397 research outputs found

    Understanding the measurement of forests with waveform lidar

    Get PDF
    The measurement of forests is essential for monitoring and predicting the role and response of the land surface to global climate change. Globally consistent and frequent measurements can only be made by satellites; unfortunately many current system’s measurements saturate at moderate canopy densities and are not directly related to forest properties, requiring tenuous empirical relationships that are insensitive to many of the Earth’s most important, Carbon rich forests. Lidar (laser radar) is a relatively new technology that offers the potential to make direct measurements of forest height, vertical density and, when ground based, explicit measurements of structure. In addition measurements do not saturate until much higher forest densities. In recent years there has been much interest in the measurement of forests by lidar, with a number of airborne and terrestrial and one spaceborne lidar developed. Measuring a forest leaf by leaf is impractical and very tedious, so more rapid ground based methods are needed to collect data to validate satellite derived estimates. These rapid methods are themselves not directly related to forest properties causing uncertainty in any validation of remotely sensed estimates. This thesis uses Monte Carlo ray tracing to simulate the measurement of forests by full waveform lidars over explicit geometric forest models for both above and below canopy instruments. Existing methods for deriving forest properties from measurements are tested against the known truth of these simulated forests, a process impossible in reality. Causes of disagreements are explored and new methods developed to attempt to overcome any shortcomings. These new methods include dual wavelength lidar for correcting satellite based measurements for topography and a voxel based method for more directly relating terrestrial lidar signals to forest properties

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)

    Recovery of forest canopy parameters by inversion of multispectral LiDAR data

    Get PDF
    We describe the use of Bayesian inference techniques, notably Markov chain Monte Carlo (MCMC) and reversible jump MCMC (RJMCMC) methods, to recover forest structural and biochemical parameters from multispectral LiDAR (Light Detection and Ranging) data. We use a variable dimension, multi-layered model to represent a forest canopy or tree, and discuss the recovery of structure and depth profiles that relate to photochemical properties. We first demonstrate how simple vegetation indices such as the Normalized Differential Vegetation Index (NDVI), which relates to canopy biomass and light absorption, and Photochemical Reflectance Index (PRI) which is a measure of vegetation light use efficiency, can be measured from multispectral data. We further describe and demonstrate our layered approach on single wavelength real data, and on simulated multispectral data derived from real, rather than simulated, data sets. This evaluation shows successful recovery of a subset of parameters, as the complete recovery problem is ill-posed with the available data. We conclude that the approach has promise, and suggest future developments to address the current difficulties in parameter inversion

    Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data

    Get PDF
    This study presents and compares new methods to describe the 3D canopy structure with Airborne Laser Scanning (ALS) waveform data as well as ALS point data. The ALS waveform data were analyzed in three different ways; by summing the intensity of the waveforms in height intervals (a); by first normalizing the waveforms with an algorithm based on Beer-Lambert law to compensate for the shielding effect of higher vegetation layers on reflection from lower layers and then summing the intensity (b); and by deriving points from the waveforms (c). As a comparison, conventional, discrete return ALS point data from the laser scanning system were also analyzed (d). The study area was located in hemi-boreal, spruce dominated forest in the southwest of Sweden (Lat. 58° N, Long. 13° E). The vegetation volume profile was defined as the volume of all tree crowns and shrubs in 1 dm height intervals in a field plot and the total vegetation volume as the sum of the vegetation volume profile in the field plot. The total vegetation volume was estimated for 68 field plots with 12 m radius from the proportion between the amount of ALS reflections from the vegetation and the total amount of ALS reflections based on Beer-Lambert law. ALS profiles were derived from the distribution of the ALS data above the ground in 1 dm height intervals. The ALS profiles were rescaled using the estimated total vegetation volume to derive the amount of vegetation at different heights above the ground. The root mean square error (RMSE) for cross validated regression estimates of the total vegetation volume was 31.9% for ALS waveform data (a), 27.6% for normalized waveform data (b), 29.1% for point data derived from the ALS waveforms (c), and 36.5% for ALS point data from the laser scanning system (d). The correspondence between the estimated vegetation volume profiles was also best for the normalized waveform data and the point data derived from the ALS waveforms and worst for ALS point data from the laser scanning system as demonstrated by the Reynolds error index. The results suggest that ALS waveform data describe the volumetric aspects of vertical vegetation structure somewhat more accurately than ALS point data from the laser scanning system and that compensation for the shielding effect of higher vegetation layers is useful. The new methods for estimation of vegetation volume profiles from ALS data could be used in the future to derive 3D models of the vegetation structure in large areas

    Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model

    Get PDF
    The Geoscience Laser Altimeter System (GLAS) has the potential to accurately map global vegetation heights and fractional cover metrics using active laser pulse emission/reception. However, large uncertainties in the derivation of data products exist, since multiple physically plausible interpretations of the data are possible. In this study a method is described and evaluated to derive vegetation height and fractional cover from GLAS waveforms by inversion of the FLIGHT radiative transfer model. A lookup-table is constructed giving expected waveforms for a comprehensive set of canopy realisations, and is used to determine the most likely set of biophysical parameters describing the forest structure, consistent with any given GLAS waveform. The parameters retrieved are canopy height, leaf area index (LAI), fractional cover and ground slope. The range of possible parameters consistent with the waveform is used to give a per-retrieval uncertainty estimate for each retrieved parameter. The retrieved estimates were evaluated first using a simulated data set and then validated against airborne laser scanning (ALS) products for three forest sites coincident with GLAS overpasses. Results for height retrieval show mean absolute error (MAE) of 3.71 m for a mixed temperate forest site within Forest of Dean (UK), 3.35 m for the Southern Old Aspen Site, Saskatchewan, Canada, and 5.13 m for a boreal coniferous site in Norunda, Sweden. Fractional cover showed MAE of 0.10 for Forest of Dean and 0.23 for Norunda. Coefficient of determination between ALS and GLAS estimates over the combined dataset gave R2 values of 0.71 for height and 0.48 for fractional cover, with biases of −3.4 m and 0.02 respectively. Smallest errors were found where overpass dates for ALS data collection closely matched GLAS overpasses. Explicit instrument parameterisation means the method is readily adapted to future planned spaceborne LiDAR instruments such as GEDI

    Advances in measuring forest structure by terrestrial laser scanning with the Dual Wavelength ECHIDNA® LIDAR (DWEL)

    Get PDF
    Leaves in forests assimilate carbon from the atmosphere and woody components store the net production of that assimilation. Separate structure measurements of leaves and woody components advance the monitoring and modeling of forest ecosystem functions. This dissertation provides a method to determine, for the first time, the 3-D spatial arrangement and the amount of leafy and woody materials separately in a forest by classification of lidar returns from a new, innovative, lidar scanner, the Dual-Wavelength Echidna® Lidar (DWEL). The DWEL uses two lasers pulsing simultaneously and coaxially at near-infrared (1064 nm) and shortwave-infrared (1548 nm) wavelengths to locate scattering targets in 3-D space, associated with their reflectance at the two wavelengths. The instrument produces 3-D bispectral "clouds" of scattering points that reveal new details of forest structure and open doors to three-dimensional mapping of biophysical and biochemical properties of forests. The three parts of this dissertation concern calibration of bispectral lidar returns; retrieval of height profiles of leafy and woody materials within a forest canopy; and virtual reconstruction of forest trees from multiple scans to estimate their aboveground woody biomass. The test area was a midlatitude forest stand within the Harvard Forest, Petersham, Massachusetts, scanned at five locations in a 1-ha site in leaf-off and leaf-on conditions in 2014. The model for radiometric calibration assigned accurate values of spectral apparent reflectance, a range-independent and instrument-independent property, to scattering points derived from the scans. The classification of leafy and woody points, using both spectral and spatial context information, achieved an overall accuracy of 79±1% and 75±2% for leaf-off and leaf-on scans, respectively. Between-scan variation in leaf profiles was larger than wood profiles in leaf-off seasons but relatively similar to wood profiles in leaf-on seasons, reflecting the changing spatial heterogeneity within the stand over seasons. A 3-D structure-fitting algorithm estimated wood volume by modeling stems and branches from point clouds of five individual trees with cylinders. The algorithm showed the least variance for leaf-off, woody-points-only data, validating the value of separating leafy and woody points to the direct biomass estimates through the structure modeling of individual trees

    Extraction of Vegetation Biophysical Structure from Small-Footprint Full-Waveform Lidar Signals

    Get PDF
    The National Ecological Observatory Network (NEON) is a continental scale environmental monitoring initiative tasked with characterizing and understanding ecological phenomenology over a 30-year time frame. To support this mission, NEON collects ground truth measurements, such as organism counts and characterization, carbon flux measurements, etc. To spatially upscale these plot-based measurements, NEON developed an airborne observation platform (AOP), with a high-resolution visible camera, next-generation AVIRIS imaging spectrometer, and a discrete and waveform digitizing light detection and ranging (lidar) system. While visible imaging, imaging spectroscopy, and discrete lidar are relatively mature technologies, our understanding of and associated algorithm development for small-footprint full-waveform lidar are still in early stages of development. This work has as its primary aim to extend small-footprint full-waveform lidar capabilities to assess vegetation biophysical structure. In order to fully exploit waveform lidar capabilities, high fidelity geometric and radio-metric truth data are needed. Forests are structurally and spectrally complex, which makes collecting the necessary truth challenging, if not impossible. We utilize the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, which provides an environment for radiometric simulations, in order to simulate waveform lidar signals. The first step of this research was to build a virtual forest stand based on Harvard Forest inventory data. This scene was used to assess the level of geometric fidelity necessary for small-footprint waveform lidar simulation in broadleaf forests. It was found that leaves have the largest influence on the backscattered signal and that there is little contribution to the signal from the leaf stems and twigs. From this knowledge, a number of additional realistic and abstract virtual “forest” scenes were created to aid studies assessing the ability of waveform lidar systems to extract biophysical phenomenology. We developed an additive model, based on these scenes, for correcting the attenuation in backscattered signal caused by the canopy. The attenuation-corrected waveform, when coupled with estimates of the leaf-level reflectance, provides a measure of the complex within-canopy forest structure. This work has implications for our improved understanding of complex waveform lidar signals in forest environments and, very importantly, takes the research community a significant step closer to assessing fine-scale horizontally- and vertically-explicit leaf area, a holy grail of forest ecology

    Vegetation height products between 60° S and 60° N from ICESat GLAS data.

    Get PDF
    We present new coarse resolution (0.5� ×0.5�)vegetation height and vegetation-cover fraction data sets between 60� S and 60� N for use in climate models and ecological models. The data sets are derived from 2003–2009 measurements collected by the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat), the only LiDAR instrument that provides close to global coverage. Initial vegetation height is calculated from GLAS data using a development of the model of Rosette et al. (2008) with further calibration on desert sites. Filters are developed to identify and eliminate spurious observations in the GLAS data, e.g. data that are affected by clouds, atmosphere and terrain and as such result in erroneous estimates of vegetation height or vegetation cover. Filtered GLAS vegetation height estimates are aggregated in histograms from 0 to 70m in 0.5m intervals for each 0.5�×0.5�. The GLAS vegetation height product is evaluated in four ways. Firstly, the Vegetation height data and data filters are evaluated using aircraft LiDAR measurements of the same for ten sites in the Americas, Europe, and Australia. Application of filters to the GLAS vegetation height estimates increases the correlation with aircraft data from r =0.33 to r =0.78, decreases the root-mean-square error by a factor 3 to about 6m (RMSE) or 4.5m (68% error distribution) and decreases the bias from 5.7m to −1.3 m. Secondly, the global aggregated GLAS vegetation height product is tested for sensitivity towards the choice of data quality filters; areas with frequent cloud cover and areas with steep terrain are the most sensitive to the choice of thresholds for the filters. The changes in height estimates by applying different filters are, for the main part, smaller than the overall uncertainty of 4.5–6m established from the site measurements. Thirdly, the GLAS global vegetation height product is compared with a global vegetation height product typically used in a climate model, a recent global tree height product, and a vegetation greenness product and is shown to produce realistic estimates of vegetation height. Finally, the GLAS bare soil cover fraction is compared globally with the MODIS bare soil fraction (r = 0.65) and with bare soil cover fraction estimates derived from AVHRR NDVI data (r =0.67); the GLAS treecover fraction is compared with the MODIS tree-cover fraction (r =0.79). The evaluation indicates that filters applied to the GLAS data are conservative and eliminate a large proportion of spurious data, while only in a minority of cases at the cost of removing reliable data as well. The new GLAS vegetation height product appears more realistic than previous data sets used in climate models and ecological models and hence should significantly improve simulations that involve the land surface

    LAI estimation based on physical model combining airborne LiDAR waveform and Sentinel-2 imagery

    Get PDF
    Leaf area index (LAI) is an important biophysical parameter of vegetation and serves as a significant indicator for assessing forest ecosystems. Multi-source remote sensing data enables large-scale and dynamic surface observations, providing effective data for quantifying various indices in forest and evaluating ecosystem changes. However, employing single-source remote sensing spectral or LiDAR waveform data poses limitations for LAI inversion, making the integration of multi-source remote sensing data a trend. Currently, the fusion of active and passive remote sensing data for LAI inversion primarily relies on empirical models, which are mainly constructed based on field measurements and do not provide a good explanation of the fusion mechanism. In this study, we aimed to estimate LAI based on physical model using both spectral imagery and LiDAR waveform, exploring whether data fusion improved the accuracy of LAI inversion. Specifically, based on the physical model geometric-optical and radiative transfer (GORT), a fusion strategy was designed for LAI inversion. To ensure inversion accuracy, we enhanced the data processing by introducing a constraint-based EM waveform decomposition method. Considering the spatial heterogeneity of canopy/ground reflectivity ratio in regional forests, calculation strategy was proposed to improve this parameter in inversion model. The results showed that the constraint-based EM waveform decomposition method improved the decomposition accuracy with an average 12% reduction in RMSE, yielding more accurate waveform energy parameters. The proposed calculation strategy for the canopy/ground reflectivity ratio, considering dynamic variation of parameter, effectively enhanced previous research that relied on a fixed value, thereby improving the inversion accuracy that increasing on the correlation by 5% to 10% and on R2 by 62.5% to 132.1%. Based on the inversion strategy we proposed, data fusion could effectively be used for LAI inversion. The inversion accuracy achieved using both spectral and LiDAR data (correlation=0.81, R2 = 0.65, RMSE=1.01) surpassed that of using spectral data or LiDAR alone. This study provides a new inversion strategy for large-scale and high-precision LAI inversion, supporting the field of LAI research
    corecore