182 research outputs found

    Decomposing DInSAR Time-Series into 3-D in Combination with GPS in the Case of Low Strain Rates: An Application to the Hyblean Plateau, Sicily, Italy

    Get PDF
    Differential Interferometric SAR (DInSAR) time-series techniques can be used to derive surface displacement rates with accuracies of 1 mm/year, by measuring the one-dimensional distance change between a satellite and the surface over time. However, the slanted direction of the measurements complicates interpretation of the signal, especially in regions that are subject to multiple deformation processes. The Simultaneous and Integrated Strain Tensor Estimation from Geodetic and Satellite Deformation Measurements (SISTEM) algorithm enables decomposition into a three-dimensional velocity field through joint inversion with GNSS measurements, but has never been applied to interseismic deformation where strain rates are low. Here, we apply SISTEM for the first time to detect tectonic deformation on the Hyblean Foreland Plateau in South-East Sicily. In order to increase the signal-to-noise ratio of the DInSAR data beforehand, we reduce atmospheric InSAR noise using a weather model and combine it with a multi-directional spatial filtering technique. The resultant three-dimensional velocity field allows identification of anthropogenic, as well as tectonic deformation, with sub-centimeter accuracies in areas of sufficient GPS coverage. Our enhanced method allows for a more detailed view of ongoing deformation processes as compared to the single use of either GNSS or DInSAR only and thus is suited to improve assessments of regional seismic hazard

    The March 11th, 2011, M 9.0 earthquake offshore Honshu island (Japan): a synthesis of the Tohoku-Oki INGV Team research activities

    Get PDF
    On March 11th, 2011 (at 05:46:23 UTC) a megaearthquake (M 9.0) occurred near the NE coast of Honshu island ( Japan), originated near the subduction plate boundary between the Pacific and the North America plates. The epicenter has been located at about 130 km East of Sendai city, at a depth of about 32 km. This seismic event has been followed by a devastating tsunami. The location, the geometric parameters, the focal mechanism, are in agreement with the occurrence of the earthquake along the subduction plate boundary. The initial seismological analysis indicated that a surface of about 300 km x 150 km over the fault moved upwards of 30-40 m. The Tohoku-Oki INGV Team has made available a wide and multisciplinary expertise to investigate the different scientific issues concerning the earthquake. Indeed from Seismology to Geomorphology, from Remote Sensing to GPS, from Tsunami to Source Modeling the INGV Team has completed a wide range of analysis, obtaining relevant outcomes that are summarized in this work.Published1-272T. Tettonica attivaN/A or not JCRope

    The March 11th, 2011, M 9.0 earthquake offshore Honshu island (Japan): a synthesis of the Tohoku-Oki INGV Team research activities

    Get PDF
    On March 11th, 2011 (at 05:46:23 UTC) a megaearthquake (M 9.0) occurred near the NE coast of Honshu island ( Japan), originated near the subduction plate boundary between the Pacific and the North America plates. The epicenter has been located at about 130 km East of Sendai city, at a depth of about 32 km. This seismic event has been followed by a devastating tsunami. The location, the geometric parameters, the focal mechanism, are in agreement with the occurrence of the earthquake along the subduction plate boundary. The initial seismological analysis indicated that a surface of about 300 km x 150 km over the fault moved upwards of 30-40 m. The Tohoku-Oki INGV Team has made available a wide and multisciplinary expertise to investigate the different scientific issues concerning the earthquake. Indeed from Seismology to Geomorphology, from Remote Sensing to GPS, from Tsunami to Source Modeling the INGV Team has completed a wide range of analysis, obtaining relevant outcomes that are summarized in this work

    Integrated multi-scale methods for modeling the deformation field of volcanic sources

    Get PDF
    The modeling of volcanic deformation sources represents a crucial task for investigating and monitoring the activity of magmatic systems. In this framework, inverse methods are the most used approach to image deforming volcanic bodies by considering the assumptions of the elasticity theory. However, several issues affect the inverse modeling and the interpretation of the ground deformation phenomena, such as the inherent ambiguity, the theoretical ambiguity and the related choice of the forward problem. Despite assuming appropriate a priori information and constraints, we are led to an ambiguous estimate of the physical and geometrical parameters of volcanic bodies and, in turn, to an unreliable analysis of the hazard evaluation and risk assessment. In this scenario, we propose a new approach for the interpretation of the large amount of deformation data retrieved by the SBAS-DInSAR technique in volcanic environments. The proposed approach is based on the assumptions of the homogeneous and harmonic elastic fields, which satisfy the Laplace's equation; specifically, we consider Multiridge, ScalFun and THD methods to provide in a fast way preliminary information on the active volcanic source, even for the analysis of complex cases, such as the depth, the horizontal position, the geometrical configuration and the horizontal extent. In this thesis, firstly we analyse the biharmonic general solution of the elastic problem to state the deformation field surely satisfy the Laplace's equation in the case of hydrostatic pressure condition within a source embedded in a homogeneous elastic half-space. Then, we show the results of different simulations by highlighting how the proposed approach allows overcoming many ambiguities since it provides unique information about the geometrical parameters of the active source. Finally, we show the results of Multiridge, ScalFun and THD methods used for the analysis of the deformation components recorded at Okmok volcano, Uturuncu volcano, Campi Flegrei caldera, Fernandina volcano and Yellowstone caldera. We conclude this thesis by remarking the proposed approach represents a crucial tool for fixing modeling ambiguities and to provide useful information for monitoring purposes and/or for constraining the geometry of the volcanic systems

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain

    Get PDF
    Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.The different research areas included in this paper has been supported by the projects: CGL2005-05500-C02, CGL2008-06426-C01-01/BTE, AYA2 010-17448, IPT-2011-1234-310000, TEC-2008-06764, ACOMP/2010/082, AGL2009-08931/AGR, 2012GA-LC-036, 2003-03-4.3-I-014, CGL2006-05415, BEST-2011/225, CGL2010-16775, TEC2011-28201, 2012GA-LC-021 and the Banting Postdoctoral Fellowship to PJG

    Data Processing and Modeling on Volcanic and Seismic Areas

    Get PDF
    This special volume aims to collecg new ideas and contributions at the frontier between the fields of data handling, processing and modeling for volcanic and seismic systems. Technological evolution, as well as the increasing availability of new sensors and platforms, and freely available data, pose a new challenge to the scientific community in the development new tools and methods that can integrate and process different information. The recent growth in multi-sensor monitoring networks and satellites, along with the exponential increase in the spatiotemporal data, has revealed an increasingly compelling need to develop data processing, analysis and modeling tools. Data processing, analysis and modeling techniques may allow significant information to be identified and integrated into volcanic/seismological monitoring systems. The newly developed technology is expected to improve operational hazard detection, alerting, and management abilities

    Integrating seismological data, DInSAR measurements and numerical modelling to analyse seismic events: the Mw 6.5 Norcia earthquake case-study

    Get PDF
    Questa tesi di dottorato è incentrata sull’analisi dettagliata di sequenze sismiche e sull’applicazione di un approccio multidisciplinare basato sull’integrazione di diverse tecniche geofisiche e geodetiche. Nel contesto di uno studio più generale delle sequenze sismiche, abbiamo concentrato il lavoro sull’analisi ed il confronto di dieci sequenze sismiche (cinque estensionali e cinque compressive), al fine di comprendere le differenze tra questi due ambienti tettonici in termini di durata degli aftershocks. Infatti, il numero di aftershocks decade nel tempo in funzione di vari parametri che risultano essere peculiari di ogni area sismogenetica; tra questi si possono annoverare la magnitudo del mainshock, la reologia crostale e le variazioni dello stress lungo la faglia. Tuttavia, il ruolo esatto svolto da questi parametri nel controllo della durata delle sequenze di aftershocks non è ancora noto. Utilizzando due diverse metodologie, abbiamo evidenziato che l’ambiente tettonico gioca un ruolo primario nell’influenzare la durata degli aftershocks. In media e per una data magnitudo del mainshock, (i) le sequenze di aftershocks sono più lunghe e (ii) il numero di terremoti è maggiore negli ambienti tettonici estensionali rispetto a quelli compressivi. Una possibile spiegazione consiste nel fatto che questa differenza possa essere correlata al diverso tipo di energia dissipata durante i terremoti; in dettaglio, (i) un effetto congiunto di forza gravitazionale e di energia elastica governerebbe i terremoti estensionali, mentre (ii) il rilascio di pura energia elastica controllerebbe i terremoti compressivi. Infatti, le faglie normali operano a favore della gravità, preservando così l'inerzia per un periodo più lungo, e la sismicità dura fino a quando l'equilibrio gravitazionale non viene nuovamente raggiunto dal sistema. Viceversa, i thrusts agiscono contro la gravità, esauriscono la loro inerzia più velocemente e la dissipazione di energia elastica viene controbilanciata dalla forza gravitazionale. Quindi, per sequenze sismiche con magnitudo e parametri reologici paragonabili, gli aftershocks durano più a lungo negli ambienti estensionali poiché la gravità favorisce il collasso dei volumi di hangingwall. Il verificarsi della sequenza sismica del Centro Italia nel 2016 ha fornito un banco di prova per un'analisi dettagliata di un altro terremoto estensionale. Per questo motivo, abbiamo analizzato il terremoto di Norcia (Mw 6.5; Italia Centrale) per aggiungere un’altra sequenza sismica estensionale ai casi di studio precedentemente esaminati. I risultati di questa analisi mostrano che anche la sequenza sismica di Norcia presenta lo stesso comportamento delle altre sequenze estensionali in termini di evoluzione temporale e spaziale degli aftershocks. Inoltre, abbiamo deciso di prendere in considerazione il terremoto di Norcia come caso di studio per l’applicazione di un approccio multidisciplinare, al fine di cercare di comprendere la possibile cinematica e il ruolo della gravità durante i processi di enucleazione degli eventi estensionali. In particolare, abbiamo investigato il terremoto di Norcia, ricorrendo all’utilizzo di dati sismologici, di misure DInSAR e della modellazione numerica. In particolare, abbiamo prima di tutto preso in considerazione gli ipocentri rilocalizzati con 0.1≤Mw≤ 6.5, verificatisi tra il 24 agosto e il 29 novembre 2016 e registrati dalla rete sismometrica INGV; la proiezione su sezioni e la successiva analisi degli ipocentri considerati hanno consentito di comprendere quali strutture geologiche siano state coinvolte durante il processo di enucleazione del terremoto. In seguito, abbiamo analizzato la componente verticale (sollevamento e subsidenza) dei displacements che hanno interessato i blocchi di hangingwall e di footwall della faglia sismogenetica, precedentemente identificata in profondità mediante l’analisi della distribuzione ipocentrale; per fare ciò, abbiamo utilizzato le misure DInSAR ottenute dalla combinazione delle coppie di dati SAR cosismici acquisite dal sensore ALOS-2 lungo orbite ascendenti e discendenti. La mappa di deformazione verticale ottenuta mostra tre aree di deformazione principali: (i) una maggiore subsidenza che raggiunge il valore massimo di circa 98 cm in prossimità delle zone epicentrali vicine alla città di Norcia; (ii) due piccoli lobi di sollevamento che interessano sia il blocco di hangingwall (dove raggiunge valori massimi di circa 14 cm) sia quello di footwall (dove raggiunge valori massimi di circa 10 cm). Partendo da queste evidenze, abbiamo calcolato i volumi di roccia interessati dai fenomeni di sollevamento e subsidenza, evidenziando che quelli coinvolti dal fenomeno di subsidenza sono caratterizzati da valori di deformazione significativamente più alti di quelli affetti da sollevamento (circa 14 volte). Al fine di fornire una possibile interpretazione di questa asimmetria volumetrica, abbiamo esteso l'analisi elaborando un modello numerico 2D basato sul metodo degli elementi finiti, implementandolo in un quadro strutturale-meccanico e sfruttando i dati geologici e sismologici disponibili. I risultati della modellazione sono stati poi confrontati con le misure della deformazione del suolo ottenute dall'analisi DInSAR. Nel corso della realizzazione del modello numerico, abbiamo collaudato gli effetti di geometrie diverse, considerando in particolare due scenari: il primo si basa su una singola faglia immergente a sud-ovest, il secondo su una faglia principale immergente a sud-ovest e una fascia antitetica. In questo contesto, il modello caratterizzato dalla presenza della fascia antitetica fornisce il miglior fit quando confrontato con il pattern cosismico di deformazione superficiale. Questo risultato consente di interpretare i fenomeni di subsidenza e sollevamento causati dal terremoto di Norcia come il risultato di un collasso gravitazionale del blocco di hangigwall lungo la faglia principale e della forza frizionale che agisce in direzione opposta, consistentemente con il meccanismo di doppia coppia lungo il piano di faglia.This Ph.D. thesis is focused on the detailed analysis of seismic sequences and on the application of a multidisciplinary approach based on the integration of several geophysical and geodetic techniques. In the context of a more general study of seismic sequences, we focus this work on the analysis and comparison of five extensional and five compressional seismic sequences to understand the differences between these two tectonic settings in terms of aftershocks duration. In fact, aftershocks number decay through time, depending on several parameters peculiar to each seismogenic regions, including mainshock magnitude, crustal rheology, and stress changes along the fault. However, the exact role of these parameters in controlling the duration of the aftershock sequence is still unknown. Here, by using two methodologies, we show that the tectonic setting primarily controls the duration of aftershocks. On average and for a given mainshock magnitude, (i) aftershock sequences are longer and (ii) the number of earthquakes is greater in extensional than in compressional tectonic settings. We suggest as possible explanation that this difference can be related to the different type of energy dissipated during earthquakes; in detail, (i) a joint effect of gravitational forces and pure elastic stress release governs extensional earthquakes, whereas (ii) pure elastic stress release controls compressional earthquakes. Accordingly, normal faults operate in favour of gravity, preserving inertia for a longer period and seismicity lasts until gravitational equilibrium is reached. Vice versa, thrusts act against gravity, exhaust their inertia faster and the elastic energy dissipation is buffered by the gravitational force. Hence, for seismic sequences of comparable magnitude and rheological parameters, aftershocks last longer in extensional settings because gravity favours the collapse of the hangingwall volumes. The occurrence of the 2016 Central Italy seismic sequence furnishes a test-bed for a detailed analysis of a normal fault earthquake. Therefore, we analyse also the Mw 6.5 Norcia (Central Italy) earthquake to add another extensional seismic sequence to the previously examined case-studies. The results of this analysis show that, with respect to the other considered extensional seismic sequences, also the Mw 6.5 Norcia seismic sequence present the same behaviour about the aftershocks temporal and spatial evolution. Moreover, we decide to take into account the Mw 6.5 Norcia mainshock as case-study for the application of a multidisciplinary approach, in order to understand the kinematics and the role of gravity during nucleation processes of extensional events. In particular, we investigate the Mw 6.5 Norcia earthquake by exploiting seismological data, DInSAR measurements and a numerical modelling approach. In particular, we first take into consideration the relocated hypocentres with 0.1≤Mw≤ 6.5 that occurred between August 24th and November 29th, 2016, recorded by the INGV seismometric network; the projection onto sections and the subsequent analysis of the considered hypocentres allow us to identify the geological structures that were involved during earthquake nucleation process. Then, we retrieve the vertical component (uplift and subsidence) of the displacements affecting the hangingwall and the footwall blocks of the seismogenic faults identified, at depth, through the hypocentres distribution analysis; to do this, we combine the DInSAR measurements obtained from coseismic SAR data pairs collected by the ALOS-2 sensor from ascending and descending orbits. The achieved vertical deformation map displays three main deformation patterns: (i) a major subsidence that reaches the maximum value of about 98 cm near the epicentral zones nearby the town of Norcia; (ii) two smaller uplift lobes that affect both the hangingwall (reaching maximum values of about 14 cm) and the footwall blocks (reaching maximum values of about 10 cm). Also GPS measurements were used to compare the displacements recorded next to the epicentral area. Starting from this evidence, we compute the rock volumes affected by uplift and subsidence phenomena, highlighting that those involved by the retrieved subsidence are characterized by significantly higher deformation values than those affected by uplift (about 14 times). In order to provide a possible interpretation of this volumetric asymmetry, we extend the analysis by running a 2D numerical model based on the finite element method, implemented in a structural-mechanic framework and exploiting the available geological and seismological data. Modelling results are compared with the ground deformation measurements retrieved from the multi-orbit ALOS-2 DInSAR analysis. In the modelling approach, we test the effects of different geometries, by considering two different scenarios: the first is based on including only a single SW-dipping fault, the second includes a main SW-dipping fault and an antithetic zone. In this context, the model characterized by the occurrence of an antithetic zone presents the retrieved best fit coseismic surface deformation pattern. This result allows us to interpret the subsidence and uplift phenomena caused by the Mw 6.5 Norcia earthquake as the result of the gravitational sliding of the hangingwall along the main fault plane and of the frictional force acting in the opposite direction, consistently with the double couple fault plane mechanism

    Surface deformation analysis in Northeast Italy by using PS-InSAR and GNSS data

    Get PDF
    In the present study, we exploited the potential of satellite-based geodetic data for detecting and measuring surface displacement in Northeast Italy. In this contest, we focused mainly on 1) the estimation of the interseismic deformation during the satellites’ observation period, 2) the detection and analysis of the main deformation patterns, and 3) the correlation of the signals to the active tectonic structures. Despite the low convergence rates (~ 1.5-3 mm/yr), Northeast Italy is an active tectonic area, as testified by the instrumental and historical seismicity. The Adria-Eurasia convergence is mainly accommodated by the thrusts and strike-slip faults of the Southeastern Alps and the External Dinarides, located in the northern and northeastern sectors of the study area. The Venetian-Friulian plain and the Adriatic coasts, affected by active subsidence, dominate the southern region. We used the Stanford Method for Persistent Scatterers (StaMPS) applied to Sentinel-1 SAR images acquired along the ascending and descending orbit tracks between 2015 and 2019. Based on a stack of single-master differential interferograms, we detected coherent and temporally stable pixels based on amplitude and phase noise analysis. After applying spatial-temporal filters and additional post-processing operations to refine the measurements, we used Adria-fixed GNSS velocities derived by permanent stations in the study area to calibrate the InSAR velocities. The outcome consists of Line-OF-Sight (LOS) mean ground velocity maps derived by displacement time series along the radar directions for each satellite track. The combination of the LOS datasets yields vertical and east-west velocity maps, which are mostly in agreement with GNSS data and previous geodetic studies. Based on our measurements, we observe a significant positive velocity gradient of 1 mm/yr across the westernmost sector of the Alpine system, suggesting an aseismic motion of the root of the Bassano-Valdobbiadene thrust. The positive vertical gradients (~1 and up to 2 mm/yr) across the Alpine-Dinaric systems in the central and eastern sectors and the eastward motion that increases northeastward (1-2 mm/yr) may be related to the active Alpine-Dinaric thrusts and strike-slip faults. We also suggest that the detected westward motion of the Friulian plain (around Udine) might be attributed to the presence of tectonic structures characterized by transcurrent-transpressive kinematics. Finally, we detect other signals, such as the significant subsidence (2-4 mm/yr) along the coasts and on the southern Venetian-Friulian plain, confirming the correlation between subsidence and the geological setting of the study area. In conclusion, our study confirms the potential of MT-InSAR and GNSS data for the estimation of the surface deformations in response to active tectonics, even in areas characterized by low deformation rates, such as Northeast Italy.In the present study, we exploited the potential of satellite-based geodetic data for detecting and measuring surface displacement in Northeast Italy. In this contest, we focused mainly on 1) the estimation of the interseismic deformation during the satellites’ observation period, 2) the detection and analysis of the main deformation patterns, and 3) the correlation of the signals to the active tectonic structures. Despite the low convergence rates (~ 1.5-3 mm/yr), Northeast Italy is an active tectonic area, as testified by the instrumental and historical seismicity. The Adria-Eurasia convergence is mainly accommodated by the thrusts and strike-slip faults of the Southeastern Alps and the External Dinarides, located in the northern and northeastern sectors of the study area. The Venetian-Friulian plain and the Adriatic coasts, affected by active subsidence, dominate the southern region. We used the Stanford Method for Persistent Scatterers (StaMPS) applied to Sentinel-1 SAR images acquired along the ascending and descending orbit tracks between 2015 and 2019. Based on a stack of single-master differential interferograms, we detected coherent and temporally stable pixels based on amplitude and phase noise analysis. After applying spatial-temporal filters and additional post-processing operations to refine the measurements, we used Adria-fixed GNSS velocities derived by permanent stations in the study area to calibrate the InSAR velocities. The outcome consists of Line-OF-Sight (LOS) mean ground velocity maps derived by displacement time series along the radar directions for each satellite track. The combination of the LOS datasets yields vertical and east-west velocity maps, which are mostly in agreement with GNSS data and previous geodetic studies. Based on our measurements, we observe a significant positive velocity gradient of 1 mm/yr across the westernmost sector of the Alpine system, suggesting an aseismic motion of the root of the Bassano-Valdobbiadene thrust. The positive vertical gradients (~1 and up to 2 mm/yr) across the Alpine-Dinaric systems in the central and eastern sectors and the eastward motion that increases northeastward (1-2 mm/yr) may be related to the active Alpine-Dinaric thrusts and strike-slip faults. We also suggest that the detected westward motion of the Friulian plain (around Udine) might be attributed to the presence of tectonic structures characterized by transcurrent-transpressive kinematics. Finally, we detect other signals, such as the significant subsidence (2-4 mm/yr) along the coasts and on the southern Venetian-Friulian plain, confirming the correlation between subsidence and the geological setting of the study area. In conclusion, our study confirms the potential of MT-InSAR and GNSS data for the estimation of the surface deformations in response to active tectonics, even in areas characterized by low deformation rates, such as Northeast Italy
    corecore