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Summary

In the field of Industrial process control, the performance, robustness and real con-

straints of control systems become more important to ensure strong competitive-

ness. All these requirements demand new approaches to improve the performance

for industrial process control. In this thesis, it is motivated to explore new con-

trol techniques for the development of (i) PID stabilization and design for single

variable process; (ii) Smith predictor design for improved disturbance performance

and for processes with RHP zeros; and (iii) deadbeat controller design with hard

constraints.

PID controllers are the dominant choice in process control and many results

have been reported in literature. In this thesis, based on the Nyquist stability the-

orem, the stabilization of five typical unstable time delay processes is investigated.

For each process, the maximum stabilizable time delay for different controllers is

derived, and the computational method is also provided to determine the stabi-

lization gain. The analysis provides theoretical understanding of the stabilization

issue as well as guidelines for actual controller design. Recently, with the advance

of linear matrix inequality (LMI) theory, it is possible to combine different objec-

tives as one optimization problem. For the PID design part, an LMI approach is

presented for the regional pole placement problem by PID controllers. It is shown

that the problem of regional pole placement by PID controller design may be con-

verted into that of static output feedback (SOF) controller design after appropriate

formulation. The difficulty of SOF synthesis is that the problem inherently is a

bilinear problem which is hard to be solved via an optimization with LMI con-

straints. In the thesis, an iterative LMI optimization method is developed to solve

viii



Summary ix

the problem.

For industrial process control, when time delay dominant plants are considered,

the conventional PID methods need to make trade-off between performance and

stability, and could not meet more stringent requirements. The Smith predictor

is a good way to control the processes with time delay. Currently, most modi-

fied Smith designs have not paid enough efforts to disturbance rejection, which

is known to be much more important than set-point performance in industrial

control practice. In the thesis, two modified Smith predictor control schemes are

proposed for both stable and unstable processes. For stable time delay processes,

a two-degree-of-freedom Smith scheme is investigated. The disturbance controller

is designed to mimic the behavior of completely rejecting the disturbance after

the transfer delay. This novel tuning rule enables convenient design of disturbance

controller with superior disturbance rejection, as well as easy trade-off between

system robustness and performance. For unstable time delay processes, a double

two-degree-of-freedom control scheme is proposed, where the four controllers in

the scheme are well placed to separately tune the denominators and numerators of

closed-loop transfer functions from the set-point and disturbance. The disturbance

controller is tuned to minimize the integral squared error, and two options are pro-

vided to meet practical situations for the trade-off between control performance

and control action limits. In both designs, explicit controller formulas for several

typical industrial processes are provided to facilitate the application. The internal

stability of both schemes are analyzed, and the simulations demonstrate greatly

improved disturbance over existing approaches. In addition to the modified Smith

predictor design for improved disturbance rejection, a Smith like controller design

is also given for processes with RHP zeros. It is shown that RHP zeros and pos-

sible dead time can be removed from the characteristic equation of the scheme so

that the control design is greatly simplified, and enhanced performance is achiev-

able. The relationships between the time domain specifications and the tuning

parameter are developed to meet the design requirements on performance and ro-

bustness. Compared with the single-loop design, the proposed scheme provides
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robust, improved, and predictable performance than the popular PI control.

Deadbeat control is an important issue in the discrete control area, In the thesis,

a polynomial approach is employed to solve the deadbeat tracking problem with

hard input constraints. The general formula for controllers with bounded input

is derived first. Based on this general formula and with extensive analysis, the

deadbeat requirement and hard constraints combine to constitute a finite number

of linear inequalities constraints. The deadbeat nature of the error enables easy

evaluation of various time-domain performance indices, and the controller design

could be efficiently solved with linear programming or quadratic programming to

optimize such benchmarks.

The schemes and results presented in this thesis have both practical values and

theoretical contributions. The results of the simulations show that the proposed

methods are helpful in improving the performance or the robustness of industrial

control systems.



Chapter 1

Introduction

1.1 Motivation

Over the past fifty years, in parallel with the development of computer and commu-

nication technologies, control technology has made numerous significant successes

in many areas. Its broad applications include guidance and control systems for

aerospace vehicles, supervision control systems in the manufacturing industries,

industrial process control systems, and real-time communication control systems.

These applications have had an enormous impact on the development of modern

society. In the meanwhile, control theorists and engineers have developed reliable

techniques for modelling, analysis, design, and testing that enable development

and implementation of the wide variety of very complex engineering systems in use

today.

In the field of Industrial process control, improved productivity, efficiency, and

product goals generate a demand for more effective control strategies to be imple-

mented in the production line. For example, the hydrocarbon and chemical pro-

cessing industries maintain high product quality by monitoring thousands of sen-

sor signals and making corresponding adjustments to hundreds of valves, heaters,

pumps, and other actuators. In accordance to the challenges, many advanced

control techniques have been implemented in industry in recent years (Roffel and

Betlem, 2004). From the industrial perspective, the performance, robustness and

1
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real constraints of control systems become more important to ensure strong com-

petitiveness. All these requirements call for a strong need for new approaches to

improve the performance for industrial process control. Therefore, this thesis is

motivated to explore new control techniques for improved performance of industrial

process control systems.

Among most unity feedback control structures, the proportional-integral-derivative

(PID) controllers have been widely used in many industrial control systems since

Ziegler and Nichols proposed their first PID tuning method. Industries have been

using the conventional PID controller in spite of the development of more advanced

control techniques. The importance of PID control comes from its simple struc-

ture, convenient applicability and clear effects of each proportional, integral and

derivative control. On the other hand, the general performance of PID controller

is satisfactory in many applications. For these reasons, in industrial process con-

trol applications, more than 90% of the controllers are of PID type (Åström and

Hagglünd, 1995; Åström and Hagglünd, 2001).

Through the past decades, numerous tuning methods have been proposed to

improve the performance of PID controllers (Åström et al., 1993; Åström and

Hagglünd, 1995; Tan et al., 1999). Some tuning rules aim to minimize an appro-

priate performance criterion. The well known integral absolute error (IAE) and

time weighted IAE criteria were employed to design PID controllers in Rovira et al.

(1969). The integral squared error (ISE), the time weighted ISE and the exponen-

tial time weighted ISE were chosen as performance indices in Zhuang and Atherton

(1993). Some Tuning rules are designed to give a specified closed loop response.

Such rules may be defined by specifying the desired poles of the closed-loop re-

sponse, or the achievement of a specified gain margin and/or phase margin. With

some approximation, Ho et al. (1995) presented an analytical formula to design

the PID controller for the first-order and second-order plus dead time processes to

meet gain and phase margin specifications. Fung et al. (1998) proposed a graphic

method to devise PI controllers based on exact gain and phase margin specifica-

tions. Recently, using the ideas from iterative feedback tuning, Ho et al. (2003)
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presented relay autotuning of the PID controllers to yield specified phase margin

and bandwidth. Some PID tuning rules are based on recording appropriate param-

eters at the ultimate frequency (Hang et al., 2002; Ho et al., 1996). There are also

some robust tuning rules, with an explicit robust stability and robust performance

criterion built in to the design process, say those internal-model-based PID tun-

ing method for example (Morari and Zafiriou, 1989; Chien and Fruehauf, 1990).

All these tuning methods have greatly enriched the study of PID controller de-

sign, however, there still lacks a clear scenario on what kind of process could be

stabilized by PID controllers.

Stabilization is one of the key issues in control engineering, and it is essential for

successful operations of control schemes. As we know, time delay is commonly en-

countered in industrial process systems, and the stabilization problem is even more

complicated when the time delay processes are open-loop unstable. In industrial

and chemical practice, there are some open-loop unstable processes in industry

such as chemical reactors, polymerization furnaces and continuous stirred tank

reactors. Such unstable processes coupled with time delay make control system

design a difficult task, which has attracted increased attention from the control

community (Chidambaram, 1997). Typically, unstable delay processes in indus-

trial process systems are of low order. Thus, the stabilization of low-order unstable

delay processes becomes an interesting topic. Silva et al. (2004) investigated the

complete set of stabilizing PID controllers based on the Hermite-Biehler theorem

for quasi-polynomials, which involves finding the zeros of a transcendental equation

to determine the range of stabilizing gains. However, this approach is mathemati-

cally involved. It does not provide an explicit characterization of the boundary of

the stabilizing PID parameter region, and the maximal stabilizable time delay for

some typical yet simple processes still remains obscure. Polynomial calculation is

another branch for stabilizing PID analysis (Söylemez et al., 2003). Hwang and

Hwang (2004) applied the D-partition method to characterize the stability domain

in the space of system and controller parameters. The stability boundary is re-

duced to a transcendental equation, and the whole stability domain is drawn in
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a two-dimensional plane by sweeping the remaining parameter(s). However, this

result only provides sufficient condition regarding the size of the time delay for

stabilization of first-order unstable processes. There is thus a high demand to in-

vestigate the stabilization problem of first or second-order unstable delay processes

by PID controllers.

One of the fundamental problems in control theory and practice is the design of

feedback laws that place the closed-loop poles at desired locations. Although many

literatures have been devoted to the problem of exact pole placement (Kimura,

1975; Wang and Rosenthal, 1992; Wang, 1996), in practice, it is often the case

that pointwise closed-loop pole placement is not required. In specific, when PID

controller design is considered, exact pole placement in general is not applicable

due to the limited manipulatable controller parameters. Another pole placement

technique is dominant pole placement design, where the controller is calculated such

that the dominant poles are placed to ensure desired dynamic performance. The

applications could be found in Prashanti and Chidambaram (2000) and Zhang et al.

(2002). However, a common challenge for dominant pole placement is the difficulty

to guarantee that the placed poles are indeed dominant. In contrast to exact or

dominant pole placement schemes, where all or part of the closed-loop poles are

fixed, regional pole placement (RPP) aims to constrain the closed-loop poles within

some suitable region in the left-half complex plane. In Shafieia and Shentona

(1994), based on the method of D-partition, a PID tuning method was proposed

to shift all the poles to a certain desirable region, but this method is graphical in

nature. Recent years, owing to the contribution of Boyd et al. (1994), many control

problems have been synthesized with linear matrix inequalities (LMI). In Chilali

and Gahinet (1996), the conception of LMI regions is proposed to formulate the

regional pole placement problem as an LMI one and then solve it together with H∞

design. However, the result confines to state feedback or full-order dynamic output

feedback controllers, which have the limitations in case that full access to the state

vector is not available or the full-order dynamic output controllers are difficult to

implement due to cost, reliability or hardware implementation constraints. As we
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know, PID controllers are reducible to static output feedback (SOF) controllers

through state augmentations. Hence, it is an interesting topic to find a SOF or

PID controller to meet the regional pole placement specifications. It is well known

that SOF is one of the open problem in control theory (Bernstein, 1992; Syrmos et

al., 1997), since SOF problem is inherently bilinear which is hard to be formulated

into an optimization problem with LMI constraints. In specific, the regional pole

placement problem by SOF controllers remains open despite its simple form. It is

thus useful in this respect to find a design scheme to cope with the regional pole

placement problem through PID controllers.

Nowadays, many control designs focus on set-point response, but overlook dis-

turbance rejection performance. However, in industrial control practice, there is

no doubt that disturbance rejection is much more important than set-point track-

ing (Åström and Hagglünd, 1995; Shinskey, 1996), since the set-point reference

signal may be kept unchanged for years, and the system performance is mainly

affected by varying disturbances (Luyben, 1990). In fact, countermeasure of dis-

turbance is one of the key factors for successful and failed applications (Takatsu

and Itoh, 1999). In view of the great importance of disturbance rejection in process

control, good solutions have been sought for a long time. To cope with the distur-

bance, one possible way is to design the single controller in the feedback system,

where trade-off has to be made between the set-point response and disturbance

rejection performance. As for conventional PI or PID methods within the frame-

work of a unity feedback control structure, many improved tuning rules have been

provided (Ogata, 1990; Ho and Xu, 1998; Park et al., 1998; Silva et al., 2004; Chen

and Seborg, 2002). However, owing to the water-bed effect between the set-point

response and the load disturbance response, the improvement of the disturbance

response is not significant, and the set-point response is usually accompanied with

excessive overshoot and large settling time when the time delay is significant. A

better approach is to introduce an additional controller to manipulate the distur-

bance rejection. Recently, a compensator called disturbance observer is introduced

in the area of motion control (Ohnishi, 1987). The equivalent disturbance is es-



Chapter 1. Introduction 6

timated as the difference between the outputs of the actual process and that of

the nominal model, and then it is fed to the process inverse model to cancel the

disturbance effect on the output. However, one crucial obstacle for the applica-

tion of disturbance observer to industrial process control is the process time delay,

which exists in most industrial processes. Since the inverse model would contain a

pure predictor which is physically unrealizable. Therefore, it is appealing to find

a design for disturbance rejection control for time delay processes.

As is well known, the Smith predictor controller (Smith, 1959) is an effective

dead-time compensator for time delay processes. With Smith predictor, the time

delay can be removed from the characteristic equation of the closed-loop system,

and the control design is greatly simplified into the delay-free case. However, the

one degree-of-freedom nature of the original Smith predictor still requires a trade-

off to be made between set-point tracking and disturbance rejection. Moreover,

the original Smith predictor scheme will be unstable when applied to an unstable

process. In order to improve the performance as well as extend the applicability of

Smith predictor, many approaches have been proposed. A two degree-of-freedom

scheme was investigated for improved disturbance rejection in Huang et al. (1990)

and Palmor (1996). Their scheme features delay-free nominal stabilization, and the

disturbance compensator controller is composed of a first order lag and a time delay

to approximate the inverse of time delay in low frequency range. However, their

proposed design of disturbance compensator is not as effective as expected due to

the inaccurate approximation of inverse delay, and the corresponding disturbance

performance improvement is insignificant. Aiming to enhance the disturbance

response and robustness as well, another double-controller scheme was proposed

for stable first order processes with time delay (Tian and Gao, 1998). However,

its disturbance response is not tuned with special care. Moreover, this scheme

is effective only for process with dominant delay, when the process time delay

is relatively small, even its nominal performance deteriorates. Thus, there is a

high demand for a new control scheme to provide substantial improvement on

disturbance rejection and keep nominal delay-free stabilization like that in the
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original Smith predictor.

In recent years, advanced control systems concerning unstable processes have

been strongly appealed in industry, which therefore have attracted much attention

in the process control community (Chidambaram, 1997). To overcome the obsta-

cle of the original Smith predictor for unstable processes, Åström et al. (1994)

presented a modified Smith predictor (MSP) for an integrator plus time delay pro-

cess with decoupling design, which leads to faster set-point response and better

disturbance rejection. Matausek and Micic (1996) and Kwak et al. (1999) con-

sidered the same problem with similar results by providing easier tuning schemes.

In 1999, Majhi and Atherton (1999) proposed a modified Smith predictor con-

trol scheme which has high performance particularly for unstable and integrating

process. This method achieves optimal integral squared time error for set-point re-

sponse and employs an optimum stability approach with a proportional controller

for an unstable process. Later, the same control structure is revisited in Majhi and

Atherton (2000a), Majhi and Atherton (2000b) and Kaya (2003) to achieve bet-

ter performance with easier tuning methods. However, the disturbance controller

in these schemes mainly contributes to enhancing the stability of disturbance re-

sponse, and still could not improve the performance significantly. Furthermore,

it should be noted that many MSP control methods restricted focus on unstable

processes modelled in the form of a first order rational part plus time delay, which

in fact, cannot represent a variety of industrial and chemical unstable processes

well enough. Besides, there usually exist the process unmodelled dynamics that

inevitably tend to deteriorate the control system performance, especially for the

load disturbance rejection. It is therefore motivated to devise a new control scheme

for unstable time delay processes, which could enable manipulation of disturbance

transient response without causing any loss of the existing benefits of the previous

schemes and is robust against modelling errors.

Another control problem frequently encountered in industrial process but less

addressed by researchers is the right-half-plane (RHP) zeros. RHP zeros have

been identified in many chemical engineering systems, such as the boilers, sim-
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ple distillation columns, and coupled distillation column (Holt and Morari, 1985).

Compared with its minimum phase counter-part, a system with RHP zeros has

similar inherent performance limitations to those of the time delay process, such

as the closed-loop gain, bandwidth, and the integrals of sensitivity and comple-

mentary sensitivity functions (Middleton, 1991; Qiu and Davison, 1993; Seron et

al., 1997). Although it is well accepted that system with RHP zeros is difficult to

control (Middleton, 1991), there are relatively few literatures focusing on specific

controller design for RHP zeros. Noting that RHP zeros share the same non-

minimum phase property as time delay, and that the time delay has a common

bridge with RHP zeros in its first order Padé approximation, it is natural to con-

sider extending the Smith predictor for time delay process to a Smith-like controller

for process with RHP zeros. Therefore, it is desirable to have a new control scheme

for systems with RHP zeros by developing a Smith-like controller.

In the area of discrete systems control, deadbeat control is a fundamental issue.

Different from the commonly mentioned asymptotically tracking where the output

follows the reference signal asymptomatically, deadbeat control aims to drive the

tracking error to zero in finite time and keep it zero for all discrete times there-

after. The problem of deadbeat control received attention since 1950s, and has

been extensively studied in the 1980s (Kimura and Tanaka, 1981; Emami-Naeini

and Franklin, 1982; Schlegel, 1982). However, the minimum time deadbeat control

usually suffers from the problem of large control magnitude, which prevents the

practical implementation. On the other hand, saturation nonlinearities are ubiqui-

tous in engineering systems (Hu and Lin, 2001; Hu et al., 2002), and the analysis

and controller design for system with saturation nonlinearities is an important

problem in practical situations. Consequently, it is of practically imperative to

incorporate hard constraints into the deadbeat controller. The challenges are the

formulation and solving of controller with hard constraints, which motivates the

last topic in this thesis: deadbeat tracking control with hard input constraints.
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1.2 Contributions

This present thesis mainly covers three topics: PID stabilization and control prob-

lem, modified Smith predictor design for industrial processes, and constrained

deadbeat control problem. Several new control schemes are addressed for sin-

gle variable linear processes in industrial process control, aiming to improve the

performance, disturbance response and system robustness. In particular, the thesis

has investigated the following areas:

A. PID Control for Stabilization

Based on the Nyquist stability theorem, the stabilization problem for unstable

(including integral) time delay processes is investigated. Especially, for P, PI,

PD or PID controllers, the explicit maximal stabilizable time delays are given in

terms of the parameters from first-order unstable process, second-order integral

process with an unstable pole, and second-order non-integral unstable process are

established. In parallel with the stabilization analysis, the computational methods

are also provided to find the stabilization controllers.

B. PID Control for Regional Pole Placement

An iterative LMI algorithm is presented for the regional pole placement prob-

lem by PID controllers. The regional pole placement problem by SOF controllers is

addressed first and formulated as a bilinear linear problem, which is proven equiv-

alent to a quadratic matrix problem and solved via an iterative LMI approach.

Then it is shown that PID regional pole placement problem is easily converted to

a SOF one, and thus could be solved within the same framework. The result is

applicable to general reduced order feedback controller design.

C. A Two-degree-of-freedom Smith Control for Stable Delay Pro-

cesses

A two-degree-of-freedom Smith control scheme is investigated for improved dis-

turbance rejection of stable delay processes. This scheme enables delay-free sta-

bilization and separate tuning of set-point and disturbance responses. In specific,
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a novel disturbance controller design is presented to mimic the behavior of com-

pletely rejecting the disturbance after the transfer delay. Through the analysis and

examples, the rejection of different kinds of disturbances is addressed, such as step

type and periodic one. It is shown that the disturbance performance is greatly

improved.

D. A Double Two-degree-of-freedom Smith Scheme for Unstable De-

lay Processes

A double two-degree-of-freedom control scheme is proposed for enhanced con-

trol of unstable delay processes. The scheme is motivated by the modified Smith

predictor control in Majhi and Atherton (1999) and devised to improve in the

following ways: (i) one more freedom of control is introduced to enable manipula-

tion of disturbance transient response, and is tuned based on minimization of the

integral squared error; (ii) four controllers are well placed to separately tune the

denominators and numerators of closed-loop transfer functions from the set-point

and disturbance, which allows easy design of each controller and good control per-

formance for both set-point and disturbance responses. Controller formulas for

several typical process models are provided, with two options provided to meet

practical situations for the trade-off between control performance and control ac-

tion limits. Especially, improvement of disturbance response is extremely great.

E. A Smith-Like Control Design for Processes with RHP Zeros

Motivated by the common non-minimum phase property of dead time and

right-half-plane (RHP) zero, a Smith-like scheme is presented for systems with

RHP zeros. It is shown that RHP zeros and possible dead time can be removed

from the characteristic equation of the scheme so that the control design is greatly

simplified, and enhanced performance is achievable. By model reduction, a unified

design with a single tuning parameter is presented for processes of different orders.

The relationships between the time domain specifications and the tuning parameter

are developed to facilitate the design trade-off. It is also shown that the design

ensures the gain margin of 2 and phase margin of π/3, as well as allows 100%
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perturbation of the RHP zero or uncertain time delay of |∆L| ≤ τ/0.42.

F. Deadbeat Tracking Control with Hard Input Constraints

In this thesis, a polynomial approach is employed to solve the deadbeat track-

ing problem with hard input constraints. The general formula for controllers with

bounded input is derived first. Based on this general formula, hard constraints

are imposed and the problem is formulated as a specific linear infinite program-

ming problem. Then it is proven that the hard input constraints can be ensured

approximately with arbitrary accuracy by choosing a suitable finite subset of the

inequalities. The reduction from infinite inequality constraints to finite ones leads

to easy controller calculation by employing linear programming or quadratic pro-

gramming algorithms.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 focuses on the PID stabilization

analysis for low-order unstable delay processes, where explicit and complete stabi-

lizability results in terms of the upper limit of time delay size are provided. Chapter

3 is devoted to regional pole placement by PID controllers through iterative LMI

algorithms. Chapter 4 is concerned with a two-degree-of-freedom Smith control

for stable time delay processes, where the novel design of the disturbance con-

troller enables significantly improved disturbance rejection. Chapter 5 investigates

a double two-degree-of-freedom control scheme for unstable delay processes. Chap-

ter 6 presents a Smith-like control design for systems with RHP zeros. Chapter

7 addresses the deadbeat tracking control with hard input constraints taken into

consideration. Finally in Chapter 8, general conclusions are given and suggestions

for further works are presented.



Chapter 2

PID Control for Stabilization

2.1 Introduction

Time delay is commonly encountered in chemical, biological, mechanical and elec-

tronic systems. There are some unstable processes in industry such as chemi-

cal reactors and their stabilization is essential for successful operations. Espe-

cially, unstable processes coupled with time delay makes control system design

a difficult task, which has attracted increased attention from control community

(Chidambaram, 1997). Recently, many techniques have been reported to improve

PID tuning for unstable delay processes. Shafiei and Shenton (Shafiei and Shen-

ton, 1994) proposed a graphical technique for PID controller tuning based on the

D-partition method. Poulin and Pomerleau (Poulin and Pomerleau, 1996) utilized

the Nichols chart to design PI/PID controller for integral and unstable processes

with maximum peak-resonance specification. Wang et al. (Wang et al., 1999a)

investigated PID controllers based on gain and phase margin specifications. Sree

et al. (Sree et al., 2004) designed PI/PID controllers for first-order delay systems

by matching the coefficients of the numerator and the denominator of the closed

loop transfer function. However, these works do not provide a clear scenario on

what kind of process could be stabilized by PID controllers.

Typically, most unstable delay processes in practical systems are of low or-

der (1st or 2nd-order). Thus, stabilization of low-order unstable delay processes

12
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becomes an interesting topic. Silva et al. (Silva et al., 2004) investigated the com-

plete set of stabilizing PID controllers based on the Hermite-Biehler theorem for

quasi-polynomials. However, this approach is mathematically involved, it does not

provide an explicit characterization of the boundary of the stabilizing PID param-

eter region, and the maximal stabilizable time delay for some typical yet simple

processes still remains obscure. Hwang and Hwang (2004) applied D-partition

method to characterize the stability domain in the space of system and controller

parameters. The stability boundary is reduced to a transcendental equation, and

the whole stability domain is drawn in two-dimensional plane by sweeping the

remaining parameter(s). However, this result only provides sufficient condition re-

garding the size of the time delay for stabilization of first-order unstable processes.

In this chapter, we aim to provide a thorough yet simple approach solving the

stabilization problem of first or second-order unstable delay processes by PID con-

troller or its special cases. The tool used for stability analysis is the well-known

Nyquist criterion and hence easy to follow. For each case, the necessary and suffi-

cient condition concerning the maximal delay for stabilizability is established and

the range of the stabilizing control parameters is also derived. The stabilizability

results for five typical processes are summarized in Table 2.1. It is believed that

the results could serve as a guideline for the design of stabilizing controllers in

practical industrial process control.

The rest of the chapter is organized as follows. After the problem statement

in Section 2.2, some preliminaries are presented in Section 2.3. The stabilization

for first-order non-integral unstable process, second-order integral process with an

unstable pole, and second-order non-integral unstable process with a stable pole

are addressed in Sections 2.4-2.6, respectively. Finally, Section 2.7 concludes the

chapter.

2.2 Problem Formulation

In this chapter, the processes of interest are those unstable/integral processes with

time delay which are most popular in industry. Suppose that such a process is
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Table 2.1. Stabilizability Results of Low-order Unstable Delay Processes

Process P PI PD PID

1
s
e−Ls ∀L > 0 ∀L > 0 ∀L > 0 ∀L > 0

1
s(s+1)

e−Ls ∀L > 0 ∀L > 0 ∀L > 0 ∀L > 0

1
s−1

e−Ls L < 1 L < 1 L < 2 L < 2

1
s(s−1)

e−Ls none none L < 1 L < 1

1
(s−1)(Ts+1)

e−Ls L < 1− T L < 1− T L <
√

1 + T 2 − T + 1 L <
√

1 + T 2 − T + 1

controlled in the unity feedback system (Figure 2.1) by a simple controller. By

simple controllers, we mean the PID type and its special cases, namely, P, PI, PD,

and PID.

+

−
( )Y s( )R s ( )E s ( )G s( )C s

Figure 2.1. Unity output feedback system

To formulate the stabilization problem with fewest possible parameters, some

normalization is adopted throughout the chapter. This is best illustrated by an

example. Let the actual process and controller be Ḡ(s) = K̄
(T1s−1)(T̄ s+1)

e−L̄s and

C̄(s) = K̄P (1 + K̄Ds + K̄I

s
) respectively. One can scale down the time delay and

all time constants by T1, and absorb the process gain K̄ into the controller so that

L = L̄/T1, T = T̄ /T1, KD = K̄D/T1, KI = K̄IT1, KP = K̄P K̄.

It follows that the open-loop transfer function is expressed as

Ḡ(s)C̄(s) =
K̄K̄P (1 + K̄Ds + K̄I

s
)

(T1s− 1)(T̄ s + 1)
e−L̄s s=T1s

=⇒ KP (1 + KDs + KI

s
)

(s− 1)(Ts + 1)
e−Ls = G(s)C(s)

(2.1)

where

G(s) =
1

(s− 1)(Ts + 1)
e−Ls and C(s) = KP (1 + KDs +

KI

s
)
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are the normalized process and controller, respectively.

The five normalized processes of interest are

• integral process,

G1(s) =
1

s
e−Ls, (2.2)

• second-order integral process with a stable pole,

G2(s) =
1

s(s + 1)
e−Ls, (2.3)

• first-order non-integral unstable process,

G3(s) =
e−Ls

s− 1
, (2.4)

• second-order integral process with an unstable pole,

G4(s) =
1

s(s− 1)
e−Ls, (2.5)

• second-order non-integral unstable process with a stable pole,

G5(s) =
1

(s− 1)(Ts + 1)
e−Ls, (2.6)

where L > 0 is assumed throughout this chapter. These processes are to be

stabilized by one of the following four controllers:

C1(s) = KP , (2.7)

C2(s) = KP (1 +
KI

s
), (2.8)

C3(s) = KP (1 + KDs), (2.9)

C4(s) = KP (1 + KDs +
KI

s
). (2.10)

The corresponding open-loop transfer function, Qil(s) = Gi(s)Cl(s), i ∈ {1, 2, 3, 4,

5} and l ∈ {1, 2, 3, 4}, is re-written as

Qil(s) = Gi(s)Cl(s) = K
N(s)

svD(s)
e−Ls, L > 0, (2.11)



Chapter 2. PID Control for Stabilization 16

where K is the gain, v a non-negative integer representing type of the loop, N(s)

and D(s) both rational polynomials of s with N(0) = D(0) = 1.

Recall that the Nyquist contour consists of the imaginary axis plus the right

semi-circle with infinity radius if the open-loop transfer function Qil(s) has no pole

on such a contour, that is v = 0 in our case of i ∈ {3, 5} and l ∈ {1, 3}. If the

open-loop has a pole at the origin (v 6= 0 in our case of i ∈ {1, 2, 4} or l ∈ {2, 4}),
then the contour needs to be modified by replacing the origin with a infinitesimal

semicircle of s = rejφ with r → 0 and −π/2 ≤ φ ≤ π/2, as depicted in Figure 2.2.

This modification implies that (i) the pole at the origin is outside of the modified

contour (not counted as an unstable pole); and (ii) the part of the Nyquist curve

corresponding to the above infinitesimal semicircle around the origin, is the plot

of Ke−jvφ/rv, and incurs the total clockwise phase change of −vπ. The Nyquist

stability theorem is now applied to the open loop Qil(s) in (2.11), which leads to

the following Theorem.

Theorem 2.1. Given the open-loop transfer function Qil(s) in (2.11) with P+

unstable poles inside the Nyquist contour, the closed-loop system in Figure 2.1 is

stable if and only if the Nyquist plot of Qil(s) encircles the critical point, (−1, 0),

P+ times anticlockwise.

It can be readily seen that P+ = 0 for the loop with G1 or G2 and P+ = 1

otherwise for G3 through G5.

2.3 Preliminary

Due to the delay element in the open-loop transfer function Qil(s) defined in

(2.11), the phase of Qil(jω), denoted by ΦQil
(ω), will approach −∞ when fre-

quency ω → ∞. Consequently, if limω→∞ |Qil(jω)| ≥ 1, the Nyquist curve of

Qil(s) will encircle/pass the critical point infinite times clockwise, which violates

Theorem 2.1 and the closed-loop is unstable. Hence, the following lemma follows.

Lemma 2.1. For the open-loop Qil(s) in (2.11),

lim
ω→∞

|Qil(jω)| < 1 (2.12)
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R → ∞

Re

Im

0r →

Figure 2.2. Nyquist Contour

is necessary for the closed-loop stability.

Suppose first that the loop has no integrator (v = 0). Then Qil(0) = K is

finite. The Nyquist curve starts at Qil(0) = K and, |Qil(j∞)| < 1 due to (2.12),

should end right to the critical point, (−1, 0), to meet Theorem 2.1 for stability.

• If K > −1, Qil(0) is also right to the critical point, then the net number

of the encirclements around (−1, 0) has to be even. Therefore, K < −1 is

necessary for stability if P+ = 1.

• In contrast, if K < −1, Qil(0) is now left to the critical point, then the net

number of the encirclements around (−1, 0) is odd. Therefore, K > −1 is

necessary for stability if P+ = 0.

Suppose next that the loop has one integrator (v = 1).

• If K > 0, the part of Nyquist curve corresponding to the infinitesimal semi-

circle rotates −π clockwise from phase angle π/2 to −π/2 with infinite ra-

dius. Thus the whole Nyquist curve is composed of two symmetrical parts,
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one starting from (+∞, 0) and ending at Qil(j∞), while the other from

Qil(−j∞) to (+∞, 0). Since the Nyquist curve should end at |Qil(j∞)| < 1

for stability, it follows that the Nyquist curve encircles the critical point an

even number of times for the entire frequency range. Therefore, K > 0 is

necessary for stability if P+ = 0.

• In contrast, if K < 0, the part of Nyquist curve corresponding to the in-

finitesimal semicircle rotates −π clockwise from −π/2 to −3π/2 with infinite

radius. Then the whole Nyquist curve is composed of two symmetrical parts,

one starting from (−∞, 0) and ending at Qil(j∞), while the other from

Qil(−j∞) to (−∞, 0). Consequently, the Nyquist curve should encircle the

critical point an odd number of times for the entire frequency range. There-

fore, K < 0 is necessary for stability if P+ = 1.

Following a similar argument, one can conclude that in case of v = 2, K > 0 is

necessary for stability if P+ = 0 while K < 0 is necessary for stability if P+ = 1.

Lemma 2.2. Consider the open-loop Qil(s) in (2.11), the necessary condition for

closed-loop stability is that

(i). For v = 0: K > −1 if P+ = 0; and K < −1 if P+ = 1.

(ii). For v = 1, 2: K > 0 if P+ = 0; and K < 0 if P+ = 1.

Consider the stabilization of process G1 or G2 by the proportional controller

C1 = KP , with P+ = 0 and v = 1, it follows from Lemma 2.2 that K = KP >

0 must be met, and from Theorem 1 that no encirclement of the critical point

should be made. Since the magnitude of the open-loop, MQi1
(ω) with i = {1, 2},

monotonically decreases with ω, the Nyquist curve will not encircle the critical

point if its first intersection with the real axis lies between −1 and 0, which is

always possible by setting a small enough positive KP . This means that G1 or G2

with arbitrary delay L > 0 is stabilizable by the proportional controller. Since P

controller is a special case of PD, PI and PID ones, it is concluded that processes

G1 and G2 with arbitrary delay L > 0 are also stabilizable by PI, PD, or PID

controllers, which is summarized in the following Theorem 2.2.
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Theorem 2.2. The process, G1 in (2.2) or G2 in (2.3) is stabilizable for any delay

L > 0 by P, PD, PI, or PID controller. In the case of P controller, the stabilizing

range of KP is given by

0 < KP <
π

2L
, (2.13)

for process G1; and

0 < KP < ωc1

√
1 + ω2

c1 (2.14)

where ωc1 is the positive phase crossover frequency meeting

π

2
− Lωc1 − arctan(ωc1) = 0

for process G2.

In the following, two more technical lemmas are presented, which will be used

frequently for stability analysis throughout the chapter.

Lemma 2.3. Given the open-loop transfer function Qil(s) defined in (2.11), a

necessary condition for the closed-loop stability is that the polynomial,

H(s) =
dm+1

dsm+1 [s
vD(s)eLs]

eLs
, (2.15)

has all its zeros lie in the open left half plane, where m is the degree of N(s).

Proof: The closed-loop stability requires the stability of closed-loop character-

istic function F0(s) = svD(s) + KN(s)e−Ls, or F1(s) = svD(s)eLs + KN(s). It

follows from (Kharitonov et al., 2005) that the derivative of such a stable quasi-

polynomial is also stable, thus the (m + 1)-th order derivative of F1(s), H(s)eLs,

is also stable. Then H(s) has all its zeros lie in the open left half plane.

Lemma 2.4. Let the open-loop transfer function Qil(s) in (2.11) have P+ > 0. If,

for some integer k and for ∀ω ≥ 0, there hold

(i). ΦQil
(ω) < −2kπ + 3π, and

(ii).
dΦQil

(ω)

dω
< 0 for ΦQil

(ω) ≤ −2kπ − π,
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then the closed-loop system is stable only if

max
(
ΦQil

(ω)|ω>0

)
> −2kπ + π. (2.16)

Proof: Anti-clockwise encirclement around the critical point is required for

stability. This is not obtainable for the portion of the Nyquist curve corresponding

either to s = rejφ with r → 0 since possible poles of Qil(s) would cause the curve to

rotate clockwise only, or to s = jw which meets (ii) as its phase keeps decreasing.

Taking into account (i), anti-clockwise encirclement can occur only if the curve has

the phase increase in the phase range of −2kπ − π < ΦQil
(ω) < −2kπ + 3π, and

traverses the negative real axis from the second quadrant to the third quadrant

therein, that is, there holds (2.16). The proof is complete.

In the following three sections, the stabilization analysis is presented for pro-

cesses G3, G4 and G5 respectively. Due to the symmetry property of the Nyquist

curve, subsequent analysis focuses on the positive frequency band and ω > 0 is

always assumed unless otherwise indicated.

2.4 First-order Non-integral Unstable Process

In this section, stabilization of

G3(s) =
1

s− 1
e−Ls

is under consideration.

2.4.1 P/PI controller

For P controller, C1(s) = KP , the open-loop frequency response is given by

Q31(jω) =
KP

−1 + jω
e−jLω,

with P+ = 1 and v = 0. It follows from Lemma 2.2 that K = Q31(0) = −KP < −1,

or KP > 1 is necessary for stabilization. The loop has the magnitude as

MQ31(ω) = KP

√
1

1 + ω2
,
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which always decreases from KP to zero. The phase is

ΦQ31(ω) = −Lω + arctan(ω)− π, (2.17)

with ΦQ31(0) = −π. Its derivative is

d

dω
ΦQ31(ω) = −L +

1

ω2 + 1
.

If L ≥ 1, then d
dω

ΦQ31(ω) < 0 for ω > 0, ΦQ31(ω) is always less than −π, and there

could be no anticlockwise encirclement. Assuming that both KP > 1 and L < 1

are true, the phase will initially increase from −π for small frequencies and then

decrease infinitely due to the delay, while the magnitude decreases monotonically

from MQ31(0) = KP to zero. Moreover, there is exactly one positive solution, say

ωc1, for ΦQ31(ω) = −π. In order for the possible anticlockwise encirclement around

the critical point to occur, this intersection of Nyquist curve against the negative

real axis must lie between −1 and 0, that is

MQ31(ωc1) = KP

√
1

1 + ω2
c1

< 1. (2.18)

As long as (2.18) is true, MQ31(ω) will always be less than 1 for ω > ωc1 and

Q31(s) will have no encirclement (either clockwise or anticlockwise) around the

critical point thereafter. Consequently, there is one and only one anticlockwise

encirclement for the whole frequency span when KP > 1, L < 1 and (2.18) are all

true.

As for the PI controller, C2(s) = KP (1 + KI/s), the open-loop frequency re-

sponse is

Q32(jω) = KP
1− jKI/ω

−1 + jω
e−jLω, (2.19)

with P+ = 1 and v = 1. It follows from Lemma 2.2 that K = −KP KI < 0, or

KP KI > 0. Assume that KP > 0 and KI > 0 first, then the loop has its magnitude

as

MQ32(ω) = KP

√
1 +

(
KI

ω

)2

1 + ω2
,

which always decreases from ∞ to 0. The phase is

ΦQ32(ω) = −Lω − arctan

(
KI

ω

)
+ arctan(ω)− π, (2.20)



Chapter 2. PID Control for Stabilization 22

with its derivative as

d

dω
ΦQ32(ω) = −L +

1

1 + ω2
+

KI

K2
I + ω2

.

It is noted that for ΦQ32(ω) ≤ −3π, or −Lω ≤ −2π + arctan
(

KI

ω

) − arctan (ω),

the derivative of phase is always negative since

d

dω
ΦQ32(ω) =

1

ω

(
−Lω +

ω

1 + ω2
+

KIω

K2
I + ω2

)

≤ 1

ω

(
−2π + arctan

(
KI

ω

)
− arctan (ω) +

ω

1 + ω2
+

KIω

K2
I + ω2

)

<
1

ω

(
−2π +

π

2
+ 0 +

1

2
+

1

2

)

< 0.

Since ΦQ32(ω) < −π/2, it follows from Lemma 2.4 that Φ32(ω) > −π for some

ω > 0 is necessary for closed-loop stability.

In case of L ≥ 1, it can be readily seen from the previous P-control discussion

that ΦQ32(ω) = ΦQ31(ω) − arctan(KI/ω) ≤ ΦQ31(ω), ΦQ31(ω) and then ΦQ32(ω)

are always less than −π. In consequence, the Nyquist curve has no anticlockwise

encirclement around the critical point and the closed-loop is unstable when KP > 0,

KI > 0 and L ≥ 1.

In case of L < 1, it is seen from previous analysis for the case of P-control that,

ΦQ31(ω) > −π holds when ω is small. It follows by continuity argument that it is

always possible to make ΦQ32(ω) > −π at some frequency by choosing sufficiently

small KI . Thus KI should be chosen to ensure

max(ΦQ32(ω)) > −π (2.21)

for possible anticlockwise encirclement.

It is noted that the second-order derivative of phase is

d2

dω2
ΦQ32(ω) = − 2ω

(1 + ω2)2
− 2KIω

(ω2 + K2
I )2

,

which is always negative for ω > 0, thus the Nyquist curve will have exactly two

crossings with the negative real axis with phase angle −π as long as (2.21) is true.
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In order to have anticlockwise encirclement around the critical point, KP should

be chosen such that

MQ32(ωc2) < 1 < MQ32(ωc1), (2.22)

where ωc1 < ωc2 are the two phase crossover frequencies satisfying ΦQ32(ω) =

−π. Inequality (2.22) is always feasible since MQ32 is monotonically decreasing.

Moreover, when (2.22) is true, MQ32(ω) will always be less than 1 for ω > ωc2 and

Q32(s) will have no encirclement around the critical point thereafter. Consequently,

there is exactly one anticlockwise encirclement when (2.21), (2.22), L < 1, KP > 0

and KI > 0 are all true.

Now assume that KP < 0 and KI < 0. The phase turns out to be

ΦQ32(ω) = −Lω − arctan

(
KI

ω

)
+ arctan(ω),

which is always less than π. It is also noted that, for ΦQ32(ω) ≤ −π, the derivative

of phase is negative since

d

dω
ΦQ32(ω) =

1

ω

(
−Lω +

ω

1 + ω2
+

KIω

K2
I + ω2

)

≤ 1

ω

(
−π + arctan

(
KI

ω

)
− arctan(ω) +

1

2
+

1

2

)

<
1

ω

(
−π + 0 + 0 +

1

2
+

1

2

)

< 0.

It is thus concluded from Lemma 2.4 that Q32(s) does not have anticlockwise

encirclement around the critical point, and that the closed-loop is unstable when

both KP and KI are negative.

The above stability analysis for P/PI controller may be summarized in the

following Theorem 2.3.

Theorem 2.3. The process, G3(s) = 1
s−1

e−Ls, is stabilizable by P controller (C1(s) =

KP ) or PI controller (C2(s) = KP (1 + KI/s), if and only if L < 1. If L < 1, the

stabilizing gain for P controller is bounded by

1 < KP <
√

1 + ω2
c1, (2.23)
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with the positive phase crossover frequency ωc1 solved from

−Lωc1 + arctan(ωc1) = 0. (2.24)

The stabilizing parameters for PI controller satisfy

KP > 0, KI > 0. (2.25)

Choose KI such that

max(ΦQ32(ω)) > −π. (2.26)

The range of KP is given by

√
(1 + ω2

c1)

(KI/ωc1)2 + 1
< KP <

√
(1 + ω2

c2)

(KI/ωc2)2 + 1
, (2.27)

with ωc1 < ωc2 the two positive phase crossover frequencies solved from

−Lω − arctan

(
KI

ω

)
+ arctan(ω) = 0. (2.28)

In the following, a specific example will be given to illustrate the procedure to

design stabilizing gains for P and PI controllers.

Example 1. Given the process G3 = 1
s−1

e−0.5s, design stabilizing P/PI con-

trollers.

Since the time delay L = 0.5 < 1, it follows from Theorem 2.3 that the process

is stabilizable by P/PI controller. When P controller is considered, The phase cross

over frequency ωc1 = 2.331 is solved from (2.24), and KP is bounded by (1, 2.536)

from (2.23). Choose KP = 1.5, then the open-loop transfer function turns to be

Q31(s) = 1.5
s−1

e−0.5s. The Nyquist plot of Q31(s) is given in Figure 2.3(a), which

indicates a stable closed-loop. For comparison, let the process delay increase to

1.5 with other settings unchanged, the Nyquist plot of Q31(s) = 1.5
s−1

e−1.5s is given

in Figure 2.3(b), which indicates an unstable closed-loop.

As for stabilizing PI controller, it is noted that due to the continuity argument,

a sufficiently small positive KI always ensures (2.26). In this example, choose KI =

0.2 to make max(ΦQ32(ω)) > −π. Then the crossover frequencies ωc1 = 0.734 and

ωc2 = 2.029 are solved from (2.28), and KP is in turn bounded by (1.197, 2.251).
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Nyquist Diagram

(b) G3 = e−1.5s

s−1 and C1 = 1.5

Figure 2.3. Nyquist plots of G3 with P controller

Let KP = 1.5, then the PI controller is given by C2 = 1.5 + 0.3/s, and the open-

loop transfer function is Q32(s) = 1.5+0.3/s
s−1

e−0.5s. The Nyquist plot is illustrated

in Figure 2.4(a), which indicates a stable closed-loop. For comparison, let the

process delay increase to 1.5 with other settings unchanged again, the Nyquist plot

of Q32(s) = 1.5+0.3/s
s−1

e−1.5s is given in Figure 2.4(b), which indicates an unstable

closed-loop.
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s−1 and C2 = 1.5 + 0.3/s

Figure 2.4. Nyquist plots of G3 with PI controller

2.4.2 PD/PID controller

For PD controller, C3(s) = KP (1 + KDs), the open-loop frequency response is

Q33(jω) = KP
1 + jKDω

jω − 1
e−jLω,

with P+ = 1 and v = 0. It follows from Lemma 2.1 and Lemma 2.2 that

|Q33(∞)| = |KP KD| < 1, and K = KP > 1, (2.29)
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are necessary, which lead to

|KD| < 1. (2.30)

The loop has its magnitude as

MQ33(ω) = KP

√
1 + K2

Dω2

1 + ω2
,

which decreases with the frequency ω. The phase

ΦQ33(ω) = −Lω + arctan(KDω) + arctan(ω)− π (2.31)

begins from ΦQ33(0) = −π and is always less than 0 for ω > 0, with its derivative

being
d

dω
ΦQ33(ω) = −L +

KD

(KDω)2 + 1
+

1

ω2 + 1
.

When ΦQ33(ω) ≤ −3π, the derivative of phase is always negative since

d

dω
ΦQ33(ω) =

1

ω

(
−Lω +

KDω

(KDω)2 + 1
+

ω

ω2 + 1

)

≤ 1

ω

(
−2π − arctan(KDω)− arctan(ω) +

KDω

(KDω)2 + 1
+

ω

ω2 + 1

)

<
1

ω

(
−2π + 0 + 0 +

1

2
+

1

2

)

< 0.

It follows from Lemma 2.4 that ΦQ33(ω) > −π for some ω > 0 is necessary for any

possible anticlockwise encirclement to occur. Thus the derivative of phase must be

positive for some ω and this is possible only when

max

(
d

dω
ΦQ33(ω)

)
=

d

dω
ΦQ33(ω)

∣∣∣∣
ω=0

= 1 + KD − L > 0. (2.32)

Combining (2.30) and (2.32) yields

L− 1 < KD < 1. (2.33)

Given arbitrary L that satisfies L < 2, there always exists derivative gain KD

satisfying (2.33) such that the phase, ΦQ33(ω), increases from −π first and then

decreases infinitely. Since

d2

dω2
ΦQ33(ω) = − 2K2

Dω

(1 + K2
Dω2)2

− 2ω

(1 + ω2)2
< 0,
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the Nyquist curve will cross the negative real axis with the phase −π only once at

the positive phase crossover frequency, ωc1, with ΦQ33(ωc1) = −π. For anticlockwise

encirclement to occur, this intersection should lie between −1 and 0 such that

MQ33(ωc1) < 1. (2.34)

Moreover, when (2.34) is true, Q33(s) will have no encirclement around the critical

point for ω > ωc1. Since the magnitude is always decreasing, there is exactly one

anticlockwise encirclement when (2.29), (2.33), and L < 2 are all true.

As for PID controller, C4(s) = KP (1 + KDs + KI/s), the open-loop transfer

function is

Q34(s) = KP
KDs + 1 + KI/s

s(s− 1)
e−Ls.

According to Lemma 2.3, the closed-loop stability requires H(s) = L3s2 + (6L2 −
L3)s + 6L − 3L2 be stable. It follows that 6L − 3L2 > 0, or L < 2, is necessary.

Since PD controller, which could stabilize G3 if L < 2, is a special case of PID

controller, it can be thus concluded that PID controller could stabilize G3 if and

only if L < 2.

Now we are ready to state Theorem 2.4, concerning stabilization of G3 using

PD or PID controller.

Theorem 2.4. The process, G3(s) = 1
s−1

e−Ls, is stabilizable by PD controller

(C3(s) = KP (1 + KDs)) or PID controller (C4(s) = KP (1 + KDs + KI/s)) if and

only if L < 2. If L < 2, the stabilizing parameters for PD controller are found

from

L− 1 < KD < 1, (2.35)

and

1 < KP <

√
1 + ω2

c1

1 + (KDωc1)2
. (2.36)

with phase crossover frequency ωc1 satisfying

−Lωc1 + arctan(KDωc1) + arctan(ωc1) = 0. (2.37)

The following example illustrates the procedure to design stabilizing controllers

for G3.
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Example 2. Given the process G3 = 1
s−1

e−1.5s, design stabilizing PD/PID

controllers.

Since the time delay L = 1.5 < 2, it follows from Theorem 2.4 that the process is

stabilizable by PD controller. The derivative gain KD is bounded by (0.5, 1) from

(2.35). Choose KD = 0.7, then the phase cross over frequency ωc1 = 0.756 is solved

from (2.37), and then KP is bounded by (1, 1.108) from (2.36). Choose KP = 1.05,

then PD controller is C3 = 0.735s+1.05 and the open-loop transfer function turns

to be Q33(s) = 0.735s+1.05
s−1

e−1.5s. The Nyquist plot of Q33(s) is given in Figure 2.5(a),

which indicates a stable closed-loop. In comparison, let the process delay increase

to 2.5 with other settings unchanged, the Nyquist plot of Q33(s) = 0.735s+1.05
s−1

e−2.5s

is given in Figure 2.5(b), which indicates an unstable closed-loop.

When PID controller is used, let KD in the same range of PD, then there exists

a sufficiently small positive KI such that max (ΦQ34) > −π. It can be readily

shown that if KI is in the range of 0 < KI < 1−KD, the magnitude will decrease

monotonically. Then KP given by

√
1 + ω2

c1

1 + (KDωc1 − KI

ωc1
)2

< KP <

√
1 + ω2

c2

1 + (KDωc2 − KI

ωc2
)2

,

is stabilizing and not empty, where the two positive phase crossover frequencies

ωc1 < ωc2 are solved from

−Lω + arctan

(
KDω − KI

ω

)
+ arctan(ω) = 0.

For this example, choose KD = 0.9 and KI = 0.05 so that max (ΦQ34) > −π is

met, and ωc1 = 0.379 and ωc2 = 0.977 are solved. Then KP is in the interval

(1.047, 1.077). Let KP = 1.06, the PID controller is C4 = 0.954s + 1.06 + 0.053/s,

and the open-loop transfer function turns to be Q34(s) = 0.954s+1.06+0.053/s
s−1

e−1.5s.

The Nyquist plot is given in Figure 2.6(a), which indicates a stable closed-loop. In

comparison, let the process delay increase to 2.5 with other settings unchanged,

the corresponding Nyquist plot of is given in Figure 2.6(b), which indicates an

unstable closed-loop.



Chapter 2. PID Control for Stabilization 30

1. 2 1 0. 8 0. 6 0. 4 0. 2 0 0.2 0.4 0.6 0.8
0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

Real Axis

Im
ag

in
ar

y 
ax

is

Nyquist Diagram

(a) G3 = e−1.5s

s−1 and C3 = 0.735s + 1.05

1. 5 1 0. 5 0 0.5 1
1

0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

in
ar

y 
ax

is

Nyquist Diagram

(b) G3 = e−2.5s

s−1 and C3 = 0.735s + 1.05

Figure 2.5. Nyquist plots of G3 with PD controller

2.5 Second-order Integral Processes with An Un-

stable Pole

In this section, stabilization of

G4(s) =
1

s(s− 1)
e−Ls

is under consideration.
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Figure 2.6. Nyquist plots of G3 with PID controller

2.5.1 P/PI controller

For P controller, C1(s) = KP , the open-loop frequency response is

Q41(jω) =
KP

jω(−1 + jω)
e−jLω,
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with P+ = 1 and v = 1. It follows from Lemma 2.2 that K = KP > 0 is necessary.

Then the phase is

ΦQ41(ω) = −Lω + arctan ω − 3π

2
,

which is always less than −π, with its derivative as

d

dω
ΦQ41(ω) = −L +

1

1 + ω2
.

It follows that for ΦQ41(ω) ≤ −3π, its derivative is always negative since

d

dω
ΦQ41(ω) =

1

ω

(
−Lω +

ω

1 + ω2

)

≤ 1

ω

(
−3

2
π − arctan ω +

1

2

)

< 0.

It is concluded from Lemma 2.4 that Q41(s) has no anticlockwise encirclement, and

the closed-loop is always unstable.

As for PI controller, C2(s) = KP (1 + KI/s), the analysis proceeds similarly.

The open-loop frequency response is

Q42(jω) = KP
1− jKI/ω

jω(−1 + jω)
e−jLω,

with P+ = 1 and v = 2. It follows from Lemma 2.2 that K = KP KI > 0.

Assume KP > 0 and KI > 0 first, then the phase is

ΦQ42(ω) = −Lω + arctan ω − arctan

(
KI

ω

)
− 3

2
π,

with ΦQ42(ω) < −π and its derivative being

d

dω
ΦQ42(ω) = −L +

1

1 + ω2
+

KI

ω2

1 + KI

ω

2 .

It follows that for ΦQ42(ω) ≤ −3π, its derivative is always negative since

d

dω
ΦQ42(ω) =

1

ω

(
−Lω +

ω

1 + ω2
+

KI

ω

1 + KI

ω

2

)

≤ 1

ω

(
−3

2
π − arctan ω + arctan

(
KI

ω

)
+

1

2
+

1

2

)

<
1

ω

(
−3

2
π + 0 +

1

2
π +

1

2
+

1

2

)

< 0.
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By invoking Lemma 2.4, Q42(s) has no anticlockwise encirclement around the crit-

ical point and the stabilization of G4 is not achievable with PI controller in the

case of KP > 0 and KI > 0.

Assume KP < 0 and KI < 0 then, and the phase is

ΦQ42(ω) = −Lω + arctan ω − arctan

(
KI

ω

)
− 1

2
π,

with ΦQ42(ω) < 0. It is also noted that, for ΦQ42(ω) ≤ −π, the derivative is

negative

d

dω
ΦQ42(ω) = −L +

1

1 + ω2
+

KI

ω2

1 + KI

ω

2

≤ 1

ω

(
−1

2
π − arctan ω + arctan

(
KI

ω

)
+

1

2
+

1

2

)

<
1

ω

(
−1

2
π + 0 + 0 +

1

2
+

1

2

)

< 0.

In consequence, Q42(s) also has no anticlockwise encirclement around the critical

point by Lemma 2.4, and the stabilization of G4 is not achievable with PI controller

in the case of KP < 0 and KI < 0.

In summary, both P and PI controller could not stabilize G4.

2.5.2 PD/PID controller

For PD controller, C3(s) = KP (1 + KDs), the open-loop frequency response is

Q43(jω) = KP
1 + jKDω

jω(−1 + jω)
e−jLω, (2.38)

with P+ = 1 and v = 1. It is noted that (2.38) is reducible to Q32(jω) in (2.19) by

Q43(jω) = KP
1 + jKDω

jω(−1 + jω)
e−jLω

= KPnew
1− jKInew/ω

−1 + jω
e−jLω,

if we define KPnew = KP KD and KInew = 1/KD. Then the results for PD stabi-

lization of G4 can be derived directly from Theorem 2.3.
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As for PID controller, C4(s) = KP (1 + KDs + KI/s), the open-loop transfer

function is given by

Q44(s) = KP
KDs + 1 + KI/s

s(s− 1)
e−Ls.

It follows from Lemma 2.3 that the closed-loop stability requires H(s) = L3s3 +

(9L2−L3)s2 + (18L− 6L2)s + 6− 6L be stable, which in turn leads to 6− 6L > 0

or L < 1. Since PD controller is a special case of PID controller, PID controller

could always stabilize G4 if L < 1. It is thus concluded that PID controller could

stabilize G4 if and only if L < 1.

The above analysis leads to the following Theorem 5.

Theorem 2.5. The process, G4(s) = 1
s(s−1)

e−Ls, is stabilizable by PD controller

(C3(s) = KP (1 + KDs)) or PID controller (C4(s) = KP (1 + KDs + KI/s)) if and

only if L < 1. If L < 1, the stabilizing parameters for PD controller satisfy

KP > 0, KD > 0. (2.39)

Choose sufficiently large KD such that

max(ΦQ43(ω)) > −π. (2.40)

The range of KP is given by

√
ω2

c1(1 + ω2
c1)

1 + K2
Dω2

c1

< KP <

√
ω2

c2(1 + ω2
c2)

1 + K2
Dω2

c2

, (2.41)

with ωc1 < ωc2 the two phase crossover frequencies solved from

−Lω + arctan(KDω) + arctan(ω)− π

2
= 0. (2.42)

The procedure to design stabilizing PD/PID controllers for G4 is illustrated by

the example below.

Example 3. Given the process G4 = 1
s(s−1)

e−0.5s, design stabilizing PD/PID

controller.

Since the time delay L = 0.5 < 1, it follows from Theorem 2.5 that the process

is stabilizable by PD controller. Then a sufficiently large KD, which corresponds to
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a sufficiently small KI for the stabilization of G3 by PI controller, always ensures

(2.40). Choose KD = 5 here, the crossover frequencies ωc1 = 0.734 and ωc2 = 2.029

are determined from (2.42), and KP is bounded by (0.239, 0.450). Let KP = 0.3,

the PD controller is then given by C3 = 1.5s + 0.3, and the open-loop transfer

function is Q43(s) = 1.5s+0.3
s(s−1)

e−0.5s. The Nyquist plot is illustrated in Figure 2.7(a),

which indicates a stable closed-loop. In comparison, let the process delay increase

to 1.5 with other settings unchanged, the Nyquist plot of Q43(s) = 1.5s+0.3
s(s−1)

e−1.5s is

given in Figure 2.7(b), which indicates an unstable closed-loop.

When PID controller is employed, let KD in the same range of PD, then there

exists a sufficiently small positive KI such that max (ΦQ44) > −π. It can be readily

shown that if KI is in the range of 0 < KI < 1/2KD, the magnitude will decrease

monotonically. Then KP given by

√
ω2

c1(1 + ω2
c1)

1 + (KDωc1 − KI

ωc1
)2

< KP <

√
ω2

c2(1 + ω2
c2)

1 + (KDωc2 − KI

ωc2
)2

,

is stabilizing and not empty, where the two positive phase crossover frequencies

ωc1 < ωc2 are solved from

−Lω + arctan

(
KDω − KI

ω

)
+ arctan(ω) +

π

2
= 0,

In this example, choose KD = 6 and KI = 0.08, and then KP is within the interval

(0.200, 0.386). Let KP = 0.3, the PID controller is C4 = 1.8s + 0.3 + 0.024/s

and the open-loop transfer function turns to be Q44(s) = 1.8s+0.3+0.03/s
s(s−1)

e−0.5s. The

Nyquist plot is given in Figure 2.8(a), which indicates a stable closed-loop. In

comparison, let the process delay increase to 1.5 with other settings unchanged,

the corresponding Nyquist plot of is given in Figure 2.8(b), which indicates an

unstable closed-loop.
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(a) G4 = e−0.5s

s(s−1) and C3 = 1.5s + 0.3
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(b) G4 = e−1.5s

s(s−1) and C3 = 1.5s + 0.3

Figure 2.7. Nyquist plots of G4 with PD controller

2.6 Second-order Non-integral Unstable Process

with A Stable Pole

In this section, stabilization of

G4(s) =
1

(s− 1)(Ts + 1)
e−Ls

is considered.
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Nyquist Diagram

(a) G4 = e−0.5s

s(s−1) and C4 = 1.8s+0.3+0.024/s
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Nyquist Diagram

(b) G4 = e−1.5s

s(s−1) and C4 = 1.8s+0.3+0.024/s

Figure 2.8. Nyquist plots of G4 with PID controllers

2.6.1 P/PI controller

For P controller, C1(s) = KP , the open-loop frequency response is

Q51(jω) =
KP

(jω − 1)(jTω + 1)
e−jLω,
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with P+ = 1 and v = 0. It follows from Lemma 2.2 that K = KP > 1 is necessary.

Then the loop has magnitude as

MQ51(ω) =

√
K2

P

(1 + ω2)(1 + T 2ω2)
,

which always decreases from KP to 0. The phase is

ΦQ51(ω) = −Lω + arctan(ω)− arctan (Tω)− π, (2.43)

with its first and second order derivatives as

d

dω
ΦQ51(ω) = −L +

1

1 + ω2
− T

1 + T 2ω2
,

and
d2

dω2
ΦQ51(ω) = − 2ω

(1 + ω2)2
+

2T 3ω

(1 + T 2ω2)2
.

It is easy to check that ΦQ51(0) = −π and ΦQ51(ω) is always less than −π/2.

Moreover, for ΦQ51(ω) ≤ −3π, the derivative of phase is always negative since

dΦQ51

dω
=

1

ω

(
−Lω +

ω

1 + ω2
− Tω

1 + T 2ω2

)

≤ 1

ω

(
−2π − arctan ω + arctan Tω +

ω

1 + ω2
− Tω

1 + T 2ω2

)

<
1

ω

(
−2π + 0 +

1

2
π +

1

2
+ 0

)

< 0.

It follows from Lemma 2.4 that ΦQ51(ω) > −π for some ω > 0 is necessary for

closed-loop stability, and this requires d
dω

ΦQ51(ω) to be positive for some ω. Let

d2ΦQ51(ω)/dω2 = 0 yields

ω2
1 = 0,

ω2
2 =

T
√

T + T +
√

T

T 2
.

Then the maximum value for d
dω

ΦQ51(ω) becomes

max

(
d

dω
ΦQ51(ω)

)
=





1− L− T, : ω = ω1, 0 < T < 1

T
√

T−1
T
√

T+T+
√

T+1
− L : ω = ω2, T ≥ 1



Chapter 2. PID Control for Stabilization 39

If T ≥ 1, it follows from (2.43) that ΦQ51(ω) < −π, and thus the closed-loop is

always unstable. If 0 < T < 1, the stabilization requirement for d
dω

ΦQ51(ω) turns

to be
d

dω
ΦQ51(ω)|ω=ω1 = 1− L− T > 0, or L < 1− T. (2.44)

In this case, the phase will increase from −π first and then decrease, and there is

one and only one intersection with the negative real axis with ΦQ51(ω) = −π. In

order for the anticlockwise encirclement of critical point to occur, this intersection

should lie between −1 and 0, that is

MQ51(ωc1) < 1, ΦQ51(ωc1) = −π,

or equivalently

1 < KP <
√

(1 + ω2
c1)(1 + T 2ω2

c1). (2.45)

As for ω > ωc1, MQ51(ω) is always less than 1 so that there is no encirclement

around the critical point thereafter. Consequently, there is exactly one anticlock-

wise encirclement when L < 1− T and (2.45) are all true.

As for PI controller, C2(s) = KP (1 + KI

s
), the open-loop frequency response is

Q52(jω) = KP

1− j KI

ω

(jω − 1)(jTω + 1)
e−jLω, (2.46)

with P+ = 1 and v = 1. It follows from Lemma 2.2 that K = −KP KI < 0, or

KP KI > 0 is necessary for closed-loop stability.

Assume KP > 0 and KI > 0 first, then the open-loop has its magnitude as

MQ52(ω) = KP

√
1 +

(
KI

ω

)2

(1 + ω2)(1 + T 2ω2)
,

which always decreases from ∞ to 0. The phase of (2.46) is

ΦQ52(ω) = −Lω + arctan(ω)− arctan

(
KI

ω

)
− arctan(Tω)− π, (2.47)

with its derivative being

d

dω
ΦQ52(ω) = −L +

1

1 + ω2
+

KI

ω2

1 +
(

KI

ω

)2 −
T

1 + (Tω)2
.
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It follows that ΦQ52(ω) < −π/2. Moreover, when ΦQ52(ω) ≤ −3π, the derivative

of phase is always negative since

d

dω
ΦQ52(ω) =

1

ω

(
−Lω +

ω

1 + ω2
+

KI

ω

1 +
(

KI

ω

)2 −
Tω

1 + T 2ω2

)

≤ 1

ω

(
−2π − arctan ω + arctan

(
KI

ω

)
+ arctan Tω

+
ω

1 + ω2
+

KI

ω

1 +
(

KI

ω

)2 −
Tω

1 + T 2ω2

)

<
1

ω

(
−2π + 0 +

1

2
π +

1

2
π +

1

2
+

1

2
+ 0

)

<0.

In consequence, anticlockwise encirclement is possible only when there exists some

ω > 0 such that ΦQ52(ω) > −π by invoking Lemma 2.4.

In case of L ≥ 1 − T , it is readily seen from the previous P-control discussion

that ΦQ52(ω) = ΦQ51(ω) − arctan(KI/ω) ≤ ΦQ51(ω), ΦQ51(ω) and then ΦQ52(ω)

are always less than −π. In consequence, the Nyquist curve has no anticlockwise

encirclement around the critical point and the closed-loop is unstable when KP > 0,

KI > 0 and L ≥ 1− T .

In case of L < 1− T , ΦQ51(ω) > −π holds from some small ω, and it is always

possible to find ΦQ52(ω) > −π by reducing KI due to the continuity argument.

Thus KI should be chosen to ensure

max(ΦQ52(ω)|ω>0) > −π. (2.48)

In order to have anticlockwise encirclement around the critical point, KP should

be chosen such that

MQ52(ωc2) < 1 < MQ52(ωc1), (2.49)

where 0 < ωc1 < ωc2 are the first two phase crossover frequencies satisfying

ΦQ52(ω) = −π. Inequality (2.49) is always feasible since MQ52(ω) is monotonically

decreasing. Moreover, when (2.49) is true, MQ52(ω) will always be less than 1 for

ω > ωc2 and Q52(s) will have no encirclement around the critical point for ω > ωc2.

Consequently, there is exactly one anticlockwise encirclement when (2.48), (2.49),

L < 1− T , KP > 0 and KI > 0 are all true.
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Assume KP < 0 and KI < 0 then, the phase is

ΦQ52(ω) = −Lω + arctan(ω)− arctan

(
KI

ω

)
− arctan(Tω),

which is always less than π/2. Moreover, for ΦQ52(ω) ≤ −π, its derivative is always

negative since

d

dω
ΦQ52(ω) =

1

ω

(
−Lω +

ω

1 + ω2
+

KI

ω

1 +
(

KI

ω

)2 −
Tω

1 + (Tω)2

)

≤ 1

ω

(
−π − arctan(ω) + arctan

(
KI

ω

)
+ arctan(Tω) +

1

2
+

1

2
+ 0

)

<
1

ω

(
−π + 0 + 0 +

1

2
π +

1

2
+

1

2
+ 0

)

< 0.

It follows from Lemma 2.4 that Q52(jω) has no anticlockwise encirclement, and

that the closed-loop is unstable when KP < 0 and KI < 0. Then we have the

following theorem.

Theorem 2.6. The process, G5(s) = 1
(Ts+1)(s−1)

e−Ls, is stabilizable by P controller

(C1(s) = KP ) or PI controller (C2(s) = KP (1 + KI

s
)) if and only if L < 1− T . If

L < 1− T , the stabilizing gain for P controller is bounded by

1 < KP <
√

(1 + ω2
c1)(1 + T 2ω2

c1). (2.50)

with the phase crossover frequency ωc1 satisfying

−Lωc1 + arctan(ωc1)− arctan (Tωc1) = 0. (2.51)

And the stabilizing parameters for PI controller satisfy

KP > 0, KI > 0. (2.52)

KI is chosen such that

max(ΦQ52(ω)) > −π, (2.53)

and the range of KP is given by
√√√√(1 + ω2

c2)(1 + T 2ω2
c2)

1 +
(

KI

ωc2

)2 < KP <

√√√√(1 + ω2
c1)(1 + T 2ω2

c1)

1 +
(

KI

ωc1

)2 , (2.54)
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with ωc1 < ωc2 the first two phase crossover frequencies solved from

−Lω + arctan(ω)− arctan

(
KI

ω

)
− arctan (Tω) = 0. (2.55)

The procedure to design stabilizing P/PI controllers for G5 is illustrated by the

example below.

Example 4. Given the process G5 = 1
(0.5s+1)(s−1)

e−0.3s, design stabilizing P/PI

controllers.

Since L = 0.3 < 1 − T = 0.5, it follows from Theorem 2.6 that the process is

stabilizable by P or PI controller. The phase crossover frequency ωc1 = 1.100 is

solved from (2.51). Then KP is bounded by 1 < KP < 1.697. Let C1 = KP = 1.5,

the open-loop transfer function is Q51(s) = 1.5
(0.5s+1)(s−1)

e−0.3s. The Nyquist plot is

shown in Fig 2.9(a), which indicates a stable closed-loop. In comparison, let the

process delay increase to 1.3 with other settings unchanged, the Nyquist plot of

Q51(s) = 1.5
(0.5s+1)(s−1)

e−1.3s is given in Figure 2.9(b), which indicates an unstable

closed-loop.

When PI controller is considered, one may choose sufficiently small KI to ensure

(2.53). In this example, by choosing KI = 0.02, (2.53) is met, then KP is bounded

by (1.072, 1.591) from (2.54). Let KP = 1.3, the PI controller is C2 = 1.3+0.026/s

and the open-loop transfer function turns to be Q52(s) = 1.3s+0.026/s
(0.5s+1)(s−1)

e−0.3s. The

Nyquist plot is given in Figure 2.10(a), which indicates a stable closed-loop. In

comparison, let the process delay increase to 1.3 with other settings unchanged,

the corresponding Nyquist plot of is given in Figure 2.10(b), which indicates an

unstable closed-loop.

2.6.2 PD/PID controller

For PD controller, C3(s) = KP (1 + KDs), the open-loop frequency response is

Q53(jω) = KP
1 + jKDω

(jω − 1)(jTω + 1)
e−jLω, (2.56)
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Nyquist Diagram

(a) G5 = e−0.3s

(0.5s+1)(s−1) and C1 = 1.5
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Nyquist Diagram

(b) G5 = e−1.3s

(0.5s+1)(s−1) and C1 = 1.5

Figure 2.9. Nyquist plots of G5 with P controller

with P+ = 1 and v = 0. It follows from Lemma 2.2 that K = KP > 1 is necessary

for stabilization. Then the magnitude and phase are

MQ53(ω) = KP

√
1 + K2

Dω2

(1 + ω2)(1 + T 2ω2)
, (2.57)

and

ΦQ53(ω) = −Lω + arctan(ω) + arctan(KDω)− arctan(Tω)− π, (2.58)
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(a) G5 = e−0.3s

(0.5s+1)(s−1) and C2 = 1.3+0.026/s
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(b) G5 = e−1.3s

(0.5s+1)(s−1) and C2 = 1.3+0.026/s

Figure 2.10. Nyquist plots of G5 with PI controller

respectively, with ΦQ53(0) = −π and ΦQ53(ω) < 0 for ω > 0. Notice that

d

dω

(
M2

Q53

K2
P

)
= − 2ω

(1 + ω2)2(1 + T 2ω2)2
(T 2K2

Dω4 + 2T 2ω2 + 1 + T 2−K2
D), (2.59)

it follows that if (1 + T 2 −K2
D) > 0, or equivalently

KD <
√

1 + T 2, (2.60)
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then dMQ53/dω < 0 always holds, and MQ53(ω) decreases monotonically from KP

to 0 when ω increases from 0 to ∞. Otherwise, if

KD >
√

1 + T 2, (2.61)

then dMQ53/dω is positive when ω is small and turns negative when ω increases,

so that MQ53(ω) increases from KP first and then decreases to 0 as ω increases. As

for the phase, one sees that ΦQ53(0) = −π and

d

dω
ΦQ53(ω) = −L +

1

1 + ω2
+

KD

1 + K2
Dω2

− T

1 + T 2ω2
(2.62)

with
dΦQ53

dω

∣∣∣∣
ω=0

= −L + 1 + KD − T. (2.63)

When ΦQ53 ≤ −3π, the derivative of phase is always negative since

d

dω
ΦQ53(ω) =

1

ω

(
−Lω +

ω

1 + ω2
+

KDω

1 + K2
Dω2

− Tω

1 + (Tω)2

)

≤ 1

ω

(
−3π − arctan(ω)− arctan(KDω) + arctan(Tω) + π +

1

2
+

1

2

)

< 0.

It follows from Lemma 2.4 the closed-loop is stable only if max (ΦQ53(ω)) > −π.

The stabilization issue will be discussed for four cases separately, which correspond

to four possible combinations of signs of (1 + T 2 −K2
D) and (−L + 1 + KD − T ).

Case A In this case,




KD <
√

1 + T 2

1 + KD − T − L > 0
, (2.64)

which leads to

L <
√

1 + T 2 − T + 1. (2.65)

Given arbitrary L satisfying (2.65), KD is chosen within the range

L + T − 1 < KD <
√

1 + T 2, (2.66)

which is not empty. Since d
dω

ΦQ53(ω)
∣∣
ω=0

> 0, the stabilization is possible. In

order for the anti-clockwise encirclement to occur, the first intersection of Nyquist
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curve with the real axis for positive frequency should lie between −1 and 0. It

follows that MQ53(ωc1) < 1, which leads to

1 < KP <

√
(1 + ω2

c1)(1 + T 2ω2
c1)

1 + K2
Dω2

c1

, (2.67)

combined with the requirement KP > 1. (2.67) is also not empty since dMQ53/dω <

0. Moreover, when (2.67) is true, MQ53(ω) is always less than 1 for ω > ωc1, and

Q53 does not encircle the critical point for ω > ωc1. Consequently, PD controller

could always stabilize process (2.6) under case A when (2.65), (2.66) and (2.67)

are all true. In the rest of this subsection, it is demonstrated that PD controller

could not stabilize process (2.6) if L ≥ √
1 + T 2 − T + 1.

Case B In this case,




KD >
√

1 + T 2

1 + KD − T − L > 0
, (2.68)

and L ≥ √
1 + T 2 − T + 1 is assumed. For convenience of analysis, let

KD =
√

1 + T 2 + δ2, δ > 0 and ω0 =
δ

T
,

and denote by ωcp the smallest positive frequency that ΦQ53(ωcp) = −π. Let

dΦQ53/dω = 0, it follows from (2.58) that

a3x
3 + a2x

2 + a1x + a0 = 0, (2.69)

where

x = ω2,

a3 = −LK2
DT 2,

a2 = KDT 2 + K2
DT 2 − TK2

D − LK2
DT 2 − LT 2 − LK2

D,

a1 = −LT 2 − LK2
D − L− TK2

D − T + T 2 + K2
D + KDT 2 + KD,

a0 = 1 + KD − L− T.

Since a3 < 0, a2 < 0, and a0 > 0, the roots satisfy

x1 + x2 + x3 = −a2

a3

< 0 and x1x2x3 = −a0

a3

> 0,
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hence there exists only one positive root. In other words, dΦQ53(ω)/dω = 0 has only

one positive solution. Since d
dω

ΦQ53(ω)
∣∣
ω=0

> 0, it follows that ΦQ53(ω) increases

first at small frequency and then always decreases. Thus ΦQ53(ω) > −π when

0 < ω < ωcp and ΦQ53(ω) < −π when ω > ωcp. On the other hand, let

Ψ(δ) = ΦQ53(ω0) = −L
δ

T
+arctan

(
δ

T

)
+arctan

(
δ

T

√
1 + T 2 + δ2

)
−arctan(δ)−π,

It can be proved that

dΨ(δ)

dδ
= −L

T
+

T

T 2 + δ2
+

(1 + T 2 + 2δ2)T√
(1 + T 2 + δ2)(T 2 + δ2)(1 + δ2)

− 1

1 + δ2

≤ −
√

1 + T 2 + 1− T

T
+

T

T 2 + δ2
+

(1 + T 2 + 2δ2)T√
(1 + T 2 + δ2)(T 2 + δ2)(1 + δ2)

− 1

1 + δ2

< 0. (2.70)

The proof for inequality (2.70) is given in 2.8. Then we have

ΦQ53(ω0) < Ψ(δ)|δ→0 = −π,

and in turn ω0 > ωcp. Thus

(MQ53(ωcp))
2 = K2

P

1 + K2
Dω2

cp

(1 + ω2
cp)(1 + T 2ω2

cp)

= K2
P

(
1 +

T 2ω2
cp(ω

2
0 − ω2

cp)

1 + (1 + T 2)ω2
cp + T 2ω4

cp

)

> K2
P = (MQ53(0))2 ,

which prevents anticlockwise encirclement. Consequently, the stabilization fails for

case B.

Case C In this case,




KD <
√

1 + T 2

1 + KD − T − L < 0
, (2.71)

and assume L ≥ √
1 + T 2 + 1− T . Then it follows that

ΦQ53(ω) ≤ −(
√

1 + T 2 + 1− T )ω + arctan(ω) + arctan(
√

1 + T 2ω)− arctan(Tω)− π

, Θ(ω).
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Let
dΘ(ω)

dω
= 0,

which leads to

(b2x
2 + b1x + b0)x = 0,

where

x = ω2,

b2 = (1 + T 2)T 2 > 0,

b1 =
√

1 + T 2T 4 + 2
√

1 + T 2T 2 + 2T 2 +
√

1 + T 2 + 1− T 5 − 2T 3 > 0,

b0 =
√

1 + T 2T 2 +
√

1 + T 2 + 1− T 3 > 0.

It is clear that there is no positive solution for x or ω. Combined with the fact

that dΘ(ω)/dω|ω=∞ < 0, it is clear that dΘ(ω)/dω < 0 for ω > 0 and

Θ(ω) < Θ(0) = −π.

Consequently, ΦQ53(ω) < −π holds for ω > 0, and there is no anticlockwise encir-

clement.

Case D In this case,




KD >
√

1 + T 2

1 + KD − T − L < 0
, (2.72)

and assume L ≥ √
1 + T 2 + 1 − T . Still let dΦQ53/dω = 0, it follows from (2.69)

that ai < 0 for i = 0, 1, 2, 3, and there is no positive root for x or ω. Thus dΦQ53/dω

keeps the negative sign when ω > 0. Consequently, ΦQ53(ω) < −π for ω > 0, and

once again there is no anticlockwise encirclement.

As for PID controller, C4(s) = KP (1 + KDs + KI/s), the open-loop transfer

function is

Q54(s) = KP
KDs + 1 + KI/s

(s− 1)(Ts + 1)
e−Ls.

It follows from Lemma 2.3 that the closed-loop stability requires H(s) = TL3s3 +

(9TL2 +L3−TL3)s2 +(18TL+6L2−6TL2−L3)s+6T +6L−6TL−3L2 be stable.

Then the constant term 6T + 6L − 6TL − 3L2 > 0 is necessary, which leads to
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L <
√

1 + T 2−T +1. Also noting that PD is a special case of PID controller, it is

concluded that PID controller could stabilize G5 if and only if L <
√

1 + T 2−T +1.

Summarizing the previous analysis, the following theorem is obtained.

Theorem 2.7. The process, G5(s) = 1
(Ts+1)(s−1)

e−Ls, is stabilizable by PD con-

troller (C3(s) = KP (1+KDs)) or PID controller (C4(s) = KP (1+KDs+KI/s))if

and only if L <
√

1 + T 2−T +1. If L <
√

1 + T 2−T +1, the stabilizing controller

parameters for PD controller can be found from

L + T − 1 < KD <
√

1 + T 2, (2.73)

and

1 < KP <

√
(1 + ω2

c1)(1 + T 2ω2
c1)

1 + K2
Dω2

c1

(2.74)

with the phase crossover frequency ωc1 satisfying

−Lωc1 + arctan(ωc1) + arctan(KDωc1)− arctan(Tωc1) = 0. (2.75)

The following example illustrates the procedure to design stabilizing PD/PID

controllers for G5.

Example 5. Given the process G5 = 1
(0.5s+1)(s−1)

e−1.2s, design stabilizing

PD/PID controllers.

Since L = 1.2 <
√

1 + 0.52 − 0.5 + 1, it follows from Theorem 2.7 that the

process is stabilizable by PD controller. According to (2.73), a stabilizing gain of

KD could be found from the range (0.7, 1.118). Let KD = 1, then ωc1 = 0.821 is

solved numerically from (2.75), and 1 < KP < 1.081 is determined from (2.74). Let

KP = 1.04, then C3 = 1.04 + 1.04s, and Q53(s) = 1.04s+1.04
(0.5s+1)(s−1)

e−1.2s. The Nyquist

plot is shown in Fig 2.11(a), which indicates a stable closed-loop. In comparison,

let the process delay increase to 2.2 with other settings unchanged, the Nyquist

plot of Q53(s) = 1.04s+1.04
(0.5s+1)(s−1)

e−2.2s is given in Figure 2.11(b), which indicates an

unstable closed-loop.

When PID controller is used, let KD in the same range of PD, then there exists

a sufficiently small positive KI such that max(Φ54) < −π. It is easily shown that if
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(0.5s+1)(s−1) and C3 = 1.04s+1.04

Figure 2.11. Nyquist plots of G5 with PD controller

KI is in the range of 0 < KI < 1/2KD, the magnitude will decrease monotonically.

Then KP given by

√
(1 + ω2

c1)(1 + T 2ω2
c1)

1 + (KDωc1 − KI

ωc1
)2

< KP <

√
(1 + ω2

c2)(1 + T 2ω2
c2)

1 + (KDωc2 − KI

ωc2
)2

,

is stabilizing and not empty, where the two positive phase crossover frequencies
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ωc1 < ωc2 are solved from

−Lω + arctan

(
KDω − KI

ω

)
+ arctan(ω)− arctan(Tω) = 0.

For this example, choose KD = 1.1 and KI = 0.05, then KP is in the range

(1.047, 1.0732). Let KP = 1.06, the PID controller is C4 = 1.166s+1.06+0.053/s

and the open-loop transfer function turns to be Q54(s) = 1.166s+1.06+0.053/s
(0.5s+1)(s−1)

e−1.2s.

The Nyquist plot is given in Figure 2.12(a), which indicates a stable closed-loop.

In comparison, let the process delay increase to 2.2 with other settings unchanged,

the corresponding Nyquist plot of is given in Figure 2.12(b), which indicates an

unstable closed-loop.

2.7 Conclusion

In this chapter, the stabilization of five typical time delay processes is investigated.

For each case, the maximum allowable time delay for different controllers is derived,

and the procedure for establishing the range of the stabilization gains is also given.

It is manifested from the studies that: for the processes under consideration,

the maximum stabilizable time delay with PD/PID controller is larger than that

with P/PI controller. At the same time, the maximum stabilizable time delay

with P controller is equal to that with PI controller, and the maximum stabilizable

time delay with PD is the same as that with PID controller. Hence when only

stabilization of these processes is needed, P or PD controller is sufficient.

To deal with practical unstable process with time delay, if the time delay is

within the stabilizing range given in this chapter, then the corresponding PID

parameters can be determined to stabilize the plant. And then the problem is

reduced to controller design for stable process with time delay, where there are

many techniques available (Park et al., 1998; Wang et al., 1999c; Chen and Seborg,

2002). If the time delay is larger than the maximum, more sophisticated controllers

have to be resorted to.
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1.06 + 0.053/s

Figure 2.12. Nyquist plots of G5 with PID controller

2.8 Appendix

Proof for inequality (2.70).

In order to prove

−
√

1 + T 2 + 1− T

T
+

T

T 2 + δ2
+

(1 + T 2 + 2δ2)T√
(1 + T 2 + δ2)(T 2 + δ2)(1 + δ2)

− 1

1 + δ2
< 0.
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it is equivalent to prove the inequality

(1 + T 2 + 2δ2)T√
(1 + T 2 + δ2)(T 2 + δ2)(1 + δ2)

<

√
1 + T 2 + 1− T

T
+

δ2(1 + δ2 − T 3 − δ2T )

T (T 2 + δ2)(1 + δ2)
.

(2.76)

Its left half part is positive, and its right half part is also positive since

√
1 + T 2 + 1− T

T
+

δ2(1 + δ2 − T 3 − δ2T )

T (T 2 + δ2)(1 + δ2)
=

√
1 + T 2

T
− δ2

1 + δ2
+

δ2

T (T 2 + δ2)
> 0.

To prove (2.76) is thus equivalent to prove the inequality

(1 + T 2 + 2δ2)2T 4 − p < q
√

1 + T 2 (2.77)

where both sides of (2.76) are squared and reorganized, with p and q defined as

p = (1 + T 2 + δ2)
[
(1 + T 2)(T 2 + δ2)2(1 + δ2)2 + δ4(1 + δ2 − T 3 − δ2T )2

]
,

q = 2δ2(T 2 + δ2)(1 + δ2)(1 + δ2 − T 3 − δ2T )(1 + T 2 + δ2).

The left half side of (2.77) is always negative since

(1 + T 2 + 2δ2)2T 4 − p

= (−2T 2 + 2T − 2)δ10 + (−6T 4 + 4T 3 − 8T 2 + 4T − 6)δ8

+ (−6T 6 + 2T 5 − 13T 4 + 6T 3 − 13T 2 + 2T − 6)δ6

+ (−2T 8 − 9T 6 + 2T 5 − 10T 4 + 2T 3 − 9T 2 − 2)δ4 + (−2T 8 − 3T 6 − 3T 4 − 2T 2)δ2,

where the coefficients for different powers of δ is easily verified negative by either

assuming T ≥ 1 or 0 < T < 1.

If T ≥ 1, it follows that the right half part of (2.77) is non-negative since q ≥ 0,

so (2.77) holds.

If T > 1, where q < 0, (2.77) still holds since [(1 + T 2 + 2δ2)2T 4 − p]
2

<
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q2(1 + T 2):

[
(1 + T 2 + 2δ2)2T 4 − p

]2 − q2(1 + T 2)

=4T 2δ20 + (16T 4 + 16T 2 + 16T 3)δ18 + (24T 2 + 24T 6 + 68T 5 + 72T 4 + 68T 3)δ16

+(116T 7 + 116T 3 + 16T 2 + 16T 8 + 128T 4 + 128T 6 + 264T 5)δ14

+(254T 6 + 113T 4 + 100T 9 + 113T 8 + 404T 5 + 404T 7 + 4T 10 + 4T 2 + 100T 3)δ12

+(238T 8 + 50T 4 + 304T 5 + 44T 11 + 44T 3 + 238T 6 + 536T 7 + 50T 10 + 304T 9)δ10

+(112T 5 + 8T 3 + 210T 8 + 332T 9 + 8T 13 + 106T 6 + 332T 7 + 112T 11 + 9T 4

+ 106T 10 + 9T 12)δ8

+(16T 13 + 16T 5 + 78T 10 + 18T 6 + 92T 7 + 78T 8 + 92T 11 + 152T 9 + 18T 12)δ6

+(9T 8 + 9T 12 + 18T 10 + 8T 13 + 8T 7 + 24T 9 + 24T 11)δ4

>0.

In consequence, (2.77) and in turn (2.76) hold either for T ≥ 1 or 0 < T < 1,

and the proof completes.



Chapter 3

PID Control for Regional Pole

Placement

3.1 Introduction

In this chapter, an iterative LMI algorithm is presented to calculate PID controller

with regional pole placement requirements. Pole placement is one of the fundamen-

tal control problems. Much of the literature on the topic focuses on the problem of

exact pole placement, where the poles are assigned to or arbitrarily close to specific

locations (Wang, 1996). In practice, however, it is often the case that exact closed-

loop pole placement is not required. Rather, it may suffice to place the closed-loop

poles within a suitable region in the left-half complex plane, which is referred to as

regional pole placement (RPP) (Keerthi and Phatak, 1995). However, most works

on regional pole placement are restricted to the state-feedback case, or full order

dynamic output feedback case (Chilali et al., 1999).

Since it is not always possible to have full access to the state vector, and the

full-order dynamic output controllers might be difficult or impossible to implement

owing to cost, reliability and hardware implementation constraints, it is of great

importance to consider alternative solutions for such a regional pole placement

problem. Among most feedback control structures, the PID controllers have been

widely used in many industrial control systems due to its its simple structure, con-

55
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venient applicability, and reliable performance (Åström and Hagglünd, 1995). It is

thus desirable to investigate the regional pole placement by PID Controllers. As is

shown in Zheng et al. (2002) and several other literatures, PID controller, as well as

other reduced order feedback controllers, is convertible to SOF controllers through

state augmentations. Therefore it is useful to form a unifying framework to ease

analysis and design of multivariable PID control systems by finding a equivalent

SOF controller to meet the specifications.

Despite the simple form of SOF controller, the pole placement problem by SOF

remains open, even in the scalar case (Syrmos et al., 1997). Since the celebrated

monograph of Boyd et al. (1994), many control problems have been synthesized

with LMI. It is well known that the static state feedback and the full-order dynamic

output feedback control problems result in convex feasibility problems (Gahinet

and Apkarian, 1994). In Chilali and Gahinet (1996), the conception of LMI regions

is proposed, and then RPP by state feedback or full order dynamic output feedback

is formulated as an LMI problem and solved together with H∞ design. In this

chapter, the RPP by SOF controller is formulated as a bilinear matrix inequality

problem, which is recast as a quadratic matrix inequality problem and is then

solved through an iterative LMI algorithm.

The organization of this chapter is as follows. In Section 3.2, the definition

of LMI region and some key results on pole clustering in LMI regions are given

first, then the SOF regional pole placement problem is addressed and an ILMI

approach is proposed to solve it. Section 3.3 extends the result to reduced order

feedback and PI/PID controllers design. Some numerical examples are provided in

both Sections to demonstrate the effectiveness of the proposed approach. Finally,

Section 3.4 concludes this chapter.

Notation: R and C denote the set of real numbers and complex numbers,

respectively; and correspondingly, Rm×n and Cm×n the set of real m× n matrices

and complex m × n matrices. In denotes the n × n identity matrix. For a real

matrix X, X > 0 means X is positive-definite. tr(X) denotes the trace of X, XT

the transpose, and ‖X‖ the 2-norm of X. The operator ⊗ refers to Kronecker
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product, and
M
= refers to definition. Finally, we use the shorthand

Diag(X1, . . . , Xk)
M
=




X1 0 · · · 0

0 X2
. . .

...
...

. . . . . . 0

0 · · · 0 Xk




.

3.2 Regional Pole Placement by Static Output

Feedback

In order to achieve satisfactory transients, a custom way is to place the closed-loop

poles within a suitable region in the complex plane. Preferable dynamics such

as fast decay, good damping, etc. can be ensured by confining the poles in the

intersection of a conic sector, a vertical stripe, and a disk, etc.. Consider the linear

time-invariant plant: 



ẋ = Ax + Bu

y = Cx + Du
, (3.1)

with the feedback controller

u = Fy,

where x(t) ∈ Rn is the state, u(t) ∈ Rm the control input, and y(t) ∈ Rp the

output. A, B and C are matrices with appropriate dimensions, and F ∈ Rm×p

is the feedback gain to be designed. Our goal is to determine F such that the

closed-loop poles (or equivalently the eigenvalues of matrix Acl = A + BFC) are

located within the prescribed regions.

In Chilali and Gahinet (1996), it is demonstrated that any set of convex regions

that are symmetric with respect to the real axis can be approximated by LMI

region(s), which is a subset D of the complex plane that can be described by

D = {z ∈ C : fD(z) = L + zM + z̄MT < 0}, with L,M ∈ Rq×q and L = LT .

Specifically, if the region D is the intersection of j LMI regions D1, . . . ,Dj, which

are characterized by fDi
with fDi

(z) = Li + zMi + z̄MT
i , i = 1 . . . j, then L =

Diag(L1, . . . , Lj) and M = Diag(M1, . . . , Mj). It follows from Chilali and Gahinet
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(1996) that all the closed-loop poles of system (3.1) are placed within the LMI

region D if and only if there exist matrices X > 0 and F such that

L⊗X + M ⊗ (AclX) + MT ⊗ (AclX)T < 0, (3.2)

where ⊗ denotes Kronecker product.

In order to have a more clear vision of (3.2), for a matrix Y ∈ Rq×q, let

Ŷ
M
=




y11In y12In · · · y1qIn

...
. . . . . .

...

yq1In yq2In · · · yqqIn




nq×nq

, (3.3)

where yij is the ijth element of Y . Also, for a matrix Z ∈ Rk×l, let

Z̄
M
=




Z 0k×l · · · 0k×l

0k×l Z · · · 0k×l

...
. . . . . .

...

0k×l 0k×l · · · Z




kq×lq

. (3.4)

Matrices L̂, M̂ , Ā, B̄, C̄, F̄ , X̄, and Acl are defined accordingly. It is easy to verify

the following facts:

AclX = AclX̄ = (Ā + B̄F̄ C̄)X̄,

L⊗X = L̂X̄, M ⊗ (AclX) = M̂AclX̄,

MT ⊗ (AclX)T = (M ⊗ (AclX))T = (M̂AclX̄)T .

By substituting these terms into (3.2), the RPP problem with SOF is recast

as the the existence of matrices X > 0 and F such that the following inequality

holds:

L̂X̄ + M̂(Ā + B̄F̄ C̄)X̄ + (M̂(Ā + B̄F̄ C̄)X̄)T < 0. (3.5)

However, (3.5) is a bilinear matrix inequality due to the existence of term M̂B̄F̄ C̄X̄,

and is difficult to solve generally.

In Cao et al. (1998), the SOF stabilization problem is studied and solved

through an iterative approach. Enlightened by their thoughts, the following theo-

rem for RPP with SOF can be obtained.
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Theorem 3.1. The closed-loop poles of LTI system (3.1) are placed within LMI

region D if and only if there exist matrices X > 0, P > 0 and F such that the

following inequality holds:

L̂X̄+ÃX̄+X̄ÃT−P̄ C̄T C̄X̄T−X̄C̄T C̄P̄ T +P̄ C̄T C̄P̄ T +(B̃F̄+X̄C̄T )(B̃F̄+X̄C̄T )T < 0,

(3.6)

where Ã = M̂Ā, B̃ = M̂B̄, and P̄ is defined similarly to (3.4) with P ∈ Rn×n.

In order to prove Theorem 3.1, the following lemma is needed.

Lemma 3.1. The necessary and sufficient condition (3.5) for RPP problem with

SOF is equivalent to the existence of matrices X > 0 and F for the following

inequality

L̂X̄ + ÃX̄ + X̄ÃT − X̄C̄T C̄X̄T + (B̃F̄ + X̄C̄T )(B̃F̄ + X̄C̄T )T < 0. (3.7)

Proof. Sufficiency: rewrite (3.5) as follows:

L̂X̄ + (Ã + B̃F̄ C̄)X̄ + X̄T (Ã + B̃F̄ C̄)T < 0. (3.8)

It follows that:

L̂X̄ + (Ã + B̃F̄ C̄)X̄ + X̄T (Ã + B̃F̄ C̄)T

≤ L̂X̄ + (Ã + B̃F̄ C̄)X̄ + X̄T (Ã + B̃F̄ C̄)T + B̃F̄ F̄ T B̃T

= L̂X̄ + ÃX̄ + X̄ÃT − X̄C̄T C̄X̄T + (B̃F̄ + X̄C̄T )(B̃F̄ + X̄C̄T )T

< 0.

Necessity. suppose X̄ > 0 and F̄ such that (3.8) holds, then there exist a scalar

ρ > 0 such that

L̂X̄ + (Ã + B̃F̄ C̄)X̄ + X̄T (Ã + B̃F̄ C̄)T +
1

ρ2
B̃F̄ F̄ T B̃T < 0, (3.9)

i.e.

ρ2L̂X̄+ρ2ÃX̄+ρ2X̄ÃT−ρ4X̄C̄T C̄X̄+(B̃F̄ +ρ2X̄C̄T )(B̃F̄ +ρ2X̄C̄T )T < 0. (3.10)

which is equivalent to (3.7) by substituting ρ2X̄ with X̄.¤
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Now turn back to Theorem 3.1.

Proof. Sufficiency: it’s easy to check (X̄ − P̄ )C̄T C̄(X̄ − P̄ )T ≥ 0, for any X̄

and P̄ of the same dimension, i.e.

X̄C̄T C̄X̄T − P̄ C̄T C̄X̄T − X̄C̄T C̄P̄ T + P̄ C̄T C̄P̄ T ≥ 0, (3.11)

with equality holds when when P̄ = X̄. Combining inequalities (3.6) and (3.11)

yields (3.7), according to Lemma 3.1, the sufficiency is proven.

Necessity. Assume there exist X̄ > 0 and F̄ such that (3.7) holds, then there

exists a real number ε > 0 such that:

L̂X̄ + ÃX̄ + X̄ÃT − X̄C̄T C̄X̄T + (B̃F̄ + X̄C̄T )(B̃F̄ + X̄C̄T )T + εI < 0. (3.12)

Choose Λ ≥ C̄T C̄, ∆P = ε1/2Λ−1/2, and set P̄ = X̄ −∆P , then

(X̄ − P̄ )C̄T C̄(X̄ − P̄ )T ≤ εI,

Hence (3.6) holds, and necessity is proven. Then the proof for Theorem 3.1 com-

pletes

Using Schur complement, inequality (3.6) is equivalent to the following quadratic

matrix inequality

L̂X̄ + ÃX̄ + X̄ÃT − P̄ C̄T C̄X̄T − X̄C̄T C̄P̄ T + P̄ C̄T C̄P̄ T (B̃F̄ + X̄C̄T )

(B̃F̄ + X̄C̄T )T −I


 < 0.

(3.13)

Once P̄ is fixed, (3.13) reduces to an LMI problem, and obviously there always

exist a real number α, matrices X > 0 and F such that

L̂X̄ + ÃX̄ + X̄ÃT − P̄ C̄T C̄X̄T − X̄C̄T C̄P̄ T + P̄ C̄T C̄P̄ T − αX̄ (B̃F̄ + X̄C̄T )

(B̃F̄ + X̄C̄T )T −I


 < 0.

(3.14)

Specifically, α ≤ 0 indicates the feasibility of (3.13). In order to find a negative

α, Cao et al. (1998) proposed an iterative LMI algorithm that always leads to a

convergent reducing series of α but can not ensure the convergence of α to its

minimum. With some modifications, the iterative LMI algorithm that follows is

given to solve the RPP problem by SOF.
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Algorithm 3.1. Initial data: the state space realization (A,B,C), and desired LMI

region characterized by L,M . Augment these matrices to form L̂, M̂ , Ā, B̄, C̄,

and then compute Ã and B̃.

Step 1. Choose an initial block diagonal X̄ > 0, set i = 1 and P̄1 = X̄;

Step 2. Solve the following optimization problem for X̄i, F̄ and αi. OP1: Minimize

αi subject to the following LMI constraints

 Σi (B̃F̄ + X̄iC̄

T )

(B̃F̄ + X̄iC̄
T )T −I


 < 0, (3.15)

X̄i = Diag(Xi, · · · , Xi), Xi > 0, F̄ = Diag(F, · · · , F ),

where Σi = L̂X̄i+ÃX̄i+X̄iÃ
T−P̄iC̄

T C̄X̄T
i −X̄iC̄

T C̄P̄ T
i +P̄iC̄

T C̄P̄ T
i −αiX̄i.

Denote by α∗ the minimum value of αi;

Step 3. If α∗ ≤ 0, the matrix pair (X̄i, F̄ ) solves the RPP problem, stop, and F is

the static output feedback gain for the regional pole placement. Otherwise

go to Step 4;

Step 4. Solve the following optimization problem for X̄i and F̄ . OP2: Minimize

tr(X̄i) subject to LMI constraints (3.15) with αi = α∗i . Denote by X̄∗
i the

optimal X̄i.

Step 5. If ‖P̄iB̃ − X̄∗
i B̃‖ < ε, where ε is a prescribed threshold, go to Step 6;

otherwise set i = i + 1, P̄i = X̄∗
i , and go to Step 2;

Step 6. It cannot be decided by this algorithm whether the RPP problem is solv-

able. Stop.

In this algorithm, OP1 is a generalized eigenvalue minimization problem, and

OP2 is a linear objective minimization problem, both of which can be solved effi-

ciently with LMI toolbox in Matlab (Gahinet et al., 1995). The initial choice of X̄

in step 1 will affect the convergence process of the algorithm. If the algorithm fails

to produce a solution, we may run the algorithm again with another initial X̄. In

our simulation examples, an initial setting of X̄ = I is adopted.
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We also need to comment on the stop of this algorithm. Desired regional pole

placement will be ensured when αi < 0. However, due to the iterative nature of the

algorithm, as the iteration goes and αi decreases, the pole clustering may have been

achieved before αi drops below zero. Hence we can check the eigenvalues of (A +

BFC) with current F once after several iterations, which may reduce the iterations

noticeably. An example is given as follows to demonstrate the effectiveness of the

algorithm.

Example 3.1. For the system:

A =




−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.3681 −0.707 1.42

0 0 1 0




, B =




0.4422 0.1761

3.5446 −7.5922

−5.52 4.49

0 0




,

C =
[
0 1 0 0

]
,

design an SOF controller with the desired pole region: the intersection of the left

half plane Re(z) < −0.1, and the conic sector with apex at the origin and inner

angle 140
180

π. After 4 iterations, when α = 0.0333, the closed-loop poles are assigned

at p1,2 = −0.2021 ± 0.4863i, p3 = −205.85, p4 = −0.3274, with feedback gain

K = [8.4516, 30.9240]T . After 5 iterations, when α = −0.0561, the closed-loop

poles are assigned at p1,2 = −0.2133± 0.4960i, p3 = −2165.5, p4 = −0.3130, with

the feedback gain K = [87.2134, 325.8051]T .

3.3 Regional Pole Placement by PID Controller

The SOF problem is important not only in its own right, but also because many

other problems are reducible to some variations of it. For example, it is well known

that the reduced order dynamic output feedback design is readily transformed into

an SOF problem through simple augmentations. Another example is PID control.

PID controller is the most commonly used algorithm in process control industry,

and many approaches have been proposed for PID tuning, see, e.g., Åström and
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Hagglünd (1995) and Tan et al. (1999). However, in spite of the great efforts on

LMI synthesis, there are relatively little literature that addresses the PID design

problem under the LMI framework, to mention some of them, see Mattei (2001),

Zheng et al. (2002) for example. In Zheng et al. (2002), an iterative LMI algorithm

is employed to design PID controller which guarantees the closed-loop system with

stability, H2 or H∞ performance, or maximum output control requirement. The

result in the preceding section can be employed to design a PID controller with

regional pole placement specifications, and it is briefly described as follows.

Consider again the LTI system (3.1) with the following PID control law:

u = Kpy + Ki

∫ t

0

y dτ + Kd
dy

dt
. (3.16)

The PID gains Kp, Ki, Kd ∈ Rm×p are to be designed. For simplicity of the anal-

ysis, the set point input r has been omitted, and D is assumed 0. The procedure

that readily transforms the PID controller into SOF structure is as follows (Zheng

et al., 2002):

Define the state of the augmented system as xa
M
=

[
xT

1 xT
2

]T

, where x1 = x,

x2 =
∫ t

0
y dt. Also define the output of augmented system as ya

M
=

[
yT

1 yT
2 yT

3

]T

,

where y1 =
[
C 0p×p

]
xa, y2 =

[
0p×n Ip

]
xa, y3 =

[
CA 0p×p

]
xa. Then the

augmented system is:





ẋa = Aaxa + Bau

ya = Caxa

u = Kya

, (3.17)

where

Aa =


A 0n×p

C 0p×p


 , Ba =


 B

0p×m


 , Ca =




C 0p×p

0p×n Ip

CA 0p×p


 ,

K =
[
K1 K2 K3

]
.
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and Kp, Ki and Kd can be solved from K:





Kd = K3(I + CBK3)
−1

Ki = (I −KdCB)K2

Kp = (I −KdCB)K1

. (3.18)

Then the problem of PID controller design for system (3.1) transforms to that

of SOF controller design for system (3.17) with the closed-loop system ẋa = (Aa +

BaKCa)xa. Algorithm 3.1 yields K, and it in turn gives Kp, Ki, and Kd.

Example 3.2. For the plant:

G(s) =
1

s2
,

design a PID controller with the desired pole region: the intersection of disk cen-

tered at the origin with the radius 3, and the conic sector with apex at the origin

and inner angle π/3. After 6 iterations, when α = 1.0462, the closed loop poles

are assigned at p1,2 = −0.5524 ± 0.8533i, p3 = −0.7004, with Kp = −1.8071,

Ki = −0.7237 and Kd = −1.8052. After 24 iterations, when α = −0.0199, the

closed loop poles are assigned at p1,2 = −1.1945 ± 1.4626i, p3 = −0.8753, with

Kp = −5.6575, Ki = −3.1217 and Kd = −3.2644.

3.4 Conclusion

In this chapter, an iterative LMI algorithm has been proposed to solve the re-

gional pole placement problem by SOF, PID controller, or other reduced order

feedback controllers. Several numerical examples are given to demonstrate the ef-

fectiveness of the proposed method. This proposed approach can also be extended

to multivariable process. Compared with the existing methods on the regional

pole placement, ours imposes no specific requirement on either system structure

or system order. It should be pointed out that the iterative algorithm developed

in this chapter is based on sufficient criteria, and if the algorithm fails to provide

a solution, one cannot determine whether or not such a solution exists.



Chapter 4

A Two-degree-of-freedom Smith

Control for Stable Delay

Processes

4.1 Introduction

In process control, the Smith predictor (Smith, 1957) is a well known and very effec-

tive dead-time compensator. One major concern with the normal Smith control is

that its disturbance rejection performance is usually limited due to its one-degree-

of-freedom nature. In order to cater to disturbance rejection and robustness as

well, a double-controller scheme is presented in Tian and Gao (1998) for stable

first order processes with dominant delay, but the improvement of disturbance re-

jection is not significant, and its performance deteriorates when the process time

delay is relative small. Recently, several ‘modified Smith predictor’ control schemes

have been proposed (Majhi and Atherton, 2000a; Chien et al., 2002; Kaya, 2003)

to extend applicability of the Smith predictor to unstable processes. They handle

integral or first-order unstable plants by employment of more controllers, and can

be applied to stable processes as well through scheme simplification. It is however

noted that their characteristic equations are all delay dependent, which is in con-

trast to delay-free one enjoyed by the normal Smith control and which keeps the

65
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stabilization problem as a complicated task. Also, they pay little attention to dis-

turbance rejection. It is undoubtable that disturbance rejection is most important

in process control and good solutions have been sought for long time.

In this chapter, the two-degree-of-freedom Smith predictor control scheme (Wong

and Seborg, 1986; Huang et al., 1990; Palmor, 1996) is investigated for improved

disturbance rejection. This scheme is featured by delay free nominal stabilization.

The resulting set-point response remains the same as in the normal Smith scheme,

but the disturbance response can be tuned by one additional controller separately

with no effects on the set-point response. Furthermore, a novel method is pre-

sented to design this disturbance controller easily and yield substantial control

performance improvement.

The rest of the chapter is organized as follows. In Section 4.2, the proposed

disturbance controller design is presented. Stability analysis is given in Section

4.3. Typical designs are detailed for first-order plus dead time (FOPDT) and

second-order plus dead time (SOPDT) processes in Section 4.4. In Section 4.5,

two examples are provided to demonstrate our methods. In Section 4.6, the issue

of periodic disturbance rejection is investigated, with modification of the design

presented to further improve the performance. An example is also provided. Fi-

nally, Section 4.7 concludes this chapter.

4.2 The Proposed Method

In this chapter, our goal is to seek a new control design which can keep the nominal

delay-free stabilization of the delay system like that in the normal Smith control,

yet, provide some additional means to improve disturbance rejection, and hopefully

tune the set-point and disturbance responses separately and easily. After many

trials, we decide to use the two-degree-of-freedom Smith control scheme as depicted

in Figure 4.1. In Figure 4.1, G(s) = G0(s)e
−Ls and Ĝ(s) = Ĝ0(s)e

−L̂s are a stable

and minimal phase process and its model respectively. Suppose that the model

matches the plant dynamics perfectly, i.e., Ĝ0 = G0 and L̂ = L. It follows that the
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closed-loop transfer function from the set-point to the output is given by

Hr =
G0C1

1 + G0C1

e−Ls , Hr0e
−Ls, (4.1)

where Hr0 denotes the delay-free part of Hr. For the disturbance path from D(s)

to Y (s), it can be shown that the transfer function is

Hd =
1 + G0C1 −G0C1C2e

−Ls

1 + G0C1

, (4.2)

which shares the same delay-free denominator as in Hr.
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Figure 4.1. Two-degree-of-freedom Smith control structure

To compare this scheme with the Smith one, letting C2 = 1 reduces the scheme

to the normal Smith system which has the same set-point transfer function as in

(4.1) but a different disturbance transfer function as

Hd1 =
1 + G0C1 −G0C1e

−Ls

1 + G0C1

.

Obviously, with C1 designed for closed-loop stability and the set-point response,

the normal Smith scheme simply does not have any freedom to manipulate the

disturbance response. Owing to great importance of disturbance rejection in pro-

cess control industry, it is definitely desirable to have a means to improve it. In

the scheme of Figure 4.1, C2 appears in the numerator of Hd, and thus can be

utilized to reduce or minimize Hd. It is also noted that C2 is not in the set-point
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transfer function (4.1). Hence, C1 and C2 can be tuned separately as follows. C1

is designed to have the desired stability and set-point response. This is a standard

task and there are many solutions already. Our focus here is on C2, that is, design

it to achieve best disturbance rejection. In Huang et al. (1990), C2 is composed

of a first order lag and a delay term to approximate the inverse of time delay

in low frequency range, however, its disturbance performance improvement is not

significant, and a novel design for C2 is proposed in this chapter.

In view of (4.2), intuitively, one might attempt to determine C2 by frequency

response fitting, i.e., by minimizing

|Hd| =
∣∣∣∣1−

G0C1e
−jωL

1 + G0C1

C2

∣∣∣∣ = |1−HrC2|

for some working frequency range ω ∈ [ω, ω̄], so that the disturbance response is

attenuated. Such optimization falls into the model matching category and sounds

reasonable. However, it is actually difficult to produce expected performance.

This is because the optimization tends to get C2 as C2 = 1/Hr over [ω, ω̄]. The

resulting C2 would mimic the behavior of 1/Hr that contains pure time leading

ejωL with counter-clockwise Nyquist curve, and would exhibit large magnitude for

ω > ω̄. This increases the corresponding |Hd|, and may even make the scheme

more susceptible to unmodelled high frequency dynamics or uncertainties.

In order to attain better disturbance rejection in face of the delay term in

the numerator of Hd, our novel method proceeds as follows. For a given type of

disturbance, say D(s), it follows from (4.2) that the disturbance response is

Yd =
1 + G0C1 −G0C1C2e

−Ls

1 + G0C1

D

=Yda − Ydb, (4.3)

where

Yda = D (4.4)

is fixed and

Ydb = Hr0C2De−Ls (4.5)

is manipulatable by C2. Suppose that the disturbance occurs at t = 0. Then

non-zero responses in yda(t) and ydb(t) come in at t = 0 and t = L, respectively.
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Obviously, the disturbance response during t = 0 to t = L is solely from yda(t)

and fixed. Any effort to change it during this time period is useless but causes the

problem on controller design. The best achievable disturbance rejection is to zero

the disturbance response from t = L onwards:

yd(t) = yda − ydb =





yda(t), 0 < t < L,

0, t ≥ L,

which requires the compensating response ydb(t) to be

ydb(t) =





0, 0 < t < L

yda(t), t ≥ L



 = yda(t)1(t− L), (4.6)

as displayed in Figure 4.2. We now derive an analytical solution for C2(s) to meet

(4.6). In view of (4.4), Yda can be expressed using the partial fraction expansion

as, say,

Yda(s) =
α0

s
+

∑
i

αi

s + βi

,

and its time domain form is

yda(t) = α0 +
∑

i

αie
−βit.

It follows that

yda(t)1(t− L) =

[
α0 +

∑
i

αie
−βit

]
1(t− L)

=

[
α0 +

∑
i

αie
−βiLe−βi(t−L)

]
1(t− L)

, ŷda(t− L)1(t− L), (4.7)

where

ŷda(t) = α0 +
∑

i

αie
−βiLe−βit,

with

Ŷda(s) =
α0

s
+

∑
i

αie
−βiL

s + βi

. (4.8)
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Figure 4.2. Illustration of desired disturbance rejection

It is obvious that Ŷdae
−Ls = Ydb. Laplace transform of (4.6) with help of (4.5)

and (4.7) gives

Hr0C2De−Ls = Ŷda(s)e
−Ls,

and its solution is

C∗
2 =

Ŷda(s)

D(s)
H−1

r0 . (4.9)

Since C∗
2 is improper in general, a low-pass filter should be added for practical

implementation so that the actual C2 is given by

C2 =
Ŷda(s)H

−1
r0

(τs + 1)nD(s)
. (4.10)

Then the actual Ydb(s) and Yd(s) are

Ydb(s) =
Ŷda(s)

(τs + 1)n
e−Ls, (4.11)

and

Yd(s) = Yda(s)− Ŷda(s)

(τs + 1)n
e−Ls, (4.12)

respectively. Detailed controller design will be provided for several typical in-

dustrial processes in Section 4.4. Our design yields a C2 that tends to force the

disturbance response to vanish after the time-delay.
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Before concluding this section, we would highlight the advantage of our design

over the standard two-degree-of-freedom control scheme (either single-loop based

or Smith predictor based) where a pre-filter is added between the reference input

and the negative feedback. In the standard two-degree-of-freedom control scheme,

obviously, the pre-filter does not affect the disturbance response and could only

be utilized to tune the set-point response. Then, this leaves its primary controller

responsible for both closed-loop stabilization and disturbance response, and thus

limits disturbance rejection performance. On the other hand, in our design, C2

deals solely with the disturbance. It is easier to design and achieve superior distur-

bance rejection performance. In the extreme case where the process is bi-proper,

C2 may eliminate the disturbance response completely from t = L, which is impos-

sible for the standard two-degree-of-freedom control scheme and any other schemes

where the controller taking care of disturbance rejection also needs to cope with

closed-loop stability and/or pole placement.

4.3 Stability Analysis

Stability is a prerequisite for any control systems. In this section, both the internal

and robust stability of the two-degree-of-freedom scheme are investigated.

The two-degree-of-freedom structure in Figure 4.1 is an interconnected system

that consists of five subsystems and each of them is of single input and single

output (SISO). Such a system is internally stable (Wang et al., 1999b) if and only

if

pc(s) , ∆
∏

i

pi(s)

has all its roots in the open left half of the complex plane, where pi(s) are the

denominators of the respective subsystem transfer functions and the ∆ is the

system determinant as defined in the Mason’s formula. The five subsystems in

Figure 4.1 are: C1(s), C2(s), Ĝ0, G0e
−Ls and e−L̂s. Let C1(s) = f1(s)/g1(s),

C2(s) = f2(s)/g2(s) and Ĝ0(s) = G0(s) = f(s)/g(s). Their respective pi are

p1 = g1(s), p2 = g2(s), p3 = p4 = g(s) and p5 = 1. The system determinant ∆ is
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given by

∆ = 1 + Ĝ0C1 + (G0e
−Ls − Ĝ0e

−L̂s)C1C2.

It follows that

pc(s) = g2(s)g(s)[g1(s)g(s) + f1(s)f(s)].

The polynomial, g1(s)g(s)+f1(s)f(s), reflects stabilization of delay-free G0 by the

controller C1, which is always possible, say, by pole placement. The controller C2

must be stable for the stability of g2(s), and is used to achieve best disturbance

response. With the above two constraints, the overall system is internally stable.

For robust stability analysis, let the total uncertainty be given in the form of

multiplicative one as

∆G(s) =
G(s)− Ĝ(s)

Ĝ(s)
. (4.13)

According to Mason’s formula, the transfer function for the remaining part M(s),

as is illustrated in Figure 4.3, is

M(s) =
C1C2Ĝ

1 + C1Ĝ0

.

Thus a sufficient condition for the robust stability is obtained by the small gain

theorem as

|M∆G|∞ < 1, or equivalently

∣∣∣∣
C1C2

1 + C1Ĝ0

Ĝ∆G

∣∣∣∣
∞

< 1.

Assume nominal stability, then a sufficient condition for the robust stability of

the closed-loop system is obtained as

∣∣∣∣
C1C2

1 + C1Ĝ0

Ĝ∆G

∣∣∣∣
∞

< 1 (4.14)

according to the small gain theorem (Morari and Zafiriou, 1989). By invoking (4.1)

and (4.10), (4.14) reduces to

∣∣∣∣∣
D(jω)

Ŷda(jω)

∣∣∣∣∣ (τ 2ω2 + 1)n/2 > |∆G|, ∀ω > 0. (4.15)
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Figure 4.3. System structure with multiplicative uncertainty

In specific, when the disturbance is of step type, Ŷda(s) = D(s) and thus the robust

stability requirement turns out to be (τ 2ω2 + 1)n/2 > |∆G| for ∀ω > 0, or

|∆G|
(τ 2ω2 + 1)n/2

< 1, ∀ω > 0. (4.16)

It can been seen from (4.10) and (4.15) that a trade-off is to be made by C2, or

tuning of the parameter τ : a decrease in τ will improve the disturbance rejection

performance but reduce the robust stability, and vice versa.

4.4 Typical design cases

It follows from the preceding sections that in our scheme, C1 is designed to have

stable closed-loop and good set-point response, and C2 has to be stable and meet

(4.10). In control textbooks, step disturbances are usually assumed when distur-

bance responses in output are considered. In the control research literature, step

disturbances are also the most commonly investigated type for industrial process

control. The reasons are that such a disturbance is simple, representative, con-

tains rich frequency components, and has a direct adverse effect on the process
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output. Thus, it is viewed as the worst case disturbance. Moreover, if the type

of disturbance cannot be known, one typically adopts step disturbance. Due to

these considerations, one can say that the step disturbance is the most common

benchmark for study of disturbance rejection control. And thus the typical con-

troller designs in this section are based on step disturbance. It should be stressed

that our general method in Section 4.2 can deal with any type of disturbance and

improve disturbance rejection performance if the type or other information of the

disturbance dynamics is known and different from step one, and the corresponding

design is illustrated by an example in Section 4.5. Moreover, even for periodic

disturbances, our scheme is still applicable.

Now, assume that the disturbance is of step type with unknown magnitude of

A so that D(s) = A/s. It then follows from (4.8) that Ŷda(s) is also equal to A/s

and thus

C2 =
H−1

r0

(τs + 1)n
. (4.17)

By (4.12), one gets

Yd(s) = A
(τs + 1)n − e−Ls

s(τs + 1)n
, (4.18)

so that yd(t) will decay to 0 by invoking the final value theorem

yd(∞) = lim
s→0

sYd(s) = 0.

In case that the type or other information of the disturbance dynamics is avail-

able, design of the disturbance controller C2 can be changed accordingly by incor-

porating the corresponding D(s) and Ŷda(s) (4.7) into (4.10). The design procedure

is explained in Section 4.5 by an example.

It is noted that most typical industrial processes of interests could be approxi-

mated by FOPDT or SOPDT ones. Detailed controller design will thus be carried

out for each case and closed-form formulas for controller parameters are given as

follows for easy reference.

FOPDT Processes Consider the following stable FOPDT process:

G(s) = G0(s)e
−Ls =

k0

T0s + 1
e−Ls,
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where all coefficients are positive. The closed-loop transfer function for set-point

tracking is chosen to be

Hr =
k0C1

T0s + 1 + k0C1

e−Ls =
1

Trs + 1
e−Ls, (4.19)

where Tr is the desired closed-loop time constant and Tr ≥ T0 is recommended.

This gives rise to

C1 =
T0s + 1

k0Trs
. (4.20)

For step disturbance, D(s) = A/s, it follows from equations (4.17) and (4.19)

that

C2 =
Trs + 1

τs + 1
, (4.21)

by choosing n = 1 to make C2 proper. A large τ will increase the system robustness,

and a small one will yield better disturbance rejection. The recommended range

for τ is τ = 0.1Tr ∼ 0.5Tr.

SOPDT Processes Consider the following stable SOPDT process:

G(s) = G0(s)e
−Ls =

k0

a2s2 + a1s + 1
e−Ls,

where all coefficients are positive. Choose the desired set-point transfer function

as

Hr =
ω2

n

s2 + 2ξnωns + ω2
n

e−Ls, (4.22)

and C1 is given by

C1 =
ω2

n(a2s
2 + a1s + 1)

k0s(s + 2ξnωn)
. (4.23)

For step disturbance D(s) = A/s, it follows from equations (4.17) and (4.19) that

C2 =
s2 + 2ξnωns + ω2

n

ω2
n(τs + 1)2

, (4.24)

with τ = 0.1/ωn ∼ 0.5/ωn recommended.

4.5 Examples

In this section, two examples are presented for FOPDT and SOPDT processes

respectively.
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Example 1: Consider an stable FOPDT process

G(s) =
1

10s + 1
e−3s

from Huang et al. (1990), where they gave

C1 =
s + 0.1

s
,

and two different settings of C2 as

C2a =
60s + 7

60s + 1 + 6e−7s
and C2b =

60s + 11

60s + 1 + 10e−3s
.

For our design, choose T = T0 = 10 for the same C1 as Huang’s and let τ = 0.3T0 =

3. It follows from (4.21) that

C2 =
10s + 1

3s + 1
.

Step set-point change of magnitude 1 and step disturbance of negative magnitude

−0.5 are applied at t = 1 and t = 100 respectively. The responses of four different

controllers (including normal Smith scheme) are then compared in Figure 4.4. The

performance improvement of the proposed design is clear. Note that in this exam-

ple, the normalized time delay is small. In general, the performance improvement

of our proposed design will be more significant when the normalized time delay

increases.

To see robust performance with respect to modelling errors, consider the process

model perturbations of: a) L = 0.5L0 = 1.5, b) k = 0.5k0 = 0.5 and L = 2L0 = 6

simultaneously. It is easy to verify that the system is robustly stable by checking

(4.16), where the corresponding left-hand-sides are well below 1 as plotted in Figure

4.5. The corresponding responses are given in Figure 4.6, and the proposed design

is robustly stable in both cases and provides better disturbance rejection again.

To illustrate robust performance with respect to different disturbance, suppose

that the same step disturbance is now injected into the process input instead of at

output. The controllers remain unchanged. The performance is depicted in Figure

4.7. The proposed design performs reasonably well. For more comparison, the

feedforward design (Seborg et al., 2004) with accurate disturbance model is also
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Figure 4.4. Responses of Example 1 for step disturbance

included in the figure. Then the feedforward disturbance compensator is calculated

as

Gf =
13s + 1

2s(10s + 1)
.

It leads to a faster disturbance response owing to the precise nature of feedforward

control. At the same time, its overshoot is relative larger, which is caused by the
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Figure 4.5. Left-hand-sides of (4.16) for Example 1

approximation of time lead. In fact, the feedforward scheme and our proposed

design are different and suit different situations. When the disturbance is measur-

able and an accurate model of the disturbance channel is available, the feedforward

design can be applied to improve the disturbance rejection. if this is not the case,

one has to use feedback schemes.

To demonstrate that our control design is capable of handling other types of

disturbance than the step, let us revisit the above case. The above step disturbance

at input is equivalent to the following disturbance at the process output:

D(s) =
0.5

s(10s + 1)
. (4.25)

Suppose that we know this D(s) except its magnitude (its magnitude does not

matter). Then, controller C2 can be redesigned accordingly to get better perfor-

mance than the previous one designed for the step as we have better information

on the disturbance. It follows from equations (4.7)-(4.10) that

yda(t) = 0.5[1− e−0.1t],

ŷda(t) = 0.5[1− e−0.3e−0.1t],

Ŷda(s) = 0.5

(
1

s
− e−0.3

s + 0.1

)
,
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Figure 4.6. Responses of Example 1 against model change

and

C∗
2 = (10s + 1)(2.592s + 1).

C2 is implemented as

C2 =
25.92s2 + 12.59s + 1

(3s + 1)2
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Figure 4.7. Responses of Example 1 against disturbance change

by choosing τ = 3.

For comparison, the generalized analytical predictor (Wong and Seborg, 1986)

is also simulated. Its system structure is the same, but the controller C2 is designed

as:

Cgap(z) = BN +
1−BN

1−B
(1−Bz−1),

where B = e−Ts/T0 , N = L/Ts, Ts the sampling time, and T0 the process time

constant. For this example, by take the sampling time as Ts = 0.5, controller

Cgap(z) is calculated as

Cgap(z) =
6.0551z − 5.0551

z
.

The performance of the two designs are compared in Figure 4.8, and it is obvious

that the proposed one provides better disturbance rejection.

Analytically, in this example, the equivalent disturbance transfer function of

the generalized analytical predictor scheme is

Hdgap =
10s + 1− (2.528s + 1)e−3s

10s + 1

by matching Cgap(z) as an ideal PD controller 2.528s + 1. Its corresponding dis-
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Figure 4.8. Responses of Example 1 with C2 redesigned

turbance response becomes

ydgap(t) = 0.5
[
e−t/10 − 1 +

(
1− e−(t−3)/10 − 0.075(t− 3)e−(t−3)/10

) · 1(t− 3)
]

= 0.5
[
e−t/10 − 1 +

(
1− 1.35e−t/10 − 0.101(t− 3)e−t/10

) · 1(t− 3)
]
.

In comparison, the disturbance transfer function of our scheme is

Hd = 1− 2.592s + 1

(τs + 1)2
e−3s,

and the corresponding disturbance response is

yd(t) = 0.5

[
e−t/10 − 1 +

(
1− 74.1

(τ − 10)2
e−(t−3)/10 − τ − 2.592

τ 2 − 10τ
(t− 3)e−(t−3)/τ

−τ 2 − 20τ + 25.92

(τ − 10)2
e−(t−3)/τ

)
· 1(t− 3)

]
.

In the extreme case that τ → 0, there hold

lim
τ→0

τ − 2.592

τ 2 − 10τ
(t− 3)e−(t−3)/τ = 0 and lim

τ→0

τ 2 − 20τ + 25.92

(τ − 10)2
e−(t−3)/τ = 0,

and yd(t) approaches

yd(t) = 0.5
[
e−t/10 − 1 + (1− 0.741e−(t−3)/10) · 1(t− 3)

]

= 0.5
[
e−t/10 − 1 + (1− e−t/10) · 1(t− 3)

]
.
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Then the disturbance is rejected completely after t = 3, which is not achievable by

the generalized analytical predictor scheme.

For generalized analytical predictor, Cgap is designed to estimate the distur-

bance and the output. However, it is not studied how this estimate will affect

the disturbance response. In contrast, controller C2 in our scheme is designed

to eliminate the disturbance response from t = L onwards. The information of

closed-loop set-point transfer-function is also utilized in the design to compensate

for the disturbance. Therefore, our scheme provides better disturbance rejection

performance.

Example 2: Consider an stable SOPDT process with distinct real poles:

G(s) =
2

(10s + 1)(2s + 1)
e−3s.

By choosing ωn = 0.2, ξ = 1 and τ = 0.5/ωn = 2.5, it follows from (4.23) and

(4.24) that

C1 =
s2 + 0.6s + 0.05

2.5s2 + s
,

and

C2 =
25s2 + 10s + 1

6.25s2 + 5s + 1
.

The PI-PD Smith scheme from Kaya (2003) is adopted for comparison, whose

controller parameters are calculated as Gc1 = 0.4 + 0.04/s and Gc2 = −0.1− s to

provide the same set-point response. Step disturbance of negative magnitude −0.5

is applied at t = 70. The responses from the two schemes are plotted in Figure

4.9, and the proposed design yields improved disturbance rejection.

In view of these two examples, our proposed design achieves better disturbance

rejection. It not only applies for step disturbances, but also is capable to reject

other type disturbance as well.

4.6 Rejection of periodic disturbance

Different from the step type disturbance, disturbances acting on the track-following

servo systems of an disk drive inherently contain significant periodic components
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Figure 4.9. Responses of Example 2 for step disturbance

that cause tracking errors of a periodic nature (Chew, 1996). Such disturbances

are also often encountered in mechanical systems such as industrial robots (Hara

et al., 1988). In this section, our proposed scheme is applied to reject periodic

disturbances. Furthermore, modifications to the disturbance controller C2 are in-

vestigated to improve the performance.
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Assume that the disturbance is a sinusoidal signal with magnitude A and an-

gular frequency ωd, i.e.

d(t) = A sin(ωdt)

and

D(s) = A
ωd

s2 + ω2
d

.

It follows from the general design in (4.7)-(4.8) that

Ŷda(s) = A
sin(ωdL)s + ωd cos(ωdL)

s2 + ω2
d

,

so that C2 is implemented by

C2(s) =
(sin(ωdL)s + ωd cos(ωdL)) H−1

r0

ωd(τs + 1)n
. (4.26)

The following example illustrates the design.

Example 3: Consider an stable FOPDT process

G(s) =
1

s + 1
e−3s

with sinusoidal disturbance d(t) = 0.3 sin(0.1t) injected into the process output

at t = 20. By choosing the time constant for the set-point transfer-function as

T = T0 = 1 and let τ = 0.2T0 = 0.2. It follows from (4.20) and (4.26) that

C1 =
s + 1

s
,

and

C2 =
2.955s2 + 3.911s + 0.9553

0.04s2 + 0.4s + 1
.

The disturbance response is plotted in Fig 4.10a, Compared with that from the

normal Smith design, the performance improvement is obvious. It is also noted

that the amplitude and phase of the sinusoidal disturbance does not matter, which

is illustrated by Fig 4.10b with d(t) = 0.4 sin(0.1t + π/4) and C2 unchanged.

In order to further investigate the disturbance rejection, let the time constant

of the filter be increased to τ = 0.8 and simulate this example again. The corre-

sponding C2 is

C2 =
2.955s2 + 3.911s + 0.9553

0.64s2 + 1.6s + 1
.
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Figure 4.10. Responses of Example 3 for sinusoidal disturbance

Then the response against d(t) = 0.3 sin(0.1t) is plotted in Fig 4.11. It is seen

that the performance deteriorates as τ increases. The reason for such performance

degradation is explained as follows.

In our general design, C∗
2 is expected to make ydb = ŷda, as is seen from (4.8).

In the ideal case, ydb is a sinusoid signal and has the same phase and magnitude as

ŷda. However, the actual controller C2 contains a filter due to implementation con-



Chapter 4. A Two-degree-of-freedom Smith Control for Stable Delay Processes 86

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

O
ut

pu
t y

τ=0.8
τ=0.2

Figure 4.11. Responses comparison for C2 with different τ

cern, and such discrepancy inevitably leads to deviation of actual outputs. When

sinusoidal disturbance is considered, the filter 1/(τs + 1)n brings forward a phase

lag of n tan−1(ωdτ) and gain magnification of (1 + ω2
dτ

2)−n/2 to the actual sinu-

soid ydb. In case that ωdτ is small, its effect on ydb is negligible. However, as ωdτ

increases, ydb will deviate from ŷda more significantly and the performance deterio-

ration is obvious. Consequently, counter measures should be taken to improve the

disturbance rejection when ωdτ is large. The solution is to modify C2 as

C2(s) =

(
(1 + ω2

dτ
2)n/2 sin(ωdL + n tan−1(ωdτ))s + ωd cos(ωdL + n tan−1(ωdτ))

)
H−1

r0

ωd(τs + 1)n
,

(4.27)

so that a pre-compensation for phase and magnitude is included.

Now turn back to the case of d(t) = 0.3 sin(0.1t) and τ = 0.8, and it follows

from (4.27) that

C2 =
3.903s2 + 4.827s + 0.9234

0.64s2 + 1.6s + 1
,

The disturbance response is plotted in Fig 4.12. It is clear that the modified C2

leads to complete disturbance rejection after process delay L.

In view of the above analysis and example, our proposed scheme is also capable

to reject periodic disturbance. Moreover, with compensation in the design of C2,

the disturbance performance is further improved.
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Figure 4.12. Disturbance response with modified design of C2, τ = 0.8

4.7 Conclusion

Due to great importance of disturbance rejection, a novel disturbance controller

design is presented for a two-degree-of-freedom Smith control scheme. This scheme

keeps nominal characteristic equation delay-free, and allows separate and easy de-

sign of disturbance controller. Our design produces superior disturbance rejec-

tion performance, while the set-point response remains the same as in the normal

Smith system. In this chapter, the two-degree-of-freedom Smith control applies for

minimum-phase time delay processes only. When the unstable process is consid-

ered, more sophisticated design is necessary to improve the performance, which is

addressed in the next chapter.



Chapter 5

A Double Two-degree-of-freedom

Smith Scheme for Unstable Delay

Processes

5.1 Introduction

In the previous chapter, a two-degree-of-freedom Smith control is presented to

improve the disturbance performance for stable delay process. As we know, the

Smith predictor (Smith, 1959) is an effective dead-time compensator for stable

processes. However, the original Smith predictor control scheme will be unsta-

ble when applied to an unstable process (Wang et al., 1999b). To overcome this

obstacle, many modifications to the original Smith scheme have been proposed.

Åström et al. (1994) presented a modified Smith predictor for an integrator plus

dead time (IPDT) process and can achieve faster set-point response and better

load disturbance rejection with decoupling design of the set-point response from

the load disturbance response. Matausek and Micic (1996) considered the same

problem with similar results but their scheme is easier to tune. Majhi and Ather-

ton (1999) proposed a modified Smith predictor control scheme suitable for IPDT

processes, unstable FOPDT and SOPDT processes. They use the optimal inte-

gral time squared error (ITSE) criterion for set-point response design and employ

88
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an optimum stability approach with a proportional controller for stabilization of

the given unstable process. With the same control structure, Majhi and Atherton

(2000a) extends their work for better performance and easy tuning procedure for

IPDT, FOPDT and integrating SOPDT processes. Their scheme is displayed in

Figure 5.1. The controller Gc1 is used to stabilize the unstable or integrating pro-

cess G0 without delay, while Gc and Gc2 are designed for set-point tracking and

disturbance rejection respectively. In case of perfect modelling, G0e
−Ls = Ĝ0e

−L̂s,

the closed-loop responses to set-point and disturbance inputs are given by

Yr(s) =
G0Gce

−Ls

1 + G0(Gc + Gc1)
R(s) (5.1)

and

Yd(s) =
G0e

−Ls

1 + G0(Gc + Gc1)

1 + G0(Gc + Gc1)−G0Gce
−Ls

1 + G0Gc2e−Ls
D(s) (5.2)

respectively. It is noted from (5.2) that their Gc2 only contributes to enhancing

the stability of Yd, and beyond that the disturbance response cannot be taken

into consideration. It is well recognized that the disturbance rejection is more

important than the set-point tracking for most process control. Hence we aim to

provide a Smith scheme for unstable delay processes such that both good set-point

and disturbance responses can be achieved with easy tuning of controllers involved

by introducing one more degree-of-freedom control in the disturbance loop.

In this chapter, a new modified Smith predictor scheme is proposed. It is actu-

ally a double two-degree-freedom control scheme. One two-degree-freedom control

configuration with two controllers is provided for the set-point and disturbance,

respectively. There are two controllers to tune the denominators and numerators

of the respective closed-loop transfer function separately. This innovative scheme

eases controller tuning and can lead to substantial control performance improve-

ment, especially for the disturbance rejection. The internal stability is analyzed.

Simulations are given to illustrate the effectiveness of the proposed method.

The rest of the chapter is organized as follows. In Section 5.2, a modified

Smith structure is proposed and briefly analyzed. The issue of internal stability is

addressed in Section 5.3. In Section 5.4, controller design is carried out for three
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Figure 5.1. Majhi’s Smith predictor control scheme

typical industrial processes: IPDT, FOPDT and SOPDT processes. Then three

examples are provided in Section 5.5 and compared with Majhi’s results. Section

5.6 concludes this chapter.

5.2 The Proposed Scheme

It is noted that in the works by Majhi and Atherton and others on modified Smith

control, the disturbance response is not treated with any special care, but just

stabilized. Their control schemes simply do not have any freedom to manipulate

disturbance response. Owing to great importance of disturbance rejection in pro-

cess control industry, it is definitely desirable to have a means to improve it. To

this end, one more degree-of-freedom of control is needed to enable manipulation

of disturbance transient response. At the same time, it should be pointed out

that such an addition must not cause any loss of the existing benefits of the pre-

vious schemes, rather, all the existing benefits should be kept, and even better,

each controller involved should be rationalized in the sense that the rule of each

is clearly defined, they together can serve all control objectives, and they can be

tuned with ease. Keeping all these in mind, after many try and errors, we come

up with a new modified Smith predictor control scheme, as depicted in Figure 5.2,
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where G0(s)e
−Ls and Ĝ0(s)e

−L̂s are a given process and its model, respectively,

and G0 and Ĝ0 are rational functions with at least one unstable pole. In this new

structure, there are four controllers to be designed to meet different objectives.

The roles of K1 and K3 are similar to those of GC1 and GC2 in Majhi and Ather-

ton (1999), respectively, i.e., K1 is designed to stabilize the delay-free process G0

and K3 to stabilize the delay process G0e
Ls. However, the proposed structure is

of two-degree-of-freedom. K2 and K4 are employed to enhance the performance of

disturbance rejection and set-point response respectively instead of only one con-

troller Gc as employed in Majhi and Atherton (1999) which generally has a tradeoff

to make between performance of disturbance rejection and set-point response. In

our new structure, this tradeoff is eliminated by re-constructing the scheme and

introducing one more controller.
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Figure 5.2. Proposed double two-degree-of-freedom control structure

To convince the benefits of the new scheme, suppose that the model perfectly

matches the plant dynamics, i.e., Ĝ0 = G0 and L̂ = L. It follows from some

algebraic manipulations that the closed-loop transfer function from the set-point

to the output is given by

Hr =
G0K4

1 + G0K1

e−Ls. (5.3)

One sees that the denominator and numerator of transfer function Hr can be

manipulated with K1 and K4, respectively. This is essential of two-degree-of-
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freedom. Since the transfer function Hr has no time delay in its denominator,

K1 may be designed to place the closed-loop poles to the desired locations using

pole placement method. The pre-filter K4 may be tuned to achieve the optimum

set-point response.

For the disturbance path, it can be shown that the transfer function is

Hd =
G0e

−Ls(1 + G0K1 −G0e
−LsK2)

(1 + G0K1)(1 + G0e−LsK3)
, (5.4)

which is also of two-degree-of-freedom once K1 has been designed as above. The

additional factor in its denominator with regard to that of Hr is (1+G0e
−LsK3), and

the role of K3 is then to stabilize the delay process, G0e
−Ls. In the numerator, there

is the controller K2, which can be employed for optimum disturbance rejection.

Detailed designs of Ki, i = 1, 2, 3, 4, will be given in Section 4 below for different

processes after stability discussion in the next section.

5.3 Internal Stability

Input/output stability only is not sufficient for practical control systems. The

unstable pole-zero cancelations in the system may cause unbounded signals and the

system may be damaged by such signals. Thus, internal stability is a prerequisite

for any control systems. Our modified Smith predictor scheme is an interconnected

system which consists of seven subsystems and each of them is of single input and

single output (SISO). It is shown by Wang et al. (1999b) that an interconnected

system consisting only of SISO plants is internally stable if and only if

pc(s) , ∆
∏

i

pi(s)

has all its roots in the open left half of the complex plane, where pi(s) are the de-

nominators of the respective subsystem transfer functions and the ∆ is the system

determinant as defined in the Mason’s formula.

Our system in Figure 5.2 has seven subsystems: K1(s), K2(s), K3(s), K4(s),

Ĝ0, G0e
−Ls and e−L̂s. Let K1(s) = c1(s)/d1(s), K2(s) = c2(s)/d2(s), K3(s) =
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c3(s)/d3(s), K4(s) = c4(s)/d4(s) and Ĝ0(s) = G0(s) = α(s)/β(s). Their respective

pi are

p1 = d1(s), p2 = d2(s), p3 = d3(s), p4 = d4(s), p5 = p6 = β(s) and p7 = 1.

It can be shown that the system determinant ∆ is given by

∆ = (1 + Ĝ0K1)(1 + G0e
−LsK3) + K2(G0e

−Ls − Ĝ0e
−L̂s).

It follows that

pc(s) = ∆(s)
5∏

i=1

pi(s)

= [1 + K1G0][1 + K3G0e
−Ls] · d1(s) · d2(s) · d3(s) · d4(s) · β(s) · β(s) · 1

= d2(s)d4(s)[d1(s)β(s) + c1(s)α(s)][d3(s)β(s) + c3(s)α(s)e−Ls].

The polynomial, d1(s)β(s)+c1(s)α(s), reflects stabilization of delay-free G0 by the

controller K1, which is always possible, say, by pole placement. Both K2 and K4

must be stable for the stability of d2(s) and d4(s), and are used to achieve best

disturbance response and set-point response, respectively. With such constraints,

the overall system is internally stable if and only if the delay process, G0e
−Ls,

is stabilized by controller K3. For a general unstable delay system, readers are

referred to Bonnet and Partington (1999) for design of a stabilizing controller K3.

In view of the above analysis, it can be concluded that, unlike the original

Smith system where the characteristic equation is of delay-free, the modified Smith

scheme gets no simplification as far as stabilization is concerned, that is, the char-

acteristic equation is delay-dependent. In fact, this is the case for all the existing

stable modified Smith schemes for unstable processes as we found in Majhi and

Atherton (1999), Åström et al. (1994), Matausek and Micic (1996), and many

others.

5.4 Controller Design

It follows from the discussions in the preceding sections that controller design for

the proposed scheme should proceed as follows. K1 is to stabilize G0, K4 is to
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shape Hr in (5.3) for desired set-point response, K3 to stabilize G0e
−Ls, and K2 to

achieve optimum disturbance attenuation of (5.4). Since most typical industrial

processes of interests are of IPDT, FOPDT and SOPDT processes, controller design

is carried out in detail for each of these three cases as follows.

IPDT Processes Consider the following IPDT model:

G(s) = G0(s)e
−Ls =

k0

s
e−Ls,

where all coefficients are non-negative. The closed-loop transfer function for set-

point tracking is made to be

Hr =
k0K4

s + k0K1

e−Ls =
1

λs + 1
e−Ls, (5.5)

where λ > 0 is an adjustable closed-loop design parameter. A small value of

λ produces fast response, and a large value of λ enhances the robustness of the

closed-loop system. The guidelines to choose such a parameter is given in Majhi

and Atherton (2000a) and adopted here. Once λ is determined, K1 and K4 are

computed from (5.5) as

K1 =
1

k0λ
, (5.6)

and

K4 =
1

k0λ
. (5.7)

This results in the closed-loop transfer function for disturbance:

Hd =
k0λ(s + 1

λ
− k0K2e

−Ls)

(λs + 1)(s + k0K3e−Ls)
e−Ls.

Note that K3 is designed to stabilize k0e
−Ls/s and the proportional gain is suffi-

cient. According to Matausek and Micic (1996), K3 is computed to give a phase

margin of 60◦ which gives

K3 =
π

6Lk0

. (5.8)

In order to achieve good disturbance rejection performance, K2 is selected to mini-

mize the integral squared error (ISE) in case of step type disturbance. We approx-

imate e−Ls by 1− Ls and choose K2 as a PD controller:

K2 = K2P + K2Ds. (5.9)
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Then, Hd becomes

Hd =
k0λ[s + 1

λ
− k0(K2P + K2Ds)(1− Ls)]

(λs + 1)[s + k0K3(1− Ls)]
e−Ls

=
k0λ[k0LK2Ds2 + (−k0K2D + k0K2P L + 1)s + ( 1

λ
− k0K2P )]

λ(1− k0K3L)s2 + (λk0K3 + 1− k0K3L)s + k0K3

e−Ls.

To ensure zero steady state error, the constant term (1/λ−k0K2P ) in the numerator

should be equal to zero, which leads to

K2P =
1

k0λ
. (5.10)

Then the step disturbance response is given by

Yd =
1

s
Hd

= Y0k0λe−Ls,

where

Y0 =
b1s + b0

a2s2 + a1s + a0

,

with

b1 = k0LK2D,

b0 = −k0K2D + k0K2P L + 1,

a2 = λ(1− k0K3L),

a1 = λk0K3 + 1− k0K3L,

a0 = k0K3.

Since both k0λ and L are fixed, minimizing the ISE of Yd is equivalent to minimizing

the ISE of Y0. According to Jury and Dewey (1965), the ISE of Y0 is

ISE =
a2b0

2 + a0b1
2

2a2a1a0

,

which is a positive quadratic function of K2D. Then the optimal K2D for minimum

ISE is given by

K2D =
(6− π)(λ + L)

λk0(6− π) + k0Lπ
, for e−Ls ≈ 1− Ls. (5.11)
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If we approximate e−Ls by (1 − Ls/2)/(1 + Ls/2) and repeat the above design,

then K2P is still given by (5.10), but K2D is changed to:

K2D =
(1

2
L + λ− 1

2
λk0K3L)(1 + L

λ
)− 1

4
k0K3L

2

k0(
1
2
L + λ− 1

2
λk0K3L) + 1

4
k0

2K3L2
, for e−Ls ≈ 1− 1

2
Ls

1 + 1
2
Ls

. (5.12)

FOPDT Processes Consider the following unstable FOPDT model:

G(s) = G0(s)e
−Ls =

k0

Ts− 1
e−Ls,

where all coefficients are non-negative. The closed-loop transfer function for set-

point tracking is made to be

Hr =
k0K4

Ts− 1 + k0K1

e−Ls =
1

λs + 1
e−Ls,

where λ > 0 is the adjustable closed-loop design parameter, and this gives rise to

K1 =
1 + T/λ

k0

, (5.13)

and

K4 =
T

k0λ
. (5.14)

The corresponding closed-loop transfer function for disturbance is

Hd =
λG0(Ts− 1 + k0K1 − k0K2e

−Ls)

T (λs + 1)(1 + K3G0e−Ls)
e−Ls.

The controller K3 is designed to stabilize G0e
−Ls. Based on the optimum phase

margin criterion, De Paor and O’Malley (1989) suggested a proportional controller

to stabilize an unstable FOPDT process which gives

K3 =

√
T

Lk0
2 . (5.15)

In order to achieve good disturbance rejection performance, K2 is determined to

minimize the ISE of the disturbance response. With e−Ls ≈ 1− Ls and

K2 = K2P + K2Ds (5.16)

as chosen before, we have

Hd =
λk0

T

k0LK2Ds2 + (−k0K2D + T + k0K2P L)s + (T
λ
− k0K2P )

λ(T − k0K3L)s2 + (λk0K3 − λ + T − k0K3L)s + k0K3 − 1
e−Ls.
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Let the constant term (T/λ− k0K2P ) be equal to zero, we have

K2P =
T

k0λ
. (5.17)

Following the similar procedure to the IPDT case, the optimal K2D is given by

K2D =
λ(T −√TL)(T + TL

λ
)

λk0(T −
√

TL) + k0L2(
√

T
L
− 1)

, for e−Ls ≈ 1− Ls. (5.18)

Once again, with the approximation of e−Ls ≈ (1 − Ls/2)/(1 + Ls/2), K2P keeps

the same and K2D becomes

K2D =
[1
2
TL + λ(T − 1

2
L− 1

2

√
TL)](T + TL

λ
)− 1

4
TL2(

√
T
L
− 1)

k0[
1
2
TL + λ(T − 1

2
L− 1

2

√
TL)] + 1

4
k0L2(

√
T
L
− 1)

, for e−Ls ≈ 1− 1
2
Ls

1 + 1
2
Ls

.

(5.19)

SOPDT Processes Consider the following unstable SOPDT model:

G(s) = G0(s)e
−Ls =

k0

(T1s− 1)(T2s + 1)
e−Ls,

where all coefficients are non-negative. The closed-loop transfer function for set-

point tracking is made to be

Hr =
k0K4

(T1s− 1)(T2s + 1) + k0K1

e−Ls =
1

(λs + 1)2
e−Ls,

where λ > 0 is an adjustable closed-loop design parameter, which gives

K1 =
1

k0

(
T1T2

λ2
+ 1) +

1

k0

(
2T1T2

λ
− T1 + T2)s (5.20)

4
= K1P + K1Ds,

and

K4 =
T1T2

k0λ2
. (5.21)

This results in the closed-loop transfer function for disturbance:

Hd =
λ2G0[(T1s− 1)(T2s + 1) + k0K1 − k0K2e

−Ls]

T1T2(λs + 1)2(1 + K3G0e−Ls)
e−Ls.

Using De Paor and O’Malley (1989)’s method again yields

K3 =

√
T1

Lk0
2 (T2s + 1). (5.22)
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Approximate e−Ls by 1− Ls and choose

K2 = K2P + K2Ds (5.23)

to minimize the ISE of disturbance response. Hd is then calculated as

Hd =
λ2k0

T1T2

b1s
2 + b0s + (k0K1P − k0K2P − 1)

a4s4 + a3s3 + a2s2 + a1s + a0

e−Ls,

with

b1 = k0LK2D + T1T2,

b0 = −k0K2D + T1 − T2 + k0K1D + k0LK2P ,

a4 = λ2T2(T1 −
√

T1L),

a3 = 2λT2(T1 −
√

T1L) + λ2(T1 − T2 +

√
T1

L
T2 −

√
T1L),

a2 = λ2(

√
T1

L
− 1) + 2λ(T1 − T2 +

√
T1

L
T2 −

√
T1L) + T2(T1 −

√
T1L),

a1 = 2λ(

√
T1

L
− 1) + (T1 − T2 +

√
T1

L
T2 −

√
T1L),

a0 =

√
T1

L
− 1.

Let k0K1P − k0K2P − 1 = 0 and K2P is

K2P = K1P − 1

k0

. (5.24)

The step disturbance response is then given by

Yd =
λ2k0

T1T2

b1s + b0

a4s4 + a3s3 + a2s2 + a1s + a0

e−Ls

4
=

λ2k0

T1T2

Y0e
−Ls.

According to Jury and Dewey (1965), the ISE of Y0 is

ISE =
(−1)(4−1)|Ω1|

2a4|Ω| ,

with

Ω =




a0 0 0 0

a2 a1 a0 0

a4 a3 a2 a1

0 0 a4 a3




and Ω =




a0 0 0 b0
2

a2 a1 a0 −b1
2

a4 a3 a2 0

0 0 a4 0




,
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and is a positive quadratic function of K2D, then the optimal K2D is obtained as

K2D =
(a2a3 − a1a4)(T1 − T2 + k0K1D + k0K1P L− L)− a0a3T1T2L

(a2a3 − a1a4)k0 + a0a3k0L
, for e−Ls ≈ 1− Ls.

(5.25)

If we approximate e−Ls by (1 − Ls/2)/(1 + Ls/2), then K2P keeps the same and

K2D becomes

K2D =
1

k0
2f0 + 1

4
k0

2L2f1

[k0f0(T1 − T2 − 1

2
L +

1

2
k0LK1P + k0K1D +

1

2
k0K2P L)

−1

2
k0Lf1(T1T2 +

1

2
LT1 − 1

2
LT2 +

1

2
k0LK1D)− 1

2
k0T1T2Lf1], for e−Ls ≈ 1− 1

2
Ls

1 + 1
2
Ls

,

(5.26)

where

f1 = a0a3a4 − a0a2a5,

f0 = a2a3a4 − a2
2a5 − a1a4

2 + a0a4a5,

with

a5 =
1

2
λ2T1T2L,

a4 =λT1T2L + λ2[T1T2 +
1

2
L(T1 − T2)− 1

2

√
T1LT2],

a3 =
1

2
T1T2L + λ[2T1T2 + L(T1 − T2)−

√
T1LT2] + λ2(T1 − T2 − 1

2
L +

√
T1

L
T2

− 1

2

√
T1L),

a2 =[T1T2 +
1

2
L(T1 − T2)− 1

2

√
T1LT2] + λ(2T1 − 2T2 − L + 2

√
T1

L
T2 −

√
T1L)

+ λ2(

√
T1

L
− 1),

a1 =2λ(

√
T1

L
− 1) + (T1 − T2 − 1

2
L +

√
T1

L
T2 − 1

2

√
T1L),

a0 =

√
T1

L
− 1.

Remark 1: We have provided two options for the value of the derivative gain,

K2D, in the disturbance rejecting controller K2. The reason for such options instead

of an unique choice is that the better approximation, e−Ls ≈ (1−Ls/2)/(1+Ls/2),
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does produce better performance over that from e−Ls ≈ 1 − Ls, but at costs of

higher control action, as expected. The size of such extra action varies with process

characteristics: biggest for the IPDT case, moderate for the FOPDT case, and

smallest for the SOPDT case, as will be seen in the next section.

Remark 2: In all the designs for the above three cases, K4 has been chosen

to fit to some simple target set-point transfer functions. This leads to simple

design formulas and the same or very similar set-point performances as from the

Majhi and Atherton’s method. Such designs seem already sufficiently good for

simple processes like the above three cases. They facilitate a fair comparison of

disturbance responses between our method and the Majhi and Atherton’s method.

Note that improvement of disturbance response and its fair comparison with other

works are the focus of this chapter. If we would have changed our target set-point

transfer function to a different one from the Majhi and Atherton’s method, then

this difference would also have come to the disturbance transfer function, which

could complicate performance comparison of disturbance responses. It should be

however pointed out that, in principle, K4 is a provision in our scheme, which

can be utilized to optimize the set-point response in a sense of interests, and the

potential improvement of the set-point response from such a best use of K4 might

be significant, say, for complex processes.

5.5 Examples

In this section, we demonstrate our designs in the proceeding section by three

examples, one for each case. Note that PD controllers are involved in our designs.

As usual, we implement them with an industrial PD form (kds+kp)/(kds/N+1) and

choose N = 10 in all the examples below. Both the set-point and load disturbance

are of step signal with the amplitude of 1 and 0.1, respectively. For convenience,

the proposed design with e−Ls ≈ 1−Ls is referred to as proposed design (A), while

the one with e−Ls ≈ (1− Ls/2)/(1 + Ls/2) as proposed design (B).
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Example 1: Consider an IPDT process (Majhi and Atherton, 2000a):

G(s) =
1

s
e−5s.

The controllers from Majhi and Atherton (2000a) are Gc(s) = 0.5(1+1/s), Gc1 = 1,

which lead to the set-point response of e−Ls/(2s + 1); and Gc2 = 0.105, which is

designed to stabilize G0e
−Ls with 60◦ phase margin. For a fair comparison, we

choose the same λ = 2 in their design to produce the same set-point response,

and design the same K3 as their Gc2. It follows from (5.6)-(5.12) that K1 = 0.5,

K3 = 0.105 and K4 = 0.5, with K2 = 0.5 + 0.934s for proposed design (A)

and K2 = 0.5 + 2.723s for proposed design (B). The responses of the proposed

designs and Majhi’s method are shown in Figure 5.3. One sees that that the

proposed designs have the same set-point responses but better disturbance rejection

compared with Majhi’s method.

Example 2: Consider an unstable FOPDT process (Majhi and Atherton,

2000a):

G(s) =
4

10s− 1
e−5s.

The controllers from Majhi and Atherton (2000a) are Gc(s) = 0.25(1 + 0.5/s),

Gc1 = 0.5 − 2s and Gc2 = 0.35. We take the same λ = 2 as that in Majhi and

Atherton (2000a) so as to achieve the same set-point response, and design the same

K3 as Gc2. It follows from (5.13)-(5.19) that K1 = 1.5, K3 = 0.35, and K4 = 1.25,

with K2 = 1.25+3.16s for proposed design (A) and K2 = 1.25+7.93s for proposed

design (B). The responses of the proposed method and Majhi’s method are shown

in Figure 5.4. Once again, the proposed method has much better disturbance

rejection performance.

Example 3: Consider an unstable SOPDT process (Majhi and Atherton,

1999):

G(s) =
2

(10s− 1)(2s + 1)
e−5s.

The controllers from Majhi and Atherton (1999) are Gc(s) = 0.1 + 1/s, Gc1 =

5.017+3.408s, which are designed for ISTE optimal set-point response, and Gc2 =

0.707 + 1.414s for the optimum stability margin. By choosing λ = 2.5 for a
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Figure 5.3. Step responses for IPDT process

(· · · · · · Majhi’s method; —— proposed design (A);- - - - proposed design (B))

similar set-point response speed, we obtain the controllers from (5.20)-(5.26) as

K1 = 2.1 + 4s, K3 = 0.707 + 1.414s and K4 = 1.6, with K2 = 1.6 + 10.44s for

proposed design (A) and K2 = 1.6+14.25s for proposed design (B). The responses

of the proposed method and Majhi’s method for nominal plant are shown in Figure
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Figure 5.4. Step responses for unstable FOPDT process

(· · · · · · Majhi’s method; —— proposed design (A);- - - - proposed design (B))

5.5. Obviously, the proposed method has similar set-point response but much

better disturbance rejection compared with Majhi’s method. Suppose that the

model is not accurate and has 10% error at the plant gain, or the gain is 2.2 and

1.8, respectively, while the nominal value is 2. The results are given in Figures
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5.6 and 5.7 respectively. Both methods are robust against gain perturbation, but

the performance of the proposed method is better, especially for the disturbance

response.
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Figure 5.5. Step responses for unstable SOPDT process (gain=2)

(· · · · · · Majhi’s method; —— proposed design (A);- - - - proposed design (B))

The ISE and maximum error of disturbance responses for the above examples
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Figure 5.6. Step responses for unstable SOPDT process (gain=2.2)

(· · · · · · Majhi’s method; —— proposed design (A);- - - - proposed design (B))

are summarized in Table 5.1. It is obvious that the proposed designs have superior

performance to Majhi’s design. Our design (A) yields better disturbance response

than Majhi’s with comparable controlled inputs, while our design (B) is even better

than design (A) at the cost of a bit more aggressive process inputs. It is noted
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Figure 5.7. Step responses for unstable SOPDT process (gain=1.8)

(· · · · · · Majhi’s method; —— proposed design (A);- - - - proposed design (B))

that the actual ISE optimal K2 for three examples without approximation of e−Ls

can be found from extensive simulation and is obtained as K∗
2 = 0.5 + 2.83s,

K∗
2 = 1.25+7.96s, and K∗

2 = 1.25+14.17s respectively, which are almost identical

to our design (B). This validates the accuracy of the proposed design (B). The
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performance specifications of the actual ISE optimal designs are also included in

Table 5.1 for reference.

Table 5.1. Performance Specifications of Disturbance Responses

Scheme ISE Maximum error

Example 1: Majhi’s method 3.130 0.610

Proposed (A) 1.899 0.509

Proposed (B) 0.894 0.502

Actual ISE optimal design 0.891 0.502

Example 2: Majhi’s method 2.510 0.439

Proposed (A) 1.110 0.306

Proposed (B) 0.344 0.262

Actual ISE optimal design 0.344 0.262

Example 3: Majhi’s method 1.032 0.278

k0 = 2 Proposed (A) 0.264 0.162

Proposed (B) 0.202 0.143

Actual ISE optimal design 0.202 0.143

Example 3: Majhi’s method 0.902 0.284

k0 = 2.2 Proposed (A) 0.237 0.167

Proposed (B) 0.177 0.150

Actual ISE optimal design 0.177 0.150

Example 3: Majhi’s method 1.327 0.279

k0 = 1.8 Proposed (A) 0.311 0.158

Proposed (B) 0.257 0.137

Actual ISE optimal design 0.257 0.138

The reasons for better disturbance rejection with reasonable process input sizes

are probably as follows: The derivative control is introduced in the disturbance con-

trol loop (in K2) and thus accelerates correction action. This derivative control

may not produce extra control action since it compensates for lag present in the

process and the path from the disturbance d to control action u has no derivative
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term or its equivalent. Our design criterion for this derivative gain is to mini-

mize the integral squared error of disturbance response, which tends to yield quite

reasonable control action, compared with those designs for fast response.

5.6 Conclusion

A new control scheme is developed based on previously published works, particu-

larly that of Majhi and Atherton, for better control of unstable process with dead

time. By realizing importance of disturbance rejection and non-existence of any

control freedom over the disturbance response in the previous schemes, our new

scheme has one more degree-of-freedom to manipulate disturbance response, and

four controllers involved are well placed to separately tune the denominators and

numerators of closed-loop transfer functions from the set-point and disturbance.

This allows easy design of each controller and good control performance for both

set-point and disturbance responses. The control design for set-point response is

handled similarly to that of Majhi and Atherton for three cases considered in the

chapter. For disturbance response, we tune the controller parameter to minimize

the integral squared error. Two options are provided to suit practical situations

of control performance versus available process input limits. Internal stability of

the proposed system is analyzed and our designs will always lead to internally

stable systems. Simulations show that the proposed scheme yields much better

performance for load disturbance responses over the existing methods.



Chapter 6

A Smith-Like Control Design for

Processes with RHP Zeros

6.1 Introduction

RHP zeros have been identified in dynamics of many chemical engineering sys-

tems such as boilers, simple distillation columns, and coupled distillation column

(Holt and Morari, 1985). Characterized by their inverse response to a step in-

put (la Barra S. and León, 1994), RHP zeros have provided challenges to con-

trol system design. It is well known that a system with RHP zeros, compared

with its minimum phase counterpart, has inherent limitations on achievable feed-

back system performance such as the closed-loop gain and bandwidth, the integral

on sensitivity or complementary sensitivity function (Middleton, 1991; Qiu and

Davison, 1993; Seron et al., 1997), loop-transfer recovery (Zhang and Freuden-

berg, 1990). More specifically, in a conventional unity feedback control scheme,

the existence of RHP zeros in the plant prevents use of high gain in the controller

and prolongs the settling time to reduce the undershoot.

It is noted that RHP zeros share the same non-minimum phase property as dead

time and a popular bridge between RHP zeros and dead time is a first order Páde

approximation: e−2zs = (z− s)/(z + s). There has been a dead time compensator,

the Smith predictor (Smith, 1957), with which the dead time can be removed

109
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from the characteristic equation of the closed-loop system and the control design is

greatly simplified into the dead time free one. For a system whose dead time is large

compared with its time constant, it is shown that the Smith Predictor control yields

superior performance to single loop control (Ingimundarson and Hägglund, 2002).

Naturally, this observation leads us to adapting the Smith scheme to systems with

RHP zeros.

In this chapter, a Smith control scheme is adopted to control a stable process

with RHP zeros and possible dead time. Both RHP zeros and dead time will be

compensated for to ease controller design. Nominal performance (such as under-

shoot, overshoot, settling time, and ISE) and stability robustness are addressed

and necessary relationships are established for easy tuning of a single design pa-

rameter in the controller. The performance enhancement of the proposed scheme

over the single loop system is analyzed and demonstrated.

The rest of this chapter is organized as follows. In Section 6.2, the proposed

design scheme is presented and its nominal performance analyzed. The stability

issues are then discussed in Section 6.3. Simulation examples are given in Section

6.4. And then conclusions are drawn in Section 6.5.

6.2 The Control Scheme

Consider the control scheme depicted in Figure 6.1, where G is the process, C the

controller to be designed, r, u, and y denote the reference input, control input

and the process output respectively. Ĝ = GLGR is a model of the process. If the

factorization of Ĝ into GL and GR is such that GR = e−Ls represents dead time of

Ĝ, while GL is the remaining rational function, then the popular Smith predictor

control (Smith, 1957) results. It is well known that with the Smith predictor, the

dead time disappears from the characteristic equation of the closed-loop system

in the case of G = Ĝ, and the control design problem is reduced to one for the

delay-free part only, for which enhanced performance can be achieved.

It is noted that RHP zeros share the same non-minimum phase property with

dead time. Thus, it is appealing by adopting the Smith scheme to the RHP zero
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Figure 6.1. Smith control structure

case such that the RHP zeros are removed from the feedback loop and the pri-

mary controller is designed for the minimum phase part only, giving performance

enhancement over the single loop configuration.

Suppose that a given plant G(s) is stable with k RHP zeros at zi > 0, i = 1 · · · k,

and is represented by

G = G0e
−L0s

k∏
i=1

zi − s

zi + s
, (6.1)

where G0 is a rational, stable and minimum-phase transfer function. It follows from

Tan et al. (1996) that with the Smith scheme, a deliberately mismatched model

may lead to performance improvement over a perfectly matched system while using

a simple primary controller, if both the real dead time of the process G and the

implicit dead time from high order dynamics of G0 are condensed to an equivalent

total dead time in the low-order model. It is well known that most industrial

processes can be approximated by a low-order model. A low-order model is easier

to deal with in control design, and a low-order controller is usually adequate for

satisfactory performance. Therefore, we approximate G0 by

Ĝ0 =
b1s + b0

a2s2 + a1s + a0

e−Les, ai, bi > 0 (6.2)

Though there are many techniques available for reduced-order modeling (Schoukens

and Pintelon, 1991; Obinata and Anderson, 2000), the identification method by

Wang and Zhang (2001) is recommended for its accuracy, efficiency and preserva-

tion of stability.



Chapter 6. A Smith-Like Control Design for Processes with RHP Zeros 112

In view of the above development, we take

Ĝ =
b1s + b0

a2s2 + a1s + a0

e−Ls

k∏
i=1

zi − s

zi + s
, L = L0 + Le. (6.3)

Then Ĝ is factorized as

GL =
b1s + b0

a2s2 + a1s + a0

GR = e−Ls

k∏
i=1

zi − s

zi + s

The primary controller C is chosen as

C = G−1
L

1

τs(τs + 2)

=
a2s

2 + a1s + a0

(b1s + b0)τs(τs + 2)
(6.4)

which is a PID controller cascaded with a second-order lag, and easy to implement.

The resultant closed-loop transfer function is

H(s) =
C(s)G(s)

1 + C(s)(GL(s)−GL(s)GR(s) + G(s))
(6.5)

If G = Ĝ, then H(s) reduces to the desired closed-loop Hd(s):

Hd(s) =
1

(τs + 1)2

k∏
i=1

zi − s

zi + s
e−Ls (6.6)

where the non-minimum phase part (both dead time and RHP zeros) is completely

removed from the closed-loop characteristic polynomial. The desired closed-loop

performance given by Hd is simple and easy to predict as it is an all-pass transfer

function GR filtered by a double first-order lag, and can be used to well anticipate

the actual closed-loop performance as long as the approximation in (6.2) is within

a reasonable range, say, a maximum relative error of 10% in the frequency range of

closed-loop bandwidth. The design has one tunable parameter only, i.e., the time

constant τ , which determines both the nominal performance and robust stability.

The relation between τ and time domain specifications of Hd is analyzed in this

section, while the issue of stability and robustness is treated in the next section.
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For the desired closed-loop transfer function Hd(s) in (6.6), one easily finds that

the overshoot in response to a step input is zero. According to Morari and Zafiriou

(1989), for all transfer functions that contain the same RHP zeros, the one in the

form of
∏k

i=1
zi−s
zi+s

is of minimum ISE against a step input, with the minimum value

of
∑k

i=1(2/zi). Denote by zmin the smallest one of zi, i = 1 · · · k, if zmin < 1/τ holds,

then the slowest pole in Hd is at −zmin, and the step response is characterized by

a large undershoot, small settling time, and small ISE. In particular, Hd is close to

GR and is ISE sub-optimal when zmin << 1/τ . For zmin > 1/τ , as τ increases, the

dynamic lag due to 1
(τs+1)2

begins to dominate the transient, and the step response

is of small undershoot, large settling time and large ISE.

For illustration, consider the closed-loop transfer function with only one RHP

zero z:

Hd(s) =
1

(τs + 1)2

z − s

z + s
, z > 0 (6.7)

By the inverse Laplace transform, the time domain step response is

y(t) = 1− 2

(c− 1)2
e−zt − zt(c + 1)

c(c− 1)
e−

zt
c +

(1 + 2c− c2)

(c− 1)2
e−

zt
c , c = τz (6.8)

In order to find the undershoot, letting ẏ(t) = 0 yields the transcendental equation:

2

(c− 1)2
e−zt − (c + 1)

c(c− 1)
(1− zt

c
)e−

z
c
t = 0 (6.9)

As z and t always appear together as zt in (6.9), one sees that for a fixed c the

solution to (6.9) can be expressed in terms of zt, and the time of achieving the

undershoot is inversely proportional to z. When the solution, (zt)∗, is substituted

to (6.8), the resultant undershoot is uniquely determined by c = τz. Similar to

the time of achieving the undershoot, for a fixed c, both the settling time ts and

the ISE are also inversely proportional to z. The relationships of the undershoot,

the 2% settling time and the ISE against the parameter τ are depicted in Figures

6.2(a)-(c) respectively. With the help of Figure 6.2, it is convenient to make a

trade-off between the undershoot, settling time and ISE by tuning of τ .

For systems with more than one RHP zeros, no neat relationships between time

domain specifications and τ exist due to the different possible relative positions of



Chapter 6. A Smith-Like Control Design for Processes with RHP Zeros 114

0.1/z 1/z 10/z 
0  

10%

20%

30%

40%

50%

60%

70%

 τ

U
nd

er
sh

oo
t[%

]

(a) Undershoot

0.1/z 1/z 10/z
0 

10/z

20/z

30/z

40/z

50/z

60/z

70/z

 τ

Se
ttl

in
g 

tim
e[

s]

(b) Settling time

0.1/z 1/z 10/z 
2 /z

4 /z

6 /z

8 /z

10/z

12/z

14/z

16/z

 τ

IS
E

(c) ISE

Figure 6.2. Step response specifications against tuning parameter τ
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RHP zeros. However, it is found from simulation that when all the other RHP zeros

are at least 1.5 times as large as the smallest one zmin, their effects on undershoot

and settling time are insignificant, and we can estimate the performance based on

zmin as if there would be a single RHP zero at z = zmin. This is illustrated by

Figure 6.3, where the undershoot and settling time of

Hd(s) =
1

(τs + 1)2

(z − s)(z2 − s)

(z + s)(z2 + s)
, z2 > z > 0,

are depicted, with z2 chosen as z2 = 1.5z, z2 = 2z and z2 = 5z respectively,

compared with the single RHP case in (6.7). It follows from Figure 6.3 that,

for one thing, both the undershoot and the settling time are increased with the

introduction of RHP zero z2 when τ > 0.3/z; for another, as z2 increases, its effect

diminishes, and is almost negligible when z2 = 5z.

When the dead time L (both from original process and from model reduction)

is also taken into account for Hd, the step response shifts L towards the positive

time axis, and the settling time is increased by L, while the undershoot remains

unchanged. One concludes that τ can be tuned based on the smallest RHP zero

according to the time domain specifications, with some reservation paid if there

exist other RHP zeros.

6.3 Stability Analysis

Stability is the primary concern for any controller design. In this section, both the

nominal and robust stability of the proposed scheme are investigated.

For nominal stability, the perfect model match, Ĝ = G, is assumed. It follows

from Wang et al. (1999b) that the Smith scheme, Figure 6.1, is internally stable if

and only if the controller C stabilizes the minimum-phase model GL. In compari-

son, for the single-loop scheme, the nominal stability requires the process G to be

stabilized. From the factorization G = GLGR, there hold

|G(jω)| = |GL(jω)GR(jω)| = |GL(jω)|
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Figure 6.3. Performance comparison of processes with 2 RHP zeros

(—— single RHP zero z; · · · · · · z2 = 1.5z; - - - z2 = 2z; − · − z2 = 5z)

and

arg(G(jω)) = arg(GL(jω))− 2
k∑

i=1

tan−1

(
ω

zi

)
− Lω

At the gain cross-over frequency such that |G(jωgc)| = |GL(jωgc)| = 1, arg(G) <
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arg(GL) always holds; i.e., G always has more phase lag than GL, leading to

less phase margin for G than GL. At the phase cross-over frequency such that

arg(G(jωpc)) = −π, G usually has a finite gain margin, while GL has an infinity

gain margin since GL will never reach the phase of −π. Hence GL is much easier

to stabilize and control by the primary controller in the Smith scheme than its

counterpart G by a controller in a single-loop feedback scheme. For example, let

G(s) =
2(1− s)

(1 + s)3

so that

GL(s) =
2

(1 + s)2
and GR(s) =

1− s

1 + s

The gain and phase margins for G(s) are 1 and 0 respectively, while those for GL(s)

are ∞ and π/2, respectively.

In robustness analysis, one may view G as the true process dynamics. Then, the

mismatch between G and Ĝ = GLGR can capture both imperfectness of process

modeling and model reduction involved in our design procedure. Let the total

uncertainty be bounded by

∣∣∣∣∣
G(s)− Ĝ(s)

Ĝ(s)

∣∣∣∣∣ < ∆G(s) (6.10)

Then the Smith system is robustly stable (Morari and Zafiriou, 1989) if and only

if

|Hd(jω)| ≤ 1

∆G(jω)
, ∀ω ≥ 0 (6.11)

Substituting (6.6) into inequality (6.11) yields

∣∣∣∣
1

(1 + jωτ)2

∣∣∣∣ ≤
1

∆G(jω)
, ∀ω ≥ 0 (6.12)

or

1 + ω2τ 2 ≥ ∆G(jω), ∀ω ≥ 0 (6.13)

As for the process gain uncertainty ∆G(s) = |∆k/k| or the process phase un-

certainty ∆G(s) = |ej∆θ − 1|, it follows from (6.13) that a gain margin of 2 and

a phase margin of π/3 are guaranteed, since the left half term of (6.13) is always
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larger than 1. For uncertainties in the RHP zeros, assume that the RHP zero, z0,

is perturbed to z = z0 + ∆z, so that G and Ĝ are given by

G = G0e
−L0s z − s

z0 + s
, Ĝ = G0e

−L0s z0 − s

z0 + s

respectively. Then ∆G is

∆G =

∣∣∣∣
∆z

z0 − s

∣∣∣∣

and is guaranteed to be less than 1 for 0 ≤ z ≤ 2z0. For uncertainties in the time

delay, let the time delay L0 be perturbed to L0 + ∆L, so that G and Ĝ are given

by

G = G0e
−(L0+∆L)s z0 − s

z0 + s
, Ĝ = G0e

−L0s z0 − s

z0 + s

respectively. Then ∆G is reduced to

∆G =
∣∣e−jω∆L − 1

∣∣

= 2

∣∣∣∣sin
(

ω∆L

2

)∣∣∣∣

The robust stability condition (6.13) becomes

2 |sin θ| ≤ 1 + λθ2, θ =
ω∆L

2
, λ =

(
2τ

∆L

)2

Plot the left half side and the right half side of the inequality together in Figure

6.4 with respect to θ. The curve of the left half side is fixed while that of right half

side changes for different λ. It is computed that the two curves are tangent when

λ = 0.70, consequently the robust stability condition holds if (2τ/∆L)2 ≥ 0.7 or

equivalently

τ ≥ 0.42|∆L| (6.14)

In view of the above robust stability analysis, a larger τ will render the system

more robust against the uncertainties, and vise versa. Recalling from the preceding

section that a larger τ also dictates a greater ISE and a longer settling time,

one concludes that the tuning of τ is also to make the trade-off between nominal

performance and robust stability. Therefore the whole control design scheme can

be summarized as the following procedure.
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Figure 6.4. Illustration of robust stability condition for uncertain time delay

(—— 2| sin θ|; - - - 1 + 0.5θ2; · · · · 1 + 0.7θ2; - · - 1 + θ2)

6.3.1 Design procedure

Initial data: the process transfer function G and time domain specifications (un-

dershoot, settling time and ISE) and uncertainty size ∆G.

(i) Rewrite G in the form of (6.1);

(ii) Obtain the second order plus dead time model (6.2) for G0;

(iii) Tune τ such that the best trade-off between the specifications is made with

help of Figure 6.2 and (6.13);

(iv) Form the controller by (6.4).

Regarding step (ii), for any given stable plant G, G0 can be extracted by (6.1).

Then the step response of G0 can be constructed with the inverse fast Fourier trans-

form (Wang et al., 2004), and is employed with the step identification method in

Wang and Zhang (2001) to obtain the reduced order model for G0. The model re-

duction algorithm is summarized in the subsequent subsection for ease of reference

and use.
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6.3.2 Model reduction

Consider a stable and minimum phase process:

G(s) =
b1s + b0

s2 + a1s + a0

e−Ls

(i). Let the input u(t) to G be of step type with size h, then its step response is

constructed as

y(t) = h[G(0) + F−1{G(jω)−G(0)

jω
}], (6.15)

where F−1 may easily be implemented by the inverse fast Fourier transform,

see details in Wang et al. (2004).

(ii). With the step response y(t), the static gain K = b0/a0 is computed as

K = y(∞)/h. Let

∆y(t) = y(t)− y(∞)

γ(t) = −
∫ t

0

∫ τ2

0

∆y(τ1)dτ1dτ2

φ(t) =
[
∆y(t),

∫ t

0
∆y(τ1)dτ1, Kh, Kht

]T

(iii). Take t = ti ≥ L, i = 1 · · ·N to cover the transient time span and arrange

the regression form as

Γ = Φθ

with

Γ =
[
γ(t1) γ(t2) · · · γ(tN)

]T

Φ =
[
φ(t1) φ(t2) · · · φ(tN)

]T

θ =
[
θ1, θ2, θ3, θ4

]T

.

(iv). Obtain the ordinary least squares solution:

θ̂ = (ΦT Φ)−1ΦT Γ
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(v). Find the model parameters:




a1

a0

L

b1

b0




=




θ2/θ1

1/θ1

θ4 − θ2 +
√

2(θ3 − θ1) + (θ4 − θ2)2

K
√

2(θ3 − θ1) + (θ4 − θ2)2/θ1

K/θ1




6.4 Simulation Examples

In this section, two numerical examples are presented to demonstrate the effective-

ness of the proposed scheme.

Example 6.1. Consider a high-order oscillatory process with a single RHP zero:

G(s) =
k(1− s)

(s + 2)4(s2 + s + 1)2
, k = k0 = 1 (6.16)

G(s) is rewritten in form of (6.1) as

G = G0
1− s

1 + s
, G0 =

1 + s

(s + 2)4(s2 + s + 1)2

The algorithm in the Appendix is applied to G0 and gives

Ĝ0(s) =
0.0412

s2 + 0.6983s + 0.6601
e−1.97s.

The time and frequency responses of both G0 and the reduced-order model

are exhibited in Figures 6.5(a),(b), and the modelling error ∆G(jω) in Figure 6.6.

Since at the phase cross-over frequency of G, ωpc = 0.588 rad/s, the corresponding

∆G(jω) is very small from Figure 6.6, this indicates that the model reduction result

is reasonably good. Then, by our factorization, GL and GR become

GL =
0.0412

s2 + 0.6983s + 0.6601
and GR =

1− s

1 + s
e−1.97s (6.17)

Suppose that the design specification are such that the undershoot should be less

than 5%, and others be as good as possible. It follows from Figure 6.2(a) that

τ > 1.5/z = 1.5 is required, and is chosen as 1.88 here so as to produce the same
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Figure 6.5. Time and frequency responses of G0 and its model in Example 1

(—— G0; · · · · · · reduced model of G0)

undershoot with the single-loop PI control below. The controller is obtained from

(6.4) as

C(s) =
s2 + 0.6983s + 0.6601

0.0412× 1.88s(1.88s + 2)
=

12.8998s2 + 9.0086s + 8.5147

s(1.88s + 2)
(6.18)

With G in (6.16), GL and GR in (6.17) and C in (6.18), the system in Figure

6.1 is simulated, and the step response is depicted in Figure 6.7. The robustness
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Figure 6.6. Modelling error for the process in Example 1
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Figure 6.7. Closed-loop step response of Example 1

(—— proposed; · · · · PI; - - - desired)

issue is examined by increasing the static gain as k = 1.25, 1.5, 2 in (6.16), and

their respective responses are depicted in Figure 6.8(a). In order to make com-

parison, the exact gain and phase margin method (Fung et al., 1998) is applied.

For gain margin of 2 and phase margin of π/3, the PI controller is obtained as
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(b) Single-loop PI control

Figure 6.8. System robustness of Example 1

(—— k = 1.25; · · · · · · k = 1.5; - - - k = 2)

K(s) = 4.028+2.358/s, with its step response compared in Figures 6.7 and 6.8(b).

Performance enhancement from the proposed scheme is substantial. Compared

with PI control, its time response has the same undershoot but no overshoot,

much smaller settling time, and greater robustness since it remains stable even
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Figure 6.9. Robust stability check against uncertain RHP zero of Example 1

(—— ∆G for z = 2z0; · · · · 1 + ω2τ 2)

when k = 2. For uncertainty in RHP zero, the robust stability is ensured for

z = 2z0 as is demonstrated by Figure 6.9, where the curve of 1 + ω2τ 2 is above

that of ∆G. The step responses for different uncertain RHP zeros are given in

Figure 6.10. In case of uncertain time delay, since τ/0.42 = 4.47, robust stability

is ensured against ∆L = 4.47 by (6.14), as is verified by the robust stability check

in Figure 6.11. The step responses for ∆L = 1, 2, 4.47 are also provided in Figure

6.12. At last, consider the combined uncertainty of k = 1.25, z = 1.25 and ∆L = 2,

the robust stability condition (6.13) is checked and verified in Figure 6.13, then the

step response is given in Figure 6.14 and compared with the PI design. All these

results against various uncertainties demonstrate the good robust stability of the

proposed design and validates the stability analysis in Section 3.

Example 6.2. Consider another high-order process with two RHP zeros:

G(s) =
k(1− 2s)(1− 3s)

(s + 1)10
, k = k0 = 1

It follows that

G = G0
(0.5− s)(0.33− s)

(0.5 + s)(0.33 + s)
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Figure 6.10. Step responses against uncertain RHP zero of Example 1

(—— z = 2z0; · · · · z = 0.75z0; - - - z = 1.25z0)
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Figure 6.11. Robust stability check against uncertain time delay of Example 1

(—— ∆G for ∆L = 4.47; · · · · 1 + ω2τ 2)

with

G0 =
(1 + 2s)(1 + 3s)

(s + 1)10
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Figure 6.12. Step responses against uncertain time delay of Example 1

(—— ∆L = 4.47; · · · · ∆L = 2; - - - ∆L = 1)
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Figure 6.13. Robust stability check against combined uncertainties of Example 1

(—— ∆G for k = 1.25, z = 1.25z0 and L = 2; · · · · 1 + ω2τ 2)

The reduced-order model for G0 is obtained as

Ĝ0(s) =
0.3114

s2 + 0.6601s + 0.3109
e−2.98s
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Figure 6.14. Step responses against combined uncertainties of Example 1

(—— proposed; · · · · PI)

so that

GL =
0.3114

s2 + 0.6601s + 0.3109
and GR =

(0.5− s)(0.33− s)

(0.5 + s)(0.33 + s)
e−2.98s

The smallest RHP zero is z = 0.33. Suppose that the design specification are such

that the undershoot should be less than 15%, and others be as good as possible.

It follows from Figure 6.2(a) that τ > 0.7/z = 2.1, and we choose τ = 3, taking

care of the effect from another RHP zero. Then the controller is configured from

(6.4) as

C(s) =
s2 + 0.6601s + 0.3109

0.3114 · 3s(3s + 2)
=

1.0704s2 + 0.7066s + 0.3328

s(3s + 2)

The nominal step response is given in Figure 6.15 and the responses under a static

gain perturbation of k = 1.25, 1.5, 2, are depicted in Figure 6.16(a). In comparison,

the exact gain and phase margin method, with gain margin of 2 and phase margin

of π/3, yields the controller of K(s) = 0.349+0.055/s, which leads to the responses

in Figures 6.15 and 6.16(b). And the performance improvement of the proposed

scheme is obvious.

The performance specifications of the simulation examples are measured and

summarized in Table 6.1, from which one sees that the transient performance
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Figure 6.15. Closed-loop step response of Example 2

(—— proposed; · · · · PI; - - - desired)

of the proposed scheme is superior to that of the single-loop PI design. With

almost the same undershoot and ISE, the proposed scheme not only gives a smaller

settling time without overshoot for nominal performance, but also better robustness

to uncertainties. Moreover, from Figures 6.7 and 6.15, the step response of the

proposed scheme tracks the desired one closely, and it is hence convenient to design

controller based on the desired one.

6.5 Conclusion

In this chapter, a Smith-like control scheme is proposed for control performance

enhancement of stable processes with RHP zeros. Compared with the single-loop

scheme, it has the following advantages: (i) controller design is simplified to one for

a delay-free, second-order minimum phase process; (ii) a single tuning parameter is

devised and the resulting trade-off between various nominal and robustness speci-

fications is graphically exhibited and straightforward to make; (iii) performance of

the designed system is predictable from the desired closed-loop transfer function

and can be enhanced over popular PI control.
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(a) Proposed Smith scheme

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

2

2.5

 t[s]

O
ut

pu
t

(b) Single-loop PI control

Figure 6.16. System robustness of Example 2

(—— k = 1.25; · · · · · · k = 1.5; - - - k = 2)
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Table 6.1. Performance Specification Comparison for Systems with RHP Zero(s)

Scheme US(%) OS(%) TS ISE

Example 1: Proposed 2.46% 0% 14.98 7.29

k = 1 PI 2.46% 10.52% 22.43 7.26

Proposed 3.08% 9.59% 17.16 6.88

k = 1.25 PI 3.07% 33.25% 36.12 7.41

Proposed 3.70% 25.4% 23.15 6.86

k = 1.5 PI 3.70% 56.5% 58.62 8.63

Proposed 4.93% 60.44% 49.66 8.25

k = 2 PI NA NA NA NA

k = 1.25, ∆L = 2 Proposed 1.95% 60.71% 87.03 12.08

and z = 1.25z0 PI 1.87% 98.75% 371.95 33.34

Example 2: Proposed 11.14% 0% 31.79 17.66

k = 1 PI 11.26% 9.72% 61.11 17.84

Proposed 13.89% 18.19% 54.39 20.61

k = 1.25 PI 14.06% 32.65% 95.63 25.41

Proposed 16.64% 41.93% 85.23 25.06

k = 1.5 PI 16.84% 57.09% 154.69 35.43

Proposed 22.10% 93.62% 283.42 63.51

k = 2 PI NA NA NA NA

US: undershoot; OS: overshoot; TS: Settling time



Chapter 7

Deadbeat Tracking Control with

Hard Input Constraints

7.1 Introduction

One of the fundamental problems associated with the discrete-time systems is

deadbeat control, i.e., drive some signal to zero in finite time and keep it zero

for all discrete times thereafter. The problem of deadbeat control received at-

tention since 1950s, and has been extensively studied in the 1980s (Kimura and

Tanaka, 1981; Emami-Naeini and Franklin, 1982; Schlegel, 1982). However, the

minimum time deadbeat control usually suffers from the problem of large control

magnitude, which prevents the practical implementation. On the other hand, due

to technological and safety reasons, the actuators cannot inject an unlimited energy

into the plant, which imposes bounds on controlled inputs. Consequently, investi-

gating hard input constraints for deadbeat control is of practical importance. To

the author’s knowledge, there are few works concerning this issue. In Henrion et

al. (2001), a polynomial approach (Kučera, 1979) is employed to solve the problem

of maximizing the initial stability region with stabilizing controller under hard in-

put constraints. The paper assumes that the input sequence is a finite one when

dealing with the hard constraints. This assumption enables easier formulation of

input constraints, since only finite enumerable inequalities are involved. However,

132
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such circumstance is rare, since the control input sequence is infinite for general

deadbeat control problems.

In this chapter, the constrained deadbeat tracking problem is investigated by

employing the polynomial approach. Firstly, the general solution for deadbeat

control with bounded inputs is derived as a function of a free polynomial. Af-

ter that, by taking the hard input constraints into consideration, the candidate

deadbeat controllers are formulated as feasible solutions subjecting to a infinite se-

ries of linear inequalities. Through extensive analysis of these infinite inequalities,

it is proven that the hard input constraints can be ensured approximately with

arbitrary accuracy by choosing a suitable finite subset of the inequalities. Then

the problem is reduced to finding a feasible solution subjecting to finite linear in-

equality constraints, and could be solved with ease. Furthermore, the controller

parameters can be optimized for some time domain performance benchmarks, say

for example, the integral of squared error.

The rest of this chapter is organized as follows. Section 7.2 prepares some

basic algebraic backgrounds for the discussion. In Section 7.3, the general solution

for deadbeat controllers with bounded inputs is derived, with an example given

to illustrate the time-optimal deadbeat solution. Then in Section 7.4, deadbeat

controller design subjecting to hard input constraints is addressed. The reduction

to finite linear inequality constraints is presented in detail, and the controller design

procedure is summarized, with a numerical example provided to indicate the design

procedure. Finally, Section 7.5 concludes this chapter.

7.2 Preliminaries

Let us recall several algebraic notions (Kučera, 1979). Denote, respectively, by R
the field of real numbers, by R[z−1] the ring of polynomials in the indeterminate

z−1 with the coefficients in R, such as

a(z−1) = a0 + a1z
−1 + a2z

−2 · · ·+ anz
−n.
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The degree of a(z−1), represented by ∂a, denotes the highest power of z−1 in a

with a non-zero coefficient. Notation (a, b) represents the greatest monic common

divisor of polynomials a(z−1) and b(z−1). One can always write a = ab(a, b) and

b = ba(a, b) with a coprime pair of polynomials ab and ba. A polynomial a(z−1) is

called stable if all its roots, λi such that a(λi) = 0, satisfy |λi| > 1. A polynomial

can be factorized into a(z−1) = a−(z−1)a+(z−1), where a−(z−1) is stable with

the highest possible degree. In addition, a polynomial a(z−1) is called marginally

stable if all its roots satisfy |λi| ≥ 1 and those roots with |λi| = 1 are distinct.

A polynomial can also be factorized into a(z−1) = aª(z−1)a⊕(z−1), where aª is

marginally stable with the highest possible degree.

The equation:

a(z−1)α(z−1) + b(z−1)β(z−1) = c(z−1) (7.1)

with given polynomials a(z−1), b(z−1) and c(z−1), and unknown polynomials α(z−1)

and β(z−1), is called a linear Diophantine equation in polynomials. It is solvable

if and only if (a, b) divides c. If α∗ and β∗ form a particular solution of (7.1), then

the general solution is expressed as

α = α∗ + baθ,

β = β∗ − abθ, (7.2)

where θ is an arbitrary polynomial. The minimum degree solution of (7.1) with

respect to β can be derived as follows. Suppose that α0 and β0 are a particular

solution. If ∂β0 < ∂(ab), then α∗ = α0 and β∗ = β0 are already the minimum

degree one; Otherwise, by reducing β0 modulo ab, β0 can be written as

β0 = β∗ + γab, with ∂β∗ < ∂ab,

so that the minimum degree solution is obtained as α∗ = α0 + γba and β∗.

Consider now the field of real rational functions, which is expressed as the

ratio of two polynomials: G(z−1) = b(z−1)/a(z−1). G(z−1) is causal if G(0) < ∞.

Let Rc[z
−1] be the ring of causal real rational functions. A causal G(z−1) can be

expanded by long polynomial division as an infinite series:

G(z−1) =
b(z−1)

a(z−1)
= g0 + g1z

−1 + g2z
−2 + · · · .
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It is stable (marginally stable respectively) if a(z−1) is a stable (marginally stable

respectively) polynomial. Obviously, the sequence, gi, i = 1, 2, · · · , from a causal

G, is convergent to zero (respectively bounded) if G is stable (respectively marginal

stable). In case of no confusion, G is called convergent or bounded accordingly.

Note that a polynomial a(z−1) is a special case of causal rational functions. It has

a finite terms in its expansion series, and thus always stable in the sense of stability

of causal rational functions.

7.3 Bounded Input Constraints Case

In this section, we will solve the deadbeat tracking control for deterministic discrete-

time linear SISO systems with internal stability, which leads to bounded inputs.

The problem is formally stated as follows.

Problem 7.1. Consider the single-variable feedback system in Figure 7.1. Suppose

that the plant G and reference input R are given causal rational functions with

coprime fractions: G = b(z−1)/a(z−1), and R = h(z−1)/p(z−1). Find a deadbeat

controller C such that the closed-loop system is internally stable, and the error E

vanishes in a finite time.

G
R U Y

−
CE

Figure 7.1. Single loop feedback system

We are now in a position to state the main result of this section as follows.

Theorem 7.1. Problem 7.1 is solvable if and only if pa, the coprime factor of

polynomial p with respect to a, is marginally stable, which is equivalent to the

solvability of the linear Diophantine equation

(b, h+)(bhpa)
⊕α + pa+

p β = h−. (7.3)
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If the polynomials, α and β, solve the above equation, it follows that

E = h+a+
p β, (7.4)

U =
h+ap

(b, h−)(bhpa)ª
α,

C = U/E.

Proof: The system in Figure 7.1 is internally stable if and only if the transfer

matrix 


1

1 + CG

C

1 + CG
G

1 + CG

1

1 + GC


 (7.5)

is stable (Zhou and Doyle, 1998). Notice that

1

1 + CG
=

E

R
=

pE

h
. (7.6)

Since E is a polynomial due to the deadbeat requirement and p/h is coprime, h+

must divide E for stability of 1/(1 + CG). Similarly, one sees that

G

1 + CG
=

E

R
G = E

p

h

b

a
= E

pabh

hbap

(7.7)

and h+
b a+

p must divide E for stability of G/1 + CG. Equations (7.6) and (7.7)

imply that

E = h+a+
p E1 (7.8)

for some polynomial E1. Besides, one writes

C

1 + CG
=

U

R
=

U

R
=

Up

h
.

Then, U should contain h+ in its numerator for stability of C/(1 + CG), or

U = h+U1, (7.9)

for some bounded U1 whose denominator is coprime with h+. It follows from Figure

7.1 that E = R−GU . Substituting (7.8) and (7.9) into the above equation yields

U1 =
ap(h

− − pa+
p E1)

bpa

=
ap(h

− − pa+
p E1)

bh(b, h−)(b, h+)pa

=
ap

(b, h−)(bhpa)ª
h− − pa+

p E1

(b, h+)(bhpa)⊕
. (7.10)
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In order for U1 to be bounded, (b, h+)(bqpa)
⊕ should divide (h− − pa+

p E1), which

leads to the linear Diophantine equation (7.3) with U and E given as (7.4).

It is noticed that

((b, h+)(bhpa)
⊕, pa+

p ) = ((b, h+)(bhpa)
⊕, p)

= ((bhpa)
⊕, p)

= p⊕a ,

which is always coprime with h−. Hence (7.3) is solvable if and only if p⊕a = 1, in

other words, pa is marginal stable. Then the proof is completed.

It follows from the preceding section that if (7.3) is solvable and the minimum

degree solution with respect to β is solved as α∗ and β∗, then the general solution

for (7.3) is expressed as

α = α∗ + pa+
p θ, β = β∗ − (b, h+)(bhpa)

⊕θ, (7.11)

where α∗ and β∗ form a particular solution, and θ is an arbitrary polynomial. This

leads to the general solution for Problem 7.1 as follows:

E = E∗ − h+a+
p (b, h+)(bhpa)

⊕θ, U = U∗ +
h+appa

+
p

(b, h−)(bhpa)ª
θ, (7.12)

respectively. Then the settling time is

ts = ∂E + 1.

Obviously, the time optimal solution results if

E∗ = h+a+
p β∗, U∗ =

h+ap

(b, h−)(bhpa)ª
α∗. (7.13)

The following example is given to illustrate the results.

Example 1 Consider the plant

G =
2 + z−1 − z−2

19− 2z−1 − 16z−2
,

with the reference input

R =
2− z−1

1− z−1
.
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It follows that a = 19− 2z−1 − 16z−2, b = 2 + z−1 − z−2, p = 1− z−1 and h =

2 − z−1. Since p⊕a = 1, the problem is solvable. The resultant linear Diophantine

equation is

α + (1− z−1)β = 2− z−1.

One easily checks that the minimum degree solution with respect to β is α∗ = 1

and β∗ = 1. Consequently, the time optimal control is obtained as

E∗ = 1,

U∗ =
19− 2z−1 − 16z−2

2− z−1 − 2z−2 + z−3
,

C∗ =
U∗

E∗ = U∗.

The simulation result for this example is displayed in Figure 7.2. One notices that

E vanishes only after one step. However, the magnitude of the controlled input is

rather big.

7.4 Hard Input Constraints Case

In this section, the deadbeat tracking problem with hard input constraints is con-

sidered, and the problem is stated as follows.

Problem 7.2. Consider the single variable feedback system (Figure 7.1). Given

the plant G = b(z−1)/a(z−1) and the reference input R = h(z−1)/p(z−1), with

a, b, p, h ∈ R[z−1]. Find a controller C ∈ Rc[z
−1] such that the system is internally

stable, the tracking error E = R−Y vanishes in a finite time. Moreover, the input

sequence U ,

U(z−1) = u0 + u1z
−1 + u2z

−2 · · · ,

satisfies the hard constraints,

u ≤ ui ≤ u, i = 0, 1, · · · (7.14)

for all nonnegative integers i, where u and u ∈ R are given scalars. Without

loss of generality, u = −u is assumed, since otherwise, we can always define U ′ =

U − (u + u)/(2− 2d), u′ = u− (u + u)/2 and u′ = u− (u + u)/2 so that u′ = −u′.
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(a) Input U∗

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

(b) Error E∗

Figure 7.2. Minimum-time deadbeat control for Example 1
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The constraints in (7.14) is referred to as original hard input constraints. Ob-

viously, U must be a bounded sequence in order to be within hard constraints. It

follows from the preceding section that, under the solvability condition of p⊕a = 1,

the general solutions (7.12) for deadbeat controller design with bounded inputs

can be written as

U = δ + λθ, (7.15)

E = f + lθ, (7.16)

with known polynomials f and l of

f = h+a+
p β∗, l = h+a+

p (b, h+)(bhpa)
⊕,

marginally stable causal rational functions δ and λ of

δ =
h+ap

(b, h−)(bhpa)ª
α∗, λ =

h+appa
+
p

(b, h−)(bhpa)ª
, (7.17)

and a free polynomial θ. We seek a polynomial θ to meet u ≤ ui ≤ u. Let

δ =
+∞∑
i=0

δiz
−i, (7.18)

λ =
+∞∑
i=0

λiz
−i, (7.19)

where the expression for δi and λi can be easily calculated from the residues of

(7.17), and similarly let

θ =
∂θ∑
i=0

θiz
−i.

One readily verifies that

ui = δi +
∑i

j=0 λi−jθj, for i < ∂θ,

ui = δi +
∑∂θ

j=0 λi−jθj, for i ≥ ∂θ.
(7.20)

Then (7.15) is arranged into the matrix form as

u = ∆ + ΛΘ, (7.21)
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where

u =




u0

u1

...

...

...

uk

...




,∆ =




δ0

δ1

...

...

...

δk

...




,Θ =




θ0

θ1

...

θ∂θ




, and

Λ =




λ0 0 . . . 0

λ1 λ0 . . . 0
...

...
. . .

...

λ∂θ λ(∂θ−1)
. . . λ0

...
...

. . .
...

λk λ(k−1) · · · λ(k−∂θ+1)

...
...

...
...




. (7.22)

Also define

ū =
[
ū ū ū · · ·

]T

,

and then (7.14) becomes

|∆ + ΛΘ| ≤ ū. (7.23)

Noting the constraint (7.23) is composed of infinite number of linear inequalities.

Deriving its feasible solution falls into the category of semi-infinite programming

with enumerable index sets. However, this problem does not satisfy the usual

assumption of compactness for typical semi-infinite optimization, and there is no

convenient algorithm to solve it directly. In order to overcome the difficulty of

manipulating infinite inequalities, it is desirable to develop a simple procedure for

Problem 7.2 where only finite inequality constraints are involved. At the same

time, the corresponding solution should still match the hard constraints with good

accuracy.
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Consider the sequences {δi} and {λi} in (7.18) and (7.19), which are derived

from the marginally stable causal rational functions δ and λ (7.17). It is noted that

by splitting the decaying components (which converge to 0 as index i increases to

∞) with the periodical components therein, {δi} and {λi} are arranged as the

summation of power series as

δi =
m∑

j=1

wjγj
i +

n∑
j=m+1

wjγj
i,

λi =
m∑

j=1

vjγj
i +

n∑
j=m+1

vjγj
i, (7.24)

where |γj| = 1 for 1 ≤ j ≤ m and |γj| < 1 for m + 1 ≤ j ≤ n. Let

δi = δp,i + δd,i, δp,i =
m∑

j=1

wjγj
i, δd,i =

n∑
j=m+1

wjγj
i,

λi = λp,i + λd,i, λp,i =
m∑

j=1

vjγj
i, λd,i =

n∑
j=m+1

vjγj
i. (7.25)

Then {δi} is decomposed into the summation of a periodical sequence {δp,i} and

a decaying sequence {δd,i}, and it is the same case for {λi}. Denote by δp, δd, λp

and λd the corresponding rational functions for the sequences {δp,i}, {δd,i}, {λp,i}
and {λd,i}, it follows that U could also be decomposed into periodical components

and decaying components as

U = Up + Ud,

Up = δp + λpθ,

Ud = δd + λdθ,

with the corresponding matrix form being

u = up + ud,

up = ∆p + ΛpΘ,

ud = ∆d + ΛdΘ,

where ∆p, ∆d, Λp and Λd are defined in a similar fashion as in (7.22). Since Θ

represents the coefficients of a finite real polynomial, the resultant up is a peri-

odical sequence, and ud is a decaying sequence which converges to 0 as its index
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approaches infinity. Thus u converges to up as the index approaches infinity. If

we can make sure that |ud,i| is smaller than ∀ε > 0 for i ≥ k, then |ui| ≤ |up,i|+ ε

always holds for i ≥ k. This motivates us to modify the hard input constraints

requirement with some relaxation as:

A. |ui| ≤ ū for i = 0, 1 . . . k−1, where k is an integer such that |ud,i| ≤ ε for i ≥ k,

B. |up,i| ≤ ū for ∀i.

Constraints A and B combine to ensure that |ui| ≤ ū for 0 ≤ i ≤ k − 1 and |ui| ≤
ū + ε for i ≥ k. When ε decreases, the constraints are exactly equivalent to the

original hard constraint (7.14). Due to the periodicity, only finite linear inequalities

are involved for Constraint B. As for Constraint A, given arbitrary small ε > 0,

there always exist an integer k such that |ud,i| ≤ ε for i ≥ k (as may be expected,

a smaller ε leads to a larger k), as will be demonstrated later. Consequently only

k linear inequalities are to be examined for Constraint A. Therefore, the pros and

cons for this modification are, reduction in the number of inequality constraints

and relaxation of hard constraints to |up,i| ≤ ū + ε for i ≥ k, respectively. In

addition, Constraint B can also be revised as ‘ |up,i| ≤ ū − ε for ∀i’. In this case,

it is ensured that |ui| ≤ ū for i ≥ 0 at the cost of conservativeness in the feasible

solution set, since the original hard constraints only lead to |up,i| ≤ ū. In fact,

the difference of the two different Constraint B’s is not significant in most cases.

In case that the hard constraints is stringent and no violation is allowed, choosing

|up,i| ≤ ū − ε is necessary. In the following contents, Constraint B of |up,i| ≤ ū is

always employed for analysis and simulation.

Now turn back to Constraint A. In view of (7.25), it is seen that

δd,i ≤
n∑

j=m+1

|wj||γmax|i , wsum|γmax|i,

λd,i ≤
n∑

j=m+1

|vj||γmax|i , vsum|γmax|i,

where γmax = max(γj) for j = m + 1, · · · , n, wsum =
∑n

j=m+1 |wj|, and vsum =
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∑n
j=m+1 |vj|. It follows from (7.20) that for i ≥ ∂θ,

|ud,i| =
∣∣∣∣∣δd,i +

∂θ∑
j=0

λd,i−jθj

∣∣∣∣∣ ≤ wsum|γmax|i + vsum|γmax|i
∂θ∑

j=0

|θi|. (7.26)

Since any feasible θ of (7.23) also satisfies a finite subset of the constraints. Hence

an estimate for the upper bound of
∑∂θ

j=0 |θi| is obtainable through the following

linear programming optimization.

Optimization 1. Calculate the maximum of
∑∂θ

j=0 |θi|:
Objective: maximize

∑∂θ
j=0 |θi| for given degree ∂θ.

Constraints: |ui| ≤ ū for 0 ≤ i ≤ n.

The maximum value could be made more accurate by increasing the numbers of

inequality constraints. Denote by θsum the maximum value, it follows from (7.26)

that

|ud,k| ≤ (wsum + vsumθsum) |γmax|k,

and an integer k given by

k =
ln ε− ln(wsum + θsumvsum)

ln γmax

(7.27)

suffices to ensure |ud,i| ≤ ε for i ≥ k. Then Condition A is arranged as the matrix

form linear inequalities

 Λk

−Λk


Θ ≤ uI2k×1 +


−∆k

∆k


 , (7.28)

where I2k×1 is a length 2k column vector with all the elements equal to 1, Λk and

∆k are truncations of the first k rows from Λ and ∆, respectively.

For condition B, assume for simplicity that the period of Up is an integer T ,

then it suffices to check |up,i| ≤ u− ε for finite terms i ≤ T + ∂θ, which is readily

arranged as

 Λp,(T+∂θ)

−Λp,(T+∂θ)


Θ ≤ (u− ε)I2(T+∂θ)×1 +


−∆p,(T+∂θ)

∆p,(T+∂θ)


 , (7.29)

where Λp,(T+∂θ) and ∆p,(T+∂θ) are truncations of the first (T + ∂θ) rows from Λp

and ∆p, respectively. Then the finite linear inequalities from Conditions A (7.28)
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and B (7.29) constitute the hard input constraints, and any feasible Θ leads to

a solution for the deadbeat controller. In order to calculate a unique Θ instead

of just one of the feasible solutions, some time-domain performance benchmarks

could be chosen as the objective for optimization. For example, the error signal E

(7.15) is a polynomial determined by Θ, and it can be arranged into the matrix

form as

e = F + LΘ,

where

e =




e0

e1

...

...

...

...

e∂E




,F =




f0

f1

...

f∂f

0
...

0




,L =




l0 0 . . . 0

l1 l0 . . . 0
...

...
. . .

...

l∂l l(∂l−1)
. . . l0

0 l(∂l−1)
. . . l1

...
...

. . .
...

0 0 · · · l∂l




. (7.30)

Then the integral of squared error is computed as

ISE = F′F + Θ′L′LΘ + 2F′LΘ. (7.31)

It is hence convenient to choose ISE as the objective function for minimization,

which leads to a unique deadbeat controller satisfying the input constraints. The

optimization is described as follows:

Optimization 2. Calculate a ISE optimal deadbeat controller subjecting to mod-

ified hard input constraints :

Objective: Minimize ISE (7.31) over the vector Θ with given dimension ∂θ.

Constraints: Inequalities (7.28) and (7.29).

7.4.1 Design procedure and computational aspects

The whole procedure for solving Problem 7.2 with modification of hard constraints

is then summarized as follows.



Chapter 7. Deadbeat Tracking Control with Hard Input Constraints 146

Prior information: process model, reference input, expected settling time (given

by ∂θ), and hard constraints u, u.

Step i. Solve (7.3) for the minimum-time solution of the deadbeat tracking prob-

lem with bounded inputs, and derive the general solution (7.12) for U and

E;

Step ii. Derive δi, λi and then in turn δp,i, δd,i, λp,i and λd,i from (7.24)(7.25),

compute wsum and vsum;

Step iii. Solve Optimization 1 for θsum;

Step iv. Solve k from (7.27);

Step v. Solve Optimization 2 for Θ, then formulate the controlled input, the error,

and the controller with t by (7.12).

In this design procedure, Step i gives the general solution for the bounded

stabilizing deadbeat control, and is a prerequisite for Problem 7.2 to be solvable.

Step ii only involves with simple algebraic manipulations. In Step iii, a trick

is employed to transform the objective of Optimization 1 into a linear one, see

Dantzig and Thapa (2003) for details. In Step iv, smaller k could be derived by

more elegant handling of inequalities (7.26) and (7.27). In Optimization 2 of Step

v, it is straightforward to modify the objective to minimizing IAE, ITAE or ITSE

etc. for different benchmarks.

Since Condition A is necessary for either original hard constraints or modified

ones, if inequalities (7.28) alone allows no feasible Θ, then Problem 7.2 has no

solutions, and one may need to increase the complexity of controller by increasing

∂θ. It also need to be commented on the modified constraints. Although the

constraints for i ≥ k are relaxed such that |ui| ≤ ū + ε is is possible, it is likely

that Constraint A will prevent |ui| from exceeding ū, and the calculated deadbeat

controller still satisfies the original hard constraints.
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7.4.2 Numerical example

Example 2 Design a deadbeat controller for Example 1 to meet the hard con-

straints of |ui| ≤ 2 with ∂θ ≤ 10 and ISE minimized.

Following the results in Example 1, the general solution U is given directly as

E = E∗ − θ,

U = U∗ +
19− 2z−1 − 16z−2

2 + z−1 − z−2
,

C =
U

E

=
(19− 2z−1 − 16z−2)(1 + (1− z−1)θ)

(2− z−1 − 2z−2 + z−3)(1− θ)
.

The input U can then be decomposed as

U1 =
5

6(1 + z−1)
+

1

2(1− z−1)
+

5

3(1 + z−1)
θ,

U2 =
49

6(1− 0.5z−1)
+

(
16− 49

6(1− 0.5z−1)

)
θ

= δ2 + λ2θ.

Optimization 1 is then carried out to estimate θsum, which yields

10∑
i=0

|θi| ≤ 2.375.

Simply choose ε = 0.02. It follows from (7.27) that k = 20, and then θ is solved

from Optimization 2 as

θ =− 0.7895− 0.6620z−1 − 0.5766z−2 − 0.4603z−3−
0.3761z−4 − 0.2693z−5 − 0.1872z−6 − 0.0886z−7−
0.0091z−8 − 0z−9 − 0z−10,

E =1.7895 + 0.6620z−1 + 0.5766z−2 + 0.4603z−3+

0.3761z−4 + 0.2693z−5 + 0.1872z−6+

0.0886z−7 + 0.0091z−8,

ts =9,
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and ISEmin = 4.4419. With this θ, the controller can be formulated and then the

simulation results for U and E are displayed in Figure 7.3. It verifies that the hard

constraint requirements are met.
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time

(b) Error E

Figure 7.3. Minimum ISE deadbeat control for Example 2 with hard constraints
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7.5 Conclusion

In this chapter, a polynomial approach is presented to solve deadbeat tracking con-

trol with hard input constraints. The difficulty of infinite inequality constraints is

handled by employing the modified hard constraints. This modification could meet

the original constraints with arbitrary accuracy, while only finite linear equality

constraints are need. Efficient quadratic optimizations are employed to calculate

the controller with ISE minimized. Numerical examples are provided to illustrate

the effectiveness of the design. This approach can be easily extended to the prob-

lems of deadbeat disturbance rejection or deadbeat servo control by adopting a

two-degree-of-freedom scheme.



Chapter 8

Conclusions

8.1 Main Findings

In this thesis, several new results are obtained around control system design for

better performance and robustness. Briefly, the results are summarized as follows:

A. PID Controller Analysis and Design

In this thesis, the PID stabilization and design issues are covered. For the first

topic, the stabilization of five typical time delay processes is investigated. For each

case, the maximum stabilizable time delay for different controllers is derived, and

the computational method is also given to determine the stabilization gain. The

analysis provides theoretical understanding of such stabilization problem. Based

on the study, when only stabilization of these processes is needed, P or PD con-

troller is sufficient. On the other hand, the results also yield practical guidelines

for actual controller design. When the time delay is within the stabilizing range,

the stabilizing PID parameters can be easily determined to stabilize the plant. For

the second topic, an iterative LMI algorithm is presented to solve the regional pole

placement problem by PID controllers, static output feedback or reduced order

feedback controllers. By formulating the requirements on regional pole clustering

with LMI regions, the problem is described as a bilinear matrix inequality problem.

Then it is reduced to an equivalent quadratic matrix inequality problem and solved

using an iterative algorithm. This approach is usefully especially when exact pole
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placement or dominant pole placement is not achievable. Compared with the exist-

ing methods on the regional pole placement, ours imposes no specific requirement

on either system structure or system order. This approach can be extended to

multivariable process design.

B. Smith Controller Design and Disturbance Rejection

In this thesis, two Smith predictor designs are presented for stable time delay

process and unstable one respectively, both of which pay special attention to dis-

turbance rejection, and a Smith like scheme is also proposed to control system with

RHP zeros. A two-degree-of-freedom Smith control scheme is investigated for im-

proved disturbance rejection of minimum-phase delay processes. The novel tuning

rule for the additional degree-of-freedom enables convenient design of disturbance

controller with superior disturbance rejection, as well as easy trade-off between

system robustness and performance. For unstable time delay processes, a double

two-degree-of-freedom control scheme is proposed to enhance the performance. The

four controllers involved are well placed to separately tune the denominators and

numerators of closed-loop transfer functions from the set-point and disturbance.

For disturbance response, the one more degree-of-freedom is tuned to minimize the

integral squared error. Two options are provided to meet practical situations for

the trade-off between control performance and control action limits. It is shown

by examples that both two schemes lead to significant improvement of disturbance

response.

For systems with RHP zeros, a Smith-like scheme is presented for easy tuning

and improved performance. The relationships between the time domain specifica-

tions and the tuning parameter are developed to meet the design requirements on

performance and robustness. Compared with the conventional single-loop design,

the proposed scheme provides robust, improved, and predictable performance than

the popular PI control.

C. Deadbeat Controller Design with Hard Constraints

In the thesis, a polynomial approach is employed to solve the deadbeat track-
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ing problem with hard input constraints. The deadbeat requirement and hard

constraints combine to yield finite linear inequalities constraints. The design could

be efficiently solved with quadratic programming optimizations. The deadbeat

nature of the error enables easy incorporation of various time-domain optimiza-

tion objectives, such as ISE, ITSE, etc. This approach can also be extended to

the problems of deadbeat disturbance rejection, or even servo control designs by

adopting a two-degree-of-freedom scheme.

8.2 Suggestions for Further Work

The thesis has taken the full route from initial ideas, via theoretical developments,

to methodologies that can be applied to relevant practical problems. Several new

results have been obtained but some topics remain open and are recommended for

further work.

A. Multi-variable PID Controller Synthesis and Design

In the thesis, PID stabilizability synthesis is provided for low-order single vari-

able processes. In practice, many processes are multivariable, however, the stability

analysis for multivariable PID design remains open. Either the Hermite-Biehler

theorem based results (Silva et al., 2004), or the polynomial approach based anal-

ysis (Hwang and Hwang, 2004), or the Nyquist stability based analysis presented

in the thesis, have substantial difficulty when multivariable systems are concerned.

More effective design design specifications, stability margins, and robustness mea-

sure of Multi-variable PID control systems are desirable, and they may lead to a

large branch of tuning rules similar to the single variable case. Also, a regional

pole placement PID design is presented in the thesis, which converts the problem

into a equivalent static output feedback problem and solved via LMI. In general, a

multivariable PID control system can be converted to an equivalent static output

feedback system for which powerful results can be adopted and various PID con-

trol problems then solved via LMI, which may form a unifying framework to ease

analysis and design of multivariable PID control systems.
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B. Multi-variable Smith Predictor Design

Two modified Smith predictor design have been proposed for stable and unsta-

ble single variable time delay processes, respectively. Different measures are taken

to improve the disturbance rejection. For multi-variable processes, the proposed

approaches may encounter problems because of the coupling and different time de-

lay of each element in the processes. One possible method is to develop decoupling

controller to make the system decoupled, and then, the schemes presented for sin-

gle variable processes can be applied for the decoupled loop. Robust issues should

be pay special attention in the design, since decoupling is usually sensitive to the

process model used. It is desirable to design robust decoupling Smith predictor

such that the interaction of the resultant system is kept within a certain tolerance

for the whole family of the uncertain processes.
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