9 research outputs found

    Sviluppo di tecniche di monitoraggio delle prestazioni di processi chimici controllati

    Get PDF
    La tesi proposta tratta del monitoraggio delle prestazioni dei controllori in processi chimici. Diverse sono le cause di malfunzionamento: da valvole con attrito, a regolatori sintonizzati impropriamente alla propagazione di disturbi negli impianti. Con questa tesi si vuole illustrare una metodologia per individuare le cause di mancata prestazione in modo da poterle classificare ed intraprendere le necessarie contromisure. In particolare é stato approfondito il problema della sintonizzazione dei regolatori ed è stata proposta una tecnica di identificazione basata sullo studio dei disturbi, evitando quindi ulteriori sollecitazioni agli impianti per variazioni di set-point. Inoltre è stato affrontato il problema dell’attrito sulle valvole utilizzando diverse tecniche di individuazione automatica originali e già presentetate in letteratura. Il tutto è stato organizzato in un software sviluppato in ambiente Matlab

    Design and Implementation of Model Predictive Control Approaches

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Advances in PID, Smith and Deadbeat control

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges

    Get PDF
    Organic Rankine cycle systems are suitable technologies for utilization of low/medium-temperature heat sources, especially for small-scale systems. Waste heat from engines in the transportation sector, solar energy, and intermittent industrial waste heat are by nature transient heat sources, making it a challenging task to design and operate the organic Rankine cycle system safely and efficiently for these heat sources. Therefore, it is of crucial importance to investigate the dynamic behavior of the organic Rankine cycle system and develop suitable control strategies. This paper provides a comprehensive review of the previous studies in the area of dynamic modeling and control of the organic Rankine cycle system. The most common dynamic modeling approaches, typical issues during dynamic simulations, and different control strategies are discussed in detail. The most suitable dynamic modeling approaches of each component, solutions to common problems, and optimal control approaches are identified. Directions for future research are provided. The review indicates that the dynamics of the organic Rankine cycle system is mainly governed by the heat exchangers. Depending on the level of accuracy and computational effort, a moving boundary approach, a finite volume method or a two-volume simplification can be used for the modeling of the heat exchangers. From the control perspective, the model predictive controllers, especially improved model predictive controllers (e.g. the multiple model predictive control, switching model predictive control, and non-linear model predictive control approach), provide excellent control performance compared to conventional control strategies (e.g. proportional–integral controller, proportional–derivative controller, and proportional–integral–derivative controllers). We recommend that future research focuses on the integrated design and optimization, especially considering the design of the heat exchangers, the dynamic response of the system and its controllability

    Iteration Tuning of Disturbance Observer-Based Control System Satisfying Robustness Index for FOPTD Processes

    No full text

    Real-Time Optimization for Estimation and Control: Application to Waste Heat Recovery for Heavy Duty Trucks

    Get PDF
    This thesis aims at the investigation and development of the control of waste heat recovery systems (WHR) for heavy duty trucks based on the organic Rankine cycle. It is desired to control these systems in real time so that they recover as much energy as possible, but this is no trivial task since their highly nonlinear dynamics are strongly affected by external inputs (disturbances). Additionally, nonlinear operational constraints must be satisfied. To deal with this problem, in this thesis a dynamic model of a WHR that is based on first principles and empirical relationships from thermodynamics and heat transfer is formulated. This model corresponds to a DAE of index 1. In view of the requirements of the employed numerical methods, it includes a spline-based evaluation method for the thermophysical properties needed to evaluate the model. Therewith, the continuous differentiability of the state trajectories with respect to controls and states on its domain of evaluation is achieved. Next, an optimal control problem (OCP) for a fixed time horizon is formulated. From the OCP, a nonlinear model-predictive control (NMPC) scheme is formulated as well. Since NMPC corresponds to a state feedback strategy, a state estimator is also formulated in the form of a moving horizon estimation (MHE) scheme. In this thesis, we make use of efficient numerical methods based on the direct multiple shooting (DMS) method for optimal control, backward differentiation formulae for the solution of initial value problems for DAE, and the corresponding versions of the real-time iteration (RTI) scheme in order to approximately solve the OCP and implement the MHE and NMPC schemes. The simultaneous implementation of NMPC and MHE schemes based on RTI has been already proven to be stable in the control literature. Several numerical instances of the DMS method for the proposed OCP, NMPC and MHE schemes are tested assuming a given real-world operation scenario consisting of truck exhaust gas data recorded during a real trip. These data have been kindly provided by our industry cooperation partner Daimler AG. Additionally, the PI and LQGI control strategies, of wide-spread use in the literature of control of WHR, are also considered for comparison with the proposed scheme. An important result of this thesis is that, considering the highest energy recovery obtained from both strategies as a reference for the given operation scenario, the proposed NMPC scheme is able to reach an additional energy generation of around 3% when the full state vector is assumed to be known, and its computational speed allows it to update the control function in times shorter than the considered sampling time of 100 [ms], which makes it a suitable candidate for real-time implementation. In a more realistic scenario in which the state has to be estimated from noisy measurements, a combination of both aforementioned NMPC and MHE schemes yields an additional energy generation of around 2%. Concretely, this thesis presents novel results and advances in the following areas: • A first principles DAE model of the WHR is presented. The model is derived from the energy and mass conservation considerations and empirical heat transfer relationships; and features a tailored evaluation method of thermophysical properties with which it possesses the property of being at least continuously differentiable with respect to its controls and states on its whole domain of evaluation. • A new real-time optimization control strategy for the WHR is developed. It consists of an NMPC strategy based on efficient simulation, optimization and control tools developed in previous works. The scheme is able to explicitly handle nonlinear constraints on controls and states. In contrast to other NMPC instances for the WHR found in the literature, our scheme's efficient numerical treatment make it real-time feasible even if the full nonlinear WHR dynamics are considered. • To the author's knowledge, this is the first implementation that considers both the NMPC and the MHE approaches used simultaneously in the control of the WHR. The combination of NMPC and MHE produces a closed-loop, model-based implementation that can treat realistic measurements as inputs and calculates the corresponding control functions as outputs
    corecore