1,048 research outputs found

    The Application of Model Predictive Control on Paralleled Converters for Zero Sequence Current Suppression and Active Thermal Management

    Get PDF
    In the field of power electronics, the control of rectifiers is a crucial area of study. Rectifiers are used to convert AC power into DC power, and are commonly used in a wide range of applications, including renewable energy systems, industrial automation, and consumer electronics. However, in medium and high-power systems when multiple rectifiers are connected in parallel to a DC bus, stability issues can arise, including voltage fluctuations, zero sequence circulating current, and thermal imbalance. Achieving stable DC bus voltage is essential for maintaining the proper functioning of electronic devices, while suppressing zero sequence current is necessary for protecting the power electronics equipment from damage and ensuring that a power system\u27s performance is not degraded. Active thermal management is important for ensuring the longevity and reliability of the power electronics equipment. To achieve these objectives, advanced control techniques must be developed and implemented. This research investigates the use model predictive control to achieve three objectives in two paralleled rectifier each control cycle: DC voltage stability, zero sequence suppression, and thermal balance. These objectives are critical for ensuring the reliable and efficient operation of power electronics systems. The findings of this research will contribute to the development of more reliable and efficient power electronics systems, with the Navy\u27s (power electronic building block) PEBB systems particularly in mind. However, this research can be extended to other medium and high-powered applications in modern technology too such as missile defense systems, data centers, and uninterruptible power supplies

    A New MMC Topology Which Decreases the Sub Module Voltage Fluctuations at Lower Switching Frequencies and Improves Converter Efficiency

    Get PDF
    Modular Multi-level inverters (MMCs) are becoming more common because of their suitability for applications in smart grids and multi-terminal HVDC transmission networks. The comparative study between the two classic topologies of MMC (AC side cascaded and DC side cascaded topologies) indicates some disadvantages which can affect their performance. The sub module voltage ripple and switching losses are one of the main issues and the reason for the appearance of the circulating current is sub module capacitor voltage ripple. Hence, the sub module capacitor needs to be large enough to constrain the voltage ripple when operating at lower switching frequencies. However, this is prohibitively uneconomical for the high voltage applications. There is always a trade off in MMC design between the switching frequency and sub module voltage ripple

    AC Grid Emulations for Advanced Testing of Grid-Connected Converters - An Overview

    Get PDF

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Study and evaluation of distributed power electronic converters in photovoltaic generation applications

    Get PDF
    This research project has proposed a new modulation technique called “Local Carrier Pulse Width Modulation” (LC-PWM) for MMCs with different cell voltages, taking into account the measured cell voltages to generate switching sequences with more accurate timing. It also adapts the modulator sampling period to improve the transitions from level to level, an important issue to reduce noise at the internal circulating currents. As a result, the new modulation LC-PWM technique reduces the output distortion in a wider range of voltage situations. Furthermore, it effectively eliminates unnecessary AC components of circulating currents, resulting in lower power losses and higher MMC efficiency.Departamento de Tecnología ElectrónicaDoctorado en Ingeniería Industria

    Active current sharing control schemes for parallel connected AC/DC/AC converters

    Get PDF
    PhD ThesisThe parallel operation of voltage fed converters can be used in many applications, such as aircraft, aerospace, and wind turbines, to increase the current handling capability, system efficiency, flexibility, and reliability through providing redundancy. Also, the maintenance of low power parallel connected units is lower than one high power unit. Significant performance improvement can be attained with parallel converters employing interleaving techniques where small passive components can be used due to harmonic cancellation. In spite of the advantages offered by parallel connected converters, the circulating current problem is still a major concern. The term circulating current describes the uneven current sharing between the units. This circulating current leads to: current distortion, unbalanced operation, which possibly damages the converters, and a reduction in overall system performance. Therefore, current sharing control methods become necessary to limit the circulating current in a parallel connected converter system. The work in this thesis proposes four active current sharing control schemes for two equally rated, directly paralleled, AC/DC/AC converters. The first scheme is referred to as a “time sharing approach,” and it divides the operation time between the converters. Accordingly, in the scheme inter-module reactors become unnecessary, as these are normally employed at the output of each converter. However, this approach can only be used with a limited number of parallel connected units. To avoid this limitation, three other current sharing control schemes are proposed. Moreover, these three schemes can be adopted with any pulse width modulation (PWM) strategy and can be easily extended to three or more parallel connected units since they employ a modular architecture. The proposed current sharing control methods are employed in two applications: a current controller for three-phase RL load and an open loop V/f speed control for a three-phase induction motor. The performance of the proposed methods is verified in both transient and steady state conditions using numerical simulation and experimental testingMinistry of Higher Education and Scientific Research of Iraq

    Advanced and robust control of grid connected converters

    Get PDF
    corecore