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Abstract

The measurement of forests is essential for monitoring and predicting the role and response

of the land surface to global climate change. Globally consistent and frequent measurements

can only be made by satellites; unfortunately many current system’s measurements saturate at

moderate canopy densities and are not directly related to forest properties, requiring tenuous

empirical relationships that are insensitive to many of the Earth’s most important, Carbon

rich forests.

Lidar (laser radar) is a relatively new technology that offers the potential to make direct

measurements of forest height, vertical density and, when ground based, explicit measurements

of structure. In addition measurements do not saturate until much higher forest densities.

In recent years there has been much interest in the measurement of forests by lidar, with

a number of airborne and terrestrial and one spaceborne lidar developed. Measuring a forest

leaf by leaf is impractical and very tedious, so more rapid ground based methods are needed

to collect data to validate satellite derived estimates. These rapid methods are themselves not

directly related to forest properties causing uncertainty in any validation of remotely sensed

estimates.

This thesis uses Monte Carlo ray tracing to simulate the measurement of forests by full

waveform lidars over explicit geometric forest models for both above and below canopy instru-

ments. Existing methods for deriving forest properties from measurements are tested against

the known truth of these simulated forests, a process impossible in reality. Causes of disagree-

ments are explored and new methods developed to attempt to overcome any shortcomings.

These new methods include dual wavelength lidar for correcting satellite based measurements

for topography and a voxel based method for more directly relating terrestrial lidar signals to

forest properties.
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Chapter 1: Introduction

Global climate change has become one of the most discussed and important issues of recent years.

There have been many high profile scientific studies, including the inter governmental panel on

climate change (Alley et al. 2007), which shared the Nobel peace prize with Al Gore in 2007. All

agree that understanding global change and the climate should be one of the major goals of science

over the coming years.

The flow of Carbon dioxide into the atmosphere from the burning of fossil fuels is well known

and the amount currently in the atmosphere is also easily measured, any difference between these

must be due to the natural world. At present the natural world seems to be removing more

than it is emitting, a net sink (Pitman 2003), but where exactly this is being absorbed and the

mechanisms are not fully understood (Rodell et al. 2004). Many processes for emitting and

absorbing greenhouse gases are known, but which of these is the dominant factor is unknown.

Many of these mechanisms are dependent on the climate and human activity, for example

the rate of photosynthesis depends upon temperature (Williams 1996) whilst the total rate is very

much affected by deforestation and subsequent burning (Brown et al. 1995) and there is a fear that

these negative and positive feedbacks may become unbalanced, leading to runaway climate change

(Cox et al. 2004). The quantification of these feedback loops, through better understanding of

physical processes (Walker et al. 1981) and models that can make use of a variety of data sources

are needed (Williams 1996, Rayner et al. 2005). The consensus is that accurate data on the

current and past state of the world and realistic models describing the basic processes are needed

to fully understand the contribution and reaction of the natural world to climate change (Alley

et al. 2007).

One of the great unknowns is the amount of standing above ground biomass, both woody

and foliar. This foliar biomass provides the interface between the atmosphere and 90% of the

Earth’s land based biomass (Ozanne et al. 2003) and so an accurate figure for it now is vital when

quantifying the Carbon cycle. Around a quarter of the Earth’s land surface is covered in forest

(Pfeifer et al. 2004) and they are by far the largest stores of above ground Carbon (Waring et al.

1995b) and so a proper measure of forest extent and properties is vital to understanding climate.
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Currently there are large uncertainties in all estimates of forest biophysical parameters, even

something as easy to collect for small plots as above ground biomass (Pitman 2003, Hurtt et al.

2004), let alone something as hard to measure as foliar biomass (Bréda 2003). Without an accurate

map of current biomass it is very difficult to monitor changes, whether due to climate or human

land use change (deforestation or reforestation) whilst models cannot reliably be calibrated (or

spun up) for past data to predict the future.

An emerging field in modelling is that of “data assimilation”, that is a model that can be

periodically updated by real observations, preventing it from deviating from the truth and so

provide a better understanding of the processes involved (Williams et al. 2005). This process

requires frequent observations to keep the model on track. Any bias in guiding measurements will

pull the model away from the truth and so give an inaccurate picture of the current and future

world state. Therefore it is very important that the data used to guide a model, or start of a stand

alone model, does not include any bias (Williams et al. 2005).

This thesis intends to examine current methods for measuring forest properties and, using a

state of the art computer simulator, explore the possibilities of future instruments to overcome the

present shortcomings and uncertainties.

1.1 Layout of the thesis

The second chapter will review the various methods for modelling the interaction of light and

vegetation. Chapter three will present techniques used to measure forests, both directly, ground

based optical methods and remotely sensed signal using the theory described in chapter two.

Chapter four will describe the simulator used to generate lidar signals throughout the thesis

and the steps taken to ensure realism. The forest models used will also be presented. Chapter

five will use this simulator to generate data sets of existing and future spaceborne instruments.

Current methods for inverting forest properties from remote sensing signals will be tested on these

simulated datasets and various improvements suggested, leading to a proposal for an ideal canopy

lidar capable of measuring the majority of the Earth’s forests.

Chapter six will examine the measurement of forests by terrestrial lidar needed to validate
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spaceborne measurements. The simulator will be used to generate data of terrestrial full waveform

lidars. The current method for extracting canopy properties from these instruments and a new,

more direct, method will be implemented and tested. Finally conclusions are presented in chapter

seven.
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1.2 Definitions

Some terms commonly used throughout the thesis are defined here.

LAI; leaf area index, half the total leaf surface area per unit ground area.

PAI; plant area index, half the total plant (leaf, wood and flowers) surface area per

unit ground area.

LAD; leaf angle distribution, a function to describe the orientation of leaves.

PAD; plant angle distribution, a function to describe the orientation of all vegetation

elements.

Gap fraction; the fraction of visible area that light can pass through.

Contact frequency; fraction of visible area taken up by objects. Equal to one minus

the gap fraction.

Foliage profile; vertical distribution of gap fraction.

dbh; diameter at breast height. The diameter of a tree’s trunk 1.3m above the ground.

brdf; bidirectional reflectance, the proportion of energy incident from a given direction

reflected in another direction, given per unit solid angle.

Phase function; throughout this thesis, “phase function” will be used to mean the ratio

of the observed reflectance to that if the visible surface area were flat and normal to

the view directions over all view angles.

A note on LAI Originally it was defined as the one sided area (Watson 1947 cited in (Bréda

2003)) but that is not appropriate for needles. It has no real biological significance (Jonckheere

et al. 2004) so it has been suggested that the total projected area of foliage elements be used

instead (Chen and Black 1992).
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1.3 List of mathematical symbols

Pgap - gap fraction ηλ - apparent reflectance at a wavelength λ Ap - projected area Af - lidar

footprint area

As - surface area G(θ) - Ross G function g(θ) - fraction of leaves with normals in direction θ.

Γ(θ) - Phase function θ - zenith angle

α - angle of incidence

ρe - element reflectance

ρl - leaf reflectance

ρw - wood reflectance

ρc - canopy reflectance
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Chapter 2: Mathematical modelling of trees

To understand the measurement of vegetation by optical instruments, mathematical models are

needed to relate the recorded signal to forest parameters. These models allow both simulations

of remote sensing signals given a set of scene parameters or inversion of scene parameters from a

measured signal. Allen et al. (1970b) came up with one of the first practical canopy reflectance

models. This was based upon the earlier work of Duntley (1942) and Kubelka and Munk (1931),

describing the interaction of light with plastics and paints respectively. These models treat the

object as a layer of small scattering elements bounded on top by the atmosphere and underneath

by a substrate (whether ground for forests, air or metal) and are referred to as “turbid medium”

models.

2.1 Turbid media

In a turbid medium model light enters through the top, being scattered by the diffuse media and

finally reflected from the ground. The radiation field is normally split into the down-welling (from

the sun and scattering) and upwelling flux (reflected from the ground and scattered from the

canopy); these are known as two stream models. The turbid layer is treated as semi-infinite, so

that the fluxes into and out of the edges are negligible, making them 1-D models. Some variants

allow the properties to change with height, with multiple layers of turbid media (Suits 1972).

One of the key values for radiative transfer is the probability that a ray of light will interact

with the vegetation layer rather than passing right through, known as the contact frequency (which

is one minus the gap probability, Pgap) introduced by Monsi and Saeki (1953) (cited in (Lang and

Xiang 1986)). If it is assumed that scattering elements are arranged randomly the probability can

be given by the Poisson distribution; know as Beer-Lambert’s law;

Pgap = e−k.Ap (1)

Where Ap is the fractional area of canopy material up along the path length p and k is a

constant. The integral of Ap for a vertical transect through the full canopy is equal to the plant

area index (PAI). If a transect is taken along zenith θ, then Ap = PAI
cos θ

. This forms the core of
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turbid medium models.

There are many limitations to such a model, one of the most obvious being that it assumes that

the canopy looks the same (other than path length) from all viewing angles. Often the elements of a

canopy will preferentially lie at certain zenith angles, such as eucalyptus leaves hanging vertically

so that more leaf area is visible when looking horizontally than vertically. This will cause the

contact frequency to vary with angle (Wilson 1959).

Figure 1: Eucalyptus leaves to show non random orientation

2.1.1 Leaf Angle Distribution

This property can be described by a leaf angle distribution (LAD) (Ross and Nilson 1965). This

describes the probability of a leaf surface normal (or part of for curving leaves) lying with its

normal in a given direction, generally denoted by g(θ, φ), where θ is zenith angle and φ azimuth.

Obviously the integral over all angles is unity. Most authors believe that the leaves’ azimuth

distribution is random (Fuchs et al. 1984), therefore the distribution is assumed to be independent

of azimuth, reducing to the function g(θ). When Strebel et al. (1985) attempted to explicitly model

certain crops’ azimuth distributions, they found that a Poisson distribution (random) would suffice

for most cases as more complex distributions were no more statistically significant. Whilst some

authors still believe the azimuthal distribution to be significant (Teh et al. 2000), because of

the results of Strebel et al. (1985) and the overwhelming assumption of uniform azimuth in the

literature (Weiss et al. 2004), only the zenith dependence will be examined for the rest of this
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review.

The LAD allows the fraction of total surface area projected in a given direction to be calculated.

This factor is given by the “Ross G” function, G(θ) (Ross 1981). This is the integral of the leaf

angle distribution multiplied by the area projected in the direction of interest over all angles.

G(θ) =

∫ π

−π

g(θ)u(θ)cos(α)dα (2)

Where u(θ) is the total surface area of leaves with surface normals in direction θ. Note that the

integral is from −π to π as leaves do not tend to grow with their top surfaces facing downwards

(Ross 1981). Several authors report that the total intersected light is fairly insensitive to G(θ)

(Goudriaan 1988); This view is not shared by all, indicated by the amount of work being done to

measure and characterise LAD (Kuusk 1995, Wang et al. 2007). The assumption of insensitivity

of G(θ) to angular distribution is most appropriate for sparse (LAI<1) canopies, giving factors of

two differences in G for LAIs above 3.

To combine measurements from different viewing angles a mathematical model is needed to

describe g(θ). Wilson (1960) carried out some of the earliest work with the aim of finding the

optimum angle for LAI measurements with his inclined point quadrats. It was assumed that all

leaves in a canopy had a single zenith angle, much like the curved surface of a cone. This is

obviously an unrealistic model but was the first attempt to quantify the effects of foliage angle on

measured LAI and highlighted the well known cross over point of projected LAI at a viewing zenith

angle of 57.5o. This was furthered with a set of with slightly more likely, but still idealised, cases

(de Wit 1965). These special cases described LADs that could easily be represented analytically,

including canopies where all leaves stand vertically (erectophile), horizontally (planophile), at an

angle of 45o (plagiophile), an even mixture of horizontal and vertical (extremophile) and uniformly

pointing in all directions (spherical). These special cases avoid the numerical integration required

by Wilson (1960) and the results are elegant but, other than the spherical distribution, are rarely

observed in reality. Fuchs et al. (1984) attempted to use a fixed leaf angle distribution (the same

as used by Wilson (1960)) but found that it could not model the observed projected area across a

range of zeniths, a spherical distribution being a better description.
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Suits (1972) included a leaf angle distribution in his early canopy reflectance model, leaf areas

were projected onto the vertical and horizontal planes, equivalent to an extremophile canopy with

varying proportions of vertical and horizontal leaves. This leads to unrealistic effects as viewing

angle changes (particularly around 45o) and cannot match many real situations (Verhoef 1984),

however it was one of the first, practical attempts to make an invertible canopy reflectance model.

Verhoef (1984) went on to refine the angular distribution by allowing fixed leaf angles (in the style

of Wilson (1960)) or uniform distributions (spherical (de Wit 1965)) to create the popular SAIL

model.

Since the work of Wilson (1959), de Wit (1965) and Suits (1972), other functions have been

put forward to describe leaf angle distributions. Most importantly it has been shown that real

leaf canopies show continuous angular distributions rather than the discrete distributions of earlier

models (Thomas and Winner 2000b). One of the most popular is the spheroidal distribution of

Campbell (1986), also referred to as the ellipsoidal distribution. This is a generalisation of de Wit’s

spherical distribution in which the probability of leaf normals lying in each zenith are allowed to

vary, following the surface of an ellipsoid (an ellipse rotated about one axis to form a 3D object,

see figure 2). The two horizontal radii are the same, b, ensuring uniform azimuthal distribution

and these can be different to the vertical radius, a. The ratio of b to a describes the variation of

leaf area with zenith. If the three radii are equal the distribution becomes spherical.

Figure 2: Illustration of an ellipsoid

Ross (1975) described an equivalent model where a factor was used to describe the deviation

from a perfect spherical distribution. This has not found as wide an appeal as the ellipsoidal
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distribution, perhaps because it was created to reduce computational expense which is no longer

an issue (Wang et al. 2007).

For the ellipsoidal distribution the LAD can be found by integrating the projected surface area

for each zenith ring divided by the total area to get equation 3 (Campbell 1990).

g(θ) =
2χ2sinθ

Λ(cos2θ + χ2sin2θ)2
(3)

Where χ = b
a
, a measure of the eccentricity, θ is zenith angle and Λ is related to the ellipsoid’s

surface area, which depends upon its eccentricity.

If χ = 1, Λ = 2,

if χ < 1 the spheroid is prolate, Λ = χ + arcsin(ǫ)
ǫ

where ǫ =
√

1 − χ2,

if χ > 1 the spheroid is oblate, Λ = χ +
ln( 1+ǫ

1−ǫ
)

2ǫχ
where ǫ =

√

1 − χ−2.

Note that because the elemental area is rotated about the vertical axis the surface area decreases

with zenith by the factor sin(θ), reaching zero at nadir. This is an artifact of fitting the LAD

to a convex geometric primitive. This limitation was picked up by Thomas and Winner (2000b)

who pointed out that in certain canopies the projected leaf area shows a maximum at nadir rather

than the minimum predicted by an ellipsoid. With an ellipsoids G(θ) may still have a maximum

at nadir, only g(θ) cannot.

To allow a maximum at nadir they rotated the surface zenith by 90o at each point, effectively

changing the sines to cosines and vice versa to give;

g(θ) =
2χ2cosθ

Λ(sin2θ + χ2cos2θ)2
(4)

Where χ, θ and Λ are the same as in equation 3.

However, the data they used to justify this model was for the angular distribution of pine

needle shoots rather than of the pine needles themselves. Pine shoots tend to lie horizontally

(depending on species) whilst the needles protrude from the shoots at a range of angles, some

flatter (white fir at ±30o) and others equally in all directions (Ponderosa pine, from unpublished

measurements taken during the course of this PhD). However if shoots rather than leaves are
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taken as the elementary scattering units, as many authors believe (Chen et al. 1997, Smolander

and Stenberg 2003, Rochdi et al. 2006), this model may be more appropriate, although at the

same time some studies suggest that there are very few leaves laying horizontally (Wang et al.

2007). It will, however, model the shoot twig’s angular distribution; shoots are far from flat (as

assumed in the Beer-Lambert law (Jupp et al. 2009)), so the leaf angle distribution will still not

be captured by the twig angle distribution.

These distributions have the great advantage for inversion of being described by only a single

parameter, χ, and this has earned them a wide following, they are constrained by forcing them to

fit to the outside of a convex geometric primitive, enforcing a gradually varying value of G(θ) with

a single maximum preventing them from describing a bimodal canopy, such as an extremophile

(de Wit 1965).

To overcome this limitation Goel and Strebel (1984) suggested using a two parameter beta

distribution. This was phrased by Wang et al. (2007) as;

g(t) =
1

β(µ, ν)
(1 − t)(µ−1)t(ν−1) (5)

Where t is a parametrised form of zenith angle, θ; t = 2θ
π

.

β(µ, ν) =

∫ 1

0

(1 − x)(µ−1)x(ν−1)dx (6)

The parameters µ and ν are set by the mean and variance of the observed leaf angle distribution;

ν = t

(

σ2
0

σ2
t

− 1

)

(7)

µ = (1 − t)

(

σ2
0

σ2
t

− 1

)

(8)

Where σ0 is the maximum standard deviation of t (σ0 = t(1 − t)), σt is the variance of t and t

is the mean of t. Such a model requires more data than the simpler, single parameter models but

allows a more detailed leaf angle distribution (Cescatti 1997a).

Wang et al. (2007) tested the ability of each of the above models to describe observed leaf angle

distributions of a variety of species, from trees to small shrubberies and herbaceous plants. They

found that the beta distribution gave the best fits in terms of surface normal direction and gap
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fraction the majority of the time, although the spheroidal and Verhoef’s spherical or fixed angle

both performed well. The discontinuous Suits and de Wit methods did not represent reality well,

which is not surprising given the continuous nature of real LADs. The rotated ellipsoidal method

(Thomas and Winner 2000b) also gave poor fits, this is most probably because the measured LADs

used did not have maxima at zenith angles of 90o, a condition enforced by rotated surfaces. This

adds weight to the suggestion that the rotated ellipsoidal is only suitable if pine shoots are taken

as the elementary scattering unit rather than actual leaves.

From the study of Wang et al. (2007) it would seem that the beta distribution is the best,

at least when data to fit to is plentiful (available from all view directions); they did not attempt

to fit to less detailed data. The ellipsoidal distribution fairly accurately predicts the projected

area, although consistently underestimates near nadir (due to the sin θ factor). Therefore it is an

attractive model for data limited situations common in remote sensing.

One simple way to arrive at a single parameter model that avoids forcing zero at either end

would be to implicitly model a uniform azimuth distribution. This would allow a model that is

not constrained by a convex geometric primitive, which will always have projected areas of zero

at nadir and allow the azimuthal probability to be independent of the zenithal probability. An

elliptical model of leaf zenith was proposed by Kuusk (Kuusk 1996), however when the fractional

projection of leaf area, G(θ), was calculated, it was rotated about one axis to make an ellipsoid,

reintroducing the factor of sin θ.

If an ellipse rather than an ellipsoid is used to describe the angular distribution we arrive at

equation 9.

g(θ) =
χ

2πΛ(cos2 θ + χ2 sin2 θ)
3
2

(9)

Where Λ is a constant relating to surface area, θ is leaf zenith angle and χ = b
a
, as in equation 3.

This has no factor of sin θ or cos θ and so is never forced to zero. It is like an ellipsoid except

that every zenith ring has equal surface area. In three dimensions it can be thought of as a cylinder

with the surface rotated an amount depending on the height from the centre, 0o at the centre, 90o

at the top and -90o at the bottom.
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The spheroidal functions above cannot be solved analytically and so numeric integration must

be used. This can be very computationally expensive, prohibitively so, especially when dealing

with high resolution data. To reduce the computational expense Jupp et al. (2009) suggested a

linear approximation for use with their very high resolution instrument. This takes the vertical

projected leaf area, Lv and the horizontally projected leaf area, Lh, in a similar manor to Suits

(1972), but with some smoothing to make it continuous, avoiding the non-physical features of the

earlier model.

G(θ) = Lh cos θ + Lv

2

π
sin θ (10)

Figure 3 shows that the approximation matches the spheroidal distribution reasonably well,

though it works better for extreme eccentricities than near spherical.
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(b) Spheroidal

Figure 3: Ross G function calculated with the spheroidal model and the linear approximation of Jupp et

al (2009)

Kuusk (1996) further generalised the ellipsoidal model by allowing the axes to tilt, turning it

into a two parameter function; this way the zero value can be moved from nadir and the maximum

placed wherever the canopy requires. This extra complication was not backed up with data and

nor was it compared to the equally complex beta distribution.

Another suggestion to account for LAD was to add up the projected leaf area in discrete bins

(Goudriaan 1988) but this would not allow calculation of total surface area from observations from

a set of view angles, samples would be needed at every view angle.
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With the leaf angle distribution functions described above the fraction of surface area projected

in a given direction, G(θ), can be calculated from equation 2. This modifies the Beer-Lambert law

to;

Pgap = e−G(θ).Ap (11)

This allows the canopy’s gap fraction to vary from different view directions.

2.1.2 Opposition effect

The functions described in section 2.1.1 go some way to recreating the angular reflectance of a

vegetation canopy, however it does not fully account for all the effects. The bidirectional reflectance

curve in figure 4 shows that there is a sharp peak in reflectance when the viewer looks in the same

direction as the illumination (at a zenith of 60o). This is known as the opposition or hotspot effect.

It was first observed in the rings of Saturn (Seeliger (1895), cited in Hapke et al. (1996)) and has

been well documented in laboratory conditions.

A lidar detector (described in section 3.5) always looks in the hotspot direction, so fully ex-

plaining the bidirectional reflectance is not necessary to understand the signal; in fact the signal

is easier to understand when views are limited to the hotspot (Strahler and Jupp 1990). Whilst

it is not essential for inversion, if the lidar data is to be fused with passive optical measurements

or is to be used to create a canopy model to predict off-hotspot reflectance, an appreciation of the

issue is needed.

The hotspot is primarily caused by shadow hiding (Liang 2004, Hapke et al. 1996), when the

viewer is looking along the the same vector as the illumination, all shadows are cast behind objects

and so hidden from the viewer. As the vectors move apart shadows appear, reducing the measured

reflectance.

A ray of light that passes any distance through a canopy will always be able to reflect back

along the same path as there must be a gap for it to have got in. In a turbid medium model the

path length is used to calculate the probability of a light ray interacting with the canopy (with

equation 11) and so gaps are not remembered. There is a chance that a returning ray will interact
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Figure 4: Sample bidirectional reflectance of a sparse Sitka spruce canopy from Monte Carlo ray tracer

simulation

with elements that were not there on the way in. This forgetting of gaps is unrealistic and prevents

the hotspot effect from being modelled.

In a typical forest canopy there are two different scales of shadow casting, leaves and crowns.

Efforts have been made to account for both within radiative transfer models.

Crown scale shadows Except for very dense canopies a horizontally homogeneous model is not

sufficient to capture all the details (Ross 1981). Within a vegetation canopy scattering elements

are arranged or clumped into crowns. Shadows cast by these crowns will contribute to the hotspot

effect as well as altering the visible area of foliage (also known as effective LAI, more on this later).

One method to account for the hotspot is to clump the turbid medium into geometric primitives

with free space between and a layer of ground below. From a defined crown size and density the

proportion of directly sunlit crown and ground, shaded crown and ground for a given viewing and

illumination direction can be determined. From this the reflectance can be calculated, treating the

sunlit and shaded areas of crown as 1-D turbid media. This technique was pioneered by Li and

Strahler (1985) and has been refined over the years (Li and Strahler 1988, Li and Strahler 1992,

Li et al. 1995) leading to the “GORT” model (Ni et al. 1999) which has been applied to a wide

range of problems, including lidar (Ni-Meister et al. 2001).

This approach is known as a hybrid geometric model as it combines geometric optics for the

discrete crowns with turbid media for canopy. With GORT type models the locations of individual
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crowns is never explicitly defined, only the density and distribution through stochastic means. This

level of abstraction reduces the number of model parameters, greatly easing inversion (Woodcock

et al. 1997) but may cause problems when the detector’s field of view approaches the scale of

heterogeneity. The “FOREST” model (Cescatti 1997a) was created to extend the hybrid geometric

approach to irregular crowns, greatly increasing the complexity of the model. The model has

been shown to perform well when inverting above canopy measurements (Cescatti 1997b) but

the additional complexity was not justified by comparison of inverted parameter accuracies with

simpler models (those with fewer unkowns). Certain models exist that do explicitly define the

locations of geometric primitives (North 1996) however these tend to use the Monte Carlo method

and so will be covered later.

Kimes and Kirchner (1982) included a further level of detail where instead of geometric primi-

tives of turbid media with a bounding plane, the scene was split into voxels (volumetric pixels or

cubes). Each was filled by either a plane (for ground, trunks or buildings) or some turbid medium

(for crowns). This is also known as the “discrete ordinate” method. The approach is very similar

to geometric primitives with explicit locations except that the crowns are not constrained to fit

into simple shapes. The light reaching and reflected by each voxel can be calculated, leading to

a complete picture of the radiation regime within the canopy. The method has been refined to

create the DART model (Gastellu-Etchegorry et al. 1996, Gastellu-Etchegorry et al. 2004).

Splitting the scene up into voxels increases the computational load compared to geometric

primitives, but it is questionable whether real tree crowns can be represented as such simple, hard

edged objects as cones and ellipses (Parker and Brown 2000).

Myneni proposed a rigorous and spatially explicit solution of the radiative transfer equations

(Myneni et al. 1992). In practise computational limits would cause this to be similar to the voxel

based methods of (Gastellu-Etchegorry et al. 1996).

Leaf scale shadows Turbid medium models were first developed for diffuse gases common in

astrophysics (Chandrasekhar 1960). The scattering elements are treated as point particles with no

size and so cast no shadows. This model is not appropriate for vegetation canopies where elements

have finite size and cast shadows (Ross 1981, Knyazikhin et al. 1992).
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There are far more leaves in a crown than there are crowns in a canopy (for a single pixel),

therefore it is much more computationally expensive to explicitly define leaf scale gaps and elements

than it is for crown scale shadows (Ni et al. 1999, Gastellu-Etchegorry et al. 2004). This approach

of remembering all gaps has been used (Knyazikhin et al. 1992, Disney et al. 2006) but more

abstract approaches are more common as they require fewer parameters, easing inversion.

One conceptually simple approach is to treat gaps and leaves as circles of a set diameter, so

that a ray penetrating into a canopy can be described by a cylinder (Verstraete et al. 1990). The

increased probability of a ray returning along the same path is accounted for by modifying the

optical thickness by the fraction of overlap of the incoming and outgoing cylinders (see figure 5).

Figure 5: Illustration of the modelling of hotspot by overlapping cylinders from Verstraete et al (1990)

Jupp and Strahler (1991) used statistics to describe the probability of returning rays passing

through existing gaps; the optical thickness either being zero (gap) or the same as for the turbid

medium (canopy). This was an extension of earlier work to describe crown scale shadows (Strahler

and Jupp 1990). It was later generalised to to use rectangular rather than circular gaps (Qin and

Xiang 1994), although it was found that the hotspot is dominated by leaf size and distribution

and the effect of leaf shape could be accounted for by modifying leaf size.

Kuusk (1995) used a similar approach, but with Markov chain theory rather than Boolean

statistics. The probability of an interaction in a canopy layer is modified from the standard turbid

medium case by whether or not there have been interactions in higher layers and a correlation fac-
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tor. These three methods are mathematically equivalent (Liang 2004), requiring only an additional

leaf size factor and can adequately recreate the hotspot.

Knyazikhin et al. (1992) gave a more rigorous, but more complicated, solution in which the

canopy is taken as a random collection of leaves (turbid medium) and gaps. Interactions are

remembered and influence the probability of a ray returning in the hotspot direction.

Coherent backscatter Another potential contribution to increased reflectance in the hotspot

direction is a phenomenon known as “coherent backscatter”. Some believe it to be significant

factor in lidar reflectance (Harding, DJ, 2008, pers comm.).

Coherent backscatter, as its name suggests, results from light scattered from the target inter-

fering with itself constructively, increasing the intensity (Stephen and Cwilich 1986). Ordinarily

scattered light will be completely incoherent, so no enhanced reflectance is observed. In the hotspot

direction, when the illumination source and viewer are co-aligned, an interesting effect is observed.

For every photon path from the illumination source to the viewer, a reversed path can be traced

from the viewer to the illumination. As these two are co-aligned, photons from both of these

paths will contribute to the measured signal and as they have travelled exactly the same distance

they will constructively interfere. This was first noticed by Kuga and Ishimaru (1984) and for

a disordered medium, such as vegetation, is the only significant interference effect (Stephen and

Cwilich 1986).

The scale of the target’s roughness controls the magnitude of the effect (partially from shad-

ows). Scenes with many elements around the size of the light’s wavelength show more coherent

backscatter than scenes with larger elements. Experiments found that for a typical forest canopy,

where objects are generally larger than the light’s wavelength, the contribution to the hotspot from

coherent backscatter is insignificant compared to that from shadow hiding (Hapke et al. 1996). It

was found to be important for dry soils and some fine structure vegetation, such as mosses.

Hapke’s study focused on the visible region, where foliage reflectance is low. As coherent

backscatter depends upon multiple scattering it is especially sensitive to element reflectance. There-

fore it may be slightly more important to the hotspot in the near infra-red, with higher foliage

reflectance. However, for the visible it was found to be such a small effect that increasing the
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reflectance (from around 0.1 to 0.6) is not likely to make coherent backscatter more important

than shadow hiding. It would seem to be an unnecessary level of detail although a quantitative

analysis has not, as far as he author is aware aware, been performed in the near infra-red.

2.1.3 Clumping

Forest canopies are not uniform, elements are arranged into different scales from pine needle shoots

up to tree crowns. Early attempts to model this heterogeneity were driven by the desire to model

the hotspot (covered in section 2.1.2), but clumping also affects radiative transfer in other ways.

In a turbid medium elements are assumed to be infinitely small and completely randomly

distributed. The attenuation, or shadowing, is taken into account by Beer-Lambert’s law (equa-

tion 11). However, the clumping of scattering elements into crowns, whorls, branches, shoots and

leaves cause deviations from complete randomness and changes the distribution of shadows.

The spatially heterogeneous models, GORT (Ni et al. 1999) and DART (Gastellu-Etchegorry

et al. 1996) explicitly take crown scale clumping into account and, depending on the voxel size

used, DART can deal with the branch scale. This explicit modelling is necessary if the scale of

clumping is around the size of an instrument pixel (or half the size to ensure Nyquist sampling).

For an instrument like Landsat with its 25m footprints, this is the crown scale. The number and

density of shoots, whorls and leaves would it make it too computationally expensive to model

them explicitly and, as they are not resolved by most instruments, there is little point, an implicit

treatment will suffice.

The idea of a clumping factor, Ω, to scale account for the non-randomness was introduced by

Nilson (1971) as a modification to Beer-Lambert’s law (equation 12).

Pgap = e−G(θ).Ap.Ω (12)

Conifers show marked shoot scale clumping, leading to underestimates of LAI from increased

self shadowing, so a decreased “apparent LAI” (Chen et al. 1997). Oker-Blom and Smolander

(1988) (cited in (Stenberg 1996)) used the “silhouette to total surface area” or STAR to scale

between true and effective LAI. It appears that Gower and Norman (1991) arrived at the same
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correction term independently. This factor is equal to the average projected shoot area over four

different view angles divided by the total projected needle area (found by pulling the needles off and

laying them flat). Stenberg (1996) noted that earlier attempts had only looked at the silhouette

area perpendicular to the shoot’s twig, leading to an overestimate of the projected area and so

an underestimate of clumping index. Independent observations also reported an underestimate

but were unsure of the cause (Fassnacht et al. 1994). Stenberg (1996) proposed a spherically

averaged version, STAR, rotating the shoot in all possible directions (assuming that the angular

distribution of shoots is spherical). Cauchy’s theorem (Lang 1991) was then applied to calculate

the convex surface area of a shoot from STAR.

For larger footprint instruments (such as AVHRR with 1.1km pixels) an implicit factor can be

used to describe crown scale clumping (Chen and Cihlar 1995). This allows a 1-D model to be used,

greatly streamlining computation. In this case the clumping factor, Ω is split into two components,

the crown scale clumping, Ωe, and the shoot scale clumping, γe which is equal to STAR. Ωe is

found from the ratio of LAI assuming a non-random distribution of scattering elements (taking

shoots as the basic scatterers) to the LAI assuming a random distribution. Methods to measure

these two factors will be covered in section 2.4. Beer-Lambert’s law then becomes;

Pgap = e−G(θ).Ap.
γe
Ωe (13)

Clumping of scattering elements into leaves actually increases the effective LAI, as leaves do

not shadow themselves (Sinoquet et al. 2005). However the reported underestimate of LAI by

the uncorrected Beer-Lambert law shows that this effect is negligible compared to other scales

of clumping. Crown scale clumping, down to around a metre, is the dominant form (Lacaze

et al. 2002, Cescatti 1997b), but in conifers, the clumping of leaves into shoots is not negligible,

becoming increasingly important as canopy density increases and Ωe approaches unity (Chen and

Cihlar 1996) .
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2.1.4 Woody correction

All the equations for contact probability so far have been in terms of plant area index, PAI, from

the fractional projected surface areas of leaf and wood (Ap = PAI
cos θ

). Ecological models need leaf

area index as it is this surface that performs photosynthesis and other biological processes (Gower

et al. 1999).

A canopy is typically composed of some proportion of wood, α, and leaf, 1 − α. The factor,

1 − α, also known as the “woody correction”, can be included in Beer-Lambert’s law to scale

between PAI and LAI (Chen and Cihlar 1996). The gap probability then becomes;

Pgap = e−G(θ).(1−α). LAI
cos θ

.
γe
Ωe (14)

Canopies can also contain flowers, seeds and other organs (Ross 1981) but most authors tend

to ignore these, either treating them as wood or else assuming that their impact is negligible.

2.1.5 Polarisation

The polarisation of reflected light should provide more information to aid understanding. Multiple

reflection within leaves completely depolarises light whilst specular surface reflection preserves

incoming polarisation (Grant et al. 1993). Thus different wavelengths of light will tell us something

about leaf structure, but according to Kuusk (1991) there is little polarisation in reflected light

from vegetation, therefore it would be unsuitable for measurement from a spaceborne instrument

due to low signal strength.

2.1.6 Final Solution of the turbid media problem

So far the chapter has given the equation to calculate the gap fraction at different view angles (and

so contact frequency) from vegetation properties. Certain corrections are needed to account for all

affects (the hotspot, described in section 2.1.2), but otherwise equation 14 will give an acceptable

answer. This allows us to calculate the fraction of light hitting the canopy and the fraction passing

straight through, when combined with the canopy and ground reflectances and a phase function

(to account for angular reflectance) this gives an exact solution for the singly scattered light (light
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that has only interacted with the scene once). However light can interact many times with the

scene, adding to the measured reflectance; this is known as the multiple scattering contribution.

The earliest attempts to account for multiple scattering were the differential equations intro-

duced by Kubelka and Munk (1931) to describe the intensity of colour of paint. These have become

know as the “Duntley equations” (Duntley 1942); they treat the radiation field as being made of

down-welling light and upwelling light and so are known as two stream models. A third stream

was added to account for directional illumination (the two stream model assuming isotropic dif-

fuse light) to create a three stream model (Allen et al. 1970b). Another stream was added to

account for the viewer direction, allowing estimates of bidirectional reflectance (Suits 1972). This

approach has been refined (with leaf angle distribution, multiple layers and the hotspot) to give the

SAIL model (Verhoef 1984) whilst GORT, a more complex model that uses geometric primitives

to more accurately calculate the singly scattered reflectances, uses the same two stream approach

to calculate multiple scattering (Ni et al. 1999).

The two stream approach assumes that multiple scattered light is isotropic, and the scattering

certainly reduces a lot of the directional effects (Liang and Strahler 1993), but it is not an ideal

solution. Some models calculate the light scattered in a discrete number of directions, such as

SAIL++ (Verhoef 2002) and DART (Gastellu-Etchegorry et al. 2004). For horizontally homo-

geneous canopies (which SAIL++ assumes) only zenith directions need be taken into account,

reducing the number of calculations required. This better accounts for angular effects (such as

LAD) but increases the computational load.

Differential equations are set up in these directions (whether two, four or more) and loaded

into matrices. As light scattered into an area can be scattered back, an exact solution of the

radiative transfer equations would require an iterative approach, adding up all the different orders

of multiple scattering until absorption at each interaction makes the intensity negligible. This

requires a significant amount of computation and complicates inversion, but by clever manipulation

of the matrices and by re-expressing the infinite sums, the computation can be brought down to a

manageable level (Verhoef 2002). These approaches tend to ignore scattering between the ground

and canopy and so are known as “black soil” approximations.
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These attempts to produce analytical solutions for radiative transfer allow inversion, but large

assumptions need to be made as a vegetation canopy is too complex for a perfect analytical solution

(Widlowski et al. 2007). More comprehensive reviews, complete with equations, are available for

the interested reader (Ross 1981, Myneni and Ross 1989) (indeed they are incredibly comprehensive

with as much detail as anyone could want).

2.1.7 Turbid medium conclusions

With equation 14 a turbid medium can account for the effect of canopy structure on radiative

transfer and has found favour for inverting estimates of LAI from optical measurement (Law

et al. 2001). However, whilst the 1-D turbid medium models can recreate all the basic elements

of canopy reflectance, they achieve this through effective parameters which are not necessarily

directly related to physical features. These effective parameters can be fudged to accurately match

measured angular reflectances whilst issues such as the contribution of wood and multiple scattering

are not dealt with in a physical manner (Smolander and Stenberg 2003). Thus the LAI and other

variables predicted by the model may not be the true values (Widlowski et al. 2005)

Of course a model cannot be inverted with any accuracy if there are more unknowns than

measurements to constrain them, so abstract models such as turbid media are necessary. Care

must be taken when using models to explore physical processes to make sure that assumptions do

not hide the truth.

2.2 Explicit methods

The assumptions in and reliance on effective parameters of turbid medium models means that they

are not ideal for understanding the measurement of forests through simulations. Therefore more

detailed models that do not need effective parameters are needed. Models exist that explicitly

define the position, orientation and spectral properties of all elements in the scene then calculate

the radiation field by a form of numeric integration, though these are far more computationally

expensive than the more abstract turbid medium methods. A complete description of a vegetation

scene contains far too many variables to allow direct inversion (attempts have been made using

fitting to look up tables of simulated waveforms, but with slightly abstracted forests (Koetz et al.
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2006)) but it also minimises assumptions, allowing physically realistic simulations of remote sensing

signals.

In the beginning the computational expense of explicit methods limited their use (Myneni et al.

1992), users tending towards more abstract volumetric methods (Kimes and Kirchner 1982). The

simulation of optical remote sensing signals has much in common with computer graphics; both

produce light signals (or images if a 2D array) from given objects, also known as rendering. This

synergy with computer graphics and the explosive growth in computer power, graphics hardware

and the increasing sophistication of rendering algorithms in the late 1980s and 1990s made explicit

simulations of vegetation feasible (Borel et al. 1991). Care must be taken when employing com-

puter graphics acceleration methods as these tend to be designed to produce a “psycho-physical”

result, one that looks right to a human eye rather that a physically accurate result obeying energy

conservation required for remote sensing images (Koenderink and van Doorn 1996).

2.2.1 Radiosity

One popular computer graphics method is known as the “radiosity” technique (Cohen and Wallace

1993). These calculate how much light reflects between every surface in the scene, producing a

set of “form factors” that can be used to calculate the radiance measured by a detector from an

illumination source placed anywhere within the scene. This is ideal for films since each frame

can be quickly rendered from the form factors, though the initial calculation is computationally

expensive and the set of form factors can be large if there are many elements in the scene (which

there invariably are in forests).

They were first used for remote sensing of vegetation in the early 1990s (Borel et al. 1991) and

thus far only scenes with relatively sparse canopies have been modelled with radiosity methods

(for example scrub in semi-desert regions with a ground cover of <25% (Qin and Gerstl 2000) and,

more recently, short crops (Liu et al. 2007)) and the scaling of computational and memory expense

with scene complexity and size has been cited as a major disadvantage of the technique (Disney

et al. 2000, Liang 2004). The computer requirements can be reduced by splitting the scene into

repeatable subsections, but these units cannot be smaller than the scale of heterogeneity (Qin and

Gerstl 2000), limiting its applicability to forests.
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It is questionable whether it would be practical to use radiosity methods with scenes as complex

as a coniferous forest (they being one of the most structurally complex biomes). Also radiosity

models do not typically record the path length of light and so it has been suggested than they are

not suitable for simulating the range resolved signals required for lidar (Disney et al. 2000).

2.2.2 Monte Carlo ray tracing

Monte Carlo techniques are a form of numeric solution whereby a finite number of samples are made

of a complex system, building up a picture of the system’s behaviour (Metropolis and Ulam 1949).

They are very popular for problems that have no analytic solution (such as radiative transfer),

without making many assumptions and whose complexity makes alternate methods slow. Previous

uses include electron microscopy (Shimizu and Ze-Jun 1992), neutron diffusion for nuclear fission

(Metropolis and Ulam 1949) and CO2 flux (Hollinger et al. 2004) and they are an obvious choice

for solving radiative transfer.

2.2.3 Details of operation

For radiative transfer the process is called Monte Carlo ray tracing and has been used for many

years, including optical instrument design on the very first electronic and mechanical computers

(Comrie 1940). It can work in two modes, the most physically intuitive of which is forwards ray

tracing. In this mode rays of light are traced from an illumination source (whether it be the sun,

a laser or a diffuse sky) towards the target. At the first object it reaches it is either absorbed,

reflected or transmitted depending on a randomly drawn number, the probability and direction of

each is set by the bidirectional reflectance and transmittance spectra of the object struck. Using a

probability distribution to choose either reflection or transmission prevents the ray from splitting

into two, both of which would need to be traced, doubling the computational load with each

interaction. This process is repeated until the ray is either absorbed, leaves the scene, undergoes a

maximum number of interactions or reaches the detector, in which case its intensity is added to the

signal. By this process a “ray tree” is generated, a set of intensities throughout the target. This is

repeated for many (typically tens of thousands to millions) rays until a representative signal from

the target is reached.

25



All interactions occur in the geometric domain (Houstoun 1938) so that no diffraction or re-

fraction effects have to be calculated. Any features smaller than the radiation’s wavelength are

taken into account by the element bidirectional reflectance and transmittance.

The alternative mode is reverse ray tracing, where rays are traced from the detector back to the

scene. This ensures that every ray has a chance to contribute to the signal (Lewis 1999). For cases

when the field of view of the detector is smaller than the field of illumination (which is generally

the case for passive optical sensors with slightly diffuse sky conditions) reverse ray tracing is more

efficient than forwards as with forwards it would be possible for a ray traced from the illumination

to never enter the detector’s field of view, wasting computer time (Disney et al. 2000). However, if

the field of view is smaller than the field of illumination the opposite is true and a ray traced from

the detector might never enter the field of illumination. Therefore in these cases, which include

most lidar detectors (Schutz et al. 2005), forwards ray tracing would be more efficient.

How many rays to sample the scene with and what to limit the maximum number of interactions

to depend upon the scene. Often the maximum number of iterations is set as the number of

interactions after which the ray’s contribution to the total intensity is negligible (found from test

runs) and the number of rays is set as the number after which the fractional change in recorded

radiance (from one new ray to another) drops below a certain level. Limiting the maximum number

of interactions can cause a small truncation in energy but the effect is small and can be corrected

by a small factor (Disney et al. 2000). Obviously if only a psycho-physical result is needed, as is

the case for computer graphics, less physically stringent limits can be set, using enough rays and

interactions to ensure a human observer will not notice the difference.

Finding which object a ray strikes through intersection tests is the most computationally ex-

pensive process in ray tracing, especially if the scene contains many elements. Methods to increase

the efficiency have been introduced such as using hierarchical “bounding boxes” around objects

(Glassner 1989). This way many millions of elements can be grouped into relatively few boxes

which can be tested for intersection, then only test the elements within intersected boxes.

One obvious short coming of the individual photon tracing method described above is that if

a photon is absorbed, it makes no contribution to the signal and all the computational effort has
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been in vain. A more computationally efficient method is to attenuate a ray at each interaction

rather than completely absorb it. Rays are then “bundles of photon paths” rather than individual

photons (Lewis 1999).

Another acceleration method is known as “fictitious flight”. With this, rather than waiting for

a ray to happen to scatter back to the detector, at each interaction a line is traced to the detector

and if the point is visible a contribution is added (Ross and Marshak 1988). If reverse ray tracing

is to be used exactly the same process is carried out but with lines back to the illumination at

each interaction, a slightly more complex process (Disney et al. 2000).

This concept was further developed into the “ray spreading” method to speed calculations

of bidirectional reflectance (Thompson and Goel (1998) cited in Liang (2004)). Periodically an

interaction is spread out into a wavefront travelling in all directions. This contributes to the

reflectance across the whole hemisphere making calculation of the brdf faster than with traditional

ray tracers. It is not clear whether this technique would be of any benefit to simulations of lidar,

where the illumination and detector are highly directional.

2.2.4 Ray tracing of plants

Monte Carlo methods were first suggested for solving radiative transfer in vegetation canopies in

the late 1960s and early 1970s, seemingly independently by Smith and Oliver (1974) and Tanaka

(1969) (cited in Ross and Marshak (1988)). Due to the computational expense of the method the

early work represented plant canopies with turbid media, the Monte Carlo sampling dealing with

multiple scattering.

As computers became more powerful, simulations with explicit geometric models models be-

came possible (Ross and Marshak 1988). One major advantage Monte Carlo ray tracing has over

other explicit 3-D methods is that the number of rays to be traced and the maximum number of

interactions are set independently of the scene. This means that computation time does not scale

directly with complexity as it does for radiosity (Liang 2004) making it preferable for complex or

dense canopies.
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2.3 Forest models

Explicit plant models allow physically realistic simulations of remote sensing signals, however a

large amount of data is required to describe the location, shape, orientation and optical properties

of every element in the scene. For us to have confidence in the results the scene must be a realistic

representation of reality (Pinty et al. 2001). There have been many studies to describe accurate

plant structure (a review is given in Godin and Sinoquet (2005)). These have ranged from look

alike for computer graphics (Glassner 1986) to full cytological models to explore plant community

biology (Chelle 2005).

For remote sensing instruments only the optical properties are important, that is the structure

and bidirectional reflectance of each element. More detailed, cell scale, detail is not necessary;

though such biological considerations can help in the creation of structural models (Allen et al.

2005).

2.3.1 Geometry

The process of measuring the exact location of points of interest on a plant in order to produce

an accurate 3-D model is well developed (Godin et al. 1999). These use 3-D coordinate recording

devices such as electromagnetic digitisers (Raab et al. 1979), photogrammetry (Innes and Koch

1998) or sonic digitisers (Mack and Pyke 1979) to manually record each coordinate along with the

element type (trunk, leaf etc) so that little processing is needed after the data has been collected.

Making such direct measurement of plant structure is a laborious and time consuming process, so

is not suitable for creating the stand scale models necessary for remote sensing simulations (Godin

et al. (1999) took 24 worker days to digitise eight relatively small trees).

A much quicker method to build up a set of plant models required for a stand is to use

mathematical models to “grow” them on a computer. This idea was pioneered by Lindenmeyer

(1968a) (with the sister paper Lindenmeyer (1968b)) who showed that small adjustments of simple

growth rules could lead to complex and vastly different structures that can mimic real organisms.

A similar method of simple rules was used (seemingly independently) to produce 3-D tree-like

structures (Honda 1971).
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These early attempts were only plant-like as they were not based on real plants; just made to

look similar. Gradually the methods were refined so that plants could be represented to a high

degree of realism (Prusinkiewicz and Lindenmeyer 1990, Allen et al. 2005). Some take biological

factors into account to predict how plants of the same species develop in different environments

(Chelle 2005). As an interesting aside it has been found that the algorithms represent reality better

if chosen to optimise light exposure (for light liking species (Honda 1978)) or mechanical strength

(for exposed trees (Fisher 1992)), with slight randomisation, showing the optimisation process of

evolution.

The growth rules needed to drive these models can be generated by measurement of relatively

few plants, then tweaked to match local conditions. This technique has been employed to generate

large scenes for remote sensing simulations (Disney et al. 2006) with some software available

commercially (Onyx Computing Inc 2009).

An exciting recent development is the use of laser scanning to generate complete plant models.

Laser scanners generate dense point clouds of targets rapidly (less than 10 minutes for a hemi-

sphere). However, unlike a human interpreter in 3-D digitisation, the scanner does not know which

points connect to which, much less what plant organs they represent. The conversion of a point

cloud into a plant model is not trivial (Omasa et al. 2007) and explains the much slower pace

of development compared to the comparatively simple building modelling. It has recently been

shown that it is possible to use knowledge of plant structure (ie. a leaf must be connected to a

branch which must be connected to trunk which must be connected to the ground) can be used to

generate a plant model from a point cloud (Côte et al. 2009) that looks the same and (through

Monte Carlo ray tracing) produces similar remote sensing signals based in the computer graphics

method of Xu et al. (2007). This still requires some manual input to help connect the dots but it

is a promising line of research.

Abstractions Completely explicit models with accurate element BRDFs do not rely any effective

parameters to simulate accurate signals (Widlowski et al. 2005), however such detail comes at a

heavy computational price and requires an enormous amount of data to set up. In addition to

the efficiency techniques given in section 2.2.3, some abstractions have been used to reduce the
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computational burden and data requirements.

Having unique bidirectional reflectance and transmittance spectra for each element would re-

quire either a set of look up tables or separate functions. These would most likely be wavelength

dependent (for a leaf NIR reflectance is more specular than in the visible (Grant et al. 1993)) and

so separate ray paths would be needed for each wavelength. If it is assumed that the bidirectional

reflectance and transmittance are the same shape for all wavelengths (but not the same magni-

tude) then a single ray tree can be used for all wavelengths (Lewis 1999). This greatly increases

speed of multi-spectral simulations and the difference caused by brdf shapes has been shown to

average out at the stand scale (Disney et al. 2006), although a comprehensive validation has not

been performed at finer scales (such as lidar’s often centimetre scale). Typically reflection and

transmission are assumed to be perfectly Lambertian, removing the need for look up tables or

more complex functions.

In coniferous forests the vast majority of elements, and so intersection tests and computational

expense, are made up of needles. Therefore abstracting a needle shoot to a single simple geometric

primitive will make an enormous saving. It has been shown that such a model can reproduce

stand and shoot scale brdfs (Rochdi et al. 2006) but care must be taken. Smolander and Stenberg

(2003) showed that whilst using primitives with the same average projected area as needle shoots

can recreate the single scattering reflectance accurately, it does not deal with internal multiple scat-

tering and so to correct for this the parameters become effective rather than physical (Widlowski

et al. 2005). This suggests that the results of such models cannot be taken as entirely physically

accurate and so explicit models should be used were physical realism is important. There are

moves towards faster methods that take scattering into account physically but these have not yet

reached maturity (Smolander and Stenberg 2005, Rautiainen et al. 2009).

For complete realism all structures larger than the radiation’s wavelength should be explicitly

modelled, including surface texture. For tree bark this would require many small facets, making ray

tracing more computationally expensive. Using fewer large, smooth objects (such as cylinders) to

represent these surfaces will miss this detail but be far faster to trace and requires far less memory

to store. Various processes have been created in computer graphics to modify a simple geometric
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primitive’s surface to emulate this small scale surface texture (Koenderink and van Doorn 1996).

These work by a process of “bump mapping”, rotating local surface normals whenever a ray strikes

to make the brdf more like that of a textured surface. This slightly increases the computational

expense compared to geometric primitives alone (requiring a surface normal jitter value to be

generated with each interaction) but this is more than made up for by the reduced number of

objects to test for intersection. There are methods to deal various levels of detail, some simply

rotating surface normals, others calculating how such rotations would shadow adjacent surfaces

(Cabrel et al. 1987), but most remote sensing simulators do not go down to this level of detail,

trusting that any such effects will average out on the scales of interest (pictures tend to be far

higher resolution than remote sensing detectors). These techniques have been shown to produce

realistic images of bark (Oppenheimer 1986) but, as far as the author is aware, the effect has not

been quantified except for relatively simple scenes (Ulbricht et al. (2006) presents some results,

mainly from architecture).

A method to reduce the memory requirements of objects is to use cloning. Rather then repre-

senting many similar objects (such as leaves, pine shoots), each can be defined once, then copied

to locations as required. These clones can be nested (clone leaves into shoots, shoots into whorls,

whorls into trees, trees into stands, stands into forests) to make the scene model even more com-

pact. This has no effect upon the computer processing requirements.

Some modern ray tracing models use turbid medium forests for computational speed (North

1996), whilst these are many hundreds of times faster than fully explicit models their reliance on

effective parameters to explain clumping, multiple scattering and the hotspot limits their physical

realism.

2.3.2 Spectra

With the accurate geometry described in the previous section along with the assumption of identical

brdf shapes with wavelength, a ray tree can be generated. To convert this to an intensity signal

the elements need to be “coloured in” with accurate reflectance and transmittance spectra.

There have been many campaigns to collect element reflectance and transmittance spectra (for

example BORREAS (Sellers et al. 1997) and OTTER (Peterson and Waring 1994)) and libraries
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of different species are readily available (Hosgood et al. 1994). These tend to be hemispherically

averaged values, ignoring any directional effects, leaving the user no choice but to assume Lamber-

tian behaviour. Whilst there have been some studies of directional reflectance (Grant et al. 1993)

there are no libraries readily available and so they are not widely used.

The measurement of reflectance and transmittance is typically carried out with an integrating

sphere such as the Licor LI-1800 (LI-COR 1988). These have a sphere with a reflective coating

to collect hemispherically reflected light, containing a source illuminating an area (of about 1cm2)

with a detector placed either behind the target to measure transmittance or in the wall of the

sphere to measure hemispherical reflectance. This calculation assumes that all light is incident

upon the target material, requiring a sample that fills the 1cm2 window; easy enough for broad

leaves and bark but not for needle leaves. Some investigators cram enough needles into the window,

ensuring there are no gaps by using multiple layers. This will increase measured reflectance through

multiple scattering and drastically decrease apparent transmittance. Otherwise a single layer is

carefully laid out, correcting for any gaps by repeating the transmission measurement with all

needles painted matte black (Daughtry et al. 1989).

There have been few attempts to model element optical properties compared to the number of

canopy models (Liang 2004), perhaps due to the relative ease of collecting real element reflectance

data. However, models are required to invert element biophysical properties from remote sensing

signals.

Leaves The earliest attempts to model leaf optical properties treated them as a semi-infinite

parallel plate of cells bounded by air above and below (Allen et al. 1969). Light undergoes

multiple scattering between the plate’s bounds so that the reflectance and transmittance could

take more into account than pigments alone. This was extended to multiple layers of leaf cells

with air gaps between to better represent real leaf structure (Allen et al. 1970a); reflectance and

transmittance depend upon pigment concentration, the number of cell layers and their refractive

index.

The idea was extended by Jacquemoud and Baret (1990) to take illumination angle into account

to produce the popular PROSPECT model. This has been modified over the years to allow
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modelling of leaves in all states of health (Jacquemoud et al. 1995) and is seen as the state of

the art, being by far the most widely used (Liang 2004). The modified version is driven by five

parameters; the number of layers, chlorophyll concentration, water content, protein content and a

“lignin and cellulose” parameter. These parameters can be adjusted to represent the reflectance

and transmittance of many types of leaves and attempts have been made to invert leaf biochemistry

from spectral canopy reflectance (Zarco-Tejada et al. 2004), although the accuracy has been low

except for a limited set of conditions (Liang 2004).

Figure 6 shows an example of a spectrum created from PROSPECT compared to a measured

spectrum of white fir collected in the Sierra Nevada mountains (July 2008). The model has captured

the main features, although PROSPECT is optimised for broad leaves which have slightly different

reflectance values from the needle leaves shown here.
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Figure 6: Comparison of real white fir needle leaf spectra and a two layered PROSPECT leaf

The parallel plate model’s assumption of semi-infinite layers is fine for broad leaves (where the

width is much greater than thickness) but does not hold for needle leaves. In addition the cellular

structure of needles is slightly different than for broad leaves (spherical cells (Dawson et al. 1998)

as opposed to rhomboids (Govaerts et al. 1996)). The LIBERTY model (Dawson et al. 1998) was

created to try to address some of these issues. It used a modified parallel plate where the upper

boundary is replaced by a set of Lambertian spheres (representing cells) with multiple scattering

between these spheres and a plane below. The finite horizontal extent of a needle (compared to its

thickness) was not taken into account. It has been suggested that this can be used to invert leaf

biochemistry in the same way as PROSPECT (Dawson et al. 1999).
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Other methods for modelling have been proposed, including Markov chain (Maier et al. 1999),

turbid medium (Richter and Fukshansky 1996) and Monte Carlo ray tracing (Govaerts et al. 1996).

As they are harder to parametrise or far more computationally expensive they have not achieved

the same popularity as parallel plate models (Liang 2004). They do have the advantage of being

able to take cell level heterogeneity into account, a feature the parallel plate model cannot. These

models may then be better for examining the angular dependence of leaf spectra, particularly

Monte Carlo ray tracing (if an explicit cell model can be generated) although the author is not

aware of any angular comparisons with parallel plate models.

Bark There has been far less interest in understanding the reflectance of bark; leaves being the

main energy and chemical exchange organs of a plant. As far as the author is aware there have been

no attempts to create predictive bark reflectance models, other than psycho-physical attempts for

purely artistic use (Dana et al. 1999). The field data libraries mentioned in the previous section

also contain spectra for wood and bark and these will have to suffice.

It is unclear how the reflectance will change with viewer and illumination angle, or whether

coherent backscatter will be make a noticeable contribution.

Soil Soil reflectance is of interest for ecology, agriculture and hydrology where the type, grain

size, moisture level and organic content are needed by models (Liang 2004). Models have been

created in order to determine soil properties from remotely sensed data. A comprehensive review

is available in (Liang 2004), chapter 4 and as such an inversion will not be attempted in this thesis,

the review will be kept brief, covering only those issues relevant to forests (for which they form

the lower bounding layer) and lidar.

One popular approach is the solution of Chandrasekhar’s (Chandrasekhar 1960) radiative trans-

fer equations (Hapke 1981). This treats the soil as a turbid medium of small particles and, just like

canopy models, various modifications are needed to take into account all effects, particularly self

shadowing (Jacquemoud et al. 1992). For these models, soil grain size, refractive index, water con-

tent and organic concentration are the driving parameters. Unlike vegetation canopies, coherent

backscatter is not negligible (Hapke et al. 1996) and so the hotspot reflectance (such as measured

34



by a lidar) may be higher than predicted from the hemispherical average.

More geometrically explicit models have been developed to account for self shadowing in a

physical way. These use much the same techniques as geometric canopy models (Ni et al. 1999)

with the proportions of shadow and direct sunlit material controlling brdf (Ciernewski 1999).

Unlike canopy models the geometric primitives (typically spheres or ellipsoids) are not filled with

turbid media but are either opaque or characterised by a refractive index; in addition grains

are generally evenly spaced on grids. These models are harder to invert but show promise for

representing observed soil brdfs.

Like vegetation there are libraries of soil reflectance values (Stoner et al. 1980). It has been

found that these spectra cluster into groups and can be explained as a mixture of five generic

examples or “soil vectors” (Price 1990). Any deviations from these were assumed to be due to

measurement error and detector noise (these vectors could account for 99.6% of observed variance).

These vectors have been used to “colour in” soil in computer models (Disney et al. 2006).

2.4 Validation

Any model, however detailed, is only a representation of reality and all make assumptions at some

level (even if it is only that the scene model is accurate). For us to have confidence in the results

the model must be validated. There have been attempts to compare radiative transfer models with

real data, but this requires a perfectly accurate (both optically and geometrically) model of the

target.

Direct validations have been performed for simple (not vegetation) test pieces (Govaerts and

Verstraete 1998) and shown to agree, although the limit to a Monte Carlo ray tracer’s accuracy is

most likely the forest model and so a test with perfect Lambertian cubes will not assess the radiative

accuracy for forests. Attempts have been made to compare most radiative transfer models with

data over real vegetation (Kimes and Kirchner 1982, Pinty et al. 1990, North 1996, Kuusk 1996,

Ni et al. 1999, Qin and Gerstl 2000, Disney et al. 2006) but the complexity of forests means that

the scene model can never be a perfect representation of reality and so it is not certain if any

disagreements are caused by the radiative transfer or the scene models.
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For this reason the modelling community decided that the only way to validate their models

over vegetation was to compare them against each other. From an “informal cook off” in the late

1980s the RAdiation transfer Model Intercomparison (RAMI) exercise was formed (Pinty et al.

2001).

Instead of trying to compare radiative models against real data and have uncertainty in the

scene model, RAMI sets out a group of vegetation models and illumination conditions so that the

radiative transfer predicted by different models can be tested under near identical situations. It

does this through comparison of absorption by the canopy, transmittance through the canopy and

bidirectional reflectance. To date there have been three phases (RAMI I to III).

In the first phase (Pinty et al. 2001) scene models were either 1-D models (turbid media slabs

or layers of evenly distributed leaves depending on the radiation model) or spheres of leaves with a

range of canopy covers. This showed some worrying differences between certain models’ predictions.

RAMI II (Pinty et al. 2004) introduced more heterogeneity, with mixed crown shapes and sizes

spread over different topographies and again some models showed worrying deviations. These

results were taken on-board by modellers who acted to improve them (such as DART improving

its multiple scattering (Gastellu-Etchegorry et al. 2004)) leading to much better agreement in

RAMI III (Widlowski et al. 2007). There was one notable outlier in RAMI III, the radiosity

method of (Qin and Gerstl 2000) but the authors were not sure if this was due to a bug in the

model’s code or something more serious.

In RAMI III the five Monte Carlo ray tracers tested showed “striking” agreement, so much

so that it has been suggested that these should form a “surrogate truth” to benchmark all other

radiative transfer models against. A similar conclusion was reached independently in computer

graphics, where “näıve Monte Carlo ray tracers” (those that use no non-physical acceleration

methods) are seen as the only way to test the physical realism of graphics programs (Ulbricht

et al. 2006).

RAMI has also shown the varying computational requirements and limitations of the different

models, the geometrically explicit ray tracers being many many times slower than all other methods

whilst some methods requiring large matrices (such as the discrete ordinate method (Gastellu-
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Etchegorry et al. 1996)) struggle with large, heterogeneous scenes within computer memory limits

(Pinty et al. 2004). The next phase of RAMI is due for completion within the next year. This has

extended the comparison to range resolved, lidar like, measurements. In the meantime a RAMI

On-line Model Checker (ROMC) has been made available to for users to test their models against

the surrogate truth (Widlowski et al. 2008).

It was originally intended to validate biophysical parameter inversion models within the RAMI

exercises, but this has been taken up by the community (Pinty et al. 2001), possibly due to the

far greater complexity. No mention of inverse models has been made in subsequent phases (Pinty

et al. 2004, Widlowski et al. 2007).
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Chapter 3: Measurement of forests

Chapter explained that in order to fully understand ecological processes, their impact on and

response to global change, accurate biophysical parameters are needed on a global scale. Two

of the most important parameters for such models are biomass and leaf area index (LAI). This

chapter will outline methods for providing the biophysical parameters needed, making use of the

mathematical relations given in the previous chapter.

3.1 Ground based methods

Whilst satellites are needed to provide regular global data and fully characterise surface hetero-

geneity, they do not make direct measurements of biophysical parameters. Normally some form of

reflectance is measured from which vegetation parameters are inverted using the models described

in the previous chapter. In order to have any confidence in these inverted values they must be

compared to a known “truth” (or as close as possible); therefore ground based measurements are

needed as validation. Care must be taken when using a measurement as truth because even direct,

ground based measurements have limitations (Pinty et al. 2001).

3.1.1 Direct measurement

It is possible to directly measure the full structure of vegetation by ruler (or digital equivalent

(Raab et al. 1979)) or by non contact methods (such as photogrammetry (Innes and Koch 1998)).

This can give complete structural measurements such as leaf area, orientation and wood volume.

Biomass is not directly measured and has to be converted from volume with an estimate of density.

However this is very time consuming (and so expensive) and is not always practical in complex

or tall canopies, where occlusions and difficulty in reaching all parts make the procedure very

tedious, fraught with difficulty and unlikely to be accurate (Bréda 2003) (particularly with non-

contact methods where occlusions will be a real issue).

The difficulties of tall and complex canopies can be partially overcome by cutting down the

vegetation and chopping it up, known as destructive sampling. This allows tall plants to be

measured, bit by bit, at ground level, giving access to all parts in dense canopies. This also allows
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the various parts to be weighed, giving a direct biomass rather than a volume. To speed the

process, rather than measuring the area of every leaf, only a few samples are measured and a

relationship between surface area and mass derived. This allows the surface area of the rest to be

estimated by weighing.

Destructive sampling can measure as accurately as the slightly more tedious direct digitisation

but it is not sensible to use it over the large areas required to fully characterise heterogeneous

scenes and does not allow the repeat readings needed to monitor seasonal change (Bréda 2003).

Such time consuming methods are impractical for routinely characterising foliage but have been

used for small scale structure characterisation experiments. These experiments have not been for

ecological models and so were discussed in section 2.3.

3.1.2 Allometric relationships

There are certain characteristics of trees that are easy to measure, such as diameter at breast

height and total height and these (or combinations of them) can be indicative of other biophysical

parameters. By relating biophysical parameters to easily measurable quantities with “allometric

equations” the involved direct measurements described in the previous section can be upscaled to

bigger sites. The most common quantity is dbh, that is the diameter of a trunk 1.3m above the

ground, as it is very easy to measure. There are tables linking dbh to total biomass for many

species and locations, for example (Ter-Mikaelian and Korzhukin 1997). The accuracy of biomass

estimates can be improved by including extra factors such as tree height and even stem taper (the

way the trunk narrows with height) (Hofton et al. 2002).

These hold better for simple trees such as white fir, where the majority of the biomass is held

in a long straight trunk. For more complex trees, such as oaks with their twisting, bifurcating

trunks and thick branches, the biomass is not as cleanly related to dbh and height.

Foresters and ecologists are often interested in stand scale statistics rather than individual tree

properties. There have been many stand scale allometrics proposed such as Lorey’s height (mean

height weighted by basal area), top height (mean height of the hundred tallest trees in one hectare)

and layer height (mean height within a vertical slice) (Jupp and Lovell 2007).

Due to their structural simplicity it is quite straightforward to characterise a tree trunk by direct
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measurements of height, dbh and some estimate of taper (obviously this is easier for a nice straight

conifer trunk than a twisty, gnarled oak) and allometric relationships have been well developed

by foresters. Whilst attempts have been made to speed the process up with laser scanners (Jupp

et al. 2009, Bienert et al. 2007). This method is conceptually little different from measuring it by

hand and so for the rest of this review the focus will be on the more complex LAI measurements.

Attempts have been made to link LAI to easily measurable biophysical parameters such as

dbh (Gower and Norman 1991) (reporting r2 of over 0.9 against destructive sampling, for simple

trees), though these have not been as widely used as for biomass, possibly due to the relative

ease of other methods compared to the destructive sampling needed for calibration and the lower

accuracy (Turner et al. 2000).

A method suggested by Grier and Waring (1974) (cited in Waring (1983)) is to relate the area

of sapwood in a tree trunk to the amount of foliage. This is based on the earlier pipe model for

describing branching diameters (Shinozaki et al. 1964), first proposed by da Vinci (Xu et al. 2007).

The sapwood is the material that conducts water from the roots to the foliage, so should control

how much foliage can be supported. This method has found popularity and seems to give better

results than dbh based allometrics (Turner et al. 2000).

Another rapid way to estimate leaf area is to collect and measure dropped foliage, known as

the leaf litter method (McShane et al. 1983) (cited in Jonckheere et al. (2004)). For deciduous

trees it would be possible to collect all the leaves at senescence, allowing accurate leaf area to be

determined but at other times of the year, and for evergreen species, the rate of litter fall is not

directly related to total foliage but to environmental conditions and tree health (Bréda 2003) and

so complex allometric relations are needed.

None of these methods of deriving LAI from allometric relationships give any information on

the leaf angle distribution, so whilst they may be suitable for parametrising ecological models,

other sources of data would be needed to estimate the canopy reflectance.

When creating allometric relations it is only possible to sample a finite number of trees with

a finite range of biophysical parameters. These will not necessarily hold for trees outside of this

range, for example using dbh allometrics on trees larger than the largest used to derive the relations
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leads to dramatic overestimates of LAI (Thomas and Winner 2000a). Even the physically based

sapwood method will not hold for all tree ages (Yoder et al. 1994). Care must be taken to use

allometrics that cover the full range of observed biophysical parameters and never extrapolate

beyond these bounds. Measuring older, larger trees are much more time consuming and expensive

to thoroughly measure, which is why some studies generate allometrics from smaller trees.

Whilst these allometric relationships have found great popularity amongst the community they

are all species and site specific (Gower et al. 1999, Jupp and Lovell 2007). This is not an issue for

foresters, who are primarily interested in a limited number of species on the land that they own,

but will be very difficult to implement for the whole world, particularly complex tropical forests.

Therefore their applicability to the large scale measurement of LAI is questionable.

3.1.3 Point quadrats

Directly measuring leaf area is very time consuming, whichever method is used. Levy and Madden

(1933) (cited in (Wilson 1959)) proposed measuring leaf area by sampling contact frequency. A

thin needle, known as a point quadrat, is inserted into a canopy and the number of contacts with

vegetation recorded. The number of contacts gives the fraction of projected leaf area in the sample

site, and so LAI. The early attempts only inserted needles vertically and so ignored the effect of

LAD. If the canopy were anything but planophile the method would underestimate LAI. Other

authors suggested inserting the needles at other angles (Tinney et al. 1937). These reported

improved accuracy, probably due to increased path length and so sampling (Wilson 1959), but still

at only a single angle and so the estimate of LAI would depend upon LAD. This “hinge point”

has become a useful tool for decoupling LAI from LAD (Jupp et al. 2009).

In order to measure true LAI, independent of LAD, (Wilson 1959) suggested using vertical

and horizontal needles, which would give vertically and horizontally projected LAI, similar to the

model of (Suits 1972) (explained in section 2.1.1). As shown by (Verhoef 1984) such an LAD will

not capture many real situations, particularly leaves oriented at 45o. In a further refinement it

was proposed to incline the needle at an angle (Wilson 1960), although still only a single angle.

By solving analytically for constant angle LADs it was determined that at a zenith angle of 57.5o

the impact of the LAD on measured LAI would be at a minimum (less than 5%).
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With this method contacts must be measured manually, an extremely time consuming and

tedious process, even for the simple grass and crop canopies it was designed for (many thousands

are needed to accurately characterise LAI (Jonckheere et al. 2004). It is obviously impractical to

stick a needle though a forest canopy and count contacts (MacArthur and Horn 1969) (or indeed

any canopy over 1m tall (Wilson 1959)) and so the method has not been used routinely in forests.

One attempt was made in order to assess the accuracy of LAI estimates by allometric relationships,

using a wire suspended from a crane and binoculars (Thomas and Winner 2000a). As the method

makes no assumptions about canopy structure it will give completely accurate LAI. This study

concluded that allometric relationships were overestimating LAI of larger trees.

A non-contact version was suggested, using a telephoto lens with a very shallow depth of focus

and a calibration between focal length and range (MacArthur and Horn 1969). The range to an

object can be be found by focusing it and reading the focal length. A grid is etched into the lens

and the number of leaf contacts at each height is recorded (or fraction of sky if individual leaves

cannot be resolved). From these contact frequencies the LAI can be calculated with height. Unlike

the point quadrat method, a contact obscures further potential contacts, so that the true LAI

cannot be directly calculated (Weiss et al. 2004). Instead the differential equations of (Kubelka

and Munk 1931) are solved to get true LAI (explained in section 2.1, equivalent to equation 14 in

section 2.1.4). Whilst this method is slightly more practical for tall canopies it is no less tedious

and so has not found popularity.

3.1.4 Optical transmission

The methods described above will give accurate biophysical parameters and for simple parameters

such as biomass are sufficient, but for LAI and other foliage characteristics they are prohibitively

time consuming, particularly for forests. Much more rapid methods are needed if foliage properties

are to be collected over large areas at an acceptable cost (Gower and Norman 1991).

Rather than manually inserting a probe through a canopy, the sun’s light can be used as a

probe, relating the transmission of light through the canopy to the gap fraction (and so canopy

properties through equation 14). A number of different instruments and techniques have been

developed to measure gap fraction from transmission, the simplest of which is a camera fitted with
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a hemispherical or “fisheye” lens ((Bonhomme and Chartier 1972) cited in (Dufrêne and Bréda

1995)).

A hemispherical camera has a field of view of 180o, so that a photograph taken vertically

upwards will stretch from horizon to horizon. The pixels containing sky should be lighter than

those containing plant elements so that all pixels with a brightness above a certain threshold can

be classified as sky and the rest as plant canopy. The proportion of sky pixels is the gap fraction,

allowing inversion of LAI through equation 1. Care must be taken to ensure that dark sky pixels

(due to uneven sky conditions) are not mistaken for canopy and bright canopy elements (due to

sun flecks) are not mistaken for sky. For this reason it is recommended that the method is only

used when the sky is uniform and the sun is out of the field of view (whether obscured by cloud or

beneath the horizon) (Jonckheere et al. 2004). Note that the element reflectances do not appear

in equation 1 so that no knowledge of them is needed for accurate inversion (Doughty and Goulden

2008).

The choice of threshold for classification is vital, small variations can cause large differences in

predicted gap fraction. Some investigators allow a human operator to manually set a threshold,

based upon their interpretation of the image. This has the benefit of using a human’s knowledge

of what is sky and canopy but can be biased by an individual’s choice (Jonckheere et al. 2004).

Some studies have attempted to remove any manual bias by having a number of users process

the same images and taking an average. A more objective method is to use an algorithm to

automatically set a threshold. There have been a number of algorithms proposed ranging from

simple brightness histogram analysis to complex spatial methods (Jonckheere et al. 2005). All

have their own strengths and weaknesses, none performing flawlessly, particularly in the presence

of the brightness variations described above, but it is possible to get a reasonable estimate of gap

fraction without relying on an individual’s interpretation.

Early wet film hemispherical cameras were very expensive and tedious to process which limited

their application (Dufrêne and Bréda 1995). The method had a surge in popularity once high qual-

ity consumer digital cameras became available at affordable prices; around the turn of the century

(Bréda 2003). Some doubts were raised over the accuracy of results from such low cost instruments
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(Frazer et al. 2001), particularly their ability to properly focus all wavelengths. Failure to focus

spreads the influence of canopy elements across many pixels, reducing the brightness contrast with

the sky and potentially affecting gap fraction estimates. The effects of chromatic aberration can

be lessened by using a single wavelength that suffers less from aberration (most cameras recording

red green and blue light, red being the least abhorrent). Digital cameras offer much larger dynamic

ranges than wet film, helping to separate the dark sky and bright canopy (Jonckheere et al. 2005).

These days investigators have no worries about using digital hemispherical cameras.

There are many software packages available for processing hemispherical photographs (compre-

hensive lists are given in Jonckheere et al. (2004) and Jonckheere et al. (2005)). They all perform

the same basic operations and so they will not be explained in any detail.

Rather than measuring the fraction of gaps and canopy, with all the potential for errors during

processing described above, the fraction of sunlight transmitted through the canopy will also give

an idea of the gap fraction. The canopy’s transmission can be measured by comparing the bright-

ness recorded by radiometers positioned above and below the canopy. One of the most popular

instruments to use this technique is Licor’s LAI-2000 (LI-COR 1992). This measures the light

with wavelengths between 320nm and 490nm (where absorption by vegetation and atmospheric

scattering are at a maximum, giving dark canopy and bright sky) within 70o of the vertical. The

zenith range of 70o to 90o is left out to avoid obstructions such as the ground and operator, partic-

ularly for the above canopy instrument where an unobstructed view of the sky is essential. Other

instruments are available for making these measurements, such as the Sunscan ceptometer, but

these are primarily for crops and thought of as unsuitable for forests (Dufrêne and Bréda 1995).

The gap fraction does not depend on LAI alone (as explained is section 2.1) and so so additional

structural parameters must be accounted for to get accurate LAI.

Leaf angle distribution The angular distribution of scattering elements will alter the surface

area projected in a given direction, as introduced in section 2.1.1. Beer-Lambert’s law is modified to

the form given in equation 11. Both hemispherical cameras and the LAI-2000 make measurements

of gap fraction across a range of zenith angles (the LAI-2000’s detector is split into five annuli),

so if the LAD and LAI are assumed to be constant throughout the canopy it is possible to solve
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equation 11 at a range of zeniths with an assumption of one of the LAD models (in section 2.1.1)

(Baret et al. 1993). The models are needed to help constrain the data as high angular resolution

across the full range of orientations is rarely available (Lang et al. 1985).

The assumption of uniform LAD throughout the canopy is not shared by all (Wilson 1959) and

so the accuracy of these methods is not assured. However the assumption is necessary to estimate

LAD from a single transmission measurement.

Clumping The non-randomness of canopies, explained in section 2.1.3, causes the relationship

between gap fraction and LAI to deviate from a Poisson distribution. Some report that it is

the largest source of error in LAI from transmission (Jonckheere et al. 2004). Clumping factors

to account for this non-randomness have been introduced (equations 12 and 13). Some authors

believe this to be an insignificant effect (Lang and Xiang 1986), stating that Beer-Lambert’s law

alone gave accurate LAIs when compared against those derived from allometric relations to dbh.

This view seems to have fallen out of fashion, with many authors reporting underestimates of LAI

without clumping correction (Bréda 2003, Chen et al. 1997, Gower and Norman 1991, Law et al.

2001) (the study of Lang and Xiang (1986) may have been an instance of two wrong assumptions

arriving at the right answer, the clumping perhaps being subsumes into the angular distribution).

Larger scale clumping Whilst many canopies are distinctly non-random, it is possible to get

a measure of this non-randomness and so correct for it. Typically when calculating gap fraction a

large area is used (either the whole image or an annulus at constant zenith). The canopy is unlikely

to be random over this whole area, so rather than calculating the fraction of gaps across the whole

area, the gap fraction can be calculated in sections (Lang and Xiang 1986). The LAI can then be

inverted by taking natural logarithms of Beer-Lambert’s law (equation 11) of each segment and

the average LAI determined. This does not assume that the elements are randomly distributed

throughout the whole canopy, only within each segment. The ratio of the LAI determined this

way to that found by assuming completely random distribution gives the clumping factor and is

known as the “log average” method (Chen and Cihlar 1995).
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Where Ptotal is the gap fraction for the whole scene, Pi is the gap fraction for the ith segment

for a scene with nseg segments and G(θ) is the LAD.

The clumping factor, Ωe, can then be used to correct for clumping using equation 12 from any

gap fraction measurement. There are a number of instruments used to calculate this factor, the

most simple of which is a hemispherical camera. Annuli of constant zenith are further divided into

segments and the above equations solved (van Gardingen et al. 1999), this has the same issues

as standard hemispherical photography, requiring uniform sky without direct sunlight. Another

method is to use direct sun beams as point quadrats. A radiometer can be used to measure the size

and number of gaps by recording the instances of direct sunlight along a transect. This was the

instrument the log average method was initially developed for (Lang and Xiang 1986) and version

are available commercially (such as DEMON (Lang et al. 1985, Sommer and Lang 1994)). Vast

improvements in LAI accuracy are reported using this method (Fassnacht et al. 1994).

These sunbeam transmission methods can be used to measure LAD but as they rely on direct

sunlight measurements have to be taken across half a day in cloud free conditions to measure the

full range of zeniths. For this reason it is recommended to use them in conjunction with more

rapid angular detectors such a the LAI-2000 or hemispherical cameras (Bréda 2003), despite the

reported superiority of the DEMON over the LAI-2000 (Dufrêne and Bréda 1995, Sommer and

Lang 1994) (no one wants to sit at a single plot for six hours).

The choice of segment size (or sample length) is vital (van Gardingen et al. 1999). Segments

should not be left empty, as the logarithm of zero is undefined, also Poisson’s law is strictly only

true for an infinite (or very large) number of scattering elements and so the segment needs to be

large enough for that to be appropriate. Through comparison of transmission results to direct
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measurements a sample size of ten times the leaf (or shoot for conifers) size is suggested (Lang and

Xiang 1986), although it is not practical to make segments large enough to be statistically certain

of none zero contact frequencies in all (Lang and Xiang 1986). Studies suggest that the clumping

factor (and so predicted LAI) determined from hemispherical photographs can vary dramatically as

segment size is decreased, eventually reaching a plateau at around 100 to 200 segments depending

on homogeneity (van Gardingen et al. 1999). Therefore segments should not be left too large

either. It has been suggested that multiple scales of clumping and so segmentation would improve

results (van Gardingen et al. 1999) although this does not seem to have been tested yet.

The LAI-2000 does not measure any spatial information and so cannot estimate the clumping

factor in the same was as hemispherical photographs. One option is to restrict the azimuthal field

of view (to 45o or less) and use a set of measurements at different locations in the plot, forming

up the segments of a hemispherical photographs over multiple measurements.

An alternative method to determine the clumping parameter is to look at the distribution of

gap sizes. Miller and Norman (1971) (cited in Chen (1996)) proposed a function relating the total

area of gaps at a given size to the apparent LAI, (L = LAI.G(θ)
cos(θ) ), gap size λ, and a characteristic

scatterer dimension, W , (average leaf or shoot width) for a completely random canopy.

F (λ) = (1 + Lp

λ

W
)e−Lp(1+ λ

W
) (18)

Gap sizes can be measured by walking along a transect with a radiometer, comparing the

instances of direct and indirect sunlight by the variations in the ratios of directional and hemi-

spherical intensity (Chen 1996). These measured gap sizes (which will be lengths along the transect

rather than areas) can be plotted against the total area at each size to give a version of the func-

tion in equation 18. Miller’s idealised case can be plotted alongside; if the two are identical then

scattering elements are randomly arranged. If the canopy is not completely random there will be

more gaps with larger sizes than for the random case. According to (Chen 1996) the point at

which the two distributions starts to deviate is related to clumping by the following equation.

Ωe = (1 + ∆g)
ln(Fm)

ln(Fmr)
(19)
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Where ∆g is the total fraction, Fm is the measured total gap fraction and Fmr is the gap

fraction after removing all gaps that deviate from the random case (the large gaps). As L and

Ωe are unknown in equation 18 it must be solved iteratively. This method requires an accurate

representation of the gap size distribution so the transect needs to be long enough to ensure this.

Success with this method has been reported (Chen 1996, Leblanc et al. 2002).

Like DEMON, TRAC (Tracing Radiation and Architecture of Canopies) can be used to measure

the angular distribution, but would need to measure over half the daylight hours to sample enough

angles.

Shoot scale clumping Individual needles cannot be resolved in transmission measurements

due to their size and penumbral effects, therefore the methods described above cannot be used to

create a shoot scale clumping factor (Chen and Cihlar 1996). A separate clumping factor (γe in

equation 13, also known as STAR) is needed, measured externally to the transmission method.

This can easily be found by measuring the shoot’s projected area, by photographing it over a

background of known area (such as a piece of paper) and thresholding (giving Ashoot), then pulling

off all the needles, laying them flat and measuring their projected area (giving Aneedles) (Gower and

Norman 1991). The clumping factor is then the ratio of these two areas. The projected area should

be measured for all angles and averaged (Stenberg 1996) for the reasons given in section 2.1.3.

γe = STAR =
Ashoot

Aneedles

(20)

Wood The measurements above will give the area of canopy elements, corrected for clumping

and angular distribution. This will include both leaf and wood and so is actually PAI rather than

LAI. It is possible to convert between these two area indices with a woody correction factor α, as

shown in equation 14 in section 2.1.4.

There is disagreement as to how important the woody correction factor is, some claim it to be

a negligible fraction of PAI (Gower and Norman 1991) whilst others say it is significant (Deblonde

et al. (1994) cited in Kucharik et al. (1998b)). This obviously depends strongly on species.

Destructive sampling can be used to determine the true wood area (Chen 1996), this can be
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compared to the true LAI to get an allometric relationship between dbh and α. Others have

suggested that LAI is the difference between the plant area index (PAI) and the wood area index

(WAI) (Fassnacht et al. 1994). This is much easier to collect than destructive sampling, the WAI

being found from the gap fraction in leaf-off conditions (eg. winter for deciduous trees). LAI is

not necessarily the difference of these as wood and foliage are not randomly arranged with respect

to each other; leaves are always clustered around branches and so tend to hide them. A simple

difference will underestimate LAI (Dufrêne and Bréda 1995) and in addition, for evergreen species

it requires all leaves to be stripped (Omasa et al. 2007).

An alternative to the wood area index is the bole area index (BAI), that is the projected

area of tree trunks visible in a measurement per unit ground area (Barclay et al. 2000). It is

reported that the bole area is far more significant than branch area for the woody correction, at

least for coniferous species. The BAI can be calculated from a map of tree locations relative to the

measurement, dbh and height to live crown. Collecting these data is quite time consuming though

nowhere near as laborious as destructive sampling, however it only gives the projected area of

trunks, not the woody correction factor. It is not clear how to convert one from the other (Barclay

et al. 2000), for this reason the method has not gained popularity.

To take account of the tendency of leaves to clump around branches these methods require

allometrics to convert between the wood (or bole) area index and the woody correction factor

which will again be site and species specific. A method of directly measuring the fraction of leaf

and bark area was proposed by (Kucharik et al. 1998b). They created the Multiband Vegetation

Imager (MVI) to take an image at 400nm to 620nm (visible) and another at 720nm to 950nm

(NIR) with high dynamic range (16bit) vertically with a field of view of 20o. The high reflectance

of vegetation in the NIR and low in the visible should allow the classification of leaf, bark and

sky returns, thereby giving the actual LAI and WAI with no need for any additional woody

correction. The instrument struggles with variable lighting conditions with brightly lit bark being

mistaken as leaf and heavily shaded leaf as bark. The same issues prevent the classification of

colour hemispherical photographs. A subsequent study suggested that despite the small range

of zenith angles sampled it would be possible to measure LAD by looking at the proportion of
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directly sunlit leaves (Kucharik et al. 1998a). This is a complex process and requires comparison

with Monte-Carlo ray tracing results of explicit canopy models (clouds of disks contained within

ellipsoids), greatly limiting its practicality (Gower et al. 1999).

3.1.5 Transmission conclusion

With these various correction factors Beer-Lambert’s law gives accurate LAI estimates when com-

pared to more direct methods (Eriksson et al. 2005). The estimation of wood appears to be the

only measure that cannot easily be obtained; heterogeneous illumination conditions preventing

reliable spectral classification and non-randomness preventing simple wood and plant area differ-

ence. Fortunately the wood fraction appears to be a small source of error compared to canopy

scale clumping, which is well accounted for by log averaging.

These methods rely on gap fraction and it has been shown that this saturates at LAIs of 3 to 4

(Jupp and Lovell 2007), therefore transmission methods cannot reliably extract LAIs above this.

In these cases, the time consuming destructive and point quadrat methods appear to be the only

reliable option.

3.2 Remote sensing

Ground based methods can provide accurate measurements of biophysical parameters, however

they require people to visit sites. This is a slow process, even for transmission measurements and

so can only be done over a small proportion of the Earth’s land surface. The results must be

“upscaled” from a limited set of plots to whole landscapes, a process which requires an assumption

of homogeneity. This would not be an appropriate assumption for vegetation (Hurtt et al. 2004).

Remote sensing from satellites and aircraft is capable of making global measurements and, very

importantly, regularly throughout the year. This allows explicit measurement of surface hetero-

geneity (Omasa et al. 2003) and provides the temporal resolution vital for monitoring dynamic

processes. Without temporal measurements it must be assumed that a system is in equilibrium,

greatly limiting the realism (Hurtt et al. 2004).

A frequent problem with using ground based data for studying global effects is a lack of con-

sistency in methodology and even definitions (is a land type forest or Savannah?) (Defries et al.
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2000). Global satellite measurements will all be made by exactly the same instrument with the

same assumptions and so give much more consistent, controlled results. Measurements from air-

craft are generally not global due to the enormous expense of flying an instrument around the

world and so the emphasis of the thesis will be on satellites. The same principles are true for

airborne sensors but with less atmospheric attenuation.

There has been a huge effort to provide remote sensing satellites, from Landsat the first true

earth observation (EO) satellite in 1972 through to NASA’s EOS drive at the end of the 20th

century (Knyazikhin et al. 1998) and ESA’s current Earth explorer missions (ESA 2010). These

provide a variety of different measurements at different scales specifically tailored to the study of

natural processes.

3.3 Passive optical

The first and most common remote sensing instruments make passive optical measurements. They

use radiometers measuring a variety of wavelengths (typically between 400nm and 2µm with some

thermal channels around 8µm), with some spatial resolution (from 50cm up to 8km) and occa-

sionally have angular resolution. Liang (2004) classed these sensors as “multi-spectral” or “hyper-

spectral”. Multi-spectral instruments typically measure three to seven bands with band widths

of around 20nm whilst hyperspectral instruments can measure hundreds of bands with widths

down to a few nanometres. This review will focus on some common satellites, mainly NASA’s

Moderate Resolution Imaging Spectrometer (MODIS) (Barnes et al. 1998) and MultI-angle Spec-

troRadiometer (MISR) (Diner et al. 1998).

MODIS was built to acquire fine spectral and temporal resolution data at the expense of spatial

resolution. This makes it an ideal instrument to monitor dynamic systems such as vegetation. It

has a spatial resolution of between 250m and 1km depending on the wavelength, with a 3,000km

swath allowing it to cover the whole Earth’s surface in a day and a half. There are two MODIS

instruments, one on board the Terra satellite and the other on board Aqua so that every spot

on the Earth’s surface is overflown by a MODIS instrument at least once a day. It records seven

spectral bands from the visible to infrared (see figure 8).
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Figure 7: A time line of popular satellites, from Liang (2004)

MISR was built specifically to make multi-angular measurements. It has between 250m and

1.1km spatial resolution (again wavelength dependent) and a swath width of 360km with a re-

peat time of nine days. It records in four bands (three visible, one infrared) and over nine view

angles between +70.5o and -70.5o zenith allowing multi-angular measurement. There is only one

spaceborne MISR, also on board the Terra satellite, NASA’s EOS flagship.

Both of these instruments are quite coarse spatial resolution. There are much higher available

(Landsat at 30m down to GeoEye at 50cm) but for monitoring vegetation higher resolution offers

little advantage. Forests become very heterogeneous at these scales and are too irregular to be

easily processed and interpreted. The stand scale measurements of MISR and MODIS are seen as

suitable for most ecological needs, although they struggle for areas where the land cover changes

within 1km (such as most of Britain).

Hyperspectral measurements tend to only be an advantage when looking for subtle biochem-

ical effects. The addition of more wavebands adds information for inversion, but there is a lot

of redundancy in the data, so most users believe multi-spectral sensors are the most suitable for

making structural measurements of vegetation. Of course hyperspectral wavebands can be aggre-

gated to the same spectral resolution as multi-spectral sensors, but for the rest of this review only

multi-spectral techniques (typically two to seven bands) will be discussed (Liang 2004).
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Figure 8: Wavebands of some popular remote sensing instruments, from Liang (2004)

Satellite radiometers do not directly measure any biophysical properties but radiative flux

in a certain waveband from a given direction. This must be inverted to get to the biophysical

parameters that caused this signal. Vegetation has a unique spectra (an example is shown in

figure 6). The most striking feature is the sharp rise from low reflectance in the visible (from

400nm to 650nm) to high reflectance in the near infra-red (NIR, from 750nm to around 1,200nm).

This feature is unique to vegetation and so looking at the ratio of radiative flux in NIR to that

in the visible should allow satellites to distinguish it from bare earth. There have been a number

of these ratios, or “vegetation indices” proposed, one of the most common being the Normalised

Difference Vegetation Index or NDVI (Justice 1986).

NDV I =
ρNIR − ρred

ρNIR + ρred

(21)

Where ρNIR is near infra-red reflectance and ρred is red reflectance. Red reflectance from

vegetation is very low (typically around 10%), as is atmospheric transmission (due to increased

Rayleigh scattering at shorter wavelengths), so a straight ratio of these bands would be very

sensitive to noise. In addition changing illumination, such as those caused by topographic effects,

will affect the ratio of bands. The NDVI was created to reduce this sensitivity to noise and

illumination conditions.
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This can be empirically related to biophysical parameters by matching remote sensing data to

ground based measurements (Huete et al. 2002). This approach makes no attempt to account for

the physical processes involved (described in chapter 1.3) and so can lead to inaccurate results.

In particular for any canopy with less than complete cover the soil will contribute to the signal.

Vegetation is much more reflective in the NIR than the visible, so far more NIR light will reach

the ground through multiple scattering than visible. This adds a non-linear dependence on canopy

cover to the soil contribution to NDVI, preventing simple a ratio correction. NIR light also has

much higher atmospheric transmission than visible so that variations in atmospheric conditions

will affect ρred more than ρNIR and so change the NDVI.

To account for the soil and atmosphere’s effect on predicted LAI, more tolerant indices were

proposed such as the Enhanced Vegetation Index (EVI, previously known as SARVI2). This was

developed from the earlier soil resistant index of Huete (1988) and the atmospherically resistant

index of Kaufman and Tanré (1992).

EV I = G
ρNIR − ρred

ρNIR + C1.ρred − C2.ρblue + L
(22)

Where G is a gain factor, ρblue is the blue reflectance, L is the canopy cover and C1 and C2 are

coefficients of the aerosol resistance term (Huete et al. 2002). These variables have fixed values

based upon how the data has been pre-processed (Huete et al. 1997).

Studies have reports that EVI is more robust to saturation than NDVI, displaying none in the

test sites used (Huete et al. 1997), but the LAIs of these sites were not given so it is unclear whether

EVI will suffer from saturation at higher densities. All vegetation indices require the red and near-

infra red reflectance to be sensitive to changing LAI. Canopies can become so dense that nearly

all light interacts with foliage, so increasing LAI will not affect reflectance (Gobron et al. 1997).

They showed that for a horizontally homogeneous canopy (a SAIL type model (Verhoef 1984)) the

signal’s variation with LAI will drop below measurement accuracy by an LAI of 3 to 4. Figure 9

shows the saturation of NDVI. A real canopy will include some levels of clumping, increasing the

gap fraction for a given density and so the LAI at which the ground stops contributing to the signal.

But these changes in LAI may not be detectable by vegetation indices. LAI derived from EVI has
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been declared to be operational (Gao et al. 2000, Huete et al. 2002) and has been embraced by

the modelling community.

Figure 9: LAI against NDVI, clearly showing saturation, taken from Myneni et al. (2002)

The literature provides overwhelming evidence for the saturation of vegetation indices at LAIs

of between 3 and 4 (Gobron et al. 1997, Myneni et al. 2002, Lefsky et al. 2002, Boudreau

et al. 2008) whilst ground based studies have shown that LAIs over 6 are not uncommon (Thomas

and Winner 2000a) and existing global products derived from vegetation indices acknowledge that

they cannot determine forest properties above a certain canopy cover (80% in the case of Defries

et al. (2000)). The link between vegetation indices and LAI is not clear (Gao et al. 2000) with

many other forest properties affecting indices, such as leaf angle distribution and clumping (Huete

et al. 1997, Gao et al. 2000, Huete et al. 2002) and so care should be taken when using them.

Better inversion accuracy should be achieved by taking contributing factors into account in a more

physically based way.

In chapter 1.3 methods for relating radiometric signals to vegetation properties were introduced.

These can be used to perform a more physically based inversion, where attempts are made to take

all properties into account. It was not until the end of the 1990s that the theory and computer

resources had developed sufficiently to allow inversion of these canopy models (Myneni et al. 1995).

All radiative transfer models capable of capturing canopy structure are non-linear (Liang 2004)

and so analytic solutions are not possible, they must instead be inverted by iterative numerical

regression (such as Powell’s method (Press et al. 1994)). These methods will not be described

in detail in this thesis; comprehensive discussions are available in Press et al. (1994) and Liang
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(2004) for the interested reader.

Vegetation canopies are complex and the models can include many parameters, so a range of

data are needed to constrain the results. The more complex the model the greater the amount of

data needed. For this reason fully explicit geometric forest models are not used for inversion, the

principle of Occam’s razor should be applied (Widlowski et al. 2005); an inversion should not be

attempted with a model with more unknown parameters than available measurements.

Certain parameters cannot be reliably constrained by passive optical remote sensing data, such

as element (leaf and bark) optical properties and so these must generally be supplied by ground

based measurements (Myneni et al. 2002). For the simplest models the element reflectances and

remote sensing data may be sufficient for inversion (such as SAIL (Verhoef 1984)). For more

explicit models, such as GORT (Ni et al. 1999) and DART (Gastellu-Etchegorry et al. 1996)

other parameters, such as LAI, tree density and crown size, couple together so that only a product

can be extracted. To get to parameters of interest (say LAI) values of the other variables must

be fixed, or else their ratios fixed. Sources of data other than passive remote sensing have to be

used to set these parameters. Most attempts have used a limited number of land cover classes

(eg. grassland, crops, broad leaf forest or needle leaf forest) to select a set of suitable parameters

(Knyazikhin et al. 1998) or else intensive site specific measurements.

This approach has been declared operational using both MODIS and MISR data (Myneni

et al. 2002, Hu et al. 2003) using the same generic 3D radiative transfer approach for both and

using six different land cover classes to parametrise the model (Knyazikhin et al. 1998). This

is a global product and so the structural parameters used in the model have been chosen to try

to be applicable to all the Earth’s surface of that class. This will obviously not be entirely true

due to heterogeneity and even changes with time (leaf reflectance changes with age (Doughty and

Goulden 2008)) but is currently the best global estimate available.

Even one of the most complex models has been successfully inverted (DART, (Kimes et al.

2002)) although this required heavy pre-parametrisation with an intensive ground based campaign

at a small site. This pre-parametrisation allows inversion from reduced sets of data, for example

purely nadir measurements.
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Even though models allow inversion from single view data, multi-angular data greatly improves

accuracy, delaying saturation and should be used when available (Kimes et al. 2002, Zhang et al.

2000). It has been suggested that model inversion is still possible with MISR data if the underlying

land classification is incorrect, albeit with a lower accuracy (Hu et al. 2003). This highlights the

importance of multi-angular data and the benefit of redundancy in driving data.

Iterative numeric solutions are computationally expensive and would be unsuitable for pro-

cessing regular (monthly) global data. To speed inversions a look up table (LUT) of expected

reflectance angular and spectral signals can be created for a range of vegetation properties (My-

neni et al. 2002). Measured signals can be compared to the LUT to find the most likely set of

vegetation properties far quicker than an iterative numerical solution. The complexity of models

means that even with pre-parametrisation, radiance measurements can be non-unique, particularly

the coupling of LAI and crown scale clumping (Knyazikhin et al. 1998). In these cases it would be

difficult to decide what set of structural parameters are the truth. For the MODIS/MISR product

it has been suggested to use an extra set of weighting factors to further constrain the results.

These methods will not always succeed in finding an answer and so the MODIS/MISR inversion

uses a back up empirical NDVI to LAI relationship (Myneni et al. 2002). This will suffer saturation

at an LAI of 3-4 as already stated. Even if an inversion is successfully performed the models still

rely on changes in LAI altering the measured signal and so will saturate (Gobron et al. 1997).

The MODIS LAI product states a value of 7 as the highest it can reliably extract (Myneni et al.

2002) and higher values will be truncated to this.

Biomass So far this section has concentrated on LAI, which is the biophysical parameter most

directly linked to optical reflectance, and even then inversion is non-trivial. Other parameters,

such as biomass and tree height, are even less connected to measurements, being relating only

tangentially if at all (Dubayah and Drake 2000) and so successful estimation of these parameters is

far less reliable. Attempts have been made to track changes in biomass by using estimates of LAI

and amounts of photosynthetically active radiation in forest growth models (Saatchi et al. 2007),

but the initial amount of biomass cannot be retrieved.

Attempts have been made to extract tree structure from photogrammetry. Bacher and Mayer
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(2000) showed that it is possible to extract 2D vertical cross sections of structure from shadows

cast by leaf off trees onto flat surfaces using only aerial photographs and knowledge of the sun

angle. This method is obviously unsuitable for use in forests and would not work in the presence of

leaves. Stereo photogrammetry is widely used for calculating surface elevation but over forests only

the top of the canopy can be reliably measured. The chance of enough recognisable objects being

visible on the ground from two view directions is low (Tanaka et al. 1998) and so an alternative

topographic model would be needed. There is currently no global ground height map that performs

reliably over forests (Dowman 2004) and so tree height cannot be determined with any accuracy.

3.3.1 Passive optical conclusions

Passive optical instruments can provide regular global coverage, particularly the wide swath sensors

such as MODIS. This makes them ideal for producing regular global estimates for use in ecological

models. However some biophysical parameters cannot be measured, such as biomass (except

through tenuous allometrics), and others saturate, such as LAI at 3-4 if vegetation indices are

used or 6-7 if modelling is employed. The literature shows that LAI certainly reaches 9 (Thomas

and Winner 2000a) and some authors report values as high as 22 (Waring et al. 1978) cited in

(Marshall and Waring 1986), although this may be an artifact from using allometric relationships

on trees beyond the development batch’s bounds (described in section 3.1.2). Therefore passive

optical instruments cannot capture the full range of the Earth’s vegetation and reliance on this

data will introduce bias.

Even the most detailed models rely upon some form of abstraction as that is the only way

to allow inversion (Knyazikhin et al. 1998). Therefore any inverted parameters are likely to be

effective parameters and may not directly relate to reality (Widlowski et al. 2005). Another

danger is that many validation campaigns use ground based optical transmission techniques to

provide “truths” in order to acquire data over enough plots in a sensible timescale (Myneni et al.

2002). These instruments also require models to invert biophysical parameters and so estimates

will also be effective. Thus the data used to validate remote sensing estimates may use the same

assumptions and so be inaccurate for the same reasons (Eriksson et al. 2005). The two datasets

might appear to agree whilst not matching reality, obscuring physical effects such as saturation.
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Of the methods described so far only destructive sampling and point quadrats can provide actual

truths, but these are too time consuming to be used on anything but limited special experiments

(Thomas and Winner 2000a). An alternative, rapid, non-saturating method is needed to give

confidence in global data.

3.4 Radar

Radar is an active form of remote sensing. Active systems provide their own energy source rather

than relying on the sun, giving them much greater control over illumination than possible with

passive instruments. This greatly simplifies some model inversions and, uniquely, allows range

resolved measurements. For these, a very short burst of radiation is emitted and the time taken

for reflected energy to return recorded. With knowledge of the speed of electro-magnetic radiation

this time can be converted into a range.

3.4.1 Synthetic aperture

Radars operate in the microwave domain, between 1cm and 1m, far longer than optical instruments.

Due to the relationship between the diffraction limit of resolution (the smallest angular separation

that can be resolved before diffraction causes objects to merge) and wavelength, much larger

apertures are required to get usable ground resolutions from space (Tipler 1999, page 1128). Rather

than use long antennae (which may flex, causing artifacts (Brooks 2008)), returns are collected

as the satellite moves through its orbit, giving the effect of a larger aperture and so increasing

resolution. This process is known as synthetic aperture radar (SAR) and was first developed as

part of project “wolverine” during the 1950s, on behalf of the American military (Cutrona et al.

1961).

Whilst the long wavelength means that the illumination beam cannot be focused by reasonable

sized antennae, various properties can be used to split the returns up into sections, using the

synthetic aperture to create an “imaging radar”.

All electromagnetic (EM) radiation incident on a surface with a component of motion normal

to the beam’s direction will suffer from a Doppler shift (Tipler 1999, page 463). In addition, for

a moving radar platform (such as a satellite or aircraft) the reflected frequency will be higher
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for surfaces coming towards the detector and lower for those moving away, much like the pitch

change of a passing siren. As the beam has a finite width, the surfaces within different parts of the

footprint will be travelling at different velocities and so result in Doppler shifts of different sizes.

For a radar beam at an angle to the ground, the range to a return is related to the distance along

the ground of its origin.

Therefore if a radar beam is pointed to the side so that no part of the beam crosses the

platform’s velocity vector it is possible to slice the footprint up along the direction of motion using

the Doppler shift, known as “along track” or “azimuthal” resolution. If the beam is not pointing

straight downward, it is possible to split the footprint up along the beam’s axis using the ranging

information, known as “across track” or “range” resolution. This then splits the footprint up into

a two dimensional image, giving the effect of many, much higher resolution, radar footprints. This

requires the full EM waves to be recorded, which at radar frequencies is possible. Unfortunately

current electronics cannot respond to frequencies higher than a few tens of giga-Hertz, so the same

techniques cannot be used at optical or thermal wavelengths.

To maximise the difference in Doppler shifts the beam points at right angles to the platform’s

motion, then at some zenith angle to trade off between the distance to the surface (and so energy

required) and angle of incidence (and so across track resolution).

Generally the range resolution of an active sensor is limited by the width of the outgoing pulse,

as all returns will be convolved with this (Zebker and Goldstein 1986). The across track resolution

can be further improved by using a range of frequencies in the outgoing pulse by starting off at a

high frequency and returning to low during emission. This is known as a “chirp pulse” (Davidson

et al. 1996). In addition more power can be transmitted in total without needing a higher peak

power (which could damage the system’s circuits).

Interactions with vegetation For optical instruments, where the wavelength is much smaller

than canopy elements, it is assumed that all interactions are in the geometric domain and can be

described by structure and BRDFs. Due to the longer wavelength this is not true for radar. For

objects and gaps smaller than the wavelength the Rayleigh domain is entered (Tipler 1999, page

1031) and energy will be scattered from gaps that shorter wavelength energy could pass through
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unhindered. In the Rayleigh domain the strength of scattering is related to the ratio of the

scattering object size to the wavelength. This means that for shorter wavelength radars (<50cm)

little energy reaches the canopy floor and so signals suffer from saturation at only moderate LAI

values (typically 3-4 (Waring et al. 1995b)). For this reason the reflected intensity of shorter

wavelength SARs suffers exactly the same problems of saturation and bias as passive optical

sensors over forests (Lovell et al. 2003).

The range information can still be used to measure forest properties. Balzter (2001) used

returns from bare ground to estimate nearby tree heights. This first study used the edge of a

sharply bounded forest in Britain, however such features are not common around the globe and

nor are clear gaps within forests, limiting the usefulness of such a direct approach.

Kellndorfer et al. (2004) proposed using the range resolution of SAR data to produce a height

map of the top of forest canopies, then subtracting an existing ground height dataset (in this case

from the USGS) to give tree height. However, the weak interaction of radar with vegetation means

that the height predicted by SAR would not be to the tree tops but at a point somewhere within

the crowns and so height was underestimated. Comparison with more reliable data sources (lidar

and ground surveys) have confirmed this (Kenyi et al. 2009).

Longer wavelength SAR penetrates further into the canopy, so it may be possible to use it to

measure the ground position and a shorter wavelength SAR to measure the tree top position (Hyde

et al. 2007). However, the high frequency signal will always penetrate someway into the canopy

whilst the longer wavelength will interact with tree trunks and larger branches (unless it is very

long wavelength, unsuitable for satellites due to antennae size and atmospheric effects (Hyde et al.

2007)), leading to an underestimate of tree height (Balzter et al. 2007). This can be accounted for

by site specific empirical relationships, but this would limit their global usefulness (Sexton et al.

2009).

ESA’s proposed Biomass Earth explorer mission plans to make use of a 60cm radar (ESA 2010),

which will pass through foliage virtually unhindered but react strongly with tree trunks (which are

around the same size as the wavelength). Whilst tree height measurements would not be trivial

(requiring canopy models to predict attenuation) and it would have very little sensitivity to LAI,
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the strength of the return should be related to trunk size and density and so biomass (Drinkwater

et al. 2008).

This is an exciting prospect in the early stages of development and may be launched around

2015. However long wavelengths radars suffer from increased interactions with the ionosphere

(Freeman and Saatchi 2004).

3.4.2 Interferometry

Even with the various methods for improving range accuracy described above, the range resolution

from an echo return of EM wave cannot be shorter than the carrier wavelength; which can be up

to a few tens of centimetres. The resolution can be improved beyond this using interferometric

SAR (InSAR). The signal reflected from a target at two different antennae locations will be out of

phase, the phase difference depending on the difference in path length.

Combining these two measured signals results in interference and if the path difference is known,

the phase difference can be used to give a more accurate estimate of range. This was first used to

measure the topography of Venus from the Earth (Rogers and Ingalls 1969) (cited in Zebker and

Goldstein (1986)) and first used in an airborne platform by Graham (1974).

Whilst the range resolution can be dramatically improved, it can only be determined as an

integer multiple of the wavelength. If the range difference between the target and the two antennas

is more than a wavelength, the interference wraps around. Therefore the phase information must

be “unwrapped” to remove all ambiguities. Reliable methods have been developed to achieve this

(Goldstein et al. 1988).

The two antennae need not collect data at the same time, to date there has only been one single

pass InSAR in space, the SRTM mission of 1999 (Werner 2000). All other satellite InSAR attempts

have used separate passes, either from two overflights by the same satellite or from two satellites

on different orbits. Using measurements from two different times introduces complications. Any

change in the target surface between the two passes will confuse the interferometry, an effect known

as “temporal decoherence”. Over forests, where light breezes can move branches, this effect can

be significant (Wagner et al. 2003), preventing accurate range estimates. Changes in weather

conditions between passes, particularly rain, can have the same effect (Santoro et al. 2002).
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Interactions with vegetation Interferometry has been shown to give accurate results over

hard targets (Elhuset et al. 2003). However over diffuse targets, such as forests, the two antennae

will travel along slightly different paths and so be affected by different scattering elements. This

effect is known as “volume decoherence” and prevents accurate height estimation using the method

described for non-interferometric SAR in the previous section with InSAR. However the volume

decoherence itself contains information about the diffuse nature of the surface.

Sarabandi (1997) showed that, in theory, tree height can be physically related to the magni-

tude of volume decoherence. Studies have attempted to extract tree height from InSAR, however

they found that the effect saturated at only moderate tree heights, 5-10m (Santoro et al. 2002,

Wagner et al. 2003). This may be because temporal decoherence tends to dominate over volume

decoherence, limiting the accuracy possible (Wagner et al. 2003) and partly due to the saturation

of signals at moderate canopy covers (Waring et al. 1995a). Santoro et al. (2002) states that “tree

height retrieval from InSAR has severe limitations”.

3.4.3 Radar conclusions

An important advantage of radar is that it is in the Rayleigh domain in clouds, and so can see

through with only weak attenuation. This is a huge advantage in frequently cloud covered regions,

such as tropical rain forests (which also happen to contain the majority of the Earth’s above ground

biomass), where, despite regular passes, successful optical measurements can be rare (Waring et al.

1995b).

Studies have used radar derived metrics (such as the decorrelation of repeat measurements) to

classify ground cover, but quantitative studies seem to be less common (Wegmüller and Werner

1997). When attempting physically based inversions, due to its weak interaction with canopies it

tends to underestimate canopy height (Santoro et al. 2002, Balzter et al. 2007) and due to the long

wavelength saturates at only moderate canopy densities (Waring et al. 1995a). Direct comparisons

of inverted biophysical parameter accuracy against other active remote sensing techniques have

shown radar to be inferior (Sexton et al. 2009).

Despite its limitations, the accuracy possible with radar is still greater than the uncertainty that

would result from extrapolating between infrequent (once every 40 year) ground surveys (Wagner
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et al. 2003). Combined with radar’s all weather capability and spatial coverage it can still provide

valuable information for monitoring the environment (Sexton et al. 2009) . However due to the

lack of available long wavelength SAR data and the saturation of shorter wavelengths the rest of

this thesis will concentrate on optical wavelengths. Of course the fusion of radar and optical data

presents many exciting possibilities for constraining inversions and there seems to be much interest

in this direction (Hyde et al. 2006) but this is beyond the scope of the thesis.

3.5 Lidar

Lidar is a one of the newest forms of remote sensing, first used in the 1960s for bathymetry

(Omasa et al. 2007) and first sent to space on Apollo 15 (Hofton et al. 2000). The principle

is much the same as radar except that a laser is used to illuminate the target instead of a radio

antennae, emitting wavelengths between 532nm and 1.5µm. This small wavelength ensures that

lidar energy is in the geometric domain when interacting with vegetation. This means that unlike

radar, light can penetrate through small gaps in the canopy, allowing measurement of much denser

canopies (Hofton et al. 2002). In addition, reflected light will be strongly related to foliage

structure and properties, allowing direct measurement of biophysical parameters impossible with

other instruments. These inversions are greatly aided by the fact that lidars always measure in

the hotspot direction, simplifying the radiative transfer equations (Knyazikhin et al. 1998).

As lidars provide their own energy they can operate at day or night and can use wavelengths

not provided by the sun. This requires a lot of energy, something in short supply on solar powered

satellites. For this reason only limited areas can be illuminated (currently single footprints no

bigger than 100m in diameter (Harding and Carabajal 2005)) at a time and the broad swaths

and rapid repeats enjoyed by passive optical sensors are unlikely in the foreseeable future. The

laser technology is nowhere near as mature as passive optical detectors, combined with the greater

energy requirements this makes lidar satellites a much greater risk than optical sensors. This was

demonstrated by the partial failure of ICESat’s lasers (Schutz et al. 2005) and cautious cancellation

of ESA’s A-scope lidar mission pending more robust laser technology (Drinkwater et al. 2008).

Care must be taken not to blind anyone; lasers must be eye-safe (Kovalev and Eichinger 2004).
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This means making sure that the intensity at a given wavelength is not so high as to cause damage.

This limits the laser power that can be used, particularly in the visible region where the eye is

especially sensitive.

There are a number of different ways to measure range with lidar, the simplest conceptually is

pulsed lidar. These emit a very short pulse of radiation (typically a few nanoseconds corresponding

to a range of a few metres) and the time taken between emission and detection after reflection

gives the time of light which can be converted to range by dividing by twice the speed of light (use

twice the speed because the light has had to travel to the target and back). For pulsed lidars the

returning energy can be recorded in a number of different ways. These are;

First return, where the range to the first point at which the signal intensity rises above

some threshold is recorded.

Last return, where the range to the last point before the signal drops below some

threshold is recorded.

First-last return, where both of the last two ranges are recorded.

Discrete return, where a number (typically between five and twenty (Lim et al. 2003))

of ranges to thresholds are recorded.

Full waveform, where all energy reflected from a target is recorded against time.

First return, last return, first-last return and discrete return are all referred to as “discrete

return” systems since they are only capable of recording ranges to a finite number of targets; first

and last returns can be thought of as special cases of discrete return systems where only a single

range is measured. Some discrete return systems also measure intensity, giving information on

the properties of an object as well as its location. Full waveform systems (hereafter referred to as

“waveform”) record all light reflected from a target. As a finite amount of energy is needed for

recording, reflected energy is gathered into bins by range. The length of these bins depend upon

the speed the detector can digitise the signal and this sets the instrument’s range resolution. The

range resolution is the digitisation rate multiplied by half the speed of light, so that LVIS’s 2ns
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(see table 1) corresponds to a range bin 30cm long. The finer the range resolution the more bins

the signal will be spread over, diluting the energy and so decreasing the signal to noise ratio.

The other form of lidar is know as “continuous wave”. This constantly emits light, modulating

the intensity with a known frequency. The phase shift between transmitted and reflected light

gives range as long as the surface reflectance is reasonably constant and the range is less than the

modulation wavelength. This allows much more rapid data collection, as the system does not have

to wait for the previous pulse to return before sending out another, but only a single range can

be measured. Over forests, the reflection is from a diffuse surface (the canopy) and heterogeneous

reflectance means that the exact location within the canopy for which the range is measured is not

obvious and so this type of lidar is thought of as unsuitable for measuring vegetation (Jupp and

Lovell 2007) and no further mention will be made of it.

The measurement method depends very much on where it is being taken from, the relative

merits of discrete and waveform lidar will now be discussed, depending on whether they are being

used for above or below canopy measurements.

3.5.1 Above canopy lidar

It has already been stated that satellite measurements are needed to collect regular, consistent

data (section 3.2). For lidar this means emitting a laser pulse downwards from above the canopy.

An example of a full waveform return from above a forest is shown in figure 10. From this it can

be seen that certain structural parameters can be directly measured, the most obvious being tree

height (Dubayah and Drake 2000), which is not directly measurable by any other remote sensing

method. Other variables can be measured more directly than with other methods, such as canopy

cover, which needs only an estimate of ratio of canopy to ground reflectance to scale the ratio

of energy returns from these elements; a far simpler method than the radiative transfer models

needed for passive optical measurements. Figure 11 gives a list of biophysical parameters and how

they relate to lidar measurements.

The first step for the physically based measurement of all biophysical parameters from lidar

is the separation of canopy from ground returns. This gives the relative energies returned from

canopy and ground, tree height, the shape of the canopy return (related to foliage distribution)
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Figure 10: Lidar waveform over forest with features marked

Figure 11: How biophysical parameters can be derived from lidar data, from Dubayah and Drake (2000)
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and the shape of the ground return (related to ground slope). Without this separation, parameters

must be related to lidar metrics by site specific relationships (for example Lefsky et al. (2007)),

removing the benefit of direct measurement. This separation requires the identification of the start

and end of the canopy and ground returns.

For any forest on flat ground (as shown in figure 10) this needs returns from both the tree top

and ground. This is obviously impossible with first return systems, where only tree tops will be

measured unless there are large gaps in the canopy. Even for discrete return systems, all of the

signal may come from the canopy in dense forests (Næsset and Økland 2002). Much processing is

needed to get an idea of the ground with discrete lidars, extrapolating between adjacent footprints

(Clark et al. 2004) and even then errors are in the order of 2m. Returns from the canopy “blind”

the lidar to later targets and this is the main limitation of discrete sensors, we have no idea what is

not being measured. For tree height, as long as some signal reaches the ground this is not an issue

and the technique has been used successfully (Innes and Koch 1998, Omasa et al. 2003, Patenaude

et al. 2004, Donoghue and Watt 2006) but for parameters that depend on the relative energies

(canopy cover and foliage profile) accurate inversions are not possible with discrete return systems.

Full waveform suffers no such problem, returns from all surfaces being recorded, although binned

into discrete range intervals. Energy is conserved, allowing inversion of far more parameters.

Attempts have been made to use a canopy top map from first return lidar to get tree height

by subtracting an external digital elevation model (DEM) (Boudreau et al. 2008). This gave

usable results but global DEMs are not available with sufficient accuracy over forests to make this

a practical solution (Rosette et al. 2007) and even the proponents of this method cite the need for

a specific biomass measuring mission (Boudreau et al. 2008).

Another issue with discrete return is that the exact way a recording is triggered is not always

known and so how a range relates to a target is uncertain. These triggering mechanisms are

proprietary and not generally released by lidar manufacturers (Lefsky et al. 2002) so it is not clear

whether the range is to the point at which the signal first rises above a threshold, the maximum

intensity after the threshold or a more complex algorithm. What is fairly certain is that some

signal will be lost due to the thresholding (Baltsavias 1999) and so the range to tree tops will be

68



overestimated, leading to an underestimate in tree height. As waveform lidars record all reflected

signal this truncation is avoided and steps can be taken to extract the true tree tops (more on this

in chapter 4.3).

For these reasons all authors agree that full waveform lidar is preferable for measuring vegetation

and discrete return should only be used as a stop-gap until waveform datasets are more widely

available. This is gradually happening with a number of waveform lidars commercially available

(Wagner et al. 2006), in some cases replacing discrete lidars for every day use (such as the Riegl

VZ-400 terrestrial scanner). Table 1 shows a list of waveform lidars used for measuring vegetation

with their characteristics and primary references.

One key consideration when using lidar for forestry is footprint size and coverage. In order

to measure tree height accurately there need to be returns from the tree top and so the area of

constant coverage needs to be big enough to ensure this. Figure 12 illustrates a set of small widely

spaced footprints missing tree tops and so underestimating tree height. It is generally accepted

that to be sure of measuring the top the area of coverage needs to be around the size of a crown,

between a 10m and 30m diameter footprint (Zimble et al. 2003, Hyde et al. 2005). This can

be achieved with either a single footprint (Hyde et al. 2005) or by aggregating arrays of smaller

footprints (Reitberger et al. 2008).

Figure 12: Small footprint missing tree tops leading to underestimate of stand characteristics, taken from

Zimble et al. (2003)

Arrays of small footprints (around 10cm-20cm) provide spatial data, allowing some interesting
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Instrument Pulse width Altitude Swath Footprint Spacing Repetition Digitiser Wavelength Reference

ICESat 11.9ns 600km NA 52m-90m 1km 40Hz 1ns 1064nm (Harding and Carabajal 2005)

1981 lidar 450m NA 10m 2.5ns (Nelson et al. 1984)

SLICER up to 8km 56m 10m 20Hz 0.7ns (Harding et al. 1994)

LVIS 16.9ns up to 8km 1km 10-30m 10m 400Hz 2ns 1064nm (Hofton et al. 2000)

ALTM 3100 13.6ns < 2.5km 0.3m-0.8m <100kHz 1ns (Wagner et al. 2006)

LMS-Q560 6.8ns 1.5km 0.5m <100kHz 1ns (Wagner et al. 2006)

TopEye II 6.8ns < 1km 1m <50kHz 1ns (Wagner et al. 2006)

Table 1: Table of lidar systems with pulse lengths
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analysis. Some have tried to identify individual tree crowns using image analysis techniques. This

would be a great advantage to biomass estimates, where stem density is as important as tree height

(Patenaude et al. 2004). One study coarsened the vertical range of a first return surface map (the

same technique could be applied to the first return of a waveform lidar) until local maxima were

some expected separation (Friedlander and Koch 2000). This required a lot of supervision to guide

the process but demonstrates that crowns could be found. A more recent effort used wavelet

analysis (Kaiser 1994) to find crowns of known shape but unknown size from a crown surface map

(Falkowski et al. 2006). This worked very well for regular shaped trees such as conifers, requiring

little supervision once the tree shape had been decided, but may struggle with deciduous species

with their less regular crowns (as would any method) (Omasa et al. 2007).

The footprint size will affect the amount of energy that can be emitted whilst being eye-safe.

The broader the footprint the lower the intensity will be for a given energy and so more can be used

(Nelson et al. 1984). This is a great bonus for waveform lidar, where returns are spread over many

bins, each requiring sufficient energy for detection. Many authors believe that waveform lidars

need large footprints (Næsset and Økland 2002); certainly all current discrete return systems are

small footprint. Some of the newer commercial waveform lidars have small footprints (Wagner

et al. 2006), perhaps aided by improved detector efficiencies, but these are airborne instruments.

The energy requirements for spaceborne systems are much greater and so it seems that despite

the advantages of small footprints, spaceborne lidar will remain large footprint for the foreseeable

future (Lefsky et al. 2002, Dubayah et al. 2008). In addition the scanning needed to get constant

coverage may not be possible at the speed of a satellite (Omasa et al. 2003).

As this thesis is concerned with global measurements, ideally regularly and consistently, the

rest of the above canopy sections of this thesis will focus on large footprint lidar.

3.5.2 Large footprint lidars

Waveform lidar is a relatively new technology, first developed by Saab in the early 1980s for

bathymetry (the Hawkeye system). Because of its obvious advantages this was soon applied to

measuring forests (Nelson et al. 1984), though the first instrument (referred to as the “1981

instrument”) was very limited, only working up to an altitude of 450m; not an ideal height to fly
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an aircraft at through mountains. This was developed into the far more capable “scanning lidar

imager of canopies by echo recovery” (SLICER) by NASA in the early 1990s (Blair et al. 1994)

which has been further improved into the “laser vegetation imaging sensor” (LVIS) (Blair et al.

1999).

Spaceborne waveform lidar is still in its infancy and as yet only two instruments have been

launched on satellites, both by NASA. The Mars orbiter laser altimeter (MOLA) on board the

Mars global surveyor satellite in 1996 (Smith et al. 2001) and the geoscience laser altimeter (GLAS)

aboard ICESat in 2003 (Schutz et al. 2005). SLICER and LVIS were intended as prototypes for the

vegetation canopy lidar (VCL) satellite mission (Dubayah et al. 1997); unfortunately this seems

unlikely to be launched.

There is increasing interest in lidar and several missions have been proposed (NASA’s DesDyni

(Dubayah et al. 2008), ICESat II (Abdalati et al. 2007) and SIMPL (Harding et al. 2008) and

CSIRO’s VSIS (Jupp and Lovell 2007)) whilst others have been shelved until the technology is

made more robust (ESA’s A-scope (Drinkwater et al. 2008)), so space lidars can only become

more common in the future.

3.5.3 Above canopy data processing

The early studies manually interpreted lidar waveforms to identify ground and canopy returns

(Hyde et al. 2005). Whilst more robust than automatic methods this is obviously not practical for

global studies and so more recent studies have concentrated on developing automatic methods.

The first, and easiest step, is to find the tree top. This is taken as the first point at which the

signal rises above a noise threshold. To prevent abnormally large noise spikes causing premature

triggering a cumulative energy threshold rather than an intensity threshold is used (Hofton et al.

2000). The total energy above a noise threshold is calculated, then the point at which the cumu-

lative energy above noise rises to 1% of the total is taken as the signal start. Determining the

ground position and the separation between ground and canopy returns is more complex. First

features must be identified then classified as ground or canopy. The traditional technique is to fit

Gaussians to the waveform by non-linear iterative algorithms (Hofton et al. 2002, Wagner et al.

2006) such as the Levenberg-Marquardt method (Press et al. 1994). This is an unstable process
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and previous studies found that around 4% of waveforms could not be fit to (Hofton et al. 2002).

It is also a mathematically ill-posed problem (Hofton et al. 2000) and so even if a waveform is

successfully fit, the features may not be an accurate representation of reality.

It is difficult to reliably identify the ground, especially in dense forests were returns may be

very weak (Hofton et al. 2002). A simple approach is generally taken, labelling the brightest of

the last two features as the ground (Hofton et al. 2000) and this is reported to work well, even

in very dense tropical forests (Hofton et al. 2002). Some have used the number and arrangement

of identified features to perform qualitative land cover classifications (Reitberger et al. 2008),

reporting success when used on well defined and separated vegetation types (herbaceous borders,

coniferous forests and fields of grass).

Another feature that lidar directly measures is the fraction of energy returned from the canopy

and ground. This can be used to calculate canopy cover if the ratio of canopy to ground reflectance

is known (Lefsky et al. 1999) by the following equation;

Cover =
ρg

ρc

1
Eg

Ec
+ ρc

ρg

(23)

Where Eg is the energy returned from the ground, Ec is the energy returned from the canopy,

ρg is the ground reflectance and ρc is the canopy reflectance (which will depend upon leaf and bark

reflectance and canopy structure as described in section 1.3). So far studies have assumed values

for the ratio of ρc to ρg from ground data. For example (Lefsky et al. 1999) used a factor of 2.

When using a 10m to 30m diameter footprint it is not entirely clear how many trees are being

measured and so the relationship between height and forest biomass is not clear. Some have

suggested using stand scale metrics (described in section 3.1.2) to relate lidar signals to biomass

(Rosette et al. 2008). Lidar’s direct measurement of vertical structure allows new metrics to be

developed which can be empirically related to biophysical parameters with ground based data

(Lefsky et al. 1999).

It is still early days for relating lidars measurements to forest parameters and so there is

currently a profusion of metrics as investigators try to find robust and accurate inversion techniques.

There is little agreement on the best metrics as yet. One of the most popular metrics is the height
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of median energy (HOME) (Drake et al. 2002). The cumulative, energy from the top down, is

calculated and the median value found. The height that this median value is reached above the

ground is the HOME. This will depend on both tree height and canopy density with height. Tall,

old canopies with the majority of foliage at the top, will have high HOME and also high biomass,

whilst shorter or less dense canopies will have much smaller HOME and also low biomass. This way

tree height and stand density, the two most important factors in biomass, are taken into account.

HOME was linked to biomass through empirical relationships and found not to saturate, even in

dense, structurally complex tropical forests (Drake et al. 2002).

Tree height can be converted to biomass through allometric relationships and some authors

believe that these relationships are similar for many species, meaning that global allometrics could

be used.

Topography presents a big problem for large footprint lidar. The ground return will be spread

out by the height variation across the footprint, as will canopy returns depending on its hetero-

geneity, reducing their separation. If the ground height variation is greater than the separation

between the bottom of canopy and ground the two signals will not be distinguishable and a phys-

ically based inversion will not be possible. Figure 103 illustrates this for a 30m footprint over a

30o slope, the ground return is completely indistinguishable from the canopy.

Figure 13: Illustration of topographic blurring of a 30m footprint on a 30o slope

It is the variation in ground height across the footprint that causes the blurring, so the smaller

the footprint the less the blurring. In fact, small discrete return systems report little difficulty
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over steep terrain (Takahashi et al. 2005). Any off nadir pointing will cause blurring so large

footprint lidar cannot make multi-angular measurements. There have been attempts to use external

topographic maps to determine the ground slope within each footprint, this gives an idea of the

extent of the ground return which can be overlaid on the waveform, allowing the fraction of energy

from the ground to be determined (Harding and Carabajal 2005, Rosette et al. 2008), illustrated in

figure 14. The absolute elevations of the two datasets do not have to match, as the end of the lidar

waveform must correspond to the end of the ground, but the horizontal location and resolution of

the DEM are vital.

Figure 14: ICESat waveform(red) matched up to a DEM (black dotted) to predict the ground return

(black), from Harding and Carabjal (2005)

This method has only been used in areas with very accurate DEMs (Britain’s Ordnance Survey

and America’s USGS) but such accurate maps are not available for the whole world (Rosette

et al. 2007). There are remotely derived near global DEMs (such as the shuttle radar topography

mission, SRTM (Werner 2000) and ASTER (Yamaguchi et al. 1998)) but their reliability over

forests is questionable (Dowman 2004) and are coarse resolution compared to lidar footprints

(90m for SRTM outside North America) so that local topographic variations will be missed.

An attempt has been made to use SRTM (30m resolution within North America) to calculate

slope for correcting ICESat (90m footprint) waveforms (Boudreau et al. 2008). They hoped that

the radar scattering centre (somewhere within the canopy) would mirror the ground, so that it

did not matter that the SRTM DEM was not true ground when calculating slope. This should be
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the case in homogeneous canopies but the assumption may not hold for more heterogeneous cases.

They reported an r2 of 0.65 when comparing ICESat/SRTM derived heights to those from small

footprint lidar. This is an encouraging result but far from perfect.

Lefsky et al. (2007) proposed a method to extract the mean tree height within a footprint (a

useful metric for evaluating biomass) from a topographically blurred waveform alone. They calcu-

lated three metrics from ICESat waveforms, total extent (distance from first to last return above

noise threshold), leading edge extent and trailing edge extent (both defined later in section 5.9.3,

their exact meaning is not important right now) into empirical correction factors by comparison

with intensive ground data. Even for an empirical relationship, the proposed equations lack el-

egance (equation 24 shows the equation for the trailing edge correction factor as an example).

These factors were subtracted from total waveform extent to get mean tree height.

tf =
√

te + 0.92 ∗ te − 88.5 ∗ te

we
+ 2049.5 +

te

we2
− 14171.4 ∗ te

we3
(24)

Where tf is the trailing edge correction factor

te is the trailing edge extent

we is the total waveform extent

This approach reduced the tree height errors on slopes to an average of 5m, which they claim

to be “consistent with the requirements of a global dataset”, though without further qualification

of those requirements. Interestingly they found that the signs of the correction factors were the

opposite of what would be expected; highlighting the non-physical nature of the approach. They

admit that this is only a first step on the path to measuring sloped forests, however, such a non-

physical method will always be species and site specific and a more physically based method would

be preferable.

Conclusion The abilities of large footprint waveform lidar to remotely collect forest structural

data have been well demonstrated, most importantly the measurements do not saturate until much

higher densities than passive optical and radar signals, allowing measurements of previous blind
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spots on the Earth’s surface. The link between measured signals and certain biophysical parameters

is far more direct than with other techniques, particularly tree height and canopy cover. It is no

surprise that the remote sensing community has such an interest in new lidar missions.

There is still some confusion about how best to go about relating lidar data to forest parameters,

but this should dissipate as validation campaigns continue and data becomes more widely available.

Lidar footprints are smaller than many other remote sensing instrument’s pixels (30m as opposed

to 1km for MODIS). At these scales forests are very heterogeneous and so a geolocation error of

a few tens of metres of the lidar footprint might mean that ground measurements are made of

completely different trees, weakening allometric relationships and frustrating validation attempts

(Drake et al. 2002). This is cited as one of the primary causes of uncertainty in lidar inversion

(Næsset and Økland 2002, Hyde et al. 2005, Drake et al. 2002) and it is difficult to advance our

understanding of the processes involved without reliable validation data. Here radiative transfer

modelling offers the potential to aid understanding (North et al. 2008, Ni-Meister et al. 2001), as

long as the model can be trusted to capture effects at the scale of a lidar footprint.

3.5.4 Ground based lidar

Lidars can also be used for making ground based measurements. The range resolved measurements

allow lidars to collect structural data that would only be possible with destructive sampling or point

quadrats, but much more rapidly (Jupp and Lovell 2007, Clawges et al. 2007). In addition they

can provide the data required to validate above canopy range resolved measurements (Ni-Meister

et al. 2008); something current rapid ground based measurements are unable to do.

The modes of operation are exactly the same as for above canopy measurements, with both

discrete and waveform lidar available. The first attempts were made in the 1980s, not long after

airborne methods had been tried (Vanderbilt 1985). This attempt used a primitive terrestrial

lidar, since then the use of hemispherical scanning first return lidar for surveying buildings has

been well developed and they are used routinely. Buildings are much “harder” targets than forests

so first return lidar can capture all the data needed for modelling work. The large, hard surfaces

of buildings are not so different from tree trunks so it it little surprise that this was where much of

the early effort has been directed. The trunks are also the most profitable part of a tree, forestry
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companies are willing to spend money on developing instruments for rapid measurements and so

this area has been well funded.

An alternative laser system known as “laser plane range finding” has been proposed for forestry

(Tanaka et al. 1998). This uses a laser pointing at a known angle to illuminate the target, the

3D location of this spot is then determined by triangulation from a camera at a fixed distance

from the laser. Whilst this allows range resolved measurements of structure it will suffer from

the same problems of occlusion as traditional stereo photogrammetry. It is unclear why these

authors decided not to use the standard lidar range finding methods, with its simpler hotspot

measurements, and no comparison has been made to prove that it can perform as accurately.

Several studies have used first return hemispherical ground based lidars to examine the diameter

and height of trunks as a way to rapidly assess the growth rate and amount of merchantable wood

(Watt and Donoghue 2005, Pfeifer et al. 2004). For hard targets, such as trunks, the beams are

totally obscured so there are no later targets for discrete systems to be blinded to and they will

suffice. These typically have beam divergences of a few tenths of a milliradian, corresponding to

a spot size of a few millimetres at a range of ten metres. The returns form a dense “point cloud”

from which the objects have to be identified through image processing techniques. The problem

is slightly harder for trees because unlike buildings these have no sharp corners and hard edges

that can be used to tie scans from different locations together (Pfeifer et al. 2004). Multiple views

are essential to overcome occlusions and so artificial targets must be used. Some report that it

can take around four scans and up to an hour to fully characterise a single tree (Clawges et al.

2007). One study went a step further and once trunks had been identified by point cloud analysis,

draped high resolution photography over, using the texture to identify tree species (Reulke and

Haala 2004).

The point clouds are unlikely to be dense enough to allow the reliable extraction of leaves by

image interpretation, particularly in coniferous forests (Omasa et al. 2007) and so an explanation

of point cloud methods will not be given here. There have been successful attempts to extract

complete tree models, including leaves from point clouds (Xu et al. 2007, Côte et al. 2009).

These required extensive sets of prior information and models for the shape and distributions of
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branches and leaves to fill in the gaps from occlusions and between points. It has been found that

even for simple structures (compared to needle shoots) like primary branches, small deviations

from assumed shapes can cause inaccuracies (Pfeifer et al. 2004). The successful authors partially

overcame this issues by supervising the process (Côte et al. 2009).

Of far more interest to ecologists and climate modellers are the canopies and accurately deriving

LAI. The range resolution and small beam size of a laser makes the analogies with a point quadrat

(Wilson 1960) obvious. An instrument for making point quadrat type measurements was created

by mounting a lidar on a tea tray pointing vertically (Parker et al. 2004). As an operator walks

through a forest the range to the first foliage element above the sensor (or a gap) are recorded.

As the laser beam will suffer from occlusion this is more correctly a version of the telephoto lens

method of MacArthur and Horn (1969), but can be collected far more rapidly. Beer-Lambert’s

law must be used to convert contact frequencies into LAI (equation 14) whilst the range resolution

allows the calculation of LAI in layers of constant height, giving foliage profile.

Traditional surveying laser scanners can be used to make the same gap fraction measurements,

much like a range resolved hemispherical camera. This allows estimation of the angular distribution

and clumping factors in exactly the same way (described in section 3.1.4) with the added detail of

range resolution. Lidar scanners take a little longer to set up than hemispherical cameras and the

LAI-2000, but the extra detail more than makes up for the extra effort. It has even be suggested

that the woody correction factors can be found by comparing leaf-off to leaf-on scans (Clawges

et al. 2007), although this will suffer from exactly the same issues of non-randomness of the two

materials as passive optical, leading to an overestimate of visible wood area in the leaf on case

(Kucharik et al. 1998b) and will not work for evergreen species.

It has been found that when used this way, terrestrial lidars underestimate gap fraction, and so

underestimate LAI, when compared against hemispherical photography (Danson et al. 2007). It

is hypothesised that this is caused by small gaps (or small obstructions over large gaps) reflecting

enough laser light to trigger a return and so being marked as a blocked pixel. These small objects

would not bias optical transmission methods (depending on the threshold chosen) but the lidar

only marks gaps that are larger than the laser beam, missing all others and so underestimating
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gap fraction.

One solution to this triggering by small targets is to use full waveform lidar. Such an instrument

has been developed specifically for forest measurement, the Echidna laser scanner (Lovell et al.

2003). It currently exists as a prototype, the Echidna validation instrument or EVI. Industry

has recently unveiled the first commercially available terrestrial waveform lidar, Reigl’s VZ-400,

announced in September 2008. This instrument does measure the full waveform but does not

yet record it in the same sense as LVIS or Echidna, but processes it (again with proprietary

algorithms) to allow any number of discrete returns. The instrument has been tailored for the

surveying industry where diffuse targets are rare.

Figure 15: Photograph of the Echidna laser scanner in Northumberland national forest near Sydney. Dr.

Darius Culvenor is in the left and Dr. Nicholas Goodwin on the right. Photograph by Professor Jan-Peter

Muller.

Echidna’s characteristics are given in Jupp et al. (2009). It scans a zenith range from -137o

to +130o and 0o to 180o azimuth to give a little over a hemisphere. The outgoing laser pulse is

at 1064nm and is a 25.3ns long slightly, skewed Gaussian (Jupp et al. (2009) gave the full width

half maximum, FWHM, which is 14.9ns whereas the point at which intensity drops to 1/e2 of the

maximum is used throughout this thesis). The beam starts off 29mm wide and the divergence can

be adjusted between 2mrad and 15mrad. The waveform is sampled every 1
2 nanosecond giving a

range resolution of 7.5cm. The pulses are generated at a rate of 2kHz, so it takes around twenty
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minutes to record a full hemisphere. This provides a high resolution, multi-angular dataset of the

intensity returned from all visible objects; perhaps the richest non-contact dataset available.

Echidna is still a prototype and not all of the possibilities of such a dataset have yet been

explored. So far studies have concentrated on extracting stem dimensions for foresters (Yang et al.

2008), as this is the most commercially viable use for such an instrument, and LAI (Jupp et al.

2009). The stem dimensions are extracted using exactly the same methods as for discrete return

lidars (for hard targets there is no difference between waveform and discrete measurements) and

these will not be explained here.

The initial attempts to extract LAI from Echidna have tried to show that it can be found

as reliably as with traditional passive transmission techniques (outlined in section 3.1.4). These

have used gap fraction based techniques, relating to LAI with the Beer-Lambert law but with the

advantage of being range resolved (so giving an idea of the vertical heterogeneity) and providing

its own illumination. This means the measurements are insensitive to natural lighting and so can

be taken no matter what the conditions are rather than having to wait until the clouds, sun and

moon are in the right positions.

Echidna scans at a coarser resolution than typical hemispherical cameras, the spot size being

between 5cm and 18cm at a range of 10m, and so small gaps will be missed unless the fraction

of gap and canopy within a beam can be calculated. Measurements by Echidna are not quite

like transmission techniques, where the recorded intensity depends only on the projected area of

elements. Returned light is reflected from elements and so measured intensity depends on the

projected area, reflectance and orientation of objects. For example a small bright leaf will return

exactly the same intensity as a leaf twice as big but half as reflective; these cases have different gap

probabilities and LAIs. This coupling complicates the problem somewhat. Mathematical models

are needed to link measured intensity to gap fraction.

The instrument measures returned intensity with range and this needs inverting to get to

the canopy’s properties. The apparent reflectance, η, can be calculated by correcting measured

intensity, I, for range, R, detector efficiency K and outgoing intensity I0,
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η =
I.R2

K.I0
(25)

The range and outgoing intensity are measured for each beam and the detector efficiency can

be measured in a laboratory with targets of known optical properties.

This apparent reflectance is related to the target’s actual reflectance, ρc, projected area as a

fraction of the field of view (equal to one minus the gap probability, Pgap), and the phase function,

Γ(θ) which describes the directional reflectance of a surface illuminated and viewed at an angle θ

relative to the reflectance if all an object’s surfaces were at right angles to the illumination and

viewing vectors.

η = ρc.Γ(θ).(1 − Pgap) (26)

Of course these equations are for a single range bin at a time. The complete signal will be the

sum of these as far as the lidar can see. Equation 26 can be solved to get gap fraction which can

be used to find LAI with Beer-Lambert’s law, equation 14.

The properties for bark and leaf may be slightly different, requiring a separate apparent re-

flectance for each material, but for the first attempts it has been assumed that they are similar

(Jupp et al. 2009) and so the equations above can be applied to the whole canopy and a PAI

calculated. A woody correction would then be needed to convert between PAI and LAI.

It has been suggested that the phase function is the square of the angular distribution function,

G(θ), so Γ(θ) = G2(θ) (Ni-Meister et al. 2008), from empirical observations. If it is assumed that

the LAD and LAI are constant throughout the canopy the LAD can be calculated in the same

way as with hemispherical photography. This can be done by either by fitting to models such as

an ellipsoid (Campbell 1986) or beta distribution (Goel and Strebel 1984), or by recording the gap

fraction in bins of constant zenith (Goudriaan 1988). The assumption of homogeneity may not be

entirely true (Wilson 1959) but is the only way to estimate LAD from a single scan. The model

can be used to predict the fraction of total surface are projected in a given direction. A linear

model has been proposed as a simple approximation to an ellipsoid (Jupp et al. 2009), giving good

agreement during inversion.
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Clumping can be found with the same log averaging method used for hemispherical photographs

(see section 3.1.4 (van Gardingen et al. 1999)), except that the signal can also be split into range-

wise segments. The current prototype emits only a single wavelength so it is not possible to

spectrally separate leaf from bark. It is possible to use the shape of a return to tell something

about a target. Solid objects that completely fill the field of view will return a strong signal with

roughly the same shape as the outgoing pulse whilst diffuse targets will cause weaker, more spread

out returns. In forests the only solid elements are trunks and the ground, so all strong, outgoing

pulse shaped signals above the ground can be classified as bark. Some estimate of branch area to

leaf area is required to get to LAI rather than PAI. Branches are generally smaller than the field

of view and so will give diffuse returns, preventing the separation from leaves by the same method.

This only leaves the element reflectance as an unknown. This can be measured in the field and

some believe it to be quite constant at 1064nm for different species and even for leaf and bark

(Jupp et al. 2009), most of the spectral variation occurring in the visible and water absorption

bands. The phase function depends upon the angle between an element’s surface and the laser

Poynting vector and so depends upon the LAD, G(θ) and laser direction, θ.

This method has been used successfully, giving LAI values comparable to those found from

hemispherical photography but far more consistent over changing solar illumination conditions

(Jupp et al. 2009). Some issues were found with clumping factors coupling together with LAD,

making it hard to calculate either reliably and more work is needed in this direction.

Studies (Ni-Meister et al. 2008) have been performed linking the GORT radiative transfer

model (described in section 2.1.2) to Echidna measurements. The model was slightly modified to

include the effect of tree trunks, generally negligible in above canopy measurements but can have a

considerable effect on hemispherical below canopy scans. This would allow LAI inversions to take

crown scale clumping into account, greatly improving accuracy. It would also allow above canopy

lidar measurements to be predicted from Echidna measurements, an important development for

the validation of these new instruments.

As GORT is not spatially explicit only the LAI averaged in slices of constant height could be

used, not making use of Echdina’s potential for measuring horizontal heterogeneity. Any informa-
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tion on stand density derived becomes very indirect and can couple to other factors. The GORT

model assumes that trees can be described as ellipsoidal envelopes containing a turbid medium,

but it is questionable whether such heterogeneous scenes as forests can be described by such sim-

ple geometric primitives (Parker and Brown 2000). In addition the above inversion requires LAI

and LAD to be constant throughout the crowns, another assumption which does not fully capture

the heterogeneity of a forest. It is not clear whether the assumption of stand scale and within

crown homogeneity of GORT type models is appropriate at the scale of Echidna measurements as

a comparison has not yet been carried against explicit models.

An alternative method is to use a DART type model (Gastellu-Etchegorry et al. 1996) to

estimate canopy parameters in an array of voxels. Hosoi and Omasa (2006) performed the first

study, using a first return terrestrial lidar, incapable of measuring intensity, contact frequency being

used instead. This allowed an explicit description of element locations rather that the statistical

distributions of GORT. The radiative transfer equations must be solved for every voxel and so

much more data is needed. Fortunately Echidna data is very rich and has the potential to invert

such a model without the heavy pre-parametrisation needed for sparser datasets (described in

section 3.3, (Kimes et al. 2002)). In order to get LAD measurements from a range of angles are

needed for each voxel. This necessitates multiple overlapping scans, which will also help overcome

occlusion of voxels. The woody correction term was calculated by removing all leaves (simulating

winter) and re-measuring, then subtracting the gap fraction with leaves from that without. It has

already been shown that this may lead to an underestimate of LAI (Kucharik et al. 1998b) and

this may have biased their findings.

Unlike the other terrestrial lidar studies, Hosoi and Omasa (2006) performed a rigorous val-

idation of results by destructive sampling. This revealed that whilst the attempt successfully

calculated LAI values, it suffered from coupling of LAD, woody correction and clumping factors,

indicating that perhaps even richer data is needed to invert a model of this complexity. Of course,

using full waveform rather than first return lidar should have greatly helped accuracy, allowing

measurement of surfaces that would be obscured behind small objects to a first return system.

These are only first steps and it is hoped that much more can be done with this instrument in
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the future, particularly using the beam divergence to extract different scales of clumping (Lovell

et al. 2003).

Currently there is only a single prototype Echidna, requiring specialist technicians. This has

limited the use of this data source. Future instruments will hopefully be more robust and easier

to use. There have been suggestions of improvements. Currently two of the biggest limitations

are uncertainty in element reflectance and the fraction of leaf and wood. Dual wavelength laser

systems have been proposed to ease the problem of the woody correction (Tanaka et al. 2004).

These would enable all the analysis of passive multi-spectral systems (Kucharik et al. 1998b) but

with carefully controlled illumination and so not suffering from light bark and dark leaves confusing

classification.

3.6 Measurement conclusions

This chapter has described current methods for measuring forests. Satellites are essential for

global studies, being the only way to provide frequent and, equally importantly, consistent mea-

surements. The three main remote sensing instruments, passive optical, radar and lidar have their

own advantages and disadvantages.

Passive optical sensors are relatively cheap, require minimal power, can provide multi-spectral

or hyper-spectral measurements over large areas and have been in continuous use since 1972. They

are the only practical way to make multi-angular measurements, so helpful when estimating land

surface parameters. Unfortunately their measurements saturate at only moderate canopy densities

(LAI of 3-4 for vegetation indices or 6-7 with modelling) and so much of the heterogeneity and

dynamics of vegetation will be invisible to them.

Radars offer the unique ability to make measurements through clouds and can provide rea-

sonable spatial and temporal coverage. Shorter wavelength radars also saturate at only moderate

canopy covers and so will have the same blind spots as passive optical instruments. Longer wave-

length radar signals should not saturate over dense canopies, or even interact at all with foliage,

offering the exciting potential to measure standing biomass relatively directly. Such an instrument

has not been launched and many complications need to be overcome before it can (atmospheric
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interference is especially strong at that wavelength and a very large antennae is needed to get

a usable ground resolution). Interferometric radar has the potential to measure forest height, in

theory, but is difficult to implement in practice (Sexton et al. 2009).

Lidar measurements do not saturate until very high canopy densities, a feature shared only

with long wavelength radar. They also offer direct estimates of features that are only tangentially

related to passive optical and radar measurements. Therefore they have the potential to open up

the blind spots of other instruments and greatly reduce uncertainty in global maps of biophysical

parameters.

On the downside the energy requirements and relative immaturity of lasers means that only

very narrow swaths will be possible (DesDyni is proposed to have five pixels, each 1km apart whilst

ICESat has only a single pixel) and so it will take years to sample all the Earth’s surface rather

than the two days of MODIS. They are not a complete solution but are the best technique for

measuring tree height (and so biomass) and do not saturate as readily as current passive optical

and radar sensors. For these reasons the rest of this thesis will concentrate on the measurement

of forests by lidar at the global scale. A mixture of all of these data sources would help constrain

a model and there is much interest in data fusion techniques (Hyde et al. 2006).

Ground based Ground based measurements provide a much more direct estimate than satel-

lites, allowing close up human interpretation of a site and so whilst it is not possible to perform

global studies from ground measurements alone, they are a vital tool for validating remote sensing

estimates.

Direct measurements of vegetation, whilst accurate, are time consuming, expensive and often

require the complete destruction of a plot. These are useful for intense, small scale validation

campaigns but are not practical for collecting regular, large scale measurements needed to validate

global remote sensing products.

Passive optical transmission methods are fast and do not damage the plants but are only

indirectly related to biophysical parameters. Beer-Lambert’s law is needed to reach the forest

parameters, but this only gives effective parameters which saturate at moderate canopy covers

(LAI of 5-6). The limitations and assumptions of ground based transmission methods are very
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similar to those used for remote passive optical measurements and so important physical processes,

such as saturation, could be hidden if they are relied upon. In addition the transmission methods

depend upon illumination condition, limiting measurements to an hour before sunrise and after

sunset, or in uniformly overcast conditions.

Though not explicitly stated, some authors’ description of the ideal ground based canopy

measurement device bears a startling resemblance to a multi-spectral version of the Echidna lidar

(Jonckheere et al. 2004). The latest hemispherical, waveform terrestrial lidars are capable of

rapidly measuring tree trunks, giving good estimates of above ground biomass. They also provide

the richest possible dataset (range resolved and multi-angular) and so have the potential to create

very complex canopy models, giving spatially explicit estimates of biophysical parameters (so fully

characterising heterogeneity) and predict above canopy measurements, including range resolved

measurements. It remains to be seen whether their full waveform measurements can overcome

the saturation of transmission methods and much more work is needed to fully understand the

possibilities and limitations of their measurements.

The thesis will explore the potential of ground based full waveform lidars for providing ground

truth measurements.
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Chapter 4: The Simulator

Vegetation parameters inverted from remotely sensed data must be validated before it can be used

with any confidence. However plant canopies, particularly forests, are very complex so collecting

the field data necessary to fully characterise the structure and spectral properties needed to validate

a scene is often not possible (Bréda 2003). Even if an area of vegetation were fully characterised

it is not easy to geographically match ground based measurements to those from satellites and so

direct comparisons are not generally possible (Hu et al. 2003). This makes it hard to know the

accuracy of remotely sensed parameters and the source of any disagreements.

Simulations using computer models offer an alternative method of validation. In computer

models the truth is always known (to whatever detail it is modelled), a situation that is rarely

achieved in reality (Pinty et al. 2001). Parameters inverted from simulations of remote sensing

instruments can be compared against the original scene models (a known truth) without any

geolocation issues to give validations in which confidence can be had. A “virtual laboratory” can

be created (Lewis 1999) where the scene can be controlled, allowing experiments that would be

impossible to perform in reality.

Methods for simulating remote sensing signals from different vegetation canopies were pre-

sented in chapter 1.3 and it was concluded that näıve Monte Carlo ray tracing (one that uses no

non-physical acceleration techniques) over explicit vegetation models give the most accurate radio-

metric predictions. All other methods would use non-physical acceleration or effective structural

parameters (Widlowski et al. 2005). These effective parameters and acceleration methods may

hide errors and physical processes when trying to invert biophysical propertied, especially if the

inversion algorithms make the same assumptions as the models.

For this reason a Monte Carlo ray tracer and geometrically explicit forest models will be used

to simulate data of current and future lidar instruments over a range of forests. This will allow an

assessment of error with much better accuracy than is possible with real data as well as allowing

an exploration of the potential of instruments for which real data is not readily available. This

chapter will describe the design of the ray tracer, forest models and the efforts taken to ensure

realism.
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4.1 Design of the ray tracer

The ray tracer used was based on the earlier simulators of Lewis (1999), previously known as

“ararat”, “prat”, “drat”, “frat” and now converted into a library of C functions, “Rat Lib” (Lewis

2006). The radiometric accuracy over vegetation has been comprehensively tested in the RAMI

exercises (Pinty et al. 2001, Pinty et al. 2004, Widlowski et al. 2007) (see section 2.4) and this

particular simulator forms part of the surrogate truth. This provides confidence in its prediction

of remote sensing signals over vegetation. The validations have not yet included range resolved

measurements but these are being carried out for the fourth phase of RAMI (European Commission,

JRC 2009). There is no reason to suspect the simulations will not be accurate for lidars but it

cannot be said for certain until the fourth phase is complete, sometime at the beginning of 2010.

The basic operation of the intersection tests and scattering of Monte-Carlo ray tracers has been

well covered in other sources (Foley et al. 1992, North 1996, Lewis 1999) and was not modified

as part of this thesis, so no more detail than was given in section 2.2.3 will be provided. It was a

tool to simulate remote sensing signals rather than a focus of the research. The scan pattern and

information recorded is particular to the instrument being simulated and so that will be described

in detail throughout the rest of this chapter. The Rat Lib library was used to create a ray tracer

optimised for hemispherical (or part of), multi-spectral waveform lidar simulations, named “*rat”

or “starat”. This could simulate Echidna signals, or by limiting the angular range and setting

appropriate location and footprint, above canopy instruments such as LVIS and ICESat.

The ray tracer library can act in forwards or reverse mode, tracing rays from the illumination

source or from the detector respectively. For lidars the field of view will never be smaller than the

illuminated footprint and is often slightly larger to ease alignment (Kovalev and Eichinger 2004).

In this case, if reverse ray tracing were used, rays traced from the detector to points outside the

laser footprint will contain no first order scattered light, only multiple scattered if the ray happens

to scatter into the laser footprint. These rays will require as many computations as rays whose

first interaction falls within the laser footprint but contribute only a small fraction of the overall

signal; obviously this is an inefficient situation. With forwards ray tracing the first interaction of

every ray traced from the camera will fall within the field of view and so contribute to the total
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signal whilst rays scattered outside the laser footprint that interact within the field of view will

still be recorded. Therefore the same result is obtained with far fewer computations and so the

ray tracer will be operated in forwards mode. Of course if the field of view is exactly the same size

as the laser footprint the two modes will be computationally equivalent and either can be used.

Of the instruments that will be simulated Echidna has by far the most complex scanning

pattern. This sends out beams between -137o and +130o zenith, stepping by the beam divergence

so as to leave no gaps. The sensor then rotates azimuthally by the beam divergence again before

scanning another zenith swath. This way a full hemisphere is built up leaving no gaps between

beams, except those from trying to build up a square wall with round footprints. For all zeniths

except those pointing horizontally there will be overlap between azimuthal neighbours and at

nadir all azimuths will be looking at exactly the same point. This gives the data a fair amount of

redundancy and may allow some interesting analysis of sub-pixel heterogeneity (Jupp and Lovell

2007).

All other instruments can be approximated as a set of nadir looking scans (their off-nadir

pointing being negligible), which is a special case of an Echidna scan with an extremely narrow

angular range. Therefore the simulator was set up to mimic Echidna’s scan pattern.

The ray tracer is controlled by defining a location within the scene, a beam divergence, a field

of view, step angle (generally set as the beam divergence) and a zenith and azimuth range to scan

over. For Echidna the angular range used was from -100o to +100o zenith (the full range was not

used as this thesis is interested in the measurement of the canopy rather than the ground) and

0o to 180o azimuth. For above canopy instruments only a single footprint -180o zenith and 0o

azimuth was scanned.

Figure 16 shows a comparison between a real LVIS footprint (taken from Sun et al. (2008))

and a ray traced version over a similar forest. Figure 17 shows a real Echidna scan (from Jupp

and Lovell (2007)) and a simulated version. The forest for the simulated scan was much younger

than that in the real data.
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Figure 16: Starat LVIS like waveform compared to a real waveform

(a) Real data (b) Simulated data

Figure 17: Starat Echidna like scan compared to a real one
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4.1.1 Sampling

In Monte Carlo ray tracing the number of rays, and so samples of the scene, are defined indepen-

dently of the scene’s complexity; this is its main advantage over other realistic simulation methods

(Disney et al. 2000). To ensure that the Monte Carlo results are representative of reality there

must be a sufficient number of rays to adequately sample the scene and this number will be related

to scene complexity. The number of rays required depends upon the variability of the scene at the

scale of the field of view, if the scene is a single plane all rays will see exactly the same surface and

return the same reflectance, so a single ray will suffice. For a scene as complex as a conifer forest

many hundreds of rays will be needed to sample all the objects and curved surfaces.

In addition to the sampling of surfaces by directly reflected light (rays that have undergone

a single interaction) multiple scattered light must also be adequately sampled. The intensity of

multiple scattered light will depend upon the element reflectance and the probability of a multiple

scattered ray returning to the detector (which in turn will depend upon the field of view, scattering

element density and orientation of scatterers relative to each other). For computational efficiency

the ray tree is truncated after a certain number of interactions (once the contribution from scattered

light has become negligible).

To ensure an even areal sampling and because a single lidar beam’s measurement is not spatially

explicit within the footprint (unlike a camera), the laser footprint was divided into segments and

a set number of rays traced per segment. The segments were made to be of constant solid angle,

or as near as possible without leaving gaps. The field of illumination was first divided into zenith

annuli of a given angular resolution αres. These were then divided into azimuthal segments, each of

as close to the sine of αres as would fit an integer number of times into a full circle. This gives the

sampling pattern seen in figure 18. Rays were traced from the lidar scan centre through a random

point within a segment. This random jittering allows different scans with the same resolution

which may give different results if not enough rays are used. These segments could also be used

as pixels to create a two dimensional picture, although the full three dimensional distribution of

intensity was not recorded to reduce the memory requirements.

A set of tests were performed to make sure that the scenes were sufficiently sampled without
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Figure 18: Starat’s sampling pattern

using so many rays as to make the simulations impractically slow.

Above canopy lidars The above canopy lidars used in this investigation (in section 4.3) will

have 30m footprints, about the size of LVIS (Hofton et al. 2000) and the proposed DesDyni

(Dubayah et al. 2008) instruments. These will be simulated over Sitka spruce and birch forests of

different densities, ages and topographies (the creation of which is describes in section 4.2). The

denser the forest the greater the scene complexity, also the larger the trees in the forest the greater

their complexity. The coniferous trees used contained more elements than the birch and so were

more complex. A sparse young Sitka spruce forest was used as an example of a simple forest whilst

a dense old Sitka spruce forest was used to find the number of rays needed for the most complex

scenes. The dense forest was used to set the number of rays; the sparse forest was tested to see how

the required number of rays changed with complexity. Topography should not affect the number

of rays needed to sample the scene. It does slightly spread out scattering elements which may have

an impact on multiple scattering though this should cause a reduction in the contribution if at all.

Maximum interactions The number of rays needed to characterise a scene cannot be deter-

mined until it has been decided how many interactions to limit the ray tree to. Multiple scattered

light is attenuated by the element reflectance to the power of the order of scattering, therefore

to ensure that the simulation’s accuracy is never limited by ray tree truncation the wavelength

with the brightest reflectance were used to choose the truncation point. Within the canopy (where

the majority of multiple scattering will occur) there is a mixture of leaves and bark, therefore the
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spectrum of interest will be a mixture of these two spectra, depending upon the probability of

light scattering between the various elements. As leaves are by far the densest scattering elements

in conifers (whilst bark can have as large a surface area as leaves this is made up of a few large

elements) and so the majority of multiple scattering is likely to come from them. For the particular

spectra used in this investigation the maximum leaf reflectance was at a wavelength of 920nm.
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Figure 19: Fraction of energy at higher orders of scattering for a dense (99.9% canopy cover) forest

A set of twenty five simulations were run over different locations in a dense old and a sparse

young Sitka spruce forest. Ray trees were allowed to include up to one hundred interactions (by

which time there should be no contribution). The fraction of total intensity that would be truncated

if the ray tree were limited to a maximum number of interactions (adding up over all ranges) was

calculated for each footprint. The mean and standard deviation of the fractional contribution was

calculated from these twenty five footprints.

No contributions were recorded above sixty interactions, so limiting to one hundred interactions

has not affected the results’ realism in any way. From figure 19 it can be seen that for the maximum

multiple scattering conditions (dense canopy, high reflectance) around 84% of the signal comes

from singly scattered light. Closer examination reveals that limiting the ray tree to 30 interactions

would truncate only 6.5 × 10−3% of the total energy with a standard deviation of 5.3 × 10−3%, a

negligible fraction on the edge of a computer’s floating point precision. After fifty eight interactions

this fraction dropped below the precision of computer doubles and cannot be measured by the ray

tracer (and so is effectively zero).

The analysis was repeated for the sparsest canopy (around 20% canopy cover) to see how
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it varies. For this case 86% of the signal comes from single scattered light and rays stopped

contributing after 42 interactions (after thirty interactions the contribution was 1.5× 10−3% with

a standard deviation of 5.2 × 10−3%). This shows that the number of interactions necessary to

sample a scene is related to tree density, but the fractional contribution of multiple scattered light

is not. The majority of the multiple scattering contribution was from low orders of scattering,

possibly within individual tree crowns so that tree density does not affect it.

Therefore limiting the ray tree to thirty interactions should not limit simulation accuracy and

will not take too long to compute (a few hours for the most complex scenes on a 2GHz processor).

Number of rays Again the densest, oldest and so most complex forest was used to determine

the number of rays required to accurately characterise a 30m diameter footprint. With starat the

number of rays was controlled by the number of segments in a footprint and the number of rays

per sector. Care must be taken not to make the solid angle of the sectors too small, to avoid any

danger of rounding issues in the jittering of rays within segments.

Simulations were run with different numbers of rays, at first with one ray per sector until the

solid angle became small, at which point the sector size was limited and the number of rays per

segment increased.

The literature reports a range of methods to ensure adequate sampling, however these are

mainly for psycho-physical results (Koenderink and van Doorn 1996). Whether an image would

look correct to a person is not of interest, only the reflectance with range. The method of (Hofton

et al. 2000) uses a cumulative threshold of 1% of the total energy to remove noise, therefore it

would be sensible to ensure that the measured intensity is correct to this level. For safety the

accuracy should be higher than this, if computational expense allows.

From figure 20 it can be seen that the fractional variation was relatively small compared to the

overall intensity, even down to a hundred rays. The variance began to flatten off at around five

hundred rays reaching a plateau at around two thousand rays, suggesting that there is little point

in using more than this many rays. For these forests one thousand rays would seem to be a sensible

number. Not as many samples were available for the dense forest due to the extra computational

expense but one thousand rays would seem to be sufficient.
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Figure 20: Standard deviation divided by mean against number of rays for a 30m footprint over Sitka

spruce forests

Below canopy lidar The thesis will also include simulations with CSIRO’s Echidna R© terres-

trial lidar (described in section 5.14). This has a much smaller footprint than the above canopy

instruments, a beam divergence of between 2mrad and 15mrad from a starting diameter of 29mm

(Jupp et al. 2009) giving a footprint of between 49mm and 179mm at a range of 5m and between

149mm and 929mm at a range of 30m and so fewer elements will contribute and fewer samples

should be needed per beam.

Forests Echidna simulations take a considerable amount of time and computer resources to

complete. Even at the coarsest resolution (15mrad beam divergence) a full scan between -100o

and 100o zenith contains 48,740 individual beams, therefore only segments of the scans will be

investigated. The total canopy density is less of an issue than it is for large footprint lidar as the

beam footprint will always be completely filled by a single tree and it is unlikely that light will be

multiply scattered into an adjacent crown and back into the field of view. For this reason sparse

canopies will suffice, using only small sectors covering trees.

The small footprint of Echidna means that some returns may come entirely from hard targets,

such as trunks, which are unlikely to have any contribution from multiple scattering so the search

for convergence was limited to diffuse targets (targets which have returns in multiple range bins).

Comparing figure 21 to figure 19 it can be seen that the smaller footprint of Echidna leads to

much smaller contributions from multiple scattering. In this case light makes no contribution after

twenty interactions whilst limiting the ray tree to only five orders of scattering would truncate
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(a) Hemispherical image
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(b) Contribution split by scattering order

Figure 21: Intensity of contribution against scattering order for Echidna simulations of a sparse birch

canopy at 920nm

only 6.4−3% of the energy, around the precision of a floating point.

As footprint size is proportional to range it is reasonable to assume that more distant targets

may have more multiple scattering than closer targets. Examining a different sector with more

distant trees (at 8.5m rather 7m) gave similar results, with multiple scattering contributions com-

pletely disappearing after twenty orders of scattering, although the fraction stayed above 10−3%

until seven orders of scattering, adding weight to the argument that that larger footprint sizes

include more multiple scattering.
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Figure 22: Maximum standard deviation between ten different samples against number of samples for an

Echidna simulation of a birch forest

Sitka spruce, with its needle shoots, should suffer much more multiple scattering than birch

and on a much smaller scale. To save computations with the more complex scenes only a single

sector was examined, containing distant trees.

For Sitka spruce, whilst multiple scattering contributed 7% with a standard deviation of 6% of
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(a) Whole scene
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(b) Contribution split by scattering order

Figure 23: Intensity of contribution against scattering order for a Sitka spruce canopy at 920nm

the total energy. The contribution dropped below the precision of a double variable after thirty

six interactions and down to 4.8× 10−3% with a standard deviation of 1.4× 10−2% after thirteen

interactions. Therefore a limit of thirteen interactions will not affect simulation accuracy. In fact

all orders of scattering beyond four contributed only 1% of total energy, so a much lower ray tree

limit may be acceptable if computation time becomes an issue.
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Figure 24: Maximum standard deviation between ten different samples against number of samples for an

Echidna simulation of a Sitka spruce forest at 920nm

From figure 24 it can be seen that using one thousand samples would have a maximum error

of around 0.5%. For a beam divergence of 15mrad this corresponds to segments of solid angle

4.8×10−8strad and 11 rays per segment. This sampling number will be used for all 15mrad beam

divergence simulations with Sitka spruce forests. At this sampling rate each beam took a maximum

of 31 minutes and a mean of 8 minutes on a 2GHz processor. This is for the most complex portion of

the forest and so it should be possible to complete a number of complete scans within a reasonable
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time.

With this level of sampling and the lack of assumptions of ray tracing described in section 2.2.3

the ray traced signals can be taken as accurate representations of reality. Inversion algorithms can

be tested as if the signals were real data and compare the results against a known truth, a feat

impossible in reality (Pinty et al. 2001). Of course more intelligent sampling could be employed,

with denser sampling around curved and complex areas than flat planes or empty sky, but this

thesis is about understanding the physical processes that make up lidar signals, not about ray

tracer development so the extra effort will not be expended, even though it means wasting some

computer time.

4.1.2 Variable field of view

The contribution from multiple scattering is likely to increase with beam divergence, as suggested

by comparison of the fraction of multiple scattering for 30m footprint above canopy simulations

and Echidna (figures 19 and 23). Echidna has a variable beam divergence and so different settings

may need different numbers of rays and maximum interactions to adequately sample the scene.

The fraction of energy that would be truncated if the number of interactions of a ray were limited

was recalculated for a number of different beam divergences, shown in figure 25.

Whilst there was an increase in the contribution from multiple scattering with beam divergence,

it was not dramatic. For all cases tested the average contribution falls below 1% of the total

energy after four interactions and drops below 10−3% after fifteen interactions; this is not what

was expected. To see why the experiment was repeated with a regular array of small spheres (with

diameters less than half the laser footprint) and the results, in figure 26, show that in this case

the increase in contribution with beam divergence was much more pronounced. This suggests that

for Sitka spruce the multiple scattering did not increase as expected because of irregularity of the

arrangement of scattering elements.

In the regular array of spheres used in figure 26, as the field of view increases more and more

scattering elements were measured within each range bin and so there was an increased chance of

scattered rays striking an object within the field of view and contributing whilst the singly scattered

contribution was unaffected. In real forests scattering elements are clumped, so increasing the
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(b) 12mrad
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(c) 23mrad

Figure 25: Fraction of energy truncated if the ray tree is limited against maximum number of interactions

for a range of beam divergences over a Sitka spruce forest
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(c) 14mrad
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(d) 35mrad

Figure 26: Fraction of energy truncated if the ray tree is limited against maximum number of interactions

for a range of beam divergences over an array of small spheres
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beam divergence will not necessarily increase the number of scatterers within a range bin and so

the contribution from multiple scattering will not increase. Most of the multiple scattering would

seem to be within a single shoot.
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Figure 27: Standard deviation of measured intensity between ten scans with different random number

seeds against number of rays for different beam divergences in a Sitka spruce forest

In real instruments the field of view is unlikely to be be exactly equal to the beam divergence.

This would need very precise alignment to ensure no laser energy is wasted and so the field of view

tends to be greater than the beam divergence. The only Earth orbiting spaceborne lidar, ICESat

has a much larger field of view than beam divergence to allow a degree of pointability (Schutz

et al. 2005). The viewed area outside the illuminated footprint cannot contain any directly reflected

radiation but will contain multiple scattered light, therefore this setup will increase the contribution

from multiple scattering. Figure 28 shows that the relationship between the contribution from

multiple scattering and field of view was very similar to that for beam divergence, with a very

slight increase but not so much as to require a higher limit for maximum interactions. Again the

effect was a far more pronounced for a regular array of spheres than for Sitka spruce, but as this

situation is unlikely to occur in forests the results are not presented.

This section suggests that the number of rays and orders of scattering already chosen (twenty

orders of scattering and one thousand rays per beam), will not limit the simulation accuracy for

any beam divergence or field of view likely to be used in a real below canopy instrument. It will be

possible to use lower limits whilst keeping the error below 1% if computational time becomes an

issue, particularly for the narrower fields of views and beam divergences. More regular scattering

objects may require increased sampling, but such situations are unlikely to occur in forests.
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(b) 14mrad
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(c) 26mrad
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(d) 50mrad

Figure 28: Fraction of energy truncated if the ray tree is limited against maximum number of interactions

for a range of fields of view with a fixed beam divergence of 14mrad in a Sitka spruce forest

4.1.3 Noise

All real instruments suffer from unwanted noise and this can cause errors in inverted parameters.

Any potential method must be able to cope with noise, even if it reduces their effectiveness in

unnoised cases and so noise must be included in the simulated data to see how the inversion

algorithms would perform in real life. Using a range of noise levels allows us to determine the

system parameters (laser power and detector efficiency) required to collect usable data. The ray

tracing process is computationally expensive, taking several hours per simulation, it would take a

prohibitive amount of computer resources to run a particular lidar waveform with a range of noise

levels applied during tracing. Therefore all simulations were run without noise, it being added just

before inversion.

A real lidar suffers from noise caused by photon statistics, background light and detector noise

and each of these must be accounted for. Photon statistics, also called “photon noise”, nphoton, is

caused by the random arrival rate of photons to the detector (Kovalev and Eichinger 2004). This

can be modelled as Gaussian with an amplitude proportional to the square root of the number

of photons arriving in a ranging bin, Nphoton, the more photons in a given bin the greater the
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magnitude of the noise but the smaller the relative error. This is a fundamental physical effect

and cannot be reduced.

The ray tracer returns an apparent reflectance value, the reflectance of the scene relative to

a white Lambertian surface perpendicular to the laser beam. For noise to be applied this must

be converted into an energy, which is done by assuming that a given number of signal photon

(without noise) are returned. The simulated reflectance is scaled to contain this many photons,

then noise applied. This is rescaled to apparent reflectance for any inversion algorithms. The

photon statistics noise is then;

nphoton = Nphoton

√

− ln(k) (27)

Where k is a random number between 0 and 1. This is called from a pseudo-random number

list in the C program, every subsequent call gives the next value in the list. The random number

can be “seeded” to start at any point in the list so that different sets of noise can be added to

the same waveform, giving a more general idea of the effect of noise and avoid skewed conclusions

from abnormal spikes.

The detector will record all light incident upon it, whether it comes from the laser, sun or

atmospheric scattering. All light from sources other than the laser will cause background noise.

The amount can be limited by filtering out all wavelengths other than the laser’s and keeping the

field of view around the same size as the laser beam divergence (although the closer the two are

in size the harder the system is to align), but it can never be completely removed. The energy

from background illumination reaching the detector, Pbackground, can be found by multiplying the

sun’s radiant flux at the laser wavelength Isun by the field of view solid angle Tfov, the cosine of

the solar zenith θs, atmospheric transmittance Tatm, filter bandwidth Λwidth and the length of a

range bin Lbin.

Pbackground = Isun.
T 2

fov

4
.At. cos θs.Tatm.Λwidth.Lbin (28)

Note that only the one way atmospheric transmission is needed as Isun takes the attenuation

from the sun to the ground into account. The number of background photons, nbackground can
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be found by scaling by Planck’s law (equation 29). This gives the number of background photons

reaching the detector per unit time, not all of which will be recorded.

Nphoton =
P

hν
(29)

Where P is the light’s power, h is Planck’s constant and ν is the frequency of electro-magnetic

radiation.

Background photons also arrive at a random rate and so the value is rescaled by a random

number and then the detector’s quantum efficiency, QE, to get measured photons;

Nbackground =
Pbackground

hν

√

− ln(k)QE (30)

The detector will suffer from shot noise, thermal noise, amplifier noise and the dark current.

For a well made detector (such as would be used in a satellite) these sources of noise should be

negligible compared to photon statistics and background light (Kovalev and Eichinger 2004). They

were not included in the simulations, slightly conservative overestimates being used for the other

sources.

ndetector ≪ nbackground (31)

The total noise is the root of the sum of the squares of the individual noise elements multiplied

by the noise excess factor, F .

ntotal =
√

(n2
photon + n2

background + n2
detector).F (32)

The values used in the above equations are;

Tatm = 0.8

θ = 0

At = π.0.52m2

Tfov = 200µradians

QE = 0.5
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Λwidth = 1nm

ndetector ≈ 0

F = 2

These were all over cautious estimates, erring on the side of increased noise. The solar intensity

at ground level is taken from Neckel and Labs (1984) and is shown in figure 29.
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Figure 29: Solar intensity at ground level used to calculate background noise

The noise here is based upon the number of signal photons. To convert this to the required laser

power it should be converted into an energy (with Planck’s law) then be scaled by the two way

atmospheric transmission, telescope size and detector efficiency. In ray tracing the finite number

of rays results in incomplete sampling, known as Monte-Carlo noise (Metropolis and Ulam 1949)

and is directly analogous to the photon noise described above. However, to use the number of rays

traced to control photon noise would require separate simulations for every noise level investigated.

Therefore it was decided to carry out a single noiseless (as near as possible) simulation for each

experiment, allowing a range of noise levels to be applied afterwards and saving a great deal of

computer time.

This thesis is not concerned with building an actual instrument, only in developing an algorithm

that can cope with data from a real instrument. Therefore no attempt will be made to suggest

necessary laser powers, only the minimum number of signal photons needed to ensure that noise

will not limit accuracy. All results will be an over cautious lower limit and it may be possible to

reduce this number with more accurate engineering modelling.
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Figure 30: Simulated waveform with different levels of noise applied

107



4.1.4 Laser pulse

All lasers emit a pulse with a finite length (Baltsavias 1999). An infinitely short pulse would require

an infinite intensity to contain any energy, similarly the longer the laser pulse the greater the

outgoing energy can be made for a given intensity, allowing very high energy lasers whilst staying

eye safe and below component damage thresholds. The recorded waveform will be blurred, or

convolved, by the outgoing pulse, complicating inversion. This blurring and subsequent extraction

will be discussed in detail in the next chapter but the effect must be included in the ray tracer to

allow testing of algorithms on fully realistic data.

The majority of pulses can be modelled as Gaussian (such as ICESat and LVIS (Hofton et al.

2000)). For a Gaussian pulse the intensity I at a range r is given by;

I(r) =
1

σ
√

2π
e
−(r−µ)2

2σ2 (33)

Where σ is the pulse length and µ is the range to the scattering object.

Some instruments have a slight forwards skew, a sharpening of the signal start and extension

of the tail (such as Echidna (Jupp et al. 2009)). This skew can be modelled as a log normal pulse,

the intensity of which is given by;

I(r) =
1

(r − µ)σ
√

2π
e
−(ln(r−µ))2

2σ2 (34)
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Figure 31: Example of a Gaussian and a log normal pulse

In the ray tracer the pulse shape is stored in an array, taking care to Nyquist sample it with

respect to the lidar’s range resolution. It can then be convolved with the measurements to produce

108



a pulsed return.

It would be computationally efficient to make a single trace of a scene then convolve with the

pulse just before analysis, in the same way as noise is applied. However this would not capture

all the physical processes. During the simulated recording the waveform is digitised into discrete

bins, the exact range within a bin that a ray originated from is not recorded. If the waveform

were convolved after recording would have to be assumed that, on average, all objects were in the

centre of the bin, giving perfect Gaussian returns. This will not always be the case, as illustrated

in figure 32. The digitisation of the waveform into discrete bins causes complications to inversion

(see section 5.9), particularly if some form of deconvolution is used.

For this reason the pulse shape was convolved with each return before digitisation. Every

separate pulse length and shape needed a new simulation, but realism was not compromised.

Figure 33 shows different pulse lengths applied to simulated lidar waveforms over the same forest.
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Figure 32: Example of quantisation of an off centre pulse

4.1.5 Wavefront

The energy is rarely constant across a laser beam (Wilson and Hawkes 1987), this distribution of

energy is known as the “laser wavefront”. Often the laser intensity is greater in the centre of the

beam than at the edge and the distribution can be modelled as a Gaussian. Figure 34 shows the

energy distribution of a flat and a Gaussian wavefront, both contain the same amount of energy.

From this it can be seen that with a Gaussian wavefront, objects in the centre will contribute far

more to the signal than objects towards the edge.

Applying this effect after tracing would require the spatial distribution of returns within a
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Figure 33: A waveform blurred by laser pulses of different durations
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footprint to be recorded, combined with multiple range bins and the beams of Echidna this would

be a prohibitive amount of information and so it must be applied during ray tracing. Like the

laser pulse length, this will require a separate trace for every different wavefront, but ensures that

the simulations are as realistic as possible.
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Figure 34: Illustration of laser wavefront

Simply weighting the returned intensity by its position within the laser footprint would mean

that rays towards the edge will be contributing less to the final signal than rays in the centre, but

require the same number of computations. A more efficient method is to vary the density of rays

with laser intensity, a form of importance sampling (Foley et al. 1992). Starat achieves this by

changing the number of rays per pixel in figure 18 to follow a Gaussian distribution. This will

result in a slightly quantised wavefront and so a correction factor was applied to the intensity from

each zenith range to give the correct energy distribution. Figure 35 shows the effect of a laser

wavefront on the weighting of returns.

4.1.6 Recording mode

It would be advantageous to be able to simulate instruments with different recording modes, such

as discrete return lidars (see section 3.5 for a description). The ray tracer records only the full

waveform, which is the signal that any detector type would receive (with some range quantisation).

This can be modified to a discrete return signal after tracing, so that one simulation can represent
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(a) Flat wavefront (b) Gaussian wavefront

Figure 35: Image of a 30m lidar footprint with a flat and Gaussian wavefront

any recording mode.

As this is performed after tracing a description will not be given here but in the analysis

chapter.

4.1.7 Additional variables

The ray tracer can record variables that would be impossible with a real instrument. These can

be used to explore the different physical processes contributing to the measured signal and help

evaluate sources of errors in inversion.

In addition to the intensity with range at different wavelengths, starat recorded the intensity

against order of scattering and the fraction of the field of view filled by each material. The

fractional area of each material gives the projected area and so the gap fraction, very useful when

evaluating Beer-Lambert based methods. Separating returns by scattering order allows us to test

inversion algorithms with and without multiple scattering, gradually developing them to cope with

more realistic situations. It was also used to perform the tests shown in section 4.1.1 from single

simulations.

Other variables could be returned by the ray tracer but unfortunately there was not enough

time to implement them. A very interesting metric would have been the mean free path of scattered

rays. This should be related to scattering element density and so clumping, it may even have been

possible to see different scales of clumping in a histogram plot. Of course a real instrument would

not be able to measure mean free path, but as will be shown later, it may be possible to relate it
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Figure 36: Material waveform from LVIS like starat simulations over a Sitka spruce forest

Figure 37: Material map of an Echidna scan
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to other metrics.

The angle of incidence of rays on objects (related to LAD) was not explicitly recorded, although

it could be determined for each material by combining the material information with known re-

flectances and multi-spectral intensity and so the phase function and visible surface area could be

extracted.

4.2 Creation of the forest models

To minimise assumptions and avoid effective parameters that may hide important physical pro-

cesses, fully geometric forest models were used. Certain assumptions were made to speed up

computation and reduce the data storage required. These were that all surfaces are perfectly

Lambertian and that all elements of a certain kind (whether leaf, wood or soil) have a single re-

flectance and transmittance spectrum. The assumption of Lambertian surfaces greatly speeds ray

tracing, without it a separate brdf would be needed for each element type, which would have to

be interrogated at each interaction. Such element brdf measurements are not readily available and

in the absence of such data Lambertian reflectance must be assumed, hoping that any deviation

will average out at the scale of measurements. It was not possible to do a direct assessment of the

impact of the assumption of Lambertian surfaces in this investigation due to the lack of element

brdf measurements and the time this would have taken to integrate into the ray tracer library.

The assumption of uniform spectra can easily be tested by examining the variance of spectra

measured for the same species at a variety of locations and samples. This will be covered in

section 4.2.2.

4.2.1 Geometry

The investigation focused on two species, Sitka spruce and birch, based upon measurements of

Thetford forest in the UK and Abisko in Sweden respectively. These cover both needle leaf and

broad leaf trees and so should give a picture of the broad behaviour of these main classes. Data

from other species were available, but due to the computational expense of forest creation and ray

tracing there was not enough time to simulate data for all the necessary experiments for more than

these two species.
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Individual Sitka spruce tree models were created with the Treegrow program (Disney et al.

2006). As these were not created specifically for this thesis but taken from earlier studies only very

brief details of the program’s operation will be given. Tree models are created based upon the age

and density of the forest in which they grow. Growth rules are used to describe the formation and

death of branches, then needle shoots are cloned to the relevant locations afterwards. This is a

stochastic process, so a random number seed can be adjusted to give different trees of the same

age class and growth conditions. For this thesis six different aged trees were used, 5, 9, 12, 20, 30

and 40 years old with four or five different trees at each age class.

Figure 38 shows one of each of the six different aged Sitka spruce trees; that they appear con-

vincing gives us confidence in their geometry. A more rigorous evaluation of the precise geometry

would be tedious and time consuming (Bréda 2003), so was not attempted. Simulated remote

sensing signals were validated against real data and the two found to agree (Disney et al. 2006),

although this does not rule out an error in either the ray tracer or the forest model, only the

combination of the two.

Figure 38: Ray traced images of six different aged Sitka spruce tree models, taken from Disney at el

(2006)

Plant growth models such as Treegrow require a lot of effort to create, being based upon detailed

structural measurements for plants at a range of ages and growing conditions and so few have been

written for academic studies. The computer graphics community is a much bigger user of forest
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models and programs are commercially available. One such model is Onyx (Onyx Computing Inc

2009), this is a parametric model, using a small set of parameters to create tree like structures

in much the same was as L-systems (Lindenmeyer 1968a). Some manual tweaking is needed to

ensure that the trees match those at the field site and Onyx includes a graphical display to allow

easy comparison to photographs. The creation of each tree is a little more labour intensive than

with Treegrow and requires supervision but the parametric approach is more easily adaptable to

a wide range of species than growth rules. For this reason all other trees used in this thesis were

created with Onyx, using photographs and some basic measurements from particular field sites as

guides.

As part of the Abacus (Disney et al. 2009) experiment measurements were made of Arctic

birch in Abisko in Sweden. From a set of basic dimensions (dbh, tree height, crown extent and

photographs) three different birch trees were grown (one is shown in figure 39).

Figure 39: Ray traced images of a single birch tree model created with Onyx compared to a photograph

from the field site

These trees were used to create forests of different densities on different ground slopes. The

density was set by defining the number of trees per 30m by 30m plot (to ease parametrising from

field data); trees were cloned at random locations within a sub box, which formed a bounding

box in the ray tracer. Trees were rotated and shifted downwards by a random amount to prevent

unnaturally regular forests. A minimum separation was enforced to prevent trees growing on top

of one another, although they were allowed to intersect to allow very dense canopies.

For Sitka spruce, combinations of different aged trees were used to represent a range of forest

types, illustrated in figure 40. For uniform stands all trees were of the same age (figures 40(a),
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40(b) and 40(c)) Bimodal canopies were created by using an equal proportion of the oldest and

youngest trees (figure 40(d)) and mixed forests were created with an equal proportion of all age

classes (figure 40(e)). In the mixed and bimodal forests the youngest trees are short enough to

represent understory shrubs. Only equal proportions were used because at the scale of a lidar

measurement, only a few trees will be visible, so samples from different locations in the same forest

will give very different results.

The ground was modelled as a flat plane and topography was included by tilting this by a fixed

angle (figures 40(f) and 40(g)). This will not model all topographic effects, but at the scale of lidar

measurements (no more than 100m diameter) a sloped plane will suffice.

(a) Uniform mature (b) Uniform young (c) Dense uniform mature

(d) Biomdal (e) Mixed age (f) Uniform mature on a

slope

(g) Mixed age on a slope

Figure 40: Illustration of the range of forest models used

During July 2009 field data were collected in the Sierra Nevada mountains during a campaign

led by A. Strahler and R. Dubayah. This included the principal dimensions and photographs of
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trees at a few specific plots and at around the same time measurements were made with both

the terrestrial Echidna and airborne LVIS lidars so that simulated lidar signals can be directly

compared to real data.

The dimensions measured were total height, height of the start of live crown above ground,

crown width along and across slope, dbh and position relative to the plot centre; the average

branch spacing and angles were also noted. Detailed measurements were made of needle shoots,

including needle dimension along three axes, needle angles and spiralling patterns around twigs.

This information was used to create a tree’s woody architecture in Onyx.

Onyx outputs needles as triangular meshed surfaces, with no cloning or bounding boxes at all.

This allows a wide variety of shapes but makes files large (almost 2Gbytes for a typical 30m tall

red fir) and makes ray tracing prohibitively slow. As needle shoots were found to be so regular

it was decided to replace the triangular meshes with cloned shoots formed from ellipsoids, greatly

reducing the size of files and speeding ray tracing.

Growing and filtering trees with Onyx was still not a fast process, requiring several days of

computer time (all unsupervised apart from the initial twenty minutes) per tree. For this reason

only a small number of trees could be grown, not enough for a full stand.

4.2.2 Spectra

The main focus of this thesis was the measurement of forest structure and so whilst element spectra

have an effect upon measured signals, only the relative reflectance of the different materials in a

few broad bands are of interest. Separate simulations would be required for each set of spectra,

vastly increasing computer time and so a single general spectrum was chosen for each element;

leaf, bark and soil.

The Prospect model (Jacquemoud and Baret 1990) was used to create a leaf spectrum between

400nm and 2,500nm. Within Prospect there are a number of parameters that can be adjusted to

recreate the spectrum of any species, these include leaf thickness, chlorophyll content and nitrogen

content. The LOPEX spectral library (Hosgood et al. 1994) was used to choose suitable parameters

for Prospect. Figure 41 shows that the resulting spectrum agrees fairly well with the average of

the LOPEX database, particularly in the near infra red. The model gives slightly higher results
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than the database in the visible, but still within two standard deviations.
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Figure 41: Comparison of Ponderosa pine reflectance spectrum from LOPEX to Prospect spectrum. Error

bars show one standard deviation

The soil spectrum came from the model of Price (1990). Figure 42 shows a comparison of this

spectrum to elements found on the floor of the Sierra Nevada forests in California. Whilst the field

data only extended between 400nm and 1100nm, it can be seen that the Price spectrum roughly

matches, though it is a little on the dark side. This should not be an issue as the Sierra Nevada

soils are particularly bright. More of a problem would be short vegetation covering the ground,

such as moss. This has a very different spectrum from soil and leaf litter and forests with mossy

floors may give very different remote sensing signals than those with soil or leaf litter floors.

It was decided to use only soil spectra for the floor, but the methods should be tested over

other floor types for generarality.

The bark spectrum came from the LOPEX database (Hosgood et al. 1994) and comparison

with field data showed it to be slightly brighter but that it followed the same shape.

During the Sierra Nevada field campaign many measurements of element spectra were made

for a range of species using an LI-1800 (LI-COR 1988) with repeat measurements for each species.

These spectra only extended between 400nm and 1,100nm so could not be used on their own but

could be used to assess the variance of spectra within species in this region. Figure 44 shows the

spread of leaf reflectance values for the five samples each of the two most measured species during

the campaign, red and white fir. The samples were taken from a number of sites and ages of trees.
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Figure 42: Comparison of soil spectrum from Price (1990) with data collected in the Sierra Nevada

Due to the difficulty in measuring the spectrum of a needle the measurements were made in a

variety of ways. Some used many needles pressed together in multiple layers to ensure there were no

gaps. This is the standard technique for fir needles (Daughtry et al. 1989) and will underestimate

transmittance whilst possibly slightly overestimating reflectance. Other samples used a single

layer of needles taped together as tightly as possible, trying to prevent any gaps but due to the

curved edges this is impossible and transmission may be overestimated whilst reflectance might be

underestimated (figure 43 shows sugar pine needles arranged in one layer for spectra measurement).

Thus much of the variance shown may be due to the difference in measurement technique rather

than the element spectra. There was not sufficient time to collect the many tens of samples needed

to explore the exact cause of the variance, there being many other measurements that needed

taking in the limited time available.

Even with the variations in measurement technique the variance shown in figure 44 is low (0.03

for white fir at 1,064nm for a mean reflectance of 0.66 and 0.05 for red fir for a mean reflectance of

0.70). Of course in the visible region, with its lower reflectance, the relative variance becomes much

more significant and care should be taken when choosing wavelengths for a final instrument. This

limited set of measurements suggest that it is fair to assume that leaf reflectance is reasonably

constant within a species, certainly in the near infra-red where most lidars operate. The trees

were predominantly coniferous and these showed brighter reflectance than the average LOPEX

values, around the values of the Prospect spectrum, therefore it was decided that the slightly
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Figure 43: Sugar pine needles prepared for spectra measurement

higher spectrum was acceptable.
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Figure 44: Spectra for needles over five samples per species from Sierra Nevada data. Error bars show

one standard deviation

The spectra of eight pieces of sequoia bark and wood and five pieces of white fir bark are shown

in figure 45. Bark shows much more variation within species than leaves, particularly sequoia

which included both healthy and burnt bark. Burning reduced the reflectance to almost zero,

causing the enormous variance in figure 45(b). The changes in bark reflectance caused by fire has

been cited as a source of error in inversion from terrestrial lidar data (Jupp et al. 2009) and there

seems to be little that can be done to correct for it other than manually noting burnt areas. The

white fir samples in figure 45(a) did not include any burnt bark but still shows significant variance

between samples. This variance seems to be mainly between different aged trees. On young trees

the bark has a leaf like spectrum with a distinct red edge whereas older bark is much woodier and

does not have this. For white fir at 1,064nm, the young trees’ bark has a reflectance around 0.7
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whilst older bark is around 0.4. Therefore the assumption of constant bark reflectance may not be

appropriate, particularly between young and old trees.
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Figure 45: Spectra for bark from Sierra Nevada data. Error bars show one standard deviation

The LOPEX database (Hosgood et al. 1994) is far more comprehensive and consistently mea-

sured than the data from the Sierra Nevada campaign, although it is not possible to determine

the within species variation from it. It does give a good idea of the variation between species

and figure 46 shows that this is similar to that found from the Sierra Nevada data within species,

having a mean reflectance at 1,064nm of 0.47 with a standard deviation of 0.10 for sixty species.
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Figure 46: Spectra for leaves in the Lopex data. Error bars show one standard deviation.

Simulations were run with a wide range of wavelengths so that whilst the spectra used may not

be entirely realistic, different wavelengths could be used that have more realistic reflectances for

that element and so the narrow range of spectra used should not limit the accuracy of any results,

only the certainty in the choice of particular wavelengths will suffer. There may be an issue with
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forests that include a mixture of old and young bark.

The final spectra used for leaf, bark and soil for all forests are shown in figure 47. Figures 48

and 49 show colour ray traced images of the forests using these spectra. Whilst the spectrum used

are not comprehensive they are sufficiently realistic to explore and understand lidar measurements.

The soft focus and speckle noise in figures 48 and 49 appears to be an artifact introduced during

the conversion from hips (the ray tracer’s native image format) to an enhanced post script for

display in the thesis. The original images (and so simulated data) do not suffer from such noise.
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Figure 47: Spectra used for leaf, soil and bark

Figure 48: Ray traced true colour image of a Sitka spruce forest model
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Figure 49: Ray traced true colour image of a birch forest model

4.3 Simulator conclusions

This chapter has introduced the simulation tools and models that will be used to investigate the

performance of a range of lidar systems over different forest scenes. The ray tracer developed is

capable of simulating all current airborne, spaceborne and terrestrial lidar systems capable of forest

measurement as well as those likely to become available over the next few years. Experiments were

carried out to determine the most computationally efficient parameters to use without limiting

the simulation’s accuracy, maximising the number of simulations that can be run within the time

available.

The next two chapters will concentrate on developing methods for inverting biophysical param-

eters from the lidar signals simulated by the tools presented here.
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Chapter 5: Above Canopy Lidar

As discussed in chapter 2.4, satellites are needed for frequent and consistent global measurements.

Both passive optical (Defries et al. 2000, Boudreau et al. 2008) and radar signals saturate over

moderately dense forests (Waring et al. 1995a) or are not robustly related to biophysical parameters

(Sexton et al. 2009). Spaceborne lidar offers the potential to measure forests with very high canopy

covers (Hofton et al. 2002) as well as directly measuring parameters impossible with other methods

(Dubayah and Drake 2000). Such non-saturating and physically based measurements are a great

advantage for global modelling.

An accurate and robust method for determining forest parameters from above canopy lidar

over all terrain is needed. This chapter will outline the current methods for extracting tree height

from lidar and use the simulator described in the previous chapter to assess the impact of different

system parameters and forest characteristics, ultimately suggesting lidar instruments and inversion

techniques to improve global coverage, accuracy and precision.

5.1 Forest measurement

To reiterate, to extract any forest biophysical parameters with lidar, the returns of the canopy and

ground must be separable and give accurate relative positions of the tree top and ground. Once

the ground position and canopy top are known the tree height can be calculated. Further metrics

can be derived, such as the canopy cover from the fraction of energy returned from ground and

canopy and the height of median energy above the ground (HOME, (Lefsky et al. 2007)). These

can be related to biomass and LAI through empirical relationships (Lefsky et al. 1999) or else

used as physical values if the model can cope with them (Hurtt et al. 2004). This separation of

canopy and ground is illustrated in figure 10. Various factors, such as noise and forest density

will complicate the inversion process and must be dealt with by any practical inversion algorithm.

In particular previous studies have struggled with topography (section 3.5.3) and this has not yet

been dealt with in a physical and globally applicable way.
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5.1.1 Tree Top

The tree height extraction method used is based upon that of Hofton et al. (2000). For this a

threshold is calculated from the statistics of a known empty portion of waveform (all signal over

150m above the ground). This investigation used the mean background level plus four standard

deviations. It should be possible to estimate a point over 150m above ground level with a global

DEM such as SRTM (Werner 2000) (SAR’s saturation in forests will tend to overestimate ground

height and so there is little likelihood of any lidar signal being treated as background noise in

error), or 150m above the brightest return.

Hofton et al. (2000) took the point at which the cumulative energy above the threshold is greater

than or equal to one percent of the total energy above that threshold as the signal start. Using the

cumulative energy is more robust to extreme noise values than the instantaneous radiance, leading

to far fewer premature triggerings and resultant enormous overestimates of tree height. However,

the energy threshold must be set high enough to avoid any chance of premature triggering and so

will always miss some portion of the signal. This contributes to the “well known underestimate

of tree height by lidar”, of the order of 1m (Morsdorf et al. 2008a) which would bias any global

assimilation scheme.

It should be possible to avoid this bias by using the full waveform information. Taking the bin

in which the signal rises above the threshold as a starting point (it is certain that the signal has

started by that range, but not by how much it has been overshot) tracking back along the raw

signal until the instantaneous value is equal to or lower than the mean noise value provides a point

that is as equally likely to be an underestimate as an overestimate, giving an unbiased result. This

would not be possible with discrete return lidar as the necessary information is not recorded (see

section 3.5).

As can be seen from figure 51, the threshold alone gave a roughly normal distribution of errors

with a mean bias of 1m. Tracking this back to the mean noise level gave a similar spread of errors

but no mean bias and should therefore lead to better tree height estimates for modelling. The

higher the background noise level the greater the advantage of tracking back through the noise.

Once the signal start has been determined, the background noise is removed by subtracting the
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Figure 50: Illustration of noise tracking
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threshold or the maximum recorded noise value, whichever is greater.

5.1.2 Ground detection

The traditional method to distinguish ground returns from canopy returns is to fit Gaussians to

the measured signal (Hofton et al. 2000). These Gaussians can be taken as significant features,

allowing information extraction (Wagner et al. 2006). Previously the ground was taken as the

brightest of the last two feature (Harding and Carabajal 2005) whilst some authors have simply

classified land type upon the number of features (Reitberger et al. 2008), forgoing quantitative

analysis.

Gaussian fitting was implemented, trying both the Levenberg-Marquardt and Powell’s methods

of non-linear inversion (Press et al. 1994). Figure 52 shows a successful fitting. However this was

found to be an unstable process, failing for many cases and often for the same waveform with

different sets of noise (of the same magnitude with different random number seeds). This may

have been a weakness of our implementation, although the literature reports a similar failure rate

(Hofton et al. 2002). Instead of fitting functions to the signal a simpler method of smoothing and

searching for turning points was used.

The signal was smoothed by convolution with a Gaussian (chosen for its smooth derivatives).

The width of the Gaussian is determined by sensor range resolution (length scale of noise features)

and the separation of ground and canopy bottom. It must be narrow enough to leave a minimum

between the ground and canopy whilst eliminating any turning points caused by noise. After

examining the simulated waveforms a width of 3m was chosen. This simplified method was found

to be as accurate as function fitting whilst being far more robust to noise (shown in figure 53).

Features were defined by the location of a maxima and the energy contained between minima.

The ground position was taken as the last feature containing over (an arbitrary) 5% of the total

energy.

5.2 Factors affecting inversion

The ability of successful inversions of biophysical parameters and accuracy of those estimates will

depend upon the characteristics of the lidar system and the forest being measured. The rest of
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(b) Tree height accuracy against cover

Figure 52: Original waveform; set of Gaussians fitted by Levenberg-Marquardt and height errors against

signal level showing instability
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Figure 53: Ground position detection by smoothing
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this chapter will explore the dependence of tree height accuracy (and so the ability to distinguish

canopy from ground returns) on all lidar system parameters and forest characteristics. They shall

be presented in their order of dependence; for example minimum range resolution depends upon

the type of detector and the effect of canopy shape cannot be determined until these two system

characteristics have been set.

5.2.1 Forest Characteristics

Any method will have to cope with a large range of canopy covers and tree heights (more par-

ticularly the separation between the bottom of the canopy and ground). Figure 54 shows the

returned waveforms for Sitka spruce and birch forests with a range of canopy covers (tree density),

heights (tree age) and foliage profiles (age heterogeneity) to illustrate the information available to

algorithms. For all cases the ground is at a range of 1,200m.

The forest properties likely to affect inversion accuracy are;

Canopy cover

Tree height

Vertical distribution

Underlying topography

The hypothesised and observed affect of each of these forest characteristics on inversion accuracy

will be presented in the following sections.

5.2.2 System Characteristics

The ability of a lidar system to separate canopy and ground returns depends very much on its

characteristics. Parameters of interest are;

Range resolution

Signal to noise (including wavelength)

Footprint size

Pulse duration
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(e) Sitka spruce, 21.1m tall with 61.3% canopy
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Figure 54: Range of waveforms for Sitka spruce and birch forests with different tree densities and heights

at 1,064nm

131



Laser wavefront

Recording method

Table 1 (in section 3.5.1) shows a list of parameters of recent and current lidar systems used

for forest measurement. Inversion accuracy is controlled by the lidar system parameters and forest

characteristics. These interact so that certain system characteristics cause inversion accuracy to

be more sensitive to some forest parameters.

Simulated data was created using the Monte-Carlo ray tracer and forest models described in

chapter 3.6. Unless otherwise stated the characteristics of LVIS (see table 1) were used; other

system characteristics were used but these cases will be made clear. These simulated datasets were

used to explore the effect of each parameter, both forest and instrument, on inversion accuracy.

Tree height was used as a measure of inversion accuracy for each set of characteristics. This requires

the ground return to be separated from canopy returns, the first step for any parameter inversion

and so should be indicative of the accuracy achievable for other parameters.

5.3 Canopy cover

Canopy cover will have a very direct effect upon inversion. The higher the cover the less of

the ground that will be visible and so the smaller the ground signal. This can become lost in

background noise and multiple scattering echoes.

From figure 54 it can be seen that increasing canopy cover leads to weaker ground returns.

The above inversion method was applied to the full range of Sitka spruce forest models available.

Figure 55 shows that for very dense forests (> 98% cover) the ground returns can be lost in

background noise, preventing accurate height estimation. Higher noise levels will obviously lower

the maximum invertible coverage, which will be covered in section 5.5. The relationship between

noise and the “10,000 signal photons” reported in figure 55 was explained in section 4.1.3.

Worryingly, it has been reported that such high canopy covers are not unheard of, particularly

in tropical forests (Hofton et al. 2002). A measurement is still possible but some saturation and

bias must be expected. For forests with between 30% and 70% canopy cover, figure 55 shows
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Figure 55: Inverted tree height accuracy against canopy cover for fifteen sets of noise applied to 344

separate waveforms with 10,000 signal photons

some inversions with larger errors than the norm. These are mixed aged forests, such as that in

figures 40(e) and 54(e) and will be covered in more detail in section 5.10.7.

5.4 Tree height

Tree height controls the separation between the ground and canopy and so the ease of distinguishing

these two features. Figure 56 shows tree height error against tree height separated by canopy cover.

It can be seen that the average error increased with tree height, which seems the wrong way around.

However that is only because taller, older trees tend to have higher canopy covers (on the scale of

a 30m footprint) and that the increased error is entirely due to very high (>95%) canopy cover.

The short forest models used did not have high enough canopy covers to completely obscure the

ground. Whilst there was no clear separation between the ground and canopy, the ground return’s

intensity was always great enough to have a maximum centred on it. Estimates of canopy cover

(and so LAI) would be more complicated in this case, but the first step of locating the features

is possible. Therefore, at least on flat ground (slopes will be dealt with in section 5.11), canopy

cover and foliage heterogeneity can have bigger impacts on inversion accuracy than tree height.
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Figure 56: Inverted tree height accuracy against tree height separated by canopy cover, for fifteen sets of

noise applied to 344 separate waveforms with 10,000 signal photons

5.5 Noise Level

Noise adds spurious features through background signal and distorts the shape of the waveform.

Obviously the greater the noise the less accurate the inversion will be. Weak real signals will be lost

in background noise and features can be moved (illustrated in figure 30). The effect of noise level

on tree height accuracy was explored by adding different sets of noise (using the method described

in section 4.1.3). To get an overall picture of the dependency of accuracy on noise, rather than

have some waveforms affected by unusually large background spikes (from random numbers) each

simulated waveform had different sets of the same level of noise added by changing the random

number seed. This gave fifteen measured waveforms from each simulated waveform.

Each of these measured waveforms with less than 97% canopy cover (as these inversions would

fail, even without noise) were inverted with the above simplified method. The mean is plotted in

figure 57, the error bars showing one standard deviation.

The larger errors at low signal to noise ratios (SNR) are apparent. Interestingly, as well as

increased error, lower SNRs had a negative bias. Closer investigation reveals that this was entirely

due to signal start errors, the ground being relatively unaffected by noise. Figure 58 illustrates the

signal start being lost in high background noise.

For lower noise levels, this bias disappeared with 68% of the inversions lying within 20cm of the

truth. The majority of inversions (99%) were within 60cm of the truth; this compares favourably
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Figure 57: Mean tree height error and standard deviation against noise level for 1,000 inversions of

waveforms over Scots pine forests with covers less than 97%
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with field studies. Means et al. (1999) reported an RMSE of 3.8m on flat ground whilst Hyde

et al. (2005) reported errors of over 8m on sloping terrain, though their RMSEs had the extra

complication of matching ground and lidar measurement locations. The improvement of accuracy

with noise seems to flatten off at around 5,000 signal photons for the inversion method used,

therefore an instrument should record at least that number of photons.

For safety, a signal level of 10,000 signal photons was chosen. The number of photons recorded

depends upon the outgoing laser power, atmospheric transmission and surface reflectance at that

wavelength, detector telescope, quantum efficiency and flying altitude. It has been stated by

industry (Foster 2008) that this is easily achievable from space with a 1m telescope and could be

mounted on a relatively small satellite.

5.6 Detector Type

To measure a forest with lidar, the ground and canopy returns must be clearly distinguishable. The

detector type could potentially have an impact upon a lidar’s capability to do this. As discussed

in chapter 2.4, full waveform lidar is preferable for measuring canopy cover, foliage profile and

ensure accurate tree heights due to the diffuse nature (in range) of the surface. Discrete return

systems have been used in the past with some success (Coops et al. 2006). Certain discrete

detector systems can be made far more compact and energy efficient than traditional waveform

detectors; this has an obvious appeal for satellites and if they could give accurate results would

be the preferred instrument. They rely on multiple footprints in a small area to sample both the

ground and canopy. This requires scanning and such a system has not been proposed for space

yet. For the moment spaceborne lidars look set to be large footprint.

Discrete systems are triggered by a return above an intensity threshold, a range is then recorded

(sometimes with the intensity of the triggering return). Discrete return systems can only record a

limited number of returns (typically five though some up to twenty (Lim et al. 2003)) and in dense

canopies these can all come from the upper layers. This greatly limits the range and accuracy of

biophysical parameters that can be inverted.

Geiger mode avalanche photo diodes (APDs) have been suggested for canopy lidar (Harding
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et al. 2008). These are light sensitive n and p type semi-conductor junctions (Tipler 1999, page

1225) with a large bias applied, above the break down voltage, (Zappa et al. 1996). Absorption of a

single photon pushes the voltage over the break down point, causing an avalanche of electrons over

the junction (measured as a current). There is then a long dead time whilst the bias is restored.

Any photons hitting the detector between the initial avalanche and the resetting are lost without

record. Currently this dead time is 45ns-50ns (Zappa et al. 2002) corresponding to a distance of

6.75m-7.5m; an unacceptable blank space for tree measurement. This figure will be reduced with

time and single Geiger mode APD measurement may become feasible in the future but for the

moment a single Geiger mode APD element can only measure the first return. They would allow

ranging systems with very low power sources of illumination, since only a very few photons need

to be returned. Renker (2006) gives a comprehensive history for interested readers.

Such a system is very sensitive to noise, any stray photons will set it off, giving wildly inaccurate

ranges (Albota et al. 2002). The probability of stray light can be reduced with range gates and

averaging repeat readings.

One idea, suggested by Dr. Mike Foster of Lidar Technologies ltd. (Foster, 2007 pers comms),

would be to carefully tune the detector sensitivity so that triggerings are caused by returns from

a representative cross section of the target; thereby allowing inversion. Too low a threshold will

over sample the leading edge (including spurious signals from noise) whilst too high a threshold

will miss large parts of the signal. Either of these cases will bias or prevent accurate inversion.

A sample waveform was converted into Geiger mode APD returns by examining the return

strength in each bin, from nearest to farthest. The first bin in which the waveform radiance was

greater than the sensitivity threshold (set as a fraction of the maximum intensity) multiplied by a

random number (between zero and one, a new one generated for each bin) was taken as the trigger

point. A count of one photon was added to that bin in the resultant waveform; the signal a single

Geiger mode APD would record.

To sample the full waveform and obtain a measure of radiance, repeat readings have to be

made. These repeat measurements can either be done with multiple pulses (which would require

accurate pointing to keep a satellite looking at exactly the same ground spot), by an array of

137



elements or by a mixture of the two. For repeat measurements many windows were passed across

the same waveform with different random numbers seeds. The results were counted up to create a

pseudo-waveform (photon count rather than intensity in each bin).

From figure 59 it can be seen that around four hundred repeat readings would be needed to

get a useful pseudo-waveform with realistic noise levels and the ideal threshold. Here a useful

waveform is one in which the ground and canopy features are distinguishable with roughly the

right cross sections. This is a huge number of APD repeat readings, and that is using the ideal

detector sensitivity. Figure 60 shows that the pseudo-waveforms were reasonably tolerant to the

trigger threshold and could be expected to work over a wide range of land covers.

5.6.1 Detector conclusions

The required number of repeat readings alone negate any size, weight and power savings gained

from using Geiger mode APDs. The sensitivity to the trigger threshold is not too much of an

issue, especially if the land class (and predicted reflectances) are known beforehand, though it

is a potential extra source of error. Geiger mode avalanche photo-diodes are therefore felt to

be unsuitable for structural forest measurements until the dead times can be reduced to sub-

nanosecond intervals.

For the rest of this work the use of true, full waveform detectors will be assumed. Whether

they be photo-multipliers or avalanche photo-diodes in non-Geiger mode is irrelevant (neither have

dead times); the measurement will be the same, given the same number of signal photons. It may

make a difference when scaling from signal photons to required laser power through the detector

efficiency but that is beyond the scope of this work.

5.7 Range resolution

Range resolution is critical for forest measurement. It directly controls the amount of information

available for any processing as well as limiting the precision. Without achieving super resolution

through complex deconvolution or fitting techniques, the uncertainty in tree height cannot be less

than the range resolution: It is not known where within a bin a feature falls, so the ground and

tree tops have a half bin uncertainty each. If the bin size is greater than the separation between
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Figure 59: Pseudo-waveforms from aggregating Geiger mode APD samples with a threshold of 0.36 of the

maximum intensity
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Figure 60: Aggregated Geiger mode pseudo-waveforms’ sensitivity to trigger threshold. 451 samples were

made from the original waveform shown in figure 59(a)
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the ground and crown, extraction is not possible (except for tree height if the ground return is

brighter than the canopy, as in figure 54(e)). To ensure this condition is met the gap should be

Nyquist sampled; ie. the bin length should be no more than half the distance between the ground

and bottom of canopy. Therefore 1m-2m should be taken as the upper limit of usable resolutions

and nothing coarser will be investigated.

Figure 61 shows the mean error against range resolution for all Sitka spruce forests over flat

ground, error bars show one standard deviation. Trees had heights of between 3m and 22m (see

figure 56). One hundred waveforms were used, each had different sets of noise (10,000 signal

photons) added to create twenty measured waveforms per simulation. Only canopies with less

than 97% cover were inverted, as these would fail even in the absence of noise.
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Figure 61: Inverted tree height accuracy against range resolution

The strong dependence of error on range resolution is apparent. For the inversion method used

a range resolution of less than 1m is needed. The finer the resolution the better. This corresponds

to a digitiser speed of 6.7ns or better. The 0.5ns sampling used by ICESat, corresponding to 15cm

resolution (Harding and Carabajal 2005), would be ideal and leave little bias. Simulations will use

this digitiser speed for the rest of this chapter.

5.8 Footprint size

The footprint size will have no bearing on the signal processing aspect of canopy measurement;

it affects what is measured rather than how accurately it is measured. If only part of a tree is
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captured it will be possible to determine the height of that part accurately, whether or not this is

the tree top is irrelevant to the extraction algorithm. Of course for ecological models it is preferable

to have measurements of whole trees.

The consensus is that the area covered should be sufficiently large to contain at least one tree

top. Current NASA studies seem to favour a single footprint of around 10m-30m diameter (Hyde

et al. 2005, Zimble et al. 2003), perhaps to avoid scanning from space. The area covered need

not be measured in a single footprint. Several studies have aggregated many small footprints

(Reitberger et al. 2008), taking the highest returns as tree tops and the lowest as ground returns.

As yet there have been no plans for a multiple, small footprint, full waveform spaceborne lidar,

although Harding et al. (2008) has proposed a pseudo-waveform pushbroom system (using Geiger

mode APDs, see section 5.6). An array of small full waveform footprints may be too much of an

engineering challenge; requiring either an array of detectors or very accurate laser pointing, but

such technological speculation would be outside the scope of this work.

The larger the area of a single footprint the greater the topographic blurring, as shown in

figure 104 and covered in more detail in section 5.11. For a 60m footprint (such as ICESat’s GLAS

(Zwally et al. 2002)) the blurring will be twice that of a 30m (a 10o slope would cause the blurring

shown in figure 104(c)), therefore an array of small footprints is attractive.

For the rest of this investigation a single footprint of 30m diameter will be used unless stated

otherwise. This raises problems with topographic blurring which will be discussed in detail in

section 5.11.

5.8.1 Laser wavefront

With real lasers the energy is not usually uniformly spread across the illuminated spot on the

ground (Wilson and Hawkes 1987, page 96). Often it is stronger in the centre than the edges. This

brightness distribution is known as the wavefront and is sometimes modelled as a sinc function or

(if apodised) a Gaussian, illustrated in figure 34 in section 4.1.5. The return signal will be weighted

by this intensity distribution so that if the tallest tree within a footprint is at the edge it will be

weakly illuminated and so contribute less to the waveform. This means the signal start is more

likely to be lost in noise, leading to larger errors. For a given laser power the converse will be true;
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if the tallest tree is in the centre of a footprint it will be strongly illuminated (relatively) and so

more likely to be detected above noise.
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Figure 62: Tree height error for what the lidar could see against canopy cover for a 30m footprint with a

Gaussian wavefront

The wavefront can be thought of as reducing the size of the footprint. The effective size and

whether trees at the edge are detected depends on the noise level. As illustrated in figure 63, noise

truncates the edges of the wavefront and as long as the noise is greater than 1
e2 of the maximum

returned intensity, the effective footprint of a Gaussian wavefront will be less than that of a flat

wavefront. The flatter the wavefront, the sharper the edges and so the smaller the noise dependence

of the footprint size.
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Figure 63: Illustration of the noise dependence of the effective footprint size

The inversions were repeated for all Sitka spruce forests using a Gaussian wavefront. Figure 62
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shows that from a signal processing point of view the inversion was not complicated by having a

Gaussian wavefront; the errors being similar to the flat wavefront case in figure 55. For these two

graphs the tree height error was calculated as the difference between the inverted tree height and

the distance from the first recorded interaction and the mean ground return from the ray tracer’s

material waveform. This is the “apparent true tree height”; the best that could be inverted from

the recorded data and takes no account of what was within the footprint but not recorded due to

weak illumination.

Figure 64(a) shows the difference between the inverted tree height and the height of the tallest

tree whose base fell within the footprint (“absolute error”). The tallest tree’s top will not neces-

sarily have been recorded in the waveform and so the error goes some way to taking into account

the difficulty in relating real data to ground measurements (Hyde et al. 2005). The errors are

different to those in figure 62, however they are not noticeably different to the errors in the flat

beam wavefront case (figure 64(b)) and so the difference is more likely to be due to the mismatch of

measured tree tops and trees whose bases lie within the footprint rather than the wavefront shape.

Therefore from a signal processing point of view the beam wavefront makes little difference.
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(a) Gaussian wavefront
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(b) Flat wavefront

Figure 64: Tree height error calculated from what was within the laser footprint against canopy cover for

a 30m footprint with a Gaussian wavefront

A method for estimating the footprint size above noise is beyond the scope of this thesis,

other than to suggest that an instrument have as flat, well defined a laser footprint as possible.

A perfectly flat wavefront will be used for the rest of the investigation, noting that the effective

footprint size may vary if a non-flat wavefront is used.
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5.9 Pulse length

All laser pulses have a finite duration (Baltsavias 1999) otherwise an infinite amount of power

(albeit for an infinitely short period) would be required to transmit any energy. The longer the

pulse the more energy (integral of the pulse) can be carried with a smaller peak intensity (illustrated

in figure 65). This allows high energies whilst maintaining eye safety and staying below damage

thresholds of optical components (Kovalev and Eichinger 2004, page 99). If the pulse duration is

longer than the waveform digitisation speed some blurring will occur. If this blurring exceeds the

separation between the ground and canopy, parameter inversion can be prevented. Table 1 (in

section 3.5.1) shows that all canopy lidar instruments suffer from some blurring.

It is sometimes claimed that the pulse length is the limiting factor of range resolution (Baltsavias

1999). This is not necessarily the case; deconvolution has been used successfully in many fields

to remove blurring effects, whether they be optical defects in telescopes (White 1994), to increase

the spectral resolution of radiometers (Kauppinen and Partanen 2001, page 205) and to increase

the resolution of lidar systems (Gurdev et al. 1993) and should, ideally, allow waveforms to be

resolved down to the bin length, regardless of the laser pulse.

All detectors also have an impulse response function (Hofton et al. 2000) which describes how

quickly the detector can respond to incoming light. This will act to blur the measured waveform,

therefore the blurring function is the convolution of the pulse shape with the impulse response

function. For this investigation only the laser pulse duration will be referred to, though it can be

thought of as the total blurring function from the laser and detector.

For a typical waveform lidar such as ICESat the pulse is described by a Gaussian (sometimes

slightly skewed forwards) with a width of 11.8ns (full width half maximum of 7ns (Harding and

Carabajal 2005)). Here pulse width is defined as the point at which the intensity falls to 1/e2 of

the peak intensity rather than the half width full maximum normally presented. This contains

93.9% of the total pulse energy as opposed to 65.4% within the full width half maximum.

11.8ns corresponds to a blurring of 1.78m. This hides much of the heterogeneity of the return

signal but is not so extreme as to prevent inversion, except for very short canopies. The proposed

A-scope instrument, optimised for measurement of atmospheric CO2 by differential absorption,
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Figure 65: Illustration of the relationship between pulse length, energy and peak intensity for two pulses

with the same total energies but different durations.

will have a pulse length of between 20ns and 100ns, corresponding to a blurring of between 3m

and 15m. The 100ns pulse, as provided by a fibre laser, is favoured by Davies et al. (2008) as it

eases coupling to their hollow waveguide technology (Jenkins et al. 1992). Such a pulse length will

all but obliterate forest details from a waveform.

Figure 66 shows effect of different pulse lengths on a measured waveform. Note the total loss of

detail caused by the 100ns pulse. The signal is still made up of a number of Gaussians so function

fitting should be able to locate the ground, however often there is not enough deviation from a

single Gaussian feature to separate out the ground, as shown in figure 67. For any information

to be extracted from such a signal some form of deconvolution is required. The simplest form is

described by equation 35.

F(o) =
F(i)

F(s)
(35)

Where F (o) is the Fourier transform of the deconvolved waveform

i is the measured waveform

s is the blurring function

Deconvolution is a mathematically ill posed method, with many possible solutions for a given
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(b) 7ns pulse, TopEye II
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(c) 12ns pulse, ICESat
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(d) 16.9ns pulse, LVIS
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Figure 66: Effect of different pulse lengths on measured waveform over a Sitka spruce forest of height

12.1m and 78.0% canopy cover with 10,000 signal photons
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Figure 67: Function fitting to waveform over a forest of height 17.8m, 97% canopy cover with a 100ns

pulse
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Figure 68: Result of deconvolution using equation 35 on synthetic data
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problem (Jansson 1997). It is only too easy to arrive at physically impossible solutions such as

negative intensities (for example figure 68, using equation 35). There has been much work on

constraining deconvolution methods to ensure realistic results and increase robustness to noise.

Gold’s method of iterative re-blurring (Gold 1964) was selected for this investigation as being the

most robust with the available information. This has been phrased by Jansson (1997, page 115)

as;

o(k+1) = o(k) i

s ⊗ o(k)
(36)

Where; i is the original waveform

s is the blurring function

o(k) is the kth estimate of the original waveform

and o(0) = i

This re-blurs the current estimate of the deconvolved waveform with the original pulse before

using it to divide the product of the current estimate of the deconvolved waveform with the

measured waveform. Effectively the waveform is gathered up a little more after each iteration

until the original, undistorted waveform is reached. As this only takes ratios in the spatial rather

than frequency domain negatives values are not possible and multiplying by the measured waveform

ensures no features outside its bounds (which would be physically impossible).

To implement this the waveform and pulse must be sampled at the same rate. An instrument

must measure the outgoing pulse in great detail (higher sampling rate than the waveform) for

convolution to be possible. For aliasing to be prevented this should be at least Nyquist sampled

(the programs used sampled the pulse at four times the waveform sampling rate). The waveform

was resampled to the pulse sampling rate (permitting super resolution), putting all the energy

in each waveform bin into only the central bin (as shown in figure 69). This may increase the

quantisation noise but, as will be shown, accurate results were reached. Figure 70 shows this

working to allow complete, accurate and precise inversion.

Deconvolution is notoriously sensitive to noise. Background noise is gathered up into spurious
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Figure 69: Illustration of resampling waveform to pulse resolution
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Figure 70: Gold’s method successfully deconvolving a waveform with a 100ns pulse after 6,000 iterations.

No noise was added

150



features and distortions from instrument noise are enhanced, destroying any information content

(figure 71). The pulse and object features will be heterogeneous down to very fine scales; all of

which is summed up into range bins. During deconvolution none of this heterogeneity is taken into

account. This quantisation noise alone leads to poor recreations, as seen in figure 71(b).
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(a) Background noise, 10,000 signal photons
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(b) Quantisation noise, 12.5cm binning

Figure 71: Effect of noise on deconvolution

A measured waveform cannot contain any real features with a higher spatial frequency than is

contained in the outgoing pulse. Any such features must be due to noise and should be removed.

High spatial frequencies can be filtered out by convolving the measured signal with the original

pulse. The blurring function, s in Gold’s method must also be convolved with itself to get the

filtered signal back to the truth. This is expressed mathematically in equation 37. Blurring a

waveform to later sharpen it seems counter intuitive; however it should be kept in mind that the

frequency domain is being filtered rather than smoothing the spatial domain. Background noise

should be removed by subtracting the DC bias. For computational efficiency the extra smoothing

would be performed only once rather than every iteration.

o(k+1) = o(k) (i − DCbias) ⊗ s

(s ⊗ s) ⊗ o(k)
(37)

Where; i is the original waveform

s is the blurring function

DCbias is the background noise level

o(k) is the kth estimate of the original waveform

and o(0) = i ⊗ s
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Figure 72: Effect of noise removal on deconvolution by filtering of spatial frequency

Due to the smoothing required to denoise the deconvolved waveform will never be as sharp as

the ideal case. However sufficient detail will be revealed to allow accurate measurement of forest

height and canopy cover, as shown in figure 72.

5.9.1 Convergence

As Gold’s method is iterative, care must be taken to ensure the right number of iterations are

performed to achieve the correct result. Unlike some iterative methods such as the Newton-

Raphson method, Gold’s method will never converge to a solution of its own accord. The estimate

will change with each new iteration, passing through the truth to non-physical solutions. If the

wrong number of iterations are used the inverted parameters will bear little resemblance to reality

(figure 73(d)). In the case of figure 73, which is unnoised, any number of iterations between

6,000 and 10,000 gave an acceptable inversion. Noise, understandably complicates the issue. A

convergence criterion is needed to decide when to stop.

For figure 75(a), a Sitka spruce forest 7.5m tall with 76% canopy cover, any number of iterations

between 915 and 1,092 would give the correct signal start position. Note the stepped line caused

by the quantisation into bins (the error can only be a whole number of bins). In the absence of a

reliable convergence criterion the optimum number of iterations for each simulated waveform were
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(a) 100 iterations
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(b) 6,000 iterations
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(c) 10,000 iterations
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(d) 60,000 iterations

Figure 73: Effect of different numbers of iterations of Gold’s method on a 100ns pulse
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Figure 74: Dependence of number of iterations on system parameters

153



found separately. Figure 74(a) shows the optimum number of iteration’s dependence on canopy

cover. Figure 75(b) shows what root mean square error and bias would result from using a fixed

value over all forests.
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Figure 75: Optimum number of iterations

The number of iterations required depends upon pulse length, noise level and range resolution

(figure 74(b)). The reason for the relationship between number of iterations and pulse length

and range resolution is fairly obvious whilst that due to noise level is less so. This is due to the

truncation of the leading and trailing edges, shifting the start and ends, so causing a large change

in inverted tree height. The higher the background noise, the fewer iterations are needed to get

the correct tree height.

Figure 75(b) shows that for this data set 1,206 iterations provided the smallest error over all,

with a root mean square error of 1m and a mean bias of 1mm for the 328 waveforms tested. This

accuracy is comparable to the results from any short pulse lidars currently available, although all

forests were on flat ground.

Several different methods for determining convergence were explored. Some showed promise

but none were robust enough for reliable use.

The magnitude of the deconvolved signal shift from iteration to iteration was investigated,

hoping that it would settle down at the true signal start. As shown in figure 73 the start will not

settle down at the true signal start. Instead it shifts backwards from the “gathering up” of the

signal until a spurious signal splits off and drifts forwards. This changing of direction of the signal
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start would be taken as a settling down when the deconvolved waveform is not close to the ideal,

unblurred signal.

The maximum intensity of the deconvolved waveforms cannot be greater than the energy con-

tained within the largest intensity pulse that can be fitted completely within the data. This

maximum possible energy was calculated (by sliding the pulse function along the measured sig-

nal and finding the largest amplitude that could be contained by the measured waveform) and

deconvolution halted when the maximum amplitude of the deconvolved signal reached this energy.

The failure of this method is illustrated in figure 76. This is not unsurprising given that the

canopy returns are not dissimilar from Gaussians themselves. Therefore the canopy and pulse will

combine to produce a large Gaussian with a greater amplitude than would be contained in any

one bin of the ideal signal, leading to too many iterations and the spurious features.

A more sophisticated method would have been to use this value in an iterative method with an

upper and lower constraint such as Jansson’s method (Jansson 1997). However the added benefit

relative to effort is questionable. A fixed number of iterations that minimised the inverted errors

was chosen for the rest of the investigation.
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Figure 76: Attempt to use maximum possible amplitude as a convergence criterion. Failed to accurately

deconvolve.

5.9.2 Accuracy with deconvolution

The success of deconvolution depends very much on the system parameters. Therefore the param-

eters that gave suitable accuracies for short pulsed waveforms may not be sufficient for inversion
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from long pulse waveforms requiring deconvolution. To this end the dependency of inversion ac-

curacy on canopy cover, noise level and range resolution were re-calculated with a 100ns pulse.

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0  10  20  30  40  50  60  70  80  90  100

H
ei

g
h

t 
er

ro
r 

(m
)

Canopy cover (%)

Figure 77: Mean tree height error against canopy cover for waveforms deconvolved from a 100ns pulse.

A signal level of 10,000 photons and range resolution of 12.5cm were used
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Figure 78: Mean tree height error against noise level for waveforms deconvolved from a 100ns pulse, for

a resolution of 12.5cm

Figure 77 shows that the tree height accuracy was not as good as for the short pulsed samples

for forests with over 40% canopy cover. A 1m bias was introduced for all canopy covers from using

an incorrect number of iterations. No canopies above 97% cover were correctly inverted; for these

dense canopies the ground return is very weak and completely lost in all the smoothing operations

and background noise removal required for deconvolution. Figure 79 shows deconvolution’s greater

sensitivity to range resolution than with short pulse waveforms. Again a bias has been added from

an incorrect number of iterations giving the appearance that 1.125m range resolution gave a smaller
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Figure 79: Mean tree height error against range resolution for waveforms deconvolved from a 100ns pulse,

for a signal of 10,000 photons

error than 12.5cm.

These graphs show that useful results can still be obtained from long pulse lidar (and the 100ns

pulse used is an extreme example). However this will not be as accurate over as wide a range

of conditions as short pulse lidar. They also highlight the method’s sensitivity to the number of

iterations in the absence of a reliable convergence criterion.

5.9.3 Short pulses

The blurring caused by most waveform lidar systems is small compared to the separation of ground

and canopy returns, as in figure 66. For all the examples shown, except the QinetiQ vision of A-

scope which is optimised for atmospheric rather than land surface measurement, the ground and

canopy returns are clearly distinguishable. This allows accurate ground position measurement.

The pulse length will shift the signal start upwards, potentially adding an overestimate to tree

height and the blurring will limit our ability to resolve the foliage profile.

To date users of lidar for forestry have accounted for the affect of laser pulse length on tree

height estimate by either subtracting a constant from the inverted height (Wagner et al. 2006)

or else empirically relating lidar metrics to ground observations (Lefsky et al. 1999, Lefsky et al.

2007, Boudreau et al. 2008) and not necessarily directly measuring tree height (linking to biomass

for example). When deriving actual tree height the magnitude of signal start shift needs to be

accounted for. This should depend upon pulse width, signal start gradient and noise level. The
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lidar simulator was used to investigate the effect of these parameters.

Section 5.1.1 introduced a method for extracting unbiased estimates of signal start position from

background and instrument noise. It is hypothesised that tracking back through the noise should

remove the bias of signal truncation caused by de-noising, allowing a constant to be subtracted

to account for laser pulse duration. To achieve unbiased estimates of tree top positions in the

presence of laser pulses it needs to be seen whether the bias caused by truncating the signal during

noise removal is significant compared to the bias added by pulse length. Also, whether a shot to

shot gain adjusting system, (such as ICESat, (Harding and Carabajal 2005)) which has the effect

of constantly altering the magnitude of background noise, alters the amount of signal start shift

and if it is possible to theoretically derive its magnitude from the outgoing pulse shape and signal

level to avoid site specific calibration.

Obviously the laser pulse duration will affect the magnitude of the signal start extension.

Simulations were run with a range of different pulse lengths and the mean signal shifts and error

bars showing one standard deviation are shown in figure 80.
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Figure 80: Signal shift against pulse duration for a Sitka spruce forest for 10,000 signal photons
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Noise tracking’s removal of bias is clearly demonstrated by figure 80(a), with no bias for an

infinitely short pulse, whilst finite pulse durations have only that caused by the pulse. A laser

pulse duration will not necessarily be constant throughout the laser’s life or operation (Schutz

et al. 2005, Harding and Carabajal 2005), therefore it would be advantageous if the signal start

shift could be related to pulse duration. Figure 80(b) shows the signal shift in terms of the fraction

of the first return’s laser pulse energy after the signal start (ie. one minus the fraction of first

return’s energy lost through truncation). It can be seen that this was more consistent for different

pulse durations with the noise tracking method than for simple thresholding.

That the fraction of pulse energy after signal start for simple thresholding was consistently below

50% shows that the maximum intensity of the pulse reflected from the first element was always

lower than the noise threshold. Tracking back ensured that the bias became positive. Therefore

the pulsed return from the first element was always above the mean noise level. Figures 80(c) and

80(d) show the same signal shift for birch as Sitka spruce, showing that it is not a species specific

effect.
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Figure 81: Signal start shift against noise level for simple thresholded and noise tracked signals

159



The signal start shift was calculated with and without noise tracking for a 16.9ns Gaussian

pulse (LVIS like instrument) for a range of noise levels. Figure 81 shows the mean signal shift

for each noise level with error bars showing one standard deviation calculated from waveforms

over a range of forest heights, canopy covers and species. Returns from low canopy covers were

more likely to be lost in noise than for dense canopies, so had larger errors at a given noise level,

particularly for simple thresholding. Tracking back through the noise removed the truncation bias,

giving a smaller spread of signal shifts than simple thresholding at all noise levels. Birch and Sitka

spruce trees behave similarly, although the smaller range of heights and canopy covers of the birch

gave a smaller standard deviation than for Sitka spruce (figure 81(d)). There was no noticeable

difference between the shift’s relationship with noise in terms of shift distance and fraction of the

first return’s energy after the detected signal start. This was probably because the relationship

between distance and energy underneath a Gaussian is roughly linear in the range the signal shift

varies over.

The error levelled off at around 8,000 signal photons, so the accuracy of measurements by

an instrument that records 10,000 signal photons will not be limited by noise. Both methods

appear to be equally noise dependant, though for a given noise level noise tracking gave a more

consistent signal start shift. As long as the shot to shot gain variation does not cause there to be

the equivalent of less than 8,000 signal photons and the outgoing pulse shape is recorded it should

not affect the consistency of the results. At 10,000 signal photons the mean signal was 58% of the

pulse energy, ±4.8% (two standard deviations) which is 1m for a 16.9ns pulse (LVIS). Subtraction

of this distance should remove signal start shift caused by pulse duration.

The relationship between shift distance and Gaussian energy is illustrated in figure 82. Here

the true start was at a range of 0. The pulse smears this, extending signal beyond (to the left of)

the true start, some of which is truncated by background noise removal. 58% of the pulse energy

is contained to the right of the solid black line, which for a 16.9ns laser pulse is 1m to the left of

the pulse centre.

This adds weight to the argument for tracking back through the noise to determine signal start

proposed in section 5.1.1; ensuring that systematic biases are not introduced over different forest
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Figure 82: Signal start shift as a fraction of pulse energy

canopies.

5.9.4 Canopy start suddenness and start shift

It is expected that an initially dense (sudden) canopy will have a more intense first return so the

leading edge tail caused by pulse duration will extend further above noise than for a canopy whose

density builds up gradually. Therefore an initially dense canopy should have a larger signal start

shift.

The suddenness of the canopy start has been described by Boudreau et al. (2008) with a lidar

metric called “front slope”. That is the angle made between the line joining the signal start above

the noise threshold to the first maximum (in their case of the fitted Gaussians) and the range axis.

Lefsky et al. (2007) proposed a similar metric called “leading edge extent”, that is the distance

between the signal start and the point at which the signal first rises above the mean radiance level.

Using front slope and leading edge extent as measures of canopy start suddenness, it was

investigated whether it had an impact on the signal start shift. From figure 83 it can be seen that

there seems to be some relationship between front slope and signal shift for small front slopes. This

may be because these canopies had very low cover, whilst not necessarily being short, so that only

a few leaves are caught in the footprint rather than whole crowns. For larger front slope values the

shift magnitude settled to a constant. Sitka spruce and birch showed similar shapes (figures 83(a)

and 83(b)), although birch had fewer high front slope values due to the smaller range of forests
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available. The results were re-run in the absence of noise to see if that was masking a relationship;

it was not.
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Figure 83: Start shift magnitude caused by a 16.9ns pulse against front slope of the ideal canopy with

10,000 signal photons
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Figure 84: Start shift magnitude caused by a 16.9ns pulse against leading edge extent of the ideal canopy

with 10,000 signal photons, included only to show the better behaviour of front slope, shown in figure 83.

The results for birch (figure 84(b)) and Sitka spruce (figure 84(a)) suggest that there is no

useful relationship between shift magnitude and front slope. This may be because both front slope

and leading edge extent are measured over longer scales than the pulse lengthening of the signal

start. Maybe another, shorter range metric would show a relationship. Such a metric has not yet

been proposed and such a short scale measure would be more sensitive to noise than the existing

longer scale metrics.

A shorter range metric was calculated to see if it were better related to signal start shift. This

metric was found by drawing the steepest possible line from the signal start to a later point in the
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signal and the calculating the angle between this and the range axis. This is analogous to laying

a plank against the signal with its foot at the signal start, so it will be called “plank angle”. The

results are shown in figure 85. Again, no reliable relationship was apparent.
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Figure 85: Start shift magnitude caused by a 16.9ns pulse against plank angle of the ideal canopy with

10,000 signal photon

This suggests that the suddenness of canopy start was not significant to the pulse shift, possibly

because it did not vary over a large enough range to make a difference.

5.9.5 Short pulse deconvolution

Some authors believe that very high resolution canopy maps, both horizontally and vertically, are

needed to manage forests in a natural manner (Zimble et al. 2003), to monitor bird habitats (Ross

et al. 2004) and to predict timber growth (Comas et al. 2009).

To this end the possibility of deconvolution of short pulses was investigated by trying to solve

a “difficult” forest. That is a relatively dense (85.3%), short (8m) Sitka spruce canopy. This had

a weak ground return without a large gap between it and the canopy. The ground signal could

be easily blurred into the canopy by a pulse, preventing inversion. Figure 86(a) shows the result

of deconvolution of a 10ns pulse by sixty iterations of Gold’s method after denoising. The ground

return was clearly distinguishable in the measured signal though the signal start has been shifted

a little but this can be corrected without having to resort to deconvolution.
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For a 20ns pulse, which is longer than any lidar currently used for canopy measurement, (fig-

ure 86(b)) there is no longer a turning point in the ground signal, preventing separation and so

inversion. Denoising by convolution with the out going pulse and performing sixty iterations of

Gold’s method reveals the ground return. Therefore deconvolution can aid inversion from shorter

(20ns) laser pulses, but the lack of a convergence criterion means it should be a last resort and the

simple subtraction of the previous section should be used if possible.
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Figure 86: Deconvolution over a 7.6m tall forest with 85.3% canopy cover and 10,000 signal photons after

60 iterations (optimum).

This short, dense forest is a worse case scenario. Taller or less dense forests could be more easily

extracted from a 20ns pulse. However determining whether the ground return has been blurred

into the canopy is not easy in the presence of noise and heterogeneity (more on this is section 5.12).

5.9.6 Short pulse conclusions

A short pulse prevents the determination of ground position for only very short (< 5m) forests on

flat ground. Its main effect is to add a bias to the signal start position. Tracking back through the

noise to find signal start ensures that there is no truncation of the signal by noise (provided there

are at least 8,000 signal photons) leaving only the extension from the pulse length. The extension

caused is reasonably well related to pulse duration whilst being fairly tolerant to canopy cover and

“signal suddenness”. Therefore it is reasonable to correct by subtraction of a constant distance,

containing 58% of the pulse energy (±4.8%). The fraction of pulse energy cut off is somewhat

related to noise level, but ensuring a signal level of more than 8,000 signal photons will limit the
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change in signal shift to only a few centimetres, a small error compared to other sources. Most

importantly this is a physically based method to directly measure tree height without the need for

site specific calibration.

Figure 87 shows tree height error against canopy cover for a 16.9ns pulse. Pulse duration has

been corrected by subtraction of a constant from the signal start (1m, corresponding to 58% of

the Gaussian pulse’s energy). It shows that the tree heights found from a 16.9ns pulsed lidar after

subtraction of the constant agree very closely with those from an unpulsed lidar, with sub-meter

errors. No dependency on canopy cover is apparent; although heterogeneous aged stands, which

were left out of the earlier analysis, show greater errors, but no more so for pulsed lidars than the

infinitely short case.
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Figure 87: Tree height accuracy against canopy cover for a 16.9ns and infinitely short pulses

To test the correction factor of 58% of the energy (1m for a 16.9ns pulse) from the signal start

it was applied to the birch dataset, which was not used to derive the shift magnitude. Figure 87(b)

shows that, whilst the variance is increased there is no bias.

For the rest of the investigation it will be assumed that a finite pulse duration can be accounted

for by subtracting a constant (corresponding to 58% of the pulse energy if Gaussian) from the signal

start position. This holds as long as the pulse duration does not blur the canopy and ground returns

together, which is a safe assumption for pulses less than 16.9ns on flat ground (the longest pulse

for a current vegetation canopy lidar).
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Figure 88: Tree height accuracy against canopy cover different pulse durations subtracting a distance

containing 58% of the pulse energy

5.9.7 Pulse length conclusions

This section has shown the effect of long laser pulses requiring deconvolution on tree height accuracy

(and so our ability to distinguish ground from canopy required for all parameters). Accurate,

unbiased estimates of tree height can be extracted by deconvolution with Gold’s method, although

a convergence criterion would be needed to ensure robustness.

Any deconvolution method will always be an extra source of error and it would be preferable

to not have to resort to it. The ground returns over flat terrain are distinguishable for reasonably

long pulses (20ns, longer than any current system being used for vegetation). In that case the

ground position can be found accurately and the signal start determined with a fairly constant

offset that can be corrected. Therefore it can be concluded that pulse lengths should not exceed

20ns, though instruments that have to (such as A-scope) still allow some forest measurement. This

section focused on tree height, however once the information necessary for tree height has been

extracted it should be reasonably easy to extract other parameters such as canopy cover and height

of median energy.

The 100ns pulse system was only investigated as it has been proposed for A-scope This is

currently the only spaceborne lidar with any chance of measuring forest canopies in the pipeline

for ESA. Were it not for this uniqueness, effort would not have been expended trying to get usable

tree data from such an instrument.

For the rest of the investigation a pulse shorter than 20ns will be assumed, avoiding the need
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for deconvolution. The bias of the signal start for this can be corrected by subtracting a distance

containing 58% of the pulse energy (if Gaussian) and so it should have no affect on final accuracy.

An infinitesimally short pulse will be used for the majority of the analysis for clarity. All methods

proposed will be tested on realistic pulse durations.

5.10 Waveform shape

The success of information extraction obviously depends entirely on the shape of the returned

waveform. As well as tree height and canopy cover and pulse length mentioned previously, other

structural and optical effects have the potential to change the waveform’s shape. The next few

sections will assess the impact of each of these features on inversion accuracy as well as investigating

some metrics that have been proposed to account for them.

Topography will also have a dramatic effect on the waveform shape, but this will be covered in

detail in section 5.11. The rest of this section will deal with flat ground only.

5.10.1 Multiple scattering

As light interacts with a canopy it can be multipley scattered (Ross 1981). This increases the

apparent reflectance of a surface above its single scattering albedo and will add extra path length,

potentially distorting the waveform shape and confusing range resolved measurements.
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Figure 89: Contribution of multiple scattered light to an LVIS simulation over a 21m tall Sitka spruce

forest with 48% canopy cover
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Figure 89 shows that whilst it had an effect upon the apparent reflectance, the overall shape

of the waveform is largely unaffected. This implies that the majority of multiple scattering is

short range (no more than a few range bins), potentially within a single shoot. A small amount of

multiple scattering contribution appears to come from beneath the ground and this must come from

longer range scattering, however the magnitude is small compared to the short range scattering.

Therefore the main effect of multiple scattering is to enhance the reflectance rather than distort

the waveform. For very dense canopies the ground return is weakened to such an extent as to be

potentially lost in the echoes, however background noise tended to dominate even at these canopy

covers. It was not thought necessary to take the echoes into account when calculating tree height

(nor have any other authors taken it into account).

5.10.2 Tree shape

The shape of the canopy, specifically its distribution with range, should have an influence on the

signal start magnitude and so the ease with which it can be found above noise. It is expected that

for an initially dense canopy, which will have a more intense first return, the position of the tree

top should be easier to determine. Two metrics have been developed to describe the abruptness of

the start of a canopy, “front slope“ (Boudreau et al. 2008) and “leading edge extent” Lefsky et al.

(2007), both of which were defined in section 5.9.4. The relationship between both of these metrics

and a forest’s biophysical parameters will be briefly explored in order to asses their suitability for

a physically based inversion method.

5.10.3 Canopy suddenness metrics; front slope

Here front slope has been calculated from the line joining the signal start above noise (tracking

back to mean noise) and the first maximum point of the waveform after smoothing by a 3m

Gaussian. Smoothing avoids within crown heterogeneity being taken as a maximum rather than

the strongest canopy return. Figure 90 shows a comparison between front slope’s canopy cover

dependence for birch and Sitka spruce forests of similar height. For both species there seems

to be no relationship for sparse canopies (< 5% canopy cover). It is likely that these footprints

included only parts of trees rather than whole crowns (leaves from trees outside the footprint being
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clipped), giving rise to unusual waveform shapes. For canopies above 5% cover the two species

show different relationships which is most likely due to the very different foliage profiles of broadleaf

and coniferous trees. Coniferous trees have roughly conical crowns which will have initially low

densities for all canopy covers, even very dense. Broadleaf canopies have much flatter tops and so

the initial canopy density is much more related to total canopy cover.
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Figure 90: Front slope against canopy cover for birch forests and similar sized Sitka spruce forests

Due to the small range of birch forest heights and canopy covers available the rest of this

section will concentrate on Sitka spruce; accepting that any relationships may have a further

species dependence. It will be seen whether such a dependence is an issue later.

Figure 91 shows front slope against canopy cover, separated out by tree height for different

noise levels. Mixed aged forests have been left out for clarity (figure 92 shows that they display

little pattern due to the large variation in waveform extents and shape). This is because mixed

aged forests have their canopy returns spread over a larger range than uniform aged canopies,

therefore the intensity was lower in each bin for the same canopy density and signal start error

was more affected by noise than for uniform aged stands.

The unnoised case in figure 91(a) showed clear relationships between front slope and canopy

cover for each tree height class. As it would be expected, denser forests had stronger canopy

returns and so larger front slopes than sparser canopies for a given tree height. For a given canopy

cover, the maximum return will be further from the signal start for a taller tree than for a shorter
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Figure 91: Front slope against canopy cover for Sitka spruce forests at different noise levels, separated by

tree height for an infinitely short laser pulse
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Figure 92: Front slope against canopy cover for mixed aged Sitka spruce forests at different noise levels,

separated by tree height for an infinitely short laser pulse with noise tracking
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tree, giving a smaller front slope. Therefore front slope is a function of both canopy cover and tree

height.

There appeared to be an exponential relationship between front slope and canopy cover for

forests over 5m tall and 60% canopy cover. This fits in well with the standard Beer-Lambert law

models used to describe the probability of interaction within a canopy. For denser canopies, light

is less likely to penetrate far and so the maximum return was nearer the canopy top than for a

less dense forest of the same height, thereby giving a greater front slope value than the increased

intensity of the return would on its own. This upward shift of the maximum return is visible in

figure 54.

Short trees, below 5m, were an exception to this. This is because for short canopies, convolving

with a 3m Gaussian blurs the canopy and ground returns together. Therefore the first maximum’s

peak was influenced by the ground position, not just the canopy signal (illustrated in figure 93).

The only maximum corresponded to the ground position and so front slope was far higher than it

would be for a taller canopy. For denser short canopies the canopy return may be strong enough to

have a maximum separate from the ground return and so have a much lower front slope. Relating

the smoothing Gaussian’s width to the maximum extent of the waveform may help the relationship

for shorter canopies. It must be wide enough to smooth out noise and canopy heterogeneity but

narrow enough to prevent the ground returns affecting the position of the first maximum. However,

for our purpose such extra complications would only be beneficial if front slope were related to

signal shift. For this reason such a method was not pursued further here.

Figure 91(d) had some large values of front slope for low (< 3%) canopy covers, and some even

larger values (around 25) for covers less than 0.5%. These were left off the graph for clarity. These

extreme outliers were caused by weak canopy returns being completely lost in noise, so that the

signal start was taken as the beginning of the ground return, giving a very steep line connecting

that to the maximum.

5.10.4 Tolerance of front slope to noise

Convolving with a 3m Gaussian (far larger than the 12.5cm sampling interval) ensured that noise

did not affect the position of the maximum and tracking back through the noise negated any
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Figure 93: Original waveform and waveform convolved with a 3m Gaussian for a 3.3m tall Sitka spruce

canopy with 30.7% cover

truncation, ensuring that the front slope calculations were robust to noise, as illustrated by the

similarity in front slope values shown by figures 91(b), 91(c) and 91(d).
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Figure 94: Canopy cover against front slope without noise tracking

It was hypothesised that the truncation of the signal start without noise tracking would cause

an increase in front slope with noise. Figure 94 shows front slope against canopy cover, split by tree

173



height and noise level using the simple threshold rather than noise tracking; no difference between

that and the noise tracked case (figure 91) was apparent. Therefore either the truncation of the

signal start was insignificant compared to distance to the first maximum or the overall decrease in

intensity caused by noise removal counteracted the truncation. Figure 80(a) shows that the signal

truncation is of the order 75cm without a pulse length whilst figure 54 shows that the distance

from the signal start to first peak is about 5m, much longer than the signal start extension. Either

way front slope seemed to be robust to noise whether noise tracking was employed or not.

5.10.5 Canopy suddenness metrics; leading edge extent

The leading edge extent, proposed in Lefsky et al. (2007), is an alternative to front slope. Here

leading edge is taken as the distance between the first return above the cumulative threshold (with

noise tracking) and the point at which the signal rises above the median intensity. As it relies on

the mean energy level rather than the position of the first maximum is should be even less sensitive

to noise, requiring no smoothing and so retaining the full resolution.

Figure 95 shows plots of leading edge extent against canopy cover, separated by height for a

range of noise levels. As with front slope, low canopy covers (< 15% cover in this case, a higher

threshold than for front slope) showed much larger values than high covers for the same tree height.

This was due to the strength of the ground return skewing the mean energy downwards. Unlike

front slope, which only showed this affect for short trees, tall trees are equally affected as the

ground return strength always influences the mean energy whereas it will not affect the position of

the first maximum for suitably tall trees. For denser (> 15%) canopies there was a slight reduction

in leading edge extent with increasing cover (denser canopies have stronger returns near the top),

whilst taller trees had slightly larger leading edge extents for the same covers (due to the ground

return being further from the signal start).

Both of these dependencies were weak compared to the variation of leading edge extent within

a set of covers and heights, especially when noise was introduced. Noise tracking ensured that no

overall change in leading edge extent was introduced by noise, although the variance increased.

Figure 96 shows that like front slope, mixed aged forests had a much weaker relationship be-

tween leading edge extent and canopy cover. Smoothing waveforms before calculating edge extent,
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removing any chance of noise affecting the value, had no effect; proving edge extent’s inherent

robustness to noise.
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Figure 95: Leading edge extent against canopy cover for uniform aged Sitka spruce forests at different

noise levels, separated by tree height for an infinitely short laser pulse

These results suggest that leading edge extent is not directly related to tree height or canopy

cover, certainly less so than front slope. For the rest of the investigation only front slope will be

examined in detail.

5.10.6 Canopy suddenness conclusions

Tree height errors against front slope are shown in figure 97. The majority of front slope values

showed similar tree height errors. Extreme front slope values showed high errors and from figure 91

it can be seen that these high and low front slope values correspond to extreme canopy covers

(<10% or >98%), for which inversions are are known to fail. There were some large errors for

moderate front slope values (around 1.5×10−6). Closer examination reveals that they were due to

dense, medium height (>95% cover, 6m< height <13m) and short, fairly dense (<8m tall, >85%

cover) canopies. These are hard cases to invert accurately, the combinations of height and canopy
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Figure 96: Leading edge extent against canopy cover for mixed aged Sitka spruce forests at different noise

levels, separated by tree height for an infinitely short laser pulse
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cover give them only moderate front slope values, giving no indication of the difficulty.

Birch forests showed a similar relationship between front slope and tree height error as Sitka

spruce and interestingly showed similar front slope values.
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Figure 97: Range errors against front slope for Sitka spruce and birch

It seems that whilst front slope is related to inversion error, these dependencies can be better

described by tree height and canopy cover. For uniform aged stands front slope is quite directly

related to canopy cover and height (figure 91), however this relationship does not hold for mixed

aged forests (figure 92). Even for uniform aged stands, front slope’s relationship to biomass is

complex. Increasing canopy cover (and so biomass) increases front slope, whilst increasing tree

height (also increasing biomass) acts to decrease front slope. It is also sensitive to species through

crown shape. As worded in Boudreau et al. (2008), front slope depends upon the absolute intensity

of the maximum canopy return. This will vary with element spectra (and so species) and the shot

to shot instrument gain. Inversion processes using similar lidar metrics need to take this into

account, or else use site specific relationships, greatly limiting their application. A more physically

based method would be preferable.

For the rest of this investigation only more direct forest structure measures such as tree height

and canopy cover will be used. Metrics such as front slope may be useful for relating to parameters

that are not directly measurable (biomass and LAI), through allometric relationships and principal

component analysis. Here they have the advantage of being direct metrics from lidar waveforms

rather than needing to be inverted (as tree height is), potentially introducing errors.
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5.10.7 Understorey

Understorey spreads out the signal, reducing the instantaneous intensity and causes a loss of dis-

tinction between canopy and ground returns, both complicating tree height estimation. Figure 98

shows a waveform returned from a mixed age Sitka spruce forest on flat ground. The forest was

made up of Sitka spruce trees of 5, 9, 20, 30 and 40 years old. The 40 year old trees were around

25m tall with large gaps between the ground and canopy, the 5 year old trees were around 3m tall

with foliage all the way to the ground. These short trees have the same effect on the waveform as

non-arboreal vegetation that makes up more traditional understory, such as ferns and shrubs.
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Figure 98: Waveforms of mixed age forest

For this example there was no gap between canopy and ground returns, but due to the extent

of the canopy return, even for high canopy covers (> 90%, such as figure 98(b)) the ground return

was more intense than the canopy return. There was still a turning point between the ground and

canopy, allowing separation and so accurate inversion. The laser pulse duration (covered in detail

in section 5.9) will reduce this contrast in intensities somewhat, but as figure 99 shows, there is

still a turning point with a 10ns pulse (a typical canopy lidar pulse duration.

Figure 100 shows the tree height error against canopy cover for uniform aged canopies (no

understory) and mixed age forests (understory). Not such a broad range of canopy covers was

available for the mixed age forests as for the uniform aged forests due to the larger crowns of

mature trees (here low cover, uniform forests tend to be made from younger trees). If the canopy

and ground returns were not distinguishable tree height would be underestimated and this under-

estimation would increase with canopy cover. This was not the case and in fact denser canopies
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Figure 99: Waveforms of mixed age forests with a 10ns pulse. The same forests as figure 98 were used.

The ground is at a range of 1,200m

showed more accurate inversions than sparser canopies. This must be due to the more spread out

foliage elements giving lower canopy intensity signals whose starts are more likely to be lost in

noise. Figure 100(b) confirms that the error in tree height for mixed age stands was almost entirely

due to the difficulty in finding the signal start. The ground position errors being identical to the

uniform aged crop inversions.
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Figure 100: Tree height errors for forests with and without understory. 10,000 signal photons were used

and no pulse length. Each waveform was inverted 15 separate times with different sets of noise.

The experiments were repeated with a 10ns laser pulse (typical canopy lidar) to see if that

ever hides the turning point between ground and canopy on flat ground. Figure 101(b) shows that

the ground position errors were negligible up to 92% canopy cover. At 93% cover there was one

5m over prediction of ground position but other than that all other ground errors were sub metre

(including the other fourteen noise cases of this same waveform).
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Figure 101: Tree height errors for forests with and without understory. 10,000 signal photons were used

with a 10ns pulse. Each waveform was inverted 15 separate times with different sets of noise.

An occasional failure of ground position is perhaps unavoidable and is only very occasional

(0.04% of mixed forests tested). Therefore it would appear that heterogeneous forests (and so

understory) do not complicate the ground finding on flat ground. The largest effect is to lower

the intensity of the canopy return for a given cover, making it more likely to be lost in noise,

particularly with the extra spreading of a laser pulse length. This loss is unavoidable.

This section has dealt exclusively with forests on flat ground. Topography causes extra blurring

which may prevent inversion. Figure 102 shows a waveform for a bimodal canopy on a slight slope.

In this case the shorter trees are blurred in with the ground but the taller trees are separate and

so the algorithm would correctly determine the tallest tree height but would underestimate the

total canopy cover and so LAI. There is no way to correct this error with single wavelength lidar,

the signal is indistinguishable from a lower canopy cover forest without understory. For a mixed

aged forest (such as that in figure 98) there would not be a clear gap between the tall and short

canopies and so the height would not be correctly determined. This will be covered in detail in

section 5.11.

5.11 Topography

Topography acts to reduce the separation between ground and canopy returns. If the ground

height variation across the lidar footprint is greater than the separation between the canopy and

ground, returns will be blurred together, as shown in figure 103. This can prevent determination
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Figure 102: Effect of understory on a simulated waveform over a bimodal forest on a 12o slope

of any characteristics, other than an upper limit of tree height (from the distance between first

and last returns).

As it is the variation of ground height across the footprint that causes blurring, the smaller

the lidar footprint the smaller the blurring. However small footprint lidar can miss tree tops if

coverage is not continuous (ie. gaps between adjacent footprints), thereby introducing a negative

bias ((Zimble et al. 2003), illustrated in figure 12). The engineering challenges of achieving

continuous coverage with many small footprints over crown sized areas from space has not yet

been discussed and is beyond the scope of this thesis. If it were possible it would be the best

solution.

Figure 104 shows how a 30m footprint waveform is affected by different slope angles. For this

forest a slope of more than 30o would prevent parameter inversion, even before the extra blurring

of the laser pulse duration is included whilst a slope of 20o would greatly complicate the process.

There are no plans to launch scanning or imaging small footprint waveform lidars into space.

Therefore a method of overcoming topographic blurring of large footprint lidar is required. Due to

the lack of accurate, high resolution global DEMs and other extra information over forests (Rosette

et al. 2007, Dowman 2004) a method using only the lidar information (or perhaps other global
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Figure 103: Illustration of topographic blurring of a 30m footprint on a 30o slope

EO products) for inversion is needed.

5.12 Multi-spectral lidar

There have been recent advances towards multi-spectral and even hyperspectral waveform lidar

(Kaasalainen 2007, Morsdorf et al. 2008b). This offers many exciting new possibilities.

If two wavelengths with different reflectances for canopy and ground are used, the changing

proportions of canopy and ground with height should be visible in the spectral information. This

should allow a physically based method to account for slope, requiring little or no empirical cali-

bration. The literature suggests that steeply sloped forests are not uncommon (Lefsky et al. 2007,

Rosette et al. 2008, Goodwin 2006). Indeed, forests commonly grow on steep (> 20o) terrain

(Takahashi et al. 2005), although their proportion and impact at the global scale have not been

quantified.

Figure 105 shows the reflectance of a forest’s components against wavelength (from spectra

described in section 4.2.2). A real forest canopy is composed of leaf and bark. Assuming that

leaves and branches have similar phase functions, the resultant canopy spectrum will be the average

reflectance weighted by the visible projected areas of each. For the Sitka spruce models, the average

projected proportion of leaf and wood in the canopy was 58% and 42% respectively with a standard

deviation of 15% (from the material information recorded by the ray tracer). This proportion was

used to make the canopy spectrum.
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Figure 104: Effect of different surface slopes on 30m footprint waveform over a Sitka spruce forest, 17.5m

tall with 83.7% canopy cover. An infinitely short laser pulse was used.
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Figure 105: Modelled spectra for leaf, soil, bark and canopy (58% leaf, 42% bark)

Figure 106 shows the ratios of the canopy reflectance (58% leaf) over soil and pure leaf over

soil. Two wavebands with vastly different ratios would be preferable. However, regions with low

reflectance will give low signal to noise ratios from spaceborne instruments and therefore poor

results. These regions (around 650nm) tend to give stronger spectral contrast and have been

suggested for airborne platforms (Morsdorf et al. 2008b) which, because of their lower altitude,

give stronger signal to noise ratios. The mixture of leaf and bark has reduced the spectral contrast

between canopy and soil relative to a pure leaf canopy. That is because the bark spectrum has a

similar shape to soil, without the pronounced features of a leaf spectrum.
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Figure 106: Ratio of canopy to soil reflectance and pure leaf to soil, from modelled spectra

A simple engineering solution would be to use a Nd:YaG laser with a frequency doubler

184



(Paschotta et al. 1994) to produce 1064nm and 532nm beams. The spectral separation is not

the best at these wavelengths, however the benefit of needing only a single laser source (though

necessarily more powerful than if it produced a single wavelength) in terms of weight and space

savings onboard a satellite are considerable.

5.12.1 Multi-spectral information

The spectral nature of the waveform will be directly related to the amount of leaf, bark and ground

intersecting the lidar beam (and the angular distribution). The spectral distinction between these

elements is too small to allow a standard classification based upon the spectral reflectance of each

bin (figure 107(b)), further complicated by the small number of bins containing ground returns.

Low intensities on the forest floor and mixture of materials in range bins act to further reduce the

separability. However different areas of the waveform should have different spectra so that whilst

the spectral separation is small it should be possible to detect a change from one to the other by

combining the spectral with the range information.
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Figure 107: Multi-spectral results for a 19.8m tall Sitka spruce forest with 81% canopy cover on a 30o

slope. Dominance was defined as a material that contributes over 50% of the signal, otherwise a bin was

classed as mixed.

5.12.2 Information extraction

The traditional method for information extraction from waveform lidar is function fitting (Hofton

et al. 2000, Wagner et al. 2006). The extra information available to a multi-spectral instrument
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should allow greater accuracy than the single waveband case. The returns in both wavebands

will originate from the same objects, therefore the positions and shapes of the features must be

the same at both wavelengths, with only the intensity changing. The number of unknowns will

increase by less than the data available for inversion and so a better fit should be achieved.

Separating the canopy from ground with function fitting requires an analytical description of

the expected canopy and ground return shapes. Typically they are taken as Gaussian, a shape

aided by convolution with the laser pulse. However, forests are heterogeneous and this can cause

waveforms to deviate from the ideal case. Figure 108 shows that the clumping of canopy elements

into discrete crowns can cause shadows at certain positions on the ground, reducing the ground

return intensity in those places. This has taken “bites” out of the ideal Gaussian ground return,

so that fitting an analytical function will fail.

Figure 108: Heterogeneity of a forest causing shadows and the subsequent deviation of features from

simple analytical models

Given the unpredictability of the shapes of the canopy and ground returns a method that does

not rely on initial estimates of them would be preferable.

5.12.3 Spectral ratio

The easiest measure to calculate is the spectral ratio; the waveform at one wavelength divided

by that at another. The spectral ratio is not affected by the absolute intensity and so is robust

to heterogeneity, such as that caused by shadowing. Figure 109(b) shows the spectral ratio of

550nm over 850nm (bands with low and high canopy reflectance respectively), clearly showing
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the onset of the ground at a range of 1,192.5m. The shape of the spectral ratio is controlled by

the proportion of each material visible in a bin, the relative phase functions of each material and

multiple scattering.
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Figure 109: Multi-spectral waveform and resulting ratio of reflectance at 550nm to that at 850nm. The

canopy was 30m tall with a cover of 75.8% on a 30o slope.

A typical canopy will be composed of leaves, bark and soil (or leaf litter). The proportions of

these will change throughout the canopy, as seen in figure 110(c) and so the overall spectral ratio

will be a linear combination of the spectral ratios of the pure materials.

The spectral ratio depends upon the reflectance scaled by the phase function, so if the materials

have vastly different phase functions or they are not constant through the canopy, the spectral

ratio’s shape will be altered. Figure 110(e) suggests that whilst the phase functions do vary

through the canopy due to heterogeneity there is no overall trend and so variations could be

treated as noise. Also leaves and bark appear to have very similar values.

The magnitude of the multiple scattered signal is especially affected by element reflectance;

the light is attenuated by the reflectance to the power of the order of scattering. Therefore, two

wavelengths for which the target has different reflectances will have different amounts of multiple

scattering, leading to a greater increase in apparent reflectance for the higher reflectance waveband

than the lower reflectance. The amount of multiple scattering will change through the canopy as

the density of scattering elements changes and because scattering adds a range delay, although

small (figure 110(d)). This alters the apparent reflectance at the two wavelengths and so the

spectral ratio.
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Figure 110: Factors effecting the spectral ratio for a 20m tall, 85% canopy cover Sitka spruce forest on a

30o slope.
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The ratio of the reflectances used at 550nm and 850nm is lower for wood than for leaves,

therefore the initial dominance of leaf would cause a higher spectral ratio than the later, woodier

canopy. At these wavelengths the ratio for soil is higher than that for both leaf and wood.

The spectral ratio waveform can be separated into five distinct sections, shown in figure 111.

The initial peak in spectral ratio with a sharp drop off could be due to the initial dominance of

leaf in the canopy or because multiple scattering has not set in. The ratio decreases through the

canopy as it gets woodier and multiple scattering increases. It then increases as the ground starts

to contribute. The gradient of the increase will depend upon the density of the foliage at the point

at which the beam starts to intercept the ground. Once the foliage stops contributing the ratio

flattens off to the pure ground value. The length of this section is controlled by the height of the

crown above the ground. Finally, the spectral ratio drops down as only multiple scattering echoes

are left as the low reflectance waveform almost disappears (if the low reflectance waveform were

the denominator this would be almost infinity).

Figure 111: Multi-spectral waveform features.

To investigate the relative significance of changing amounts of multiple scattering and pro-

portions of leaf to wood the spectral ratio was calculated with and without multiple scattering.

Figure 112 shows that even without multiple scattering the spectral ratio decreased through the

canopy. This can only be due to changing fractions of leaf and wood. Including multiple scattering

caused a further reduction in spectral ratio with range. The initial sharp spike was not as appar-

ent in the waveform without multiple scattering. This feature must be because multiple scattering
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adds a range delay (in this case about four range bins), so the initial returns contain less multiple

scattered light, giving them a lower apparent reflectance in the stronger waveband than the lower.

Therefore the initial peak is due to both multiple scattering and increased leafiness. Perhaps the

length of this feature, which is related to the range delay and so mean free path, can be used to

look at scattering element density. The proof of this is beyond the scope of the thesis.
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Figure 112: Ratio of waveform at 550nm and 850nm with and without multiple scattering.

Figure 113 shows that birch shows the same trends as Sitka spruce, albeit with more leaves

lower in the canopy and less multiple scattering (for Sitka spruce it is probably mainly within

shoot scattering due to the higher density of scattering elements). Interestingly, although the

ground in figure 113(c) is centred at a range of 1,200m, spreading up and down 7.5m, there are

canopy returns deep into the soil returns (predominantly bark). This is due to the small separation

between the ground and bottom of canopy. Comparing figures 113(e) and 110(e) shows that the

two species have very different phase functions for leaves. The needle leaf Sitka spruce shows an

average value of 0.65 whilst the broad leaved birch has a value of 0.85. This is not unexpected

given the difference in the arrangement of needle and broad leaves. This will give birch a higher

apparent single scattering leaf reflectance than Sitka spruce. The increased multiple scattering

within a needle shoot may even this out.
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Figure 113: Factors affecting the spectral ratio for birch, 21% canopy cover on a 30o slope.
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5.12.4 Optimum wavelength for spectral ratios

The optimum wavelength combination depends upon the method of information extraction. Dif-

ferent combinations of bands may accentuate features of interest whilst not necessarily having the

greatest spectral contrast. Figure 114 shows the spectral ratio for the same forest with a range of

wavelength combinations.
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Figure 114: Spectral ratios for different band combinations without noise for an 18m tall Sitka spruce

forest with 95% canopy cover

The choice of wavelengths will be critical for multi-spectral lidar. To determine the best pair the

contrast between each material was calculated for every wavelength combination using equation 38.
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Contrast =

∣

∣

∣

∣

ρλ,canopy

ρω,canopy

− ρλ,soil

ρω,soil

∣

∣

∣

∣

(38)

Where ρλ,i is the reflectance of material i (which can be canopy, soil, leaf or wood) at wavelength

λ.
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(c) Canopy, composed of a mixture of leaf and

wood, to soil contrast

Figure 115: Spectral contrast between pure materials.

The contrasts for all wavelength combinations for which reflectance data were available are

shown in figure 115. Here canopy is taken as 58% leaf, 42% bark (the average value for the

mature Sitka spruce forest models). From these plots it can be seen that the best combination

of wavelengths would be to use waveforms from lasers at 1,720nm over 400nm to give a contrast

of 7.49. It would be unwise to use a 400nm laser in a remote sensing device, particularly from

space because of poor atmospheric transmittance, low surface reflectance and high photon energy.

The greatest spectral contrast outside of the visible (over 750nm) is achieved with a wavelength

of 930nm as the denominator and 2,380nm as the numerator, giving a spectral contrast of 2.04.

For the spectral ratio, a small number on the denominator (a low reflectance value), will cause
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large spikes in the spectral ratio waveform, as shown in figure 114(f); potentially reaching infinity,

obscuring the features of interest. Noise only exacerbates the problem. Therefore it would be

more robust to have the stronger signal as the denominator. This excludes many of the band

combinations that showed strong spectral contrast but will cope better with noise.

ρω,canopy > ρλ,canopy, ρω,soil > ρλ,soil (39)

Figures 110(c) and 110(d) show that both multiple scattering and the proportion of wood in

the canopy increased with range (the same trends were observed for all forest models used in

this investigation). To get a clearer transition from canopy to soil it would be better to have a

combination of wavebands that gives the same trend in spectral ratio with range from increasing

wood and multiple scattering. As the stronger signal must be the denominator (to avoid large

spikes), the canopy signal will be decreasing with range due to increasing multiple scattering.

Therefore a greater contrast will be seen if the spectral ratio is larger for pure leaf than for pure

bark, and that the ratio for canopy is lower than for soil. These conditions are given by equations 40

and 41.

ρλ,leaf

ρω,leaf

>
ρλ,bark

ρω,bark

(40)

ρλ,canopy

ρω,canopy

<
ρλ,soil

ρω,soil

(41)

The optimum wavelength will depend on the fraction of leaf and bark in the canopy. Any

device must be robust to different canopy compositions and species.

The contrast was recalculated enforcing the conditions given in equations 39, 40 and 41 for

all possible canopy mixtures using equation 38. Figure 116 shows the greatly reduced contrast

produced by forcing the denominator to be larger than the numerator, but the allowed combinations

should be much more robust. Here the best result was achieved by dividing the waveform at

2,300nm by that at 1,870nm, giving a mean contrast of 0.28. The spectral contrast for every

canopy composition for 2,300nm over 1,870nm and the simple engineering solution of 532nm over

1,064nm are shown in figure 117.

It can be seen that for 2,300nm over 1,870nm the spectral contrast is strong for all possible
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Figure 116: Mean spectral contrast between canopy and soil for all canopy compositions, limited to

combinations with higher reflectance on the denominator than the numerator and a greater ratio for soil

than canopy.
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Figure 117: Spectral contrast between canopy and soil for all proportions of leaf and bark and a range of

wavelengths
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Material Reflectance at 2,300nm Reflectance at 1,870nm

leaf 0.13 0.22

bark 0.28 0.46

soil 0.23 0.26

Table 2: Reflectance values for the optimum above canopy multi-spectral wavelengths

canopy compositions and that 532nm over 1,064nm is usable until leaves make up more than

50% of the canopy, at which point the spectral contrast for canopy and ground become the same.

Therefore, whilst a system using lasers at 2,300nm and 1,870nm may not have the best spectral

contrast for every forest, it will have an identifiable point (a minimum) at the transition between

ground and canopy for all possible canopies.

Table 2 shows that, for the spectra used, the reflectance at the optimum wavelengths does not

drop below 13%, ensuring a reasonably strong signal to noise ratio. Whether there are suitable laser

sources at these wavelengths is a question for an engineer. Alternative wavelength combinations

can be investigated if suitable laser sources are not available at 2,300nm and 1,870nm. The spectra

used here are realistic but not representative of all possible situations. A more comprehensive study

using a broad range of data would be needed before the optimum wavelength combination for a

global system can be chosen.

5.12.5 Multi-spectral information extraction

Figure 118 shows the spectral ratio of 2,300nm over 1,870nm for a range of forest covers and

heights. For all waveforms the ground was centred at range of 1,200m, spreading up and down by

7.5m for a 30m footprint (from 1,192.5m to 1,207.5m). Noise, which is independent for the two

wavelengths, can cause large spikes in spectral ratio (sometimes moving the ratio above unity).

Convolving the original waveforms with a Gaussian before dividing removes the spikes, revealing

the underlying shape (see appendix B).

For shorter canopies (figures 118(a) and 118(d)) there was a very small separation between the

canopy and the ground immediately below so the spectral ratio does not settle down to a pure
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Figure 118: Examples of spectral ratios of 2,300nm over 1,870nm for a range of forests on 30o slopes for

10,000 signal photons. Smoothing was by convolution with a 3m Gaussian.
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ground signal, there being canopy in every range bin. However, there was still a minimum of the

spectral ratio around a range of 1,192.5m for all waveforms which will allow separation of it from

the canopy.

Examples of 532nm over 1,064nm are shown in figure 119. Older (taller) Sitka spruce forests

have a high proportion of wood and there was a clear minimum at the transition (figures 119(c)

and 119(g)). Younger (shorter) trees are leafier than mature trees so that there was no mini-

mum of the spectral ratio at the canopy to ground transition. Understory will also increase the

leafiness at the interface (here young trees are equivalent to shrub-like understory). 2,300nm over

1,870nm showed a feature at the start of the ground for all canopies, even short dense stands

(figure 118(e)). For mixed age forests the minimum was quite subtle and detection may prove

problematic (figure 118(h)).

Therefore 532nm over 1,064nm does not seem like a sensible choice of wavelengths. Only

2,300nm over 1,870nm will be used for the rest of the investigation.

5.12.6 Feature detection

A robust method to identify the extent of the ground return is needed to separate it from the

canopy. This is the first step towards measuring any biophysical parameters of forests.

Due to the similarity in spectral ratio for pure leaf and pure wood at 2,300nm over 1,870nm

(for the datasets used both were 0.61 to two significant figures), there will not necessarily be

a minimum at the transition between the ground and canopy. Therefore other features at that

point must be relied upon. At the transition the spectral ratio will rapidly increase, levelling

off as the signal becomes pure ground. The second derivative should reach a maximum as the

ratio changes from pure canopy to a mixture of canopy and ground; this can correspond either

to a minimum in the spectral ratio or a sudden increase. There will be a maximum of the first

differential somewhere in this transition. The levelling off from a mixture of canopy and ground

(with increasing proportion of ground) to the pure ground value will correspond to a minimum of

the second derivative. The drop off from the ground return to pure multiple scattering will have

a minimum in the second derivative. Therefore a sensible approach would be to look for crossing

points of the third derivative.
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Figure 119: Examples of spectral ratios of 532nm over 1,064nm for a range of forests on 30o slopes for

10,000 signal photons

199



Noise and heterogeneity will cause spikes, particularly in the higher order derivatives. Any

method will have to robustly see the features of interest through such noise and so smoothing

is required. Smoothing each waveform before calculating the ratio will lead to a better behaved

result than smoothing the ratio of the noised waveforms; the proof for this is given is appendix B.

 1170

 1180

 1190

 1200

 1210

 1220
-0.2  0  0.2  0.4  0.6  0.8  1  1.2

R
an

g
e 

(m
)

Ground start

Ground end

Spectral ratio
Gradient * 50

Second derivative * 120
Third derivative * 200

Figure 120: The spectral ratio and derivative waveforms for a Sitka spruce forest

5.12.7 Sufficient smoothing

Noise and heterogeneity can confuse feature detection. Figure 121 shows that, for this particular

waveform, smoothing with anything narrower than a 9m Gaussian would leave multiple minima. It

would not be easy to reliably decide which of these corresponds to the ground. A robust algorithm

should aim to smooth out all features except the one of interest; leaving no doubt as to which is the

ground. The narrowest possible smoothing required to achieve this should be applied to minimise

the spreading out of the signal and loss of resolution.

The ground will be identified by a sudden increase in the spectral ratio, so a maximum of its

second derivative. The smoothing function can be selected by iteratively changing the width until

the finest function that leaves a single maximum of the second derivative is found.

Smoothing the signal with a Gaussian will leave long tails in areas of previously empty signal.

This will extend the spectral ratio, particularly upwards where the value will be similar to the

pure canopy value, complicating feature detection (greater multiple scattering of the denominator

wavelength reduces this affect below the canopy). The same cumulative energy threshold used
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to find the tree tops (described in section 5.1.1) can be used to find the bounds of the signal of

interest, preventing this. The spreading out by smoothing should prevent too much signal being

truncated and as the canopy to ground transition is the chief interest, somewhere in the midst of

the waveform, this should not be an issue. Here the background is from the tails of the Gaussian

rather than random noise, so tracking back to the mean level will not remove the bias. Noise

tracking can still be used to find an unbiased estimate of signal start before ratios are taken.

At the beginning and end of the signal there are rapid changes in spectral ratio from no signal

to canopy and from ground to multiple scattering values. These “wings” will have large derivatives

and should be avoided when searching for features. Only the signal between the first minimum

of the second differential (leading wing) and the last minimum (trailing wing) within the useful

signal bounds should be examined.

5.12.8 Weighting the smoothing function

A side affect of removing noise by smoothing is the spreading out of features, shown in figure 121.

It can be seen that if the signal is smoothed sufficiently to remove all minima except that at the

ground to canopy transition, then the smoothing causes the foot of the slope to shift upwards

whilst the end of the waveform is shifted downwards, increasing the apparent slope of the ground.

Constrained smoothing, as described by DaSheng (1993), varies the smoothing function through

the signal. A narrower function can be used on areas of interest, preserving their position and

leading to more accurate estimates of ground position than with uniform smoothing. A smoothing

function weighted by the gradient of the spectral ratio should preserve the position of edges whilst

removing noise from flatter areas.

If the weighting were based on the gradient of the spectral ratio of the measured waveforms

noise would cause large spikes, potentially leading to large errors. Therefore the gradient of the

spectral ratio of smoothed waveforms should be used. The weighting function will be somewhat

blurred by this process, but it should act to spread out the areas of high weighting (reducing all

the gradient values so that the relative values are higher) so that areas of interest will not be overly

smoothed. A function is then needed to relate the weighting to the smoothing to be applied.

As the gradient of the spectral ratio is likely to include large spikes at the start and end which
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Figure 121: Illustration of the spreading of the spectral ratio features through smoothing

might skew the weighting values (illustrated in figure 122), a function with an asymptote would

be preferable to avoid over smoothing areas of interest. A density weighted function would be

another alternative, but there may be problems with how well it copes with different distributions

of gradients.
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Figure 122: Histogram for gradients of the spectral ratio of a waveform, the axes have been truncated

from 1.6 and 350 for clarity

For this reason a function of the form given in equation 42 was chosen to relate the smooth-

ing function’s weighting, weight, to the gradient of the ratio, grad. Here the magnitude of the

gradients, irrespective of sign, are used; as steep negative gradients may be of interest.
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weight =
1

k(|grad| − a)
+ c (42)

The constants a, k and c were set by fitting the function through two points. One, the minimum

smoothing at the maximum observed gradient (weight = smoothmin, |grad| = |gradmax|), the

other the maximum smoothing at the minimum observed gradient (weight = smoothmax, |grad| =

|gradmin|). Then, to ensure that the function reaches a noticeable asymptote and provide a third

equation, the gradient of the weighting at |gradmax| function was forced to flatten off to (an

arbitrary) one hundredth of its value at |gradmin|. The relationship between these constants and

the maximum gradient, |gradmax|, minimum gradient, |gradmin|, minimum smoothing, smoothmin

and maximum smoothing, smoothmax are given in equations 43, 44 and 45, derived by putting the

initial conditions into equation 42.

a =

√
100 |gradmin| − |gradmax|√

100 − 1
(43)

c =
smoothmin(|gradmax| − a) − smoothmax(|gradmin| − a)

|gradmax| − |gradmin|
(44)

k =
1

(|gradmax| − a)(smoothmin − c)
(45)

Using
√

100 = −10 would give the correct value to the left of the vertical asymptote, therefore

√
100 = +10 will be used to give the right hand side of the vertical asymptote. Figure 123 shows

the weighting function.
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Figure 123: Smoothing weight function
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As a first attempt the minimum smoothing was set as 2m and the maximum as the width

of the smoothing function found in the iterative method described in section 5.12.7. These are

somewhat arbitrary values and should be refined in future studies, without making the function

site or species specific.

5.12.9 Multi-spectral inversion algorithm

The steps described above have been combined into an iterative algorithm for determining the

ground position and extent from multi-spectral lidar. First a starting point which is known to be

on the transition from canopy to ground was calculated using the sufficient smoothing described in

section 5.12.7. Half the the smoothing function’s width was added to the found position to make

sure the point has not been spread beyond the ground signal.

A smoothing weight function was determined using the method and equations described in sec-

tion 5.12.8. This was applied to the original waveforms and a new ratio and derivatives calculated.

The bounds of interesting signal (using the cumulative energy) and the wings (using the minima

of the second differential) were determined. The first maximum of the second derivative before the

initial ground position estimate was taken as the start of the ground return. The last minimum of

the second derivative (the trailing wing) was taken as the end of the ground return. This method

is shown schematically in figure 124.
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Figure 124: Schematic of the multi-spectral ground finding method
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5.12.10 Multi-spectral results

The scatter plot of ground position error against canopy cover (figure 125) shows that the method

performed reasonably well. The error is the estimated range to ground minus the true range; so a

positive value is an overestimate, a negative an underestimate. The end of the ground return was

found almost perfectly until high canopy covers (> 95%). This is the simpler position to find as

there is a clear drop off in spectral ratio from the pure ground to the multiple scattering value.

At higher canopy covers the ground return is weak and may become lost in noise and multiple

scattering, being truncated by the noise and Gaussian tail removal processes.
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Figure 125: Ground position error against canopy cover using the spectral ratio with 10,000 signal photons

and no pulse duration for forests on a 30o slope

The start of the ground proved harder to find, though the errors for all but extreme canopy

covers (< 8% or > 95%) were less than 7m. Figure 126 shows this error broken down by tree

height. This reveals that shorter trees (< 10m) had larger errors. This is not surprising since these

have smaller separation between the canopy and ground and so most of the ground returns include

some leaf. This gives the spectral ratio a more gradual slope at first, so the algorithm is likely to

overestimate the range to the ground. A similar effect occurred at trees between 10m and 20m tall

at higher canopy covers (> 80%), giving rise to greater errors.

At lower canopy covers (< 30%), taller trees (> 20m) showed larger errors than moderately tall

forests (10m < height < 20m). This is due to gaps between the ground and canopy (as shown in

figure 118(c)) confusing the algorithm. Instead of the ground, the algorithm finds a point within

the canopy. This could be avoided by more careful filtering; such filtering will be a necessity for
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the method to work over both flat ground and topography.

The method performed equally well for mixed aged forests as for uniform, suggesting that the

method is robust to understory. The method completely failed for forests with greater than 99.8%

canopy cover due to the weakness of the ground return. There seems little chance of reliably

extracting information from such high covers in the presence of background noise and multiple

scattering by whichever method.
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Figure 126: Ground start error against canopy cover broken down by tree height with 10,000 signal

photons and no pulse duration for forests on a 30o slope

The method was developed using the Sitka spruce forests, the birch forests were then used as

an independent test. Figure 125 shows that the method performs equally well for both species

(though only a small range of birch forest models were available) and is therefore likely to be

robust.

5.12.11 Discussion of multi-spectral errors

To determine whether the weighted smoothing is worth the extra computational expense the ground

positions were calculated again using the same method as shown in figure 124 but using the

smoothing function that left a single maximum in the second differential before determining the

ground position rather than the weighted function. The results in figure 127 show that using a
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constant smoothing function lead to a consistent underestimate of range to the canopy; due to the

upwards shift of the features. Weighted smoothing gave less biased estimates of ground position

but interestingly showed larger errors for short (< 10m), sparse (< 20% cover) canopies.
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Figure 127: Ground start error against canopy cover using constant and weighted smoothing

Figure 128 shows the waveforms and resulting spectral ratios for one of these short, sparse

canopies for which the method failed. There is very little separation between the bottom of the

crowns and the ground directly beneath it, meaning there is only a very short region of pure canopy

whilst there is some canopy in every ground bin, leaving no pure ground. This region of pure canopy

is visible in the ideal, unnoised case but not in either of the two noised cases (figure 128(b)). Due

to the low cover the canopy has little influence on the shape of the spectral ratio in the region of

mixed canopy and ground, leaving no features to identify. For this forest the constant smoothing

method estimated that the ground started at a range of 1,200.75m and the weighted smoothing

a range of 1,204m. Both of these are overestimates of the true range (1,192m) and as the pure

canopy region has been lost in the background noise the constant smoothing method’s lower error

is more due to luck than any other reason. To accurately invert such short, dense canopies a better

method for determining the bounds of the waveform before calculating the ratio is needed; perhaps

in this case the noise tracking method describes in section 5.1.1 would improve the results.

Therefore the extra computational expense (which is not prohibitive on a modern computer)

is worthwhile; certainly there is no disadvantage to it.
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Figure 128: Spectral ratio for a 6m tall Sitka spruce forest with 10% canopy cover. The ideal unnoised

case and noised waveforms (10,000 signal photons) with constant and weighted smoothing are shown. The

original waveforms are shown for comparison.

5.12.12 Multi-spectral pulsed lasers

Including a pulse duration will increase the blurring together of ground and canopy returns, po-

tentially leading to high errors. Figure 129 shows that the ground finding algorithm coped well,

with little noticeable difference in accuracy when compared to the infinitely short pulse duration

(figure 129(b)).
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(a) Ground start and end errors for a 16.9ns pulse
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Figure 129: Ground position error against canopy cover using the spectral ratio with 10,000 signal photons

and a 16.9ns pulse duration for forests on a 30o slope

Pulse duration is therefore not an issue to finding the ground with multi-spectral lidar.
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5.12.13 Notes on the final multi-spectral method

Of course the absolute value of the spectral ratio will depend on all sorts of factors, such as

the atmosphere, tree species and relative health of the laser sources and detectors. Therefore an

inversion method that does not depend upon absolute but relative values would be preferable.

A real instrument will have to cope with returns from forests on a range of topographies, from

flat ground to steep slopes therefore a method must be able to cope with, or distinguish between,

signals with clearly separated canopy and ground returns and topographically blurred waveforms.

An obvious method would be to look for an area of zero or very low signal between two features,

indicating a gap between the ground and canopy, as shown in figure 10. However, as figure 108

shows, sometimes other features such as shadow and bimodal canopies can cause similar drops in

waveform intensity. Confusing such a feature with the separation between ground and canopy will

lead to wildly inaccurate estimates of forest height, canopy cover and surface slope.

The nature of a section of low intensity (whether it is due to a shadow or a gap between the

canopy and ground) can be determined by examining the spectral ratio on either side. If the ground

and canopy returns are separated the two spectral ratios will be different. If the low intensity is due

to a shadow or gap in the canopy the spectral ratio will be the same (noise permitting, hopefully

dealt with by smoothing) and it will show a change at another point in the canopy.

Figure 130(a) and 130(b) show the waveforms and spectral ratio for a 17.8m tall Sitka spruce

forest with 78% canopy cover on flat ground (at a range of 1,200m); it was smoothed with a

3m Gaussian for clarity. The difference in spectral ratio before and after the gap is apparent.

Figure 130(c) shows the waveform for a 22m tall Sitka spruce canopy with 30% cover on a 12o slope.

This canopy is made up of young and old trees, making it bimodal. From the individual waveforms

it would seem that the canopy and ground were clearly distinguishable, but from figure 130(d) it

can be seen that the shorter trees’ canopies were mixed in with the ground return. So taking the

obvious break in the signal as the transition would lead to an underestimate of canopy cover. The

change in spectral ratio still corresponds to the start of the true ground, so if the period of low

intensity could be coped with, should allow a more accurate estimate of canopy cover. Due to the

low canopy cover at this point the ground immediately dominates the ratio.

209



 1160

 1170

 1180

 1190

 1200

 1210
 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009

R
an

g
e 

(m
)

Reflectance

Band 1
Band 2

(a) Waveforms for a 17.8m tall, 78% cover Sitka spruce

forest on flat ground

 1160

 1170

 1180

 1190

 1200

 1210
 0  0.5  1  1.5  2  2.5  3  3.5

R
an

g
e 

(m
)

Spectral ratio

(b) 2,300nm over 1,870nm

 1150

 1160

 1170

 1180

 1190

 1200

 1210
 0  0.002  0.004  0.006  0.008  0.01  0.012

R
an

g
e 

(m
)

Radiant flux

2300nm
1870nm

(c) Waveforms for a bimodal Sitka spruce canopy on a

12o slope

 1150

 1160

 1170

 1180

 1190

 1200

 1210
 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

R
an

g
e 

(m
)

Material (%)

Soil percentage
Canopy percentage

Spectral ratio

(d) 2,300nm over 1,870nm with material fractions

Figure 130: Gappy spectral ratios for Sitka spruce forests
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With more work along these lines a robust method for separating canopy and ground can be

developed, allowing determination of tree height, canopy cover and topography. There was not

time to carry this out within the thesis.

5.12.14 Multi-spectral conclusions

A physically based method for determining the ground position through topographic blurring and

understorey has been presented. Whilst it is not perfect, showing errors of up to 7m (greater for

for very high, > 97% and very low, < 8% canopy covers) it is a large improvement over single

wavelength methods where either prior data on the ground topography is needed (which is not

available on a global scale for forests (Rosette et al. 2007)), site specific metrics (Lefsky et al. 2007)

or else accept a higher error on slopes (Hofton et al. 2002), none of which would be suitable for a

global product. Hyde et al. (2005) reported mean errors of 8m using ICESat over a range of slope

types. The multi-spectral method presented here performs better than this on 30o slopes (close to

a worse case) and has the added advantage of not needing any separation between the ground and

canopy; therefore even the shortest (within a bin length) understory can be characterised.

The Kyoto protocol defines forests as having over 10%-30% canopy cover (Rosenqvist et al.

2003). Therefore it is not too much of a worry that the method fails for covers below 8% as these

are not classed as forest. The forest models used here had a flat plane for the ground, however this

method should work over any topography. Different shaped surfaces would simply have different

projected areas of ground within each range bin, the signal processing aspect would be unaffected.

Identifying the ground is the first step to measuring biophysical parameters on a slope, but

there needs to be some further processing to extract biomass and even tree height on a slope from

such data.

The wavelengths (2,300nm and 1,870nm) were selected to fit the specific spectra used in these

models. A more comprehensive look at different spectra, particularly of the ground (which may

include grass and moss), would be needed to choose the wavelengths for a global instrument.

Hopefully it will not be too long before such an instrument is available.
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5.13 Small footprints over topography

Section 5.12.9 described a method for large footprint lidar to cope when the ground’s height

variation is greater than the separation between it and the canopy and across a footprint. As

alluded to in section 5.8, the blurring caused by topography is directly proportional to the footprint

size; so a small footprint lidar will hardly be affected. This section will discuss the use of small

footprint lidars over topography.

There has been much work investigating small footprint lidar over forests on steep slopes, both

for extracting digital terrain models (James et al. 2007) and to measure trees (Takahashi et al.

2005). Arrays of small footprints can be aggregated together to get the 707m2 coverage needed

ensure a tree top is captured (Zimble et al. 2003). This way many small (<1m) footprints, each

unaffected by topography, can be combined to give the same signal as a large footprint system

(Hofton et al. 2002). For this the ground position in each footprint must be known. The ground

may not visible in each waveform (particularly footprints over the trunk of a tree) and so care

must be taken, using data from adjacent waveforms. Even then a consistent overestimate of

ground height, of the order of 1m, is reported due to saturation of the lidar beam in the canopy

and understory (Næsset and Økland 2002, James et al. 2007).

Such pixelated recording allows some interesting multi-scale analysis; not only measuring stand

height but separating individual, trees allowing height of individuals to be determined, aiding esti-

mates of biophysical parameters (Friedlander and Koch 2000). Though it has been said that lidar

is less suited for the determination of individual tree properties rather than stand characteristics

(Næsset and Økland 2002).

Small footprint studies so far have used airborne scanning instruments and at present there

are no plans for such an instrument to be put in space. Whether this is due to an engineering

limitation or not is beyond the scope of this thesis.

An alternative method to cover an area with small footprints is to use an “imaging lidar”

(Albota et al. 2002). That is an array of detectors recording returns from different areas of the

same laser footprint. This way a single laser pulse can produce many small footprint waveforms

over a large area simultaneously; an attractive prospect for a satellite.
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However spreading a single pulse over a large area and splitting the returned signal across

many detectors reduces the energy available for each detector, putting greater demand on the laser

source output and detector efficiency. Currently true full waveform imaging lidar is not possible

from space for more than a few pixels (Foster 2008).

Ground based imaging lidars have been built (Albota et al. 2002) and an airborne prototype for

a spaceborne instrument has been proposed (Harding et al. 2008). These overcome the dilution

of laser power by using Geiger mode APD’s (introduced in section 5.6), with their very high

quantum efficiencies; requiring only a single photon to make a measurement. They both overcome

background noise, which can produce spurious signals as shown in figure 60(a), by taking repeat

readings and averaging.

This technique works well for relatively slow moving vehicles (Albota et al. 2002) or over

homogeneous terrain, but the heterogeneity of forests and speed of satellites prohibit this. Along

with the difficulty in reconstructing a full waveform (section 5.6) it is safe to say that an imaging

lidar cannot currently be used to measure forests. More efficient full waveform detectors would be

needed before an imaging lidar suitable for spaceborne measurement of forests is possible.

Therefore spaceborne, waveform lidar looks set to remain large footprint for the foreseeable

future and so topographic blurring cannot be avoided.

5.14 Above canopy conclusions

This chapter has discussed some of the issues an above canopy lidar faces when trying to make

physically based measurements of forests. Such an approach, avoiding site specific calibration

factors, is preferable when creating global datasets.

The work concentrated on separating ground and canopy returns, the first step for any physi-

cally based measurement. It was shown how this would allow estimation of stand height, canopy

cover and ground slope but most end users require this to be converted to other biophysical pa-

rameters, such as biomass and LAI. Unfortunately there was not time to carry out this next step

in this thesis. There are moves towards ecological models driven by variables that satellites can

directly measure (Hurtt et al. 2004) and these would be able to make use of the forest variables
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derived in the previous chapter, thereby avoiding intermediate models.

Each system parameter affecting lidar accuracy was investigated. These were tested over a

range of likely target forests and optimum parameters found where possible. Some simple physical

methods for removing bias without affecting accuracy were introduced.

A method for large footprint lidar (currently the only instrument proposed for space) to cope

with topography has been introduced and shown to work for a range of forests and instrument

characteristics. This only requires the addition of an extra wavelength to an instrument otherwise

identical to current and proposed spaceborne lidars (ICESat’s GLAS already has two wavelengths,

532nm and 1,064nm, but the green is only sampled every 75m making it useless for forest mea-

surement). This would allow measurement of areas that were previously rejected (Neuenschwander

et al. 2008) or required complex, site specific calibration (Lefsky et al. 2007) whilst avoiding the

confusion of monochrome small footprint lidar by understory (James et al. 2007).

This work suggests that an ideal, large footprint spaceborne canopy lidar (within current engi-

neering limits) would have;

Lasers at 2,300nm and 1,870nm

Range resolution finer than 1m, ideally <50cm

As short a pulse as possible, <20ns

Continuous coverage of 707m2 to ensure measurement of a tree top

Full waveform detectors with no dead time

Record 10,000 signal photons to ensure noise does not limit accuracy

Such an instrument would allow accurate measurement of all forests except those with extreme

(> 99.5%, < 1%) canopy covers, though accuracy falls off above 95% and below 8% canopy cover.

Areas with cover below 10% are not officially classed as forest (Hansen et al. 2002), although

there may be footprints within a forest with such covers, they are unlikely to contain whole trees,

therefore this lower limit is not an issue. This is a first attempt and hopefully the accuracy can be

refined. Pulse length can be corrected for by subtraction of a constant from the signal start related
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to the pulse length. The multi-spectral information will ensure that the ground is distinguishable,

even through topography, understory and heterogeneous canopies.

Whilst such an instrument can separate canopy from ground it cannot measure leaf angle

distribution or the fraction of leaf and wood necessary to convert between canopy cover and LAI.

This means that some assumptions or else field data would still be needed to obtain certain

biophysical parameters for calibration and to help understand the signal. Such ground based data

would benefit from being range resolved.

This chapter has concentrated on tree height, but a full waveform lidar would be capable of

measuring the complete vertical distribution of a canopy. Whilst it has not yet been determined

how best to use such data in ecological models, with the increasing availability of lidar data it

should not be too long until that is the case. Therefore a fast (and so cost effective) method to

validate range resolved measurements will be needed.
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Chapter 6: Below canopy lidar

The previous chapter demonstrated that spaceborne, large footprint, full waveform lidar can be

used to produce global estimates of forest height that do not saturate until very high canopy covers.

Such an instrument would be a great advantage to the mapping of biomass and the modelling and

understanding of ecological processes, however all variables inverted from remotely sensed data

require validation before they can be used with confidence.

Section 3.1 reviewed a range of methods for measuring forests from the ground. Many of

the more accurate methods are too time consuming to be used for validations over anything but

small areas (Bréda 2003) and some require the destruction of areas of forest, preventing validation

throughout the growing season. Optical transmission methods are the fastest and most popular

ground based techniques (Gower and Norman 1991) and have been routinely used to validate

remotely sensed estimates of biophysical parameters. However their measurements saturate at

only moderate canopy densities (Jupp and Lovell 2007) and do not provide the range resolved

metrics needed to fully validate lidar signals.

Terrestrial lidar offers the potential to characterise canopy structure, allowing validation of

satellite lidar signals and avoiding the saturation issues of passive optical sensors. This chapter will

examine previous attempts to measure forests with terrestrial lidar, then a physically based, stand

scale inversion method is proposed and the resulting accuracy tested against existing methods.

Any proposed method must be practical to perform in the field and not take too much longer than

existing measurement techniques. It may be necessary to make a compromise between accuracy

and data collection time.

6.1 Terrestrial lidar systems

Terrestrial laser scanners have traditionally been discrete return systems. These are ideal for

measuring hard targets, such as buildings, and have been used to measure tree stem diameter and

stem volume (for example Watt and Donoghue (2005), see section 3.5.4). Whilst this is important

for assessing standing biomass and of particular interest for commercial foresters, this is a purely

geometric point cloud processing problem and so will not be covered in this thesis. Of more interest
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here is the ability of lidar to measure the canopy structure and leaf area index.

Some success has been reported using discrete return terrestrial laser scanners to measure

complete forest structure (Côte et al. 2009), however these have required external information on

tree form to convert the point clouds into quantitative data and could only be used on one tree at

a time. It would be very time consuming to measure an area of forest large enough to match up

to remotely sensed data with such a detailed method and it would be greatly complicated by trees

obscuring each other.

There have been attempts to measure stand scale properties with discrete return terrestrial

lidars, using them in much the same way as a range resolved hemispherical camera (Danson et al.

2007, Jupp et al. 2009). These, more abstract, approaches require fewer external parameters.

However as each beam records only a hit or miss, small objects that do not fill the field of view

will be recorded as hits and so gaps smaller than the laser footprint are missed (Danson et al.

2007). Some discrete lidars also record the intensity of returns which may allow some estimate

of the fraction of field of view filled, but no information is available on objects behind the first

interaction, so a small object in front of a trunk would be recorded as a weak return although

there is no gap in that direction. Thus they are particularly susceptible to occlusion (Clawges

et al. 2007).

Full waveform lidar records returns from all visible surfaces and so avoids this “blinding”. Of

course the beam can still be obscured, but it is potentially possible to work out at what point the

beam is fully blocked and so decide what is and is not being measured. At present there is only one

true full waveform terrestrial lidar, CSIRO’s experimental Echidna (Jupp et al. 2009), although

Riegl has recently made moves towards a terrestrial scanner with full waveform digitisation in their

VZ-400. At present the data is processed on board the Riegl instrument, outputting only a few

discrete returns. Commercial instruments are tailored for the traditional surveying market and

so true full waveform lidar, with its enormous data output, is not really needed. The rest of the

chapter will focus on Echidna and its potential future developments.

Thus far Echidna has been used to extract trunk characteristics in exactly the same way as

discrete return systems in order to prove that it is capable of these measurements (Yang et al.
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2008). In addition there have been attempts to measure stand scale canopy parameters such as

LAI. Current attempts have used the scanner in the same way as a hemispherical camera (Jupp

et al. 2009), again to prove that it is capable of such measurement with comparable or better

accuracy than traditional methods, before using more complex algorithms. Here full waveform

systems have a large advantage over discrete because objects smaller than the field of view will be

recorded but not block the measurement of surfaces behind (or lack of). As the intensity of each

return is recorded it is possible to estimate the fraction of field of view filled, allowing measurement

of gaps smaller than the laser footprint.

6.2 Simulated data

The Monte Carlo ray tracer, described in chapter 3.6, was used to create sets of Echidna like,

full waveform lidar hemispherical scans. Beam divergences of 0.8o were used between -100o and

100o zenith and 0o and 180o azimuth. Waveforms were sampled every 15cm and at a range

of wavelengths. Each scan contained 56,250 separate beams, requiring considerable computer

resources to trace. Waveforms were individually run length encoded (Golomb 1966) to prevent

files from exceeding UNIX and C’s 2Gbyte file navigation limit (Schildt 1997). They could then

be individually uncompressed within the inversion program when needed. Run length encoding

is particularly effective for full waveform lidar data due to the long sections of zero signal (in the

simulator background noise is added afterwards, section 3.6).

Older trees are far larger than younger trees and so contain many more scattering elements,

taking much longer to simulate. It was decided to simulate many scans within uniform aged young

forests rather than far fewer in a large range of forests and so only young Sitka spruce and birch

forests were used. Young and old trees have equally dense crowns, only the size changing, therefore

at the scale of an Echidna scan the age of the trees should not matter. Of course any method

should be tested on a comprehensive range of forest ages and densities, but this was not attempted

in this thesis. A grid of overlapping scans were simulated, with separations depending on the

availability of holes big enough to “place” the virtual Echidna, which was positioned so that there

were no objects within 80cm of the scan centre.
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In addition small sections of canopy were extracted and scans simulated from a large range of

positions. These small sections contained relatively few elements and so simulations could be run

quickly, allowing experiments with data volumes that would not be possible with complete canopies.

These small sections were used to explore the sensitivity of inversions to different parameters and

so which could be ignored. This lead to a simple inversion method, though slightly different

approaches were needed for Sitka spruce and birch canopies due to the different amounts of self

shadowing in the two. Then the required number of separate scans (and so a rough idea of the

time complete measurement) was determined.

Unless otherwise noted all results presented in this chapter come from these simulated Echidna

scans.

6.3 Gap fraction

Gap fraction is a useful variable to measure and can be easily compared to more proven technologies.

Previous studies have used terrestrial lidars to measure gap fraction (Danson et al. 2007, Jupp

et al. 2009) and this should form the benchmark to test any new methods against. This section will

implement the gap fraction method of Jupp et al. (2009) and assess its accuracy when used with

the simulated scans described in the previous section. Along the way the sensitivity of inversion

accuracy to various factors will be explored.

Echidna’s footprints are larger than the pixels of digital cameras (at fine resolution Echidna

scans equate to one mega pixel but beams overlap and start with a diameter of 3cm and so have a

diameter of 6.9cm at a range of 10m), too big to fit through many gaps and so a simple fraction of

beams that do not record hits will lead to an underestimate of gap fraction. Even for very small

footprint lidar this effect causes an overestimate of LAI (Danson et al. 2007) and so the sub pixel

gaps must be found from returned intensity. A lidar measures returned radiant flux, Φ which can

be found by integrating the intensity, I over the solid angle of the detector’s field of view Ω (Slater

1980)

Φ =

∫

IδΩ (46)
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The intensity I depends upon the range to the target, r, outgoing power, Io, detector efficiency,

K(r) and the properties of the target summarised in its apparent reflectance η and can be found

from the lidar equation (Wagner et al. 2006).

I =

∫

I0
K(r)η(r)

r2
dr (47)

Note that the detector efficiency K(r) may vary with range as the area of overlap of the fields

of view and illumination can vary; the two will never be perfectly aligned for all ranges (Jupp et al.

2009). The returned intensity is the integral of returns over range to allow for diffuse targets.

Of these factors all except for the apparent reflectance, η(r), are engineering considerations that

can be easily calibrated against laboratory measurements or, in the case of range, from the lidar’s

own measurements. The apparent reflectance depends upon the target’s properties through the

fraction of projected area (or gap fraction) Pgap, the canopy element reflectance, ρc and the phase

function, Γ(θ) at a zenith angle, θ.

η = (1 − Pgap)ρcΓ(θ) (48)

Here the gap fraction is related to the ratio of the projected area, Ap, to footprint area, Af ,

which in turn is related to the surface area, As, and the Ross-G function, G(θ). Figure 131 shows

a sphere and a lidar beam with these three areas illustrated.

Pgap = 1 − Ap

Af

= 1 − AsG(θ)

Af

(49)

Solving equation 48 for gap fraction gives;

Pgap = 1 − η

ρcΓ(θ)
(50)

So to determine the gap fraction from Echidna the reflectance of canopy elements and the phase

function must be known. Jupp et al. (2009) assumed that ρc = 0.4 for all elements at 1064nm

and that Γ(θ) = G2(θ), both from laboratory measurements. They then assumed that canopy

elements are spherically distributed so that Γ(θ) = 1
4 for all view angles. Gap fractions estimated

from Echidna compared well with hemispherical photography and were even more consistent,

220



Figure 131: Illustration of areas used in derivations

being more tolerant to varying illumination conditions. The agreement of gap fractions with those

from hemispherical photography does not necessarily mean that the values chosen were accurate,

only that their products are correct (Jupp et al. 2009) and so should be considered as effective

parameters (Widlowski et al. 2005).

(a) Young birch forest (b) Young Sitka spruce forest

Figure 132: Hemispherical projection of two simulated Echidna scans

Equation 48 assumes that there is a linear relationship between the gap fraction and apparent

reflectance for each beam with a gradient of 1
ρcΓ(θ) and that Γ(θ) is spectrally invariant. In reality
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the phase function will vary throughout the canopy and multiple scattering, completely ignored in

equation 48, will also contribute to the apparent reflectance. Scattering varies with wavelength, as

described in section 2.1.6 and so the effective phase function will have some wavelength dependence.

The element reflectance may also be variable throughout the canopy and seasons (Doughty and

Goulden 2008) but as the forest models used assume that all elements of a certain type had the

same spectra this effect was not investigated, only the structural heterogeneity. Field measurements

suggested that the reflectance within a species (taking red fir as an example, see section 4.2.2) varies

by around 0.1 for a reflectance of 0.6 and Jupp et al. (2009) believe it to be small, therefore it

seems reasonable to assume that structural effects dominate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

G
ap

 f
ra

ct
io

n

Apparent reflectance

1064nm
532nm

(a) Birch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

G
ap

 f
ra

ct
io

n

Apparent reflectance

1064nm
532nm

(b) Sitka spruce

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

G
ap

 f
ra

ct
io

n

Apparent reflectance

1064nm
532nm

(c) Birch without multiple scattering

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

G
ap

 f
ra

ct
io

n

Apparent reflectance

1064nm
532nm

(d) Sitka spruce without multiple scattering

Figure 133: Gap fraction against apparent reflectance

Plotting gap fraction against apparent reflectance, shown in figure 133, suggest that the two

are very closely related. Removing multiple scattering had very little effect on the signal at 532nm

due, to the low element reflectance at that wavelength, but did reduce the spread at 1,064nm.

For Sitka spruce with multiple scattering, ρcΓ = 0.41 with a root mean square error in gap

fraction of 0.061. Without multiple scattering, ρcΓ = 0.35 with a root mean square error in gap
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fraction of 0.057. Thus for Sitka spruce the multiple scattering did make a significant contribution

to the apparent reflectance (which this models subsumes into the phase function) and increased

the spread of points. That the variance was not completely removed with multiple scattering

shows that the heterogeneity of the structural components of the phase function were significant.

A number of scans for each species were examined and all showed near identical behaviour and so

this behaviour was taken as general.

For birch with multiple scattering ρcΓ = 0.33 with a root mean square error in gap fraction of

0.076. Without multiple scattering ρcΓ = 0.32 with a root mean square error in gap fraction of

0.076. Here the multiple scattering had a very small effect on the phase function and a negligible

effect on the spread of data. This is due to the lower scatterer density in birch, so that the

contribution from multiple scattering is less (figure 135).

The small root mean square errors are an encouraging sign and suggest that equation 48 can be

used to estimate gap fraction if an appropriate value can be found for the product of the canopy

element reflectance and phase function. The values found here were very different from those used

by Jupp et al. (2009), where ρcΓ = 0.1. In the models used, at 1064nm ρl = 0.51 and ρw = 0.57,

higher than the 0.4 used by Jupp et al. (2009) and it was assumed that all surfaces are perfectly

Lambertian. This last assumption may not be appropriate for the forests investigated by Jupp

et al. (2009) or their value may have been effective, taking other effects into account. Without more

details on the forest these were estimated from and the appropriateness of Lambertian surfaces

the cause of these differences cannot be determined for certain.

6.3.1 Separation of phase function and element reflectance

The above analysis is possible with real data through the comparison of gap fractions from Echidna

and hemispherical photography, but the heterogeneity of structure, element reflectances and mul-

tiple scattering make it impossible to completely decouple the various effects.

If a single phase function, Γ(θ), is used to describe both leaves and wood the apparent reflectance

is;
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η = Γ(θ)
1

Af

(ρlAlG(θ) + ρwAwG(θ)) (51)

Where ρl is leaf reflectance, ρw is wood reflectance, AlG(θ) is the projected area of leaf and

AwG(θ) the same for wood. From the ray tracer only Γ(θ) is unknown so it can be solved for each

beam.
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(d) Against apparent reflectance for Sitka spruce

Figure 134: Combined phase function for all canopy elements against apparent reflectance

Figures 134(a) and 134(b) show that there was a slight increase in the phase function with

decreasing zenith, suggesting a slightly planophile canopy. Table 3 shows the results of fitting

straight lines to these data of the form Γ(θ) = mθ + c (zenith dependent) and a flat line (no zenith

dependence).

It can be seen that for Sitka spruce the phase function had very little dependence on view

zenith, the sloping line would have the phase function vary from 0.84 at nadir to 0.75 horizontally.

The errors on the fit for the sloping and flat line were near identical, suggesting that there is little

advantage to the hemispherical gap fraction in including a zenith dependence. For birch there is a

slightly stronger zenith dependence, with the phase function varying from 0.87 at nadir to 0.53 when
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Species Multiple scattering m c RMSE

Birch With -0.0038 0.871 0.107

Birch With forced 0 0.608 0.125

Birch Without -0.0040 0.870 0.108

Birch Without forced 0 0.595 0.126

Sitka With -0.0006 0.816 0.082

Sitka With forced 0 0.775 0.082

Sitka Without -0.0012 0.776 0.118

Sitka Without forced 0 0.690 0.118

Table 3: Parameters of linear fits for phase function against zenith with root mean square errors with and

without multiple scattering

viewed horizontally and a higher error (16% larger) when fitting a flat line compared to the sloped

case. Note that removing multiple scattering only slightly decreased the phase function for birch

but caused a more marked reduction for Sitka spruce, bringing the two much closer together. This

undoubtedly proves that there is more multiple scattering amongst the densely packed scattering

elements in a Sitka spruce shoot than for birch leaves. This increased multiple scattering seems to

have a larger effect upon the differences in phase function and apparent reflectance between the

two species than other structural effects. The remaining difference in phase function can only be

due to angular distribution and the proportions of leaf and wood. For the sloped line, removing

multiple scattering increased the slope for both species. This suggests that multiple scattering is

masking some of the angular distribution effects. For these young forests, the canopies are far

denser near the bottom and so more multiple scattering occurs at large zeniths than nadir (see

figure 135). For older trees the canopy will be denser higher up and so this masking may not be

as strong.

Due to the nature of the trees used in this set of simulations, the scans had no foliage directly

above the lidar and so no estimates of phase function were available for zeniths less than 25o.

Therefore the value at nadir is an extrapolation beyond the measured bounds and may not be

225



reliable. To get returns from nadir, trees that overhang the lidar are needed, whilst allowing a

wide view of the canopy (you would not set up a scan right against a tree trunk or within a shrub

as the field of view would be greatly limited). Trees that are large enough to overhang a point

whilst their trunks are far enough away not to block too much field of view (2m) are very complex,

requiring far more computer time to ray trace than the younger trees used in these scans.

Taking this limited zenith range into account, for birch the phase function varied between 0.53

and 0.76 across the range tested. In this light the zenith dependence for birch does not seem so

strong and the analysis can be performed assuming that the phase function is independent of view

angle, Γ(θ) becoming Γ. It is hoped that any trend with zenith will be insignificant compared

to other sources of heterogeneity and comparing figures 134(a) and 133(a) it can be seen that

apparent reflectance is far more correlated to the gap fraction than phase function, suggesting

that gap fraction controls the returned signal strength. To test this the difference between actual

phase function and the assumed constant value was calculated, grouped in zenith bins. In addition

equation 49 was used to predict a gap fraction using the constant phase function and a known

reflectance (taken as the average of leaf and wood) and the error calculated.
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Figure 135: Contribution from multiple scattering against zenith angle

Figure 136 shows the mean and standard deviation of the phase function over all azimuths at

each zenith and the error in gap fraction resulting from assuming a constant phase function across

all zeniths. The true gap fraction is shown alongside the errors to give an idea of the relative

error. From figure 136(c) it can be seen that for Sitka spruce any relationship between error

in the phase function and zenith was negligible compared to the errors caused by heterogeneity.
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Figure 136: Errors from using a constant phase function against view zenith. Error bars show one

standard deviation
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Figure 136(a) shows that for birch the phase function error had a distinct zenith dependence, with

the mean error varying from 0.3 at 80o to 0 at 28o and the spread of errors decreasing with zenith.

However figure 136(b) shows that despite this error the predicted gap fraction was always within

one standard deviation of the truth for zeniths below 70o, though with a consistent overestimate.

Assuming a constant phase function caused significant errors in gap fraction for beams near

the horizontal for both species (more than 70o zenith). However these angles contain trunks and

ground returns and have very long path lengths, so most studies ignore them. The LAI-2000 does

not measure zeniths beyond 70o (LI-COR 1992) and most users further limit this to 50o to be sure

of removing ground effects (Chen and Cihlar 1996) and so these large errors at high zeniths can be

discounted. Within the restricted zenith range the errors were small, around 0.05 for gap fractions

in excess of 0.8 for both species.

Interestingly for birch the predicted gap fraction showed a consistent overestimate. As the

phase function was determined by fitting to the data this bias can only come from uncertainty

in the element reflectance. The value used assumed that there were equal contributions from leaf

and bark, this must not have been the case and the reflectance value used must be too high. An

overestimate of gap will lead to an underestimate of LAI; this highlights the importance of using

correct values of both phase function and canopy reflectance to extract gap fraction from Echidna.

Separating leaf and wood The slight difference between the phase functions for birch and

Sitka spruce without multiple scattering must be due to other structural effects, either the angular

distribution or the proportions of leaf and wood. As the projected areas of leaf and wood are

recorded separately, as long as the beam contains only leaf and wood (no soil) separate phase

functions can be extracted by using two wavelengths and solving a pair of simultaneous equations

(see appendix D). For an apparent reflectance η(λ) at a wavelength λ with a projected area of leaf

Al and wood Aw which have reflectances at λ of ρl(λ) and ρw(λ), with a second wavelength, ω,

the phase functions for leaf Γl and wood Γw can be found from;

Γl =
Af

Al

η(λ)ρw(ω) − η(ω)ρw(λ)

ρl(λ)ρw(ω) − ρl(ω)ρw(λ)
(52)
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Γw =
Af

Aw

η(λ)ρl(ω) − η(ω)ρl(λ)

ρw(λ)ρl(ω) − ρw(ω)ρl(λ)
(53)

Plotting this against apparent reflectance without multiple scattering (which would only mask

any structural effects) for birch and Sitka spruce gave figure 137.
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Figure 137: Phase function without multiple scattering for leaf and wood and proportion of canopy made

up of leaf. Error bars show one standard deviation

Figures 137(a) and 137(c) show that for birch the decreasing phase function with zenith was

almost entirely due to leaves, the wood phase function did decrease a small amount with zenith but

it was almost negligible compared to the variance. For Sitka spruce (figures 137(b) and 137(d)) the
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leaf phase function appeared to be constant whilst the wood phase function showed a very slight

tendency to increase with decreasing zenith. Figures 137(e) and 137(f) show that for both species

the proportion of wood was higher nearer the horizontal, which is what would be expected as

trunks become more visible. For birch this settled down to a reasonably constant value by a zenith

of around 70o whilst for Sitka spruce it was constant from 70o to 40o, after which it increased. This

difference between species may be due to the greater tendency of pine needles to group around

branches and so obscure wood than for broadleaved species. As the reflectances for leaf and bark

are quite similar at these wavelengths (ρl = 0.51 and ρw = 0.57) this should not have a dramatic

effect but will contribute to errors at higher zeniths (see figure 136). The gap fraction analysis

used for figure 136 assumed that the proportion of leaf and wood was constant, this was not the

case and as the proportion changes the canopy reflectance will also change. For the spectra used,

increasing the proportion of wood will increase the canopy reflectance and so decrease the estimate

of phase function, leading to an overestimate of gap fraction.

6.3.2 Accuracy of gap fraction estimates

Having determined that Echidna can be used to estimate gap fraction, provided that a value for

the phase function and canopy reflectance are known, it was seen whether this could be applied

across a number of scans in similar forests. The previous section found that for the forest models

used, for birch Γ = 0.608 and for Sitka spruce Γ = 0.776. For both of these forests at 1064nm the

reflectance was 0.51 for leaf and 0.57 for wood. Linearly mixing the two reflectances, assuming

an equal proportion of leaf and wood in the absence of any more reliable data, gives a canopy

reflectance, ρc = 0.54.

The above values were derived from a single scan (referred to as scan 1) after seeing that all

scans were qualitatively similar these were used to calculate the gap fraction for each beam in all

scans available.

Figure 138 shows that the gap fraction predicted by the above method was always within one

standard deviation of the truth for zeniths below 53o, although with a consistent overestimate. This

bias is most probably from the assumption of equal proportions of leaf and wood and the resulting

underestimate of canopy reflectance. Figure 137 shows that leaves dominated in this zenith range
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Figure 138: Gap fractions from Echidna. Error bars show one standard deviation
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and so the canopy reflectance should be lower than the 0.54 used. The error introduced by using

the wrong canopy reflectance was in the region of 5% and may be acceptable when compared to the

errors introduced in the conversion of gap fraction to LAI, but if it is to be reduced more accurate

estimates of the canopy reflectance and proportions of leaf and bark are needed. Frustratingly

the hinge point of spheroidal distributions at 54.7o (Wilson 1960), was at the very edge of this

reliable range. For zeniths above 53o the agreement worsened, most probably due to the changing

proportions of leaf and wood and amount of multiple scattering (figures 137 and 135). That the

error in phase function increased equally for birch and Sitka spruce suggests that it was not caused

by assuming that the phase function is constant with zenith. The method completely broke down

above 90o as the ground starts to contribute. The ground was not included at all in the above

method and it would be difficult to use gap fractions in this region even if they could be reliably

estimated, therefore data containing ground returns must be discarded.

6.3.3 Sensitivity of gap fraction to external parameters

The method relies on knowledge of canopy reflectance and phase function, uncertainties in these

values will cause errors in the estimates of gap fraction. The sensitivity of gap fraction estimate

to element reflectance was explored by performing inversions for a range of canopy reflectances

and phase factors. It has been shown that the gap fraction is unreliable at zeniths above 53o,

therefore only zeniths above 50o were used for the following analysis. Within this region there was

no obvious dependence of error on zenith, so the mean and root mean square errors were taken as

a measure of accuracy for each scan and set of parameters.
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Figure 139: Sensitivity of gap fraction from Echidna to phase function and canopy reflectance
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Figure 139 shows the sensitivity of the gap fraction, estimated by equation 49, against values

of the phase function and canopy reflectance. Errors over 1
2 have been left out as such a result

is clearly unacceptable and only the magnitude of the error is shown to make areas of zero error

more apparent. It can be seen that the dependence is rotationally symmetric about Γ = 1, ρc = 1

and so a cross section along any radii will give a complete picture of the sensitivity at its steepest.
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Figure 140: Slices through the error surface in figure 139

Figure 140 shows that for birch the estimated gap fraction’s dependence on phase function and

canopy reflectance was quite benign, with changes of only 0.1 for an uncertainty of 0.1 in one or

the other. For Sitka spruce the error increase with uncertainty was more dramatic, reaching a 0.1
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error in gap fraction with an uncertainty of only 0.04 in the canopy reflectance. This is a very

tight tolerance and may cause errors when applied over large areas.

The gap fraction may be more sensitive for Sitka spruce than birch because for these Sitka forests

the phase function was more homogeneous (indicated by figure 133 with the smaller deviation from

a straight line). Therefore any deviation in phase function or canopy reflectance from the truth

will cause more points to be one side of the line of the truth than the other for Sitka spruce than

birch and so a larger error.

6.3.4 LAI from gap fraction

The above section has shown that Echidna can be used to accurately determine gap fraction, this

can then be used to calculate LAI using the method of Jupp et al. (2009).

LAI =
− lnPgap(θ)

k(θ)
(54)

Where k(θ) is an angular distribution term and also takes path length through the canopy into

account. Jupp et al. (2009) used an approximation of the spheroidal distribution (Campbell 1986).

k(θ) =
1

cos θ

(

Lh cos θ + Lv

2

π
sin θ

)

(55)

Where Lh is the horizontally and Lv the vertically projected LAI. Total LAI is then the sum

of these terms. This is similar to the model of Suits (1972) with an added 2
π

term. This can be

rearranged and simplified into a linear form;

− lnPgap(θ) = Lv

2

π
tan θ + Lh (56)

The projected leaf area terms were found by plotting − lnPgap against 2
π

tan θ and fitting a

straight line. Lv is then equal to the gradient and Lh the y intercept. This method was applied

to the above gap fraction results to determine the LAI accuracy possible with this method.

It is not clear whether Jupp et al. (2009) used the mean gap fraction in each zenith ring to fit a

line to or all azimuths separately and if they were combined whether the variance within a zenith

ring was used in the regression. Without using the variance, these methods give different estimates
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of LAI and very different certainties. in the absence of detailed knowledge on the method it was

decided to use the average of each zenith ring so as to minimise noise from heterogeneity, using

the standard deviation of each ring as uncertainty during the line fitting.
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Figure 141: Inverted PAI against true PAI for inversions of birch canopies using the method of Jupp et

al. (2009)

Figure 141 shows that for very low PAIs (<0.01) the method performed perfectly, but for the

majority of cases the PAI was underestimated. Jupp et al. (2009) applied an additional correction

to their phase factor in order to “prevent the canopy becoming too transparent”, suggesting that

the values they used for phase factor and reflectance were too low for the particular canopy tested.

For the canopy tested here the same over prediction of transparency (and so gap fraction) was

observed, particularly at large zeniths. An additional correction would increase estimated LAI,

moving it closer to the truth. Such a fudge factor may give better results, but it has no physical

basis and is not guaranteed to give the correct results. Comparing inverted gap fraction and LAI

results to those found with hemispherical photography may not reveal these issues due to the

common assumptions of the two methods. In addition their G function also took clumping into

account (Jupp et al. 2009) and so would be higher than the value used here, leading to an increase

in the estimate of PAI.

As well as these various correction factors, which could be applied to move the estimates closer

to the truth, the plot of gap fraction against zenith angle was quite noisy due to the heterogeneity

of the forest. Even with the averaging and using the standard deviation as a measure of uncertainty

the algorithm struggled to fit an accurate straight line. This highlights the problems of treating

a canopy as heterogeneous as a sparse birch forest as a turbid medium (Ross 1981). The method
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may perform better for denser, more homogeneous canopies, but such data was not available in

the thesis.

The above inversion used the gap fractions from section 6.3.2, all of which were slight overes-

timates. The inversion was repeated using the known truth and found to not noticeably improve

the accuracy of the LAI estimation alone.

6.3.5 Sensitivity of LAI to external parameters

In section 6.3.3 it was shown that the gap fraction was sensitive to the initial estimates of canopy

reflectance and phase function, particularly for Sitka spruce. The gap fraction is not the primary

parameter of interest but PAI (and so LAI). This error from uncertainty will propagate through to

PAI through equation 56 so that for a gap fraction estimate of “xPgap”, in error by a factor “x”;

− ln(xPgap(θ)) = Lv

2

π
tan θ + Lh (57)

Using the logarithmic identity, ln ab = ln a+ ln b it can be seen that any uncertainty in the gap

fraction, x will become an error in the horizontally projected leaf area, Lh of magnitude lnx, the

gradient being unaffected. Figure 142 shows this sensitivity.
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Figure 142: Sensitivity of PAI estimate to uncertainty in phase function and canopy reflectance

A 10% error in the product of the phase factor and canopy reflectance will lead to between a

9.5% and 11.5% (depending on whether it is an under or an overestimate) error in LAI. This error

will be entirely in the horizontally projected LAI and so the LAD will also be in error.
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6.3.6 Gap fraction conclusions

This section has shown that a full waveform terrestrial lidar can measure gap fraction accurately,

with the advantage over passive optical methods of being independent of illumination conditions.

This would allow measurements at any time of day or night and any sky conditions; far more of an

advantage than nocturnal forestry. Unlike passive optical methods, knowledge of the reflectance

and phase function of elements is required to extract gap fraction from measured intensity. Whilst

authors believe these values to be fairly constant (Jupp et al. 2009) it is a potential source of error

and bias. This investigation suggests that for Sitka spruce, small uncertainties in these external

values will lead to large errors in estimated gap fractions.

Once the gap fraction has been calculated Beer-Lambert’s law is needed to invert forest param-

eters, with all the issues of saturation, effective parameters and clumping suffered by traditional

passive optical methods (see section 3.1.4). Whilst it is useful to test the new technology against

an existing benchmark the gap fraction method does not take full advantage of all the possibilities

of a terrestrial waveform lidar and a method that does should be the ultimate goal (Jupp and

Lovell 2007).

6.4 Model inversion

Whilst Echidna can be used to extract gap fraction through equation 50 and this can be used to

calculate LAI with equation 56, it is a roundabout way of arriving at a biophysical parameter. The

returned intensity is related to gap fraction, but by rearranging equation 48 the lidar signal can

be more directly related to canopy properties. To restate, the apparent reflectance, η, is given by;

η = (1 − Pgap)ρeΓ(θ) (58)

The contact frequency (Pcont = 1−Pgap) is equal to the projected area as a fraction of the field

of view. For a flat plane at an angle of incidence α this will be the visible surface area multiplied

by the cosine of the angle of incidence.

Pcont = 1 − Pgap =
Ap

Af

=
As

Af

cosα (59)
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For a flat Lambertian plane the phase function will also be equal to the cosine of the angle of

incidence;

Γ(α) = cosα (60)

And so for a flat Lambertian plane at an angle of incidence α the apparent reflectance is given

by;

η = ρe

As

Af

cos2 α (61)

Any surface can be represented as a set of small planes, each with a surface area of dAs and

so the apparent reflectance can be taken as the integral of the contributions from each of these

elements.

η = ρe

1

Af

∮

cos2 αdAs (62)

This takes no account of multiple scattering and unlike the method of Jupp et al. (2009) none

of the structural parameters are effective factors that could be used to fudge the multiple scattering

contribution. It would be possible to use an effective element reflectance that includes the multiple

scattering enhancement to the single scattering value (Huang et al. 2007), however this was not

attempted within the thesis.

The gap fraction can be found following a similar logic.

Pgap = 1 − 1

Af

∮

cosαdAs (63)

The Ross-G function is simply the contact frequency divided by the surface area.

A canopy is made up of leaf and wood, each of which may have different reflectances (ρl and

ρw), areas (dAls and dAws) and orientations (αl and αw). Therefore the apparent reflectance and

gap fraction will be a sum of the above equations for each material type. Assuming that all leaves

can be described by a single spectrum and all bark by another (which may be a limitation for

forests with a mix of young and old trees, see section 4.2.2).
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η =
1

Af

(

ρl

∮

cos2 αldAls + ρw

∮

cos2 αwdAws

)

(64)

Pgap = 1 − 1

Af

(∮

cosαldAls +

∮

cosαwdAws

)

(65)

A factor describing the proportion of total surface area made up of leaf will be useful. For leaf

surface area, Al and wood surface area, Aw, the woody correction factor, Ψ, is;

Ψ =
Al

Al + Aw

(66)

As elements are encountered the footprint area will be reduced, affecting the intensity in subse-

quent ranging bins and so the above equations should be corrected for the gap fraction up to that

point. A simple multiplication of the field of view area by the gap fraction will give the visible

footprint area, Avf ;

Avf = AfPgap (67)

Which will be the product of all gap fractions for all voxels, i, up to that point.

Pgap =
∏

i

(

1 − 1

Af

∮

cosαidAs,i

)

(68)

Substituting the visible footprint area from equation 67 into equations 64 and 65 will give the

true surface area at each range bin, provided that the visible elements are representative of those

obscured. If there is any preferential arrangement of elements along a lidar beam (a tendency to

obstruct or fill gaps) or great heterogeneity in the angular distribution this correction will lead to

inaccurate estimates. The apparent reflectance then becomes;

η =
1

AfPgap

(

ρl

∮

cos2 αldAls + ρw

∮

cos2 αwdAws

)

(69)

The solution of equation 62 requires a model to relate an element’s surface area to its angle of

incidence and view zenith. Cauchy’s theorem (Lang 1991) could be used to measure the surface

area of any convex shape from the gap fraction over all possible view angles, but this would require
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an initial inversion to get the gap fractions over all angles in the first place. Instead a leaf angle

distribution model can be used to perform the inversion in a single step.

Some popular models for leaf angle distributions were introduced in section 2.1.1. Whilst

the beta distribution (Goel and Strebel 1984) appears to give the better representation of many

canopies, it requires knowledge of the mean angle of incidence and variance, requiring measurements

from all angles of incidence or else another measure to calibrate against. Unless a canopy is

assumed to be homogeneous (which some claim to be inappropriate (Wilson 1959)) this would

require measurements from all angles and so may not always be possible. Therefore a simpler

model that can cope with gaps in the data should be used, such as a single parameter model.

Of these single parameter models the spheroidal distribution of Campbell (1986) is the most

popular. Appendix C shows that, except in the special spherical case, the integral in equation 69

of such a model does not lead to a simple analytical solution and we must resort to computa-

tionally expensive numeric integration (which can be pre-computed and stored in a table) or an

approximation. The choice of model is critical to the accuracy of inverted parameters.

6.4.1 Voxels

To get explicit multi-angular measurements of any part of canopy overlapping scans from different

locations are needed. Processing of multiple scans requires all range bins to be matched up, which

will be at different ranges and so of different sizes. The only way to match up the different range

bins is to group them into volumetric pixels or “voxels”, illustrated by figure 143. This is similar

to the approach used in DART (Gastellu-Etchegorry et al. 1996) and has been applied to discrete

return terrestrial lidar with some success (Hosoi and Omasa 2006).

The richness of overlapping Echidna scans would allow a DART style model to be inverted

with far fewer assumptions than is necessary to invert from current remote sensing data (Gastellu-

Etchegorry et al. 2004). Current estimates of complex models, such as DART and GORT (Ni-

Meister et al. 2001), require an assumption of canopy form (basic shape and some dimensions,

although lidar can provide height), whilst an inversion of Echidna will need a few assumptions

to describe the optical properties of individual scattering elements (bidirectional reflectance and

transmittance spectra), none are needed for the structure.
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Figure 143: Illustration of a forest divided into voxels

Figure 144: Image of a section of Sitka spruce canopy
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6.4.2 Small scale leaf angle distribution

The models discussed in section 2.1.1 were derived from direct digitisation of whole plants or else

stand scale transmission measurements. The voxel method looks at a much finer scale than these

traditional methods, so to explore the angular distribution at these smaller scales cubes of different

sizes (from sides of 12.5cm to 1m) of canopy elements were extracted from Sitka spruce and birch

canopies. Simulated lidar measurements were made of this cube from all angles, both zenith and

azimuth, to explore the heterogeneity of apparent reflectance, gap fraction and visible surface area;

a process impossible in reality.
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Figure 145: Lidar results from the section of Sitka spruce canopy shown in figure 144
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Sitka spruce Figure 145 shows the apparent reflectance along with projected and surface areas

from different view directions for a section of Sitka spruce canopy.

From figure 145(a) it can be seen that the apparent reflectance varied dramatically with view

direction, however if the projected area is taken into account (as in figure 145(b)) this variation

was greatly reduced. There was very little variation with azimuth, supporting many authors’

assumption (Strebel et al. 1985, Weiss et al. 2004). The proportion of leaf was fairly constant

with view direction, leaf dominating at all angles (figure 145(d)).

The ratio of visible surface area to projected area was also reasonably constant with view

direction (figure 145(e)), varying between 0.48 and 0.56. There was some variation with azimuth,

but as the range was so small this may be negligible. The ratio of visible surface area to actual

surface area, the factor that would be taken into account by Beer-Lambert law, varied with zenith,

from 0.11 to 0.19 but showed little variation in azimuth.

To see if these effects are general the above simulations were repeated for a number of sections of

canopy from different trees. The data was reduced to a variance in zenith and azimuth and these

results are shown in figure 146. These results suggest that whilst the assumption of azimuthal

symmetry is not perfect, any variation was small (though not entirely negligible) compared to

zenithal variance. For the rest of this thesis azimuthal symmetry will be assumed.

All single parameter angular distribution models assume that the angular distribution is sym-

metric about the vertical axis, so the visible surface area must be constant from all view directions.

Of course the projected area and phase function will change, but the visible area must always be

half of the total surface area. Real canopy sections will suffer from some occlusion, so the visible

surface area will not be half the total surface area, but for the models to work well the ratio should

be reasonably constant.

Figure 147 shows the ratio of visible surface area to total surface area for sections of canopy

from different trees and locations within trees. The plot shown in figure 147(b) was by far the

most common shape, the others are shown to give an idea of the behaviour in all situations. There

did not seem to be any relationship between the size of a canopy section and the variance of visible

surface area, nor with the location within the canopy. This difference in visible area must be
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Figure 146: Variance in azimuth and zenith for Echidna scans of a number of sections of Sitka spruce

canopy
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Figure 147: Fraction of surface area visible against zenith angle for a number of sections of Sitka spruce

canopy
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entirely due to heterogeneity of the distribution of scattering elements.

The section of canopy that led to figure 147(c) was at the top of the tree and contained a single

shoot pointing near vertical. Therefore it looked the same from all azimuths (leading to a low

variance) and had an increasing visible area with zenith. Whilst every coniferous tree top is likely

to have a single shoot pointing upwards, this will contain a very small proportion of the canopy’s

total LAI. Most will be in shoots lower in the canopy, where branches tend to lie horizontally,

therefore figure 147(c) can be seen as a unusual case and one need not worry too much about

taking it into account.

The section used in figure 147(d) contained many shoots and branches. Most of these tended

to lie flat so that when looking horizontally shoots in the same branch shadowed each other, the

amount of shadowing depending upon the relative lengths of the different shoots and azimuth

angle. This explains the large variance with azimuth near the horizontal and the increasing visible

area with zenith.

Much like the section used in figure 147(d), that for figure 147(a) contained many shoots

and branches, the majority tending to lie horizontally and in the same plane. Therefore there was

more shadowing at near horizontal view directions and so the visible area increased with decreasing

zenith.

The section used in figure 147(b) contained a small cluster of shoots with no preferential

alignment or layering. There was an equal amount of shadowing from all view directions. In the

sections tested (which were picked at random from within a number of tree canopies so can be

taken as representative) this was by far the most common case, therefore it would seem to be

reasonable to assume that the visible surface area is constant with view angle and so a rotationally

symmetric single, parameter model can be used. Care should be taken to ensure that all voxels

contain sufficient scattering elements for this assumption to hold, therefore slightly larger voxels

might be preferable.

The ratio of the visible surface area to the total surface area will be needed to scale between

measured surface area and LAI. Traditional transmission techniques do this with the Beer-Lambert

law, but this may not apply at these small scales. For the sections tested here it would appear to
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be between 1
5 and 2

5 , but this will be explored in more detail later, once the visible surface area

has been successfully measured.

Birch Birch canopy elements have a very different angular distribution to Sitka spruce elements

and may show different behaviour with view direction. The above experiments were repeated using

the section of birch canopy shown in figure 148.

Figure 148: Image of a 25cm cube of birch canopy

Figure 149 shows that properties for birch had even less dependence on azimuth than they

did for Sitka spruce. There was the same large variation in apparent reflectance with view zenith

(figure 149(a)) and this was greatly reduced by accounting for projected area, though not entirely

(figure 149(b)). Leaf dominated for all view angles (figure 149(d)), but not to quite the same

extent as for Sitka spruce. In the Sitka spruce section leaves made up over 80% of surface area

from all view directions whilst for birch this could drop to 74%; the difference may be caused by

Sitka spruce needles’ tendency to clump around and so obscure branches.

The ratio of projected area to visible surface surface area showed much more dramatic variation

than for Sitka spruce (figure 149(e)) suggesting that the angular distribution of elements was far less

uniform for broadleaved than for the coniferous trees. This is not unsurprising as in broadleaved

canopies, leaves do not spiral around branches and so do not point is anything like as many

directions as conifer needles. For this section, elements appear to have a planophile arrangement.

Significantly the fraction of surface area that was visible was near unity for all view angles

(figure 149(f)); for Sitka spruce this fraction did not rise above a fifth. This shows that there

is far less self shadowing in broadleaved canopies and so no correction factor will be needed to

scale between visible surface area and true LAI. That the fraction appeared to rise above unity
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(figure 149(f)) was due to rounding issues between the various programs used to extract the

information. This was a small error (only significant to two decimal places) and so should not

affect the validity of the conclusions and so the extra effort needed to allow the programs to store

more significant figures was not expended.
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Figure 149: Lidar results for the section of birch canopy shown in figure 148

To make sure that the independence to azimuth shown in figure 149 was a general property

of birch canopies the above analysis was repeated for all available birch canopy sections and the

variance in zenith and azimuth calculated. Figure 150 shows that it was indeed a general property

and so azimuth dependence can be discounted for the rest of this thesis.
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Figure 150: Variance in azimuth and zenith for Echidna scans of a number of sections of birch canopy
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Figure 151: Fraction of surface area visible against zenith angle for a number of sections of birch canopy
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Figure 151 shows that the fraction of surface area visible was fairly constant with view direc-

tion, suggesting that rotationally symmetric angular distribution models can be used. Note that

the larger section of canopy (figure 151(d), a cube with sides of 50cm) shows slightly more self

shadowing than the smaller sections. This is not surprising as the more elements a section contains

the more likely they are to shadow each other. So whilst voxels should be made large enough to

ensure that the contents obey any angular distribution assumptions, the larger they are the greater

the correction factor needed to scale between visible and total surface area will be.

6.4.3 Choice of LAD model

Having determined that a rotationally symmetric, single parameter model is acceptable for these

small scale measurements, one must be chosen. Ideally a model which can explain both the

apparent reflectance and the projected area (and so the phase function and gap fraction) and

relate both of these to the visible surface area or, if possible, total surface area.

Results for voxels with sides of 12.5cm were very heterogeneous. Such small voxels contain

only a few elements and so the resulting behaviour is very hard to model. 25cm sided voxels would

seem to be the minimum size that is well behaved enough to allow reliable modelling.

Sitka spruce The apparent reflectance, fraction of surface area projected and phase function

were calculated in all view directions for each canopy section. The results area shown in figure 152,

153 and 154 respectively with error bars showing the azimuthal standard deviation.

The phase function showed a far smaller relative range than the other properties, suggesting

that the projected area is the dominant factor in apparent reflectance. For sections containing more

elements the phase function was near uniform (figures 160(b) and 160(d)) and so the assumption

of Jupp et al. (2009) may be appropriate.

The only information available to constrain the surface area, angular distribution and phase

function is the apparent reflectance with view angle. The simplest way would be to empirically

fit values to these observations, say Γ = 0.85 and some simple form for G(θ), allowing a direct

conversion from apparent reflectance over a range of angles to leaf area and angular distribution.

This will not be physically based and would need site and species specific calibration to set Γ,
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Figure 152: Apparent reflectance against view zenith for a number of sections of Sitka spruce canopy
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Figure 153: Fraction of surface area projected against view zenith for a number of sections of Sitka spruce

canopy
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Figure 154: Phase function against view zenith for a number of sections of Sitka spruce canopy

assuming that it is view angle independent for all species, but it will be a good first attempt to

directly link LAI to Echidna measurements.

Birch For broadleaved forests the apparent reflectance against view zenith (figure 155) showed a

very similar shape for all canopy sections tested; near sinusoidal with a minimum at the horizontal.

Examining the projected area (figure 156) and phase function (figure 157) with zenith shows

that the variation in apparent reflectance was a result of both, with neither showing any clear

dominance. This suggests that it may be possible to describe both the projected area and phase

function with a single angular distribution model.

It is not so surprising that this should be the case for birch and not for Sitka spruce. In these

birch sections there was very little self shadowing so that the same surfaces are visible from all

view directions and so, if all scattering elements are Lambertian, equations 69 and 65 can be used

to describe both the apparent reflectance and projected area. For the Sitka spruce sections self

shadowing means that the actual surfaces being observed will be different from every direction.

Due to the spiralling nature of needle shoots the phase function will appear very similar from all
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Figure 155: Apparent reflectance against zenith angle for a number of sections of birch canopy
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Figure 156: Fraction of surface area visible against zenith angle for a number of sections of birch canopy
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Figure 157: Phase function against zenith angle for a number of sections of birch canopy

view directions whilst the projected area will depend upon the arrangement and self shadowing of

objects.

Comparing the above graphs for projected area and phase function to the values predicted by

the spheroidal model (Campbell 1986), introduced in section 2.1.1 and derived from equation 3

(shown in figures 158 and 159) suggests that this may be able to describe both effects. These canopy

sections are similar to very oblate spheroids and both sets agree that for a given eccentricity, the

projected area will vary over a larger range than the phase function, with a narrowing of the range

at the hinge point of 54.75o.

6.4.4 LAD model choice conclusions

It may be necessary to use different models to describe Sitka spruce and birch as assuming a

constant phase function will clearly not be appropriate for broadleaved forests. For canopies that

are likely to contain many scattering elements, all shadowing each other, a constant phase function

can be assumed (the value of which will be species specific) and a simple angular distribution

model can be used. For canopies which are unlikely to self shadow within a voxel, the same simple

angular distribution model can be used to describe the projected area and the phase function. An
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Figure 159: Phase function against view zenith for Lambertian spheroids
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average value could be used for Γ, making the G function effective, but figure 157 suggests there

would be too much variation within a canopy to use this to predict gap fraction with view angle.

For canopies without significant self shadowing the spheroidal distribution (Campbell 1986),

or a more computational efficient approximation (Jupp et al. 2009), would seem to be capable of

predicting both the projected area and phase function.

6.5 Self shadowing canopies

For canopies that suffer from self-shadowing within a voxel, the apparent reflectance is given by;

η = ρeΓG(θ)
As

Af

(70)

At first it will be assumed that both ρe and Γ are known so that we need only solve for AsG(θ).

Measurements of apparent reflectance may only be available over a limited range of angles so

Cauchy’s theorem cannot be used to extract As (Lang 1991). As has already been mentioned,

much of the total surface area within a voxel will be obscured and as G(θ) describes the fraction of

visible surface area projected in a given direction, the angular distribution model should be chosen

to fit the visible area rather than the total area.

Figure 160 shows the fraction of visible surface projected in a given direction. Normalising by

the visible surface area has removed much of the variation, suggesting that the small changes in

visible surface area, shown in figure 147, may be very important for some sections of canopy.

Figure 160 suggests that the Ross-G function can be modelled as a straight line, a relationship

of the form;

G(θ) = mθ + c (71)

Where m is the gradient and c the y axis intercept. That the cross over point holds for these

realistic canopy sections is surprising as it is a property of simple convex shapes such as frustums

and spheroids and takes no account of self shadowing at all. It is certainly a great advantage in

the quest for a simple, physically based model. To verify the cross over point the G function was

calculated for all canopy sections and plotted on a single graph.
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Figure 160: Fraction of visible area projected against zenith angle zenith for a number of sections of Sitka

spruce canopy

Comparing the results for all sections (figure 161) suggests that the cross over point found for

simple frustum models (Wilson 1960) holds. Though it is far from perfect there is a hint of a

decrease in variation around 55o zenith. This could provide a known tie in point, reducing the two

parameter straight line equation to a single parameter model.
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Figure 161: Ross G function against view zenith for all Sitka spruce canopy sections. The colours have

no significance and are included for legibility

The cross over point in figure 161 is a little too poorly defined to pick a value for the fraction
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of area projected or the cross over angle, so it was taken from an idealised spheroidal case, ap-

pendix C.3 figure 184, so that at a zenith angle of 54.75o the projected area is 0.5 of the visible

surface area.

Forcing the straight line in equation 71 through the cross over point (θc = 54.75o) gives the

single parameter leaf angle distribution;

G(θ) = m(θ − θc) +
1

2
(72)

The apparent reflectance than becomes;

η = ρeΓ
As

Af

(

m(θ − θc) +
1

2

)

(73)

Plotting η against θ and fitting a line of best fit will allow the two unknowns, m and As to be

determined. For a straight line with a gradient dη
dθ

and y intercept, η(0), the surface area is;

As =
2

ρeΓ

(

η(0) +
dη

dθ
θc

)

(74)

The spread of values around the hinge point is caused by the variation in the visible surface

area with view direction and it may even be possible to use it to determine the amount of self

shadowing within a voxel. Alternately the y intercept could be allowed to vary, changing it to a

two parameter LAD model. Neither of these models will be attempted here and the spread and

resulting errors will have to be accepted.

Even though the Ross G function is near linear, the apparent reflectance is not, due in part

to other factors. Therefore it may be necessary to use a form for G(θ) that can take these into

account; an effective G function. Looking at the graphs of apparent reflectance against zenith

angle they appear to follow a sinusoidal shape with a period of π. This suggests a Ross G function

of the form;

G(θ) = m cos 2θ + c (75)

Which is still linear in terms of cos 2θ. This can be forced through the cross over point to give;
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G(θ) = m(cos 2θ − cos 2θc) +
1

2
(76)

and so surface area is given by;

As =
2

ρeΓ

(

η(0) +
dη

d cos 2θ
cos 2θc

)

(77)

The angular distribution parameter, m, is given by;

m =
1

ρeΓAs

dη

d cos 2θ
(78)

Both of these models will be tested, acknowledging that neither is physically based and the

sinusoidal model will take more than just the G function into account. This should provide a

better fit but may hide physical effects.

The model of Jupp et al. (2009), given by equation 55, is similar to the form in equation 76

except that it has a period of 2π rather than π. Thus it will provide a better fit for extremophile

canopies, where all elements are near horizontal or near vertical, but the version in equation 76

will give a better fit for angular distributions in between (compare figures 3 and 158). Even the

G functions of most extreme canopies tested here flattened off around nadir and the horizontal,

suggesting that the less extreme equation would be more suitable.

6.5.1 Simple Echidna inversion model

The model for the leaf angle distribution given in equation 76 was used to extract LAI and LAD

from overlapping Echidna scans. Multi-spectral lidar was be used to determine the fractions of leaf

and wood, assuming that the two materials have the same phase function and angular distribution

and different reflectances in the two bands. This may not be an entirely appropriate assumption,

but as has been shown in the above section, leaves tend to dominate the signal and so the amount of

wood will be insignificant. For areas without leaves the wood area may be incorrectly determined,

but that would be best determined by point cloud based volume finding methods rather than these

radiance inversions.
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The proportion of surface area made up from leaf can be found from the apparent reflectance

at two wavelengths, ηλ and ηω which have different ratios for the reflectance of leaf, ρλ,l and wood,

ρλ,w. Figure 162 shows a false colour image of simulated dual wavelength scan of a forest (green

is 1064nm, red and blue 532nm), demonstrating that it should be possible to separate leaf from

bark.

Figure 162: False colour image of a dual wavelength Echidna simulation

The woody correction factor can be found by substituting in equation 66 into equation 79 and

solving simultaneously.

ηλ =
1

Af

ΓG(θ)(ρλ,lAl + ρλ,wAw) (79)

to give;

Ψ =
ηωρb,λ + ηλρb,ω

ηλ(ρl,ω − ρb,ω) + ηω(ρb,λ − ρb,ω)
(80)

Apparent reflectance was plotted against either zenith angle, θ or cos 2θ and the gradient and

y intercept of a line of best fit determined. The leaf proportion, Ψ was used to mix the known leaf

and wood reflectances to get the canopy reflectance. This was combined with the known phase

factor, Γ, to extract surface area and angular distribution equations 77 and 78.

259



6.5.2 Inversion of a voxel

The inversion method was tested on a small section of canopy. This removed the extra complication

of attenuation of the signal by elements in other voxels. Initially this was run with twenty scans

from different angles, picked randomly from between -90o to +90o zenith and 0o to 180o azimuth.

This would be an unrealistic number to collect in the field but it will show whether the method

works.

Using the section of canopy shown in figure 163, a section which was not used to derive the

phase factor, it was determined that all scattering elements have an average visible surface area

over all viewing directions of 386cm2. Figure 164(b) shows that this varied with view zenith, but

in a sinusoidal manner and so may be taken into account in the G function parameters (which will

be effective).

Inverting surface area with the above method and a linear G function predicted a total area of

345cm2, an error of only 11%, a far higher accuracy than is reported with traditional transmission

methods. That the error was small shows that the changing fraction of visible surface area was

taken into account in the G function factors, and it seems to have coped well with the deviation

from the assumptions. Using the sinusoidal form of the G function gave an area of 328cm2; an error

of 15%, therefore in this case the linear form for the G function appears to be more appropriate.

More sections of canopy should be tested before either model can be discarded.

This section of canopy had a total surface area of 923cm2, so only 37% of the actual surface

area was visible and a way to scale between these two is still needed to extract LAI.

Figure 163: Image of a section of Sitka spruce forest
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Figure 164: Properties of the section of canopy shown in figure 163
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6.5.3 Woody correction

These areas are for all scattering surfaces, separating into leaf and bark revealed visible surface

areas of 364cm2 of leaf and 22cm2 of bark whilst the total surface areas were 877cm2 of leaf and

46cm2 of bark. Inverting these with dual wavelength lidar (1064nm and 532nm) gave estimated

surface areas of 168cm2 of leaf and 153cm2 of bark. So whilst the total surface area has only a

16% error, the estimated LAI has a 54% error, a large level of uncertainty, though no worse than

current transmission methods (Chen and Cihlar 1996). This failure to separate leaf and bark could

have been caused by differences in the phase function of the two materials (they were assumed

equal in the derivation of equation 80) or by multiple scattering contributions.
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Figure 165: Properties of a section of Sitka spruce, separated by material

From the phase functions for leaf and wood, shown in figure 165, it is apparent that the phase

of wood was a little higher than that of leaves, which is what would be expected as woody objects

tend to be large, reasonably flat shapes rather than many small elements for leaf. Wood’s phase

function also showed much more dependence on view zenith than leaf, again this is most probably

because the wood is made up of a few relatively large (compared to the needles) twigs which lie
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flat whereas the needles spiral around and so are more uniform with view angle.

Figure 165(c) shows that the Ross G functions for the two materials were slightly different,

with that for leaf being almost flat whilst that for wood has a definite zenith dependence. It may

be possible to correct for this effect by using separate leaf and wood angular distributions if it is

deemed a limiting factor. The G functions would be effective and so gap fraction predictions may

suffer, but any angular variations in phase function will be taken into account.

Whilst the contribution from multiple scattering was small (<2%) it was different for the two

wavelengths, altering the relative reflectances and so potentially altering the leaf fraction estimate.

The above analysis was repeated without multiple scattering to determine the contribution of this

effect to the final error.

Removing multiple scattering altered the estimate of leaf area to 234cm2 and wood area to

14cm2, giving the correct proportion (6%), although the total visible surface area was underes-

timated. This underestimate is because the phase function value; (Γ = 0.85) was chosen in the

presence of multiple scattering and will be slightly lower in its absence. Γ is an effective parameter

rather than the true spectral invariant it is supposed to be. If the correct value had been used for

Γ without multiple scattering the areas would have been correctly determined.

It would seem that the primary cause of the error in converting PAI to LAI was from the larger

multiple scattering contribution to the wavelength at which canopy reflectance was higher (the near

infra-red). This could be corrected for by either an enhanced reflectance (including the contribution

from multiple scattering) a vastly more complex model or an external woody correction term. Data

from different shoot types and scatterer densities are needed to fully understand the scattered

contribution and so enhanced reflectance’s dependence on canopy structure. This was not carried

out as part of the thesis.

6.5.4 Predicting gap fraction

The model has been shown capable of accurately predicting surface area, although it struggles to

differentiate leaf from bark. Surface area is the main biophysical parameter of interest, along with

its distribution through a canopy. In a real canopy returns from any given voxel may be attenuated

by other objects, decreasing the apparent reflectance from that voxel. In order to invert the correct
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areas this attenuation must be accounted for by division by the gap fraction up to that point.

This requires that not only the total surface area of each voxel be correctly calculated but the

gap fraction with view direction. The gap fraction was measured at a range of view angles, the

apparent reflectances from those same directions were used to provide parameters for the above

equations and these used to predict gap fraction.
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Figure 166: Predicted canopy properties against view zenith using twenty view directions for a section of

Sitka spruce

Figure 166 shows that whilst the linear model gave the better prediction of surface area, the

sinusoidal model gave better predictions of gap fraction at all angles (except the hinge point where

all are forced to agree). Error bars show uncertainty, calculated from the standard deviation

returned from the estimated LAD parameters (Press et al. 1994, page 665). The surface area

estimates will be very sensitive to gap fraction predictions, therefore the sinusoidal model appears

to be the most suitable, despite its slightly lower accuracy for surface area. All further analysis

will be with this model.
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6.5.5 Acceptable number of scans

It would be prohibitively time consuming (though not quite as bad as direct measurement) to collect

the twenty separate scans used above and so for the method to be practical it must work with

fewer view directions. The above analysis was repeated with different numbers of beams, drawing

them at random from the available data (scans were simulated across the whole hemisphere every

10o) and the error assessed for each set. This was repeated twenty times for each number of scans

and the mean error and standard deviation calculated.

Figure 167(a) shows that errors could become very large (and always an underestimate) for

small numbers (less than five) of scans. The results suggest that beams from at least nine different

view directions would be needed to guarantee an extraction of PAI with better than 80% accuracy.

Whilst this seems a large number, beams from each scan location will intersect any voxel at a range

of angles. This may mean that the nine beams need not come from nine different locations, perhaps

reducing the number to a figure which can easily be collected in around the same time it would

take to characterise a site with traditional techniques (tape measure, compass and hemispherical

photography) whilst delivering far more information.
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Figure 167: Surface area error against number of scans for small sections of Sitka spruce canopy

Figure 168 shows the error against zenith range (maximum minus the minimum) and standard
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deviation. There was a smaller error for large zenith ranges, suggesting that the range of zenith

angles used is the main factor in inversion accuracy rather than the number of rays. Therefore it

may be possible to use few (around five) separate scans as long as the zenith angles of the beams

cover a wide enough range. Five scans can easily be collected in little over an hour (although the

current prototype keeps overheating, slowing this down somewhat, but it should be possible) and

it should be possible to arrange them so that every tree crown has beams separated by at least

60o zenith passing through it, perhaps making use of topography.
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Figure 168: Surface area error against angular range of scans for small sections of Sitka spruce canopy

Examining the results used to create figure 168 showed that whilst inversions using scans from

less than five different directions could lead to accurate inversions if they are taken from a wide

range of zeniths, this is not guaranteed. Using five scans gives reasonable results, tending to lie

within 25% of the truth as long as the highest and lowest scans were at least 40o apart. By nine

different view directions errors were down to 15% with the same angular separation.

The initial results suggest that a canopy could be measured with a 25% accuracy in little over

an hour and to 15% within two hours; neither of which seems particularly onerous for the accuracy

achieved compared to existing methods. These timings are based on the current Echidna prototype

and it is hoped that future developments will be much easier to use, faster and lighter.

6.6 Non shadowing canopies

For canopies with large, relatively sparse scattering elements, the same surfaces in a given voxel will

be visible from any view angle and so the phase function is not constant and must be described by
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an angular function. There will still be shadowing between voxels, but not within a single voxel. If

the phase function shows a clear cross over point, as it should if it follows a spheroidal distribution,

it can can be combined with the G function into a single angular distribution term.
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Figure 169: Birch canopy properties against view zenith to illustrate the cross over point

The birch canopies did not show as wide a range of angular distributions as was displayed

by the Sitka spruce canopies. For this reason the crossover of the Ross G function is not obvi-

ous in figure 169(a), though the spread at the crossing point was as narrow as for Sitka spruce.

Figure 169(b) shows that the phase function had a slight narrowing somewhere between 42o and

55o, except for one outlier. If the distribution were spheroidal this cross over should be at 2
3 (see

appendix C), which it appears to be. Therefore a spheroidal distribution may be suitable for both

the G function and phase function. The product of the two was given the same sinusoidal form

used for G(θ) in self shadowing canopies. Here a sinusoidal model is clearly more appropriate.

G(θ)Γ(θ) = m cos 2θ + c (81)

Forcing the line to pass through 1
3 at a cross over angle, θc the combined phase G function

becomes;

G(θ)Γ(θ) = m(cos 2θ − cos 2θc) +
1

3
(82)

The spread of values at the crossing point would appear to be due to the change in the ratio

of projected to visible surface area and this is a real property of spheroids (see appendix C.3).

Using this form the apparent reflectance, surface area and angular parameter are;
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η = ρe

As

Af

(

m(cos 2θ − cos 2θc) +
1

3

)

(83)

As =
3Af

ρe

(

η(0) +
dη

d cos 2θ
cos 2θc

)

(84)

m =
1

ρe

As

Af

dη

d cos 2θ
(85)

6.6.1 Inversion of a voxel, self shadowing

The above inversion for non shadowing canopies was tested on a section of birch canopy which

played no part in the method’s derivation. For a section with a total surface area of 160cm2, of

which 151cm2 was visible, the method predicted 147cm2, an error of only 2.6% of the visible area

and 8% of the total surface area, using twenty view directions.

Of the total area, 132cm2 was leaf and 25cm2 was bark. Of this 133cm2 of leaf was visible and

18cm2 of bark and the method predicted 115cm2 of leaf and 32cm2 of bark. Whilst the fraction of

bark was slightly overestimated it was far closer to the truth than for Sitka spruce because there

was much less multiple scattering amongst the large, sparse elements in a broadleaved forest than

a needle leaf and so the apparent reflectance was not significantly increased.

These results suggest that the above method can determine LAI to unprecedented accuracy in

birch canopies, provided that the element reflectances are known.

6.6.2 Acceptable number of scans, self shadowing

The surface area errors were calculated for inversions with different numbers of scans. For each

number of scans, a set of beams was randomly chosen from the hemisphere and an inversion

performed. This process was repeated twenty times for each number of scans and the mean and

standard deviations of the errors calculated.

Figure 170 shows that the errors were much smaller than for Sitka spruce. Errors in total

surface area stayed below 7% until only nine view directions. The errors could be up to 80%

if only five view directions were used, but again the spread of view zeniths seemed to be more

important than the number of view directions.

268



-10

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

S
u
rf

ac
e 

ar
ea

 e
rr

o
r 

(%
)

Number of scans

(a) Total surface area

-10

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

S
u
rf

ac
e 

ar
ea

 e
rr

o
r 

(%
)

Number of scans

(b) Leaf surface area

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

S
u
rf

ac
e 

ar
ea

 e
rr

o
r 

(%
)

Number of scans

(c) Wood surface area

Figure 170: Error in surface area against number of scans for sections of birch canopy

The proportion of wood was slightly overestimated for all cases and some estimate of multiple

scattering would be needed to correct for this. Measurements spread over at least 70o guaranteeing

estimates within 50% of the truth no matter many beams are used in the inversion (though at

least two are needed to fit a straight line to). Therefore accurate inversions are possible with five

scans, if they cover a wide range of view zeniths.
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Figure 171: Error in surface area against zenith range for sections of birch canopy
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6.6.3 Gap fraction, self shadowing

To determine the gap fraction the G function must be decoupled from the phase function. The G

and phase functions for a spheroid have been shown in figures 158 and 159.
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Figure 172: Ratio of phase function to G function

Figure 172 shows that the sections tested behaved similarly to ideal spheroids, with a cross

over of 4
3 at 54.75o. The dip beneath unity at nadir in figure 172(b) is a little worrying, but at all

other angles the agreement was good. This dip must have been due to decreased self shadowing

near nadir. The exact calculation of G and Γ for a spheroid is very computationally expensive and

so a simple approximation is needed. As there is no obvious form for the lines in figure 172(a)

it was decided to calculate a look up table giving the value of Γ for a range of values of m and

θ using Lambertian spheroids. This requires m to be related to spheroid eccentricity. The phase

function was used rather than going direct to the G function because it has a smaller range for all

eccentricities and so errors are likely to be smaller.

As m is found from an approximation of true spheroid behaviour it must be related to ideal

spheroids by either fitting to an ideal apparent reflectance or else by another approximation. Any

approximation will introduce additional errors and so spheroid eccentricity was related to m by

fitting equation 83 to synthetic data. This process need only be run once to create the look up

table and should not adversely affect the method’s practicality. Figure 173 shows that using this

method the gap fraction has been accurately calculated at all view angles, though the uncertainties

were large.
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Figure 173: Birch gap fraction

6.7 Testing the ground based inversion

The inversions presented above were repeated over a number of different sections of canopy and

voxel sizes to test the generality of the method.

6.7.1 Sitka spruce

For all sections tested the error in total surface area did not exceed 20%; the section used above

had the lowest accuracy of all tested. This suggests that the method will work for any Sitka

spruce canopy, provided that reasonable estimates for the phase function and element reflectance

are available. It struggled to extract separate leaf and bark areas, the proportion of bark being

overestimated in all cases. Figure 178 shows a scatterplot of the error for all sections and voxel

sizes whilst tables 5 and 4 present the numbers for a few sections representative of the whole.

The error was not dependent on voxel size, suggesting that any cube with sides between 25cm

and 1m would be suitable. Of course the larger the voxel the greater the self shadowing but the

more samples will be available for inversion per voxel. Inversions of complete canopies would be

needed to choose the optimum size.

Gap fractions were also correctly determined in all cases, the sinusoidal form of the LAD

providing the best estimate over all zenith angles. Root mean square errors in gap fraction were

less than 1% for all section of Sitka spruce canopy tested with a mean bias of less than 1.5%.

Figure 174 shows scatter plots of predicted gap fraction against true gap fraction for all sections

and zenith angles. The plots are separated into zenith above and below the cross over angle as
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gaps are forced to be correct at that angle, any bias would occur either side of this angle, with

each side likely to have opposite bias. Thus it should be possible to accurately correct measured

reflectance for attenuation and so measure LAI for a whole forest stand.
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Figure 174: Scatter plot of predicted gap fraction against truth separated for zeniths above and below

the hinge point for Sitka spruce canopies. Error bars show one standard deviation of uncertainty

Therefore this model can be taken as general for Sitka spruce. The main equations are sum-

marised below.

G(θ) = m(cos 2θ − cos 2θc) +
1

2
(86)

η = ρeΓ
As

Af

(

m(cos 2θ − cos 2θc) +
1

2

)

(87)

Fitting a straight line through a plot of η against cos 2θ to get the gradient, dη
d cos 2θ

and y

intercept η(0);

As =
2Af

ρeΓ

(

η(0) +
dη

d cos 2θ
cos 2θc

)

(88)
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Figure 175: Predicted gap fraction for linear and sinusoidal models for a range of Sitka spruce canopy

sections
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6.7.2 Birch

To test the method over a range of non-shadowing canopies (within a single voxel), the inversion

method was applied to all sections of birch canopy available. It was found to give similar accuracies

to the single inversion described above, with a mean error in total surface error of only 6cm2 for

an average visible surface area of 78cm2 within a cube of sides 25cm. The maximum relative error

was a 20% underestimate in a section containing 82cm2. In all cases the proportion of wood was

slightly overestimated due to multiple scattering, but only by a few cm2 at most.
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Figure 176: Predicted and measured gap fraction against zenith for a number of sections of birch canopy

Figure 176 shows that the predicted gap fractions were close to the truth in all cases. In

particular they were all correct at the hinge point, proving that no bias was introduced by Γ(θ).

This suggests that the look up table of values is correct and that birch follows the spheroidal

distribution near perfectly. Two plots included error bars to show uncertainty and two without.

This shows that whilst the gap fractions were correctly determined the uncertainties from the line

fitting were large.
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Root mean square gap fraction errors were less than 0.4% for all sections tested with a mean

bias of less than 0.7%. Figure 177 shows a scatter plot of inverted gap fraction against true gap

fraction for all birch sections tested. It can be seen that inverting with only nine view directions

did not limit accuracy compared to using twenty and so this should be taken as the maximum

number of intersecting beams needed to fully characterise a voxel. Reducing further to five caused

slightly higher deviations, but all within a few percent of the truth and so perfectly acceptable.
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Figure 177: Scatter plot of predicted gap fraction against truth separated for zeniths above and below

the hinge point for sections of birch canopy

The main equations for birch are summarised below;

G(θ)Γ(θ) = m(cos 2θ − cos 2θc) +
1

3
(90)

η = ρe

As

Af

(

m(cos 2θ − cos 2θc) +
1

3

)

(91)

As =
3Af

ρe

(

η(0) +
dη

d cos 2θ
cos 2θc

)

(92)
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(93)

The gap fraction is found by separating G(θ) from Γ(θ) using a look up table of Γ calculated

for Lambertian spheroids (see appendix C).
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Figure 178: Scatter plot of visible surface area against inverted for all canopy sections tested. Error bars

show uncertainty

Table 4 shows that using beams from twenty view directions will ensure visible surface area

errors of less than 34% in all cases and 15% in the majority of inversions. For non shadowing

canopies this is very nearly equal to the total surface area and so further corrections are not

necessary. For self shadowing canopies around 40% (±5%) of the total surface area is visible and

this seems to be independent of voxel size. At least with the Sitka spruce trees tested, a simple

factor of 5
4 may be acceptable to convert inverted area to true surface area.

In all cases the uncertainties estimated from the errors in line fitting are smaller than the errors

and so would not be useful as indicators of accuracy. This must be due to bias causing errors that

are not apparent in the spread of the data.
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Species Size Total Visible Inverted Uncertainty Error

Sitka 25cm 198cm2 90cm2 113cm2 2% 26%

Sitka 25cm 309cm2 128cm2 122cm2 1% 5%

Sitka 50cm 3454cm2 1358cm2 1261cm2 2% 7%

Sitka 50cm 266cm2 116cm2 155cm2 2% 34%

Sitka 75cm 3444cm2 1391cm2 1374cm2 1% 1%

Sitka 75cm 377cm2 178cm2 217cm2 2% 22%

Sitka 1m 3468cm2 1413cm2 1395cm2 1% 1%

Sitka 1m 377cm2 177cm2 213cm2 2% 20%

Birch 25cm 160cm2 151cm2 159cm2 1% 5%

Birch 25cm 126cm2 99cm2 107cm2 2% 8%

Birch 25cm 56cm2 50cm2 47cm2 4% 6%

Birch 25cm 103cm2 82cm2 70cm2 5% 15%

Birch 25cm 111cm2 94cm2 85cm2 6% 10%

Birch 25cm 73cm2 70cm2 75cm2 1% 7%

Table 4: Table of results using a simple model inversion and twenty view directions. Error is relative to

the truth, the uncertainty comes from the fitting of the line of best fit
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Species Size Total Visible Inverted Uncertainty Error

Sitka 25cm 923cm2 344cm2 313cm2 5% 9%

Sitka 25cm 309cm2 124cm2 118cm2 4% 5%

Sitka 50cm 1612cm2 653cm2 650cm2 6% 0.5%

Sitka 50cm 266cm2 130cm2 147cm2 4% 13%

Sitka 50cm 3454cm2 1270cm2 1174cm2 6% 8%

Sitka 75cm 3444cm2 1405cm2 1398cm2 3% 0.5%

Sitka 75cm 377cm2 194cm2 203cm2 4% 5%

Sitka 1m 3468cm2 1413cm2 1420cm2 3% 0.5%

Sitka 1m 377cm2 195cm2 202cm2 4% 4%

Birch 25cm 160cm2 149cm2 155cm2 2% 4%

Birch 25cm 126cm2 96cm2 98cm2 4% 2%

Birch 25cm 56cm2 50cm2 45cm2 3% 4%

Birch 25cm 103cm2 81cm2 71cm2 8% 12%

Birch 25cm 73cm2 68cm2 74cm2 5% 9%

Birch 25cm 19cm2 19cm2 22cm2 8% 16%

Table 5: Table of results using a simple model inversion and five view directions. Error is relative to the

truth, the uncertainty comes from the fitting of the line of best fit

The errors were actually lower when using five beams than twenty. This must be due to outliers

amongst the twenty beams causing inaccuracies. The five beams must have included fewer or none

of these outliers. Errors were all less than 16% with the majority being less than 10% with no

bias, a very acceptable result.

The errors were all much smaller than those found by inverting gap fraction and using Beer-

Lambert’s law (section 6.3.4). This suggests that the more direct linking of measured reflectance to

surface area is worthwhile, certainly the model is no more complicated to implement and makes no

more assumptions than the gap fraction method. It does require more scans, needing a minimum

of five spread over 60o zenith compared to the gap fraction method’s single scan, but this brings
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the additional benefit of capturing the PAI and angular distribution’s heterogeneity. The only

potential downfall would be heterogeneous attenuation when used in complete canopies, leading

to inaccurate corrections of apparent reflectance and so inverted properties. The method would

have to be tested on a complete canopy before it can be stated for certain whether it can perform

as well as the traditional passive optical transmission methods.

6.8 Complete canopy

The work thus far has concentrated on small sections of canopy to avoid the extra complication of

beam attenuation. Now that the method has been shown to work well for the cases tested, it can

be expanded to forest stands.

The apparent reflectance from a voxel depends not only on the surface area and angular distri-

bution in that voxel but also the gap fraction between beam origins and that voxel, which in turn

depends upon the contents of voxels earlier in the beam path. Because of this interdependence the

inversion must be iterative, refining voxel contents until the predicted lidar returns match those

measured.

The first step was to divide the scene into voxels and determine which range bins are contained

within which voxels. As each Echidna scan will contain over 49,000 beams, each with around

720 range bins, this sorting can be computationally expensive. To speed the inversion process a

map was created at the start of inversion, saving future searches. The map could also be used in

subsequent inversions, saving processing time.

Next an initial set of voxel surface areas, angular distributions and leaf proportions were set.

The fraction of leaf and bark can be calculated from the ratio of the reflectances in two bands, ηλ

and ηω of any beam using equation 80. If leaf and bark have the same angular distribution and

phase function then no other parameters should affect this value and it will provide a reasonable

estimate (although multiple scattering was shown to cause errors in the previous section). Both

wavelengths should be equally affected by any orientation effects.

It was first assumed that all elements have a uniform angular distribution (m = 0), so that an

estimate of surface area could be obtained from a single view zenith (taking the closest as a first
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guess and not bothering to correct for gap fraction so that it was an underestimate).

After the initial estimates had been determined the function stepped through voxels, calculating

the apparent reflectance from each view direction. For this the measurements from bins along

each beam were summed, then the average apparent reflectance of beams from each scan centre

calculated. Without this summing and averaging step the heterogeneity of the distribution of

elements within each voxel caused the plot of apparent reflectance against cos 2θ to be too messy

for a line of best fit to be reliably found.

The fraction of leaf and wood was determined by comparing the reflectance from two bands and

so giving a value for the average reflectance of elements within the voxel, ρe. The gap corrected

apparent reflectance was plotted against the cosine of twice the zenith angle and Powell’s method

(Press et al. 1994) used to find the gradient and y-intercept of a line of best fit. As well as the

deviation from measured apparent reflectances the error function included a cubic penalty for non-

physical results; the predicted apparent reflectance was forced to be between zero and the average

canopy reflectance, the maximum reflectance that can be measured if a target completely fills the

field of view, ignoring multiple scattering. This maximum reflectance is unlikely to be exceeded

because if a target happens to completely fill the field of view and have a significant contribution

from multiple scattering, the surface is likely to be curved and folded and so the phase factor low.

As rays are attenuated the returns will become less representative of subsequent objects, in

addition dividing by a small Pgap in equation 69 can lead to very large values which may skew

line fitting. To avoid this the error function calculated in the least squares fitting was weighted by

the gap fraction in that range bin (ignoring shadowing within that particular voxel). At the same

time the LAD parameter, m, was determined.

Once this had been carried out for all voxels the error between predicted and measured re-

flectance was calculated and the process repeated until either a certain number of iterations was

reached, the error dropped below a threshold or the error stayed constant for a number of iterations.

No state vector as such was used and so no clever iteration method was employed.
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6.8.1 Accuracy

The above method was applied using five scans from within a birch canopy. Due to computer

memory requirements it was decided to limit the voxel resolution to 1m. At 50cm, even with

memory mapping of the actual lidar data, the voxel and lidar bin map and results arrays for a 10m

by 10m plot exceeded the computer’s file navigation limit of 2 Gbytes. Higher resolution inversions

and larger stands would require either more powerful computers or more extensive use of memory

mapping.

The plot was centred on the scan for which the gap fraction method of Jupp et al. (2009) gave

the best match (see figure 141 in section 6.3.4). A 10m radius plot about here with zeniths below

55o had a PAI of 0.31 and the method of Jupp et al. (2009) predicted 0.32, a 3% error. The true

PAI within the square plot, extending from the floor to canopy top, was 0.24. Inversion of five

Echidna scans spaced throughout this plot predicted a PAI of 0.97, a factor of four different and

clearly unacceptable.
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Figure 179: Inverted PAI against the truth for 5m by 5m sections within a birch canopy

The plot was further broken down into 5m by 5m sections. Figure 179 shows a scatter plot of

the inverted PAI values against the truth for these sub sections. Interestingly all the points appear

to lie on a straight line through the origin with a gradient of four (ratios of inverted to true PAI

lay between 3.63 and 4.74).

The overestimate could be due to the obscuration correction used (described in section 6.4),
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Figure 180: Image of the 10m by 10m section of birch canopy used for inversion

simplicity of the lidar bin to voxel mapping or the multiple scattering enhancement to element re-

flectance. For the first of these it may be the case that elements in different voxels are preferentially

filling gaps (though this would be unlikely for every view angle). Therefore the visible elements

are not representative of the shadowed elements and so dividing by the gap fraction up to a point

overestimates the intensity of light that would be returned were it not for the obscuring elements.

It may also be due to an underestimate of gap fraction, leading to an excessive correction.

The mapping of lidar bins to voxels was very rough, making no attempt to calculate the

fractional overlap. Therefore the radiant flux of a lidar contributed to all intersecting voxels and

energy was not conserved. In this example lidar bins were much smaller than voxels and so whilst

it will have caused a slight overestimate in surface area, unless every lidar bin intersected four

separate voxels on average, this would not be enough to cause the deviation alone. Multiple

scattering will increase the apparent reflectance and so, as surface area is inversely proportional to

element reflectance (through equation 88), cause an overestimate. However section 4.1 showed that

for a single voxel the area could be accurately found and so multiple scattering is unlikely to be a

significant source of error. With such a small footprint (0.8o beam divergence) multiple scattering

makes up a very small part of the signal and so the lack of error due to multiple scattering for a

single voxel is likely to hold for a full canopy.

For these reasons it is likely that the gap fraction correction dominated the PAI errors. Unfor-

tunately there was insufficient time to carry out the extra analysis needed to determine the cause

of the errors. However the systematic nature of the bias (albeit over a small PAI range) suggests

that it is a correctable effect.
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This is far from a comprehensive error analysis but suggests that the method can return accurate

values, although the current implementation needs much improvement before it can be considered

the equal of the gap fraction method of Jupp et al. (2009). If the improvements suggested did

fix the limitations then the method would have the advantage of being able to measure all canopy

elements off the ground (all beams that contain no soil returns) rather than being limited to the

0o to 55o zenith range. All vegetation that contributes to a satellite signal will be characterised,

allowing better linking with above canopy measurements. Law et al. (2001) believed that missing

understorey vegetation was a major source of error when comparing LAIs found with hemispherical

photography and satellite NDVI.

6.8.2 Future improvements

The experiments used to test the inversion of a voxel canopy model from overlapping terrestrial

lidar scans were very limited. Whilst it was shown that the method works for small sections of

canopy, it gives large overestimates when used on complete canopies. This is most likely to be

due to the gap fraction corrections, however whether this is due to inaccurate predictions of gap

fraction or non-randomness of canopy elements was not determined.

The iterative scheme to determine the voxel properties was very näıve, making no attempt to

control the size or direction of voxel property adjustments. Instead they were left to their own

devices, hoping that eventually the surface areas and angular distributions would settle down to

the correct value. A more intelligent method should be employed once the basic idea has been

shown to have value, such as the “simplex” or “Levenberg-Marquardt” methods (Press et al.

1994). Constructing the matrix for these methods, with the interdependence of voxel properties

on adjacent voxels, would be non-trivial but once implemented should give a more accurate and

much more robust solution.

One use of Echidna data would be to predict above canopy reflectance. This would require a

DART type model (Gastellu-Etchegorry et al. 2004) to be created from the voxel inversion, then

multi angular and range resolved measurements to be simulated over the canopy model and the

original geometric forest model. Comparing these two data sets would determine the inversion’s

ability to predict above canopy reflectance. With the correct surface area, angular distributions
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and gap fractions the single scattered radiation would be correctly determined however multiple

scattering would require some form of model (such as that of Knyazikhin et al. (1992)) as it would

be far more significant at the scale of the remotely sensed data than the Echidna measurements.

The number of unknowns in the method could be reduced by placing targets of known re-

flectance and phase function (ideally perfect Lambertian) throughout the canopy. The measured

intensity from these targets would be equal to the product of the contact frequency and surface

reflectance, allowing the gap fraction up to that point to be directly solved. With a few of these

intersecting beams at different angles it may be possible to detect any deviations in canopy re-

flectance or phase factor (for coniferous canopies) from the assumed value, as well as giving a more

reliable estimate of the G function. Carrying a few foldable targets and extendable poles should

not add too much weight and effort to the fieldwork.

6.9 Below canopy conclusions

This chapter has outlined the current efforts to characterise forests with full waveform terrestrial

lidars. There have been many studies using more common discrete return instruments, but these

suffer from the problem of being blinded by the first return (Danson et al. 2007) and are only a

stop-gap until full waveform sensors become widely available.

The initial studies with the first terrestrial waveform lidar, Echidna, have concentrated on

extracting trunk characteristics (a purely geometric problem) and LAI through traditional gap

fraction methods (Jupp et al. 2009). The ray tracer was used to assess the accuracy of such

an approach. It was found to correctly predict gap fraction, though with some sensitivity to

the external estimates of canopy reflectance and phase function. This will suffer from the same

saturation issues as traditional transmission techniques, although the range of canopies tested

here did not approach the LAI of 4 that is generally taken as the saturation point (Jupp and

Lovell 2007). Clumping corrections may improve the estimate, particularly canopy scale clumping.

Also Jupp et al. (2009) applied correction factors to their estimates of gap fraction to prevent

non-physical results (such as gaps through the ground) and this may increase the PAI estimate.

Whilst gap fraction can be extracted from lidar returns and that used to estimate PAI, in theory
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surface area (and so PAI) can be linked to measured intensity as directly as gap fraction can. Such

an approach would allow measurement of the spatial distribution of LAI and LAD throughout the

canopy and should be the ultimate aim of work with terrestrial waveform lidar (Jupp and Lovell

2007).

An angular distribution model was developed, based upon a simplification of the spheroidal

model of Campbell (1986). Slightly different approaches were needed for coniferous and broadleaved

canopies (as they are for any method (Chen and Cihlar 1996)). The increased self shadowing within

conifer needle shoots meant that the phase function appeared constant from all view directions

and so this value must be supplied from external data. For the birch canopies tested there was

very little shadowing within voxels with sides of up to 1m, so the phase function could be extracted

alongside the angular distribution. Both methods required an estimate of canopy reflectance, in

the case of birch this was the only external data needed.

For broadleaved forests the agreement between observations and the spheroidal angular distri-

bution model was startling. It is not known exactly how Onyx (Onyx Computing Inc 2009) set

the leaf distribution within the birch canopies and this may have given a better agreement than

would be observed in nature. However the tests performed here, with small sections extracted

from complete canopies, would be impossible in reality; leaves would droop without the support-

ing branches and so it can only be stated that the tree models look correct and produce realistic

remote sensing signals (Disney et al. 2009) and so may be taken as accurate.

In the absence of shadowing between adjacent voxels, so that corrections of gap fraction are not

needed, this model predicted surface area and gap fraction with angle to a high degree of accuracy.

This required at least five overlapping beams covering a 60o zenith range and ideally nine beams,

that amount of data could be collected in an hour or two.

The sensitivity of surface area and gap fraction estimates to the external values of element

reflectance and, for Sitka spruce, phase factor was not explicitly calculated. Surface area is inversely

linearly related to both of these factors so that any error in these values will directly scale through

to surface area and gap fraction. For example a 10% underestimate of canopy reflectance would

become an 11% overestimate of surface area. This is a similar sensitivity to that found for the gap
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fraction method of Jupp et al. (2009). Measuring element reflectance in the field could be easily

done with a portable spectrometer, such as the LI-1800 (LI-COR 1988) but estimation of the phase

factor for coniferous canopies would be more problematic. Placing targets of known reflectance

through the canopy would allow the gap fraction to be decoupled from apparent reflectance and

so, providing that it is constant throughout the canopy, give an estimate of the phase factor.

Woody correction Dual wavelength lidar should allow the separation of leaf and bark areas, so

the extraction of LAI from PAI independently of illumination conditions that complicate attempts

with passive instruments so (Gower et al. 1999). This was successfully performed for birch forests,

but in Sitka spruce the multiple scattering enhancement to the brighter return caused a large

overestimate of wood fraction. This issue could be resolved by using an enhanced reflectance

rather than element reflectance (Huang et al. 2007). This is a reflectance that takes the multipe

scattering contribution to the shoot scale signal into account and would be dependent upon needle

shoot structure.

Complete canopies It should be possible to extend the method to complete canopies as surface

area and gap fractions are correctly determined for small canopy sections. The greatest potential

for error here is in the gap fraction correction; if the visible elements are not representative of the

obscured elements within a voxel the correction can lead to an over or underestimate of apparent

reflectance which in turn will confuse the line fitting used to determine the canopy properties.

The potential for error would be dependent upon canopy density and the separation between scan

centres. A far more detailed analysis of errors in a range of different canopies with various scan

densities would be needed before the method proposed in this chapter can be said to work reliably

and provide results as useful as traditional gap fraction methods. The gap fraction methods avoid

this issue by using Beer-Lambert’s law and the results here are not strong enough to show that

PAI can be accurately derived without resorting to it.

There was only time to do a direct comparison of the method presented here against the

gap fraction method of Jupp et al. (2009) for a single stand. More stands would be needed to

determine relative accuracies and the reasons for disagreements. A more detailed examination of
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the predicted and true gap fractions along each lidar beam will reveal whether it is an error in the

predicted gap fraction or a non-random arrangement of elements that caused the largest errors.

Within the simulator it would be possible to determine the visible and hidden surface area within

each beam field of view, however it would require a significant modification of the ray tracer.

Inversions with more scans (up to twenty) should also provide more accurate estimates but would

require significantly more computer time and memory to run. In the absence of these experiments

it cannot be said for certain whether the method will work reliably in complete canopies.

As well as providing estimates of LAI non-destructively, these measurements have the potential

to create complex canopy reflectance models, such as DART (Gastellu-Etchegorry et al. 1996),

requiring only a fraction of the assumptions normally made. Such a model could be used to predict

above canopy multi-angular and range resolved measurements, aiding the understanding of remote

sensing signals, though this was beyond the scope of the thesis.

Realism These below canopy simulations used infinitely short laser pulses and did not include

noise. As Echidna measurements are taken at much shorter ranges than spaceborne instruments

they will have much higher signal to noise ratios, therefore it is likely that noise will play a far

smaller part in inversion accuracy than canopy heterogeneity and deviations from assumptions.

This omission should not limit the results’ realism.

Figure 181: Illustration of the effect of pulse length on a voxel inversion method. Green ellipses are leaves

and red hashed areas represent the laser intensity for a return centred on the voxel for two scans

Echidna has a 25.3ns laser pulse (Jupp et al. 2009) which will blur the signal over 3.8m. The
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pulse length may limit the minimum voxel size as beams from different directions will contain

returns from outside the voxel, as illustrated in figure 181. Whilst the impact of using smaller

voxels than the pulse length on accuracy was not quantified it would seem sensible to ensure that

the pulse length is shorter than the voxel sides. For 1m3 voxels this would be 3.3ns which table 1

shows is easily achievable with current technology. An inversion with 3.8m or larger voxels was

not attempted as this would be the same size as the tree crowns used and likely to suffer from self

shadowing.

Due to the failure of the current implementation of the method with complete canopies there

was little point including these extra levels of detail for the time being.
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Chapter 7: Conclusions

Climate change is currently one of the most pressing issues and a picture of what will happen under

different scenarios, with a high degree of certainty, is needed for effective policies to be made. This

requires an accurate measure of the current state of the Earth and a clear understanding of the

processes that govern change and how they will themselves be affected by climate change.

One of the key factors is the land vegetation, being one of the most dynamic elements in the

natural carbon cycle (Defries et al. 2000). Forests make up the largest part of terrestrial vegetation

by mass and so an accurate map of forest characteristics and how they change through the seasons

and years is essential to understand the Earth’s climate. Chapter 1.3 reviewed the theory used

to measure forests and chapter 2.4 presented current attempts to extract biophysical parameters

using that theory.

The conclusion was that spaceborne instruments are needed to make the globally consistent

and frequent measurements required. In addition it would be best to avoid site specific calibration

and so a physically based method would be preferable. There has been much work in this area,

however all instruments suffer from some form of limitation. Passive optical sensors offer the best

spatial and temporal coverage (MODIS offers daily global coverage with 250m ground resolution

whilst the Landsat series make 30m resolution measurements every 16 days and have done since

1972) but these saturate at only moderate canopy densities (LAIs of 5-6, when values of 10 are not

uncommon), potentially biasing any climatic predictions. Short wavelength radars suffer the same

problem of saturation as passive optical whilst longer wavelength radars suffer from significant

atmospheric distortion and engineering challenges to get usable ground resolutions from space.

Even if these could be overcome, the relationship between radar signals and forest properties are

not direct or easily invertable (Sexton et al. 2009).

Lidar, specifically full waveform, offers the potential to make non-saturating measurements (up

to canopy covers of 98%) that are more directly related to forest characteristics than with any

other instrument (Dubayah and Drake 2000). Due to the relative immaturity of the technology

and higher energy requirements they cannot achieve the spatial and temporal coverage of passive

optical or radar sensors. It may be possible to use their physically based and non-saturating
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measurements to calibrate passive optical or radar estimates and so “upscale” the measurements

(Hyde et al. 2006), though with some saturation beyond the lidar measurements.

Lidar is a relatively new technology and its interaction with forest canopies is not yet fully un-

derstood. There have been several studies to validate lidar derived measurements against ground

data, but these are complicated by having to match up the remotely sensed and ground observa-

tions. The errors from mismatching may well dominate over others, preventing a full understanding

of the processes contributing to the signal (Harding and Carabajal 2005). Monte-Carlo ray tracing

with geometrically explicit forest models (as described in section 2.2.3) allows realistic simulations

of remote sensing data with a fully controlled and known set of ground truth values. This allows

new techniques to be validated with confidence.

The ray tracing library of Lewis (2006) was modified to allow the simulation of any current

or foreseeable lidar instrument. A library of Sitka spruce and birch forests with a variety of ages,

densities and slopes were created. These were used as a virtual laboratory (Lewis 1999) to explore

the effect of instrument parameters on accuracy and an optimum spaceborne lidar for forestry

was proposed, the properties of which are given in section 5.14. Using these would ensure that

the lidar system itself will not limit inverted parameter accuracy. In addition a method to avoid

introducing bias to the tree top range estimate by noise removal was introduced in section 5.1.1.

This was shown to improve the accuracy (if not the precision) of tree height estimates in all cases

tested. These simulations exposed some situations that might lead to inaccurate height estimates,

such as those shown in figures 102 and 108; situations that have not been apparent from real data

due to other complications.

Some shortcomings of using current lidars for global measurements were addressed. All current

and proposed spaceborne lidars are large footprint (10m-100m) and whilst these can be sure to

measure the range to a tree top and ground, allowing tree height estimates, they are particularly

susceptible to topographic blurring (see section 3.5.3). Forests on steep slopes are not uncommon

(Takahashi et al. 2005) and so an instrument that cannot measure such areas will have considerable

blind spots.

In the thesis it was proposed to use dual wavelength lidar to detect the start and end of the
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ground return, no matter how great the topographic blurring, long the laser pulse duration or in

the presence of understorey vegetation. This method was tested with the simulator and shown to

give more accurate results than current globally applicable methods and required no site specific

calibration or prior information.

Currently the highest accuracy that has been reported over topography is a root mean square

error of 2.99m, reported by Rosette et al. (2008) over slopes up to 20o using ICESat. However

this required a 10m horizontal resolution terrain model to determine the ground position, which is

not available at a global scale (Rosette et al. 2007), as well as some site specific calibration from

ground data. Even then the accuracies were not significantly better than the method presented in

section 5.12, which requires no calibration or site specific parameters. Therefore the dual wave-

length method proposed here should be a considerable improvement over current tree measurement

techniques, only struggling with extremely dense (>98%) and extremely sparse (<10%) canopy

covers. All areas of the globe within these bounds should be measurable to a better accuracy than

currently available, that is better than 5m accuracy in all cases and generally sub-metre.

Such an instrument would require two wavelengths, either through two lasers or by shifting the

frequency of a single laser. Whilst this would be slightly more expensive and complex than current

mono-chromatic lidars it is well within current technological reach (Foster 2008, Morsdorf et al.

2008b, Kaasalainen 2007).

As well as the optimum canopy lidar described above, a method to use an instrument designed

for atmospheric measurements over forests was proposed (section 5.9). In particular a method to

extract tree information from long duration laser pulses was presented based on the deconvolution

method of Gold (1964). This was shown to be capable of retrieving accurate biophysical param-

eters but no robust convergence criterion was found for the iterative deconvolution. Since those

experiments were carried out the instrument around which they were based (ESA’s A-scope (ESA

2010)) has been cancelled (or at least put on hold) and so there seems little point in pursuing a

convergence criterion for the time being.
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7.1 Above canopy future work

Whilst the various methods were shown to work under certain conditions, the experiments per-

formed were not exhaustive and more would be needed before it could be said for certain whether

this is a truly global method.

7.1.1 Gappy canopies

The dual wavelength method was shown to work well for completely blurred waveforms (with no

break from beginning to end, as in figure 103), however it struggled with waveforms that included

a gap (see section 5.12.13). Such a gap could be due to a clear separation between canopy and

ground, shadows or a break in a vertically heterogeneous canopy (such as figure 102). The first of

these should be easy to solve for and this was demonstrated for the flat ground cases throughout

chapter 4.3. However for the other two cases the ground start will be at one side or another of the

waveform break and so a method needs to be able to determine which.

The change in spectral ratio from pure canopy to pure ground can be very small (see sec-

tion 5.12) and so it may not be easy to decide which side of the gap the transition occurs from the

absolute change in the ratio. It should be possible to identify the transition by “filling in” gaps

and so turning the gappy waveform into a completely blurred waveform. That is to remove the gap

by either ignoring those ranges or else filling in with intensity values from either side of the gap.

The point of inflection of the spectral ratio can then be found in the same way as for completely

blurred waveforms.

In none of the forest models used in this investigation was the intensity drop due to shadows so

severe as to cause a break in the intensity. Whether this is true for all tree species and situations

is not clear, but it is likely to be far less common than gaps due to breaks in the canopy. Therefore

the priority should be to develop a method to cope with canopy to ground transitions above or

either side of waveform gaps.

This extra processing should be relatively simple to implement, requiring an extra step to

identify gaps and decide how best to deal with them, either by filling them in and looking for a

turn in spectral ratio or else use the simple flat ground method. Care would be needed not to shift
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the spectral ratio inflection across the gap as this would lead to large errors (section 5.12.13).

7.1.2 Dual wavelengths

Several possible wavelength combinations for the dual wavelength lidar were proposed using the

spectra described in section 5.12.4. Whilst the spectra covered a broad range of vegetation types

they were not comprehensive by any means, particularly the soil spectra. Therefore the exper-

iments should be repeated with a larger number of spectra, particularly different forest floors

(see section 4.2.2). If it is found that no combination meets the criteria set out in section 5.12.4

the results could be weighted by the relative proportions of each spectra on the Earth and their

importance in the various ecological processes. This only requires access to more data.

More accurate engineering information would be needed to decide whether an instrument could

be built at those wavelengths and meet the required system characteristics (laid out in section 5.14).

Such engineering concerns were beyond the scope of this thesis but would be needed for a full

instrument design.

Throughout this thesis only dual wavelength lidars were investigated. More wavelengths should

provide more information and so allow further analysis, however it is not clear how best to use

this additional information and much more work would be needed.

7.1.3 Biophysical parameters

This thesis concentrated on the estimation of tree height, which requires the ground’s position to

be found. This separation of canopy from ground returns is the first step to any physically based

inversion and so tree height accuracy will be related to whether or not other parameters can be

successfully inverted. The errors in these other parameters are unlikely to be linearly related to

tree height error and so as these are currently the parameters of interest for ecological models it

would be useful to determine how accurately they can be determined.

A method proposed by Lewis (within Hancock et al. (2008)) was to use the ratio of energy

returned from the canopy and ground in a self calibrating method. If it is assumed that within a

given area the canopy, ρc, and ground, ρg, reflectances are reasonably constant, the total waveform

intensity for each footprint, E, will be a linear mix of the energy returned from the canopy, Ec,
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and from the ground, Eg, weighted by the canopy cover, c.

E = cEc + (1 − c)Eg (94)

For a given area, the gradient, ∆, of a line fitted to a graph of Ec against Eg is equal to the

negative of the ratio of their reflectances (ρc for canopy and ρg for ground) whilst the y-intercept,

E0, is equal to canopy reflectance.

∆ = −ρc

ρg

(95)

E0 = ρc (96)

If the parameters for this line are known the canopy cover can be determined from the total

waveform reflectance alone;

c =
1

∆ + 1

(

∆E

E0
+ 1

)

(97)

Therefore as long as it is possible to separate canopy from ground returns in a few waveforms

the canopy cover can be determined for all, irrespective of blurring or its source. It does rely on

the absolute intensities and so care must be taken to correct for any shot to shot gain variation

(Harding and Carabajal 2005) but this would be a great improvement over the method of Lefsky

et al. (1999) where a constant value of the ratio must be assumed. There was not time to perform

such inversions within the thesis and its success would rely on the homogeneity of canopy and

ground reflectance, effects that can only be determined from real data such as that collected by

LVIS (Hofton et al. 2000).

Models are being developed to make use of direct lidar measurements (Hurtt et al. 2004), but

due to the immaturity of the technology these are not yet widespread.

7.1.4 Impact on ecological models

Whilst it was shown in chapter 4.3 that the methods and instruments proposed in this thesis are

able to provide tree height with better accuracy than previous attempts, there was not time to
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assess the impact that this would have on ecological models.

The first step would be to determine what proportion of the Earth’s surface is covered by forests

with LAIs of over 7 (the saturation limit (Myneni et al. 2002)) and what proportion of forests

are on what slopes. The global LAI products derived from MODIS and MISR could be used to

find the proportion at the current saturation limit throughout the growing season. Finding which

areas of forests for which it would not be possible to use large footprint monochromatic lidar over

due to slope would not be simple as it depends on the separation of the crowns and ground, a

value which is not readily available. Global digital elevation models are available and whilst they

may not give accurate ground positions in forests (Dowman 2004) they should allow estimates of

ground slope. This would give an idea of the proportion of forests at slopes over a certain angle.

To quantify the impact the values would have to be run through a global ecological model

such as JULES (Clark and Harris 2010), once with currently derived estimates of biomass and

LAI then again with the higher values likely to exist but not captured by current systems and

comparing outputs. It would not be certain what values to use for the “non-saturated” inputs as

a multi-spectral lidar does not yet exist and so there would be a large degree of uncertainty in

the second output. It would however give a rough idea of whether there would be a significant

difference in future climate predictions due to measurement methods.

7.2 Terrestrial lidar

Whilst spaceborne instruments are essential for globally consistent measurements, more direct,

ground based measures are needed to validate and understand remote signals. Forests have been

directly measured, with rulers and equivalent, but it is a tedious and expensive process impossible

for anything but a few small plots. More rapid methods were reviewed in section 3.1 and whilst

they have popularity due to their ease, they saturate at LAIs of 3 to 4. This is similar to the

passive optical saturation point and so will bias any validation attempt and potentially obscure

physical processes. In addition they cannot make the range resolved measurements of the canopy

profile needed to validate spaceborne lidar measurements.

Terrestrial lidar is the only way to quickly collect range resolved measurements from the ground
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and so will be a valuable tool for validating spaceborne lidar signals. Ground based lidar has been

shown to be capable of explicit measurements of forest structure, particularly the solid trunks and

large branches. This thesis concentrated on the distribution of foliage rather than the point cloud

processing methods of wood architecture, which are not able to extract leaf area without extensive

external measurements (see section 3.5.4).

A method to fully characterise a site (to some resolution) is needed. This would give the

biophysical parameters of the stand as well as allowing predictions of all remote sensing signals,

both range resolved, multi-angular and traditional passive optical at nadir. As a first attempt Jupp

et al. (2009) have used terrestrial lidar to estimate gap fraction and this should form a benchmark

to test other methods against.

The method was implemented (section 6.3) and shown to give accurate estimates of gap fraction

(though with a slight bias that could be solved by tweaking effective parameters). This did not

translate to a particularly accurate estimate of LAI in all cases, but again tweaking the effective

parameters (phase and angular distribution functions) should correct these errors. The authors of

the initial study admit that this is only a rough first attempt and that more detailed structural

measurements should be possible with a terrestrial waveform lidar (Jupp and Lovell 2007).

The richness of hemispheric, full waveform lidar data should allow the inversion of a volumetric

canopy model, giving biophysical parameters and allowing the prediction of remote sensing signals.

Various experiments were performed to determine what details need to be included in such an

inversion scheme and which can be safely ignored. This led to a relatively simple inversion method

and this was shown to work well for small sections of canopy from a number of overlapping scans.

The greater the number of scans the higher the precision but usable results were obtained with

only five as long as their zeniths covered a range of 60o.

Using two wavelengths allowed the separation of leaf and bark areas in birch forests and so the

estimation of LAI rather than PAI. In Sitka spruce forests the multiple scattering enhancement to

the higher reflectance wavelength prevented this separation with only the single scattering albedo.

It may be possible to use an enhanced reflectance and so take multiple scattering into account

(Huang et al. 2007) and so separate leaf from bark, but there was not time to pursue this.
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7.3 Ground based future work

Due to time constraints the inversion method was only tested comprehensively on small sections

of canopy. Many more tests would be needed before the value of the technique can be proven.

7.3.1 Complete canopies

A brief attempt was made to apply the method to a complete canopy and whilst it showed promise

the roughness of the implementation prevented a full assessment of accuracy and so a direct

comparison with the gap fraction method of Jupp et al. (2009). Unlike the gap fraction it did

not show any specific limitations in zenith ranges and so should be able to accurately measure

a complete stand, as a remote sensing instrument would see the canopy, rather than missing low

lying vegetation.

One of the biggest potential errors is the gap fraction correction, given in equation 68 in

section 6.4. Whilst it should be correct on average, it may lead to some large spurious values and

only tests with a range of complete canopies would reveal how often and dramatically this occurs.

More comprehensive tests are needed with a much broader range of canopy types and densities.

It should be possible to determine how closely the scans need to be placed to ensure the complete

measurement of a given stand and so how large that stand can be. It may be the case that in

taller tree stands the beam does not reach the tree tops, in which case either more scans would be

needed from the ground or it may be necessary to suspend the lidar above the canopy.

7.3.2 Validating remote signals

One of the potential applications of full waveform terrestrial lidar is to provide the structural

information necessary to drive a radiative transfer model and predict remotely sensed signals. In

some senses this would be easier than estimating biophysical parameters, as effective values would

suffice. For example no voxel scale clumping would be needed as a remote sensing instrument will

also miss what a terrestrial lidar misses.

An accurate canopy model is still needed. The accuracy of this and the subsequent remote

sensing predictions can be determined by comparing signals simulated over the inverted canopies
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and those simulated over the original geometrically explicit forest model with the ray tracer. This

would show how well they agree and highlight any potential differences.

7.3.3 Simulation realism

For the terrestrial lidar simulations a fairly idealised instrument was used. This had an infinitely

short laser pulse and no noise. For complete realism these two effects should be included. Due to

the short range, noise should be less of an issue than for spaceborne lidar but laser pulse duration

has the potential to limit the inverted volumetric resolution (see section 6.9).

Removal of laser pulse duration was shown to be possible by deconvolution, but mathematically

ill posed and so not robust (section 5.9). Therefore it may be necessary to use a laser with a pulse

length shorter than the inverted canopy voxel.

This thesis dealt with lidar characteristics that cannot be avoided and so must be dealt with by

inversion methods. There are potentially other effects that can change the measured lidar signal

such as optical misalignment and laser “ringing” (echoes in the laser pulse), but it is assumed

that these can be corrected for either during calibration or by engineering solutions. Therefore

whilst the simulator could include these effects they were not dealt with in this thesis, which was

primarily an investigation of the signal processing aspect.

298



References

Abdalati, W., Carabajal, C., Csatho, B., Dubayah, R., Fowler, D., Fricker, H. A.,

Hall, F., Harding, D., Joughin, I., Kimes, D., Kwok, R., Laxon, S., Lefsky, M.,

Luthcke, S., Martin, S., Minnett, P., Ranson, J., Sauber, J. M., Scambos, T.,

Spinhirne, J., Thomas, R., Urban, T., Wiscombe, W., and Zwally, J., 2007, Report

from the ICESat-II workshop, NASA.

Albota, M. A., Heinrichs, R. M., Kocher, D. G., Fouche, D. G., Player, B. E.,

O’Brian, M. E., BF, A., Zayhowski, J. J., Mooney, J., Willard, B. C., and

Carlson, R. R., 2002, Three-dimensional imaging laser radar with a photon-counting

avalanche photodiode array and microchip laser. Applied Optics , 41, 7671–7678.

Allen, M. T., Prusinkiewicz, and DeJong, T. M., 2005, Using L-systems for modeling source-

sink interactions, architecture and physiology of growing trees: the L-PEACH model. New

Phytologist , 166, 869–880.

Allen, W. A., Gausman, H. W., and Richardson, A. J., 1970a, Mean effective optical

constants of cotton leaves. Journal of the Optical Society of America, 60, 542–547.

Allen, W. A., Gausman, H. W., Richardson, A. J., and Thomas, J. R., 1969, Interaction

of isotropic light with a compact plant leaf. Journal of the Optical Society of America, 59,

1376–1379.

Allen, W. A., Gayle, T. V., and Richardson, A. J., 1970b, Plant-canopy irradiance specified

by the Duntley equations. Journal of the Optical Society of America, 60, 372–376.

Alley, R., T, B., Bindoff, N. L., Chen, Z., Chidthaisong, A., Friedlingstein, P.,

Gregory, J., Hegerl, G., Heimann, M., Hewitson, B., Joos, B., Jouzel, J.,

Kattsov, V., Lohmann, U., Manning, M., Matsuno, T., Molina, M., Nicholls,

N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Solomon,

S., Somerville, R., Stocker, T. F., Stott, P., Stouffer, R. J., Whetton, P.,

299



Wood, R. A., and Wratt, 2007, Fourth Assessment Report: Climate Change 2007:

Working Group I Report: The Physical Science Basis (Geneva: IPCC).

Bacher, U., and Mayer, H., 2000, Automatic extraction of trees in urban areas from aerial

imagery, In ISPRS , volume XXXIII, Amsterdam.

Baltsavias, E. P., 1999, Airborne laser scanning: basic relations and formulas. ISPRS Journal

of Photogrammetry & Remote Sensing, 54, 199–214.

Balzter, H., 2001, Forest mapping and monitoring with interferometric synthetic aperture radar.

Progress in Physical Geography, 25, 159–177.

Balzter, H., Rowland, C. S., and Saich, P., 2007, Forest canopy height and carbon estimation

at Monks Wood national nature reserve, UK, using dual-wavelength SAR interferometry.

Remote Sensing of Environment , 108, 224–239.

Barclay, H. J., Trofymow, J. A., and Leach, R. I., 2000, Assessing bias from boles in

calculating leaf area index in immature Douglas-fir with the LI-COR canopy analyzer.

Agricultural and Forest Meteorology, 100, 255–260.

Baret, F., Andrieu, B., and Steven, M. D., 1993, Gap frequency and canopy architecture of

sugar beet and wheat crops. Agricultural and Forest Meteorology, 65, 261–279.

Barnes, W. L., Pagano, T. S., and Salomonson, V. V., 1998, Prelaunch characteristics of

the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans-

actions on Geoscience and Remote Sensing, 36, 1,088–1,100.

Bienert, A., Scheller, S., Keane, E., Mohan, F., and Nugent, C., 2007, Tree detection and

diameter estimations by analyses of forest terrestrial laserscanner point clouds, In ISPRS

Workshop on laser scanning and Silvilaser , Finland, pp. 50–55.

Blair, J., Coyle, D., Bufton, J., and Harding, D., 1994, Optimization of an airborne laser

altimeter for remote sensing of vegetation and tree canopies, In Geoscience and Remote

Sensing Symposium, 1994. IGARSS ’94. Surface and Atmospheric Remote Sensing: Tech-

nologies, Data Analysis and Interpretation., International , volume 2, pp. 939–941.

300



Blair, J. B., Rabine, D. L., and Hofton, M. A., 1999, The laser vegetation imaging sensor:

a medium-altitude, digitisation only, airborne laser altimeter for mapping vegetation and

topography. ISPRS Journal of Photogrammetry & Remote Sensing, 54, 115–122.

Bonhomme, R., and Chartier, P., 1972, The interpretation and automatic measurement of

hemispherical photographs to obtain sunlit foliage area and gap frequency. Israel Journal

of Agricultural Research, 22, 53–61.

Borel, C. C., Gerstl, S. A. W., and Powers, B. J., 1991, The radiosity method in optical

remote sensing of structured 3-D surfaces. Remote Sensing of Environment , 36, 13–44.

Boudreau, J., Nelson, R. F., Margolis, H. A., Beaudoin, A., Guindon, L., and Kimes,

D. S., 2008, Regional aboveground forest biomass using airborne and spaceborne LiDAR

in Quebec. Stochastic Environmental Risk Assessment , 23, 387–397.
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S. B., Prince, S., and Weishampel, J., 1997, The vegetation canopy lidar mission,

In Conference on land satellite in the next decade II. Sources and applications , American

Society for Photogrammetry and Remote Sensing, Washington.

Dubayah, R. O., and Drake, J. B., 2000, Lidar remote sensing for forestry applications. Journal

of Forestry, 98, 44–46.
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B Order of smoothing for calculating the spectral ratio

The proof that smoothing the individual waveforms before ratioing lessens the impact of noise

relative to smoothing the spectral ratio of two noised waveforms is presented here.

Taking a point at which one waveform has an intensity β and the other x. The spectral ratio

of the ideal waveforms would then be;

ratioideal =
β

x
(98)

If the denominator has its intensity reduced by a noise value of α, the spectral ratio of the

noised waveforms becomes;

rationoised =
β

x − α
(99)

The deviation from the truth is then the difference between equations 99 and 98;

error =
β

x − α
− β

x
(100)

Which becomes;

error =
βα

x(x − α)
(101)

This situation is illustrated in figure 182, with noise causing a reduction in the intensity of the

denominator (the most disruptive situation for analysis). Bare in mind that the intensity will be

335



Beta/x

x

Beta

 1110  1115  1120  1125  1130  1135  1140

W
av

ef
o
rm

Range (m)

numerator
denominator

ratio

(a) No smoothing

Beta/x

x

Beta

 1110  1115  1120  1125  1130  1135  1140

W
av

ef
o
rm

Range (m)

numerator
denominator

ratio

(b) Smoothing the ratio

Beta/x

x

Beta

 1110  1115  1120  1125  1130  1135  1140

W
av

ef
o
rm

Range (m)

numerator
denominator

ratio

(c) Smoothing waveforms before

division

Figure 182: Illustration of the magnitude of noise’s effect on the spectral ratio smoothing before and after

truncated at 0, therefore α <= x.

B.1 Post-smoothing

If the noised waveforms are ratioed and subsequent signal smoothed by a Gaussian with unit energy

and width σ, the deviation from the truth is scaled by the maximum amplitude of the Gaussian;

errorpost−smooth =
βα

x(x − α)
× 1√

2πσ
(102)

Here the smoothing function’s width, σ, is that relative to the sampling width, therefore for a

smoothing function;

σ > 1 (103)

B.2 Pre-smoothing

If the two waveforms are smoothed by convolution with a Gaussian before calculating the spectral

ratio their intensities become β and x − α
√

2πσ
. The deviation from the truth is then;

errorpre−smooth =
β

x − α
√

2πσ

− β

x
(104)

Which goes to;

errorpre−smooth =
βα

x(
√

2πσx − α)
(105)
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B.3 Comparison

Comparing the relative sizes of errorpost−smooth and errorpre−smooth;

errorpost−smooth <? > errorpost−smooth (106)

βα√
2πσx(x − α)

<? >
βα

x(
√

2πσx − α
(107)

1√
2πσ(x − α)

<? >
1√

2πσx − α
(108)

Taking the reciprocal of both sides and changing signs;

√
2πσ <? > 1 (109)

From equation 103 it can be seen that;

√
2πσ > 1 (110)

Therefore;

errorpost−smooth > errorpre−smooth (111)

Smoothing the individual waveforms before calculating the spectral ratio will always give

smaller deviations from the truth than smoothing the ratio of noised signals, as long as the Gaussian

width is greater than 1
√

2π
of the sampling interval.

C Angular distribution models

C.1 Sphere

As explained in section 6.4, the apparent reflectance, η any surface is given by;

η =
ρe

Afoot

∮

cos2(α)dAs (112)

For a sphere of radius r annuli can be integrated over, in polar coordinates, between 0 and

π
2 .The area of an annulus, Aann at a zenith angle (which for a sphere is equal to the angle if

incidence), θ is;
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Aann = 2πr2 |sin θ| dθ (113)

Divide this by the sphere’s projected area, πr2, to get dAs

dAs = 2 |sin θ| dθ (114)

For a sphere that completely fills the field of view (ie Afoot = πr2), the integral becomes;

η = ρe

∫ π
2

0

2
∣

∣sin θ cos2 θ
∣

∣ dθ (115)

Using the substitution u = cos θ to solve t too;

η =
2

3
ρe (116)

C.2 Spheroid

Spheroids are far less well behaved in polar coordinates than spheres, the surface normal is not

equal to the angular coordinate and the radius is a function of angle. It was decided to use

Cartesian coordinates instead.

The equation of a vertical cross section through a spheroid (an ellipse) with vertical radius a

and horizontal radius b (as shown in figure 2) is;

y2

a2
+

x2

b2
= 1 (117)

The circumference of an annulus is 2πx with a width of dx
cos α

so;

dAs = 2πx
dx

cosα
(118)

For a spheroid that completely fills the field of view, the vertically projected area and so

footprint is equal to Af = πb2. Substituting into equation 112 gives;

η =
2ρe

b2

∫ b

0

x cos αdx (119)
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The surface angle, α is equal to the tangent of the gradient, which can be found by differentiating

equation 117.

tan α =
dy

dx
= −a

b

x√
b2 − x2

(120)

Therefore cosα can be expressed in terms of x as;

cos θ =
1

√

1 + a2

b2
x2

b2−x2

(121)

And so the apparent reflectance becomes;

η =
2ρe

b2

∫ b

0

x
√

1 + a2

b2
x2

b2−x2

dx (122)

This can be somewhat simplified by setting u = x2 and substituting;

η =
ρe

b2

∫ b2

0

1
√

1 + a2

b2
u

b2−u

du (123)

Whilst this is a relatively compact equation it does not seem possible to solve analytically. The

function within the integral is not continuous, being undefined when u = b2.

Its numerical evaluation presents no problems, although such an approach is unsuitable for

inversion it will allow us to explore the behaviour of the apparent reflectance. The apparent re-

flectances predicted by equation 123 exactly match those measured by the ray tracer over spheroids

with a range of eccentricities.

Off-nadir So far only the special case when the lidar is looking along the vertical axis has been

dealt with. To make use of Echidna’s multi-angular measurements this must be generalised to the

off-nadir case, for a lidar at a zenith, θ to the vertical axis. A one dimensional integral over annuli

can no longer be used as the angle of incidence is now a function of a surface normal’s zenith, β and

azimuth, φ. This relationships can be derived by taking the dot product of two unit vectors, the

surface normal, n̂ and the view direction, v̂. Here the lidar is looking along the x axis so azimuth,

φ is taken from here; the direction is irrelevant.
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(125)

Taking the dot product gives;

cosα = cosφ sin β sin θ + cosβ cos θ (126)

The surface integral in equation 112 must be evaluated over radius and around the azimuth.

Each element is now a segment rather than an annulus, with a surface area dAs = dx
cos β

xdφ.

η = ρe

1

Af

∫ b

0

∫ 2π

0

cos2α
x

|cosβ|dφdx (127)

Here β is the surface zenith angle which is equal to the angle of incidence, θ, for the nadir case

and so can be calculated from equations 120 and 121. Only the magnitude of the surface normal

zenith angle is of importance here so the sign of the gradient can be ignored.

tan β =
a

b

x√
b2 − x2

(128)
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cosβ =
1

√

1 + a2

b2
x2

b2−x2

(129)

Using the trigonometric identity sin2 θ + cos2 θ = 1.

sin β =
ax

√

b2(b2 − x2) + a2x2
(130)

Substituting equation 126 into 127 then expanding the square and simplifying gives;

η = ρe

1

Af

∫ b

0

∫ 2π

0

x
∣

∣cos2 φ sin2 θ sin β tan β + cosφ sin 2θ sin β + cos2 θ cosβ
∣

∣ dφdx (131)

This can be expressed in terms of x by in equations 128, 129 and 130.

The above equations were tested on a sphere which, according to the analytic solution, should

have an apparent reflectance of 2
3ρe from all view zeniths, and it did. As an analytic solution for

spheroids was not found here, the predictions had to be validated against ray traced simulations.

The apparent reflectance of spheroids with different eccentricities was measured with starat

from a range of view zeniths. These results were compared to those predicted by the above

equations and found to match. Confidence can be had in these equations and use them to explore

the behaviour of the apparent reflectance of spheroidally distributed surfaces with view zenith,

hopefully leading to a method for quick and easy inversion of LAD from Echidna data.

C.3 Effective angle of incidence

The surface integrals to determine the apparent reflectance and projected area of a spheroid are

non-trivial and it may not be possible to solve them analytically, but such a solution was not

found here. Instead a spheroid may be treated as a plane at an effective angle of incidence, θe.

Section C.1 showed that for a sphere the effective reflectance is 2
3 of the actual reflectance. For a

plane the effective reflectance is given by equation 61, so.

η =
As

Af

ρe cos2 θe (132)

341



For a sphere that completely fills the field of view the footprint area Af = πr2 and the visible

surface area, As = 2πr2 and so evaluating to 2
3 gives;

η = 2ρe cos2 θe =
2

3
ρe (133)

and so;

θe = arccos

(

1√
3

)

= 54.75o (134)

This is the hinge point of the LAD described by (Wilson 1960). If this effective angle of

incidence holds, the projected area, AsG(θ should also be related to it. For a sphere the Ross-G

function is equal to a half so from equation 60;

G(θ) =
1

2
= cos θe (135)

Solving gives;

θe = arccos

(

1

2

)

= 60o (136)

The effective angle of incidence for the apparent reflectance and projected area are not equal,

although they are similar and an approximate solution may be acceptable. To see how the effective

angles of incidence for apparent reflectance and projected area behave they will have to be evaluate

for spheroids with a range of eccentricities.

The effective angle of incidence can be found for any spheroid and view direction using the

following equation;

θe = arccos

(
√

1

As

∮

cos2 θdAs

)

(137)

Figure 184 shows that the effective angle of incidence is far better behaved than either the

projected surface area or the apparent reflectance. The cross over point is very clearly defined,

with the curves for all eccentricities passing through an effective angle of 54.75o at a zenith of

54.75o. The deviation from a perfect cross over in all other properties must be due to varying

projected area as a fraction of the visible surface area.
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Figure 184: Effective angle of incidence for the apparent reflectance against view zenith for a range of

eccentricities

This value for the cross over point was used due to its high precision, impossible to achieve

with other metrics.

D Phase function

For beams that contain no soil the phase function calculations requires only two bands and the

equations are greatly simplified. The measured reflectance, ηλ, at wavelength λ is;

ηλ = ΓlAp,lρl,λ + ΓwAp,wρw,λ (138)

The same is true at any other wavelength, ω. The projected areas of leaf (Ap,l) and wood

(Ap,w) are constant for all wavelengths, as are the phase functions, in the absence of multiple

scattering (and in the presence if it is taken into account by another method). Simultaneously

solving the equation at two wavelengths gives the phase functions;

Γl =
ηωρw,λ − ηλρw,ω

Ap,l(ρl,ωρw,λ − ρl,λρw,ω)
(139)

Γw =
ηωρl,λ − ηλρl,ω

Ap,w(ρw,ωρl,λ − ρw,λρl,ω)
(140)
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E Multiple scattering for Echidna

The methods described used in chapter 5.14 no attempt to explicitly describe multiple scattering.

For self shadowing canopies it was taken into account by the phase value, Γ whilst for non shadowing

canopies it was assumed negligible. These assumptions have been shown to provide accurate

estimates of surface area and gap fraction with angle, however differences in scattering at different

wavelengths prevent the accurate separation of leaf from bark in highly scattering canopies.

All the simulations used a beam divergence of 15mrad but it has been shown that larger

(30m footprint) beam divergences have larger contributions from multiple scattering, therefore in

self shadowing canopies a Γ value calculated for 15mrad may not be suitable for different beam

divergences. To investigate the method’s robustness to beam divergence the contribution from

multiple scattering was calculated for different beam divergences, from 2mrad to 35mrad.

Figure 185 shows that there was an increase in the average fractional contribution from multiple

scattering and so a separate value of Γ should be calculated for each bream divergence. Interestingly

the maximum contribution did not increase with beam divergence.
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Figure 185: Contribution from multiple scattering against beam divergence for a Sitka spruce forest

In an attempt to understand multiple scattering’s dependence on beam divergence the exper-

iment was repeated using an array of small, highly reflecting spheres. Each sphere was separated

by less than half the smallest beam footprint so that multiple objects would be within each return.

The sphere’s diameter was a quarter of their separation and they were given the same reflectance

as leaves at 920nm. Figure 186 shows that the multiple scattering contribution increases almost

linearly with beam divergence. This is as expected, as beam divergence increases more scatter-

ing elements are included and so the multiple scattered reflectance will increase whilst the singly
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scattered stays constant.
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Figure 186: Contribution from multiple scattering against beam divergence for an array of small spheres

This suggests that the majority of scattering in Sitka spruce canopies is short range, within

needle shoots. Within a canopy scattering elements are clumped into shoots and these clumped

into branches and whorls so that increasing the beam divergence may increase the number of

shoots but if a shoot is wholly within a lidar beam the multiple scattering will not be increased

by including more shoots. In So that increasing the beam divergence

In addition to laser beam divergence, many lidars have broader field of views than fields of

illumination. This ensures that the first interaction of all emitted energy is detected, not wasting

any energy. In addition on ICESat this gives a certain amount of pointing ability, helping it to

observe points of interest (Schutz et al. 2005). The viewed area outside the illuminated footprint

cannot contain any directly reflected radiation but will contain multiple scattered light, therefore

this setup will increase the contribution of multiple scattering. Simulations were run with a Sitka

spruce forest with a variety of fields of view and a fixed beam divergence of 14mrad.

In a real instrument the field of view would never be smaller than the field of view, such a

set up would waste energy. However simulations of this arrangement show that the contribution

from multiple scattering increases in the same manner as with increasing beam divergence. As the

field of view increases beyond the beam divergence the amount of singly scattered light will remain

constant whilst that from multiple scattering will increase as light scattered outside the laser beam

is detected. The chance of a ray of light being scattered and detected will decrease with distance

from the illuminated footprint, so as the field of view becomes much larger than the laser footprint

the increase in the contribution from multiple scattering should level off.
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Figure 187: Contribution from multiple scattering against field of view for a fixed beam divergence in a

Sitka spruce forest

Figure 187 shows that the contribution from multiple scattering did continue to increase as the

field of view passed the beam divergence
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Figure 188: Contribution from multiple scattering against field of view for a fixed beam divergence over

an array of small spheres
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