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𝑉𝑐𝑎𝑝(𝑡) Instantaneous mean capacitor voltage V 

𝑉𝐷𝑆 MOSFET drain-source voltage V 

𝑋𝑇 Transformer leakage reactance Ω 

𝑥∗ Reference − 

𝑥 Mean − 

𝑥̃ Error − 

𝑍𝐿 Load impedance Ω 

𝑍𝑁 AC network impedance Ω 

𝛿𝐴𝑇𝐵 Tolerance band for average tolerance band capacitor balancing 

method 

V 

𝜃𝑎𝑏𝑐 Phase angle, per phase rad 
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Renewable sources of electricity generation currently provide 47 % of the UK’s total 

installed capacity. Offshore wind accounts for 13 % of the total and is set to increase 

significantly over the next decade, driven by the UK Government’s target to reach net zero 

by the year 2050. An increasing number of offshore wind farms will use voltage source 

converter (VSC) high voltage direct current (HVDC) transmission schemes to transfer 

power to the onshore electricity grid. VSC-HVDC transmission is also being used to 

support the integration of renewables into future electricity grids. Given the rapid rollout of 

VSC-HVDC links, a thorough understanding of the technology is required.  

At present, much of the research into VSC-HVDC in the public domain fails to capture the 

complexities of real-world control hardware, leading to inaccuracies in simulation models. 

Limited research has been carried out into the effect of controller implementation in 

software upon real-world processing delays in modular multilevel converters (MMC). The 

research presented in this thesis addresses these shortcomings by providing a detailed 

analysis of the delays in the capacitor balancing control (CBC) loop of an MMC. 

Several sorting algorithms for use in the CBC loop have been implemented across a range 

of industrially representative control hardware and software platforms. The processing 

resource usage and execution delay have been measured to guide the algorithm selection 

process. A link between execution delay, choice of CBC method, and controller 

performance has been identified and is discussed. A simple method for incorporating this 

execution delay into a PSCAD/EMTDC simulation is then presented as a means of 

improving simulation model fidelity. A full suite of control software has been developed 

for a reduced-scale converter hardware prototype (CHP) MMC for future research into 

control loop delay and synchronisation. The implementation techniques developed are 

applicable to MMCs with a distributed control architecture in academia and industry.
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1 Introduction 

1.1 Background 

On 26th June 2019, the UK Government committed to a legally binding target to achieve 

net zero greenhouse gas emissions by 2050 [1]. An important part of the strategy to reach 

this target is increasing the proportion of renewable electricity generation in the UK’s 

generation mix. Offshore wind will form a major contribution, with the UK Government 

setting a target of 40 GW of active generation by the year 2030, an increase from the 

previous target of 30 GW [2].  

These targets are borne out in the allocation of 8 GW and 25 GW of generation capacity in 

the most recent leasing rounds of The Crown Estate and Crown Estate Scotland 

respectively [3, 4], increasing the total generating capacity of planned UK offshore wind 

projects to 86 GW as of March 2022 [5]. Going forwards, it is clear that offshore wind will 

play an increasingly important role in the generation of clean energy for the United 

Kingdom. 

Worldwide, the picture is similar, with new installed offshore wind capacity showing a 

compound annual growth rate (CAGR) of 22 % in the decade up to the year 2020, and a 

forecast CAGR of nearly 30 % until the year 2025 [6]. At present, the growth in capacity is 

being led by China, the Netherlands, and Germany, however other countries are expected 

to play an increasing role in the next decade, as governments around the world raise their 

renewable energy ambitions [6]. 

1.1.1 Offshore Wind Farm Grid Connections 

A key decision in the design of an offshore wind farm is the connection type used to 

transmit generated electricity to the onshore alternating current (AC) grid for distribution. 

This connection can be made using either high voltage alternating current (HVAC) or high 

voltage direct current (HVDC) along a subsea cable to shore. HVAC is a mature and well-

understood technology, and as a result is often simpler and cheaper to implement than an 

equivalent HVDC scheme. HVDC transmission is more efficient for bulk power transfer, 

however can be significantly more expensive and complex to implement [7]. 
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An important factor when choosing the connection type is the distance of the wind farm 

from the shore. Where HVAC is used to transfer power over a subsea cable, a large 

proportion of the cable’s current carrying capacity is used to charge and discharge the 

cable capacitance every cycle. This reduces the amount of active and reactive power which 

can be transferred over the link, reducing its efficiency, and may require additional reactive 

power compensation, which increases costs [7]. Conversely, in a HVDC transmission 

system, once the cable capacitance is charged, almost the full current carrying capacity of 

the cable can be used for active power transfer.  

Additional considerations include the subsea cable cost per kilometre, which is slightly 

higher for HVAC transmission, and the cost of the terminal substations, which are higher 

for HVDC transmission. As a result, a break-even point exists, based upon total system 

cost and transmission distance. For subsea transmission links such as those used for 

offshore wind farms, the break-even distance is typically in the range of 50-100 km, above 

which HVDC becomes more favourable [8]. This relationship is shown in Figure 1.1. The 

equivalent distance for HVDC using overhead lines is typically 300-800 km [8].  

Cost

Distance

AC 

Terminal 

Cost

DC 

Terminal 

Cost

Break-even 

Distance

 

Figure 1.1: Subsea HVAC vs. HVDC transmission scheme break-even distance 

In the UK, a number of consented Round 3 offshore wind farm developments will use 

HVDC for power transfer to shore, operating at distances between 75-215 km from 

shore [9]. Looking ahead to future projects, the six preferred sites selected by The Crown 

Estate in the Round 4 leasing process are at distances ranging from approximately 

40-120 km from shore [10]. In the recent ScotWind leasing process, Crown Estate 

Scotland selected 17 projects with distances ranging from 5-80 km [11, 12]. At the time of 

writing, these projects are in early-stage planning and the transmission scheme (HVAC or 

HVDC) has not been decided.  
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There is a clear trajectory towards increasing the number of HVDC-connected offshore 

wind farms. In July 2020, the UK Government launched the Offshore Transmission 

Network Review (OTNR) [13], which aims to address the barriers to increasing offshore 

wind capacity. Central to this is the development of a strategy to coordinate the connection 

of offshore wind farms to the onshore grid. This may require the sharing of transmission 

assets by wind farm operators and construction of multi-purpose interconnectors (MPI) to 

connect neighbouring wind farms and countries using long-distance subsea cables. These 

requirements can be met by HVDC transmission links.  

1.1.2 Renewable Electricity Generation Integration Challenges 

Increasing the percentage of renewables in the generation mix, including other sources 

such as solar photo-voltaic (PV), hydroelectric, and tidal, brings with it additional 

challenges. Chief among these is maximising the utilisation of renewable generation when 

it is available, thereby avoiding costly curtailment fees and reducing overall dependence 

upon non-renewable sources of generation. The average curtailed GB wind generation 

across 2020-2021 was 2.9 TWh; enough energy to power 800,000 households [14]. In 

2020, wind generation curtailment cost National Grid Electricity System Operator (ESO) 

£282 million in payments to wind farm operators, representing an additional cost of around 

£10 to each household [15].  

Insufficient capacity on the existing transmission network has been identified as a primary 

cause of curtailment [14, 15]. During periods of high wind generation in the UK, a large 

amount of power is exported from generation sites in Scotland to demand centres in 

England, putting strain upon the existing transmission network. Without the installation of 

additional transmission capacity, the need to curtail generation will only be exacerbated by 

the planned connection of a further 30 GW of offshore wind generation by 2030.  

Maximising the utilisation of renewable generation is dependent upon the ability to transfer 

large amounts of power from generation sites to demand centres. Within a country, these 

are often far apart and reinforcement of the grid using overhead AC transmission lines may 

be undesirable due to visual impact or planning concerns. In addition, interconnections 

between countries allow exporting of power during periods of excess renewable generation 

and vice-versa during times of low generation.  
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HVDC transmission links can satisfy both requirements and are a key enabler in the 

integration of renewable generation into the future electricity grid. Within a synchronous 

AC grid, subsea HVDC interconnectors can be used to strengthen the existing grid and 

increase power transfer capacity. Where interconnection of two asynchronous AC grids is 

required, HVDC transmission allows efficient, bi-directional bulk power transfer whilst 

maintaining a degree of isolation between the interconnected grids. 

1.1.3 Voltage Source Converter HVDC 

Two main types of converter technology are available commercially for HVDC 

transmission systems: current source converter (CSC) and voltage source converter (VSC). 

VSC-HVDC is better suited than CSC-HVDC for offshore wind farm grid connections and 

subsea interconnectors for several reasons. These include independent control of active and 

reactive power, and the ability to change power flow direction by reversing the direction of 

current flow, rather than the voltage polarity on the HVDC link [7]. This allows for easier 

integration into multi-terminal HVDC (MT-HVDC) schemes. Furthermore, VSC-HVDC 

can operate with a weak or inactive AC grid at one end of the transmission link, a critical 

requirement for offshore wind farm grid connections.  

The first commercial VSC-HVDC scheme was the 3 MW Hellsjön-Grängesberg HVDC 

test system in Sweden, which was brought online in 1997 and used a two-level VSC [16]. 

All VSC-HVDC schemes used two- or three-level VSCs until 2010, when the modular 

multilevel converter (MMC) topology was used for the first time by Siemens on the Trans 

Bay Cable project in the United States [17]. MMC-based VSCs offer several advantages 

when compared to two- and three-level VSCs, including lower converter losses and a 

reduction in AC side harmonic content. The reduction in harmonic content reduces or 

eliminates the need for output filtering, leading to lower costs and a smaller converter 

footprint, which is desirable for VSCs installed on offshore platforms [18]. VSC-HVDC is 

currently employed in at least 51 HVDC schemes around the world, with approximately a 

further 60 projects scheduled to reach operational status in the next decade [19].  
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The internal operation of the MMC is more complex than previous two- and three-level 

VSCs and at present, much of the detailed understanding of the internal converter control 

is held by the manufacturers, who are unwilling to share for commercial reasons. In recent 

years, there has been a growing interest in more-open converter models, driven in part by 

electricity transmission system operators (TSO) who require accurate models which can be 

maintained for the lifetime of the converter to enable system studies to be carried out [20-

22]. Despite this, more work is required to develop a better public domain understanding of 

the internal converter dynamics and implications of different control implementations.  

Much of the public domain research and development fails to account for complexities in 

the underlying control hardware of the MMC. In particular, the processing delay 

introduced by the capacitor balancing control (CBC) loop in the MMC has been the subject 

of limited research in the public domain [23]. Failure to account for these delays can lead 

to unexpected consequences such as instability in control loops, premature aging of system 

components, or catastrophic component failure [24]. With the rapid roll-out of MMC-

based HVDC links across the UK and globally, a better understanding of CBC loop 

dynamics in the presence of time delays is required, to identify and resolve sources of 

delay which could affect converter reliability. Furthermore, a more robust method to 

analyse the performance of the CBC loop in the presence of delays is required, so that 

effective comparisons can be made between different CBC methods. 

The MMC topology has been chosen to investigate these issues since it has been the focus 

of much research and development in academia and industry over the last 15 years and is 

the dominant multilevel converter topology employed in industry at present. Furthermore, 

selecting the MMC topology for study allows use of a reduced-scale MMC converter 

hardware prototype (CHP) available in the department [25] for investigations on 

industrially-representative control hardware.  

This research will focus on the internal control delays present in an MMC. In particular, 

the CBC loop will be studied and the implications of different control algorithm 

programming and implementation methods upon control delays will be investigated. The 

analysis techniques developed can be used to evaluate the performance of different CBC 

methods, with future extension to other time-critical control loops. The findings of this 

research can be used to inform the control algorithm implementation process for MMCs 

and improve the fidelity of electromagnetic transient (EMT) simulation models of MMCs. 
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1.2 Aims and Objectives 

The aim of this thesis is to provide a detailed insight into internal control delays and 

controller implementation techniques for an MMC, to guide hardware and software 

development and improve simulation model fidelity. To achieve this broad aim, the 

following objectives have been identified: 

1. Review and categorise CBC methods for an MMC and identify constraints on CBC 

loop execution delay. 

2. Measure and compare the resource usage of a selection of sorting algorithms for 

CBC implemented on a range of industrially representative control hardware. 

3. Measure and compare the execution delay of a selection of sorting algorithms for 

CBC implemented on a range of industrially representative control hardware.  

4. Develop and validate a new suite of control software for the reduced-scale CHP 

which is suitable for investigating control loop delay and synchronisation. 

1.3 Main Contributions 

Thesis 

The work contained in this thesis has made a number of contributions, predominantly in 

the area of MMC internal control delay measurement and modelling. The main 

contributions detailed in this thesis and associated conference [C] and journal [J] 

publications are summarised below: 

• A thorough review of capacitor balancing control methods was carried out. The 

terminology around CBC methods has been clarified and a taxonomy of CBC 

methods has been developed as a basis for this work. This terminology and 

taxonomy developed for this work is also applicable more widely and is able to 

resolve some of the confusion around the literature on CBC. 

• A range of sorting algorithms were implemented across three industrially 

representative control hardware platforms and three programming methods. The 

resource usage of each algorithm was measured and compared, providing a guide to 

sorting algorithm selection to meet control hardware resource constraints [J1, P1]. 

• The execution delay of the sorting algorithms was measured using representative 

capacitor voltage data as an input to the sorting algorithm. The results from this 

work can be used to guide sorting algorithm selection for time-constrained control 

loops [C1, P1] and to improve the fidelity of simulation models. 
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• A methodology to analyse the performance of the CBC loop in the presence of non-

zero processing delays has been developed. The methodology has been applied to 

several simulation scenarios and has shown that delays above a certain time period 

degrade the performance of the CBC loop. The analysis method can also be applied 

to other control loops to evaluate their performance when processing or 

communication delays are present. 

• A ground-up rewrite of the control software running on the reduced-scale MMC 

CHP was carried. The new control software resolves several issues with the 

previous control software, reduces processing resource usage, and allows 

configuration and measurement of internal control delays. The control 

implementation described in this thesis can be used to inform control software 

development for other prototype MMCs in academia and industry [J1]. 

Conference Papers [C] 

1. J. Andrews, P. R. Green, M. Barnes, “A PSCAD Processor-in-the-loop System for 

Hardware Evaluation of Power Converter Control Algorithms”, presented at the 

10th IET International Conference on Power Electronics, Machines and Drives 

(PEMD), Online, Dec. 15-17, 2020, doi: 10.1049/icp.2021.1060. 

Journal Papers [J] 

1. T. Heath, M. Barnes, P. D. Judge, G. Chaffey, P. Clemow, T. C. Green, P. R. 

Green, J. Wylie, G. Konstantinou, S. Ceballos, J. Pou, M. M. Belhaouane, H. 

Zhang, X. Guillaud, J. Andrews, “Cascaded-and Modular-Multilevel Converter 

Laboratory Test System Options: A Review”, IEEE Access, Vol. 9. pp. 44718-

44737, Mar. 2021, doi: 10.1109/ACCESS.2021.3066261. 

Additional 

• Co-editor of the monthly “VSC-HVDC Newsletter” alongside M. Barnes. The 

newsletter focusses upon all aspects of VSC-HVDC technology including projects 

and novel technologies. 

• Developed a public outreach demonstrator for the Holistic Operation and 

Maintenance for Energy from Offshore Wind Farms (HOME Offshore) project 

(Engineering and Physical Sciences Research Council grant EP/P009743/1). 

• Developed a wireless underwater optical communication system for the 

Autonomous Aquatic Inspection and Intervention (A2I2) project (Innovate UK 

project number 104822). 

https://doi.org/10.1049/icp.2021.1060
https://doi.org/10.1109/ACCESS.2021.3066261
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Papers in Progress [P] 

1. J. Andrews, T. Heath, P. R. Green, M. Barnes, “A Review and Performance 

Evaluation of Sorting Algorithms for Capacitor Balancing Control in Modular 

Multilevel Converters”, Journal 

1.4 Thesis Structure 

Chapter 2 – MMC Structure and Control 

This chapter introduces the MMC topology as a foundation for the rest of the thesis. The 

circuit structure of a typical three-phase MMC employing half-bridge submodules is 

presented and analysed, followed by an explanation of the submodule capacitor voltage 

dynamics which will be recalled later in the thesis. An overview of the control structure of 

an industrial-scale HVDC MMC is then provided, focussing upon internal converter 

control loops.  

Chapter 3 – Capacitor Balancing Control 

A comprehensive review of capacitor balancing control methods is presented in this 

chapter. The terminology used to discuss the components of the CBC loop is defined, both 

as a basis for subsequent chapters and to clarify the often-confusing terminology used in 

the literature on CBC. A taxonomy of CBC methods is then developed based upon CBC 

loop sampling rate and sorting algorithm requirements. The results from the literature 

review have been used to guide selection of the CBC methods and sorting algorithms for 

study in Chapter 6. 

Chapter 4 – Sorting Algorithms 

This chapter provides an overview of sorting algorithms, their comparison metrics, and 

classification to ensure that the reader is sufficiently familiar with these for the discussion 

presented in Chapter 6. The comparison metrics are linked to the CBC loop execution 

delay and control hardware resource usage requirements. 
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Chapter 5 – Simulation Model Overview 

In this chapter, the simulation model used to generate the synthetic capacitor voltage 

measurement data for the work in Chapter 6 is introduced and explained. The model used 

is an open-access PSCAD/EMTDC model developed by The National HVDC Centre and 

the University of Strathclyde [22]. The circuit structure of the model is introduced first, 

followed by the control structure and additional controllers which were not described in the 

MMC overview in Chapter 2. The operation of the custom PSCAD/EMTDC capacitor 

balancing control component developed for this work is also explained. 

Chapter 6 – Sorting Algorithms for Capacitor Balancing Control 

The results from the research into sorting algorithm execution delay and resource usage are 

presented in this chapter. The motivations for focussing upon the CBC loop are outlined 

first, followed by a description of the control hardware targets and programming languages 

used to implement the sorting algorithms. The execution delay results for each hardware 

target and programming method are then plotted and discussed, with reference to sorting 

algorithm structure and capacitor voltage dynamics. Finally, the field-programmable gate 

array (FPGA) logic resource usage of a sub-set of the sorting algorithms is measured, and 

the results are explained, identifying trade-offs between ease of implementation and logic 

resource usage. 

Chapter 7 – Converter Hardware Prototype 

This chapter provides an overview of the reduced-scale converter hardware prototype 

which has been used for hardware development in this research, with reference to [25]. The 

converter ratings and hardware structure are introduced first, followed by a description of 

the hardware modifications carried out during this work. Finally, a detailed description of 

the CHP control architecture is provided, as a basis for understanding the development 

carried out in Chapter 8. 

Chapter 8 – Control Software Development 

In this chapter, the ground-up rewrite of the CHP control software is described in detail. 

The limitations of the existing control software are identified first, and from these, a list of 

design objectives for the new control software are derived. The internal architecture of the 

CHP control system hardware is then described, with a particular focus upon data transfer, 

communication delays, and synchronisation between system components. The control 

software developed for the CHP is then documented, with descriptions of each component 

and how these operate together to ensure that the design objectives were met.  
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The CHP and the practical development work described in Chapters 7 and 8 forms the 

basis of a hardware platform for further study of the sorting algorithm execution delay in 

Chapters 3 to 6.  

Chapter 9 – Conclusion and Future Work 

This chapter provides a summary of the work presented in this thesis, and the main 

outcomes of the research are discussed. Opportunities for future research avenues which 

follow on from this work are also outlined. 

Appendices and Supplementary Online Repository 

Additional technical material, supplementary plots, and some of the source code developed 

during this project are included as appendices in this thesis. Other source code which is 

unsuitable for print is available for download in a supplementary online repository hosted 

by Mendeley Data. This data is accessible following [26], replicated here for ease of 

access. 

[26] J. Andrews. Supplementary Online Repository for Computational and 

Communication Architectures for Modular Multilevel Converter Construction, Mendeley 

Data, 2022, doi: https://dx.doi.org/10.17632/fr2jrff9w3.1  

https://dx.doi.org/10.17632/fr2jrff9w3.1
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2 MMC Structure and Control 

This chapter provides an overview of the MMC topology as a foundation for subsequent 

chapters. The circuit structure of a three-phase HVDC MMC is presented, followed by a 

description of the half-bridge submodule (HB-SM) topology and the SM capacitor voltage 

dynamics. The circuit structure is then analysed and the control inputs to the voltage 

control loop of the converter are derived. A typical control structure representative of that 

used in a HVDC MMC is then introduced, with a focus on low-level converter control 

loops which are the subject of this research. 

2.1 Circuit Structure 

The circuit structure of a three-phase MMC is shown in Figure 2.1(a). Only one phase is 

shown for clarity; the other phases are identical. An MMC consists of three phase ‘legs’ 

connected in parallel across the DC link, which operates at a voltage, 𝑉𝑑𝑐. Each phase leg 

comprises an upper and lower ‘arm’ which contain a number of submodules (SM), 𝑁𝑆𝑀, 

connected in series with an arm inductor, 𝐿𝑎𝑟𝑚. The arm inductor serves to limit the 

circulating current component of the arm current and the fault current rise rate [27]. A 

parasitic arm resistance, 𝑅𝑎𝑟𝑚, is also shown in Figure 2.1(a); this represents the sum of 

the resistive losses in the SMs. The AC output voltage, 𝑉𝑎𝑐(𝑎𝑏𝑐), is taken from the mid-

point of the upper and lower arms of each phase. 

Each submodule contains two insulated-gate bipolar transistors (IGBT) and an energy 

storage capacitor and operates as a two-level converter; this is the half-bridge submodule 

topology and is shown in Figure 2.1(b). It is possible to use multiple IGBTs connected in 

series to increase the voltage across each SM; this is the cascaded two-level SM topology 

[28] and is not the subject of this explanation. Other SM topologies have been proposed in 

the literature and are implemented in industrial-scale MMCs [18, 29]; however, these are 

outside the scope of this work and will not be discussed here.  

In the case of the HB-SM topology, the voltage at the SM terminals, 𝑉𝑆𝑀, can be switched 

between 0 V and the voltage across the SM capacitor, 𝑉𝑐𝑎𝑝, by controlling the two 

switches, S1 and S2. When S1 is closed and S2 is open, neglecting semiconductor device 

voltage drops, 𝑉𝑆𝑀 is equal to 𝑉𝑐𝑎𝑝 and the SM is ‘inserted’. In this state, the SM capacitor, 

𝐶𝑆𝑀, will charge or discharge dependent upon the direction of the arm current, 𝐼𝑢,𝑙. 

Conversely, when S1 is open and S2 is closed, 𝑉𝑆𝑀 is equal to 0 V and the SM is 
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‘bypassed’. In this state, the SM capacitor voltage remains stable, neglecting self-

discharge. 
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Figure 2.1: Circuit diagram of (a) modular multilevel converter, and (b) a half-bridge 

submodule 

Two additional states exist. The ‘blocked’ state is formed when both switches are open and 

is typically only used during converter start-up to charge the SM capacitor via the 

freewheeling diode, D1. The state where both switches are closed is not permitted since 

this will short-circuit the SM capacitor and cause a large fault current to flow through S1 

and S2, which may damage the switches or other SM components. The switch state 

combinations for a HB-SM are summarised in Table 2.1. 
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Arm Current S1 S2 𝑽𝑺𝑴 𝑪𝑺𝑴 State Name 

𝐼𝑢,𝑙 > 0 

0 0 𝑉𝑐𝑎𝑝 Charge Blocked 

0 1 0 V Stable Bypassed 

1 0 𝑉𝑐𝑎𝑝 Charge Inserted 

𝐼𝑢,𝑙 < 0 

0 0 0 V Stable Blocked 

0 1 0 V Stable Bypassed 

1 0 𝑉𝑐𝑎𝑝 Discharge Inserted 

− 1 1 − 
Short-circuit 

discharge 
Not Permitted 

Table 2.1: Half-bridge submodule switch states 

By switching SMs in sequence, the string of SMs in each converter arm behaves as a 

controllable voltage source, with the smallest voltage step being equal to the SM capacitor 

voltage.  
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Figure 2.2: Modular multilevel converter equivalent circuit for a single phase 

With reference to the equivalent circuit diagram for a single phase shown in Figure 2.2, 

two relationships for 𝑉𝑎𝑐 can be derived by applying Kirchoff’s Voltage Law (KVL) 

around the upper and lower loops. These are shown in Equation 2.1 and Equation 2.2 for 

upper and lower loops, respectively. 

𝑉𝑎𝑐 =
𝑉𝑑𝑐

2
− 𝑉𝑢 − 𝑅𝑎𝑟𝑚𝐼𝑢 − 𝐿𝑎𝑟𝑚

𝑑𝐼𝑢
𝑑𝑡

 2.1 

𝑉𝑎𝑐 = −
𝑉𝑑𝑐

2
+ 𝑉𝑙 + 𝑅𝑎𝑟𝑚𝐼𝑙 − 𝐿𝑎𝑟𝑚

𝑑𝐼𝑙
𝑑𝑡

 2.2 
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The upper and lower arm currents, 𝐼𝑢,𝑙, are made up of three main components as shown in 

Equation 2.3 and Equation 2.4. The AC output current, 𝐼𝑎𝑐, is divided equally between 

upper and lower arms. The remaining two terms are common to both arms and comprise of  

DC bus current, 𝐼𝑑𝑐, shared across the three phases, and a double fundamental frequency 

circulating current, 𝐼𝑐𝑖𝑟𝑐, which is caused by the voltage imbalance between phases [30]. 

𝐼𝑢 =
𝐼𝑎𝑐

2
+

𝐼𝑑𝑐

3
+ 𝐼𝑐𝑖𝑟𝑐 2.3 

𝐼𝑙 = −
𝐼𝑎𝑐

2
+

𝐼𝑑𝑐

3
+ 𝐼𝑐𝑖𝑟𝑐 2.4 

Substituting Equations 2.3 and 2.4 into Equations 2.1 and 2.2 respectively, then summing 

the resulting equations allows the AC output voltage to be expressed in terms of the upper 

and lower arm voltages, 𝑉𝑢,𝑙, and the AC output current, as shown in Equation 2.5. 

𝑉𝑎𝑐 =
𝑉𝑙 − 𝑉𝑢

2
−

𝑅𝑎𝑟𝑚

2
𝐼𝑎𝑐 −

𝐿𝑎𝑟𝑚

2

𝑑𝐼𝑎𝑐

𝑑𝑡
 2.5 

A further quantity, the internal converter voltage, 𝑉𝑐, can be defined according to 

Equation 2.6 and is the voltage which drives the AC output current. Assuming a negligible 

voltage drop across the arm inductance and resistance, the internal converter voltage is 

approximately equal to the AC output voltage. The internal converter voltage is 

manipulated by the converter control loops to achieve the desired control objectives.  

𝑉𝑎𝑐 ≈ 𝑉𝑐 =
𝑉𝑙 − 𝑉𝑢

2
 2.6 

2.1.1 Selection of Nominal Submodule Capacitor Voltage 

The maximum AC output voltage is generated by bypassing all SMs in the upper arm and 

inserting all SMs in the lower arm. In this scenario, the AC output terminal is effectively 

directly connected to the positive pole of the DC bus (𝑉𝑢 = 0 V), and AC output voltage is 

equal to 𝑉𝑑𝑐 2⁄ , ignoring the voltage drop across the arm inductance and resistance. The 

required lower arm voltage is calculated according to Equation 2.7. 

𝑉𝑢 = 0, 𝑉𝑎𝑐−𝑚𝑎𝑥 =
𝑉𝑑𝑐

2
=

𝑉𝑙

2
 ⇒ 𝑉𝑙 = 𝑉𝑑𝑐 2.7 

The minimum AC output voltage is generated by the opposite operation: inserting all SMs 

in the upper arm and bypassing all SMs in the lower arm. In this scenario, the lower arm 

voltage is equal to 0 V and the required upper arm voltage is calculated according to 

Equation 2.8.  
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𝑉𝑙 = 0, 𝑉𝑎𝑐−𝑚𝑎𝑥 =
𝑉𝑑𝑐

2
=

𝑉𝑢

2
 ⇒ 𝑉𝑢 = 𝑉𝑑𝑐 2.8 

As can be seen from Equation 2.7 and Equation 2.8, the upper and lower arms must each 

be capable of generating a voltage equal to 𝑉𝑑𝑐. This is achieved by ensuring that the sum 

of the SM capacitor voltages in the upper and lower arms, 𝑉𝑐𝑎𝑝𝑢,𝑙
Σ , are each equal to 𝑉𝑑𝑐. As 

stated previously, the capacitors of inserted SMs are charged or discharged dependent upon 

the direction of the arm current, leading to a ripple on each SM capacitor voltage. The 

capacitor voltage ripples in an arm add up to produce a sum capacitor voltage ripple and as 

a result, only the long-term mean value of the sum SM capacitor voltage can equal 𝑉𝑑𝑐. 

Ignoring the sum capacitor voltage ripple, the ideal nominal SM capacitor voltage, 

𝑉𝑐𝑎𝑝−𝑛𝑜𝑚, can be calculated according to Equation 2.9.  

𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 = 𝑉𝑐𝑎𝑝 =
𝑉𝑐𝑎𝑝𝑢,𝑙

Σ

𝑁𝑆𝑀
=

𝑉𝑑𝑐

𝑁𝑆𝑀
 2.9 

Generation of Arm Voltages 

The voltage generated by an arm is equal to the number of inserted SMs in the arm (also 

known as the SM insertion index), 𝑁𝑜𝑛𝑢,𝑙, multiplied by the nominal SM capacitor voltage 

as shown in Equation 2.10. This forms the basis for controlling the arm voltage in an 

MMC. 

𝑉𝑢 = 𝑁𝑜𝑛𝑢 × 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚   𝑉𝑙 = 𝑁𝑜𝑛𝑙 × 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 2.10 

By appropriate control of the SM insertion index the output voltage magnitude and phase 

can be controlled independently. The number of output voltage levels, 𝑁𝑙𝑒𝑣𝑒𝑙, is equal to 

𝑁𝑆𝑀 + 1. 

Instantaneous Sum and Mean Submodule Capacitor Voltage 

As stated previously, each arm exhibits a sum capacitor voltage ripple, leading to a 

corresponding ripple in the mean capacitor voltage – that is, 𝑉𝑐𝑎𝑝𝑢,𝑙
Σ  and 𝑉𝑐𝑎𝑝 vary with 

time. In this work, the time-varying version of 𝑉𝑐𝑎𝑝𝑢,𝑙
Σ  and 𝑉𝑐𝑎𝑝  are named the 

instantaneous sum capacitor voltage and instantaneous mean capacitor voltage, 

respectively, and are denoted by the (𝑡) or [𝑘] suffix. 



Chapter 2 MMC Structure and Control 

39 

The instantaneous sum and mean capacitor voltages are introduced here since they are used 

by several capacitor balancing control (CBC) methods. Furthermore, the instantaneous 

versions of each variable can be used to quantify the effectiveness of CBC methods in 

ensuring that capacitor voltages remain balanced. These will be discussed further in 

Chapter 6. 

2.2 Control Structure 

Control of an MMC is typically achieved using several cascaded control loops. These 

control converter behaviour from power system-level dynamics such as active and reactive 

power transfer, down to low-level firing signals for the switches on individual submodules. 

The control objectives are dictated by the application scenario, for example, whether the 

converter is operating at the onshore or offshore end of an offshore wind farm HVDC link. 

A generalised representation of a cascaded control structure for an MMC is shown in 

Figure 2.3.  

Active power (𝑃), DC link voltage (𝑉𝑑𝑐), and the AC system fundamental frequency (𝑓0) 

can be controlled by varying the phase angle of the converter output voltage with respect to 

the connected AC network. Reactive power (𝑄), and the AC system voltage can be 

controlled by varying the magnitude of the converter output voltage. For a VSC-HVDC 

scheme connecting two active networks, one converter is configured to control the active 

power transfer or frequency, whilst the second converter controls the DC link voltage. 

Where a VSC-HVDC scheme is used to connect an offshore wind farm to an active 

network, the offshore converter controls the voltage and frequency of the offshore AC 

network, whilst the onshore converter controls the reactive power transfer and DC link 

voltage [31].  
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Figure 2.3: MMC cascaded control system overview 

Since the power system-level quantities (𝑃, 𝑄, 𝑉𝑎𝑐, 𝑉𝑑𝑐, 𝑓0) can be controlled by modifying 

the magnitude and phase angle of the converter output voltage, the voltage references from 

the high-level control loop can be fed directly to the low-level control loop (shown in 

yellow). This is termed direct control (not shown in Figure 2.3).  
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Alternatively, indirect (vector-based) control may be used, as shown in Figure 2.3. In this 

arrangement, a current control loop operating in the vector (𝑑𝑞) domain is inserted 

between the high- and low-level control loops. Vector output current control is described in 

this analysis since it is used in the MMC model used in this work and has several 

advantages when compared to direct control. These include inherent limiting of the current 

through the SMs and a faster response than direct control [18, 31].  

The output of the vector output current controller is a 𝑑𝑞 domain voltage reference which 

is fed to the low-level control loop. Here, the voltage references are translated back into 

three-phase references and summed with voltage references from other controllers which 

control the internal dynamics of the MMC. The output of the low-level control is a set of 

firing signals which are applied to the SMs to generate the desired converter output 

voltage.  

2.2.1 𝒅𝒒 Current Control 

Considering the simplified view of the connection of phase A to the AC network as shown 

in Figure 2.4, 𝑉𝑐𝑎 is the internal converter voltage as described previously, 𝑉𝑁 is the 

network voltage, and 𝑍𝑁 is the network impedance. The voltage, 𝑉𝑠𝑎, is the AC system 

voltage at the point of common coupling (PCC) and 𝑍 is the combined impedance between 

the converter arms and the PCC. This includes the arm inductance and resistance and the 

inductance and resistance of the interfacing transformer, where used. 

Z

VN

LR

ZN

VsaVca

Iaca

 

Figure 2.4: MMC connection to AC system, one phase shown 

Applying KVL around the loop in Figure 2.4, the relationship between the internal 

converter voltage and AC system voltage is described by Equation 2.11. 

𝑉𝑐𝑎 − 𝑉𝑠𝑎 = 𝑅𝐼𝑎𝑐𝑎 + 𝐿
𝑑𝐼𝑎𝑐𝑎

𝑑𝑡
 2.11 
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Equation 2.11 can be reduced and represented in three-phase form as shown in 

Equation 2.12. 

[
𝑉𝑐𝑠𝑎

𝑉𝑐𝑠𝑏

𝑉𝑐𝑠𝑐

] = (𝑅 + 𝐿𝑝) [
𝐼𝑎𝑐𝑎

𝐼𝑎𝑐𝑏

𝐼𝑎𝑐𝑐

] 2.12 

where: 

𝑉𝑐𝑠(𝑎𝑏𝑐) = 𝑉𝑐(𝑎𝑏𝑐) − 𝑉𝑠(𝑎𝑏𝑐)   𝑝 =
𝑑

𝑑𝑡
   2.13 

Since vector current control is being used, Equation 2.12 must be translated from the three-

phase 𝑎𝑏𝑐 reference frame to the 𝑑𝑞 domain. This is achieved using the Clarke-Park 

transformation. Equation 2.12 is first transformed into the 𝛼𝛽0 domain by applying the 

power-invariant Clarke transformation shown in Equation 2.14 to the three-phase voltages 

and currents, resulting in Equation 2.15. 

[
𝛼
𝛽
0
] = √

2

3

[
 
 
 
 
 
 1 −

1

2
−

1

2

0
√3

2
−

√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 
 
 

[
𝑎
𝑏
𝑐
] 2.14 

[

𝑉𝛼

𝑉𝛽

𝑉0

] = (𝑅 + 𝐿𝑝) [

𝐼𝛼
𝐼𝛽
𝐼0

] 2.15 

Assuming a balanced three-phase system, the 𝛼𝛽0 representation in Equation 2.15 can then 

be transformed again into the 𝑑𝑞 reference frame using the Park transformation in 

Equation 2.16.  

[
𝑑
𝑞
] = [

sin⁡(𝜃) −cos⁡(𝜃)
cos⁡(𝜃) sin⁡(𝜃)

] [
𝛼
𝛽] 2.16 

Equation 2.12 can then be expressed in the 𝑑𝑞 reference frame according to Equation 2.17.  

[
𝑉𝑑

𝑉𝑞
] = 𝑅 [

𝐼𝑑
𝐼𝑞

] + 𝐿𝑝 [
𝐼𝑑
𝐼𝑞

] + 𝜔𝐿 [
0 −1
1 0

] [
𝐼𝑑
𝐼𝑞

] 2.17 
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Noting that 𝑉𝑑 = 𝑉𝑐𝑑 − 𝑉𝑠𝑑 and 𝑉𝑞 = 𝑉𝑐𝑞 − 𝑉𝑠𝑞, Equation 2.17 can be expanded to produce 

the two relationships shown in Equations 2.18 and 2.19. 

𝑉𝑐𝑑 − 𝑉𝑠𝑑 = 𝑅𝐼𝑑 + 𝐿𝑝𝐼𝑑 − ⁡𝜔𝐿𝐼𝑞 2.18 

𝑉𝑐𝑞 − 𝑉𝑠𝑞 = 𝑅𝐼𝑞 + 𝐿𝑝𝐼𝑞 + 𝜔𝐿𝐼𝑑 2.19 

The Laplace Transform (ℒ) with zero initial conditions can then be applied to 

Equations 2.18 and 2.19 to produce Equations 2.20 and 2.21. 

𝑉𝑐𝑑(𝑠) − 𝑉𝑠𝑑(𝑠) = 𝑅𝐼𝑑(𝑠) + 𝐿𝑠𝐼𝑑(𝑠) − ⁡𝜔𝐿𝐼𝑞(𝑠) 2.20 

𝑉𝑐𝑞(𝑠) − 𝑉𝑠𝑞(𝑠) = 𝑅𝐼𝑞(𝑠) + 𝐿𝑠𝐼𝑞(𝑠) + 𝜔𝐿𝐼𝑑(𝑠) 2.21 

Cross-coupling exists between the 𝑑 and 𝑞 components; the effects of this can be reduced 

using feedback nulling to de-couple the 𝑑 and 𝑞 components. Assuming that feedback 

nulling is used (which negates the 𝜔𝐿 terms), Equations 2.20 and 2.21 can be rearranged to 

express 𝐼𝑑 and 𝐼𝑞 in terms of the 𝑑- and 𝑞-axis voltages as shown in 

Equations 2.22 and 2.23. This forms the basis of the MMC current control loop. 

𝑉𝑐𝑑(𝑠) − 𝑉𝑠𝑑(𝑠)

𝐿𝑠 + 𝑅
= 𝐼𝑑 2.22 

𝑉𝑐𝑞(𝑠) − 𝑉𝑠𝑞(𝑠)

𝐿𝑠 + 𝑅
= 𝐼𝑞 2.23 

The MMC current control loop is shown in Figure 2.5. A proportional-integral (PI) 

feedback controller is used to control the 𝑑 and 𝑞 components of the output current 

independently. The 𝑑 and 𝑞 components of the AC system voltage (𝑉𝑠𝑑 and 𝑉𝑠𝑞) act as 

disturbances to the controller and can be nulled using feed-forward nulling [31] as shown 

in Figure 2.5. 
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Figure 2.5: State feedback system block diagrams for MMC 𝑑𝑞 current control loop 
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In Figure 2.5, the MMC is represented as a unity gain block. This is a valid approximation 

assuming that the voltage output of the MMC accurately follows the input reference and 

that the MMC voltage control loop has a significantly higher bandwidth than the current 

controller. In order to decouple the dynamics of the voltage control and current control 

loops, the bandwidth of the inner voltage control loop should be four to ten times greater 

than the outer (enclosing) current control loop [25].  

2.2.2 High-level (𝑷𝑸) Control 

The active and reactive power control loops are built around the current control loop 

according to Equations 2.24 and 2.25. The 𝑞-axis component of the AC system voltage 

(𝑉𝑠𝑞) is aligned with the MMC AC output voltage (𝑉𝑎𝑐(𝑎𝑏𝑐)) such that 𝑉𝑠𝑞 = 0, allowing 

Equations 2.24 and 2.25 to be simplified as shown on the right-hand side. As can be seen, 

the active and reactive power output can be controlled by adjusting the 𝑑- and 𝑞-axis 

current references respectively.  

𝑃 =
3

2
(𝑉𝑠𝑑𝐼𝑑 + 𝑉𝑠𝑞𝐼𝑞)  ⇒ 𝑃 =

3

2
𝑉𝑠𝑑𝐼𝑑 2.24 

𝑄 =
3

2
(𝑉𝑠𝑞𝐼𝑑 − 𝑉𝑠𝑑𝐼𝑞)  ⇒ 𝑄 =

3

2
𝑉𝑠𝑑𝐼𝑞 2.25 

2.2.3 Low-level Control 

The low-level control in an MMC is responsible for controlling the converter output 

voltage, in addition to internal converter dynamics specific to the MMC topology. The 

low-level control structure of an MMC is shown in Figure 2.6 and depicts the four main 

controllers: circulating current suppression control (CCSC), arm voltage control (AVC), 

nearest level control (NLC), and capacitor balancing control (CBC). An overview of each 

controller is provided in this section.  
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Figure 2.6: MMC low-level control structure 
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Circulating Current Suppression Control 

As stated previously, an imbalance between the voltages across the phases of the converter 

exists due to the difference in stored energy per arm. This causes a circulating current to 

flow within the converter arms, which increases electrical losses and may necessitate the 

use of SM components with a higher current rating [30, 32].  
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Figure 2.7: Equivalent circuit for a single phase of an MMC  

Figure 2.7 shows converter phase A connected across the DC bus. Applying KVL around 

the loop, the voltage across the phase is derived according to Equation 2.26, where 𝑝 is the 

first derivative function.  

𝑉𝑑𝑐 = 𝑉𝑢𝑎 + 𝐼𝑢𝑎(𝑅𝑎𝑟𝑚 + 𝐿𝑎𝑟𝑚𝑝) + 𝐼𝑙𝑎(𝑅𝑎𝑟𝑚 + 𝐿𝑎𝑟𝑚𝑝) + 𝑉𝑙𝑎 2.26 

The voltage drops across the arm inductor and resistor due to the AC output current 

component (𝐼𝑎𝑐𝑎) cancel each other out due to the current having opposing signs in each 

arm. The arm currents can therefore be replaced with the difference current, 𝐼𝑑𝑖𝑓𝑓, which is 

common to both arms and is shown in Equation 2.27. By substituting 𝐼𝑑𝑖𝑓𝑓, and 

rearranging, Equation 2.26 can be reduced to Equation 2.28. 

𝐼𝑑𝑖𝑓𝑓 =
𝐼𝑑𝑐

3
+ 𝐼𝑐𝑖𝑟𝑐 2.27 

𝑉𝑑𝑐 −
𝑉𝑢𝑎 + 𝑉𝑙𝑎

2
= 𝐼𝑑𝑖𝑓𝑓𝑎(𝑅𝑎𝑟𝑚 + 𝐿𝑎𝑟𝑚𝑝) = 𝑉𝑑𝑖𝑓𝑓𝑎 2.28 
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The right-hand side of Equation 2.28 is termed the difference voltage, 𝑉𝑑𝑖𝑓𝑓, and is the 

voltage drop across a single arm caused by the difference current. Assuming a small 

parasitic arm resistance, the voltage drop across the arm resistance is negligible. The main 

contribution to 𝑉𝑑𝑖𝑓𝑓 is from the voltage developed across the arm inductor due to the 

circulating current, which is a negative sequence current at double the fundamental 

frequency [32]. As a result, the circulating current can be suppressed by controlling the 

difference voltage to be equal to zero.  

The difference voltage can be controlled by manipulation of the upper and lower arm 

voltages as demonstrated previously in Equation 2.28. The right-hand side of 

Equation 2.28 can be expressed in matrix form for three phases as shown in Equation 2.29; 

this is the plant equation for the circulating current within an MMC.  

[

𝑉𝑑𝑖𝑓𝑓𝑎

𝑉𝑑𝑖𝑓𝑓𝑏

𝑉𝑑𝑖𝑓𝑓𝑐

] = (𝑅𝑎𝑟𝑚 + 𝐿𝑎𝑟𝑚𝑝) [

𝐼𝑑𝑖𝑓𝑓𝑎

𝐼𝑑𝑖𝑓𝑓𝑏

𝐼𝑑𝑖𝑓𝑓𝑐

] 2.29 

A range of methods to control the circulating current have been proposed in the literature. 

Since Equation 2.29 is of the same form as the output current plant equation in 

Equation 2.12, the authors in [25, 30, 31, 33] implement CCSC in the 𝑑𝑞 domain using a 

PI controller with the 𝑑- and 𝑞- axis current references set to zero. Alternatively, the three 

phase difference voltages can be controlled directly using a proportional (P) or 

proportional-resonant (PR) controller as described in [34] and [18]. The simulation model 

used in this work as described in Chapter 5 uses a PR controller to control the circulating 

current. Circulating current control is not the focus of this work and will not be discussed 

further here. 

Arm Voltage Control 

The arm voltage controller is responsible for combining the voltage references from the 

output current controller and CCSC to produce independent upper and lower arm voltage 

references. It satisfies the simultaneous equations for the MMC arm voltages as shown in 

Equation 2.30 and 2.31, derived from Equation 2.6 and 2.28 respectively. 

𝑉𝑙 − 𝑉𝑢 = 2𝑉𝑐 2.30 

𝑉𝑢 + 𝑉𝑙 = 𝑉𝑑𝑐 − 2𝑉𝑑𝑖𝑓𝑓 2.31 
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Solving Equations 2.30 and 2.31 for the upper and lower arm voltages produces two 

equations for the upper and lower arm voltage references as shown in 

Equations 2.32 and 2.33.  

𝑉𝑢
∗ =

𝑉𝑑𝑐

2
− 𝑉𝑐

∗ − 𝑉𝑑𝑖𝑓𝑓
∗  2.32 

𝑉𝑙
∗ =

𝑉𝑑𝑐

2
+ 𝑉𝑐

∗ − 𝑉𝑑𝑖𝑓𝑓
∗  2.33 

Nearest Level Control 

The upper and lower arm voltage references are then passed to the modulation algorithm, 

which translates the voltage commands into firing signals for individual SM switches. In 

this analysis, nearest level control modulation is described since it is the preferred 

modulation algorithm for industrial-scale HVDC MMCs with several hundred SMs per 

arm [18]. This is due to a simpler implementation when compared to pulse-width 

modulation (PWM) schemes, which require generation and distribution of 𝑁𝑆𝑀 PWM 

carriers per converter arm.  

The output of the NLC algorithm is a pair of upper and lower arm SM insertion indices, 

𝑁𝑜𝑛𝑢,𝑙, as introduced in Section 2.1.1. The SM insertion indices are calculated from the 

arm voltage references and the nominal capacitor voltage 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 according to 

Equation 2.34.  

𝑁𝑜𝑛𝑢 = round (
𝑉𝑢

∗

𝑉𝑐𝑎𝑝−𝑛𝑜𝑚
)  𝑁𝑜𝑛𝑙 = round (

𝑉𝑙
∗

𝑉𝑐𝑎𝑝−𝑛𝑜𝑚
) 2.34 

The round() operator returns the nearest integer to the result of the division operation. 

This is required since only integer numbers of SMs can be inserted to generate the required 

output voltage. Using the calculated value of 𝑁𝑜𝑛, the NLC loop then selects specific SMs 

to insert or bypass in conjunction with the capacitor balancing control loop.  

Capacitor Balancing Control 

When NLC modulation is used, the ability to meet the desired arm voltage reference is 

predicated on the SM capacitor voltages being balanced and maintained at the nominal 

capacitor voltage; this is evident from Equation 2.34. As explained in Section 2.1, SM 

capacitors charge or discharge dependent upon the SM state and the direction of the arm 

current, causing SM capacitor voltages to deviate from the nominal value. As a result, a 

secondary controller is required to ensure that SM capacitor voltages are maintained 

around the target value. 
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The capacitor balancing control loop ensures that SM capacitor voltages remain balanced 

by selecting specific SMs for insertion or bypassing by the NLC loop based upon the 

measured SM capacitor voltages. When triggered, the CBC loop measures the capacitor 

voltages of all SMs in an arm and places them into an unsorted array with a corresponding 

SM identifier (SMID). A sorting algorithm then sorts the SMID:𝑉𝑐𝑎𝑝 value pairs in 

ascending or descending order, according to the direction of the arm current.  

If the arm current is positive the capacitors of inserted SMs will charge, therefore the SMs 

with the lowest capacitor voltages should be prioritised for insertion. This is achieved by 

sorting the list in ascending order. Conversely, if the arm current is negative, the capacitors 

of inserted SMs will discharge, so the SMs with the highest capacitor voltages should be 

prioritised by sorting the list in descending order. The NLC loop then selects 𝑁𝑜𝑛 

submodule identifiers for insertion starting at the beginning of the sorted array.  

The capacitor balancing control loop is a key focus of this work and is described in more 

detail in subsequent chapters, therefore it will not be discussed further here. 

2.3 Summary 

This chapter has provided an overview of the theory of operation and control of a typical 

HVDC MMC as a foundation for the subsequent chapters in this thesis. The circuit 

structure was presented and the equations which govern the converter output voltage 

dynamics were derived. The control structure of the MMC was then described, with a 

focus upon cascaded control and the low-level control loops. The control structure and 

controller implementations described in this chapter are one common method of 

controlling MMC dynamics, however a wide range of methods have been proposed in the 

literature. A detailed review of MMC control methods can be found in [35]. 
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3 Capacitor Balancing Control 

The CBC loop (also referred to as voltage balancing control and SM energy balancing 

control) ensures that the SM capacitor voltages are maintained about a nominal set point 

and within the safe operating limits of the SM. A sorting algorithm is used in many CBC 

methods as part of the balancing process. 

This chapter provides a review of capacitor balancing control methods presented in the 

literature. The terminology surrounding CBC is defined and clarified first, as a basis for the 

literature review and later chapters. A selection of capacitor balancing control methods are 

then reviewed and two taxonomies are developed based upon the requirement for a sorting 

algorithm and the CBC method sampling period. The CBC methods discussed are then 

categorised according to this taxonomy and three methods are selected for further analysis 

in the work presented in Chapter 6. 

Capacitor balancing can be implemented either pre-modulation or post-modulation [36]. In 

the pre-modulation scheme, an additional term is added to the per-SM or per-arm voltage 

reference to balance the SM capacitor voltages. This is commonly referred to as closed-

loop capacitor balancing.  

In the post-modulation scheme, the modulation algorithm determines the number of SMs 

to insert, whilst the CBC loop determines the specific SMs which should be inserted, 

bypassed, or pulse-width modulated to maintain capacitor voltage balancing. This work 

focusses upon post-modulation CBC methods. 

Capacitor balancing may be implemented locally at the SM level, or at the arm level in a 

distributed control unit located ‘centrally’ in the main converter control cubicle. This work 

focusses upon CBC methods which operate at the arm level and assumes that the CBC 

loop has access to the capacitor voltage measurements of all SMs in an arm. 

3.1 Terminology 

The relationship between modulation algorithm, CBC method, sorting algorithm, and their 

inputs and outputs is shown in Figure 3.1. Much of the published literature on CBC 

methods and sorting algorithms uses these terms interchangeably or fails to make a 

distinction between the CBC method and the sorting algorithm; the terminology in use is 

clarified and explained in the following sections. 
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Figure 3.1: Block diagram showing relationship between modulation algorithm, CBC 

method, and sorting algorithm 

3.1.1 Modulation Algorithm 

The modulation algorithm is responsible for generating the firing signals for the SMs. It 

receives the arm voltage reference (𝑉𝑢,𝑙
∗ ) from the arm voltage control loop and a list of SM 

identifiers (𝐿[SMID1..𝑁𝑜𝑛]) from the CBC loop corresponding to the specific SMs to insert. 

The modulation algorithm sampling period (𝑇𝑠−𝑀𝑂𝐷) is decoupled from the CBC method 

sampling period (𝑇𝑠−𝐶𝐵𝐶), that is, the two loops can execute independently.  

A range of modulation algorithms have been proposed in the literature published to-date. 

For the purposes of this work, nearest level control modulation has been assumed where 

necessary, since it is favoured for use in industrial scale converters due to ease of 

implementation with several hundred SMs and low switching frequency when compared to 

PWM-based algorithms [18]. 

3.1.2 Capacitor Balancing Control Method 

The capacitor balancing control method is at the core of the CBC loop. In this work, the 

term ‘method’ is used instead of algorithm to further reinforce the distinction between the 

CBC method, modulation algorithm, and sorting algorithm. The CBC method implements 

two key functions: 

• Evaluates the conditions which will trigger an update of the output list 

(𝐿[SMID1..𝑁𝑜𝑛]) and thus switching of SMs for balancing purposes.  

• Determines the switching actions performed to balance SM capacitor voltages, such 

as which SMs are targeted for sorting and balancing.  
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Dependent upon the chosen CBC method, balancing may be triggered with a fixed 

sampling period (𝑇𝑠−𝐶𝐵𝐶) or conditionally, using external inputs, as shown in Figure 3.1. 

Where capacitor balancing is triggered conditionally on external inputs, the sampling 

period may vary from one sampling instant to the next and is more accurately described as 

an effective sampling period. 

When triggered, the CBC method may require the use of a sorting algorithm to generate a 

sorted list of all SM capacitor voltages and SM identifiers, or a sorted list of a subset of 

SMs determined by the CBC method. CBC methods which require the use of a sorting 

algorithm are typically referred to as ‘sorting-based’ balancing methods in the literature 

and are the focus of this chapter.  

3.1.3 Sorting Algorithm 

The sorting algorithm is triggered by the CBC method and takes a set of SM capacitor 

voltage measurements acquired from the SMs (𝑉𝑐𝑎𝑝
1..𝑁𝑆𝑀) and a corresponding set of SM 

identifiers (SMID1..𝑁𝑆𝑀) as inputs. The algorithm then sorts the SMID: 𝑉𝑐𝑎𝑝 value pair in 

ascending or descending order according to the SM capacitor voltage value. The operation 

of the sorting algorithm is explained in more detail in Chapter 4. 

3.2 Review of Capacitor Balancing Control Methods 

Capacitor balancing control methods can be classified based upon different parameters 

such as: switching frequency, capacitor balancing performance, or choice of sorting 

algorithm [18, 35, 37]. Whilst these classifications are valid, they fail to capture the 

distinctions between CBC methods which are necessary for understanding the research 

presented in this chapter. As a result, two new taxonomies for classifying CBC methods 

have been developed based upon sorting algorithm requirement and CBC loop sampling 

period. These taxonomies are introduced in this section and the existing literature on CBC 

methods is reviewed and placed into these categories.  

3.2.1 Sorting Algorithm Requirement 

As stated previously, some CBC methods require the use of a sorting algorithm to generate 

a sorted list of SM identifiers each time the CBC loop is triggered. Other CBC methods do 

not require the use of a sorting algorithm and between these categories further distinctions 

can be made. This leads to a taxonomy of CBC methods based upon the requirement for a 

sorting algorithm, this is shown in Figure 3.2. 
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Figure 3.2: CBC method taxonomy based upon sorting algorithm requirements 

The four categories presented in Figure 3.2 will be explained in further detail in subsequent 

sections. A fifth category containing ‘hybrid’ methods can also be defined for CBC 

methods which switch between methods in one of the four primary categories dependent 

upon the converter operating point.  

Typically, the execution time of the overall CBC loop will increase when moving from 

CBC methods which do not require use of a sorting algorithm (‘no sort’) to those which 

require a fully sorted list of SM identifiers (‘full sort’). This is due to the use of a sorting 

algorithm which executes at each firing of the CBC loop. In the case of 

maximum/minimum (‘max/min’) or no sort CBC methods, the processing operations 

carried out by the CBC method are usually less complex and will execute in a shorter time 

period than a sorting algorithm. Furthermore, the field-programmable gate array (FPGA) 

logic resource usage of the overall CBC loop will typically increase for full sort methods, 

due to the additional logic resources required by the sorting algorithm. 

When moving from full sort CBC methods to no sort methods, the CBC loop execution 

time will typically become more deterministic. When compared to the classical sorting 

algorithms commonly used in sorting-based CBC methods, the processing operations 

performed in max/min and no sort methods have fewer nested loops and conditional 

branches. These structures are partly responsible for the non-deterministic execution time 

exhibited by many classical sorting algorithms. The work carried out in this chapter 

focuses on CBC methods which require a full sort, since these represent the worst-case 

execution time and logic resource usage for the overall CBC loop. 



Chapter 3 Capacitor Balancing Control 

52 

Full Sort 

The majority of CBC methods which have been published in the literature to date require a 

fully sorted list of SM identifiers each time the CBC loop is triggered. The original 

proposal for the MMC by Lesnicar and Marquardt in [38] relied upon a fully sorted list to 

select specific SMs to inserted or bypass to ensure balancing. This CBC method is also 

used in [39] and is termed ‘slow-rate capacitor balancing’ or the ‘classical approach’ in 

[40].  

Three tolerance band-based CBC methods have been presented in the literature; these aim 

to reduce SM switching instances for balancing purposes and the associated switching 

losses. The average tolerance band (ATB) and cell tolerance band (CTB) methods are 

presented in [41-43]. An additional tolerance band method named cell tolerance band 

optimised (CTBoptimised) is introduced by the same authors in [43, 44]. Each of these 

methods require a fully sorted list of SM identifiers whenever the CBC loop is triggered.  

The authors in [39] present a fundamental frequency capacitor voltage balancing method 

which also requires a fully sorted list of SM identifiers upon each CBC loop iteration. In 

this method the SM switching frequency for balancing purposes is reduced by only 

triggering the CBC loop when the AC side voltage level is ±𝑉𝑑𝑐 2⁄ . 

In addition to the CBC methods outlined previously, two papers have proposed predictive 

methods which also rely upon a full sort of either the SM capacitor voltages or the 

predicted capacitor voltage errors [39, 45]. Furthermore, many of the post-modulation 

PWM-based CBC methods also require a fully sorted list of SM identifiers for operation 

[46-48]. 

Sorted Subset 

Several CBC methods have been proposed which require the sorting of only a subset of 

SM capacitor voltages – these are termed ‘sorted subset’ methods for the purpose of this 

work. The SMs targeted for sorting are first determined by the CBC method then passed to 

the sorting algorithm. A sorting algorithm is still required by all these methods, however 

by definition of the sorted subset category, the number of elements to sort (𝑛) will fall in 

the range: 1 ≤ 𝑛 ≤ 𝑁𝑆𝑀.  

The authors in [33] present a reduced switching frequency (RSF) CBC method which only 

requires sorting of a subset of submodules dependent upon the value of ∆𝑁𝑜𝑛. This method 

can only be used with phase-shifted carrier PWM (PSC-PWM) and is unsuitable for use 

with NLC modulation due to an insufficient number of switching instances. 
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A number of CBC methods have been proposed which search for only the 𝑁𝑜𝑛 SMs with 

the highest or lowest capacitor voltages, at which point the sorting process is halted [49-

52]. Alternatively, the authors in [53] propose a pre-selection method for SMs of interest to 

reduce the number of SM capacitor voltages to sort. These methods can also be classified 

as sorted subset CBC methods. 

Maximum/Minimum 

Several authors have proposed CBC methods which identify only the SMs with the 

maximum/minimum capacitor voltages for switching for balancing purposes. Unlike the 

classical sorting algorithms commonly used in full sort CBC methods, the execution time 

for searching for the maximum/minimum SM capacitor voltages is more deterministic and 

scales linearly as 𝑁 is increased.  

The authors in [54] present a max/min CBC method using a voltage-controlled oscillator 

(VCO) on each SM to measure the capacitor voltage. The VCO signals from each SM are 

then fed into digital logic which counts the VCO pulses and selects the SMs with the 

max/min capacitor voltages for balancing in a method termed ‘the tortoise and the hare’.  

Another max/min CBC method named ‘selective virtual loop mapping’ is presented in [55] 

and is implemented alongside phase-disposition PWM (PD-PWM). The same method is 

also used by the same authors in [56] and is instead called ‘selective bias loop mapping’. 

This method has the advantage of a reduction in execution time due to parallelisation of the 

max/min search. Other max/min CBC methods are presented in [57] and [58]. 

No Sort 

Capacitor balancing can also be implemented without using a sorting algorithm or 

max/min search; these methods are titled no sort CBC methods for the purpose of this 

work. Several closed loop CBC methods have been proposed. These can operate at either 

the SM-local level by modifying the per-SM voltage reference as in [59], or at the arm 

level by monitoring the arm energy and adjusting the arm voltage reference to maintain 

balancing, as described in [37] and [60]. Other CBC methods which do not require a sort 

also include: cell tolerance band with sequence reversing (CTBsequence) [42, 43] or model 

predictive control methods [61, 62]. 
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Hybrid Methods 

A number of ‘hybrid’ CBC methods have also been proposed in the literature. These 

methods typically implement one CBC method during steady state operation, usually with 

the aim to reduce SM switching frequency, then switch to another CBC method during 

transients to ensure that capacitor balancing is maintained. The requirement for a sorting 

algorithm is dictated by the CBC methods chosen as part of overall hybrid method. 

Hybrid methods which switch between classical full sort balancing and the RSF method 

are proposed in [40]. The conditions associated with triggering CTB and ATB as presented 

in [42] are used to select whether the classical full sort balancing method or the RSF 

method is used, typically during transients and steady state respectively. A similar hybrid 

method is described in [63], which switches between CTBoptimised in steady state and 

ATB during transients. 

The authors in [39] present a hybrid method which switches between the classical full sort 

method and a predictive method based upon a comparison of the magnitude of the 

predicted SM capacitor voltage error and a fixed tolerance.  

3.2.2 Sampling Period 

As outlined at the beginning of this section, CBC methods can also be categorised based 

upon their sampling period, as shown in Figure 3.3. Classifying CBC methods in this way 

is required for this work, since the CBC loop sampling period dictates the time window 

available for the sorting algorithm to execute for sorting-based CBC methods. 

CBC methods can be classified under one of two main categories: fixed sampling period 

(periodic), or variable sampling period (aperiodic). In the case of periodic CBC methods, 

the CBC loop may be triggered by a sample clock dedicated to the CBC loop (local), or by 

an external sample clock (external). Due to the periodicity of the sample clock, the sorting 

algorithm used by the CBC method has a pre-determined, fixed time period during which it 

must finish executing.  

In the case of aperiodic CBC methods, the CBC loop may be triggered according to 

conditions on measurements which are either ‘local’ or ‘external’ to the CBC loop. Unlike 

periodic methods, the time period available for a sorting algorithm to execute is variable 

and may vary from one loop iteration to the next.  
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In this classification, the term ‘local’ is used to refer to measurements which are required 

primarily by the CBC loop itself, namely SM capacitor voltage. ‘External’ measurements 

are those which are primarily associated with other control loops, but which may be used 

to trigger the CBC loop, for example, the SM insertion index (𝑁𝑜𝑛). Whilst the local and 

external categories are shown in Figure 3.3, these are less well-defined than the main 

periodic and aperiodic categories, however, are shown for completeness.   

CBC Method

Sampling Period

Fixed (periodic)

sampling-driven

Variable (aperiodic)

event-driven

Local External Local External

CBC triggered by 

local sample clock 

(Ts-CBC)

CBC locked to sample 

clock of external input 

(eg. Ts-MOD, Iarm)

CBC triggered based 

on conditions attached 

to local measurements 

(eg. Vcap tolerance 

band)

CBC triggered based 

on asynchronous 

external input(s) 

(eg. Non value change)

Hybrid methods 

(switch between CBC methods dependent upon converter operating point)
 

Figure 3.3: CBC method taxonomy based upon CBC loop sampling period properties 

Periodic CBC methods can also be said to be sampling-driven, whilst aperiodic CBC 

methods can be said to be event-driven. Event-driven CBC methods are triggered 

dependent upon a condition being met, such as a SM capacitor voltage exceeding the 

tolerance band or a change in an input variable. As with the taxonomy based upon sorting 

algorithm requirement, a fourth category can also be defined for hybrid CBC methods 

which switch between methods dependent upon the converter operating point. Hybrid 

methods will typically have a variable sampling period. 

Periodic: Local 

Several CBC methods have been proposed which are triggered periodically by a sample 

clock local to the CBC loop itself. In the classical approach originally proposed by 

Lesnicar and Marquardt in [38] and used by the authors in [39, 40], the CBC loop is 

triggered at a fixed sampling period which is chosen to ensure SM capacitor voltages 

remain balanced across all converter operating points. The hybrid CBC method proposed 

in [39] is also triggered at a fixed sampling period.   
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Periodic: External 

Other CBC methods have been presented in the literature which are triggered by a periodic 

sample clock which is primarily used to drive a control loop external to the CBC loop 

itself. In this configuration, the CBC loop sampling period is locked to the sampling period 

of the external control loop. Typical examples of CBC methods in this category are those 

which are triggered at each cycle of the carrier waveform in the case of PWM-based 

modulation algorithms [46-48]. 

Aperiodic: Local 

Aperiodic CBC methods have a variable sampling period since these methods are triggered 

conditionally on measurements such as SM capacitor voltage. For example, the CTB and 

ATB methods introduced in [41-43] are only triggered when a SM capacitor voltage 

exceeds a maximum or minimum value, or a tolerance band around the average SM 

capacitor voltage respectively. As a result, during some control cycles the CBC loop is not 

triggered and a sorted list of SM identifiers is not required. During transients however, the 

CBC loop may be triggered on consecutive control cycles, leading to a shorter time 

window during which the sorting algorithm must execute. The CTBoptimised method 

introduced in [43, 44] is another example of an aperiodic CBC method; in this case, the 

CBC loop is triggered on zero crossings of the arm current. 

Aperiodic: External 

Several aperiodic CBC methods have been proposed which rely upon external 

measurements which are not typically associated with the CBC loop. For example, the RSF 

method proposed in [33] and the predictive strategy presented in [45] are both triggered by 

changes in the SM insertion index (i.e. when 𝑁𝑜𝑛[𝑘] ≠ 𝑁𝑜𝑛[𝑘 − 1]). Alternatively, the 

fundamental frequency balancing method in [39] is triggered only when the AC side 

voltage level is ±𝑉𝑑𝑐 2⁄ . Whilst it is possible that under ideal steady state operating 

conditions the parameters used to trigger these CBC methods will be periodic, this is not 

necessarily the case during transients, therefore these methods are classified as aperiodic. 
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3.3 Summary 

This chapter has provided a detailed review of CBC methods presented in the literature and 

developed two taxonomies for classifying CBC methods which are relevant to the research 

presented in Chapter 6. Whilst there are no widely-accepted standard CBC methodologies 

used in industry made available in the public domain, the reviewed methods arise from 

both academic and leading industrial sources [43, 64]. In addition, the terminology specific 

to CBC has been clarified and a clear distinction made between the functions of the 

modulation algorithm, CBC method, and sorting algorithm. 
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4 Sorting Algorithms 

This chapter provides an overview of sorting algorithms as a basis for subsequent chapters 

in this thesis. The sort() operation is formally defined first, followed by a review of the 

comparison metrics which are commonly used to compare sorting algorithm performance. 

These comparison metrics will be returned to in later chapters. Finally, a special case of 

sorting algorithm known as the sorting network is introduced and explained. Sorting 

networks are included since they exhibit desirable execution time characteristics for time-

constrained real-time control loops. 

In sorting-based CBC methods, a sorting algorithm is used to generate an ordered list of 

SM identifiers using the corresponding SM capacitor voltages each time the CBC loop is 

triggered. Formally, for an input set, 𝐴, comprising 𝑛 elements (𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}) the 

sorting algorithm performs the sort() operation to produce an ordered output set, 𝐴′: 

sort(𝐴) → 𝐴′ = {𝑎1
′ , 𝑎2

′ , … , 𝑎𝑛
′ } 4.1 

where: 

𝑎1
′ ≥ 𝑎2

′ ≥ ⋯ ≥ 𝑎𝑛
′  for a sort in ascending order 

𝑎1
′ ≤ 𝑎2

′ ≤ ⋯ ≤ 𝑎𝑛
′  for a sort in descending order 

𝐴′ is a permutation of 𝐴, that is, it includes all the elements in 𝐴. 

In the case of the CBC loop, only the list of ordered SM identifiers are passed to the CBC 

method for further processing. As stated in Section 3.2.1, in some CBC methods the 

sorting algorithm may only be required to sort a subset of SM capacitor voltage 

measurements. 

4.1 Comparison Metrics 

To provide an objective comparison between the performance of different sorting 

algorithms, two key metrics are commonly used [65]. These are termed ‘time complexity’ 

and ‘space complexity’ and are defined as follows: 

• Time complexity: describes how the execution time of a sorting algorithm scales as 

the number of inputs to be sorted, 𝑛, is increased. 

• Space complexity: describes how the resource usage of a sorting algorithm scales 

as 𝑛 is increased.  

These terms are described in more detail in the following sections. 
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4.1.1 Bachmann-Landau (Big-O) Notation 

In the theoretical domain, a subset of the Bachmann-Landau notations, known in computer 

science as ‘big-O’ notation, is used to describe the asymptotic upper bound on the growth 

rate of a function as the argument tends to infinity [65]: 

𝑓(𝑛) = 𝑂(𝑔(𝑛))⁡as⁡𝑛 → ∞ 4.2 

In the case of sorting algorithms, big-O notation is used to compare the growth rate of 

algorithm time and space complexity as the number of elements in the input set is 

increased. For sorting algorithms used in CBC, 𝑛 is equal to the number of SMs per arm 

(𝑁𝑆𝑀). Some common growth functions are plotted in Figure 4.1 for 𝑛 = 1 to 500 for 

comparison purposes. 

 

Figure 4.1: Common growth functions for sorting algorithm execution time and resource 

usage 

Since Figure 4.1 is for comparison purposes only, the y-axis scale is arbitrary and does not 

correspond to a physical quantity for execution time or resource usage. To obtain an 

absolute value for either quantity at a specific value of 𝑛, the chosen sorting algorithm 

must be implemented on a control hardware target and its execution time and resource 

usage measured. Scaling coefficients for the growth function can then be calculated and 

used to estimate the execution time or resource usage for different values of 𝑛. 
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4.1.2 Time Complexity 

Time complexity is dependent upon the number of basic operations (compare, swap, copy) 

performed by the sorting algorithm, which are dictated by the algorithm structure. Time 

complexity growth rates can be defined as best-, average-, and worst-case. For many 

common sorting algorithms, the best-case execution time will typically occur when the 

input set is already fully sorted, whilst the worst-case will occur when the input set is 

reversed with respect to the direction of the sort() operation [65].  

In the case of sorting algorithms for CBC where the execution window is time-limited, the 

worst-case execution time on a particular control hardware target is of primary interest, 

since exceeding the available execution window duration may lead to degraded capacitor 

balancing performance. The best- and worst-case time complexities for several sorting 

algorithms commonly used in the literature on sorting-based CBC methods [49, 50, 53, 66-

72] are shown in Table 4.1. These algorithms have been selected for further analysis.  

Sorting Algorithm 
Best-Case Time 

Complexity 

Worst-Case Time 

Complexity 

Bubble Sort 𝑂(𝑛) 𝑂(𝑛2) 

Insertion Sort 𝑂(𝑛) 𝑂(𝑛2) 

Merge Sort 𝑂(𝑛 log 𝑛) 𝑂(𝑛 log 𝑛) 

Quick Sort 𝑂(𝑛 log 𝑛) 𝑂(𝑛2) 

Bitonic Merge Sort 𝑂(log2⁡𝑛) 𝑂(log2⁡𝑛) 

Odd-Even Merge Sort 𝑂(log2⁡𝑛) 𝑂(log2⁡𝑛) 

Table 4.1: Best- and worst-case time complexities for several common sorting algorithms 

for sorting-based CBC methods [73] 

Three algorithms (bubble sort, insertion sort, and quick sort) have quadratic (𝑂(𝑛2)) worst-

case time complexities. This may appear to discount them when compared to the other 

algorithms presented, which have smaller growth rates. It is important to note however, 

that two other key factors will affect the execution time of each algorithm: 

• Implementation specifics in code, such as language-specific optimisations or 

recursion. 

• Adaptability of the sorting algorithm and the existing order of the input set. 
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Adaptability refers to the ability of a sorting algorithm to take advantage of existing order 

in the input set. Both bubble sort and insertion sort are classed as adaptive sorting 

algorithms and will have a shorter execution time when the input set is more ordered. 

Merge sort and quick sort are not adaptive however, so cannot take advantage of the 

existing order of the input set [65]. To obtain a reliable estimate of execution time, each 

sorting algorithm must be implemented in code running on a control hardware target, then 

tested with a representative pattern of SM capacitor voltages. 

4.1.3 Space Complexity 

As stated previously, space complexity describes how the resource usage of a sorting 

algorithm scales as 𝑛 is increased. In the case of sorting algorithms implemented on 

microcontroller- or microprocessor-based control hardware targets, the resource consumed 

by the sorting algorithm is memory. For sorting algorithms implemented on a field-

programmable gate array (FPGA), the resources used by the sorting algorithm are logic 

elements on the device, such as flip-flops (FF) and lookup tables (LUT), which are used as 

memory and to implement processing operations. 

Table 4.2 lists the space complexity of the six sorting algorithms presented previously in 

Table 4.1 and can be compared graphically using the curves in Figure 4.1. Unlike time 

complexity, space complexity is specified as a worst-case value only and is not affected by 

the characteristics of the input set such as existing ordering. 

Sorting Algorithm 
Worst-Case Space 

Complexity 

Bubble Sort 𝑂(1) 

Insertion Sort 𝑂(1) 

Merge Sort 𝑂(𝑛) 

Quick Sort 𝑂(log 𝑛) 

Bitonic Merge Sort 𝑂(𝑛⁡log2⁡𝑛) 

Odd-Even Merge Sort 𝑂(𝑛⁡log2⁡𝑛) 

Table 4.2: Worst-case space complexities for several common sorting algorithms for 

sorting-based CBC methods [73] 

It is immediately obvious by comparing Table 4.1 and Table 4.2 that sorting algorithms 

with a low (better) time complexity typically have a high (worse) space complexity and 

vice-versa. This leads to a trade-off between execution time and resource usage when 

choosing a suitable sorting algorithm for the CBC loop. 
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4.1.4 Sequential vs. Parallel Sorting Algorithms 

Sorting algorithms can also be classified based upon whether the algorithm performs 

operations on input set values in sequence or in parallel. In the case of comparison-based 

sorting algorithms such as those listed in Table 4.1, the main operation performed by the 

algorithm is the compare-swap operation. This operation is defined as shown in Figure 4.2, 

for two input values, 𝑥 and 𝑦. 

Compare-

Swap

x

y

x    max(x, y)

y    min(x, y)
 

Figure 4.2: Compare-swap operator 

Two categories can be defined at either end of a sliding scale based upon whether the 

algorithm performs compare-swap operations sequentially or in parallel: 

• Fully sequential: no parallelisable compare-swap operations, only a single 

operation can be performed at a time. Pairs of input values must be operated on in 

sequence. 

• Fully parallel: two or more compare-swap operations can be performed in parallel. 

Two or more input value pairs can be operated on simultaneously, independent of 

other values. 

Classifying sorting algorithms as sequential or parallel corresponds closely with the 

mapping of a particular sorting algorithm onto best-suited processing hardware, which can 

also be categorised as operating sequentially or in parallel: 

• Sequential: central processing unit (CPU) or microcontroller-based hardware. Each 

processing core can only operate upon a single pair of values per clock cycle. 

Limited parallelisation is achieved on a single core device by sharing the processor 

core across multiple tasks (multiplexing), or on a multi-core device by allocating 

operations to different processor cores. 

• Parallel: FPGA and digital signal processor (DSP)-based hardware can operate 

upon multiple pairs of values in parallel per clock cycle due to the potential for 

massive duplication of functional blocks (eg. compare-swap operators) in fixed 

logic hardware. 
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Classification of sorting algorithms according to sequential or parallel operation is less 

well-defined than time and space complexity comparison metrics since it is possible for 

sequential sorting algorithms to be implemented on parallel hardware and vice-versa. 

Furthermore, some traditionally sequential sorting algorithms have been optimised for 

implementation on parallel processing hardware. Analysis of the performance of optimised 

variants of the sorting algorithms listed in Table 4.1 is outside the scope of this research 

and only the traditional implementation of each algorithm will be considered. Pseudocode 

for the variants of the sorting algorithms as implemented in this work is provided in 

Appendix A for reference purposes.  

Figure 4.3 classifies the sorting algorithms listed in Table 4.1 and the processing hardware 

types on the sliding scale described previously. Bubble sort and insertion sort are difficult 

to parallelise since these algorithms fundamentally operate on the whole input set without 

dividing it into smaller sub-sets. Merge sort and quick sort support limited parallelisation 

due to their divide-and-conquer approach to the sorting problem. Both algorithms divide 

the input set into partitions of decreasing size before sorting each partition; this process can 

be carried out recursively in parallel.  

Bubble Sort

Insertion Sort

Merge Sort

Quick Sort

Bitonic Merge Sort

Odd-Even Merge Sort

Sequential Parallel

Processing Hardware

Sorting Algorithm

Single core 

processor

Multi-core 

processor
DSP FPGA

 
Figure 4.3: Categorisation of sorting algorithms and processing hardware on sequential vs. 

parallel sliding scale 

4.2 Sorting Networks 

Bitonic merge sort and odd-even merge sort are both types of sorting network and are 

inherently parallel in operation. Unlike classical comparison-based sorting algorithms 

which perform a variable number of compare-swap operations, sorting networks have a 

fixed sequence of compare-swap operations which operate on several pairs of values 

independently, in parallel [74]. As a result, they are well-suited to implementation on 

parallel processing hardware such as FPGAs and typically exhibit a lower execution time 

when compared to classical sorting algorithms. 
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4.3 Summary 

This chapter has provided an introduction to sorting algorithms which serves as a 

foundation for the rest of this thesis. The comparison metrics described in this chapter will 

be used in later chapters when comparing sorting algorithm performance across different 

hardware and software implementations. The sorting algorithms (bubble sort, insertion 

sort, merge sort, quick sort) and sorting networks (bitonic merge sort, odd-even merge sort) 

reviewed in this chapter were chosen based upon a review of sorting algorithms for CBC 

and are the most commonly referenced algorithms in the existing literature. 

Sorting algorithms have been and continue to be the subject of intensive research in the 

field of computer science. Further research avenues into sorting algorithms for CBC may 

however focus upon novel algorithms such as those proposed in the literature published in 

the field of computer science. 
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5 Simulation Model Overview 

This chapter provides an overview of the PSCAD/EMTDC simulation model which was 

used to generate synthetic SM capacitor voltage data for the investigation into sorting 

algorithm execution time presented in Chapter 6. To ensure that the results from the 

investigation are representative of industrial-scale HVDC MMCs which typically have 

several hundred SMs per arm, an MMC simulation model with greater than 200 levels was 

required. 

To minimise the time spent developing and verifying a new simulation model, an open-

access MMC model developed by The National HVDC Centre and the University of 

Strathclyde was used [75]. The model is one of several developed as part of a project titled: 

“Developing Open-Source Converter Models” [22] and implements a 351-level MMC 

using the half-bridge SM configuration. A range of models with different circuit topologies 

and number of levels are available; the 351-level HB-SM model was chosen since has an 

industrially representative number of SMs per phase and the HB-SM topology has a 

simpler control structure compared to full-bridge or hybrid SM topologies. A more detailed 

description of the simulation model can be found in [76-80].  

The circuit structure and converter ratings of the MMC model are introduced first in this 

chapter and the fault locations used in the simulation scenarios in Chapter 6 are shown. A 

brief overview of the control structure implemented in the model is then provided, 

followed by a description of the custom capacitor balancing control component which has 

been developed to enable the research carried out in Chapter 6. 

5.1 Circuit Structure 

The circuit structure of the MMC model is shown in Figure 5.1 and the system parameters 

are listed in Table 5.1. As stated previously, the MMC is configured as a 351-level three 

phase HB-MMC with 350 SMs per arm. On the AC side, the converter is connected to the 

AC ‘grid’ via an interfacing transformer with a voltage ratio of 360/400 kV. Since the 

dynamics of the AC system are not the focus of this work, the AC grid is modelled as an 

ideal AC source behind a fixed impedance which is configured to provide a short-circuit 

ratio (SCR) of 10. The voltage, current, and power measurement locations and polarities 

are also shown in Figure 5.1; these correspond to the measurements shown in the figures in 

Chapter 6. 
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Figure 5.1: MMC model circuit diagram 

Parameter Value Units 

MMC rated apparent power, 𝑆 1265 MVA 

MMC rated active power, 𝑃 1200 MW 

MMC rated reactive power, 𝑄 400 MVAr 

MMC rated AC output voltage (line-line) 360 kV 

Arm inductance, 𝐿𝑎𝑟𝑚 42 mH 

Arm resistance, 𝑅𝑎𝑟𝑚 0.08 Ω 

Number of SMs per arm, 𝑁𝑆𝑀 350  

SM capacitance, 𝐶𝑆𝑀 11 mF 

Nominal DC bus voltage, 𝑉𝑑𝑐 640 (± 320) kV 

AC system short-circuit ratio (SCR) 10  

AC system nominal frequency, 𝑓0 50 Hz 

Transformer rated apparent power, 𝑆𝑇 1265 MVA 

Transformer voltage ratio 400/360 kV 

Transformer leakage reactance, 𝑋𝑇 0.18 p.u. 

Transformer resistance 0.004452 p.u. 

Table 5.1: MMC model parameters, reproduced from [80] 
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On the DC side, the converter is connected to the DC terminal via a 50 km underground 

cable modelled using a frequency-dependent phase method. The DC source is modelled as 

an ideal voltage source with a 0 Ω internal resistance. Modelling of the DC terminal and 

underground cable dynamics is not the focus of this work and will not be discussed further. 

To allow testing for a fault scenario in Chapter 6, a three phase-to-ground symmetrical 

fault at the point of common coupling (PCC) was added to the simulation model. The fault 

resistance, 𝑅𝑓𝑎𝑢𝑙𝑡, was set to 0 Ω across all three phases and the converter control was 

configured not to block the SMs during the fault. When not simulating a fault scenario the 

timed fault block is disabled.  

5.2 Control Structure 

A high-level block diagram of the control structure of the MMC model is provided in 

Figure 5.2, showing the controllers which are implemented in the model. A more detailed 

description of the operation of each controller can be found in [80]. The converter operates 

in active/reactive power (𝑃𝑄) control mode using a 𝑃𝑄 set-point which can be configured 

using interactive user controls within the simulation, or a pre-configured set-point profile.  
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Figure 5.2: Block diagram showing MMC model control structure, adapted from [80] 
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In the control structure shown in Figure 5.2, the active/reactive power controllers and 

positive/negative sequence current controllers are implemented using indirect control in the 

𝑑𝑞 domain. The active power controller acts upon the 𝑑-axis current reference passed to 

the positive sequence current controller, whilst the reactive power controller modifies the 

𝑞-axis current reference. The output of the positive sequence current controller is a 𝑑𝑞 

voltage reference which is then converted back into the 𝑎𝑏𝑐 domain using the inverse 

Clarke-Park transformation.  

A negative sequence current controller is also implemented in the model to ensure that the 

converter response remains controlled during unbalanced operation, such as during 

asymmetric AC network faults. In this work, it is assumed that maintaining balanced three 

phase AC currents is the control objective, therefore the 𝑑- and 𝑞-axis negative sequence 

current references are both set to zero. The output of the negative sequence current 

controller is also a 𝑑𝑞 voltage reference which is converted back into the 𝑎𝑏𝑐 domain and 

summed per-phase with the reference from the positive sequence controller. 

The vertical capacitor voltage balancing controller is implemented to balance the stored 

energy between the upper and lower arms in a phase. Similarly, the horizontal capacitor 

voltage balancing controller balances the stored energy across the three phases in the 

converter. These controllers facilitate the regulation of stored energy across the six 

converter arms and improve the dynamic response of the MMC to active power set point 

changes [80].  

The circulating current suppression controller (CCSC) operates to suppress the AC 

component of the circulating current, which can increase converter losses and SM 

capacitor voltage ripple [30]. In the model, the CCSC is implemented in the 𝑎𝑏𝑐 domain as 

a proportional-resonant (PR) controller [80]. 

The output voltage references from the two current controllers, horizontal and vertical 

capacitor voltage balancing controllers, and the CCSC are summed with the DC bus 

voltage set point, 𝑉𝑑𝑐
∗ , to generate an upper and lower arm voltage reference for each phase. 

These references are passed to the modulation and capacitor balancing control (CBC) loop. 

Nearest level control (NLC) output modulation is implemented in this model, since it is 

simpler to implement for MMCs with a large number of SMs when compared to pulse-

width modulation (PWM)-based methods. The operation of the CBC component is 

described in the following section. 
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5.3 Capacitor Balancing Control Custom Component 

To facilitate research into the effect of different CBC methods upon sorting algorithm 

execution time as detailed in Chapter 6, a custom PSCAD/EMTDC capacitor balancing 

control component was developed for this work. The standard CBC component provided in 

the model was unsuitable for this work since it only implements a single CBC method 

(average tolerance band) and is not completely documented in the reports describing the 

model.  

For the investigation into sorting algorithm execution time, periodic, average tolerance 

band (ATB), and cell tolerance band (CTB) CBC methods were chosen for testing and 

were implemented in the custom component. Periodic CBC is triggered at a fixed sampling 

frequency supplied by a pulse generator block in PSCAD/EMTDC. In the ATB method, 

balancing is triggered when the capacitor voltage of one or more SMs exceeds a tolerance 

band around the instantaneous mean SM capacitor voltage (𝑉𝑐𝑎𝑝[𝑘]). In the CTB method, 

balancing is triggered when the capacitor voltage of one or more SMs exceeds a fixed 

upper or lower limit. The CBC method in use can be changed prior to starting the 

simulation by changing the component parameters – it is not necessary to replace the 

component when changing CBC methods. The graphic overlay of the custom 

PSCAD/EMTDC developed in this PhD is shown in Figure 5.3(a) to (c) for the three CBC 

methods tested. 

 
  

(a) (b) (c) 

Figure 5.3: PSCAD/EMTDC custom capacitor balancing control component mask 

configured for (a) periodic, (b) ATB, and (c) CTB CBC methods 
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The Vcap and Iarm ports are inputs for the list of SM capacitor voltages and arm current, 

respectively. The Index port is an output and provides the list of sorted SM identifiers to 

the firing block component, which generates firing signals for all SMs in an arm using the 

list of SM identifiers and SM insertion index, 𝑁𝑜𝑛. Two additional output ports labelled 

swaps and compares can be enabled if required; these output the number of swap and 

comparison operations performed by the CBC sorting algorithm when the CBC block is 

triggered. Sorting algorithm execution time is typically proportional to the number of 

compare and swap operations carried out, however these output ports were not used since 

execution time was measured directly for the results presented in Section 6.3 and 

Section 6.4.  

The Trig’d? output port shown in Figure 5.3(b) and (c) can be enabled to provide an output 

signal which is set to ‘ ’ in the simulation timesteps where the CBC loop is triggered and 

‘0’ otherwise. This port is only available when ATB or CTB is chosen as the CBC method, 

since these methods do not have a fixed sampling frequency; the sampling clock is 

generated internal to the CBC component instead. For the analysis carried out in Chapter 6, 

the ability to log this internal sampling clock was required. The periodic CBC variant of 

the component has a trigger input port labelled Trig which is used to provide a periodic 

sampling clock to the CBC component. 

The tolerance bands used for ATB and CTB CBC methods can be configured prior to 

starting the simulation by modifying the component parameters. Where the ATB method is 

used, the tolerance band, 𝛿𝐴𝑇𝐵, around the instantaneous mean SM capacitor voltage, 

𝑉𝑐𝑎𝑝[𝑘], can be specified in kV or as a percentage of 𝑉𝑐𝑎𝑝[𝑘]. For the CTB method, the 

upper and lower limits on SM capacitor voltage are specified in kV. 

Bubble sort is used as the sorting algorithm in the custom component since it has a low 

implementation effort and its contribution to the overall simulation runtime is small 

relative to the other calculations performed by the EMTDC solver. Bubble sort works by 

repeatedly iterating over the input array, comparing adjacent elements, and swapping them 

if they are in the wrong order [65]. It is important to note that the execution time results 

presented in Chapter 6 were generated by sorting the list of SM capacitor voltages offline 

in real-world control hardware – that is, the sorting algorithm used in the CBC custom 

component is only used during simulation to ensure that capacitor voltages remain 

balanced. 
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5.3.1 Capacitor Balancing Control Method Implementation 

The sequence of operations implemented in each of the CBC methods provided by the 

custom component is shown in flowchart form in Figure 5.4 to Figure 5.6 for reference 

purposes and is described in the following sub-sections. FORTRAN code for each CBC 

method is included in Appendix B, and the custom PSCAD/EMTDC component can be 

downloaded from the repository in [26]. 

Periodic 

The sequence of operations for the periodic CBC method is shown in the flowchart in 

Figure 5.4. During each simulation timestep when the CBC component code is executed by 

the simulator, the ordered list of SM identifiers from the previous timestep is loaded first. 

For periodic CBC, the Trig input terminal is then checked to determine if the CBC loop 

should be triggered. When Trig = F (false), capacitor balancing is not triggered and the list 

of SM identifiers from the previous timestep is used to update the list of SM identifiers for 

the current timestep. When Trig = T (true), capacitor balancing is triggered, and the SM 

identifiers are sorted according to the measured SM capacitor voltages and arm current 

direction. Where the arm current is greater than zero, the capacitors of inserted SMs will be 

charged and as a result, SMs with lower voltages should be prioritised for insertion to 

ensure capacitor voltages remain balanced. This is achieved by sorting the SM capacitor 

voltages in ascending order and placing the corresponding SM identifiers into the array 

first. Conversely, when the arm current is less than zero, inserted SMs will discharge and 

SMs with higher voltages should be prioritised for insertion. This is achieved by sorting 

the list of SM capacitor voltages in descending order.  
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Figure 5.4: Flowchart showing periodic capacitor balancing control method sequence of 

operations 

The resulting list of SM identifiers generated during the current timestep is then assigned 

to the Index output terminal which is connected to the firing block component. 

Average Tolerance Band 

The primary difference between the CBC methods implemented in this work is the 

conditions under which the CBC loop is triggered. This is shown by the decision block in 

Figure 5.4 highlighted in red. The remaining sequence of operations in the CBC loop are 

identical across the three CBC methods, therefore these will not be repeated. The trigger 

decision tree for the ATB method is shown in Figure 5.5.  

Upon entering the ATB method decision tree, the Trig’d output is initialised to ‘0’ for the 

eventuality that the CBC loop is not triggered. The instantaneous mean capacitor voltage, 

𝑉𝑐𝑎𝑝[𝑘], is then calculated using the measured SM capacitor voltages for the current 

timestep. The calculation of 𝑉𝑐𝑎𝑝[𝑘] was described in more detail in Section 2.1.1.  
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Figure 5.5: Flowchart showing trigger decision tree for average tolerance band CBC 

method 

The upper and lower capacitor voltage limits for the current timestep, 𝑉𝑐𝑎𝑝−𝑚𝑎𝑥[𝑘], and 

𝑉𝑐𝑎𝑝−𝑚𝑖𝑛[𝑘], are then calculated using 𝑉𝑐𝑎𝑝[𝑘] and the tolerance band (𝛿𝐴𝑇𝐵) specified in 

the component parameters dialog box according to Equation 5.1 and Equation 5.2. 

𝑉𝑐𝑎𝑝−𝑚𝑎𝑥[𝑘] = 𝑉𝑐𝑎𝑝[𝑘] + 𝛿𝐴𝑇𝐵 5.1 

𝑉𝑐𝑎𝑝−𝑚𝑎𝑥[𝑘] = 𝑉𝑐𝑎𝑝[𝑘] − 𝛿𝐴𝑇𝐵 5.2 

The measured SM capacitor voltages for the current timestep are then compared with the 

upper and lower capacitor voltage limits in a for() loop. If one or more SM capacitor 

voltages exceed the upper or lower band limits, the CBC loop is triggered, the Trig’d 

output port is set to ‘ ’, and capacitor balancing is carried out as described previously. In 

the situation where all SM capacitor voltages are inside the tolerance band, the CBC loop 

is not triggered. 



Chapter 5 Simulation Model Overview 

74 

Cell Tolerance Band 

The decision tree for the CTB method is shown in Figure 5.6. Unlike the ATB method, the 

tolerance band is fixed and is not dependent upon the mean SM capacitor voltage. At each 

timestep, the Trig’d output is initialised to ‘0’ for the scenario where CBC loop is not 

triggered. The measured SM capacitor voltages for the current timestep are then compared 

with the upper and lower capacitor voltage limits and CBC is triggered if an individual SM 

capacitor voltage exceeds the upper or lower band limits. As with the ATB method, the 

Trig’d output port is set to ‘ ’ when the CBC loop is triggered. 
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Figure 5.6: Flowchart showing trigger decision tree for cell tolerance band CBC method 

5.4 Summary 

This chapter has provided an overview of the simulation model used to generate synthetic 

SM capacitor voltages for the investigation into sorting algorithm execution time. A 

custom CBC component has been developed in PSCAD/EMTDC to implement the CBC 

methods of interest, which have not yet been implemented in a publicly-available 

component [26]. The three CBC methods implemented in the custom component have 

been validated against the SM capacitor voltage curves presented in [31] for periodic CBC 

and [43] for ATB and CTB methods and found to be in agreement. The sequence of 

operations for each CBC method have been described as a basis for the results presented in 

later chapters.  
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6 Sorting Algorithms for Capacitor Balancing 

Control 

One of the objectives of this research is to assess the effects of software implementation of 

control loops upon execution delay and resource usage on real-world control hardware. Of 

particular interest in this work are the sorting algorithms used by the MMC internal 

capacitor balancing control (CBC) loop. 

In this chapter, the motivations for investigating the CBC loop are outlined first, followed 

by a description of the programming languages and control hardware target platforms upon 

which the selected sorting algorithms have been implemented. Sorting algorithm execution 

time measurements are then presented and discussed for three different CBC methods and 

simulation scenarios. The selected sorting algorithms were then programmed using three 

implementation methods on FPGA-based control hardware and the logic resource usage 

measured. These results are also presented and discussed in this chapter. Several 

conclusions and recommendations are then developed which can be used to guide the 

selection and implementation process for sorting algorithms for CBC. 

6.1 Motivations 

The motivations for investigating the CBC loop can be split into two categories: firstly, 

those related to the execution time of the CBC loop and the underlying sorting algorithm, 

and secondly, those related to the resource usage of a particular sorting algorithm when 

implemented in software running on real-world control hardware. Both categories are 

closely linked, and a balance must be struck between the upper limit on sorting algorithm 

execution time and resource usage when implemented on a control hardware target.  

Comparison of sorting algorithm performance using the existing literature is difficult due 

to the range of programming languages and control hardware targets used. The results from 

this work will address this and provide a direct comparison between several sorting 

algorithms implemented on two control hardware targets in three programming languages.  
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6.1.1 Sorting Algorithm Execution Time 

The primary motivation for measuring sorting algorithm execution time is the non-

deterministic (variable) execution time of the classical sorting algorithms which are 

commonly used to sort SM capacitor voltages in the CBC loop. Typically, the CBC loop 

must run in hard real-time, with a time-limited execution window (control cycle) within 

which all processing operations must be completed, including sorting. The execution 

window is determined by the chosen CBC method, with some methods requiring more 

frequent sorting of SM capacitor voltages in a shorter execution window. 

Non-deterministic execution of the sorting algorithm may lead to the execution time 

exceeding the CBC loop control cycle period. This will lead to a delay in updating the 

firing signals to the SMs for balancing purposes. Alternatively, it may be necessary to 

increase the CBC loop control cycle period to ensure that the sorting algorithm completes 

before the SM firing signals are updated. Either of these factors may lead to degraded 

capacitor balancing performance and an increase in SM capacitor ripple voltage, reducing 

the lifespan of the SM capacitor [81].  

6.1.2 Sorting Algorithm Implementation Resource Usage 

The CBC loop and corresponding sorting algorithm are implemented alongside other 

converter control functions on the same control hardware target [82]. At the arm control 

level, one or more FPGAs are typically used as the control hardware platform due to the 

ability to perform many complex processing operations in parallel. FPGAs have a finite 

number of logic resources in the form of flip-flops (FF) and lookup tables (LUT) which 

can be used to implement processing operations. 

To ensure that there are sufficient logic resources available on the FPGA to implement 

CBC using a chosen sorting algorithm alongside other control functions, an estimate of the 

logic resource usage of the sorting algorithm is required. Sorting algorithm resource usage 

is typically dependent upon two factors: the number of inputs to the sorting algorithm, 𝑛, 

and the structure of the chosen sorting algorithm. In the case of sorting algorithms for 

CBC, 𝑛 is equal to the number of submodules per arm, 𝑁𝑆𝑀. Furthermore, whilst sorting 

algorithms with a deterministic execution time do exist, these algorithms also typically 

consume more FPGA logic resource due to their structure. As a result, it was decided to 

measure the logic resource usage of the sorting algorithms of interest for a range of values 

of 𝑛, when implemented on an FPGA using three different programming languages. 
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6.2 Sorting Algorithm Implementation 

As stated in Section 6.1, comparing sorting algorithm execution time and resource usage 

using the existing literature is difficult due to the wide range of control hardware targets 

and programming languages used to implement the algorithms. This section provides an 

overview of the control hardware targets and programming languages used to implement 

the sorting algorithms chosen for analysis in this work. 

6.2.1 Control Hardware Targets 

To facilitate a direct comparison of sorting algorithm execution time on CPU- and FPGA-

based control hardware targets, the sorting algorithms listed in Table 4.1 were 

implemented on two control hardware targets: a National Instruments (NI) PXIe-8102 

embedded controller [83] (Intel x86 CPU-based) and a NI PXIe-7857R FPGA [84] (Xilinx 

Kintex-7 FPGA). These platforms were chosen since they were already available in the 

converter hardware prototype (CHP) PXIe control chassis and are representative of the 

processing platforms used widely in industrial control hardware. The key specifications of 

both platforms are listed in Table 6.1.  

Platform 
Architecture 

Type 
Key Specifications 

NI PXIe-8102 
x86 CPU 

(sequential) 

• 1.9 GHz dual-core Intel Celeron 

T3100 CPU [85] 

• 2 GB RAM 

• Operating system: Phar Lap ETS 

RTOS 

NI PXIe-7857R 
FPGA  

(parallel) 

• Xilinx Kintex-7 160T FPGA [86] 

• 25,350 logic slices 

• 202,800 flip-flops 

• 101,400 lookup tables 

• 𝑓𝑐𝑙𝑜𝑐𝑘 = 100 MHz (used for testing) 

Table 6.1: Summary of key specifications for control hardware targets 

The Intel Celeron T3100 CPU used in the NI PXIe-8102 was launched in 2008 [85] and 

has since been discontinued. Whilst the specifications of this platform lag those of more 

modern CPUs, it can still be used to provide a reliable estimate of sorting algorithm 

execution time on CPU-based control hardware targets. This is due to the simple structure 

of the algorithms under test and the fact that the algorithms have not been optimised for a 

particular CPU.  
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The Xilinx Kintex-7 160T FPGA used in the NI PXIe-7857R is still in production as part 

of Xilinx’s mid-range FPGA portfolio. The -160T variant of the device is positioned in the 

bottom quarter of the Kintex-7 series devices and contains 25,350 logic ‘slices’ each of 

which contains eight flip-flops and four lookup tables [86]. Industrial control hardware 

targets may use FPGAs with more slices or devices from a different product line such as 

the Virtex-7 series. The underlying structure of the logic slices is the same across both 

Kintex-7 and Virtex-7 series, therefore the execution time and logic resource usage results 

are applicable to control hardware targets which use other Xilinx FPGAs. In this work, a 

FPGA clock frequency, 𝑓𝑐𝑙𝑜𝑐𝑘, of 100 MHz was used to calculate the sorting algorithm 

execution time in seconds from the number of clock cycles taken to execute the algorithm. 

6.2.2 Programming Methods 

Both the PXIe-8102 and PXIe-7857R control hardware targets are programmed primarily 

in LabVIEW, a high-level graphical programming language which has similarities to 

MATLAB/Simulink. A more detailed overview of the LabVIEW programming language 

and the different variants for each hardware target is provided in Section 8.1. The target 

hardware platforms can also be programmed using low-level languages such as the 

C programming language for the PXIe-8102 and Verilog/VHDL for the PXIe-7857R. The 

programming methods used in this work are outlined and compared in the following sub-

sections.  

LabVIEW Standard 

LabVIEW ‘Standard’ as termed in this work is used to describe sorting algorithm 

implementations which are platform-agnostic and will run on either CPU or FPGA-based 

platforms without requiring modification of the LabVIEW block diagram code. The 

characteristics of this programming method can be summarised as follows: 

• Uses LabVIEW block diagram constructs which are available across all control 

hardware targets, such as standard loops (for(), while() loops etc.). 

• Highest level of programming abstraction possible in LabVIEW. 

• Relies heavily upon LabVIEW run-time environment or FPGA compiler to 

translate a high-level block diagram into target-specific executable code. 

• Requires minimal specific understanding of the underlying architecture of the 

hardware platform to produce functional code, therefore is relatively user-friendly. 
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Use of a high-level abstraction will typically reduce sorting algorithm performance and 

increase the logic resource usage when implemented on an FPGA due to the additional 

translation steps required to produce executable code from the high-level block diagram.   

LabVIEW FPGA Optimised 

LabVIEW FPGA ‘Optimised’ as termed in this work describes sorting algorithm 

implementations which are specific to the PXIe-7857R FPGA control hardware target. 

Sorting algorithms implemented using this method are still programmed using a graphical 

block diagram as with other LabVIEW variants, however, can be distinguished from 

LabVIEW Standard implementations by the following characteristics: 

• Uses FPGA-specific LabVIEW block diagram constructs (eg. single-cycle timed 

loops) and hand-coded finite state machines to control algorithm execution. 

• Code cannot be executed on CPU-based platforms without modification. 

• Requires an understanding of the underlying architecture of the FPGA and how 

FPGAs execute processing operations to produce functional code. 

LabVIEW FPGA-specific block diagram constructs map more directly onto the underlying 

architecture of the FPGA and provide the programmer with more control over how the 

algorithm is implemented. When compared to the LabVIEW Standard implementation on 

an FPGA, the FPGA Optimised route relies less upon the LabVIEW FPGA compiler to 

translate the block diagram into executable code (or logic) on the FPGA. This will 

typically reduce FPGA logic resource usage and execution time of the sorting algorithm. 

This is due to bypassing the automated synchronisation and flow control logic inserted by 

the LabVIEW FPGA compiler when using LabVIEW Standard on an FPGA [87]. 

Producing functional code does however require a deeper understanding of FPGA 

programming techniques, therefore this programming method is less user-friendly. 

Verilog 

Verilog is a text-based hardware description language (HDL) which is used to describe 

processing operations to be implemented as logic circuits on an FPGA. It is part of a 

family of HDLs including VHDL and SystemVerilog which are used in conjunction with a 

synthesis tool to translate the design onto elementary logic primitives on the FPGA such as 

logic gates and flip-flops.  
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Whilst Verilog and other HDLs can be used to directly synthesise logic primitives at the 

lowest level of abstraction, more commonly, register-transfer level (RTL) abstraction is 

used. In RTL design, a digital logic circuit is described as a set of registers and a set of 

logic functions which describe the operations performed on the data in the registers. The 

registers are implemented as synchronous logic (flip-flops) on the FPGA whilst the logic 

functions are implemented as combinatorial logic [88]. This abstraction has been used to 

implement the sorting algorithms in this work.  

Verilog is the lowest level programming method used to implement the sorting algorithms 

chosen for analysis in this work and is FPGA-specific. When compared to both LabVIEW 

programming methods, it can produce highly optimised logic on the FPGA due to 

removing the additional layers of abstraction introduced by LabVIEW. It does however 

require an in-depth understanding of FPGA programming techniques and is the least user-

friendly of the three programming methods.  

The key comparators described in the previous three sub-sections are summarised in Table 

6.2. The terms used in the table are relative to the other programming methods used. 

Programming 

Method 

Abstraction 

Level 
Performance 

Programming 

Difficulty 

LabVIEW 

Standard 
High Worst Low 

LabVIEW FPGA 

Optimised 
Medium Better Medium 

Verilog Low Best High 

Table 6.2: Comparison of sorting algorithm programming methods 

6.2.3 Sorting Algorithm Implementation Summary 

An overview of the combinations of sorting algorithms and programming methods which 

have been tested is provided in Table 6.3. All algorithms were tested for 𝑛 = 4, 8, 16, 32, 

128, and 256 except for bitonic merge sort and odd-even merge sort, which were only 

tested to 𝑛 = 64 and 𝑛 = 32 respectively. A maximum value of 𝑛 = 256 was chosen as a 

trade-off between the range of the number of submodules per arm, 𝑁𝑆𝑀, in a typical 

HVDC-scale MMC and the implementation effort required to test for higher values of 𝑛. 

Increasing 𝑛 in powers of two was chosen so that a larger range of values could be tested 

whilst reducing the implementation effort required to test linearly spaced values.  
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Bitonic merge sort and odd-even merge sort were only tested to 𝑛 = 64 and 𝑛 = 32 

respectively due to the significant increase in effort required to manually implement the 

sorting network structure for larger values of 𝑛. This in itself is a disadvantage of sorting 

networks. Whilst software tools have been created to automatically generate sorting 

networks with arbitrary numbers of inputs [89], these tools were not used since they 

generate Verilog source code for a specific FPGA platform and do not support LabVIEW-

based programming methods. 

Merge sort and quick sort were not implemented on the FPGA platform since both 

algorithms use recursion, which is not natively supported by FPGA hardware targets. The 

input to each sorting algorithm is an array of 10-bit SM capacitor voltages (corresponding 

to a SM capacitor voltage analogue-to-digital converter resolution of 10 bits) and an 8-bit 

SM identifier (maximum 𝑁𝑆𝑀 = 256). The trends in the results presented in the following 

sections are not tightly coupled to the use of 10-bit SM capacitor voltage readings and 8-bit 

SM identifiers, however the resource usage will change where different numbers of bits are 

used to represent SM capacitor voltage readings or SM identifiers.
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Programming 

Method 

Sorting Algorithm 

Bubble Sort Insertion Sort Merge Sort Quick Sort Bitonic Merge Sort Odd-Even Merge Sort 

CPU FPGA CPU FPGA CPU FPGA CPU FPGA CPU FPGA CPU FPGA 

LabVIEW 

Standard ✓ ✓ ✓ ✓ ✓ 
 ✓ 

 ✓ ✓ ✓ ✓ 

LabVIEW FPGA 

Optimised  ✓  ✓  
  

  ✓  ✓ 

Verilog  ✓  ✓  
  

  ✓  ✓ 

Table 6.3: Matrix of sorting algorithms, control hardware targets and programming languages tested 

Notes: 

 Grey shaded cells indicate that this combination of control hardware target and programming language is not possible. 


 Merge sort and quick sort are unsuitable for implementation on FPGA-based architectures since the standard implementation of both algorithms requires 

recursion, which is not supported by FPGAs. 


 Bitonic merge sort was only implemented to 𝑛 = 64 whilst odd-even merge sort was only implemented to 𝑛 = 32. This is due to the significant increase in 

effort to manually implement the sorting network structure at higher values of 𝑛.
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6.3 Sorting Algorithm Execution Time Range 

As stated previously, for sorting-based CBC methods, the sorting algorithm is a major 

source of execution delay relative to the total delay of the CBC loop and is often non-

deterministic. If the execution time of the sorting algorithm exceeds the control cycle 

period of the CBC loop, this may cause degraded capacitor balancing performance. Of 

particular interest is the maximum possible execution time of the sorting algorithm since 

this will dictate the minimum control cycle period achievable with a particular combination 

of sorting algorithm and control hardware. 

To determine the execution time range of the sorting algorithm implementations listed in 

Table 6.3, each algorithm was tested with a best-case and worst-case set of input values. 

For many classical sorting algorithms, the worst-case execution time occurs when the input 

set is reversed with respect to the direction of the sort() operation. Conversely, the best-

case execution time will occur when the input set is already fully sorted. Each algorithm 

was tested using a sample dataset consisting of a fully sorted and a fully reversed input list, 

and the sorting algorithm execution time, 𝑡𝑠𝑜𝑟𝑡, measured for each scenario. For the Xilinx 

Kintex-7 160T FPGA target, the execution time was measured by counting the number of 

clock ticks required for the sorting algorithm to execute, before converting to an execution 

time in microseconds using an FPGA clock frequency of 100 MHz. The execution time on 

the PXIe-8102 real-time CPU target was measured directly using the nanosecond 

resolution global timer provided by the timed loop block diagram construct in LabVIEW 

Real-Time. The execution time measured using this method is the total elapsed wall clock 

time taken for the sorting algorithm to execute to completion.  

The results from the execution time range measurements for each sorting algorithm are 

shown in Figure 6.1(a) to (d), grouped according to the control hardware target platform 

and programming method. The maximum and minimum execution time measurements for 

the FPGA targets are fixed, since the sorting algorithm is implemented in fixed digital 

logic which is dedicated to the algorithm. The execution time ranges shown in Figure 

6.1(a) for LabVIEW Standard running on the real-time CPU target are not fixed since the 

CPU is shared between other tasks. As a result, the execution time range shown is an 

estimate, however, is still representative of the typical order of execution time possible 

using LabVIEW Standard on the real-time CPU target. 
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(a) (b) 

  
(c) (d) 

 

Figure 6.1: Execution time range as a function of number of inputs vs. sorting algorithm implemented in (a) LabVIEW Standard on PXIe-8102, (b) Verilog 

on FPGA, (c) LabVIEW FPGA Optimised on FPGA, and (d) LabVIEW Standard on FPGA 

4 8 16 32 64 128 256

10-2

10-1

100

101

102

103

104

No. of Inputs (SMs), n = NSM

E
x

ec
u

ti
o

n
 T

im
e,

 t
so

rt
 (
μ

s)

LabVIEW Standard (Real-Time CPU Target)

4 8 16 32 64 128 256

10-2

10-1

100

101

102

103

104

No. of Inputs (SMs), n = NSM

E
x

ec
u

ti
o

n
 T

im
e,

 t
so

rt
 (
μ

s)

Verilog (FPGA Target),  fclock = 100 MHz

4 8 16 32 64 128 256

10-2

10-1

100

101

102

103

104

No. of Inputs (SMs), n = NSM

E
x

ec
u

ti
o

n
 T

im
e,

 t
so

rt
 (
μ

s)

LabVIEW FPGA Optimised (FPGA Target),  fclock = 100 MHz

4 8 16 32 64 128 256

10-2

10-1

100

101

102

103

104

No. of Inputs (SMs), n = NSM

E
x

ec
u

ti
o

n
 T

im
e,

 t
so

rt
 (
μ

s)

LabVIEW Standard (FPGA Target),  fclock = 100 MHz

4 8 16 32 64 128 256

10-2

10-1

100

101

102

103

104

Number of Inputs (SMs), N

E
x

ec
u

ti
o

n
 T

im
e,

 μ
s

LabVIEW Standard (Real-Time CPU Target)

 Bitonic Merge Sort   Odd Even Merge Sort   Bubble Sort   Insertion Sort   MergeSort   QuickSort



Chapter 6 Sorting Algorithms for Capacitor Balancing Control 

85 

6.3.1 Real-Time CPU Target 

Inspecting the results plotted for the real-time CPU target in Figure 6.1(a) first: bitonic 

merge sort and odd-even merge sort exhibit a range of execution times whilst the sorting 

networks running on the FPGA targets in Figure 6.1(b) to (d) have a fixed execution time. 

As outlined in Section 4.2, sorting networks are built from a fixed sequence of compare-

swap operators. When implemented in fixed digital logic on an FPGA, each operator takes 

a fixed number of clock cycles to execute, leading to a fixed execution time for a given 

value of 𝑛. On the real-time CPU target however, the execution time for each operator will 

vary as the CPU is shared between other tasks, resulting in a non-fixed execution time.  

Furthermore, the CPU target cannot execute compare-swap operators on the same stage of 

the sorting network in true parallel and instead forces sequential execution. This causes an 

increase in execution time range of 1 to 2 orders of magnitude over the same sorting 

network on all FPGA target implementations. As a result, both sorting networks offer sub-

optimal performance on the real-time CPU target and another sorting algorithm should be 

chosen instead. 

Comparing the classical sorting algorithms implemented on the real-time CPU target, 

bubble sort and insertion sort exhibit the lowest minimum and maximum execution times 

when compared to merge sort and quick sort. Both merge sort and quick sort use a divide-

and-conquer approach to sorting. In this approach, the input list is divided into smaller sub-

lists using recursion, before rebuilding the sub-lists in sorted order. In the LabVIEW 

Standard implementation of these algorithms, recursion is implemented using recursive 

calls to the same sub VI (virtual instrument, analogous to a function in a text-based 

programming language). Each sub VI call incurs a time delay as the CPU initialises new 

data structures for the sub VI and begins executing the sub VI code. This leads to an 

execution time overhead when compared to bubble sort and insertion sort on the same 

target, neither of which use recursion.  

Based on the results in Figure 6.1(a), the execution time of the sorting algorithms 

implemented on the real-time CPU target was not evaluated further in this work, due to the 

non-determinism of sorting algorithm execution on this target. Furthermore, arm-level 

control loops (including CBC) in an MMC are typically implemented on an FPGA or 

digital signal processor (DSP) control hardware target, so the results from the FPGA target 

are of greater interest.  
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6.3.2 FPGA Target 

The execution time range data for the three programming methods on the FPGA target are 

plotted in Figure 6.1(b) to (d). Considering the two sorting networks first, it can be seen 

that the execution time at each value of 𝑛 is fixed, and that both bitonic merge sort and 

odd-even merge sort exhibit the lowest execution time out of the algorithms tested.  

At each value of 𝑛, the execution times for the Verilog and LabVIEW FPGA Optimised 

implementations of the sorting networks are within +2 to −3 clock cycles of each other. 

When compared to LabVIEW Standard, LabVIEW FPGA is a lower-level abstraction 

which allows the programmer to implement digital logic with single clock cycle resolution. 

As a result, the LabVIEW FPGA Optimised implementation maps more directly to the 

underlying hardware description language and closely mirrors the Verilog implementation 

of the sorting networks. LabVIEW Standard is a higher-level abstraction which requires 

the insertion of additional logic by the LabVIEW FPGA Compilation Tool to preserve the 

LabVIEW dataflow execution paradigm. This additional logic incurs a clock cycle 

overhead and is the cause of the higher minimum and maximum execution times for all 

algorithms shown in Figure 6.1(d) when compared to LabVIEW FPGA Optimised and 

Verilog implementations. 

For the two classical sorting algorithms (bubble sort and insertion sort), the LabVIEW 

FPGA Optimised implementation exhibits lower minimum and maximum execution times 

than the equivalent Verilog implementation. The maximum execution times of the Verilog 

implementations are between 1.5 to 2.0 times the maximum execution times of the 

LabVIEW FPGA Optimised implementation, across all values of 𝑛. This is due to 

differences in programming the finite-state machine (FSM) which controls algorithm 

execution. The Verilog implementation of both algorithms requires a ‘stall’ state when 

array values are swapped, which consumes 1 clock cycle, whilst the LabVIEW FPGA 

Optimised implementation does not require this.  

Across all three FPGA targets, the minimum execution time of bubble sort and insertion 

sort grows linearly (𝑂(𝑛)), according to the best-case time complexity quoted in Table 4.1. 

The maximum execution time grows quadratically (𝑂(𝑛2)), according to the worst-case 

time complexity quoted in Table 4.1. From the data presented in Figure 6.1(b) to (d), it can 

be concluded that implementing any of the sorting algorithms tested in this work in 

LabVIEW FPGA Optimised provides a good balance between execution time and 

implementation effort.  
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6.4 Comparison of Balancing Method Execution Time Window 

and Sorting Algorithm Execution Time 

As outlined in the review of CBC methods in Section 3.2, the chosen CBC method dictates 

the time window available for the sorting algorithm to execute and return a sorted list. 

Alternatively, the time window can be dictated by the fundamental control cycle sampling 

period during which capacitor voltages are acquired, the CBC loop is triggered, and 

updated firing signals are communicated to the SMs.  

In addition to dictating the time available for sorting algorithm execution, the selected 

CBC method will affect the existing ordering of SM capacitor voltages at the input to the 

sorting algorithm. As stated in Section 4.1.2, for bubble sort and insertion sort, the existing 

ordering of the input set will directly influence the sorting algorithm execution time, 𝑡𝑠𝑜𝑟𝑡, 

whilst in the case of merge sort and quick sort the existing ordering has no effect. 

When the sorting algorithm execution time exceeds the time window available for 

execution, this will lead to a delay in updating SM firing signals for balancing purposes. 

This may cause an increase in the SM capacitor ripple voltage, which will reduce the 

lifespan of the SM capacitor due to increased ripple current [90] or will cause an imbalance 

between individual SM capacitor voltages, leading to uneven voltage steps in the AC 

output waveform.  

In this section, the time window available for the sorting algorithm to execute is compared 

with the real-world execution time of the FPGA-based sorting algorithm implementations 

listed previously in Table 6.3. The PSCAD/EMTDC MMC model introduced in Chapter 5 

was used to generate synthetic capacitor voltage data for three CBC methods:  

• Periodic CBC operating at 𝑓𝑠−𝐶𝐵𝐶 = 1 kHz 

• Average tolerance band (ATB) with a tolerance band of ± 5 % around the 

instantaneous average SM capacitor voltage, 𝑉𝑐𝑎𝑝(𝑡) 

• Cell tolerance band (CTB) with a tolerance band of ± 0.091 kV around the nominal 

SM capacitor voltage, 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 

The SM capacitor voltages for a single converter arm were then sorted offline and the 

sorting algorithm execution time measured. The percentage of CBC loop sampling instants 

where the sorting algorithm execution time exceeded a maximum allowable delay was then 

plotted. This allows for a thorough evaluation of the performance each sorting algorithm 

implementation when used with different CBC methods and converter operating scenarios.  
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6.4.1 Terminology 

The relationship between control cycle sampling period, 𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙, CBC method sampling 

period, 𝑇𝑠−𝐶𝐵𝐶, and sorting algorithm execution time, 𝑡𝑠𝑜𝑟𝑡, is shown in Figure 6.2. Time is 

shown on the x-axis in units of sampling instants, 𝑘, since this work is focussed upon CBC 

methods implemented in digital control hardware which operates in the discrete time 

domain. Where CBC is implemented in hardware operating in hard real-time, 𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is 

fixed and is the timebase from which all other control loop sampling periods are derived. 

In the case of CBC, during each control cycle three key operations are performed: 

• Capacitor voltage measurements are acquired from the SMs. 

• Capacitor balancing is triggered dependent upon the chosen CBC method and/or 

measured SM capacitor voltages. 

• Updated firing signals are communicated to the SMs. 
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Figure 6.2: Timing diagram showing the relationship between 𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑇𝑠−𝐶𝐵𝐶, 𝑡𝑠𝑜𝑟𝑡, 

𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑀𝐶𝐵𝐶, against sampling instant number, 𝑘 

In this work, 𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is equal to the PSCAD/EMTDC simulation timestep. The timestep 

was set to 50 μs to provide a balance between simulation fidelity and runtime. Limited 

information is available in the public domain regarding the base control cycle sampling 

period used in industrial HVDC MMCs. The book, “Design, Control, and Application of 

Modular Multilevel Converters” [18], whose authors include recognised researchers 

working at ABB, quote a typical control cycle sampling frequency of 10 kHz 

(𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 100 μs).  
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Furthermore, the paper, “Modelling and Current Control of Modular Multilevel Converters 

Considering Actuator and Sensor Delays” [91], whose authors include Siemens employees, 

quotes a control cycle sampling frequency of 25 kHz (𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 40 μs). The selection of 

a simulation timestep of 50 μs for this work is justified based on this information. 

In Figure 6.2, the sampling points shown are for the case where periodic CBC is chosen as 

the CBC method. In this case, 𝑇𝑠−𝐶𝐵𝐶 is fixed at an integer multiple of 𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙. For 

aperiodic CBC methods such as ATB and CTB, 𝑇𝑠−𝐶𝐵𝐶 varies from one sampling instant to 

the next, since the CBC loop is only triggered when a SM capacitor voltage exceeds a pre-

defined tolerance band.  

As can be seen in Figure 6.2, the sorting algorithm is triggered at each CBC loop sampling 

instant and executes asynchronously; that is, the sorting algorithm may finish executing at 

a time which is not aligned to a control cycle sampling instant. The sorting algorithm may 

finish executing: 

• Before the next control cycle sampling instant (as shown in region A in Figure 6.2). 

In this scenario, the sorting algorithm execution time will not affect CBC 

performance, since sorting is completed before the next control cycle. 

• After a delay of one or more control cycles, but before the next CBC loop sampling 

instant (region B). In this scenario, the sorting algorithm execution time may affect 

CBC performance, since updating the firing signals to the SMs for balancing 

purposes is delayed by one or more control cycles.  

• After a delay of one or more control cycles and one or more CBC loop cycles 

(region C). In this scenario, the sorting algorithm execution time will affect CBC 

performance, since firing signals are not updated before the next CBC loop cycle. 

If a sorting algorithm with a non-deterministic execution time is used, the execution time 

will vary from one CBC loop sampling instant to the next and may fall into region A, B, 

or C. Two variables, 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and 𝑀𝐶𝐵𝐶, are defined in this work and are used to measure 

the integer number of samples delay introduced by the sorting algorithm. Only integer 

values are of interest, since sorting algorithm execution time delays which fall between 

control cycle sampling instants cannot be resolved by the CBC loop.  
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𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 counts the number of samples delayed relative to the control cycle sampling 

instants when 𝑡𝑠𝑜𝑟𝑡 ≥ 𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙. 𝑀𝐶𝐵𝐶 counts the number of samples delayed relative to 

the CBC loop sampling instants when 𝑡𝑠𝑜𝑟𝑡 ≥ 𝑇𝑠−𝐶𝐵𝐶. 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and 𝑀𝐶𝐵𝐶 and are shown in 

the yellow- and blue-coloured circles in Figure 6.2, and are calculated for a given sampling 

instant, 𝑘, according to Equation 6.1 and Equation 6.2. 

𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘] = floor (
𝑡𝑠𝑜𝑟𝑡[𝑘]

𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙
) 6.1 

𝑀𝐶𝐵𝐶[𝑘] = floor (
𝑡𝑠𝑜𝑟𝑡[𝑘]

𝑇𝑠−𝐶𝐵𝐶[𝑘]
) 6.2 

6.4.2 Selection of Maximum Allowable Sample Delay 

Whilst researching the effects of internal converter communication network delays, the 

authors in [92] found that the maximum capacitor voltage deviation remained below 1 % 

of the nominal capacitor voltage, 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚, for a 2-sample delay (𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 2). As the 

number of samples delay was increased further, the maximum capacitor voltage deviation 

increased, up to a maximum of 2 % for an 8-sample delay (𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 8). A control cycle 

sampling period of 100 μs was used, and 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 was set at 170 V. The results in [92] 

demonstrate that the CBC loop can tolerate some delay whilst maintaining SM capacitor 

voltages within an acceptable tolerance band around 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚. 

Motivated by the research in [92], a maximum allowable control cycle sample delay, 

𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, was determined empirically by simulation for use in this work. 

Applying a threshold to 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘] ensures that only sampling instants where 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘] 

is large enough to cause an unacceptably large capacitor voltage deviation are counted. 

𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was chosen such that where 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘] < 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the 

maximum SM capacitor voltage deviation from 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 would remain within 

approximately ±8 % of 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚. This resulted in a value of 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 8 being 

chosen, corresponding to a 400 μs delay where 𝑇𝑠−𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 50 μs. The selection process 

for 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is described in more detail in Appendix C. 
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6.4.3 Execution Time Results 

To compare the time available for the sorting algorithm to execute with the real-world 

execution time of the FPGA-based sorting algorithms, 𝑇𝑠−𝐶𝐵𝐶[𝑘] was calculated at each 

CBC loop sampling instant for the three CBC methods (periodic, ATB, and CTB). Three 

converter operating scenarios were tested. To simplify the analysis, only the results from 

the upper arm of phase A are shown, since the other five arms will exhibit similar results. 

𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘] was then calculated using the sorting algorithm execution time measurements 

for the six sorting algorithm implementation combinations listed in Table 6.4. 

Sorting Algorithm Programming Methods 

Bubble Sort 

Verilog 

LabVIEW FPGA Standard 

LabVIEW FPGA Optimised 

Insertion Sort 

Verilog 

LabVIEW FPGA Standard 

LabVIEW FPGA Optimised 

Table 6.4: List of sorting algorithms and programming method combinations tested  

The three CBC methods tested are each triggered a different number of times within a 

given simulation time frame. To allow a direct comparison between CBC methods, the 

number of times 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘] is greater than or equal to 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ was converted to a 

percentage of the total number of CBC loop sampling instants within the selected time 

frame. This process is shown in Figure 6.3. 

control cycle sampling 

instants

(simulation timestep)

CBC loop sampling 

instants (periodic)

sorting algorithm 

execution time

0 1 2 3 4 5 6 7 8 9 10

k

sort
t

Mcontrol-thresh = 3

Mcontrol[0] = 0 Mcontrol[3] = 2 Mcontrol[6] = 3

= Mcontrol[k] ˂ Mcontrol-thresh = Mcontrol[k]   Mcontrol-thresh 
 

Figure 6.3: Timing diagram showing the relationship between 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘], 

𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ, and total number of CBC loop sampling instants 
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For example, in Figure 6.3 the simulation time frame spans from 𝑘 = 0 to 𝑘 = 10. The CBC 

loop is triggered three times within this time frame and 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘] is greater than or equal 

to 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ at one CBC loop sampling instant when 𝑘 = 6. This corresponds to 33 % 

of the total number of CBC loop sampling instants being greater than or equal to 

𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ = 3.  

Supplementary plots showing CBC loop sampling instants against arm current, SM 

insertion index, and SM capacitor voltage are included in Appendix D. These show the 

variation in CBC loop sampling period between the three CBC methods and three 

simulation scenarios tested.  

Scenario 1: Steady State Power Import 

A steady state operating scenario was tested first, with the MMC operating in inverter 

mode configured to import 1200 MW of active power (𝑃∗) and 0 MVAr of reactive power 

(𝑄∗). This provides a base case for comparison with the other operating scenarios. For each 

operating scenario a simulation time frame of 𝑡 = 2.05 seconds to 𝑡 = 2.35 seconds was 

analysed. The converter-level response for scenario 1 is plotted in Figure 6.4. The 

percentage of CBC loop cycles where the sorting algorithm execution time exceeds the 

threshold is shown in the bar graph in Figure 6.5 for the three CBC methods and six sorting 

algorithm implementations. 

As can be seen in Figure 6.5, where periodic CBC is used, the 8-cycle threshold is 

exceeded at all CBC loop sampling instances by all sorting algorithm implementations, 

apart from insertion sort implemented in LabVIEW FPGA Optimised. Similar results are 

observed when ATB is used. From these results it can be deduced that the list of SM 

capacitor voltages at the input to the sorting algorithm exhibits poor pre-sortedness. As a 

result, more compare-swap operations (and therefore more clock cycles) are required to 

generate a sorted list. 
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Figure 6.4: Converter-level response for scenario 1, steady state operation at 

𝑃∗ = −1200 MW, 𝑄∗ = 0 MVAr (import, inverter mode) 

In the case of CTB, the 8-cycle threshold is exceeded at a smaller percentage of CBC loop 

sampling instances across all sorting algorithm implementations. When compared with 

periodic and ATB methods, capacitor balancing is triggered at a higher frequency when 

CTB is used. Table 6.5 lists the total number of CBC loop sampling instances for each 

CBC method in the simulation time frame under consideration. This shows that CTB has a 

higher number of trigger instances than either periodic or ATB methods. 
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Figure 6.5: Percentage of CBC loop cycles where 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ = 8 was exceeded for 

scenario 1 

CBC 

Method 

Total Number of CBC 

Loop Sampling Instances  

(𝑡 = 2.05 to 𝑡 = 2.35 seconds) 

Periodic 301 

ATB 2469 

CTB 4701 

Table 6.5: Total number of CBC loop sampling instances per CBC method, scenario 1 

The higher sampling frequency of CTB when compared with periodic and ATB methods 

leads to a smaller deviation in individual SM capacitor voltages from 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 in the 

interval between CBC loop sampling instances. As a result, the list of SM capacitor 

voltages at the input to the sorting algorithm exhibits better pre-sortedness, therefore fewer 

clock cycles are required generate a sorted list.  

Scenario 2: Power Flow Reversal 

In the second scenario, the MMC was configured to operate in inverter mode importing 

1200 MW of active power and 0 MVAr of reactive power. A full active power flow 

reversal was then initiated starting at 𝑡 = 2.1 seconds and finishing at 𝑡 = 2.35 seconds. The 

converter-level response for scenario 2 is shown in Figure 6.6 and the percentage of cycles 

where the sorting algorithm execution time exceeds the threshold is shown in Figure 6.7. 
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Figure 6.6: Converter-level response for scenario 2, full power flow reversal at approx. 

𝑡 = 2.1 seconds from 𝑃∗ = −1200 MW (import, inverter), 𝑄∗ = 0 MVAr, to 𝑃∗ = 1200 MW, 

𝑄∗ = 0 MVAr (export, rectifier) 
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Figure 6.7: Percentage of CBC loop cycles where 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ = 8 was exceeded for 

scenario 2 

Comparing data for periodic CBC in Figure 6.7 with the data for scenario 1 in Figure 6.5, 

the percentage of cycles above the threshold is lower for all sorting algorithm 

implementations. This can be explained by inspecting the converter output current in 

Figure 6.6. During power flow reversal, the converter output current, 𝐼𝑎𝑐(𝑎𝑏𝑐), drops to zero 

as the active power is decreased, before increasing as the active power ramps up again. 

Correspondingly, the current in each converter arm will also decrease to zero before 

increasing again during this interval, as shown in Figure 6.8 for the upper arm of phase A. 

 

Figure 6.8: Phase A, upper arm current for scenario 2 
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Recalling the SM capacitor voltage dynamics described in Section 2.1, inserted SMs are 

charged or discharged dependent upon the arm current direction, whilst the rate of charge 

or discharge is determined by the arm current magnitude. In Figure 6.8, the arm current 

magnitude is less than the steady state value from 𝑡 = 2.1 seconds to 𝑡 = 2.3 seconds. In 

this region, SM capacitors will be charged or discharged at a slower rate and SM capacitor 

voltages will diverge less between each CBC loop sampling instant. As a result, the list of 

SM capacitor voltages will be more ordered prior to sorting and fewer compare-swap 

operations are required to generate the sorted output list. This leads to a reduction in 

sorting algorithm execution time and the percentage of CBC loop cycles which exceed the 

delay threshold. 

The total number of CBC loop sampling instances for scenario 2 are listed in Table 6.6. 

Comparing the values for CTB with scenario 1 and 3, the total number of sampling 

instances is lower, since the rate of charging and discharging of SM capacitors is reduced 

during power flow reversal and capacitor voltages remain within the tolerance band. 

CBC 

Method 

Total Number of CBC 

Loop Sampling Instances  

(𝑡 = 2.05 to 𝑡 = 2.35 seconds) 

Periodic 301 

ATB 1498 

CTB 3917 

Table 6.6: Total number of CBC loop sampling instances per CBC method, scenario 2 

Despite the reduction in number of CBC loop sampling instances, both ATB and CTB 

methods exhibit a higher percentage of cycles above the threshold across all sorting 

algorithm implementations compared with scenario 1 and 3. This may be due to a 

reduction in the CBC loop sampling period and therefore the time available for the sorting 

algorithm to execute. Alternatively, the increase in cycles above the threshold may be due 

to a more unordered list of SM capacitor voltages at the input to the sorting algorithm 

which will take longer to sort.  
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Scenario 3: AC 3 Phase-ground Fault 

In the third scenario, the MMC was configured to operate in inverter mode, importing 

1200 MW of active power and 0 MVAr of reactive power. An instantaneous symmetric 3 

phase-ground short circuit (0 ohm) fault was then applied at the point of common coupling 

(PCC) at 𝑡 = 2.1 seconds and cleared after 140 milliseconds, within one simulation 

timestep (50 μs). Control and protection functions were not initiated during the fault and 

the converter remained unblocked and continued to feed current into the fault. The fault 

location is shown in the simulation model circuit diagram in Figure 5.1 in Chapter 5. The 

converter-level response for is shown in Figure 6.9 and the percentage of cycles where the 

sorting algorithm execution time exceeds the threshold is shown in Figure 6.10. 

 

Figure 6.9: Converter-level response for scenario 3, 3-phase symmetric AC phase-ground 

fault at PCC at 𝑡 = 2.1 seconds for 140 milliseconds 
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Figure 6.10: Percentage of CBC loop cycles where 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ = 8 was exceeded for 

scenario 3 

From Figure 6.10, all sorting algorithm implementations, apart from insertion sort 

implemented in LabVIEW FPGA Optimised, fail to finish executing within the 8-cycle 

threshold, where periodic or ATB methods are used. In addition, the percentage of cycles 

above the threshold is higher across all implementations for the CTB method, when 

compared with scenarios 1 and 2. Across all CBC methods, these results can be attributed 

to the interaction between arm current and SM insertion index during the fault event.  

Observing the arm current waveform in Figure 6.11, prior to the fault occurring at 

𝑡 = 2.1 seconds, the steady state arm current magnitude is in the range of approximately 

−0.75 kA to 2 kA. In the cycle immediately following the fault, the arm current peaks at a 

maximum of 2.75 kA and a minimum of −1.25 kA, before stabilising whilst the fault 

remains present. Upon clearing the fault at  𝑡 = 2.24 seconds, the arm current peaks at 4 kA 

and stabilises to the steady state magnitude within two cycles. 



Chapter 6 Sorting Algorithms for Capacitor Balancing Control 

100 

 

Figure 6.11: Phase A, upper arm current for scenario 3 

In addition to the large arm current disturbance, the range of the SM insertion index (𝑁𝑜𝑛) 

is also reduced during the fault event, as shown in Figure 6.12. A reduced number of 

inserted SMs, coupled with an increase in arm current magnitude will cause the inserted 

SMs to charge or discharge at a faster rate, causing a larger deviation in SM capacitor 

voltage between CBC loop sampling instants. This will lead to a less ordered list of SM 

capacitor voltages at the input to the sorting algorithm, which will correspondingly cause 

an increase in sorting algorithm execution time.  

 

Figure 6.12: Phase A, upper arm SM insertion index for scenario 3 

The total number of CBC loop sampling instances for the three CBC methods are listed in 

Table 6.7. Compared with scenarios 1 and 2, the number of CBC loop firings for CTB is 

higher, due to CTB using a fixed upper and lower SM capacitor voltage limit which does 

not track the deviation in instantaneous mean SM capacitor voltage (𝑉𝑐𝑎𝑝(𝑡)) during the 

fault event. Conversely, ATB is triggered fewer times than scenarios 1 and 2. In the ATB 

method, the upper and lower voltage limits are calculated using 𝑉𝑐𝑎𝑝(𝑡) at each control 

cycle sampling instant, therefore the voltage limits track the deviation in 𝑉𝑐𝑎𝑝(𝑡) which 

occurs during the fault event.  
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CBC 

Method 

Total Number of CBC 

Loop Sampling Instances  

(𝑡 = 2.05 to 𝑡 = 2.35 seconds) 

Periodic 301 

ATB 1424 

CTB 4879 

Table 6.7: Total number of CBC loop sampling instances per CBC method, scenario 3 

Summary 

From the results presented in this section, it can be seen that the choice of sorting 

algorithm and implementation method has a direct effect on whether or not the sorting 

algorithm finishes executing within the required time window. Across all CBC methods 

and operating scenarios, insertion sort has a consistently lower execution time than bubble 

sort, when comparing for the same implementation method. Insertion sort can be 

recommended as the preferred sorting algorithm where a classical, sequential sorting 

algorithm is used.  

Of note is insertion sort implemented in LabVIEW FPGA Optimised, which has a delay of 

less than 8 control cycles across all CBC methods and operating scenarios. As outlined in 

Section 6.3.2, insertion sort in the form implemented in this work does not require an 

additional ‘stall’ cycle when a swap operation is required, which reduces execution time 

when compared to LabVIEW FPGA Standard and Verilog implementations. 

Across all three operating scenarios, all other sorting algorithms exhibited percentage of 

cycles above the 8-cycle threshold which was equal to or approaching 100 %, when 

periodic or ATB methods were chosen. To remedy this, it may be necessary to increase the 

FPGA clock frequency above 100 MHz to ensure that the sorting algorithm executes in the 

available time window.  

Finally, across all scenarios, the CTB capacitor balancing method consistently has the 

highest number of sampling instances. As the CBC loop is triggered at a higher frequency, 

SM capacitor voltages diverge less between sampling instances, and the sorting algorithm 

is presented with a better-ordered input list, reducing the sorting algorithm execution time. 
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Histogram plots of the number of missed control cycles for each sorting algorithm, CBC 

method, and operating scenario are included in Appendix D. These provide a more detailed 

insight into number of control cycles delay by showing the distribution of missed control 

cycles in histogram form, rather than applying a simple threshold value as has been done in 

this chapter. 

The analysis presented in this section can be extended further by incorporating the real-

world sorting algorithm execution delay into the CBC loop used in the simulation model. 

This will allow evaluation of the effect of the execution time delay upon the capacitor 

voltage ripple, including the non-deterministic behaviour of the sorting algorithm from one 

CBC loop sampling instant to the next. 

6.5 Sorting Algorithm FPGA Logic Resource Usage 

As outlined in the introduction to this chapter, another objective of this research is to 

measure FPGA logic resources used by each sorting algorithm when implemented using 

different programming methods. The results from this work can be used to guide the 

choice of sorting algorithm for sorting-based CBC methods when the CBC loop is 

implemented alongside other control functions on the same FPGA.  

To allow a comparison of the logic resource usage of bubble sort, insertion sort, bitonic 

merge sort, and odd-even merge sort, each algorithm was programmed using the three 

implementation methods. The number of inputs to each algorithm was then varied from 

𝑛 = 4 to 𝑛 = 256 and the resulting implementation synthesised for the Xilinx 

Kintex-7 160T FPGA used on the NI PXIe-7857R. The number of logic slices used was 

then recorded and used as a measure of FPGA logic resource usage. 

6.5.1 FPGA Synthesis Process 

In FPGA firmware development, the term ‘synthesis’ is used to describe the process of 

translating an FPGA design from source code to a design which can be loaded onto an 

FPGA. It is analogous to the compilation process in software development, however the 

resulting design is implemented in fixed digital logic, rather than a set of instructions for 

execution on a processor or microcontroller. The synthesis process has several steps which 

map a design to the underlying logic blocks on the FPGA. These are shown in the 

flowchart in Figure 6.13. 



Chapter 6 Sorting Algorithms for Capacitor Balancing Control 

103 

As outlined in Section 6.2.2, LabVIEW and Verilog were used to implement the sorting 

algorithms tested in this work. The algorithm implementation step is shown at the top of 

the flowchart in Figure 6.13, the output of which is a set of Verilog source code files, or a 

LabVIEW VI. The next steps in the synthesis process are different for Verilog and 

LabVIEW implementations and are explained in the following sub-sections.  

LabVIEW FPGA 
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Design 

Constraints
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LabVIEW 2020 FPGA Compilation ToolXilinx Vivado 2019.1
 

Figure 6.13: Synthesis process for sorting algorithm logic resource usage measurements 
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LabVIEW FPGA Compiler Code Generation 

When using LabVIEW to program the Xilinx Kintex-7 in the PXIe-7857R, the high-level 

abstraction LabVIEW VI must first be translated into low-level synthesisable VHDL 

source code. This process is carried out by the LabVIEW FPGA Compilation Tool, shown 

by the yellow bounding box in Figure 6.13. In addition to VHDL source code generation, 

the compilation tool inserts FPGA target-specific VHDL modules and constraint files to 

support the integration of the Xilinx Kintex-7 on the PXIe-7857R. It also controls the 

overall compilation process and automatically invokes the Xilinx Vivado 2019.1 toolchain 

with the appropriate directives for the FPGA synthesis steps, as shown by the blue 

bounding box in Figure 6.13.  

Synthesise 

In the synthesis step of the compilation process, the compiler translates the HDL source 

code into digital logic elements such as logic gates and flip-flops, and a list of connections 

between these elements (netlist). By analysing the LabVIEW FPGA Compilation Tool log 

files, it was possible to extract the directives used by compilation tool when invoking the 

Xilinx Vivado toolchain. The same directives were then used when manually compiling 

the Verilog implementations of the sorting algorithms to provide a like-for-like comparison 

of logic resource usage.  

Optimise Design 

At each stage of the synthesis process, the compilation tool can be provided with directives 

to optimise the FPGA design. These may include optimising for area (minimise logic 

resource usage), timing (maximise clock frequency), or power (minimise power 

consumption). Since logic resource usage is the focus of this work, the LabVIEW FPGA 

Compilation Tool was configured to use the ‘Optimise Area’ implementation strategy. This 

corresponds to invoking the Vivado opt_design command with the “ExploreArea” 

directive. The same directive was therefore also used for manual compilation of the 

Verilog implementations of the sorting algorithms. These are shown in the parallelogram 

boxes in Figure 6.13. 
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Map 

The mapping stage of the synthesis process translates logic elements from the optimised 

design onto the logic blocks provided by the underlying architecture of the FPGA, creating 

a network of logic blocks. At this stage the logic blocks are not assigned to specific 

locations on the FPGA. In the case of Xilinx FPGAs such as the Kintex-7 used in this 

work, logic blocks are referred to as ‘slices’ and contain four lookup tables and eight flip-

flops [86]. FPGAs from other manufacturers use different terminology and architectures. 

Place and Route 

The final stage of the synthesis process, prior to generating a programming file for the 

FPGA, is to place and route the design. In the placement step, the compiler assigns the 

logic blocks from the mapping step to specific locations on the FPGA. The 

interconnections between the logic blocks are then defined in the routing step using the 

netlist generated previously. For the purposes of this work, the synthesis process was 

stopped following the placement step, since the required logic resource usage data could be 

extracted at this point. 

Report Usage 

Reports can be generated at each stage of the synthesis process to provide detailed 

information on the implementation of the design on the FPGA. Logic resource usage can 

be reported following completion of any of the steps outlined previously. For this work, 

logic resource usage post-placement is of interest, since this reports the total number of 

slices used when the sorting algorithm is implemented on the FPGA. 

As stated previously, the LabVIEW FPGA Compilation Tool inserts additional support 

logic around the LabVIEW VI. As a result, the logic resource usage reported by the 

compilation tool is not specific to the sorting algorithm VI and includes the logic resources 

used by the support logic. To provide a direct comparison of sorting algorithm logic 

resource usage across all three programming methods, the logic resource usage was 

extracted from the LabVIEW FPGA synthesis process. 
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6.5.2 Logic Resource Usage Results 

The total number of slices used by the design, 𝑁𝑠𝑙𝑖𝑐𝑒, reported by the synthesis tool for 

each sorting algorithm and programming method combination at each value of 𝑁 are 

plotted in Figure 6.14 and Figure 6.15. The graphs in both figures have been generated 

using the same dataset however are plotted with different subplots to allow for a range of 

comparisons to be carried out. The plots in Figure 6.14(a) to (d) show the total number of 

slices used by each sorting algorithm vs. programming method, plotted per sorting 

algorithm. Figure 6.15(a) to (c) shows total number of slices used vs. sorting algorithm, 

plotted per programming method. The total slice usage as a percentage of the total number 

of available slices on the Xilinx Kintex-7 160T FPGA is also shown on the right-hand 

y-axis in Figure 6.15. Both figures use log-log scales. 

The slice usage results presented in this section are not directly applicable to FPGAs from 

other manufacturers since different manufacturers use alternative configurations of lookup 

tables and flip-flops to construct the logic blocks on their devices. The results are however 

indicative of which sorting algorithms and programming methods consume more or fewer 

FPGA logic resources and can still be used to guide the sorting algorithm selection 

process. Furthermore, where the slice usage approaches the total number of slices on the 

Kintex-7 160T, the usage results reported may be less representative due to the mapping 

tool working harder to optimise logic to fit on the device. The sorting algorithms 

programmed in LabVIEW were implemented and optimised without assistance from 

National Instruments, using only openly available knowledgebase articles and whitepapers. 
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 (c) (d) 

 

Figure 6.14: Plot of total number of slices used vs. number of inputs vs. programming 

method for (a) bubble sort, (b) insertion sort, (c) bitonic merge sort, and (d) odd-even 

merge sort. Note: log2 x-axis and log10 y-axis scales. 

 Comparison Based Upon Sorting Algorithm 

In the first instance, inspecting Figure 6.14(a) and (b) for bubble sort and insertion sort 

respectively, it can be seen that the total slice usage for both algorithms grows linearly 

across all programming methods. This matches the theoretical 𝑂(𝑛) (linear) growth rate 

for the space complexity of bubble sort and insertion sort.  
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For both algorithms, the increase in slice usage is caused by the additional FPGA memory 

resources (flip-flops) required to store the input and output arrays as 𝑛 is increased. Each 

array element requires the same number of FPGA resources to implement, so increasing 

the number of array elements leads to linear growth of the total slice usage. Unlike sorting 

networks (bitonic merge sort and odd-even merge sort), the algorithm structure stays the 

same and only the number of loop iterations changes as 𝑛 is increased. 

For both bubble sort and insertion sort, the Verilog implementation consistently requires 

fewer FPGA slices to implement when compared to both LabVIEW implementations. The 

slice usage overhead for both LabVIEW implementations is due to the additional logic 

inserted by the LabVIEW FPGA Compilation Tool. This logic is required to ensure that 

the FPGA design executes according to the LabVIEW dataflow programming 

paradigm [93]. An approximate value for the difference in slices required per input to the 

sorting algorithm, 𝑁𝑠𝑙𝑖𝑐𝑒−𝑑𝑖𝑓𝑓, between the Verilog and LabVIEW FPGA Optimised 

implementations can be calculated according to Equation 6.3: 

𝑁𝑠𝑙𝑖𝑐𝑒−𝑑𝑖𝑓𝑓 =
∆𝑁𝑠𝑙𝑖𝑐𝑒

𝑛
=

𝑁𝑠𝑙𝑖𝑐𝑒−𝐿𝑉𝐹𝑃𝐺𝐴 − 𝑁𝑠𝑙𝑖𝑐𝑒−𝑉𝑒𝑟𝑖𝑙𝑜𝑔

𝑛
 6.3 

For both bubble sort and insertion sort, 𝑁𝑠𝑙𝑖𝑐𝑒−𝑑𝑖𝑓𝑓 fell within the range of +12 to +86 

slices per array element, with a mean increase in slice usage of +35 slices. The difference 

in the number of slices decreased as 𝑛 was increased and is possibly due to the FPGA 

synthesis tool working harder to optimise slice usage as the slice usage as a percentage of 

available slices on the Kintex-7 160T FPGA increased. 

Similarly, the LabVIEW Standard implementation consistently requires more FPGA slices 

than the LabVIEW FPGA Optimised implementation across the range of values of 𝑛. This 

is also due to logic added by the compilation tool which is required to support the higher 

abstraction level of LabVIEW Standard. Across both bubble sort and insertion sort, 

𝑁𝑠𝑙𝑖𝑐𝑒−𝑑𝑖𝑓𝑓 between optimised and standard implementations was within the range of 

+6 to +24 slices with a mean increase in slice usage of +14 slices. 

Comparing the two sorting networks in Figure 6.14(c) and (d), both LabVIEW FPGA 

Optimised and Standard implementations have near identical slice usage across the range 

of values of 𝑛 tested. Using Equation 6.3 but comparing the optimised and standard 

implementations, 𝑁𝑠𝑙𝑖𝑐𝑒−𝑑𝑖𝑓𝑓 was in the range −   to +3 slices with a mean slice difference 

of −3 slices.  
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The near identical slice usage of LabVIEW FPGA Optimised and LabVIEW Standard 

implementations of the sorting networks can be attributed to two factors. Firstly, the same 

sorting network structure is used for both programming methods, with the same number 

and sequence of compare-swap operators. Secondly, both implementations require 

sequencing logic to ensure that downstream compare-swap operators do not execute until 

the preceding operator has supplied a valid output signal.  

In the LabVIEW Standard implementation, the sequencing logic is automatically inserted 

by the compilation tool to preserve the dataflow execution order of LabVIEW, as outlined 

previously. In the LabVIEW FPGA Optimised implementation, the sequencing logic was 

manually programmed in the form of a two-state FSM contained within each compare-

swap operator. The manually implemented sequencing logic operates in a similar way to 

the enable register chain automatically inserted by the compilation tool for the LabVIEW 

Standard implementation [93] and as a result, requires a similar number of logic resources 

to implement on the FPGA.  

Comparing the Verilog and LabVIEW FPGA implementations in Figure 6.14(c) and (d), 

again it can be seen that the Verilog implementation consistently has a lower slice usage 

across all values of 𝑛 and grows at a slower rate. Across both bitonic merge sort and odd-

even merge sort, 𝑁𝑠𝑙𝑖𝑐𝑒−𝑑𝑖𝑓𝑓 was calculated in the range +40 to +86 slices, with a mean 

increase in slice usage of +60 slices. As with insertion sort and bubble sort, the slice 

difference per array element decreased as 𝑛 was increased, possibly due to better 

optimisation of the design by the FPGA synthesis tool as percentage slice usage increases. 

Comparison Based Upon Programming Method 

As stated previously, the plots presented in Figure 6.15(a) to (c) show the total number of 

slices used vs. sorting algorithm, plotted per programming method. The right-hand y-axis 

shows the total number of slices used as a percentage of the total number of slices available 

on the Xilinx Kintex-7 160T FPGA used in the NI PXIe-7857R.  

Comparing the total slice usage of bitonic merge sort and odd-even merge sort with bubble 

sort and insertion sort, the two sorting networks provide a small reduction in slice usage at 

𝑛 = 4 across all three programming methods. The reduction in slice usage ranges between 

23 to 148 fewer slices than bubble sort or insertion sort, representing 0.09 % to 0.58 % of 

total available slices on the Kintex-7 160T FPGA. This advantage is lost at values of 𝑛 ≥ 8, 

beyond which both sorting networks consume more slices than either bubble sort or 

insertion sort. 
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(b) 

 
(c) 

 

Figure 6.15: Plot of total number of slices used vs. number of inputs vs. sorting algorithm 

for (a) Verilog, (b) LabVIEW FPGA Optimised, and (c) LabVIEW Standard. The right-

hand y-axis corresponds to total slice usage as a percentage of available slices on the 

Xilinx Kintex-7 160T FPGA. Note: log2 x-axis and log10 y-axis scales. 
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The high growth rate of slice usage for both sorting networks is due to the sorting network 

structure changing as 𝑛 is increased and more compare-swap operator blocks are added to 

the sorting network. The number of compare-swap operators required grows according to 

𝑂(𝑛⁡log2⁡𝑛), as stated in Section 4.1.3, which is greater than the 𝑂(𝑛) (linear) space 

complexity of bubble sort and insertion sort. The higher slice usage growth rate for both 

sorting networks results in between 25 % to 39 % of total available slices being consumed 

for bitonic merge sort at 𝑛 = 64 across all three programming methods. A similar 

percentage slice usage is reached only at 𝑛 = 256 for bubble sort and insertion sort when 

programmed in LabVIEW FPGA Optimised or LabVIEW Standard.  

As can be seen in Figure 6.15, odd-even merge sort has a consistently lower slice usage 

when compared to bitonic merge sort. Across all three programming methods and all 

values of 𝑛, 𝑁𝑠𝑙𝑖𝑐𝑒−𝑑𝑖𝑓𝑓 between bitonic merge sort and odd-even merge sort is in the range 

of −2 to −22 slices with a mean reduction in slice usage of −9 slices. This reduction in slice 

usage is due to odd-even merge sort requiring fewer compare-swap operators per stage of 

the sorting network. Coupled with having the same or lower execution time than bitonic 

merge sort as shown in Figure 6.1, odd-even merge sort is preferable to bitonic merge sort 

where a sorting network is used for the CBC sorting algorithm  

The high slice usage of sorting networks means that there may be insufficient space to 

implement the CBC loop for even a single converter arm on an FPGA such as the 

Kintex-7 160T, dependent upon the number of inputs required (recalling that 𝑛 = 𝑁𝑆𝑀). 

Several authors have explored factorising sorting networks by reusing compare-swap 

operators to reduce logic resource usage, at the expense of increased execution time [66, 

67, 71]. Alternatively, an FPGA with more logic resources may be required. Furthermore, 

manually implementing sorting networks for values of 𝑛 ≥ 64 is increasingly difficult and 

error prone. As a result, it may be necessary to explore the use of automated sorting 

network generation tools [89, 94] to implement sorting networks for larger values of 𝑛. 

When compared with each other using the same programming method, bubble sort and 

insertion sort require a similar total number of slices at each value of 𝑛. Across all three 

programming methods, 𝑁𝑠𝑙𝑖𝑐𝑒−𝑑𝑖𝑓𝑓 is in the range −9 to +10 slices, which is 0.039 % of 

total slices available on the Kintex-7 160T FPGA. Since slice usage is similar between 

both algorithms, the choice between whether to use bubble sort or insertion sort for CBC 

should then instead be made based upon which algorithm has the desired execution time. 
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Despite the lower slice usage growth rate of bubble sort and insertion sort, both sorting 

algorithms approach between 29 % to 45 % slice usage on the Kintex-7 160T FPGA at 

𝑛 = 256 when programmed in LabVIEW. As a result, it may still only be possible to fit 

CBC loops for two converter arms on a single Kintex-7 160T FPGA at 𝑛 = 256, allowing 

space for other control functions in addition to the CBC loop itself. Since the growth in 

slice usage for both algorithms is due to the increase in memory elements required to store 

the input and output arrays, it is impossible to factorise the algorithms to reduce slice 

usage. An FPGA with more logic resources may be required dependent upon the 

application specifics, such as: 𝑁𝑆𝑀, the number of arms to be controlled by a single FPGA, 

and the need to implement other control functions on the same FPGA.  

Finally, implementing any of the sorting algorithms in Verilog leads to a significant 

reduction in slice usage across all values of 𝑛, when compared to either LabVIEW 

programming method. Despite this, the implementation difficulty is higher for Verilog, so 

a trade-off is required between development time and the need to fit all control functions 

onto the chosen FPGA. 

6.6 Summary 

The performance of sorting algorithms used in the CBC loop of an MMC have been the 

subject of limited research to date and have been assumed to be a trivial component in the 

overall CBC loop. This is despite the fact that sorting is a computationally complex 

operation, which introduces a time delay to the CBC loop, which may also be non-

deterministic in the case of classical sorting algorithms. These factors can degrade 

capacitor balancing performance. 

This chapter has provided a comprehensive evaluation of the performance of a selection of 

sorting algorithms and sorting networks for capacitor balancing control. A range of sorting 

algorithms have been tested, focussing upon algorithms which have been mentioned in the 

open-access literature. The programming methods and control hardware targets which 

were used to test the sorting algorithms have been chosen to be industrially-representative 

to ensure the results are applicable to MMCs with different ratings.  
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Three CBC methods which require a fully sorted list of SM capacitor voltages have been 

used to generate synthetic capacitor voltage data for three converter operating scenarios. 

The sorting algorithm execution time and CBC loop sampling period results show the 

inter-dependence of the chosen sorting algorithm, CBC method, and converter operating 

scenario. When designing the CBC loop, careful consideration must be given to these 

factors to ensure that SM capacitor voltages remain balanced and within tolerance.  
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7 Converter Hardware Prototype 

This chapter provides an overview of the reduced-scale converter hardware prototype 

(CHP) used as the experimental platform for hardware validation during the project. The 

CHP was constructed as part of a previous PhD project in the Department as documented 

in [25] and [95]. Extensive changes have been made to the CHP control software during 

this project to facilitate the research objectives; these are explained in more detail in 

Chapter 8.  

In this chapter the CHP original design objectives are outlined first, followed by the 

electrical components and ratings, with reference to [25]. Whilst modification of the CHP 

electrical hardware was not generally required, one significant modification to resolve an 

issue identified in [25] was made during this project; this is described for documentation 

purposes. A high-level overview of the distributed control architecture is then provided 

using a top-down approach, and the individual pieces of control hardware and the 

communication links between them are outlined.  

7.1 Design Objectives  

Prototype hardware MMCs constructed in academia or in industry are typically designed 

for research in a specific area such as: power system and multi-terminal networks, novel 

converter and SM topologies, fault and protection methods, or converter control 

architectures [82]. Designing for a specific objective allows for in-depth studies in the 

chosen area, as well as reducing complexity and cost by simplifying the design in areas 

which are not the main focus. 

This CHP has been designed for research into the effect of industrially representative 

control and communication implementations upon internal converter dynamics. This 

includes the effects of non-ideal behaviour such as computation and communication 

delays, jitter, and packet loss which are present in real-world digital control systems. To 

enable this type of research, the CHP uses a distributed control architecture typical of that 

found in an industrial-scale HVDC MMC [82]. 

The electrical configuration and control architecture of the CHP have been designed to be 

reconfigurable. This enables research into a range of converter topologies, SM 

configurations and control implementations. 
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7.2 Hardware Overview 

Constraining the research objective of the CHP to control and communication studies 

allowed for a system with lower electrical ratings than prototype converters targeted at 

other study types. Despite having significantly lower ratings, the CHP has been designed 

so that converter- and SM-level dynamics reflect those of an HVDC MMC. Furthermore, 

the firing signals sent to the SM switch gate drivers are the same regardless of the chosen 

power level, therefore the scalability of this research to MMCs operating at higher power 

levels is not adversely affected. 

During the CHP design process, the DC bus voltage, 𝑉𝑑𝑐, was chosen first and the ratings 

for the other system components selected around it [25]. A B&K Precision PVS60085MR 

[96] programmable DC supply is used as the DC bus; this has a maximum output voltage 

of 600 V and a maximum output current of 8.5 A. The budget for the CHP construction 

project allowed for building a system with 48 SMs total. Initially assuming a single-phase 

converter with 24 SMs per arm, the nominal submodule voltage, 𝑉𝑆𝑀−𝑛𝑜𝑚, was calculated 

according to Equation 7.1.   

𝑉𝑆𝑀−𝑛𝑜𝑚 =
𝑉𝑑𝑐−𝑚𝑎𝑥

𝑁
=

600

24
= 25 V 

7.1 

 

By limiting the DC bus voltage to 200 V, the CHP can be configured as a three-phase, 

9-level MMC with 8 SMs per arm. This configuration has been used throughout this 

research and is reflected in the nominal electrical ratings shown in Table 7.1. Since the 

behaviour of the AC side system is not a focus of this work, the AC side load is a simple 

star-point resistive load. The DC neutral point is a virtual neutral point formed by a 

potential divider across the DC bus. 

Parameter Value Units 

Nominal DC bus voltage, 𝑉𝑑𝑐−𝑛𝑜𝑚 200 V 

Number of phases 3  

Number of submodules per arm, 𝑁𝑆𝑀 8  

Submodule voltage, 𝑉𝑆𝑀−𝑛𝑜𝑚 25 V 

Apparent power, 𝑆𝑛𝑜𝑚 1 kVA 

Arm inductance, 𝐿𝑎𝑟𝑚 10 mH 

AC output voltage (phase-neutral, RMS), 𝑉𝑎𝑐
𝑅𝑀𝑆

 71 V 

AC output current (per-phase, RMS), 𝐼𝑎𝑐
𝑅𝑀𝑆

 4.7 A 

AC side load (per-phase), 𝑅𝑙𝑜𝑎𝑑 200 Ω 

Table 7.1: CHP nominal electrical ratings (present configuration) 
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The CHP submodules, National Instruments (NI) PXIe control chassis, DC supply and all 

ancillary equipment are housed in a 19-inch rack cabinet as shown in Figure 7.1. This 

ensures that points at a high potential are protected from accidental contact during 

operation and reduces the likelihood of faults caused by movement of components. The 

AC load is mounted on the side of the rack for cooling purposes. A PC-based human-

machine interface (HMI) outside the cabinet is used for supervisory control of the CHP. 

Front Rear

Router & network 

switch

DC supply

Probe interface

NI PXIe controller 

& display

Auxiliary DC 

supplies

AC load

Submodule valve 

 stacks    local 

controllers

 

Figure 7.1: Annotated CHP system hardware layout, front (left) and rear (right) 
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In addition to the main system components shown in Figure 7.1, the CHP rack contains the 

communication network hardware for the distributed control architecture and other 

converter support circuitry. These components are listed in Table 7.1 along with their 

functions and will be referred to in subsequent sections. 

Component Description/Function 

Auxiliary DC supplies and 

power distribution PCBs 

(×2) 

• 5 V: SM local controllers (LC), logic-level circuits on 

SMs, fibre optic breakout board, power interface board 

• 24 V: SM gate drive circuits 

Power interface board  

(PIB) 

• Connection point for DC supply, 6× arms, AC load 

• DC and AC side breaker relays 

• Charging resistors and bypass relays 

• Hall-effect current sensors for 𝐼𝑎𝑐, 𝐼𝑑𝑐, and 𝐼𝑎𝑟𝑚 

NI BNC2090A probe 

interface (×2) 

• Data acquisition (DAQ) card input-output (IO) 

breakout into BNC connectors for 𝐼𝑎𝑟𝑚 current clamp 

probes and 𝑉𝑒𝑥𝑡(𝑎𝑏𝑐) external reference input 

Arm current clamp probes 

(×6) 
• Pico Technology TA189 [97] 

Fibre optic breakout board  

(FOBB) 

• Fibre optic transmitter/receiver and driver circuits for 

SM LC communication interface 

• Connector for arm control unit FPGA 

Router and network switch 
• Wired Ethernet network for NI PXIe controller, main  

DC supply and HMI PC 

Table 7.2: List of CHP auxiliary hardware and functions 

7.2.1 Submodule Overview 

The SMs in the CHP were designed around the ratings listed previously in Table 7.1 with 

an additional safety margin to minimise the risk of damage to SMs due to incorrect 

connections or control configuration during experimental work. All 48 SMs are identical 

and can be individually configured for half- or full-bridge operation via a physical jumper 

cable. The HB/FB topology was originally chosen since HB/FB-SMs are widely used in 

industry and the ability to reconfigure SMs allows for research into hybrid HB/FB MMC 

topologies if desired [25]. All SMs were operated in HB mode throughout this project 

since converter topologies were not the research focus. The electrical ratings of the CHP 

SMs are summarised in Table 7.3. 
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Parameter Nominal Maximum Units 

Submodule voltage, 𝑉𝑆𝑀 25 57 V 

Submodule capacitance, 𝐶𝑆𝑀 3000 − μF 

Submodule current, 𝐼𝑆𝑀 5 8 A 

Table 7.3: CHP submodule electrical ratings 

A simplified schematic of a CHP SM is shown in Figure 7.2, along with the key 

specifications of selected SM components in Table 7.4. The SM output voltage is taken 

from banana jack connections A-B in HB-SM mode or across connections A-C in FB-SM 

mode. Metal-oxide-semiconductor field-effect transistor (MOSFET) switches are used 

instead of insulated-gate bipolar transistors (IGBT) as used in industrial-scale SMs due to 

having a lower forward voltage drop in this application than IGBTs. This ensures that SM 

conduction loss and switching behaviour remains representative when operating at the 

reduced voltage level of the CHP.  

The required SM capacitance was calculated to ensure that the capacitor voltage ripple 

error is below 10 % when the CHP is operating at or below its peak apparent power rating 

of 1.8 kVA [25]. This yielded a maximum value of 𝐶𝑆𝑀 = 2480 μF, which was rounded to 

3000 μF and is implemented using three 1000 μF capacitors connected in parallel to 

increase the ripple current rating. 

ZD2

56V

CSM

3000μF

Rdis

47kΩ 

ZD1

56VS1 D1

S2 D2

S3 D3

S4 D4

HB/FB Jumper

A
F1

8A

B

C

ADC
 

Figure 7.2: CHP submodule simplified schematic 
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Component Key Specifications 

Main switches, S1-S4 
N-channel MOSFET 

𝑉𝐷𝑆 = 60 V, 𝐼𝐷𝑆 = 75 A, 𝑅𝐷𝑆(𝑜𝑛) = 6 mΩ 

Submodule capacitor 

voltage ADC 

Maximum sample rate 1 mega samples per 

second (MSa/s), 10-bit resolution 

Over-voltage protection 2× 56 V back-to-back Zener diodes 

Over-current protection 8 A fast-blow fuse 

Discharge resistor, 𝑅𝑑𝑖𝑠 47 kΩ 

Table 7.4: CHP submodule component key specifications 

Over-current protection of the SM is provided by an 8 A fast-blow fuse, whilst bi-

directional over-voltage protection is provided by two back-to-back Zener diodes which 

will clamp the SM voltage at 56 V. A 47 kΩ resistor connected across 𝐶𝑆𝑀 ensures that the 

SM is discharged when power is disconnected. Additional support circuitry is also installed 

on each SM to provide: 

• Isolated DC-DC power supplies for SM switch gate drivers and the SM capacitor 

voltage analogue-to-digital (ADC) converter 

• Isolated MOSFET gate drive signals 

• Opto-isolators for the ADC to LC serial peripheral interface (SPI) 

• SM capacitor voltage signal conditioning (downscaling and low-pass filtering) for 

ADC input 

The support circuitry on the SMs is powered from external 5 V and 24 V power supplies, 

rather than from energy harvested from SM capacitor as is the case in industrial-scale SMs. 

This decision was made due to the relatively high power consumption of the SM auxiliary 

circuits (approximately 2 W per SM) relative to the stored SM energy (less than 1 J), 

which would degrade CBC performance and power control response [25]. Furthermore, 

energy harvesting from 𝐶𝑆𝑀 would complicate the CHP start up and pre-charging routines.  

The CHP SMs are sized according to standard Eurocard printed circuit board (PCB) 

dimensions to facilitate easy mounting. Four SMs and one LC are mounted in a 19-inch 

rack Eurocard chassis and form a CHP ‘valve’ stack, as shown in Figure 7.3. SM control 

signals connect to the LC via multi-way board-to-board ribbon cables and a breakout board 

on top of the LC field-programmable gate array board.  
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Submodules

Local controller & 
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Figure 7.3: Four SM valve ‘stack’ and local controller (left) and individual SM (right) 

7.2.2 Hardware Modifications 

The overall hardware configuration of the CHP was maintained in its original state for the 

duration of this project, however some modifications were made to resolve issues 

identified in [25], notably, noisy and inaccurate current measurements from the Hall-effect 

sensors on the PIB.  

The Hall-effect sensors on the PIB are used to measure 𝐼𝑎𝑐, 𝐼𝑑𝑐, and 𝐼𝑢,𝑙 in the CHP and 

output a voltage proportional to the current flowing through the sensor. In the present 

configuration only the arm current measurements are required; these are used by the CBC 

loop. The AC output and DC supply current measurements are not used in converter 

control loops but may be logged for analysis.  

Further troubleshooting during this project showed a DC offset on the sensor outputs 

which was not present in the arm current when measured with an external clamp type 

current probe. This offset changed dependent upon the AC and DC breaker relay states and 

could not be nulled due to its varying nature. A more detailed description of the source of 

the issues and steps taken to resolve them can be found in Appendix E. 

The DC offset in the arm current measurements led to a subset of SMs in each arm not 

balancing correctly, since the CBC loop uses the arm current direction to determine which 

SMs to insert or bypass. Poor performance of the CBC loop was observed from the 

measured capacitor voltages when the CHP control software was re-implemented as 

described in subsequent sections in this chapter.  
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To provide accurate arm current measurements, six Pico Technology TA189 [97] clamp 

type current probes were installed in the CHP to replace the measurements from the 

sensors on the PIB. The probes have a range of 0 to 30 A, a sensitivity of 100 mV/A and 

were chosen since they are sensitive enough to measure the arm currents in the CHP which 

are typically less than 500 mA during steady state operation. Two NI BNC-2090A [98] 

rack mount connector panels were installed in the CHP to provide easy connection of the 

BNC outputs of the current probes to the DAQ card analogue inputs. 

7.3 Control Architecture Overview 

As stated in the design objectives at the beginning of this chapter, the CHP uses a 

distributed control architecture which is representative of the control architectures adopted 

in many industrial-scale MMCs. In this type of control architecture, converter control 

functions and IO are split across several hardware targets which are connected using 

communication links. This differs from a centralised control architecture, where all control 

functions and IO are implemented on a single central controller. In an industrial setting, a 

distributed control architecture is necessary as the computational requirements for control 

and the quantity of IO for SM communication exceeds that of a single centralised 

controller [95]. Other advantages of a distributed architecture include [25, 99]: 

• Increased reliability: no single point of failure and redundancy is easier to 

implement since processing and communication are distributed and/or modularised. 

• Reduction in computational requirements for individual control hardware 

platforms: this enables use of less powerful (and often lower cost) control 

hardware, whilst allowing more functions to be implemented using the available 

processing resources. 

• Reduction in IO requirements for individual control hardware targets: IO and DAQ 

are split across hardware targets. 

Implementing a distributed control architecture on a prototype or industrial-scale MMC 

brings several challenges when compared to a centralised architecture. These include [82]:  

• Inter-controller communication interfaces must be defined, implemented, and 

tested, in addition to converter control loops. 

• Special attention must be paid to synchronisation and phase alignment of control 

loops and data acquisition across control hardware targets. 
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• Communication interfaces between controllers and/or SMs introduce non-

linearities such as variable delays and packet loss. 

A high-level block diagram overview of the CHP control architecture is shown in Figure 

7.4, with the HMI PC at the top of the diagram and SMs at the bottom. The different 

control hardware targets used in the CHP are shown, along with the communication links 

between them and the data passed between hardware targets. Also shown is the 

programming language used for each hardware target where appropriate. 
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Figure 7.4: CHP distributed control architecture overview 
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7.3.1 Human-Machine Interface (HMI) 

The HMI is hosted on a standard desktop PC and provides a front panel graphical user 

interface (GUI) for supervisory control of the CHP. The HMI is programmed in LabVIEW 

and performs the following functions: 

• Coordinates converter start up and shutdown. 

• Run-time setting of voltage reference modulation index (𝑚𝑎) and phase (𝜃𝑎𝑏𝑐). 

• DC supply control to set output voltage, current and protection limits. 

The functions performed by the CHP HMI are broadly equivalent to the control room and 

station dispatch control level in an industrial-scale MMC. The HMI communicates with 

other control hardware targets in the CHP over a wired Ethernet local area network (LAN); 

this is representative of an industrial control architecture where a protocol such as 

IEC 61850 [100] running over a LAN is typically used for substation control messages 

[101]. 

7.3.2 Local Area Network (LAN) 

A 100 megabit per second (Mbps) wired Ethernet LAN is formed by a network router and 

24-port switch as shown in Figure 7.4 and provides communication between the HMI PC, 

DC supply and converter control unit. 

7.3.3 Converter Control Unit (CCU) 

An NI PXIe-8102 embedded controller [83] running the Phar Lap ETS real-time operating 

system (RTOS) is used as the CCU and is programmed in LabVIEW Real-Time (RT) 

which is a subset of standard LabVIEW. The CCU handles several functions as follows: 

• Control of the phase control unit (PCU) and arm control unit (ACU) FPGAs. 

• Configures and starts/stops DAQ card IO tasks. 

• Implements data transfer between DAQ card and PCU for analogue measurements. 

• Handles data transfer between ACU, CCU and HMI PC for logging. 

• Handles control settings transfer from HMI PC to PCU and ACU. 

The CCU communicates with the other cards installed in the NI PXIe-1071 chassis [102] 

over internal peripheral component interconnect (PCI) and PCI Express (PCIe) buses; 

these are described in more detail in Chapter 8. No control loops are implemented on the 

CCU itself; instead, the CCU is a host for the other cards installed in the chassis. The PXIe 

system with installed processing cards is representative of the control equipment installed 

in the server room in an industrial-scale MMC, albeit at a reduced scale and complexity.  
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7.3.4 Data Acquisition (DAQ) 

An NI PXIe-6363 card [103] is used as the DAQ device in the CHP and provides 

analogue-to-digital conversion of arm current measurements and the external three-phase 

reference voltage input. The digital outputs on the DAQ card are used to drive the system 

breakers installed on the PIB. 

7.3.5 Phase Control Unit (PCU) 

A NI PXIe-7857R FPGA card [84] is used as the PCU and performs phase-level converter 

control functions in the CHP. These are: circulating current suppression control, arm 

balancing, nearest level control, and the external reference phase-locked loop (PLL). In 

addition to these functions, the PCU also contains an internal three-phase reference voltage 

generator for direct control of the CHP AC output voltage. The PXIe-7857R uses a Xilinx 

Kintex-7 160T FPGA and is programmed in LabVIEW FPGA, which is a subset of 

standard LabVIEW. The PCU communicates with the ACU FPGA over a simplex 

universal asynchronous receiver-transmitter (UART) interface and sends the six arm 

current polarity measurements and arm insertion indices (𝑁𝑜𝑛) for use by the ACU.  

7.3.6 Arm Control Unit (ACU) 

The ACU is based on a NI PXI-7851R FPGA card [104] and performs arm-level control 

functions such as: capacitor balancing control and switch state generation using the data 

provided by the PCU. The ACU interfaces with the twelve LC FPGAs over a fibre optic 

interface, with each LC allocated one UART transmit/receive pair and an auxiliary error 

signal. The PXI-7851R card in the ACU uses a Xilinx Virtex-5 LX30 FPGA and is also 

programmed in LabVIEW FPGA. 

A photograph of the PXIe system with the cards described in the previous sections is 

shown in Figure 7.5. 
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Figure 7.5: NI PXIe system with CCU, DAQ, ACU, and PCU cards (left to right) 

7.3.7 Local Controller (LC) 

The twelve LCs in the CHP are based on a Terasic DE10-Nano FPGA development board 

[105] which use an Intel Cyclone V system-on-chip (SoC) and are programmed in the 

Verilog hardware description language (HDL). The LCs communicate with the ACU over 

the fibre optic interface and parity check and parse received data packets before sending 

firing signals to four SMs over a wired interface operating at 5 V logic levels. The LCs 

also handle SM capacitor voltage acquisition from the SPI ADC installed on each SM; 

these measurements are transmitted back to the ACU along with any error signals across 

the fibre optic interface. A photograph of the LC FPGA board and breakout board are 

shown in Figure 7.6. 
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SM firing signals & 

ADC interface headers

Fibre optic interface

 
Figure 7.6: Terasic DE-10 Nano Local Controller (left), with breakout board installed 

(right) 
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7.4 Summary 

This chapter has provided an overview of the CHP electrical configuration and control 

architecture and serves as a basis for understanding the control system software 

development and hardware results presented in subsequent chapters. With the exception of 

replacing the arm current sensors, the electrical configuration of the CHP was left largely 

unchanged throughout this project due to this not being the research focus. The control 

architecture overview presented in this chapter is a high-level introduction and will be 

expanded upon in Chapter 8.  
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8 Control System Software Development 

This chapter provides a detailed description of the development of the converter hardware 

prototype (CHP) control software undertaken during this project. Whilst the existing CHP 

control software met the research objectives of the original CHP construction project, it 

was not able to support the objectives of this research, and as a result, it was decided to 

rewrite the CHP control software from first principles without reusing any of the existing 

source code. To deliver the precise timing measurements required by the research 

objectives of this project, a detailed understanding of the control and timing considerations 

in the CHP was required; these are described in this chapter. 

In this chapter, a brief overview of the LabVIEW programming language is provided first, 

followed by a review of the existing control software, identifying its limitations. The 

design objectives of the new control software are then outlined. A detailed description of 

the NI PXIe system internal architecture is then provided, building on the control 

architecture overview in Chapter 7. This is used as a foundation for explaining the 

implementation specifics of the control system software written during this project, which 

is documented in Section 8.5 and subsequent sections. The most recent version of the CHP 

control software is available in the online supplementary repository [26]. 

8.1 Overview of the LabVIEW Programming Language 

As shown in Figure 7.4 in Chapter 7, the control software running on the human-machine 

interface (HMI) PC, converter control unit (CCU), phase control unit (PCU), and arm 

control unit (ACU) is written in LabVIEW. LabVIEW is a graphical block diagram-based 

programming language with inherent support for parallel execution developed by National 

Instruments and was used for the existing CHP control software developed in [25]. It was 

also used in this project because it is natively supported by the CCU, data acquisition 

(DAQ), PCU, and ACU hardware targets. Furthermore, the graphical block diagram-based 

programming approach allows for quicker control software development and debugging 

when compared to conventional text-based programming languages. Faster development is 

also facilitated by the wide range of library functions provided by LabVIEW which allow 

complex control functions and communication protocols to be implemented with relative 

ease. 
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In LabVIEW terminology, programs are referred to as virtual instruments (VI) and have 

two components: a front panel and a block diagram. The VI front panel contains controls 

(inputs) and indicators (outputs) and is the graphical user interface (GUI) for the VI, whilst 

the block diagram contains the graphical ‘code’ which defines the processing operations 

performed by the VI. To allow for code re-use and division of processing functions into 

defined blocks, VIs can be split into ‘subVIs’ which are called by a parent VI – this 

concept is analogous to functions or subroutines in a conventional text-based programming 

language. 

Most programming constructs in LabVIEW are platform-independent – that is, the same 

VI will usually execute on different hardware targets without requiring modification. 

Despite this, several variants of LabVIEW are available which provide additional 

constructs to exploit the underlying processing architecture of the hardware target (eg. x86 

CPU, RTOS, FPGA), or remove functions which cannot be implemented on a particular 

target. The LabVIEW variants used on the hardware targets in the CHP are listed in Table 

8.1. 

Hardware Target 
Underlying 

Architecture (OS) 

LabVIEW 

Variant 

HMI 

(Desktop PC) 

Intel x86 CPU 

(Windows 10) 
Standard 

CCU  

(PXIe-8102) 

Intel x86 CPU 

(Phar Lap ETS RTOS) 
Real-Time 

PCU  

(PXIe-7857R) 
Xilinx Kintex-7 FPGA FPGA 

ACU  

(PXI-7851R) 
Xilinx Virtex-5 FPGA FPGA 

Table 8.1: Summary of CHP control hardware targets and LabVIEW variants 

Using LabVIEW provides several advantages when writing control system software, as 

outlined previously. Whilst these may accelerate initial development, a detailed 

understanding of LabVIEW and hardware target-specific constructs is still required to 

implement complex control and communication functions such as those in the CHP. 

Moreover, optimising code for speed or resource usage requires knowledge of the 

underlying architecture of the control hardware target, in addition to LabVIEW itself.  
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8.2 Review of Existing CHP Control Software 

The original control software for the CHP was developed alongside the control structure 

and hardware construction process as documented in [25]. Whilst the existing control 

software functioned as desired, several limitations and code bugs were present and were 

identified in [25]. These issues were not addressed in the original CHP construction project 

since control software development was not the main focus; instead, only the minimum 

required functionality to obtain the necessary measurements was implemented. A code 

review was carried out during this project which identified further limitations to the 

existing control software; these are summarised as follows: 

• Limited (< 4 %) remaining FPGA logic resource on PCU and ACU FPGAs: 

The existing implementation in LabVIEW FPGA consumed a high percentage of 

available resources (flip-flops and lookup tables) on the PCU and ACU FPGAs. 

This meant that the additional functionality required for measurements during this 

project would not fit on the FPGA. 

• No synchronisation or phase alignment between data acquisition and control loops 

on the same or different hardware targets in the PXIe system: 

In the existing software, sample clocks were generated using separate local 

timebases which were not phase aligned. This led to a large, variable delay (jitter) 

on the total system delay in the CHP of over 1000 μs [25], caused by asynchrony 

between control loop output references updates and sampling points. 

• No runtime configurability of data acquisition and control loop sampling rates: 

Sampling rates were hard coded into the FPGA VIs and could not be updated prior 

to converter start-up or during runtime without re-compiling the associated FPGA 

VI, a process which takes between 10 to 15 minutes, slowing experimental work. 

• Limited observability and data logging of CHP internal electrical quantities: 

Whilst internal measurements of arm current and SM capacitor voltages were 

received and processed by the control software, it was not possible to plot these on 

the HMI PC or log to a file during runtime for post-run analysis. 
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8.3 Design Objectives 

The design objectives of the CHP LabVIEW control software rewrite are listed below: 

• Reduce total logic resource usage on FPGA hardware targets (PCU and ACU) by 

utilising LabVIEW FPGA-specific constructs and code optimisation techniques. 

• Implement synchronisation and phase alignment between data acquisition and 

control loops executing on different hardware targets (DAQ, ACU, PCU). 

• Implement functionality to configure the sampling rate and phase alignment of 

individual control loops from the HMI PC at runtime without re-compilation of 

FPGA VIs. 

• Implement digital logic-level outputs for precise measurement of control loop 

execution time using an external logic analyser.  

• Implement functionality to plot and log internal measurements in the CHP at 

runtime. 

Based on the code review and the additional functionality required by this project, it was 

decided to rewrite the CHP LabVIEW control software from first principles without 

reusing any of the existing source code. This decision was taken due to the design 

objectives necessitating a fundamentally different approach to control software 

implementation. The existing control software was however used as a reference throughout 

the development process. It was not necessary to modify the Verilog HDL code running on 

the twelve LC FPGAs significantly during this work. 

8.4 PXIe System Internal Architecture 

As shown in the high-level overview of the CHP control architecture in Figure 7.4, several 

communication links exist inside the NI PXIe system itself. These links are made available 

to cards installed in the PXIe chassis via a backplane and can be used by the programmer 

to provide communication and synchronisation functions between hardware targets.  

A more detailed description of the internal architecture of the PXIe system is provided in 

this section as a basis for understanding how the new control software leverages the 

underlying architecture to achieve the design objectives. A diagram of the internal 

architecture in the form used by the existing control software is shown in Figure 8.1 and 

will be used to describe the features common to both the existing and new control software 

implementations.  
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An updated diagram which shows the additional signals and functionality provided by the 

new software is shown in Figure 8.2, with the differences highlighted in red. 
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Figure 8.1: CHP PXIe system internal architecture (existing control software) 

8.4.1 CCU Host Communication Buses 

The primary method of communication between the PXIe-8102 embedded controller 

(CCU) and the DAQ, PCU, and ACU is via either the PCIe or PCI buses provided on the 

PXIe system backplane. The CCU acts as the bus host and coordinates data transfer under 

control of the LabVIEW VI running on the CCU. 

The PXI-7851R ACU communicates with the CCU over the PCI bus via a PCIe-PCI 

bridge as shown in Figure 8.1. PCI is a legacy 32-bit parallel bus standard which operates 

at 33 MHz and provides a maximum bandwidth of 132 megabytes per second (MB/s) [83]. 
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The PXIe-6363 DAQ and PXIe-7857R PCU communicate with the CCU directly over the 

PCIe bus as shown in Figure 8.1. Unlike PCI, PCIe is a serial bus standard which is still 

actively supported and provides a significantly higher maximum bandwidth of 6 gigabytes 

per second (GB/s) [83]. The PCI and PCIe buses are used by the CCU embedded controller 

to provide several capabilities as part of the PXIe system: 

• Device configuration (eg. PCU/ACU FPGA code download and run/halt, DAQ 

card IO routing and task configuration). 

• Runtime data transfer to/from CCU embedded controller and DAQ, PCU, and 

ACU. This data may be DAQ samples or control settings from other devices such 

as the HMI PC. 

8.4.2 Clock Sources 

Several clock sources are available to cards installed in the PXIe chassis; these can be 

categorised as local (internal) clock sources or external clock sources. In NI data 

acquisition terminology, clock sources are also referred to as timebases and the two terms 

will be used interchangeably here.  

The DAQ, PCU, and ACU each have one or more local clock sources which can be used as 

the primary clock for functions on the hardware target. In the case of the DAQ card, three 

timebases (100 kHz, 20 MHz, and 100 MHz) are available internally [106] and can be used 

to generate the ADC sample clock for analogue inputs (aiSampleClock) via a 

programmable clock divider as shown in Figure 8.1. Corresponding internal sample clock 

signals exist for analogue output and digital IO functions. Unless specified by the 

programmer, the clock source for DAQ IO operations is chosen automatically by the NI 

DAQmx driver software. 

For the PCU and ACU FPGA cards, a 40 MHz local base clock is provided on each card 

and by default is used by the LabVIEW FPGA VI global clock for all FPGA logic. The 

base clock can be multiplied or divided to different frequencies using an onboard PLL. It is 

only possible to generate clock frequencies in the order of MHz using the PLL, therefore 

counter-based clock divider or delay functions must instead be used to generate the 

relatively low sampling frequencies (tens of kHz) required by the control loops in the CHP. 

The local clocks available on each hardware target are not phase locked even when 

configured to operate at the same frequency, since each card uses its own local oscillator. 

This leads to a variable delay between the AC reference and converter AC output 

waveform, as observed with the existing CHP control software [25].  
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To provide clock synchronisation capability across hardware targets, the PXIe system 

distributes two global clock signals to all slots in the chassis. These are named 

PXIe_Clk100 and PXI_Clk10, operate at 100 MHz and 10 MHz respectively, and are 

precisely matched for jitter and skew across the chassis backplane [102]. The clock signals 

can be routed to internal functional blocks under the control of the LabVIEW VI running 

on the hardware target; this capability was used in the software rewrite and is described in 

the following sections. 

8.4.3 Other Connections 

In addition to the buses and clock signals outlined previously, the PXIe chassis provides 8 

signals connected to each card slot via the PXI trigger bus (PXI_Trig[7:0]). This is a 

shared bus which can be used for passing synchronisation and timing signals between 

cards. Unlike the PCI and PCIe buses, signals and protocols routed onto the PXI trigger 

bus are entirely user-defined in the LabVIEW VIs running on the hardware targets. 

In both the existing and new CHP control software implementations, one PXI trigger line 

(PXI_Trig[0]) is used for a simplex UART communication link from the PCU to the ACU. 

This is used to transfer the arm current polarity and arm insertion indices (𝑁𝑜𝑛) calculated 

by the PCU to the ACU FPGA. The PCU and ACU FPGAs cannot communicate directly 

using PCI or PCIe since they are connected to different buses and communication via the 

CCU would introduce undesirable delay and jitter.  

As stated in the introduction to this section, Figure 8.2 shows the PXIe system internal 

architecture with the additional signals implemented and used by the new control software; 

this will be referenced in subsequent sections in this chapter.  
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Figure 8.2: CHP PXIe system internal architecture (new control software) 

8.5 Controller Sample Clock Generation 

To enable research into the effects of control loop sample clock selection and controller 

execution delay upon total system delay, the LabVIEW FPGA code running on the PCU 

and ACU was re-written to provide flexible runtime configuration of control loop sample 

clocks from the HMI PC. The same architecture for the sample clock generator logic is 

duplicated for each control loop implemented on the PCU and ACU FPGAs; the general 

architecture is shown in Figure 8.3. 
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Figure 8.3: Controller sample clock generator functional overview 

As shown in Figure 8.3, sample clock generation and execution sequencing are decoupled 

from the control loop itself by placing the code in separate, indefinite while loops on the 

FPGA. This enables easier monitoring of control loop execution delay as detailed in 

Section 8.6. The two loops communicate using two boolean status signals: ‘go’ which is 

asserted by the sequencing block logic to fire the control loop, and ‘done’ which is asserted 

by the control loop when processing is complete. 

The clock generator block is configurable from the HMI PC and receives several inputs 

which can be selected as sample clock sources. In sampling-driven operation, the sample 

clock can be generated from the 40 MHz local FPGA clock or the external PXI_Clk10 

clock provided by the PXIe system. Both clock sources are routed via a programmable 

clock divider which is used to reduce the frequency to the desired sample clock frequency, 

and optionally offset the clock phase relative to the sample clocks of other control loops. 

In event-driven operation, the clock generator block monitors control loop input values (eg. 

DAQ measurements or reference inputs from higher-level control loops) and generates a 

trigger event when 𝑥[𝑘] ≠ 𝑥[𝑘 − 1]. The inputs monitored for value change events are 

dictated by the associated control loop and are detailed in Section 8.5.2. 

Selecting the PXI_Clk10 signal as a base clock in sampling-driven mode automatically 

ensures control loop phase alignment with minimal jitter (less than 50 ns) for any control 

loops which are configured to use this clock source. The operation of the PXI_Clk10 clock 

divider block is described in the following section.   
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8.5.1 PXI_Clk10 Clock Divider Block Operation 

As outlined previously, a design objective of the CHP control software rewrite was to 

implement clock division, phase offsetting, and global synchronisation of 

PXI_Clk10-derived control loop sample clocks on the PCU and ACU FPGAs. The 

operation of the PXI_Clk10 clock divider block is described in detail in this section. 

The architecture of the PXI_Clk10 clock divider block is shown in Figure 8.4. The 

PXI_Clk10 clock signal is received by the PCU and ACU FPGAs via the PXIe system 

backplane as shown previously in Figure 8.1 and Figure 8.2. The DAQ aiStartTrigger 

signal is routed onto the PXI trigger bus (PXI_Trig[5]) in the PXIe system by the DAQ 

card; this signal route is configured immediately by the LabVIEW VI running on the CCU 

when execution is started and before converter start-up. The aiStartTrigger signal is 

asserted (pulsed) once by the DAQ card when an analogue input measurement acquisition 

is started and is de-asserted (held low) at all other times. In the DAQ configuration used on 

the CCU, analogue input measurement acquisition is started programmatically by the 

LabVIEW VI during the CHP start-up routine. This means that all PXI_Clk10 clock 

dividers are reset simultaneously during converter start-up, ensuring phase alignment. 

10 MHz 

PXI_Clk10

aiStartTrigger

Clock Divider

divisor preload

reset

clock output

 

Figure 8.4: PXI_Clk10 clock divider block architecture 

The relationship between the global aiStartTrigger and PXI_Clk10 signals, and the local 

FPGA clock signals is shown in the timing diagram in Figure 8.5. Timing information is 

shown at the top of the diagram in units of clock edges of the FPGA 40 MHz local clock. 

 

Figure 8.5: Timing diagram of global PXIe system synchronisation signals and PCU/ACU 

FPGA internal signals 
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As can be seen in Figure 8.5, aiStartTrigger and PXI_Clk10 are asynchronous (ie. not 

phase aligned) to the 40 MHz FPGA local clock domain. These signals are translated into 

the 40 MHz clock domain by synchronisation registers in the FPGA.  

Clock Divider Reset and Synchronisation Procedure 

Inspecting the clock divider reset procedure first, it can be seen that aiStartTrigger is 

asserted by the DAQ card shortly before t = 2 at point a on the timing diagram. This is 

registered by the PCU or ACU FPGA on the next rising edge of the 40 MHz clock at t = 2, 

at which point the clock divider counter register is reset to zero and the clock divider 

output is de-asserted regardless of its previous state. Whilst in the reset state, the clock 

divider ignores any clock edges on the PXI_Clk10 signal. It is important to note that the 

duration of the aiStartTrigger pulse is not provided by the NI PXIe-6363 DAQ device 

specifications, so the pulse duration shown in Figure 8.5 is only an estimate. 

The aiStartTrigger signal is de-asserted by the DAQ card between t = 3 and t = 4 at point b 

on the timing diagram. This is registered by the PCU or ACU FPGA on the next rising 

edge of the 40 MHz clock at t = 4, at which point the clock divider is released from reset 

and will begin detecting clock edges on the PXI_Clk10 input signal. 

Clock Divider Operation 

The required clock divisor to achieve the target control loop sample clock frequency is 

calculated by the HMI PC LabVIEW VI using Equation 8.1. The clock divisor is then 

passed to the corresponding clock divider block for that control loop on PCU or ACU 

FPGA. The counter value at which the count is reset is calculated by subtracting 1 from the 

clock divisor value. 

clock⁡divisor = ⁡round (
PXI_Clk10⁡frequency⁡(Hz)

target⁡sample⁡clock⁡frequency⁡(Hz)
) 

8.1 

 

The clock divider counter is implemented using an unsigned 32-bit integer (uint32) 

register, therefore only integer clock divisor values in the uint32 range 

(1 to 429,4967,295) are possible. As a result, there may be a small error in the output clock 

frequency with certain target sample clock values; the achieved sample clock after 

rounding is also shown on the HMI PC user interface. A clock divisor value of 0 is invalid 

and disables the clock divider output. 
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Upon exiting the reset state, the clock divider block begins counting rising edges on the 

PXI_Clk10 signal. In the example shown in Figure 8.5, a clock divisor of 2 is used to 

generate a 5 MHz sample clock from the PXI_Clk10 signal. The first PXI_Clk10 clock 

edge after reset occurs shortly before t = 6 at point c on the diagram. This is registered by 

the FPGA at t = 6, at which point the clock divider counter is incremented. The next 

PXI_Clk10 edge occurs at point d and the counter is incremented again. At this point the 

counter is reset since it has reached the value of: clock⁡divisor − 1, and the clock divider 

output is pulsed for one cycle of the 40 MHz FPGA clock.  

Clock Divider Output Phase Offset 

To allow phase-offsetting of sample clocks relative to one another, the clock divider block 

provides a ‘preload’ input as shown in Figure 8.4. Using this terminal, the starting phase of 

the clock divider output can be offset in multiples of the PXI_Clk10 clock period (100 ns). 

The preload value is added to the maximum counter value at which the clock divider 

counter resets for the output clock cycle following a reset. This operation is shown in 

Figure 8.6 for a clock divisor of 2 and a preload value of 2. This equates to a clock divider 

output frequency of 5 MHz and a phase offset of 200 ns. 

 

Figure 8.6: Timing diagram showing operation of the clock divider block preload input 

terminal 

At t = 0, it is assumed that the clock divider has just been released from reset by the 

aiStartTrigger signal. As can be seen, the first pulse on the clock divider output occurs at 

t = 7 after four clock edges on PXI_Clk10, due to the addition of the preload value to the 

counter reset value. As a result, the starting phase of the clock divider output is offset. 

Subsequent clock pulses on the clock divider output occur at a counter value of 1, as 

expected for a clock divisor of 2.  
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The 40 MHz local FPGA clock divider blocks as shown in the following sections operate 

in a similar way to the PXI_Clk10 clock divider blocks and are instead clocked directly by 

the 40 MHz clock rather than an external clock source. Furthermore, the reset and preload 

terminals are not used, since it is not possible to synchronise or phase offset control loop 

sample clocks generated using a local clock source. 

8.5.2 Event-Driven Mode Value Change Event Sources 

As stated previously, the inputs monitored by the clock generator block for value change 

events in event-driven sample clock mode is dictated by the associated control loop. These 

are outlined in the following sub-sections for each control loop implemented on the PCU 

and ACU, with reference to the cascaded control structure described in Section 2.2. 

External Voltage Reference Phase-Locked Loop 

The PLL for the external voltage reference input to the CHP is implemented on the PCU 

and calculates the phase angle from the 3-phase external voltage reference measurements 

taken by the DAQ card. In sampling-driven mode, the PLL can be configured to use the 

PXI_Clk10 or 40 MHz FPGA local clocks as a sample clock source; this is the same for all 

control loops. In event-driven mode, the PLL can be triggered by a value change on any 

phase voltage in the 3-phase reference input (𝑉𝑒𝑥𝑡(𝑎𝑏𝑐)). The clock source arrangement for 

the PLL is shown in Figure 8.7. 

Vext(abc) Value 

Change Event

10 MHz 

PXI_Clk10

aiStartTrigger

Clock Divider

divisor preload

reset

Clock Divider

divisor

reset

False

40 MHz 

Local Clock

clock source 

select

OR

AND

AND

trigger

 

Figure 8.7: External reference voltage PLL sample clock sources 
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Circulating Current Suppression Control 

The CCSC loop is implemented on the PCU and uses the six arm current measurements as 

an input to the control loop. The CCSC loop in the CHP is implemented in the 

𝑑𝑞⁡reference frame; conversion from 3-phase 𝑎𝑏𝑐 quantities to 𝑑𝑞 and vice-versa requires 

the phase angle (𝜃) measurement from the PLL. As a result, in event-driven mode, the 

CCSC loop can be triggered on either a change in one or more of the six arm current 

measurements or PLL phase angle. This arrangement is shown in Figure 8.8. 
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Change Event
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PXI_Clk10

aiStartTrigger

Clock Divider

divisor preload

reset

Clock Divider

divisor

reset
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AND

AND

PLL θ  Value 

Change Event

AND

enable

trigger

enable

enable

 

Figure 8.8: Circulating current suppression control loop sample clock sources 

Output Voltage Control (External Voltage Reference) 

The output voltage control loop for the CHP external voltage reference is implemented on 

the PCU and like the CCSC loop is implemented in the 𝑑𝑞 reference frame. As shown in 

Figure 8.9, the output voltage control loop can be triggered from a value change on 

𝑉𝑒𝑥𝑡(𝑎𝑏𝑐) or PLL phase angle. 
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Change Event
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PXI_Clk10

aiStartTrigger

Clock Divider
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Clock Divider

divisor

reset

False

40 MHz 

Local Clock
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AND

AND

PLL θ  Value 

Change Event

AND

enable

trigger

 

Figure 8.9: Output voltage control loop sample clock sources 
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Arm Balancing and Output Modulation (Nearest Level Control) 

Arm balancing control and output modulation (nearest level control) are implemented on 

the PCU in the CHP. The arm balancing control loop calculates the six arm SM insertion 

indices (𝑁𝑜𝑛) from the 3-phase AC output voltage set points from the output voltage 

controller or internal voltage reference generator (𝑉𝑠(𝑎𝑏𝑐
∗ ) and the 3-phase difference 

voltage references (𝑉𝑑𝑖𝑓𝑓(𝑎𝑏𝑐)
∗ ) from the CCSC loop. These inputs can be used as trigger 

sources in event-driven sampling mode, as shown in Figure 8.10. 
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AND

         Value 

Change Event

AND

enable

trigger

*

( )diff abc
V

*

( )s abc
V

 

Figure 8.10: Arm balancing and NLC sample clock sources 

Capacitor Balancing Control 

The capacitor balancing control loop on the CHP is implemented on the ACU as traditional 

periodic (ie. sampling-driven) CBC. As a result, the CBC loop cannot be triggered by 

value change events on any inputs and operates only in sampling-driven mode, as shown in 

Figure 8.11.  

10 MHz 

PXI_Clk10

aiStartTrigger

Clock Divider

divisor preload
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Figure 8.11: Capacitor balancing control loop sample clock sources 
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Firing Signal Generation 

The firing signal generation loop on the CHP is implemented on the ACU and uses the six 

arm insertion indices (𝑁𝑜𝑛) received from the PCU and the ranked list of SM identifiers 

from the CBC loop to determine which SMs to insert or bypass. In event-driven mode, the 

firing signal generator can be triggered by a value change event on any of the six insertion 

indices or a change in SMID ranking from the CBC loop. This arrangement is shown in 

Figure 8.12. 
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Figure 8.12: Firing signal generation loop sample clock sources 

8.6 Hardware Delay Measurement 

To enable measurement of data acquisition and control loop execution delay and phase 

alignment across DAQ, PCU, and ACU hardware targets, an external Digilent Digital 

Discovery PC-based digital logic analyser [107] is used. This device was chosen following 

a review of logic analyser hardware since it has a high maximum sample rate (800 MSa/s) 

and 24 input channels which make it suitable for measuring multiple timing signals across 

DAQ, PCU, and ACU with high precision.  

For hardware delay measurements, the go and done signals from the sequencing block 

(shown in Figure 8.3) for control loops of interest are exported to digital output terminals 

on the PCU or ACU cards. These are then connected to the logic analyser inputs using a 

breakout board and jumper wires to provide easy re-configuration of output-input 

mappings. Any other internal signal of interest from the DAQ, PCU or ACU can also be 

routed to a digital output if required for timing measurements. For example, these may 

include the trigger signal, sample clocks, or the PXI_Clk10 clock signal. The experimental 

set up for hardware delay measurements is shown in Figure 8.13. 
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Figure 8.13: CHP control loop hardware delay measurement set up 

An example logic analyser timing plot obtained from the NLC loop of the CHP whilst 

running is shown in Figure 8.14, validating the operation of the hardware timing 

measurement set up. As can be seen, the NLC loop takes 1.05 μs to execute as shown by 

the measurement cursors placed on the NLC_Done signal. 

 

Figure 8.14: NLC loop timing data acquisition from logic analyser 

8.7 Data Acquisition and Logging 

As stated in the design objectives, the control software implementation should provide the 

ability to plot and/or log to file CHP internal measurements to increase observability. 

Measurements of 𝑉𝑒𝑥𝑡(𝑎𝑏𝑐), 𝐼𝑎𝑐(𝑎𝑏𝑐), 𝐼𝑑𝑐, 𝐼𝑎𝑟𝑚, and SM capacitor voltage are all available 

internally to the control software running on either the CCU, PCU or ACU – the aim was 

to extract this data and transfer it to the HMI PC for plotting and logging. 
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8.7.1 ACU Capacitor Voltage Data Transfer to CCU 

The ACU receives forty-eight 10-bit SM capacitor voltage measurements from the twelve 

local controllers each time a new firing signal command packet is sent from the ACU to 

the LCs, typically at 20 kHz. Capacitor balancing in the CHP is typically performed at a 

lower sample rate in the order of 3 to 5 kHz, so capacitor voltage samples are transferred 

from ACU to CCU using this lower sample rate to reduce the load on the CPU in the CCU.  

Capacitor voltage data transfer from the ACU to the CCU is implemented using a 

unidirectional direct memory access (DMA) first-in first-out (FIFO) buffer on the ACU 

FPGA. This is a standard LabVIEW FPGA construct for data transfer. The DMA buffer 

allows the ACU FPGA to write capacitor voltage samples directly to random-access 

memory (RAM) on the CCU, without requiring involvement of the CPU, freeing it up for 

other tasks. Data transfer into RAM is carried out across the PCI bus in the PXIe system. 

When a new set of SM capacitor voltage samples are received by the ACU, the LabVIEW 

FPGA VI packs the samples into a packet, along with timestamp information (see 

Section 8.7.4) and places it in the FIFO buffer. The LabVIEW VI running on the CCU 

continuously monitors the number of elements in the FIFO buffer, and when a new set of 

samples is received (ie. the buffer is not empty), parses the sample data and re-packages it 

for transmission to the HMI PC as described in the following section. 

8.7.2 Data Transfer to HMI PC 

Capacitor voltage sample data and DAQ card measurements (𝑉𝑒𝑥𝑡(𝑎𝑏𝑐), 𝐼𝑎𝑐(𝑎𝑏𝑐), 𝐼𝑑𝑐, 𝐼𝑎𝑟𝑚) 

are gathered by the LabVIEW VI running on the CCU before being transmitted over the 

LAN to the HMI PC for plotting and logging. The CCU VI packs sample data into packets, 

then sends the data over the LAN using the Network Stream Interface writer functionality 

provided in LabVIEW. Using the Network Stream Interface allows for lossless transfer of 

large amounts of data without requiring knowledge of the underlying transfer protocol. 

8.7.3 Data Plotting and Logging on HMI PC 

Packets containing sample data are received by the HMI PC using a Network Stream 

reader endpoint, before being unpacked for plotting and logging to file. All measurement 

data is plotted in real-time on the HMI PC front panel user interface and is also logged to a 

file on the HMI PC for post-processing and analysis. A screen capture of the HMI PC VI 

showing the SM capacitor voltage data plot using the data transferred from the ACU over 

the DMA and Network Stream interfaces is shown in Figure 8.15. 
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Figure 8.15: Screen capture of HMI PC user interface showing CHP SM capacitor voltage 

plots using data transferred from ACU FPGA 

8.7.4 Measurement Timestamping 

Since measurement samples are gathered from different hardware targets in the CHP 

(DAQ and ACU), a means of globally timestamping sample data across DAQ, PCU, and 

ACU was required to ensure that measurement data can be time-aligned for off-line 

analysis.  

To provide this functionality, frequency counters are implemented on each of the DAQ, 

PCU, and ACU driven by a common clock signal (aiSampleClock) which is routed by the 

DAQ card onto the PXIe trigger bus as shown in Figure 8.2. The frequency counter blocks 

count each rising edge on aiSampleClock and store the count in a register which is readable 

by other parts of the LabVIEW FPGA VI in the case of the PCU and ACU, or by the CCU 

LabVIEW VI in the case of the DAQ card frequency counter. 

When a new set of sample data is received by DAQ, PCU, or ACU, the current value of the 

frequency counter is read and stored as a timestamp along with the sample data. Since the 

frequency of aiSampleClock is known, the raw counter value can be converted to a 

timestamp in seconds using Equation 8.2. This calculation is carried out by the LabVIEW 

VI running on the CCU before the sample data and timestamp are packed for transmission 

to the HMI PC. 
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timestamp⁡(seconds) = counter⁡value⁡ ×
1

𝑎𝑖𝑆𝑎𝑚𝑝𝑙𝑒𝐶𝑙𝑜𝑐𝑘⁡frequency⁡(Hz)
 

8.2 

 

Synchronisation of all three counters is achieved using the aiStartTrigger signal in a 

similar way as used to synchronise the control loop sample clock generators. During 

converter start up, aiStartTrigger is asserted (pulsed) once by the DAQ card when 

analogue measurement acquisition starts. This resets all three counters to zero, providing a 

common t = 0 point for all measurements. 

8.8 Code Optimisation 

In addition to implementing the functionality required by the design objectives, the control 

software rewrite also provided the opportunity to optimise the LabVIEW code running on 

all platforms (HMI PC, CCU, PCU, and ACU). In particular, the optimisation process 

provided a reduction in FPGA logic resource usage on the ACU FPGA, despite the 

additional functionality added to the FPGA code. The logic resource usage for the PCU 

FPGA was slightly higher than the existing implementation, however, as with the ACU 

FPGA, additional functionality was added LabVIEW VI. A summary of the FPGA logic 

resource usage for the existing and new implementations is shown in Table 8.2. 

Platform 

Existing 

Implementation 

Total Slice Usage 

New 

Implementation 

Total Slice Usage 

PCU FPGA 

(PXIe-7857R) 

11328 of 25350 

(44.7 %) 

11968 of 25350 

(47.2 %) 

ACU FPGA 

(PXI-7851R) 

4670 of 4800 

(97.3 %) 

4561 of 4800  

(95 %) 

Table 8.2: CHP LabVIEW FPGA control software FPGA slice resource usage summary 

Lower, or similar FPGA slice resource usage was achieved in part by code optimisation 

and by leveraging LabVIEW FPGA-specific constructs which have a more direct mapping 

to the underlying architecture of the FPGA. For example, the local controller UART 

transmitter and receiver blocks on the ACU were entirely re-written to use LabVIEW 

FPGA-specific constructs such as single-cycle timed loops (SCTL) and hand-coded finite-

state machines (FSM). The re-written UART code was fully validated using the local 

controllers and fibre optic breakout board installed inside the CHP. 
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In addition to making extensive use of SCTLs and FSMs in the new CHP LabVIEW FPGA 

code, the method of passing data to different sections of code in the LabVIEW FPGA VI 

was fundamentally changed from the existing software implementation. In the existing 

code, extensive use was made of global variables to pass data between internal functional 

blocks (such as separate while loops) on the FPGA VIs. In many places, these global 

variables had multiple writers; this causes the LabVIEW FPGA compiler to automatically 

insert resource-intensive arbitration logic to ensure that only a single writer can update a 

variable stored in a register at any one time. The arbitration logic will also introduce jitter 

and non-determinism when updating variables, since several writers may be contesting to 

write to the same variable.  

In the new control software implementation, the register construct in LabVIEW FPGA was 

used to replace global variables. Registers in LabVIEW FPGA have a direct mapping onto 

the fundamental memory storage elements in an FPGA and are a low-level construct. 

Furthermore, the dataflow in the VI was modified so that each register has only a single 

writer, to prevent the insertion of arbitration logic. Use of registers in place of global 

variables led to a significant reduction in like-for-like logic resource usage when the logic 

resources consumed by the additional functionality on the PCU and ACU FPGAs is 

accounted for.  

8.9 Summary 

This chapter has provided a detailed description of the new control system software written 

for the CHP during this project. The design objectives required to support the research 

during this project were identified, in addition to the limitations of the existing control 

software implementation. The methods used in the new software implementation to meet 

the objectives was then documented for each objective in turn, with a detailed description 

of the software components which provide the added functionality. The hardware results 

shown in Sections 8.6 and 8.7.1 validate the correct operation of the functionality added to 

the control software. By adding the ability to measure timing signals using external 

hardware, the execution time of each control loop running on the CHP can be measured 

and benchmarked against different control algorithm implementations. Furthermore, by 

using the hardware outputs, the synchronisation between control loops on the same or 

different FPGAs in the PXIe chassis can be measured accurately. 
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The specific details of the control software provided in this chapter are particularly 

applicable to distributed control and measurement systems used in CHPs in an academic 

setting, both in terms of scale (number of levels, converter ratings) and similarity of control 

hardware platforms. For industrial scale MMCs, the implementation specifics will differ 

due to scale; for example, control hardware platforms with greater processing power will 

be required, and communication links between control hardware targets will differ. Despite 

these differences, this chapter highlights several important factors which must be addressed 

in a distributed control system for an MMC operating at any scale. The implementation 

techniques developed in this work can be used in other converters to ensure accurate 

timing and synchronisation across distributed control systems in other MMCs. The most 

recent version of the control software developed during this project is available in the 

online supplementary repository [26]. 
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9 Conclusion and Future Work 

In this chapter, the main outcomes of the research will be summarised. Following this, 

opportunities for future work which has been identified during the project will be 

discussed.  

9.1 Conclusion 

The aim of this research was to provide a detailed insight into internal control delays and 

controller implementation techniques for an MMC, to guide hardware and software 

development, and improve simulation model fidelity by incorporating hardware delays into 

simulation models. To achieve this aim, the following objectives were identified: 

1. Review and categorise CBC methods for an MMC and identify constraints on CBC 

loop execution delay. 

2. Measure and compare the resource usage of a selection of sorting algorithms for 

CBC implemented on a range of industrially representative control hardware. 

3. Measure and compare the execution delay of a selection of sorting algorithms for 

CBC implemented on a range of industrially representative control hardware.  

4. Develop and validate a new suite of control software for the reduced-scale CHP 

which is suitable for investigating control loop delay and synchronisation. 

All of these objectives have been met in this thesis, and in some cases further work has 

been undertaken. 

The capacitor balancing control loop was selected for study since it plays a key role in 

controlling the internal dynamics of an MMC. Unbalanced capacitor voltages present a 

potential source of unreliability within an MMC, due to premature aging or over-voltage of 

SM components. Specifically, the sorting algorithm chosen for use in the CBC loop can 

introduce a potentially large and non-deterministic delay, which can lead to capacitor 

voltages exceeding the specified limits. Furthermore, the delay due to the sorting algorithm 

may dictate the maximum sampling frequency of the CBC loop, and therefore lead to 

constraints on other low-level converter control loops. 
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Following a review and classification of capacitor balancing control methods in Chapter 3, 

three methods were chosen for further study which allowed the investigation of sorting 

algorithm execution time with both fixed and variable CBC loop sampling periods. The 

review of sorting algorithms in Chapter 4 identified several sorting algorithms of interest 

based upon the existing literature: bubble sort, insertion sort, merge sort, quick sort, bitonic 

merge sort, and odd-even merge sort. These algorithms were implemented using three 

industrially representative programming languages (NI LabVIEW, LabVIEW FPGA, and 

Verilog) on two industrially representative control hardware platforms: a CPU running a 

real-time operating system, and a FPGA.  

The execution time range measurements in Chapter 6 showed that the execution time 

ranges of merge sort and quick sort were several orders of magnitude higher than the other 

sorting algorithms. Coupled with the fact that these algorithms are recursive and cannot be 

easily implemented on an FPGA, which is the typical control hardware target for 

implementing the CBC loop, they were not analysed further and cannot be recommended 

for CBC methods requiring a fully sorted list of SM capacitor voltages. These results also 

showed that the execution time of the sorting networks (bitonic merge sort and odd-even 

merge sort) was fixed and consistently lowest across all implementation methods. This is a 

desirable characteristic when seeking to minimise the effects of delay and non-determinism 

upon capacitor voltage balancing. 

The remaining sorting algorithms were then exercised using synthetic capacitor voltage 

data generated by the simulation model described in Chapter 5. To simplify the analysis, a 

delay threshold of 8 control cycles was applied to the measured execution times, since it 

was determined that capacitor balancing would typically only begin to degrade with a 

delay greater than 8 control cycles. Comparing the different combinations of sorting 

algorithm and CBC method across all simulation scenarios, insertion sort consistently out-

performed bubble sort in terms of execution time. It can therefore be recommended where 

a classical sequential sorting algorithm is chosen for CBC. Comparing the different 

implementation methods (Verilog, LabVIEW FPGA Optimised, and LabVIEW FPGA 

Standard), it was seen that sorting algorithms implemented in Verilog and LabVIEW 

FPGA Optimised exhibited the lowest execution times. This is at the expense of increased 

implementation difficulty when compared to LabVIEW FPGA Standard. 
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The FPGA logic resource usage of each sorting algorithm and implementation method was 

then measured. This showed that, whilst both sorting networks exhibit low and fixed 

execution times, this comes at the expense of very high logic resource usage. Sorting 

algorithms implemented in Verilog and LabVIEW FPGA Optimised were shown to have 

lower logic resource usage than the equivalent implementation in LabVIEW FPGA 

Standard. As a result, these programming methods can be recommended where there is a 

need to optimise a design to fit on a selected FPGA device. In particular, the LabVIEW 

FPGA Optimised implementation route provides a good balance between sorting algorithm 

execution time, logic resource usage and implementation difficulty, so can be 

recommended in most cases. 

The results from Chapter 6 can be used to guide the selection of a sorting algorithm for the 

CBC loop. Furthermore, the results show the direct link between CBC method sampling 

period and sorting algorithm execution time and how this must be accounted for in the 

control software development process. Where the sorting algorithm execution time delay is 

greater than 8 control cycles, the delay should be incorporated into electromagnetic 

transient simulation models to ensure that the simulation model reflects the behaviour of 

the CBC loop in hardware. 

A new suite of control software was developed for the reduced-scale CHP MMC, as 

described in Chapter 8. The new control software implementation meets the desired 

objectives and will facilitate future research using the CHP, by allowing observation of 

internal measurements and runtime configuration of control loop sampling frequency and 

phase alignment. 

The techniques used to implement controller synchronisation, phase alignment, and 

measurement timestamping in the new control software are highly applicable to cascaded, 

distributed control systems as used in other laboratory prototypes and industrial converters. 

Whilst the chosen control hardware target may differ, similar features such as shared 

trigger lines and clock signals will typically be available. These can be used in as described 

in in Chapter 8 to implement and benchmark control loops running on real-time digital 

control hardware. The considerations required when implementing control systems for 

laboratory prototype multilevel converters have been written up and published in journal 

format. 
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9.2 Future Work 

Throughout the course of this work, several avenues for future research have been 

identified. These have been summarised in two categories as follows: capacitor balancing 

control loop and converter hardware prototype.  

9.2.1 Capacitor Balancing Control Loop 

Chapter 6 presented an in-depth analysis of the interaction between the choice of CBC 

method, sorting algorithm, and sorting algorithm execution time. In this work, the synthetic 

capacitor voltage data generated by the simulation model was sorted offline by the chosen 

sorting algorithm to generate the execution time data. Since sorting was performed offline, 

the sorting algorithm execution delay was not incorporated into the CBC loop in the 

simulation model; it was assumed to execute instantaneously, without delay. As a result, it 

was not possible to measure the per-timestep effect of sorting algorithm execution delay 

upon capacitor voltage deviation. The work carried out to select a threshold number of 

cycles delay presented in Chapter 6 and Appendix C does however prove that a delay 

within the CBC loop will degrade capacitor voltage balancing performance, so this area 

warrants further research. 

The next stage of investigation into sorting algorithms for CBC is to incorporate real-world 

sorting algorithm execution delay measurements into the simulation model. To do this, it 

will be necessary to build upon the PSCAD/EMTDC processor-in-the-loop component 

presented in [108]. Using this component, capacitor voltage data can be sent to the control 

hardware target (such as a CPU or FPGA) for sorting at each simulation timestep. The real-

world execution time measurement is then returned to the simulation, along with the sorted 

capacitor voltage data. The received data must then be placed into some form of first-in 

first-out (FIFO) queue, which only releases the data to the downstream modulation 

algorithm after the execution time delay has elapsed. The delayed FIFO queue will need to 

be implemented using a PSCAD/EMTDC custom component; it may be possible to follow 

a similar approach to that presented in [109]. 

The results from this work could be used to provide a more detailed insight into capacitor 

balancing behaviour in the presence of sorting algorithm execution delay. In particular, the 

cumulative effect of delays in previous CBC loop cycles can be measured, along with the 

effect of variable (non-deterministic) delays, typical of classical sorting algorithms.  
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A similar approach to that detailed above can also be used to incorporate other delays into 

the CBC loop, such as communication network delays. Furthermore, this technique could 

be used to investigate the behaviour of other control loops in the presence of non-zero, 

non-deterministic processing delays. The results from this work could lead to more 

accurate simulation models, and the development of new simulation techniques which link 

offline simulation in PSCAD/EMTDC with control hardware operating in real-time. These 

simulation techniques could be applied to a wide range of power electronic-based 

converters, or indeed any simulation model which can be built in PSCAD/EMTDC. 

Execution Time-Limited Sorting Algorithms 

In this work, it is assumed that it is necessary for the sorting algorithm to finish executing 

and produce a fully sorted list of SM capacitor voltages for proper operation of the CBC 

loop. As has been shown, this requirement places an upper limit on sorting algorithm 

execution time, which is often exceeded by the sorting algorithm. 

A piece of future work could involve removing the requirement for the sorting algorithm to 

finish executing before the CBC loop can proceed. Instead, the CBC loop could force 

termination of the sorting algorithm as soon as the list of SM identifiers are required by the 

modulation algorithm. The CBC loop then retrieves the working array of SM capacitor 

voltages and identifiers operated on by the sorting algorithm in its current state, which may 

be partially sorted.  

The effectiveness of this approach is likely to be highly dependent upon the chosen sorting 

algorithm. For example, some sorting algorithms such as insertion sort produce a sorted 

array which increases in length at each iteration – that is – the working array is never 

completely un-ordered. Were this approach to show that capacitor voltage balancing is not 

significantly affected by early termination of the sorting algorithm, this may be a means of 

overcoming the often large and non-deterministic delay inherent in many classical sorting 

algorithms. 
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9.2.2 Converter Hardware Prototype 

Control Loop Delay and Synchronisation Investigation 

The CHP hardware modifications and the control software re-write carried out during this 

project have opened up several areas of future research exploring delays and 

synchronisation in cascaded, distributed control systems. In the first instance, the ability to 

access and measure the trigger and go/done signals of internal control loops in the CHP 

using a logic analyser could be used to validate the execution time of the sorting algorithm 

for CBC as implemented on the CHP.  

This work could be extended further by benchmarking the execution time of the other 

control loops on the CHP. This will provide a more detailed insight into the components 

which make up the CHP total system delay originally presented in [25]. These timing 

measurements could be incorporated into simulation models to improve their fidelity. 

Following the benchmarking of the control loops on the CHP, an area of further work 

could involve investigating methods to minimise the total system delay. This can be done 

by adjusting the sampling rate and synchronisation of control loops relative to one another. 

This work would make use of the ability to configure control loop trigger sources, 

sampling rates and phase offsets relative to a primary clock source which has been 

implemented in the new control software. The results from this work could be used to 

develop a critical path of cascaded control and identify which control loops must be time 

aligned to produce the minimum total system delay. 

Hardware and Software Development 

Whilst the hardware modifications and control software re-write have resolved several 

issues with the CHP and facilitated the research carried out during this project, further 

development is always possible. Due to the complexity of the CHP hardware and control 

software, some issues are still outstanding, or have been found whilst validating the new 

control software. For example, logging of system measurements and SM capacitor voltages 

can only be enabled for operating runs of less than approximately 1 minute, due to poor 

memory management by the specific implementation of data plotting in the HMI 

LabVIEW VI.  
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Future hardware and software development may involve resolving these issues or 

modifying the CHP further to suit a new research objective. The reconfigurable, distributed 

control architecture of the CHP opens up a wide range of research avenues; these may 

include investigating multi-terminal DC networks or coordinated control of multiple VSCs 

across long distance telecommunication links. 
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Appendix A - Pseudocode for Sorting Algorithms 

For a given sorting algorithm, several implementations of the algorithm are usually 

possible whilst still maintaining the underlying algorithmic structure of the specific sorting 

algorithm. Pseudocode of the classical sorting algorithms implemented in this work is 

included here for reference purposes and to avoid any ambiguity around the structure of the 

algorithms. Pseudocode is used, rather than source code in a particular programming 

language, since it captures the basic structure of the algorithm without the added 

complexity of programming language syntax. 

The pseudocode in the following listings assumes that array indexing is zero-based and 

that any variables used have been suitably declared before use. In each case, A is the array 

to be sorted, and a utility function: length(A) is provided which returns the number of 

elements in A. 

A-1 Bubble Sort 

1  function BubbleSort(A) 

2   

3      n = length(A) 

4       
5      while (n > 1) 

6       
7          new_n = 0 

8           
9          for (i = 1; i <= n-1; i++) 

10           
11              if (A[i-1] > A[i]) then 

12               
13                  // do swap 

14                  temp = A[i-1] 

15                  A[i-1] = A[i] 

16                  A[i] = temp 

17                  new_n = i 

18                   
19              end if 

20               
21          end for 

22           
23          n = new_n 

24           
25      end while 

26       
27  end function     

Listing A-1: Bubble Sort algorithm pseudocode 
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A-2 Insertion Sort 

1  function InsertionSort(A) 

2   
3      i = 1 

4       
5      while (i < length(A)) 

6       
7          x = A[i] 

8          j = i-1 

9           
10          while (j >= 0) and (A[j] > x) 

11           
12              A[j+1] = A[j] 

13              j = j-1 

14               
15          end while 

16           
17          A[j+1] = x 

18          i = i+1 

19           
20      end while 

21       
22  end function 

Listing A-2: Insertion Sort algorithm pseudocode  
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A-3 Merge Sort 

The merge sort implementation used in this work is the top-down recursive form. The 

sorting algorithm is executed by calling the top level MergeSort function with the array 

bounds as the lo and hi arguments: MergeSort(A, 0, length(A)-1) 

1  function MergeSort(A, lo, hi) 

2   
3      if (lo > hi) 

4          return 

5      end if 

6       
7      mid = (lo+hi) / 2 

8       
9      MergeSort(A, lo, mid) 

10      MergeSort(A, mid+1, hi) 

11      merge(A, lo, mid, hi) 

12       
13  end function 

14   
15  function merge(A, lo, mid, hi) 

16   
17      len_lo = mid-lo+1 

18      len_hi = hi-mid 

19       
20      // copy data into temporary arrays 

21      for (i = 0; i < len_lo; i++) 

22          L[i] = A[lo+i] 

23      end for 

24       
25      for (i = 0; i < len_hi; i++) 

26          H[i] = A[mid+i+1] 

27      end for 

28       
29      i = 0 

30      j = 0 

31      k = 1 

32       
33      while (i < len_lo) and (j < len_hi) 

34       
35          if (L[i] <= H[j]) then 

36           
37              A[k] = L[i] 

38              i++ 

39               
40          else 

41           
42              A[k] = H[j] 

43              j++ 

44               
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45          end if 

46           
47          k++ 

48           
49      end while 

50       
51      while (i < len_lo) 

52       
53          A[k] = L[i] 

54          i++ 

55          k++ 

56           
57      end while 

58       
59      while (j < len_hi) 

60       
61          A[k] = H[i] 

62          j++ 

63          k++ 

64           
65      end while 

66       
67  end function 

Listing A-3: Merge Sort algorithm pseudocode  
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A-4 Quick Sort 

The quick sort implementation used in this work is the top-down recursive form using the 

Hoare partition scheme [65]. Like Merge Sort, the sorting algorithm is executed by calling 

the top level QuickSort function with the array bounds as the lo and hi arguments: 

QuickSort(A, 0, length(A)-1). The floor() function returns the greatest integer less 

than or equal to the value passed to the function. 

1  function QuickSort(A, lo, hi) 

2       
3      if (lo >= 0) and (hi >= 0) and (lo < hi) then 

4       
5          // calculate the pivot element position  

6          // and partition the array 

7          p = partition(A, lo, hi) 

8          QuickSort(A, lo, p) 

9          QuickSort(A, p+1, hi) 

10           
11      end if 

12       
13  end function 

14   
15  function partition(A, lo, hi) 

16   
17      pivot = A[ floor((hi+lo) / 2) ] 

18       
19      i = lo-1 

20      j = hi+1 

21       
22      while true 

23   
24          while (A[i] < pivot) 

25           
26              i = i+1 

27           
28          end while 

29           
30          while (A[j] > pivot) 

31           
32              j = j-1 

33               
34          end while 

35           
36          if (i >= j) then 

37           
38              return j 

39               
40          end if 

41           
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42          temp = A[i] 

43          A[i] = A[j] 

44          A[j] = temp 

45           
46      end while 

47       
48  end function 

Listing A-4: Quick Sort algorithm pseudocode 
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Appendix B - Source Code for Custom 

PSCAD/EMTDC Component 

This appendix provides FORTRAN source code listings for the custom PSCAD/EMTDC 

capacitor balancing control (CBC) component used in the simulation model described in 

Chapter 5. The custom component was developed to facilitate the research into different 

CBC methods presented in Chapter 6. The source code listings are provided here, should 

the reader wish to inspect the implementation of the CBC methods and compare them with 

the flowchart depictions shown in Chapter 5. 

The custom CBC component implements the required CBC methods (periodic, average 

tolerance band, and cell tolerance band) in a single component – that is – it is not necessary 

to replace the component on the PSCAD schematic canvas when changing CBC method. It 

makes extensive use of PSCAD script directives in the component definition script to 

control which code segments are compiled, based upon the CBC method selected. Some 

source code is common across all CBC methods. 

To aid understanding, the source code listings divided into several sub-sections based upon 

whether the code is common across all CBC methods or specific to a particular method. 

Furthermore, some of the PSCAD definition script directives have been removed to 

prevent confusion with the source code itself. The sub-sections are outlined as follows: 

• B-1: source code which is common across all CBC methods 

• B-2: source code for evaluating the trigger conditions for the periodic CBC method 

• B-3: source code for evaluating the trigger conditions for the average tolerance 

band CBC method 

• B-4: source code for evaluating the trigger conditions for the cell tolerance band 

CBC method 

• B-5: source code for the bubble sort algorithm subroutine, common across all CBC 

methods 

The source code in Appendices B-2 to B-4 is substituted into the common source code in 

the location indicated in Appendix B-1 dependent upon the selected CBC method. The 

source code listings in this appendix form only part of the custom component; the 

PSCAD/EMTDC component can be downloaded from the repository in [26], should the 

reader wish to explore its operation further.  



Appendix B -  Source Code for Custom PSCAD/EMTDC Component 

173 

B-1 Common Source Code 

28  ! allocate space in storage array for previous timestep values 

29  #STORAGE INTEGER:$(DimCBC) 

30   
31  ! variable declarations 

32  #LOCAL INTEGER i 

33  #LOCAL INTEGER n 

34  #LOCAL INTEGER j 

35   
36  #LOCAL INTEGER trigger_cbc 

37  #LOCAL INTEGER my_nstori 

38  #LOCAL INTEGER my_nstorf 

39   
40  #LOCAL INTEGER sort_swaps 

41  #LOCAL INTEGER sort_comparisons 

42   
43  #LOCAL REAL vcap_curr_timestep $(DimCBC) 

44  #LOCAL INTEGER idx_prev_timestep $(DimCBC) 

45   
46  #LOCAL REAL temp_vcap 

47  #LOCAL INTEGER temp_idx 

48   
49  #LOCAL REAL vcap_sum 

50  #LOCAL REAL vcap_avg 

51   
52  #LOCAL REAL atb_upper 

53  #LOCAL REAL atb_lower 

54  #ENDIF 

55  #ENDIF 

56   
57  ! initialise local storage array variables and increment  

58  my_nstori = NSTORI 

59  NSTORI = NSTORI + $DimCBC 

60   
61  ! if t=0, initialise last timestep array with initial conditions 

62  ! else, retrieve previous time step values from storage arrays 

63  IF (TIMEZERO .EQV. .TRUE.) THEN 

64   
65      DO i=1,$DimCBC 

66          idx_prev_timestep(i) = i 

67      ENDDO 

68   
69  ELSE 

70   
71      DO i=1,$DimCBC 

72          idx_prev_timestep(i) = STORI(my_nstori+i-1) 

73      ENDDO 

74   
75  ENDIF 

76   
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77  ! reset sorting algorithm swaps/comparisons variables 

78  sort_swaps = 0 

79  sort_comparisons = 0 

80   

81  ! reset trigger 

82  trigger_cbc = 0 

83   

84  ! clear triggered output port 

85  $TrigOut = 0 

86   

87  ! [...] continued below 

Listing B-1: Custom component common FORTRAN source code, part 1 

The CBC method-specific code which determines whether capacitor balancing should be 

triggered is inserted after Line 59 in Listing B-1:. The source code which follows the CBC 

method-specific code is shown below in Listing B-2. 

1  ! [...] 

2  ! initialise arrays 

3  DO i=1,$DimCBC 

4   
5      $Idx(i) = i 

6      vcap_curr_timestep(i) = $Vcap(i) 

7       
8  ENDDO 

9   
10  ! if CBC has been triggered, execute balancing 

11  IF (trigger_cbc .EQ. 1) THEN 

12       
13      ! set triggered output port 

14      $TrigOut = 1 

15   
16      ! do CBC sort 

17      ! sort based on arm current, always placing the submodules to  

18      ! be inserted in the lowest (ie. 1, 2...) array indices 

19       
20      ! if arm current is positive, sort ascending  

21      ! (so that SMs with lowest CVs end up in lowest indices) 

22      IF ($Iarm .GE. 0) THEN 

23   
24          ! bubble sort ascending 

25          CALL bubble_sort_ascending($DimCBC, vcap_curr_timestep, 
$Idx, sort_swaps, sort_comparisons)      

26   
27      ! else if arm current is negative, sort descending  

28      ! (so that SMs with highest CVs end up in lowest indices) 

29      ELSE 

30   
31          ! bubble sort descending 
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32          CALL bubble_sort_descending($DimCBC, vcap_curr_timestep, 

$Idx, sort_swaps, sort_comparisons) 
33   
34      ENDIF 

35   
36  ELSE 

37       
38      ! CBC has not been triggered, so write previous 

39      ! timestep index values to outputs 

40      DO i=1,$DimCBC 

41          $Idx(i) = idx_prev_timestep(i) 

42      ENDDO 

43   
44  ENDIF 

45   
46  ! update index storage array 

47  DO i=1,$DimCBC 

48      STORI(my_nstori+i-1) = $Idx(i)   

49  ENDDO 

50   
51  ! write sorting algorithm statistics to component output ports 

52  $SwapOut = sort_swaps 

53  $CompOut = sort_comparisons 

Listing B-2: Custom component common FORTRAN source code, part 2 
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B-2 Periodic CBC Method Source Code 

1  ! CBC Mode: Periodic (External Trigger) 

2  ! if external trigger input port == 1, then run balancing 

3  IF ($TrigIn .EQ. 1) THEN 

4      trigger_cbc = 1 

5  ENDIF 

Listing B-3: Periodic CBC method FORTRAN source code 

B-3 Average Tolerance Band CBC Method Source Code 

1  ! CBC Mode: Average Tolerance Band (ATB) 

2  ! calculate average capacitor voltage 

3  vcap_sum = 0 

4   
5  DO i=1,$DimCBC 

6      vcap_sum = vcap_sum + $Vcap(i) 

7  ENDDO 

8   
9  vcap_avg = vcap_sum / $DimCBC 

10   
11  ! for each SM check that Vcap is within the tolerance band 

12  ! if it is not, trigger the CBC loop 

13   
14  ! tolerance band is given in kV 

15  DO i=1,$DimCBC 

16   
17      IF (ABS($Vcap(i)-vcap_avg) .GT. $ATBToleranceBand) THEN 

18          trigger_cbc = 1 

19      ENDIF 

20       
21  ENDDO 

Listing B-4: Average Tolerance Band CBC method FORTRAN source code 

B-4 Cell Tolerance Band CBC Method Source Code 

1  ! CBC Mode: Cell Tolerance Band (CTB) 

2  ! for each SM, check that Vcap is within the max/min limits 

3  DO i=1,$DimCBC 

4   
5      IF (($Vcap(i) .GT. $CTBMaxVcap) .OR. ($Vcap(i) .LT. 

$CTBMinVcap)) THEN 
6          trigger_cbc = 1 

7      ENDIF 

8       
9  ENDDO 

Listing B-5: Cell Tolerance Band CBC method FORTRAN source code 
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B-5 Bubble Sort Subroutine Source Code 

When capacitor balancing is triggered, the submodule capacitor voltages are sorted using 

the bubble sort algorithm. The direction of the sort (ascending or descending) is dictated by 

the direction of the arm current. Listing B-6 and Listing B-7 show the source code for the 

bubble sort implementation used in the custom component for ascending and descending 

sorting direction respectively. The bubble sort algorithm is implemented as a FORTRAN 

subroutine which is called from the custom component. 

1  subroutine bubble_sort_ascending(n, vcap_array, idx_array, swaps, 

comparisons) 
2   
3      ! dummy arguments 

4      integer n, idx_array(*), swaps, comparisons 

5      real vcap_array(*) 

6       
7      integer i, j, temp_idx 

8      real temp_vcap 

9       
10      ! bubble sort algorithm 

11      do i=n-1,1,-1 

12       
13          do j=1,i 

14   
15              if (vcap_array(j+1) .LT. vcap_array(j)) then 

16       
17                  temp_vcap = vcap_array(j+1) 

18                  vcap_array(j+1) = vcap_array(j) 

19                  vcap_array(j) = temp_vcap 

20   
21                  temp_idx = idx_array(j+1) 

22                  idx_array(j+1) = idx_array(j) 

23                  idx_array(j) = temp_idx 

24   
25                  swaps = swaps + 1 

26               
27              else 

28                   
29                  comparisons = comparisons + 1 

30   
31              endif 

32   
33          enddo 

34       
35      enddo 

36       
37  end subroutine 

Listing B-6: Bubble Sort algorithm FORTRAN source code, ascending sort direction 
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1  subroutine bubble_sort_descending(n, vcap_array, idx_array, 
swaps, comparisons) 

2   
3      ! dummy arguments 

4      integer n, idx_array(*), swaps, comparisons 

5      real vcap_array(*) 

6       
7      integer i, j, temp_idx 

8      real temp_vcap 

9       
10      ! bubble sort algorithm 

11      do i=n-1,1,-1 

12       
13          do j=1,i 

14   
15              if (vcap_array(j+1) .GT. vcap_array(j)) then 

16       
17                  temp_vcap = vcap_array(j+1) 

18                  vcap_array(j+1) = vcap_array(j) 

19                  vcap_array(j) = temp_vcap 

20   
21                  temp_idx = idx_array(j+1) 

22                  idx_array(j+1) = idx_array(j) 

23                  idx_array(j) = temp_idx 

24   
25                  swaps = swaps + 1 

26               
27              else 

28                   
29                  comparisons = comparisons + 1 

30   
31              endif 

32   
33          enddo 

34       
35      enddo 

36       
37  end subroutine 

Listing B-7: Bubble Sort algorithm FORTRAN source code, descending sort direction 
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Appendix C - Selection of Maximum Allowable 

Control Cycle Delay Threshold 

This appendix provides a more detailed analysis of the selection of the value of 

𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 used in Section 6.4 of Chapter 6 in this thesis. The motivations for 

applying a threshold to the number of missed control cycles due to the sorting algorithm 

execution delay are outlined first, followed by an overview of submodule (SM) capacitor 

voltage dynamics. Simulation results from the PSCAD/EMTDC model of the 351-level 

half-bridge SM (HB-SM) modular multilevel converter (MMC) are then presented to 

explain the selection of 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 8 in Section 6.4. Several caveats to this 

approach are then identified. 

Motivation for Selection of 𝑴𝒄𝒐𝒏𝒕𝒓𝒐𝒍−𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

As outlined in Section 6.4.2, a delay within the CBC will lead to degraded capacitor 

balancing performance and a larger deviation in SM capacitor voltage from 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚. This 

was shown originally by the results presented in [92], where the maximum deviation of the 

SM capacitor voltage was measured for an increasing number of samples delay within the 

CBC loop. Furthermore, it was also shown in [92] that the CBC loop is able to tolerate a 

certain amount of delay in the loop, whilst still maintaining SM capacitor voltages within 

the desired range. The delay in the loop may be caused by the communication network 

between the controller and the SM, or by a processing delay in the CBC loop. In this thesis, 

the delay being investigated is due to the sorting algorithm execution time. 

Motivated by the work presented in [92], it was decided to simplify the analysis of the 

sorting algorithm execution time data in Section 6.4.3 by applying a threshold value of the 

number of control cycles missed due to the sorting algorithm execution delay. The 

threshold value was termed 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Only the number of instances where the 

instantaneous timestep value of 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (termed 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘], caused by the sorting 

algorithm execution delay) exceeded 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 were counted. This approach was 

taken since, in instances where 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙[𝑘] < 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the effect of the 

execution delay upon SM capacitor voltage balancing could be assumed to be negligible.  
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Submodule Capacitor Voltage Ripple 

Submodule capacitor voltages naturally exhibit a ripple during converter operation due to 

the charging and discharging of the capacitor by the arm current when the SM is in the 

inserted state. The maximum allowable range for the SM capacitor voltage ripple is 

typically dictated by several factors, including: 

• Capacitor working voltage range 

• Capacitor maximum ripple current 

• Submodule insulated gate bipolar transistor (IGBT) maximum blocking voltage 

• Maximum voltage ratings of other SM components (eg. bypass switch, energy 

harvesting circuit for the SM auxiliary circuitry, etc.) 

In addition to ensuring that SM component ratings are not exceeded, it is important that the 

SM capacitor voltages are balanced at or near to the nominal value, 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚, so that each 

output voltage step is equal to 𝑉𝑑𝑐 𝑁𝑆𝑀⁄ . This ensures that the arm output voltage 

waveform is able to accurately track the input reference from the arm voltage controller. 

The capacitor balancing control (CBC) loop works to ensure that all of these control 

objectives are met. 

Typically, SM capacitors are sized so that capacitor voltage ripple is within ± 5 % of 

𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 [28, 31]. The required SM capacitance can be calculated analytically using the 

approach presented in [110], or alternatively using the estimate of 30-40 kJ of stored 

energy per MVA proposed in [28]. 
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Sum Capacitor Voltage Ripple 

As explained in Section 2.1.1, the instantaneous sum of the SM capacitor voltages in a 

single arm (𝑉𝑐𝑎𝑝𝑢,𝑙
Σ (𝑡)) exhibits a ripple due to summing of individual SM capacitor 

voltages which also exhibit a ripple. The maximum range of 𝑉𝑐𝑎𝑝𝑢,𝑙
Σ (𝑡) will typically occur 

when the converter is operating at maximum power or possibly during some transients 

[31], since in these scenarios the range of the arm current in each phase is also at its 

maximum. This causes the capacitors of SMs in the inserted state to charge or discharge 

faster. Therefore, it can be concluded that operating at maximum rated power represents a 

worst-case scenario for the CBC loop, since SM capacitor voltages will deviate from 

𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 by a larger amount in a given time window. Based on this analysis, the model 

was configured to import (DC side to AC side power flow, inverter mode) the maximum 

rated active and reactive power of 1200 MW and 400 MVAr for the selection of 

𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.  

The range and profile of the sum SM capacitor voltage ripple (𝑉𝑐𝑎𝑝𝑢,𝑙
Σ (𝑡)) is dictated by the 

converter operating point and SM capacitance – that is – it is not dependent upon the 

chosen CBC method or whether or not individual SMs are balanced. As a result, 𝑉𝑐𝑎𝑝𝑢,𝑙
Σ (𝑡) 

cannot be used to measure and compare the performance of different CBC methods, or to 

measure how a given CBC method is affected by a delay in the loop. 

Maximum Capacitor Voltage Deviation 

Instead, a method of measuring the deviation of individual SM capacitor voltages is 

required. The authors in [92] proposed a measured described as “maximum deviation to the 

average capacitor voltage”, however this was poorly defined, despite the fact that it 

showed that increasing the delay in the CBC loop increases the maximum deviation. 

Therefore, a method to measure the deviation of individual SM capacitor voltages which 

can be used to assess the performance of CBC is defined here. 

As described in Section 2.1.1, the nominal SM capacitor voltage, 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚, is calculated 

using the nominal DC bus voltage, 𝑉𝑑𝑐, and the number of SMs per arm, 𝑁𝑆𝑀, according to 

Equation C-1, first introduced in Section 2.1.1 but replicated here for ease. 

𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 =
𝑉𝑑𝑐

𝑁𝑆𝑀
 

C-1 

 



Appendix C -  Selection of Maximum Allowable Control Cycle Delay Threshold 

182 

In the 351-level HB-SM MMC model used in this work, 𝑉𝑑𝑐 = 640 kV and 𝑁𝑆𝑀 = 350, 

therefore 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 = 1.83 kV to 3 s.f. It is important to remember that only the long-term 

mean SM capacitor voltage will actually converge to this value, since the instantaneous 

value of SM capacitor voltage exhibits a ripple as explained earlier. 

A further quantity, ∆𝑉𝑐𝑎𝑝
𝑖 [𝑘], can be defined according to Equation C-2. This is termed the 

instantaneous capacitor voltage deviation from the nominal and is calculated per-SM 

(index 𝑖) in each sampling instant (or simulation timestep), 𝑘. 

Since all SM capacitor voltages will exhibit a deviation from the nominal, this measure 

alone cannot be used to compare the balancing performance of different CBC methods 

with or without a delay in the loop. Instead, the maximum instantaneous deviation from the 

nominal can be used, ∆𝑉𝑐𝑎𝑝−𝑚𝑎𝑥[𝑘], calculated according to Equation C-3. 

∆𝑉𝑐𝑎𝑝−𝑚𝑎𝑥[𝑘] = max⁡𝑖=1
𝑁𝑆𝑀(|∆𝑉𝑐𝑎𝑝

𝑖 [𝑘]|) 
C-3 

 

The max() operator searches the list of SM capacitor voltages (𝑖 = 1..𝑁𝑆𝑀) and finds the 

SM with the largest absolute deviation from the nominal. Using this measure, it is possible 

to obtain an envelope within which all other SM capacitor voltages lie. A larger envelope 

corresponds to worse capacitor voltage balancing between SMs. The maximum 

instantaneous deviation from the nominal can also be expressed as a percentage of 

𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 using Equation C-4. This allows direct comparison with the typical target SM 

capacitor voltage ripple of ± 5 % specified earlier. 

%∆𝑉𝑐𝑎𝑝−𝑚𝑎𝑥[𝑘] =
∆𝑉𝑐𝑎𝑝−𝑚𝑎𝑥[𝑘]

𝑉𝑐𝑎𝑝−𝑛𝑜𝑚
× 100 

C-4 

 

∆𝑉𝑐𝑎𝑝
𝑖 [𝑘] = 𝑉𝑐𝑎𝑝

𝑖 [𝑘] − 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 
C-2 
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Simulation Results 

To obtain a value for 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the PSCAD/EMTDC model of the 351-level 

HB-SM MMC was used to generate capacitor voltage data for three CBC methods: 

1. Periodic CBC operating at 𝑓𝑠−𝐶𝐵𝐶 = 1 kHz 

2. Average tolerance band (ATB) with a tolerance band of ± 5 % around the 

instantaneous mean SM capacitor voltage, 𝑉𝑐𝑎𝑝[𝑘] 

3. Cell tolerance band (CTB) with a tolerance band of ± 0.091 kV around the nominal 

SM capacitor voltage, 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 

Each CBC method was tested with a delay in the loop of 0, 2, 4, 8, 16 control cycles 

(corresponding to a delay of 0 μs,  00 μs, 200 μs, 400 μs, and 800 μs with a 50 μs 

simulation timestep) by inserting an 𝑒−𝑠𝑇 delay between the CBC component output and 

the firing signal generator block, as shown in Figure C-1. This effectively introduced a 

delay in SM switching for capacitor balancing purposes.  

 

Figure C-1: PSCAD/EMTDC MMC model 𝑒−𝑠𝑇 delay block location 
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As stated earlier, the converter was configured in inverter mode to import the maximum 

rated active and reactive power of 1200 MW (𝑃∗) and 400 MVAr (𝑄∗). The converter level 

response is shown in Figure C-2. 

 

Figure C-2: Converter level response, steady state operation at 𝑃∗ = −1200 MW, 

𝑄∗ = −400 MVAr (import, inverter mode) 

For each CBC method and delay value, the phase A upper arm SM capacitor voltages were 

logged to a file and %∆𝑉𝑐𝑎𝑝−𝑚𝑎𝑥[𝑘] was calculated at each timestep between 

𝑡 = 2.0 seconds to 𝑡 = 2.1 seconds where the converter had reached steady state. This data 

is plotted in Figure C-3(a) to (c).  
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(a) 

 
(b) 

 
(c) 

Figure C-3: Maximum instantaneous capacitor voltage deviation from 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 as a 

percentage of 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 at different delay lengths for (a) periodic, (b) average tolerance 

band, and (c) cell tolerance band CBC methods 

It is important to note that the maximum deviation as a percentage of 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 is greater 

than the ideal value of ± 5 % even where the delay is 0 cycles (no delay). This is due to 

under-sizing of the SM capacitance in the model caused by using the lower value of 

30 kJ/MVA to calculate the stored energy requirement [80].  
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It can be seen from Figure C-3(a) and (c) that as the number of cycles delay is increased, 

the maximum deviation from 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 also increases. Across all CBC methods and 

number of cycles delay, the maximum deviation occurs at a point corresponding to the zero 

crossing of the arm current and the point on the SM insertion index wave (𝑁𝑜𝑛𝑢𝑎) where 

nearly all SMs are inserted. This is shown in the zoomed-in plot in Figure C-4 for the 

periodic CBC case at 𝑡 ≈ 2.034 seconds. 

  

Figure C-4: Zoomed-in plot of maximum instantaneous deviation from 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 as a 

percentage of 𝑉𝑐𝑎𝑝−𝑛𝑜𝑚 at different delay lengths (top), and phase A upper arm current 

(bottom, left-hand 𝑦-axis) and phase A upper arm SM insertion index (bottom, right-hand 

𝑦-axis) 

Returning to Figure C-3(a) and (c), the increase in maximum deviation as the delay is 

increased is particularly pronounced above 8 cycles in both cases, focussing upon the 

regions where the curves are furthest apart. For periodic CBC, this occurs on the rising 

edge of the deviation curves for 8 and 16 cycles delay, and at the top of the curve for the 

16 cycles delay case. In the case of the CTB method, the biggest difference between the 

curves occurs on the positive peak and in the plateau region on the negative peak. As a 

result, 8 cycles was chosen as the value for 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 
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Focussing upon Figure C-3(b) for the ATB method, the same relationship between 

increasing maximum deviation and increasing delay is not observed. This may be due to 

the fundamental operating principle of the ATB method, the choice of the tolerance band 

width, or other factors. Further research into the causes of this behaviour was outside the 

scope and timescale of this project, however the analysis methods presented in this 

appendix can be used to form the basis of this investigation.  

Furthermore, it is important to note that the number of cycles delay required to cause a 

significant maximum deviation is highly dependent upon the chosen CBC method and 

converter set point. The analysis presented here aims to represent the worst-case scenario, 

however, other converter operating points may cause a non-negligible maximum deviation 

with a smaller number of cycles delay. 
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Appendix D - Supplementary Plots for Chapter 6 

This appendix contains supplementary plots for the comparison of capacitor balancing 

control (CBC) method execution time window and sorting algorithm execution time 

carried out in Section 6.4 of Chapter 6.  

Plots are grouped according to the three scenarios simulated in Section 6.4.3. The first 

group of plots in each sub-section show, for each CBC method (periodic, average tolerance 

band, and cell tolerance band): 

• Phase A upper arm current (𝐼𝑢𝑎) 

• Phase A upper arm SM insertion index (𝑁𝑜𝑛𝑢𝑎) 

• Phase A upper arm SM capacitor voltages (𝑉𝑐𝑎𝑝𝑢𝑎
𝑖=1..350) 

• CBC loop sampling instances as a density plot 

The density plot displays each CBC loop sampling instant as a thin grey line. The spacing 

between lines is equal to the CBC loop sampling period, 𝑇𝑠−𝐶𝐵𝐶. These plots can be used to 

visualise the points on the arm current, SM insertion index, or SM capacitor voltage plots 

where the CBC loop is triggered at a higher or lower frequency. 

The second group of plots in each scenario show the number of control cycles missed by 

the sorting algorithm (𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙) due to the sorting algorithm execution time in histogram 

form. When compared to the thresholding approach used in Chapter 6, the histograms 

provide a more detailed insight into the distribution of 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 for each sorting algorithm 

implementation and CBC method.  
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D-1 Scenario 1: Steady State Power Import 

Periodic 

 

Figure D-5: Upper arm electrical quantities, scenario 1, periodic CBC 
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Figure D-6: Sorting algorithm missed control cycle histograms, scenario 1, periodic CBC  
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Average Tolerance Band 

 

Figure D-7: Upper arm electrical quantities, scenario 1, average tolerance band CBC   
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Figure D-8: Sorting algorithm missed control cycle histograms, scenario 1, average 

tolerance band CBC   
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Cell Tolerance Band 

 

Figure D-9: Upper arm electrical quantities, scenario 1, cell tolerance band CBC  
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Figure D-10: Sorting algorithm missed control cycle histograms, scenario 1, cell tolerance 

band CBC  
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D-2 Scenario 2: Power Flow Reversal 

Periodic 

 

Figure D-11: Upper arm electrical quantities, scenario 2, periodic CBC  
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Figure D-12: Sorting algorithm missed control cycle histograms, scenario 2, periodic CBC  
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Average Tolerance Band 

 

Figure D-13: Upper arm electrical quantities, scenario 2, average tolerance band CBC  
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Figure D-14: Sorting algorithm missed control cycle histograms, scenario 2, average 

tolerance band CBC  
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Cell Tolerance Band 

 

Figure D-15: Upper arm electrical quantities, scenario 2, cell tolerance band CBC  
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Figure D-16: Sorting algorithm missed control cycle histograms, scenario 2, cell tolerance 

band CBC  
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D-3 Scenario 3: AC 3 Phase-ground Fault 

Periodic 

 

Figure D-17: Upper arm electrical quantities, scenario 3, periodic CBC  
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Figure D-18: Sorting algorithm missed control cycle histograms, scenario 3, periodic CBC  
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Average Tolerance Band 

 

Figure D-19: Upper arm electrical quantities, scenario 3, average tolerance band CBC  



Appendix D -  Supplementary Plots for Chapter 6 

204 

 

Figure D-20: Sorting algorithm missed control cycle histograms, scenario 3, average 

tolerance band CBC  
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Cell Tolerance Band 

 

Figure D-21: Upper arm electrical quantities, scenario 3, cell tolerance band CBC  
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Figure D-22: Sorting algorithm missed control cycle histograms, scenario 3, cell tolerance 

band CBC 
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Appendix E - CHP Sensing and Measurement 

Circuit Modifications 

As outlined in Section 7.2.2, some hardware modifications to the converter hardware 

prototype (CHP) were made during this project to resolve issues first identified in [25]. 

This appendix provides a more detailed description of the potential sources of 

measurement noise in the CHP and offers some steps which can be taken to reduce 

measurement noise when designing future measurement circuits for the CHP. Additional 

hardware measurements are required and recommended to validate the suggestions 

included here. 

Arm Current Measurement Noise 

One of the issues identified was noisy and inaccurate measurements from the Hall-effect 

current sensors which are used to measure 𝐼𝑎𝑐, 𝐼𝑑𝑐, and 𝐼𝑢,𝑙 in the CHP. The arm current 

measurements are used by the circulating current suppression control (CCSC) and 

capacitor balancing control (CBC) loops, whilst the AC output current and DC supply 

current measurements are acquired for logging purposes only. Incorrect arm current 

measurements will degrade the performance of the CCSC and CBC loops, leading to 

unrepresentative converter behaviour and possible component damage. 

As stated in Section 7.2.2, the voltage output from the Hall-effect sensors on the power 

interface board (PIB) exhibited a significant noise component. Two possible sources of 

noise on the Hall-effect sensor outputs were identified in [25] and are explained in more 

detail below: 

• Common-mode noise on the +5 V power supply bus to the PIB: 

The PIB shares a +5 V supply bus with the fibre optic breakout board (FOBB) and 

twelve local controller (LC) field-programmable gate array (FPGA) boards. The 

circuitry on the FOBB and LC boards is high-speed digital logic operating at clock 

frequencies typically greater than 1 MHz. Fast switching of digital logic on the 

FOBB and LC boards produces large 𝑑𝐼 𝑑𝑡⁄  transients which are coupled onto the 

local +5 V supply rail on each board. Other circuitry on the LC FPGA boards such 

as local power supply DC-DC converters will also introduce 𝑑𝐼 𝑑𝑡⁄  transients. 

Locally, these transients will cause voltage spikes, which may be coupled onto the 

main +5 V supply bus due to inadequate local power supply bypassing and long, 
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high-gauge (therefore high inductance) power supply cables from the +5 V 

distribution board. The Hall-effect current sensors on the PIB are highly sensitive 

to noise on the power supply rail. As a result, noise on the +5 V supply bus can be 

easily coupled into the sensor output if the local power supply rail is not decoupled 

adequately. 

Radiated electromagnetic interference (EMI):  

Switching of semiconductor devices in the CHP power electronics (SMs) and 

ancillary switched-mode power supplies (SMPS) generates EMI. This can be 

coupled into the Hall-effect sensor measurements in two locations in the 

measurement circuit: 

a. Coupling into the ‘primary side’ measurand (𝐼𝑎𝑐, 𝐼𝑑𝑐, or 𝐼𝑢,𝑙) due to 

inductive loops with a large loop area inside the CHP. For example, 

connections from the six converter arms to the PIB and arm inductors are 

via long leads (typically > 30 cm), some of which are not tightly paired with 

their corresponding return current path. This leads to inductive pickup of 

EMI inside the CHP due to stray inductance caused by a large loop area. 

b. Coupling into the ‘secondary side’ voltage output of the Hall-effect sensors 

via stray inductance and capacitance in printed circuit board (PCB) traces. 

Due to the very high (> 10 GΩ [103]) input impedance of the NI PXIe-6363 

data acquisition (DAQ) card analogue inputs to which the Hall-effect 

sensors are connected, the voltage measurement circuit is highly sensitive to 

noise. 

Further troubleshooting during this project also identified a varying DC offset on the Hall-

effect sensor outputs which was not caused by a DC current component in the primary side 

measurand. The DC offset was different for each Hall-effect sensor and varied dependent 

upon the breaker relay states on the PIB. One potential source for the DC offset was 

identified as follows: 

• Poor grounding of relay breaker control circuit and Hall-effect sensor circuit: 

Several ground references exist in the CHP due to the large number of independent, 

isolated DC supplies used for the control and communication hardware. For 

example, the +5 V supply, +24 V supply, and National Instruments (NI) control 

chassis each have separate, isolated, secondary-side ground references. These 

ground references are connected together at different (often multiple) points in the 
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CHP. This can cause ground loop offsets if the grounding scheme is not designed 

carefully, which manifest themselves as voltage offsets on the output of sensitive 

measurement circuits, such as the Hall-effect current sensor circuits. The +5 V and 

NI control chassis grounds are connected together on the PIB and a ground loop 

between these is one possible cause of the DC offset observed on the current sensor 

outputs. 

The issues with the arm current measurements were eventually resolved by installing six 

Pico Technology TA189 [97] clamp type current probes in the CHP. The measurements of 

𝐼𝑎𝑐 and 𝐼𝑑𝑐 are still taken from the PIB Hall-effect sensors, therefore still exhibit the noise 

and offset issues outlined above. 

Measurement Circuit Design Recommendations 

As stated previously, the information presented here offers several potential sources of the 

measurement noise and offset in the Hall-effect sensor outputs in the CHP. Further 

improvement of the sensing and measurement circuits in the CHP is recommended to 

resolve the issues identified here. Designing future measurement circuits to ensure that 

measurements are accurate and noise-free requires and care at all stages of the process. 

This applies to wire interconnections between circuits, and printed circuit board (PCB) 

designs for measurement circuits, amongst other components. A wide range of literature is 

available on design techniques for measurement circuits; however, some general 

recommendations are listed below: 

• Minimise stray inductance in measurement circuits and high-current connections: 

o Use equipment hook-up wire of a suitably high gauge for high-current 

connections to minimise inductance. 

o Tightly twist current send and return conductors to minimise loop area and 

therefore stray inductance. 

• Shield circuits and conductors which are sensitive to noise. 

• Plan and design circuit grounding schemes with care: 

o Identify ground loops and mitigate against these where possible by planning 

where different ground references will connect. 

o Ensure ground connections have a low stray inductance (short, low-gauge 

wire or PCB traces). 

• Use an independent power supply for sensitive measurement circuits: 
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o If this is not possible, ensure that the measurement circuit has adequate 

local power supply decoupling, such as bypass capacitors of a range of 

values to target different frequencies. 

• Filter DAQ analogue measurements in hardware to attenuate noise outside the 

expected frequency range of the measurand: 

o This can be done using a simple R-C filter in hardware, or post-acquisition 

using a filter implemented in software. 
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