showing an institution floor with many
rooms. The ultrasound signals on the right (green color) are
confined to the transmitter rooms, whereas the RF signals on
the left (blue color) spread out despite the walls.

In practice, binary systems have two main applications:
1) They can be used as stand-alone systems, placing one
node per room and simply outputting the room in which
the tracked device is located. An example of this type of
system, developed by Sonitor Technologies AS, is given in
Section V. 2) These systems can be also used to resolve
the aforementioned room ambiguities of RF-based positioning
systems. From an economic point of view, WLAN-based
positioning systems that leverage the existing infrastructure
are very attractive. However, the performance of these systems
seem to be limited in practice, providing median errors around
3 m, a 97th percentile errors around 10 m, and it seems that
these limitations are fundamental [202], [203]. More complex
environmental models might improve the performance, but
large outliers can still appear resulting in errors that can
locate the node in adjacent rooms or floors. One possible
solution to solve this ambiguity is to add an infrared or an
ultrasound positioning system. Whereas infrared has similar
room-confinement properties as ultrasound, it is affected by
fluorescent lamps and sunlight, and cannot cope so well with
the lack of LOS conditions. Ultrasound systems, on the other
hand, can do binary position detection based entirely on
reflections, and therefore they seem to be preferable.

The system from the University of Geneva consisted of one
loudspeaker per room, transmitting a pilot signal and a unique
identifier [204]. Both parts were modulated using chirps at
different frequencies. Upon identification of the pilot signal
by a matched filter, the receiver could decode the identifier
to obtain a binary signature, which allowed to identify the

room. The system was robust to collisions by having different
transmission periods at each loudspeaker. When multiple pilots
are detected from different rooms, the system selected the one
with highest energy. Experiments were conducted in 20 points
spread over two rooms and a corridor. The system was tested
with closed and open doors, using a Samsung Galaxy S5 as a
receiver, with an app doing the processing. With closed doors,
correct identification of the room was achieved for 100% of
the trials. This performance slightly decreased to 99% with
open doors.

B. Relative signal strength

After a binary signal strength decision, the next step up in
complexity is to compare amplitudes. Using the knowledge
that amplitude levels fall monotonically with range, these
comparisons are relative and no propagation model is really
required. These systems can provide better resolution than
those based on binary signal strength.

In [199], the ultrasonic signal was received at several
stationary base stations. The comparison of the received levels
enabled the detection of the room section in which the tag was
located. And in [205], the transmitter array depicted in Fig. 12
was used to transmit beams in different directions. Each beam
was transmitted with a different FSK-modulated ID, and at
different times. The receiver tag demodulated the beam ID and
measured the RSS. The comparison of the received values for
each beam allowed to figure out in which sector the receiver
was placed. A possible application of such a system is bed-
level resolution in a hospital.

Figure 12: Ultrasound transmitter array with beamwidth of
about 15◦ for sending unique coded beams into individual
sectors [205].

C. Absolute signal strength

A propagation model is needed to use the actual signal
strength value and to go beyond binary detection or relative
signal strength comparisons. As long as LOS conditions apply,
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spherical propagation combined with absorption is an accurate
model and (4) describes the scenario for the propagation (or
path) loss.

PL = 20 log(R/R0) + αR (dB), (4)

where R is the range between emitter and receiver, R0 is
a reference range, typically 1 m, and α is the absorption
coefficient.

In [206], RSS values were used to calculate the distances
between nodes in a network. The main novelty of this work
by Shibaura Institute of Technology and the University of
Tokyo, was the iterative multi-lateration approach to reduce
the initial number of reference nodes with known positions.
Five bidirectional transducers were used in each node to
extend the coverage area in all directions, and the network
was synchronized with an RF link, which was also used to
exchange information to perform the location computation.
A master node initiated the process, and commanded the
transmitter nodes to send their ultrasonic pulses by means
of a TDMA protocol. Both master and transmitter nodes
knew their positions. When a receiver node measured enough
distances, it performed multi-lateration and could become a
transmitter node with known location in next steps, aiding in
the localization process of other receiver nodes. The system
included different error mitigation algorithms, such a priority-
based node selection algorithm to minimize the accumulation
of errors in the different steps, and an NLOS rejection algo-
rithm based on the consistency of the received RSS values.
The performance was evaluated in a small office environment,
where 24 nodes were deployed. When using 4 of them as
reference nodes, 95% of the errors were below 28.3 cm. This
value decreased to 16.8 cm when using 6 nodes as references.

A star network topology was used by means of battery pow-
ered TELIAMADE nodes in [207]. One network coordinator
configured and controlled the network, whereas a set of end-
nodes were deployed in the ceiling, and one end-node was
acting as a receiver. The network was connected by a Zigbee
protocol. At the receiver, the ultrasonic signal was amplified,
band-pass filtered and digitized, and the RSS values were
obtained between pairs of nodes formed by the transmitters
and the receiver, which were converted to distances in order
to apply a lateration algorithm. In order to get good absolute
calibration of amplitudes, special measures had to be taken
into account, such as including the orientation of the trans-
ducers, and compensating for changes in battery voltage. In
experiments using four transducers and a receiver placed at 10
different positions and heights, the system provided 95% of
location errors below 19.5 cm.

Table VI gathers the characteristics and results from the
previous systems, where accuracy refers to the maximum error
considering 95% of the measurements, when a numeric value
is given. A dash (–) means that the information was not
available.

IV. ACOUSTIC SPECTRUM AND OTHER OBSERVABLES

Although TOF and RSS have been the most common
observables exploited by positioning systems, there are other

alternatives. In the last decade, the increase in computing
power and the popularization of machine learning algorithms
allowed to leverage a different observable, the acoustic spec-
trum, typically followed by a fingerprinting algorithm for
localization [89]. This approach is specially interesting to
deliver infrastructure-free positioning systems, where the user
is assumed to carry a smart device with an embedded micro-
phone. Therefore, the systems based on this approach have the
potential to reduce considerably the deployment and operation
costs, as no acoustic beacons would be required, only periodic
updates of the fingerprints.

One of the first positioning systems based on the acoustic
spectrum was the Batphone [208]. It was delivered as an appli-
cation that provided localization support based on a combina-
tion of acoustic and Wi-Fi fingerprinting, being thus a purely
passive infrastructure-free system (in the acoustic sense). The
acoustic fingerprinting operation used the bandwidth from 0 to
7 kHz after the removal of transient sounds. In order to obtain
the location, the smartphone’s microphone recorded a signal
of 10 s and calculated the spectrum next. It was then compared
to the available fingerprints by means of the vector Euclidean
distance and a nearest-neighbor classification method. An iPod
Touch was used as the device in the experiments, and it
was tested in a set of 43 different rooms. Using the acoustic
spectrum by itself provided around 60% of correct detections,
a performance that went up to around 70% when it was
combined with the Wi-Fi fingerprinting.

Imperial College London presented a system to recognize
rooms for forensic audio applications [209]. To classify the
rooms they used the logarithms of the 1/3-octave band rever-
beration times from the room impulse responses. Experiments
were conducted by analyzing 22 impulse responses from 22
rooms, applying a leave-one-out cross-validation procedure.
The rooms were correctly identified in 96.1% of the trials.

EchoTag was presented as a system designed to recognize
specific locations, or tags, by using a smartphone, in order
to automatically activate certain functionalities on it, such as
silent-mode, a timer, or a music player [210]. The system was
developed as an application for iOS and Android devices, and
it used the integrated speakers and microphones, thus being
also infrastructure-free. It first used the information from the
Wi-Fi Service Set Identifier (SSID) to check that the device
was located in the correct room. It then checked the device’s
tilt, to make sure that the orientation fit some of the recorded
tags. Only when the first two conditions matched at least one
recorded tag, the acoustic sensing was activated. The device
transmitted then a series of chirps distributed in four different
frequency bands, which were used to sense the environment
around 1 m from the device, approximately. The spectra of the
received chirp echoes were evaluated to differentiate between
the different locations by using a Support Vector Machine
classifier, based on how different multipath conditions affected
the spectrum. Using a 30 min dataset for the fingerprinting,
EchoTag was able to distinguish 20 different tags in a home
environment with a 95% accuracy, where these tags could also
have a resolution of 1 cm and 30◦. This accuracy fell after one
week in the home set-up to 56%, due to changes in the nearby
environment of the tags. However, in a lab environment the
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Table VI: Summary of RSS systems.

Name / Developers Year Frequency (kHz) Synch. Update rate (Hz) Accuracy (cm) Area (m2) Privacy Reference

Univ. of Geneva 2016 20-21.5 No ≈ 0.2 Room-level 23.4-46.8 Yes [204]

Univ. of Oslo 2010 40 No 1 Sub-room-level 22.4 No [205]

Shibaura Inst. of Tech.
Univ. of Tokyo 2004 40 Yes 0.5-1 16.8-28.3 12.96 No [206]

Univ. of Granada
Univ. of Oslo 2012 40 Yes – 19.5 ≈ 0.5† No [207]

† Area of the grid.

accuracy was still higher than 90% after a week.
The University of Queensland and CSIRO developed the

Acoustic Landmark Locator [211] as a phone application.
For each landmark to be considered (rooms and corridors),
different measurements of the acoustic spectrum were taken
with a mobile phone, and were then fed to an Encog neural
network algorithm. These data were used to train the neural
network, and the results were saved in the application. After
being launched by a user, the phone application captured 1 s
audio measurements, calculated the spectrum, and classified
the room. Experimental tests were conducted at five different
landmarks, with different levels of occupancy. Corridors pro-
vided the lowest performance, being correctly detected in 71%
of measurements, whereas the correct detection of the room
varied between 90 and 99%.

The system from the University of Peradeniya and the Sri
Lanka Institute of Information Technology also employed a
transmission/reception operation [212]. The transmitted signal
consisted of a square wave of 6 kHz frequency and a duration
of 50 ms, and the received signals were recorded. Different
locations inside a room were evaluated. This system provided
the best results when using autoregressive modeling on the
power spectral density of the received signals. In that case,
60% of the estimated positions had an error below 1 m when
using the average k-nearest neighbor method, considering two
neighbors.

SoundSignature provided room-level localization based on
selected features extracted from the acoustic spectrum [213].
During the offline stage, transient sounds were removed from
the recorded data, several features were extracted and a
Sequential Forward Feature Selection algorithm was used to
reduce the total number of features. The selected features were
all logarithms of the acoustic power at frequencies below 2
kHz. These features were then used to train a Support Vector
Machine classifier. The effect of the smartphone position was
tested on a small subset of four rooms, indicating that holding
the smartphone on the hand, or having it in the pocket pro-
vided accuracies below 51%. Excluding these conditions, the
difference in the results obtained with different smartphones
was small. Two bigger datasets recorded on two different
days in 16 rooms were used to analyze the performance.
By using a 10-fold cross-validation on the first dataset, the
accuracy was 90.28%, but this value dropped to 48.08% when
using the dataset from one day to validate the data from the

other day. This system could also use a secondary algorithm
called SoundSimilarity, which compared the recordings of two
different users by a cross-correlation, which could indicate that
they were in the same room, providing a correction fix to the
user with smaller confidence.

The prototype from Chiba University was based on the eval-
uation of environmental ultrasounds on the acoustic spectro-
gram by a fingerprinting approach [214]. Twenty measurement
points were defined in a room, and for each, four different
orientations were considered. Recordings with a duration of
2 s were used to calculate the spectrogram. Spectrograms
were paired to position and orientation information, and data
were collected to train a convolutional neural network that
provided a non-linear regression model of the positions. Ignor-
ing the orientation information, the obtained RMSE oscillated
between 1 and 1.5 m, whereas the error was smaller when
considering unidirectional datasets, indicating orientation of
the microphone could not be properly obtained.

The sound absorption caused by the target to locate was
exploited in the system developed by Mid Sweden University
and the University of Salerno [215]. A subtraction method
was employed, where the spectrum obtained when an object
is present in the room underwent a smoothing operation,
being subtracted next from the smoothed spectrum from an
empty room, creating a fingerprint. In the experiments, nine
different positions were considered inside the room, and a
person was the target to localize. The recorded measurements
at different positions were compared to the nine available
fingerprints. As long as the person stayed within 29.9 cm from
the measurement point where the fingerprint was taken, the
system was able to obtain the correct position.

More recently, a combination of acoustic spectrum and RSS
was used to calculate 2D positions using a single speaker
[216]. The variation of the acoustic spectrum of a received
chirp signal with the angle between the speaker and the
receiver was used to estimate the DOA, based on a previously
acquired database of measurements at different angles. RSS
provided a range estimation based on a simple attenuation
model. Experimental tests were conducted in a laboratory, con-
sidering 14 points at different ranges and angles. Combining
all the estimations, 90% of the measurements had errors below
26.5 cm.

Finally, there are a few systems that are not based on TOF,
RSS or the acoustic spectrum. For example, the system from
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the University of Passau used the information obtained both
from vibrations and from acoustic signals emitted by a device,
in order to obtain a symbolic location of the target [217].
During the vibration phase, the device recorded the sound
and the acceleration, and a set of features for each type of
signals was extracted. During the sound sampling stage, 8
pulses at different audible frequencies were transmitted from
the device speaker, and again a set of features were extracted.
Classification of features is done with a C4.5 classifier al-
gorithm, and a Bayesian Belief Integrator fused the three
classifiers together. Three different rooms were evaluated in
the experiments, considering a total of 35 different locations.
Thirty measurements were performed at each of them, where
10 were used to train the classifiers, and 20 for the test set.
According to the first result of the classification and assuming
that the room is known, the accuracy of the location was
between 90-94%. When the room was not known, the accuracy
dropped to 78%.

Another example was Swadloon, which leveraged the
Doppler shift experienced by a smartphone on the pulses sent
by a set of fixed transmitters [218]. The phase and frequency
shifts were measured by a Phase-Locked Loop (PLL), obtain-
ing the relative displacement and velocity to the transmitters.
This information was combined with the velocity from the
internal inertial navigation system to calculate the direction to
the transmitters by linear regression. Each transmitter used
a different frequency band to avoid collisions. By shaking
the smartphone to induce a Doppler shift, a static user could
obtain the initial position, and be tracked afterwards when
following a trajectory. Under static conditions, positioning
errors were below 67 cm for 90% of the measurements at
different points in an empty room, and below 1.23 m for
90% of the measurements in a big office space. For a 50 m
trajectory, the errors were below 40 cm.

Table VII summarizes the characteristics and results from
these systems based on the acoustic spectrum and other
observables. Here, accuracy is given as the percentage of
correct detections, with a note providing more details. A dash
(–) indicates that the information was not available.

V. COMMERCIAL SYSTEMS

This section reviews commercial positioning systems. Most
of them do not provide enough information about their signal
design, operation, and performance under real tests, so they
cannot be readily compared to the previously reviewed sys-
tems, even if using the same observable to obtain the position.
At the same time, some of them were, or still are available
for the general public to purchase, so they are highly relevant
to the indoor positioning field. Therefore, they have been
gathered into their own section.

One early example came from Savi Technology, Inc. [219].
It consisted of a set of locators and tags attached to items,
all synchronized with a RF link. The locators contained two
ultrasonic transmitters, and the range to both transmitters
could be calculated from the respective TOF. This setup also
allowed to obtain bearing information from trigonometry, as
the distance between the two transmitters in the locators is
known.

The system from Netmor Ltd. consisted of a set of beacons
deployed in the environment, which listened to the transmis-
sions from moving units, attached to the targets [220]. Each
unit could be differentiated by using a unique frequency, and
the whole system was synchronized via RF, coordinated by
a central unit, which commanded the start of the positioning
cycle.

The Bat system [221] evolved from the ORL system [129],
after the acquisition of Olivetti & Oracle Research Lab by
AT&T Corporation. It was deployed in the three-floor office
building of AT&T Laboratories in Cambridge, UK, and the
authors reported tracking 200 users with 750 receivers units
and three radio cells, with a claimed accuracy of 3 cm for
95% of the measurements.

Sonitor Technologies AS developed a positioning system for
asset tracking based on binary signal strength [199], [222].
This system has been tested against more conventional RF-
based systems with good results in a clinical setting [223],
[224], and it consisted of wearable ultrasound tags and fixed
ultrasound detectors, with a claimed communication range
between 10 and 20 m. It was a stand-alone system with one
node per room simply outputting which room the tracked
device is located in, as introduced in Section III-A. The
tags transmitted their unique ID, which were received by a
detector, mounted on a room wall, or the ceiling. Multiple
access was resolved by means of a Carrier-Sense Multiple
Access (CSMA) protocol, where the transmitters checked the
channel occupancy before sending their signal. All data from
the detectors were collected in a central server, which could be
accessed by a client terminal. This system later evolved into
the current Sonitor Sense [225], which works in the opposite
way. In this system, there is one transmitter with unique ID per
room, where it can create up to four different areas, obtaining
sub-room level accuracy. Each user carries a receiver tag,
which also has a unique ID. Upon reception of the transmitter
signals, the tags send back their location information and ID
to a server via Wi-Fi.

SmartLocus was a prototype developed by Hewlett-Packard
Laboratories [226]. In this system, tags were also attached
to the nodes to localize. Some of these nodes were defined
as infrastructure nodes, and they were expected to be mostly
located at fixed positions. Other nodes were mobile, and
therefore they could move around the environment, being
tracked by the system. If they stop moving, they could become
an infrastructure node and help other nodes to localize them-
selves. A mobile node would look for its neighbors and obtain
ranging information from them. This was done upon request
via RF and, after that, infrastructure nodes replied back with
their own location information via RF and an ultrasonic pulse,
following a random back-off strategy to minimize collisions.
Once the mobile node obtained its position, it could send it to
the back-end application.

NEC (China) Corp. presented a prototype called AUITS
[227]. This system was based on a unit of receivers with
structural topology, which provided easier deployment and
calibration, and a tag to be attached to the target to be located.
Synchronization was obtained by RF, and outlier rejection
was performed on the TOF according to triangle inequalities
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Table VII: Summary of systems based on the acoustic spectrum and other observables.

Name / Developers Year Frequency (kHz) Synch. Update rate (Hz) Accuracy (%) Area (m2) Privacy Reference

Batphone 2011 0-7 No – 60-701 – Yes [208]

Imperial College London 2013 0.16-3.15 No – 96.11 29-9500† Yes [209]

EchoTag 2015 11-22 No – 40-982 – Yes [210]
Univ. of Queensland

CSIRO
Univ. of Wollongong

2015 0-11 No – 71-991 75-225 Yes [211]

Univ. of Peradeniya
Sri Lanka Inst. of Tech. 2017 6 – – 603 42 Yes [212]

SoundSignature 2018 0-2 No ≈ 0.2 77.9-90.31 – Yes‡ [213]

Chiba Univ. 2019 20-125 No – 1-1.54 28 Yes [214]

Mid Sweden Univ.
Univ. of Salerno 2020 5-20 No – Sub-room level5 11.2 No [215]

Hokkaido Univ.
The Univ. of Tokyo

Nat. Inst. of Informatics
2021 6-24 No – 26.56 1.5 Yes [216]

Univ. of Passau 2007 0.5-4 No – 78-947 – Yes [217]

Swadloon 2015 17-19.5 No 4-20 67-1236 180 Yes [218]

1 Room-level localization.
2 Sub-room level localization: can differentiate between tags separated 1 cm.
3 Sub-room level localization: correct detection inside a radius of 1 m.
4 RMSE in m.
5 Accuracy of 100% if target was closer than 30 cm from reference points.
6 Maximum errors considering 90% of the measurements.
7 Sub-room level localization: correct detection at different abstract locations.
† Room volume.
‡ When not using SoundSimilarity.

between the tag and two receivers. Upon reception of the ul-
trasonic signal, the tag position was calculated by trilateration
using the three receivers with maximum separation between
them. This position could be forwarded to a central server for
location services. Experiments were performed by employing
a unit with 7 receivers. Positions under static conditions were
calculated at 15 points inside a room, whereas a circular
trajectory was followed to test the system under dynamic
conditions. The obtained errors were below 8 and 22 cm,
depending on the distance to the unit center, considering 90%
of the measurements.

The system from Celltek Electronics Pty Ltd. consisted of a
set of RF transceivers and ultrasonic transmitters deployed in a
certain space, such as a shopping mall [228]. A tag provided
to the user could synchronize via RF to the system, and it
listened to the ultrasonic transmissions, which were frequency-
modulated signals transmitted on a TDMA protocol. The tag
could either calculate the position, or just the distances, and it
sent either information to a computer for calculation, tracking,
and displaying purposes. One interesting feature of this system
was that it included a backup positioning method based on the
RSS values of the RF signals, in case the ultrasonic signals
could not be received. Inertial measurement units included in
the tags could also be employed to travel between areas with
no coverage, until receiving a position fix.

AeroScout Ltd. developed a WLAN system with wearable

tags that included ultrasound receivers for room-level resolu-
tion [229]. In this system for assets management, ultrasound
transmitter nodes must be placed in each room where location
ambiguity is particularly important to resolve. The transmitted
unique ID was received by the wearable tag, which reported
back the detected room-ID to a server via the WLAN. The
server could estimate then the location of the tag. AeroScout
was later acquired by Stanley Healthcare Solutions [230], and
the system is still available. They also announced a partnership
with Sonitor Technologies AS to use Sonitor Sense [225] in
the AeroScout RTLS for the healthcare industry [231].

Intelligent Sciences Ltd. designed a system that used one
base station located in the ceiling, and a transponder as
receiver [232]. Upon reception of an ultrasonic pulse from the
base station, the transponder sent back another pulse, which
allowed to calculate the Round-trip Time-Of-Flight (RTOF) to
several receivers in the base station. In that way, both range
and angle to the transponder from the base station could be
calculated. Alternatively, a synchronized version of the system
allowed the transponder to act as an emitter and send its pulse
when instructed by the synchronization signal, calculating the
TOF at the base station.

The system from KT Corporation consisted of a set of syn-
chronized beacons (satellites), which transmitted sequentially
an ultrasonic signal [233]. These signals were received by a
device, which was also synchronized to the beacons, so it
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could calculate the TOF. The device could also get the beacons
position by accessing a server that contained such information.

An earlier system from CenTrak, Inc. consisted of an RF
base station to provide synchronization, and several ultrasonic
stations that transmitted the station ID following a TDMA
protocol determined by the RF station [234]. A portable
device carried by a user was synchronized to the system by
receiving the RF information, and upon detection of the base
station code, it transmitted back both the station ID and its
own device ID to a server via RF. The position was then
associated to the detected ultrasonic station. A recent version
uses infrared base stations to synchronize fixed ultrasonic
transmitters with a portable tag [235]. After calculating the
distances to the transmitters, the tag can either calculate its
position by trilateration, or just calculate the distances to the
transmitters. In any case, position or distances are sent to the
server for displaying purposes.

The positioning system from Marvelmind Robotics [236]
consists of a set of beacons deployed on the walls or ceiling,
and a mobile beacon attached to the target. All beacons are
synchronized with RF, and the system can work both in
a privacy-oriented or centralized version. Additionally, the
positions from ultrasound can be fused with an IMU. When
the mobile beacon is listening (privacy-oriented), each trans-
mitting beacon uses a different frequency, from 19 to 45 kHz,
so they can be distinguished. This system was used in [237]
to locate a drone that conducted a structural health monitoring
test in a room, using four static beacons and a mobile beacon
on the drone. The position obtained with the ultrasonic system
was fused with the drone’s inertial navigation sensor. Different
tests were performed with two drones, while hovering or
following a rectangular trajectory of 11 m2. In the hovering
tests, absolute errors were between 10.2 and 15.8 cm for the
2D position of the drone. In the trajectory test, the maximum
absolute error calculated at each corner of the trajectory was
approximately 18 cm.

The system from Hexamite considered a set of transmitters
and receivers, synchronized by an RF link [238]. After cal-
culating the TOF and ranges to the transmitters, the receivers
sent this information via RF to a central station, equipped with
an RF antenna connected via Universal Serial Bus (USB). This
central station could then calculate the position and orientation
of the target.

In the system from Certis Cisco Security Pte Ltd. [239], the
mobile device captures sound recordings, which are transferred
to a central unit. This unit processes the audio to evaluate
the peaks and valleys of the spectrum and compares those to
a database in a fingerprinting operation. The recordings can
contain information from an acoustic transmission, as well as
the background noise, and can potentially be aided by camera
pictures, and also by tags communicating via bluetooth or
near-field protocols.

One of the latest systems has been developed by Forkbeard
Technologies AS [240]. It provides a positioning system for
smart devices consisting of a set of beacons deployed in the
environment, and it is available for Android and iOS users as
an app (Forkbeard Lyra). It combines a communication device
with ultrasonic signals to calculate the TOF at the smart device

upon entering the area covered by the beacons. Each beacon
can transmit a unique QPSK modulated Complementary Code
Keying (CCK) in a specific time slot to avoid collisions and
reduce reverberation. These signals are received by the smart
device, which can identify the beacon based on the code and
transmission slot. Its decoder can then estimate both range
and radial velocity to each beacon, and can compensate for
multipath. By combining both estimates into a Kalman-like
algorithm [241], it obtains the “Doppler stabilized” ranges.
These ranges are then used in a multi-lateration process to
estimate the position [242]. This system was recently the
subject of a characterization study [243]. When using 10
beacons, and measuring 100 positions in each of a 73-point
grid by placing a smart phone on the floor, 80% of the
measurements had errors below 44 cm. Dynamic conditions
were also tested and compared to a motion capture system.
When repeating five times a 42-meter-long walking trajectory
while carrying the phone in the hand, this error level increased
to 88 cm. For the worst case scenario, repeating the same
trajectory five times while carrying the phone in the pocket and
with obstacles inside the room to recreate NLOS conditions,
80% of the obtained positions had errors below 1.02 m. The
Forkbeard system was later used together with a continuous
output dead-reckoning system that considered a sine-wave
approximation on the step detection algorithm [244]. This step
detection algorithm was combined with heading estimation
and the ultrasonic measurements into an EKF, and the system
was tested by following a trajectory in a room with NLOS
conditions, obtaining a smoother and continuous trajectory,
compared to the ultrasonic system alone.

Table VIII summarizes the main parameters from these
commercial systems. The accuracy and area values are those
reported by the companies, unless specified in the table. A
dash (–) means that the information was not available, and a
hashtag (]) next to the company name means that the product
is not available for sale, to the best of our knowledge.

VI. LINK BUDGETS

Most papers on acoustic positioning deal with accuracy in
the spatial domain measured in centimeters and millimeters.
But the experience of many was reflected in what [245] said
when they stated that they had yet to see a purely acoustic
tracker that doesn’t “go berserk” when you jingle your keys.
Very few deal with how robust the systems are with respect
to noise, or try to predict their useful range under various
conditions. Therefore, in this chapter we consider the link
budgets to analyze the expected useful range of different
acoustic positioning systems.

This useful range is given by the communication link
between emitter and receiver, which is similar to that of other
one-way systems, such as satellite links or passive sonars.
Therefore, the range can be obtained from the passive sonar
equation [193]:

SL+ PG− PL−NL > DT, (5)

where here SL is the source level in dB SPL (sound pressure
level relative to 20 µPa) at a reference range, usually R0 =
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Table VIII: Summary of commercial systems.

Company Year Frequency (kHz) Synch. Update rate (Hz) Accuracy (cm) Area (m2) Privacy Reference

Savi Tech. Inc.] 1996 – Yes – – – No [219]

Netmor Ltd.] 2000 – Yes – – – No [220]

AT&T Lab.] 2001 – Yes 50 31 ≈ 930† No [221]

Sonitor Tech. AS] 2002 25 No – Room-level 10-20‡ No [199], [222]

Sonitor Tech. AS 2014 40 Yes 1 Sub-room level – No [225]

Hewlett-Packard Lab.] 2005 40 Yes 1 – – No [226]

NEC (China) Co. Ltd.] 2008 40 Yes – ≈ 8-22 15 No [227]

Celltek Electronics Pty Ltd.] 2009 – Yes – – – No [228]

AeroScout Ltd. 2010 – No – Room-level – No [229]

Intelligent Sciences Ltd.] 2010 40 Optional – – – No [232]

KT Corp.] 2010 – Yes – – – Yes [233]

CenTrak, Inc. 2013 – Yes – – – No [234]

Marvelmind Robotics 2014 19-45 Yes 25 10.2-182,∗ 170∗ Optional [236], [237]

Hexamite] 2016 40 Yes 20 0.93 – No [238]

Certis Cisco Security Pte Ltd.] 2020 0.02-7 No – Room-level – No [239]

Forkbeard Tech. 2020 20-21 Yes 16 44-1023,∗ 150∗ Yes [240], [243]

1 Maximum error for 95% of the measurements.
2 Absolute error at selected waypoints.
3 Absolute error.
4 Maximum error for 80% of the measurements.
] Discontinued.
† Total area over three floors of the building.
‡ Maximum range.
∗ Results from independent experiments.

1 m; PG is a processing gain, which is 0 dB for the simplest
systems; PL is the propagation loss; NL is the noise level;
and DT is the detection threshold. Next, we briefly discuss
these variables and give some typical values that will be used
in the subsequent analysis.

The source level for a multi-element array and in the direc-
tion where the beam is steered will be SL = SL1+10 logNtx,
where SL1 is the source level of each individual element,
and Ntx is the number of elements [246]. The propagation
loss consists of two terms, as given in (4). The absorption
α (dB/m) is caused by relaxation processes in oxygen and
nitrogen molecules, and is a function of temperature, humidity,
and pressure [247]. Fig. 13 shows the absorption for 20◦C and
1 atm. While commonly neglected at audio frequencies, it can
be relevant at long ranges and high frequencies. At 40 kHz it
takes values from α = 0.26 dB/m for 0% relative humidity
(RH), to a maximum of 1.33 dB/m for 55% RH, and then falls
to a value of 1.1 dB/m at 100% RH.

At ultrasound frequencies, there are not many noise mea-
surements which have been published, but some data can be
found in [248] for an industrial environment: considering a

3 kHz measurement bandwidth, they give a level of 70-80
dB SPL in the range 20-60 kHz, where air tools may produce
levels up to 100 dB SPL. We have considered here a relatively
low level of 60 dB in our calculations, but it is worth noting
that, in extreme cases, the noise level may actually be up to
40 dB higher. As for a low noise value, a background level
at audio frequencies for a quiet library is about NL = 40 dB
SPL, which is assumed to apply at ultrasound frequencies as
well.

The critical design parameter that determines the influence
of the noise is the processing bandwidth BW , as the noise
level which should be used in (5) is:

NL = NL0 + 10 log(BW ) (6)

Then, the equivalent noise spectral density for BW = 3 kHz
and NL = 60 dB SPL is NL0 = 60 − 10 log 3000 ≈ 25
dB/Hz. Therefore, considering the variation in NL between
the library and industry environment with air tools, there may
be a variation in the noise spectral density of NL0 ∈ [5, 65].
As we do not consider it to be realistic for ultrasound systems
to work in the extreme cases such as in the vicinity of air



27

0 20 40 60 80 100

Relative humidity (%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
b

so
rp

ti
o

n
 (

d
B

/m
)

10 kHz
20 kHz

30 kHz

40 kHz

50 kHz

60 kHz

70 kHz

80 kHz

90 kHz

100 kHz

Figure 13: Absorption (in dB/m) as a function of frequency
and humidity, at 1 atm pressure and 20◦C temperature.

tools, we will do the analysis for NL0 = 25±20 dB/Hz. This
large variation is one of the factors that distinguishes ultrasonic
systems from radio communications. It also explains why a
system might easily fail in real life while working perfectly
fine in a quiet lab over a long range.

The system analysis that follows has been done with the
assumption of a center frequency of 40 kHz and a worst
case absorption of α = 1.33 dB/m. In optimal detection
theory, a detection threshold from 15 to 20 dB depending on
probabilities of detection and of false alarm is common [249].
Here the value is assumed to be DT = 20 dB as in [200].

A fairly standard transducer such as the Murata MA40S4S
is capable of providing 120 dB SPL at R0 = 0.3 m, which
is equivalent to about 110 dB SPL at R0 = 1 m [250]. This
is when driven with a sinusoidal wave of 20 Vp−p. A 10 dB
reduction in source level thus corresponds to driving it with
about 3.2 Vrms. Other values of source level may be analyzed
easily since the source and noise levels are simply subtracted
from each other in the link budget. The ±20 dB variation
in noise level may therefore equally well be interpreted as a
variation in source level. In this work, the source level is set
to SL = 100 dB. This value also aligns with health and safety
reports for ultrasound components above 20 kHz [251]. It is
worth mentioning that maximum values are commonly given
for occupational exposures, but on recent years maximum
permissible levels are under scrutiny for public exposure [252].

Lastly, the processing gain PG will have two components,
one due to pulse coding, PGcode, and one due to receiver
array gain, which depends on the number of elements Nrx:
PG = PGcode+5 logNrx. The receiver array sums coherently
for the signal and incoherently for the background noise, so
that is why the dB calculation only has a 5 as multiplication
factor.

A. Narrowband systems

For this case we have considered PG = 0 dB, since there
is no coding, and BW = 25 Hz, which is far below the
threshold of 10% the center frequency. The link budget for
estimating range in this case was first given in [193], [200],
and it is shown here in Fig. 14. The red-dashed line shows
how the source level is attenuated with distance, considering
only spherical spreading. The blue line also takes into account
the absorption term into the attenuation, assuming a relative
humidity of 55%. The lowest horizontal line in green color
is the noise level, and above that is the line for the detection
threshold, in purple. The maximum range is obtained when the
power curve (blue line) crosses the detection threshold giving
a range of about 14.4 m, marked with a black circle. The ±20
dB variation of the background noise level is shown as an
orange band around the detection threshold, and it represents
the operating range of the system. It gives a range of slightly
less than 6 m for the maximum noise level (top edge of the
orange band crossing the power curve), and a range of about
26 m for the lowest noise level (bottom edge of the band
crossing the power curve). This is about the same range as
for the coded system in Fig. 16 as first shown in [253]. This
is because the processing gain of the coding makes up for
the reduction in range due to the increased bandwidth of the
coded system.
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Figure 14: Link budget for a narrowband system with band-
width 25 Hz, and PG = 0 dB.

B. Wideband uncoded systems

In a wideband system, a representative bandwidth for a 40
kHz system is 4 kHz, and since it is uncoded, PG = 0 dB. The
link budget is depicted in Fig. 15. In this case the power curve
crosses the detection threshold at a range of about 5 meters.
Again, the orange band indicates the ±20 dB variation in the
background noise level. As the top edge of the band is over
the power curve, one finds that at the maximum noise level the
range is zero, i.e. the system will not work at all. On the other
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hand it will give a range of about 15 meters for the lowest
noise level.
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Figure 15: Link budget for a wideband uncoded system with
bandwidth 4 kHz, and PG = 0 dB.

C. Wideband coded systems

Regarding the link budget calculation, and in comparison
with the uncoded system previously studied in Fig. 15, the
bandwidth BW is set to 8 kHz in this case, since a larger
bandwidth is necessary with coded and modulated transmis-
sions. The main difference is that now there is a processing
gain PG due to the coding technique. The processing gain
depends not only on the length L of the sequences used to
encode ultrasounds, but also on the features of the modulation.
However, since in most cases the effect of the modulation is
negligible compared to the effect of the codes applied, the
processing gain PG is considered here as a function only of
the code length L, according to PG = 10 logL − 7 dB. The
loss of 7 dB is due to power control errors and threshold
detection effects (see [253]).

The result is shown in Fig. 16 for the cases of sequences
with lengths 256, 1024 and 4096 bits, which provide process-
ing gains of 17, 23 and 29 dB, respectively. The maximum
range is found when the power curve (blue) crosses the
detection thresholds, giving a range of about 10, 13 and 17 m,
for the three sequences. Considering the link budget for the
1024-bit sequence (PG = 23 dB), with the variation of the
background noise level of ±20 dB represented by the orange
band, the system provides a range of 5 m for the maximum
noise level, and a range of about 26 m for the lowest noise
level.

VII. LESSONS LEARNED AND FUTURE CHALLENGES

Traditionally, pioneering acoustic positioning systems have
been characterized by some persistent drawbacks that have
hindered their development and deployment in numerous
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Figure 16: Link budget for a wideband coded system with
bandwidth 8 kHz and processing gain PG of 17, 23 and 29 dB,
corresponding to sequence lengths L of 256, 1024 and 4096
bits.

fields. The most relevant ones may be a low accuracy, a
reduced update rate and a high sensitivity to in-band noise.
These inconveniences are already present in the most basic
configurations, particularly in those based on narrowband
pulse-echo structure. Nevertheless, they are often considered
in some applications where simplicity is a must for different
reasons.

In order to overcome these issues, the wideband approach,
uncoded and coded, has been proposed and evolved during
the last decades. In this case, the resulting solutions provide
a higher accuracy and robustness to noise. Particularly, the
use of different sequences with suitable correlation properties
has allowed the accuracy to be boosted to the range of few
centimeters, while improving the coverage achieved by the
beacons, due to the gain provided by the matched filtering
used in the detection. On the other hand, these spread-spectrum
techniques often involve longer transmission times, which
consequently constrain the final update rates.

Furthermore, commercial transducers usually offer reduced
bandwidths, in the range of a few kHz, which implies an
important constraint to be tackled when designing the acoustic
signal to be transmitted to the environment. This consideration
also applies to smart devices, which favored an increased
research interest as smartphones became widespread, since
those devices could be used instead of dedicated hardware.
Positioning systems based on smart devices have experienced
some issues related to computing power and low resolution
due to the limited bandwidth and sampling frequency available
in standard COTS smart devices, which were not originally
intended for indoor positioning. New hardware that expands
the acoustic frequencies to ultrasound could provide better
results, although this could also limit the coverage area. This
is a significant aspect that still remains to be solved.
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Another limitation typically associated to acoustic position-
ing systems is the Doppler shift that appears in the propagation
of the ultrasonic wave, due to the movement of any element in
the system, either transmitter or receiver. Due to the relative
low propagation speed of sound in air, common vehicles and
objects that move in our daily life might have an impact on
the acoustic wave, which constrains the possible application of
these systems to static scenarios or scenarios with a reduced
capacity of movement. This has led to proposals of numer-
ous algorithms and methods to firstly estimate this Doppler
shift, and then compensate it. Nevertheless, these algorithms
still have room for improvement, and they always involve a
remarkable computational load at the signal detection. It is
worth noting that this computational complexity is sometimes
relegated as a secondary aspect, but it emerges at the final
stages of experimental prototypes as an ultimate feature in
order to achieve feasible solutions, ready to be developed
and deployed by industries in many fields. In this way, it is
necessary to come up with practicable methods that can be
implemented in real time.

Likewise, the multipath effect is one of the most constrain-
ing factors for acoustic positioning systems. As has been previ-
ously mentioned, multipath becomes particularly problematic
in NLOS cases, when a reflected path may be considered as
the LOS echo and significantly degrades the position estimates
and the final performance of the system. For that purpose,
some works have proposed methods mainly focused on the
mitigation of the multipath effect and the NLOS rejection,
thus improving the accuracy. They consist of the successive
interference cancellation, and, sometimes, they are also able to
deal with the inter-symbol interference caused by the limited
bandwidth of the receivers, as well as with the multiple-access
interference originated from stronger emissions from nearby
beacons (near-far effect). In some cases, these algorithms try
to identify outliers in the position estimates in order to discard
them as soon as possible. In this context, the installation
of additional transmitters and/or receivers might provide the
extra information necessary for a suitable distinction between
LOS and NLOS echoes. Nevertheless, all these proposals
have obtained a reduced success, mainly only in well-known
and controlled environments, and they are still far from a
suitable generalization that can cope up with multipath issues
in any context. Furthermore, these methods are often iterative,
which implies a high computational load. This aspect has
already been mentioned before and constrains the achievement
of suitable experimental prototypes. These two items have
become the main challenge for handling multipath in acoustic
positioning systems.

Another drawback is the distance ranging or coverage
achieved in real environments. The covered area in acoustic
systems is typically smaller than in those based on radiofre-
quency, due to the high attenuation of sound in air, and
also the typically high directivity of ultrasound transducers.
Although coded wideband systems have allowed the distance
ranging to be increased, due to the process gain of the
sequences involved, real experimental cases often require the
deployment of numerous beacons to properly cover the volume
under study. This results in a twofold issue: on one hand,

acoustic positioning systems need the installation of specific
infrastructure in the environment, which may increase costs;
and, on the other hand, solutions often involve other sensory
systems to complement the acoustic one. Different works have
already been described that integrate other sensors, such as
inertial units, RF modules, or odometrics. This integration
usually involves a fusion method, where the Kalman filter
and its different variations have been predominant. Anyway,
both aspects, infrastructure installation and hybridization with
other sensors, should be tackled in coming years to address
and achieve a larger coverage with enough reliability and
availability.

With regard to fingerprinting solutions, the need to char-
acterize the room firstly by identifying its unique signature,
implies the same restrictions that can be found in other
technologies, such as WiFi positioning. In this context, acous-
tics is particularly sensitive to any change in the furniture
distribution, and patterns should be obtained under controlled
conditions (i.e., windows and doors closed) on a fine grid
throughout the room. Afterwards, real cases where people can
move in and out substantially modify the correlation between
current measurements and templates, and degrade the final
performance. This implies two immediate drawbacks: on one
hand, the process of acquiring the templates is laborious and
tedious, and they often require periodic updating for an optimal
operation; on the other hand, NLOS situations and multipath
become critical again, since significant errors may appear.
At the same time, the advent of machine learning and more
powerful hardware embedded in smart devices have favored
the appearance of infrastructure-free systems. These systems
usually do not need any dedicated infrastructure, since no
beacons are required, and the measurement and processing
stages can be run on an app installed in a smart device.
Despite their current limitations, they have the potential to
reduce the deployment and maintenance costs significantly.
Combining this approach with a crowdsourcing philosophy
could potentially help in this updating process.

Depending on the accuracy, there are two main areas of
application in which acoustic positioning systems have reached
enough maturity: 1) The positioning of objects in a single room
within a limited range, such as navigation applications, either
for people or robots. 2) Logistics or personnel tracking in large
institutions such as hospitals. Room-level positioning can give
enough accuracy in this case, where a binary received signal
strength system can be suited. Good coverage and robustness
are required in these applications, even when the range ap-
proach 10 m. If accuracies within 1-3 m are needed, then
combining a binary received signal strength ultrasound system
with a Wi-Fi localization system is well suited. Systems based
on the entire echo structure, the acoustic spectrum or absolute
signal strength are not mature enough yet to have reached
commercial applications.

In general, we have observed that systems with similar
design and coverage area typically provide similar accuracies.
Variations are probably caused by the different hardware and
experimental procedures, such as the number of grid points
(which might or might not include non-line of sight mea-
surements), use of accurate ground truth to measure trajectory
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errors, or the figure of merits used to report such errors (e.g.
mean square errors, absolute errors or maximum errors for
a certain percentage of measurements). In this regard, some
effort has been made in the last decade at the Indoor Position-
ing and Indoor Navigation conference (IPIN) [254], and the
Microsoft Indoor Localization Competition (IPSN) [255]. Both
events provide a common setup where different positioning
systems can be tested. A common benchmark would indeed
be a promising way to compare different systems.

Based on the trends observed in recent years in the de-
velopment of location-based applications, we may identify
several future challenges for local acoustic positioning sys-
tems. Firstly, the positioning of people in large environments,
with strongly changing conditions in terms of furniture dis-
tribution and/or public flow, and which should also be easily
scalable (extending its coverage should not require a complete
redesign of the system). Secondly, the continuous positioning
of vehicles with complex dynamics such as mini and micro
unmanned aerial vehicles that are currently used in inspection
tasks and whose rotors are a powerful source of high frequency
acoustic noise. Thirdly, using speakers and microphones that
support higher frequencies than those of current COTS smart
devices would allow to leverage ultrasonic signals with wider
bandwidth, which can further increase the system accuracy
without the need of external dongles. Lastly, there is also
a trend towards the development of location-based services
that allow seamlessly transit between mixed indoor-outdoor
environments, which cannot be ignored by acoustic technol-
ogy, specially in areas with poor GPS coverage. The use of
this type of acoustic positioning signals in an uncontrolled
atmosphere, with the presence of meteorological phenomena
such as temperature gradients, aerosols or turbulence, which
all have a significant effect on the propagation of this type of
mechanical signals, is undoubtedly one of the most fascinating
challenges posed by this field of research.

APPENDIX A
SPEED OF SOUND VARIATION

The speed of sound is not a constant but will vary with tem-
perature and humidity, as well as pressure and frequency. The
speed of sound varies approximately linearly with temperature
in dry air:

c =

√
γkT

m
= 331.45

√
1 +

t

273.15
≈ 331.45+0.607t (m/s)

(7)
where γ is the adiabatic index, k is Bolzmann’s constant, m is
the average mass of a single molecule, T is the temperature in
K, and t is the temperature in ◦C. The nominal value at 20◦C is
c20 = 343.4 m/s. The sensitivity to temperature variation can
be found by computing s = dx/dt/x ≈ 0.607/343.4 ≈ 1.8
mm/m/◦C. Thus, at a range of 5 m and with a temperature
error of 2◦C, the error will be 1.8 cm, and in a high precision
system this needs to be compensated for. In [256] one of the
first works that tried to compensate temperature drifts in a 2 m
workspace for the positioning of a robot’s end effector can be
found. The authors modeled the range estimation noise caused

by temperature drift and turbulence, and used it in a Kalman
filter to compensate the ultrasonic measures for these effects.

Humidity causes changes in γ and in m which lead to an
increase in sound speed with humidity. A change from 0 to
100% relative humidity at 20◦C causes a sound speed change
of less than 0.4% [257]. At a range of 5 meters this may lead
to an error of 20 mm. If the range of variation of the humidity
is small, changes due to humidity can often be neglected.

Eq. (7) does not show any variation with pressure. This is an
approximation and in reality the speed of sound has a positive
sensitivity of 1 ppm (m/s per kPa) around 20◦C [258]. This
can be neglected under normal conditions.

In an absorbing medium where the absorption varies dif-
ferently from the square of the frequency, there will be
dispersion, i.e. sound speed variation with frequency. The
range of variation is less than 0.15 m/s, so it is usually assumed
negligible [259], [260].
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“Doppler resilient modulation in a CDMA-based acoustic local po-
sitioning system,” in Proceedings of the International Conference on
Indoor Positioning and Indoor Navigation, Alcalá de Henares, Spain,
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Álvarez, and C. De Marziani, “Performance comparison of different
codes in an ultrasonic positioning system using using DS-CDMA,” in
Proceeding of the IEEE International Symposium on Intelligent Signal
Processing, Budapest, Hungary, 2009, pp. 125–130.

[163] C. Zhang, X. Lin, S. Yamada, and M. Hatori, “General method to
construct LS codes by complete complementary sequences,” IEICE
Transactions on Communications, vol. E88-B, no. 8, pp. 3484–3487,
2005.
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Álvaro Hernández (Senior Member, IEEE) received
the Ph.D. degree from the University of Alcalá,
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