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ABSTRACT 

The modeling of volcanic deformation sources represents a crucial task for 

investigating and monitoring the activity of magmatic systems. In this framework, inverse 

methods are the most used approach to image deforming volcanic bodies by considering 

the assumptions of the elasticity theory. However, several issues affect the inverse 

modeling and the interpretation of the ground deformation phenomena, such as the 

inherent ambiguity, the theoretical ambiguity and the related choice of the forward 

problem. Despite assuming appropriate a priori information and constraints, we are led to 

an ambiguous estimate of the physical and geometrical parameters of volcanic bodies 

and, in turn, to an unreliable analysis of the hazard evaluation and risk assessment. 

In this scenario, we propose a new approach for the interpretation of the large amount 

of deformation data retrieved by the SBAS-DInSAR technique in volcanic environments. 

The proposed approach is based on the assumptions of the homogeneous and harmonic 

elastic fields, which satisfy the Laplace’s equation; specifically, we consider Multiridge, 

ScalFun and THD methods to provide in a fast way preliminary information on the active 

volcanic source, even for the analysis of complex cases, such as the depth, the horizontal 

position, the geometrical configuration and the horizontal extent. 

In this thesis, firstly we analyse the biharmonic general solution of the elastic 

problem to state the deformation field surely satisfy the Laplace’s equation in the case of 

hydrostatic pressure condition within a source embedded in a homogeneous elastic half-

space. Then, we show the results of different simulations by highlighting how the 

proposed approach allows overcoming many ambiguities since it provides unique 

information about the geometrical parameters of the active source. Finally, we show the 

results of Multiridge, ScalFun and THD methods used for the analysis of the deformation 

components recorded at Okmok volcano, Uturuncu volcano, Campi Flegrei caldera, 

Fernandina volcano and Yellowstone caldera. 

We conclude this thesis by remarking the proposed approach represents a crucial tool 

for fixing modeling ambiguities and to provide useful information for monitoring 

purposes and/or for constraining the geometry of the volcanic systems.   
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INTRODUCTION 

Volcanic systems are nowadays investigated and monitored by using data related to 

different disciplines of Earth Sciences; among these, the ground deformation has been 

increasingly used after the development of the remote sensing technologies, allowing the 

measurements acquisition from both proximal and remote platforms [Sigurdsson, 1999; 

Dzurisin, 2007]. In particular, the Global Navigation Satellite System (GNSS) and the 

Differential SAR Interferometry (DInSAR) technique are now able to quickly provide a 

large amount of data, which is helpful to understand the ground deformation phenomenon 

and to retrieve information about the changes of physical and geometrical parameters of 

deep and shallow volcanic reservoirs [Avallone et al., 1999; Amoruso et al., 2014; 

D’Auria et al., 2015; Henderson et al., 2017; Pepe et al., 2019; Aloisi et al., 2020; Xue et 

al., 2020; Chauhan et al., 2020; Rodriguez-Molina et al., 2021]. 

Despite of its relatively good accuracy, GNSS measurements only provide time 

information about selected points, while DInSAR images areal deformation fields 

throughout the whole interested site and its surroundings [Fernandez et al., 2003]. Also, 

with the development and refinement of processing algorithm, such as the Small BAseline 

Subset (SBAS) [Berardino et al., 2004], the ground deformation field can be densely 

sampled over time. Although the modeling of volcanic deformation sources is still a tricky 

task, the use of this data for imaging deforming volcanic bodies represents a great 

approach to provide a crucial contribution in the framework of the hazard evaluation and 

of the risk assessment analyses [Lanari et al., 1998; Bigg et al., 2017]. 

From a physical point of view, we should treat the volcanic processes like to complex 

scenarios, such as viscoelastic or thermoelastic systems [Newman et al., 2006; Del Negro 

et al., 2009; Castaldo et al., 2017]; in these cases, the retrieved model makes sense if the 

parameters distribution of the volcanic system, as temperature, pressure, mechanical 

properties, physical moduli, and others, is available over space and time [Gottsmann et 

al., 2017]. However, this information is often unknown and its management in any 

modeling procedure is not very fast; therefore, this approach can be rarely considered. 

The elasticity theory represents a well-established option [Dzurisin, 2007; Battaglia 

et al., 2013] in low computation time. In particular, two approaches are mainly considered 

for modeling the volcanic deformation sources: the forward modeling [Lu et al., 1998; Lu 

et al., 2000], based on a trial-error procedure, depends on the experience of the scientist 
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and on previous knowledge about the considered volcanic site; the inverse modeling 

[Cervelli et al., 2001; Battaglia et al., 2013], which is faster than the previous approach, 

is more suitable for monitoring aims and it is often preferred to the others.  

The most widely used methods of inverse modeling often approximate the volcanic 

reservoirs to one source with geometrically regular shape. Specifically, each parameter 

of the causative body is described by a single value and, so, we call this approach as 

parametric inverse methods because their goal is the estimate of a few source parameters 

[Cervelli et al., 2001].  

The parametric inverse approach usually considers as forward problems the volcanic 

deformation source Analytical Models (AM) or models by Finite Element Methods 

(FEM) [Masterlark et al., 2012; Walter et al., 2014; Henderson et al., 2017; Castaldo et 

al. 2018a]. In this framework, the AM are often preferred since they provide acceptable 

solutions to the inverse problem in shorter computation time. 

However, the most used AM [Mogi, 1958; Sun, 1969; Okada, 1985; McTigue, 1987; 

Yang and Davis, 1988; Bonaccorso and Davis, 1999] are rarely able to well simulate the 

real physical context, leading to only model magmatic bodies embedded in homogeneous 

elastic half-spaces; in some cases, the AM also do not fully comply with the physical 

assumptions of the forward problem, as that about the pressure distribution along the 

source boundaries (i.e., [Yang and Davis, 1988]). In addition, 3D volcanic reservoirs have 

been approximated by regular sources where the physical parameters are null within 

regular volumes excepted at their boundaries (e.g., [Yang and Davis, 1988] and [Okada, 

1985]) and, for this reason, a large overestimation of the acting source pressure could 

occur [Aloisi et al., 2011]. Finally, for complex and multi-source scenarios, the use of 

AM is often unsuitable to characterize the number and/or the type of the acting volcanic 

processes [Pritchard et al., 2004; Henderson et al., 2017; Chang et al., 2010; Aly and 

Cochran, 2011; Tizzani et al., 2015]. 

In this framework, FEM allows a less constrained management about the deforming 

system parameters; we could indeed model the volcanic region as a layered half-space 

[Manconi et al., 2010] or the magmatic body as an irregular volume with different 

deformation mechanisms. However, FEM provides acceptable solutions to the inverse 

problem only if many parameters are well constrained. Furthermore, the computation 

time increases with complex scenario, requiring a dense distribution of the mesh. 
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To avoid all these issues, Camacho et al. [2011; 2020] proposed a tomographic 

inverse procedure for the 3D elastic multi-source modeling through aggregates of 

elemental sources [Camacho et al., 2007]. In this case, the goal is the estimate of many 

source parameters. This approach provides in a fast way information about complex and 

multi-source scenarios with different deformation mechanisms. However, as for most of 

the tomographic algorithms, the acceptable solution depends on the a priori information, 

as the 3D partition of the volcanic system and the smoothing factor [Camacho et al., 

2020]. 

The interpretation of deformation fields in the volcanic environment is therefore a 

complicated task because of several ambiguities. 

The first, the inherent ambiguity [Fedi et al., 2005], regards the definition of the 

forward problem; consider the simplest case of the Mogi’s model [Mogi, 1958], 

𝐮 =

(

 
 

𝑎3𝛥𝑃
1−𝜈

𝐺

𝑥−𝑥0

|𝐑|3

𝑎3𝛥𝑃
1−𝜈

𝐺

𝑦−𝑦0

|𝐑|3

𝑎3𝛥𝑃
1−𝜈

𝐺

𝑧−𝑧0

|𝐑|3 )

 
 

     (1), 

where 𝑎, 𝛥𝑃 and (𝑥0, 𝑦0, 𝑧0) are the radius, the pressure variation and the centre 

coordinates of the source, respectively, while 𝜈 and 𝐺 represent the physical elastic 

parameters of the half-space and |𝐑| = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2. Equation 

(1) shows that different combinations of the parameters 𝑎, 𝛥𝑃, 𝜈 and 𝐺 may be the cause 

of the same deformation dataset; consequently, we can solve the inverse problem for 

deformation field by determining only the source depth and horizontal position. 

A second ambiguity refers to the inverse modeling algorithm; the final solution 

indeed depends on the a priori information and the availability of constraining 

information. For example, tomographic inverse algorithms can provide acceptable 

models for different combination of the half-space partition and the smoothing factor 

parameters [Camacho et al., 2011]. AM parametric inverse modeling represents another 

example; in this framework, the determination of the source shape by analysing several 

forward problems for the same deformation dataset is a widely considered approach. We 

find that different model configurations will characterize the system with an acceptable 
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misfit, so that we can interpret the volcanic phenomenon in several ways [Bagnardi et al., 

2013; Pepe et al., 2017]. 

Solving the forward problem with a wrong source geometry or with a gross mesh 

instead leads to a theoretical form of ambiguity. In particular, the use of an inappropriate 

forward problem may cause the errors on the source depth and/or its pressure variation 

[Fialko et a., 2001]. 

Other kinds of ambiguity usually characterize the interpretation of any field. For 

example, a sampling ambiguity arises because we always use discrete datasets to 

completely represent a continuous field from the source and, in the case of tomographic 

inverse approach, we always face an algebraic ambiguity, because the discretized source 

distribution leads to a system with more unknowns than data, unless reliable prior 

information could force the problem toward a mesh which makes the problem determined 

[Fedi et al., 2005].  

Finally, we list the error ambiguity since experimental/instrumental errors always 

affect measured data and our models can no longer generate data overfitting. In this 

framework, we also include errors propagated by a poor distribution of the measurements, 

so causing a strong interpolation data error and, in turn, a related model one. 

In this scenario, by considering the large amount of deformation points of the SBAS-

DInSAR technique and the assumptions of the elasticity theory [Love, 1906], we propose 

a new approach for the interpretation of the deformation field in volcanic environments, 

which can provide in a fast way preliminary information on the active volcanic source, 

useful for monitoring purposes and/or as constraints for a more refined subsequent inverse 

modeling.  

The proposed approach is based on studying whether the deformation field could 

satisfy the Laplace’s equation,  

∇2𝑉 = 0       (2), 

where ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 and 𝑉 represent the Laplacian operator and the potential 

function (or any of its any-order derivatives), respectively. The solutions of this problem, 

which is the simplest example of elliptic partial differential equations, are the so-called 
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harmonic functions, and the related theory is often referred to as the Potential Field 

Theory (PFT) [Baranov, 1975; Blakely, 1996].  

Besides this, we will also consider deformations satisfying the homogeneity equation 

[Olmsted, 1961], 

 𝑓(𝑡𝑥, 𝑡𝑦, 𝑡𝑧) = 𝑡𝑛𝑓(𝑥, 𝑦, 𝑧)    (3), 

where 𝑡 > 0 and 𝑛 ∈ ℝ is the homogeneity degree of the homogeneous field 𝑓(𝑥, 𝑦, 𝑧). 

We specify that 𝑛 can also take on fractional values, corresponding to fractional 

distributions of the source property, along the lines described by Fedi et al. [2015]. 

Regarding the homogeneity equation, we note that real fields are often inhomogeneous; 

in this case, we will consider the generalized form of equation (3) into a multi-

homogeneity law [Fedi et al., 2015].  

In this perspective, we will study the ground deformation field by using 

methodologies that have been already applied in the PFT framework (e.g., [Milano et al., 

2016; Chauhan et al., 2018; Vitale and Fedi, 2020]), namely Multiridge [Fedi et al., 2009] 

and ScalFun [Fedi, 2007] methods, which are based on a multi-scale procedure; from now 

on, with the term scale we will refer to the distance between the field source and the 

measurement surface. 

Specifically, this approach is based on the simplifying assumptions of the 

homogeneous and harmonic fields; in this framework, it allows overcoming many of the 

above-described limitations about the AM parametric and tomographic inverse methods:  

(I) it provides unique information about the geometrical parameters of source, 

such as its depth, its horizontal position and its morphological attributes;  

(II) it is stable vs. noise;  

(III) it is not affected by the distribution of the elastic parameters, within the elastic 

regime (i.e., small variations over the space and time); 

(IV) it provides geometrical information even for only one field component; 

(V) it is useful to solve complex multi-source cases, allowing the modeling of 

more than one source for a single deformation dataset; 

(VI) it is fast and not computationally expensive. 
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As we said, this methodology assumes that the ground deformation field [Love, 

1906] is not only biharmonic but also harmonic (i.e., it also satisfies the Laplace’s 

equation). This condition will surely occur in the case of hydrostatic pressure condition 

within a source embedded in a homogeneous elastic half-space. We remark this 

assumption also characterizes almost all the forward problems of the inverse modeling. 

Among the properties of the harmonic functions, we also point out an edge detection 

technique, defined as Total Horizontal Derivative (THD), which has been already used in 

the PFT framework [Cella et al., 2015; Paoletti et al., 2017]. The technique allows 

estimating the horizontal extent of the deformation source, which is a very useful 

constraint for the final physical and geometrical model. 

We organize this thesis as follows. Firstly, in the Chapter 1, we start from the 

biharmonic properties of the general solution of the elastic problem to understand the 

conditions under which the Laplace’s equation is satisfied. 

Then, in the Chapter 2, we briefly introduce the forward problems of the most used 

modeling approaches and describe the integrated multi-scale methods. 

After, in the Chapter 3, we apply the proposed approach to simulated ground 

deformation patterns, generated by regular source shapes and we briefly introduce the 

case of geometrically irregular bodies. We analyse fields that enjoy either the harmonic 

or biharmonic properties to highlight the advantages and limitations of the proposed 

methods. 

Finally, in the Chapters 4 and 5, we analyse five ground deformation patterns, that 

are related to the Okmok volcano (Alaska, USA), the Uturuncu volcano (Bolivia), the 

Campi Flegrei caldera (Italy), the Fernandina volcano (Galapagos archipelago, Ecuador) 

and the Yellowstone caldera (Wyoming, USA), and we highlight how this new approach 

represents a crucial tool for fixing modeling ambiguities and to provide constraints on the 

geometry of the volcanic systems. 

We conclude this thesis by illustrating the future developments for the modeling of 

volcanic deformation source through DInSAR measurements, especially for the hazard 

evaluation and the risk assessment analyses of volcanoes monitoring activities. 
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CHAPTER 1 

DEFORMATION FIELD: ELASTIC PROBLEM 

In this chapter, we introduce the basic notions of the Elasticity theory [Love, 1906]. 

We start from the biharmonic properties of the general solution for the deformation field, 

and we define the conditions so that the elastic problem can be reduced to a particular 

solution for which the Laplace’s equation is satisfied, so allowing the use of multi-scale 

methods for interpreting ground deformation patterns in volcanic environments. After, 

we discuss on the homogeneity theory and we briefly introduce the local-homogeneity 

approach [Fedi et al., 2015]. 

The solution of the elastic problem which satisfies the Laplace’s equation derives 

from the Love’s study about the Elasticity Theory [Love, 1906]; accordingly, the 

deformation field is the gradient of a single scalar function when the rotation component 

of the strain tensor vanishes, that is when the curl of the field is null. 

In other works, the authors have also decomposed the deformation field with 

functions that satisfy the Laplace’s equation (e.g., Helmholtz decomposition [Love, 1906; 

Sadd, 2005], Galerkin vector [Galerkin, 1930; Sadd, 2005] and Papkovich-Neuber 

functions [Papkovich, 1932; Sadd, 2005]). However, the resulting fields still correspond 

to biharmonic functions according to the Almansi’s theorem [Almansi, 1899], except for 

the solution of the Lame’s Strain Potential [Sadd, 2005]. 
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1.1 General solution of deformation field and its biharmonic properties.  

Generally, any system begins to deform when the acting stress field is not null and, 

for the elastic regime, the deformations are completely recoverable in the case of 

vanishing of the causative stress [Lowrie, 2007].  

The tensor 𝜎𝑖𝑗 defines the physical dimension of the stress [Sadd, 2005]: 

𝜎𝑖𝑗 = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

]     (1.1), 

where 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧 and 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑥, 𝜏𝑦𝑧, 𝜏𝑧𝑥, 𝜏𝑧𝑦 are called normal and shearing 

stresses, respectively. The stress matrix 𝜎𝑖𝑗 characterizes each deformative mechanisms; 

for example, in the case of hydrostatic pressure condition 𝑃 of volcanic reservoirs, 𝜎𝑖𝑗 

corresponds to [Sadd, 2005]: 

𝜎𝑖𝑗 = [
𝑃 0 0
0 𝑃 0
0 0 𝑃

]      (1.2). 

 

 

Figure 1.1. Sketch of volcanic hydrostatic pressure condition (dilatation). 2D sketch of a 

magma chamber (orange body), where the black arrows indicate the boundary conditions of 

hydrostatic pressure; the grey body and the black continuous line represents the volcanic edifice 

(modified from Gudmundsson [2012]). 
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The strain tensor 𝑒𝑖𝑗 describes the change in space of any point respect to its starting 

position, when a stress field is not null, as follows [Sadd, 2005], 

𝑒𝑖𝑗 =

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

       (1.3), 

where: 

𝐮 = (
𝑢
𝑣
𝑤

)        (1.4) 

represents the deformation field; its three-components characterize each point in space 

and time [Sadd, 2005]. 

In the elastic regime, the Hooke’s Law describes the relation between the applied 

stresses 𝜎𝑖𝑗 and the occurred strain 𝑒𝑖𝑗; in particular, the generalized form of this law for 

linear isotropic elastic solids can be expressed as follows [Sadd, 2005]: 

𝜎𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗 =
𝐸𝜈

2(1+𝜈)
𝑒𝑘𝑘𝛿𝑖𝑗 +

𝐸

1+𝜈
𝑒𝑖𝑗   (1.5), 

where 𝜆 and 𝜇, 𝐸, 𝜈 are the Lamè’s constants, the Young’s modulus, the Poisson’s 

coefficient, respectively, while 𝛿𝑖𝑗 is the Kronecker delta. Equation (1.5) can be written 

out in individual scalar equations as [Sadd, 2005]: 

𝜎𝑥𝑥 = 𝜆 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 2𝜇

𝜕𝑢

𝜕𝑥
=

𝐸𝜈

2(1+𝜈)
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) +

𝐸

1+𝜈

𝜕𝑢

𝜕𝑥
 (1.6.1), 

𝜎𝑦𝑦 = 𝜆 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 2𝜇

𝜕𝑣

𝜕𝑦
=

𝐸𝜈

2(1+𝜈)
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) +

𝐸

1+𝜈

𝜕𝑣

𝜕𝑦
 (1.6.2), 

𝜎𝑧𝑧 = 𝜆 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 2𝜇

𝜕𝑤

𝜕𝑧
=

𝐸𝜈

2(1+𝜈)
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) +

𝐸

1+𝜈

𝜕𝑤

𝜕𝑧
 (1.6.3), 

𝜏𝑥𝑦 = 2𝜇
𝜕𝑢

𝜕𝑦
=

𝐸

1+𝜈

𝜕𝑢

𝜕𝑦
        (1.6.4), 

𝜏𝑦𝑧 = 2𝜇
𝜕𝑣

𝜕𝑧
=

𝐸

1+𝜈

𝜕𝑣

𝜕𝑧
        (1.6.5), 

𝜏𝑧𝑥 = 2𝜇
𝜕𝑤

𝜕𝑥
=

𝐸

1+𝜈

𝜕𝑤

𝜕𝑥
        (1.6.6). 
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These stress-strain relations may be inverted to express the strain in terms of the 

stress; starting from equation (1.5) and setting the two free indices the same, we get [Sadd, 

2005] 

     𝜎𝑘𝑘 = (3𝜆 + 2𝜇)𝑒𝑘𝑘     (1.7.1), 

where: 

 𝜎𝑘𝑘 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧    (1.7.2), 

 𝑒𝑘𝑘 = 𝑒𝑥𝑥 + 𝑒𝑦𝑦 + 𝑒𝑧𝑧    (1.7.3). 

We can solve equation (1.7.1) for 𝑒𝑘𝑘 and, substituting back into (1.5), we get: 

                  𝑒𝑖𝑗 =
1

2
𝜇 (𝜎𝑖𝑗 −

𝜆

3𝜆+2𝜇
𝜎𝑘𝑘𝛿𝑖𝑗) =

1+𝜈

𝐸
𝜎𝑖𝑗 −

𝜈

𝐸
𝜎𝑘𝑘𝛿𝑖𝑗   (1.8), 

in the index notation, and 

𝜕𝑢

𝜕𝑥
=

1

𝐸
(𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦 − 𝜈𝜎𝑧𝑧)     (1.9.1), 

𝜕𝑣

𝜕𝑦
=

1

𝐸
(𝜎𝑦𝑦 − 𝜈𝜎𝑧𝑧 − 𝜈𝜎𝑥𝑥)     (1.9.2), 

𝜕𝑤

𝜕𝑧
=

1

𝐸
(𝜎𝑧𝑧 − 𝜈𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦)     (1.9.3), 

𝜕𝑢

𝜕𝑦
=

1+𝜈

𝐸
(𝜏𝑥𝑦)       (1.9.4), 

𝜕𝑣

𝜕𝑧
=

1+𝜈

𝐸
(𝜏𝑦𝑧)       (1.9.5), 

𝜕𝑤

𝜕𝑥
=

1+𝜈

𝐸
(𝜏𝑧𝑥)       (1.9.6), 

in the component form [Sadd, 2005]. 

The Hooke’s Law, together with other conditions (not introduced here), leads to 

another important relation, the Navier’s equation, which describes the behaviour of 𝐮 in 

the case of equilibrium condition between the surface and volume forces acting on the 

considered system [Sadd, 2005]: 

𝜇∇2𝐮 + (𝜆 + 𝜇)∇∇ ∙ 𝐮 + 𝐅 = 0     (1.10.1), 

or 
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(

 
 

𝜇∇2𝑢 + (𝜆 + 𝜇)
𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 𝐹𝑥

𝜇∇2𝑣 + (𝜆 + 𝜇)
𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 𝐹𝑦

𝜇∇2𝑤 + (𝜆 + 𝜇)
𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 𝐹𝑧)

 
 

= 0  (1.10.2), 

in component form, where ∇ and ∇ ∙ represent the gradient and the divergence operators, 

respectively, and 𝐅(𝐹𝑥, 𝐹𝑦, 𝐹𝑧) are the body forces. 

For equilibrium under surface tractions (i.e., 𝐅(𝐹𝑥, 𝐹𝑦 , 𝐹𝑧) = 0), we get [Love, 1906] 

(

 
 

𝜇∇2𝑢 + (𝜆 + 𝜇)
𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

𝜇∇2𝑣 + (𝜆 + 𝜇)
𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

𝜇∇2𝑤 + (𝜆 + 𝜇)
𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
))

 
 

= 0   (1.11.1), 

and, applying the gradient operator to first two terms of equation (1.11.1), we can write: 

(

 
 

𝜇
𝜕

𝜕𝑥
∇2𝑢 + (𝜆 + 𝜇)

𝜕

𝜕𝑥

𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

𝜇
𝜕

𝜕𝑦
∇2𝑢 + (𝜆 + 𝜇)

𝜕

𝜕𝑦

𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

𝜇
𝜕

𝜕𝑧
∇2𝑢 + (𝜆 + 𝜇)

𝜕

𝜕𝑧

𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
))

 
 

= 0   (1.11.2), 

that is equivalent to 

(

 
 

𝜇
𝜕

𝜕𝑥
∇2𝑢 + (𝜆 + 𝜇)

𝜕2

𝜕𝑥2
(∇ ∙ 𝐮)

𝜇
𝜕

𝜕𝑦
∇2𝑣 + (𝜆 + 𝜇)

𝜕2

𝜕𝑦2
(∇ ∙ 𝐮)

𝜇
𝜕

𝜕𝑧
∇2𝑤 + (𝜆 + 𝜇)

𝜕2

𝜕𝑧2
(∇ ∙ 𝐮))

 
 

= 0   (1.11.3) 

since 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= ∇ ∙ 𝐮, and to  

(

 
 

𝜇∇2 𝜕𝑢

𝜕𝑥
+ (𝜆 + 𝜇)

𝜕2

𝜕𝑥2
(∇ ∙ 𝐮)

𝜇∇2 𝜕𝑣

𝜕𝑦
+ (𝜆 + 𝜇)

𝜕2

𝜕𝑦2
(∇ ∙ 𝐮)

𝜇∇2 𝜕𝑤

𝜕𝑧
+ (𝜆 + 𝜇)

𝜕2

𝜕𝑧2
(∇ ∙ 𝐮))

 
 

= 0   (1.11.4) 

by interchanging the gradient and the Laplacian operators in the left-hand term of 

equation (1.11.3); then, by adding all the members of equation (1.11.4), we get: 
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𝜇∇2 𝜕𝑢

𝜕𝑥
+ 𝜇∇2 𝜕𝑣

𝜕𝑦
+ 𝜇∇2 𝜕𝑤

𝜕𝑧
+ (𝜆 + 𝜇)

𝜕2

𝜕𝑥2
(∇ ∙ 𝐮) +            

   + (𝜆 + 𝜇)
𝜕2

𝜕𝑦2
(∇ ∙ 𝐮) + (𝜆 + 𝜇)

𝜕2

𝜕𝑧2
(∇ ∙ 𝐮) = 0    (1.11.5), 

that is equivalent to 

𝜇∇2 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + (𝜆 + 𝜇) (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) (∇ ∙ 𝐮) = 0  (1.11.6), 

and, by remembering that ∇ ∙ 𝐮 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
, 

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 = ∇2 is the Laplacian 

operator, we obtain: 

𝜇∇2(∇ ∙ 𝐮) + (𝜆 + 𝜇)∇2(∇ ∙ 𝐮) = 0   (1.11.7), 

and, in turn [Love, 1906], 

(𝜆 + 2𝜇)∇2(∇ ∙ 𝐮) = 0    (1.11.8). 

At this stage, we decompose the deformation field 𝐮 with the Helmholtz theorem. 

Accordingly, every finite vector field, which is uniform, continuous, and vanishing at 

infinity, may be decomposed using an irrotational (curl-free) scalar potential 𝜑 and a 

solenoidal (divergence-free) vector potential 𝚿, as follows [Love, 1906]: 

𝐮 = ∇𝜑 + ∇ × 𝚿     (1.12), 

where ∇ × represents the curl operator.  

In particular, we substitute equation (1.12) into (1.11.8),  

(𝜆 + 2𝜇)∇2(∇ ∙ (∇𝜑 + ∇ × 𝚿)) = 0     (1.13.1), 

(𝜆 + 2𝜇)∇2(∇ ∙ ∇𝜑) + (𝜆 + 2𝜇)∇2(∇ ∙ ∇ × 𝚿) = 0   (1.13.2), 

and, by remembering that ∇ ∙ ∇ × 𝚿 = 0 and ∇2= ∇ ∙ ∇, we get: 

(𝜆 + 2𝜇)∇2(∇ ∙ ∇𝜑) = 0      (1.13.3), 

(𝜆 + 2𝜇)∇2∇2𝜑 = 0       (1.13.4), 

that is [Love, 1906]: 
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(𝜆 + 2𝜇)∇4𝜑 = 0     (1.14.1). 

Similarly, we can repeat similar procedures to show that [Love, 1906]: 

(𝜆 + 2𝜇)∇4𝚿 = 0     (1.14.2). 

Each function satisfying equations (1.14.1) and (1.14.2) is called biharmonic. 

However, by equations (1.11.1) and (1.12) it follows that the general solution of the 

equilibrium equation satisfies the relation [Love, 1906]: 

   ∇4𝐮 = 0     (1.14.3). 

  



19 
 

1.2 Harmonic properties of the deformation field. 

Any scalar function 𝑉 is harmonic if it satisfies the Laplace’s equation [Baranov, 

1975]: 

∇2𝑉 =
𝜕2𝑉

𝜕𝑥2 +
𝜕2𝑉

𝜕𝑦2 +
𝜕2𝑉

𝜕𝑧2 = 0     (1.15). 

In particular, a vector field 𝐁(𝑥, 𝑦, 𝑧) = (𝐵𝑥, 𝐵𝑦, 𝐵𝑧) is a potential field if [Blakely, 

1996]: 

𝐁(𝑥, 𝑦, 𝑧) = ∇𝑉 =

(

 
 

𝜕𝑉

𝜕𝑥
𝜕𝑉

𝜕𝑦

𝜕𝑉

𝜕𝑧)

 
 

= (

𝐵𝑥

𝐵𝑦

𝐵𝑧

)    (1.16), 

and, in turn, 

∇2𝐁(𝑥, 𝑦, 𝑧) =

(

  
 

𝜕2𝐵𝑥

𝜕𝑥2 +
𝜕2𝐵𝑥

𝜕𝑦2 +
𝜕2𝐵𝑥

𝜕𝑧2

𝜕2𝐵𝑦

𝜕𝑥2 +
𝜕2𝐵𝑦

𝜕𝑦2 +
𝜕2𝐵𝑦

𝜕𝑧2

𝜕2𝐵𝑧

𝜕𝑥2
+

𝜕2𝐵𝑧

𝜕𝑦2
+

𝜕2𝐵𝑧

𝜕𝑧2 )

  
 

= 0   (1.17). 

Now, we consider the Navier’s relation in the form of equation (1.11.1) to discuss on 

the harmonic properties of the deformation field; in particular, we arrange the terms 

between the left- and right-hand members, as follows, 

𝜇∇2𝐮 =

(

 
 

−(𝜆 + 𝜇)
𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

−(𝜆 + 𝜇)
𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

−(𝜆 + 𝜇)
𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
))

 
 

   (1.18.1), 

and we divide both the members by 𝜇 to get: 

∇2𝐮 =

(

 
 

−(1 +
𝜆

𝜇
)

𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

−(1 +
𝜆

𝜇
)

𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

−(1 +
𝜆

𝜇
)

𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
))

 
 

   (1.18.2). 
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From (1.18.2) it follows that 𝐮 satisfies the Laplace’s equation when the following 

relation is verified: 

(

 
 

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
))

 
 

= 0    (1.19). 

We consider the strain-stress relations expressed by the Hooke’s Law and, by 

substituting equations (1.9.1), (1.9.2) and (1.9.3) into (1.18.3), as follows, 

(

 
 

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑥

1

𝐸
(𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦 − 𝜈𝜎𝑧𝑧 + 𝜎𝑦𝑦 − 𝜈𝜎𝑧𝑧 − 𝜈𝜎𝑥𝑥 + 𝜎𝑧𝑧 − 𝜈𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦)

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑦

1

𝐸
(𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦 − 𝜈𝜎𝑧𝑧 + 𝜎𝑦𝑦 − 𝜈𝜎𝑧𝑧 − 𝜈𝜎𝑥𝑥 + 𝜎𝑧𝑧 − 𝜈𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦)

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑧

1

𝐸
(𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦 − 𝜈𝜎𝑧𝑧 + 𝜎𝑦𝑦 − 𝜈𝜎𝑧𝑧 − 𝜈𝜎𝑥𝑥 + 𝜎𝑧𝑧 − 𝜈𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦))

 
 

= 0 

(1.20.1), 

we get: 

(

 
 

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑥
(
𝜎𝑥𝑥

𝐸
−

𝜈𝜎𝑦𝑦

𝐸
−

𝜈𝜎𝑧𝑧

𝐸
+

𝜎𝑦𝑦

𝐸
−

𝜈𝜎𝑧𝑧

𝐸
−

𝜈𝜎𝑥𝑥

𝐸
+

𝜎𝑧𝑧

𝐸
−

𝜈𝜎𝑥𝑥

𝐸
−

𝜈𝜎𝑦𝑦

𝐸
)

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑦
(
𝜎𝑥𝑥

𝐸
−

𝜈𝜎𝑦𝑦

𝐸
−

𝜈𝜎𝑧𝑧

𝐸
+

𝜎𝑦𝑦

𝐸
−

𝜈𝜎𝑧𝑧

𝐸
−

𝜈𝜎𝑥𝑥

𝐸
+

𝜎𝑧𝑧

𝐸
−

𝜈𝜎𝑥𝑥

𝐸
−

𝜈𝜎𝑦𝑦

𝐸
)

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑧
(
𝜎𝑥𝑥

𝐸
−

𝜈𝜎𝑦𝑦

𝐸
−

𝜈𝜎𝑧𝑧

𝐸
+

𝜎𝑦𝑦

𝐸
−

𝜈𝜎𝑧𝑧

𝐸
−

𝜈𝜎𝑥𝑥

𝐸
+

𝜎𝑧𝑧

𝐸
−

𝜈𝜎𝑥𝑥

𝐸
−

𝜈𝜎𝑦𝑦

𝐸
))

 
 

= 0  

(1.20.2), 

that is equivalent to 

(

 
 

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑥
(
𝜎𝑥𝑥

𝐸
+

𝜎𝑦𝑦

𝐸
+

𝜎𝑧𝑧

𝐸
) − 2

𝜕

𝜕𝑥
(
𝜈𝜎𝑥𝑥

𝐸
+

𝜈𝜎𝑦𝑦

𝐸
+

𝜈𝜎𝑧𝑧

𝐸
)

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑦
(
𝜎𝑥𝑥

𝐸
+

𝜎𝑦𝑦

𝐸
+

𝜎𝑧𝑧

𝐸
) − 2

𝜕

𝜕𝑦
(
𝜈𝜎𝑥𝑥

𝐸
+

𝜈𝜎𝑦𝑦

𝐸
+

𝜈𝜎𝑧𝑧

𝐸
)

(1 +
𝜆

𝜇
)

𝜕

𝜕𝑧
(
𝜎𝑥𝑥

𝐸
+

𝜎𝑦𝑦

𝐸
+

𝜎𝑧𝑧

𝐸
) − 2

𝜕

𝜕𝑧
(
𝜈𝜎𝑥𝑥

𝐸
+

𝜈𝜎𝑦𝑦

𝐸
+

𝜈𝜎𝑧𝑧

𝐸
))

 
 

= 0    (1.21.1), 

and to 

(1 +
𝜆

𝜇
)∇ (

𝜎𝑥𝑥

𝐸
+

𝜎𝑦𝑦

𝐸
+

𝜎𝑧𝑧

𝐸
) − 2∇ (

𝜈𝜎𝑥𝑥

𝐸
+

𝜈𝜎𝑦𝑦

𝐸
+

𝜈𝜎𝑧𝑧

𝐸
) = 0   (1.21.2); 

by substituting 𝜇 =
𝐸

2(1+𝜈)
 and 𝜆 =

𝐸𝜈

(1+𝜈)(1−2𝜈)
 into equation (1.21.2), as follows, 
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(1 +
𝐸𝜈

(1+𝜈)(1−2𝜈)

2(1+𝜈)

𝐸
)∇ (

𝜎𝑥𝑥

𝐸
+

𝜎𝑦𝑦

𝐸
+

𝜎𝑧𝑧

𝐸
) − 2∇ (

𝜈𝜎𝑥𝑥

𝐸
+

𝜈𝜎𝑦𝑦

𝐸
+

𝜈𝜎𝑧𝑧

𝐸
) = 0        (1.21.3), 

(1 +
2𝜈

(1−2𝜈)
)∇ (

𝜎𝑥𝑥

𝐸
+

𝜎𝑦𝑦

𝐸
+

𝜎𝑧𝑧

𝐸
) − 2∇ (

𝜈𝜎𝑥𝑥

𝐸
+

𝜈𝜎𝑦𝑦

𝐸
+

𝜈𝜎𝑧𝑧

𝐸
) = 0                  (1.21.4), 

1

1−2𝜈
∇ (

𝜎𝑥𝑥

𝐸
+

𝜎𝑦𝑦

𝐸
+

𝜎𝑧𝑧

𝐸
) − 2∇ (

𝜈𝜎𝑥𝑥

𝐸
+

𝜈𝜎𝑦𝑦

𝐸
+

𝜈𝜎𝑧𝑧

𝐸
) = 0                           (1.21.5), 

and by remembering that 𝜎𝑘𝑘 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧, the Laplace’s equation is satisfied 

according to: 

1

1−2𝜈
∇ (

𝜎𝑘𝑘

𝐸
) − 2∇ (

𝜈𝜎𝑘𝑘

𝐸
) = 0           (1.21.6). 

A first solution to equation (1.21.6) can be obtained by considering 𝜈 as a constant 

value; in this case, we can write: 

1

1−2𝜈
∇ (

𝜎𝑘𝑘

𝐸
) − 2𝜈∇ (

𝜎𝑘𝑘

𝐸
) = 0           (1.22.1), 

1

1−2𝜈
∇ (

𝜎𝑘𝑘

𝐸
) = 2𝜈∇ (

𝜎𝑘𝑘

𝐸
)            (1.22.2), 

1

1−2𝜈
= 2𝜈              (1.22.3), 

that is never satisfied for 𝜈 ∈ ℝ. 

We can find another solution by again considering 𝜈 as a constant value and 

∇ (
𝜎𝑘𝑘

𝐸
) = 0; in these conditions, equation (1.21.6) is always satisfied and, since 𝜎𝑘𝑘 is a 

function depending on the elastic parameters 𝐸 and 𝜈 according to equations (1.7.2) and 

(1.6.1), (1.6.2), (1.6.3), the equations (1.21.6), (1.19) and, in turn, the Laplace’s equation 

are satisfied even only if: 

∇𝜎𝑘𝑘 = 0      (1.23). 

In the framework of the modeling of volcanic deformations, equation (1.23) is always 

satisfied for hydrostatic pressure variation within sources embedded in a homogeneous 

elastic half-space. 



22 
 

The Mogi’s model [Mogi, 1958] is the simplest example for which the Laplace’s 

equation is satisfied, where the elastic problem is reduced to a point-spherical source 

distribution with hydrostatic pressure variation and embedded in a homogeneous elastic 

half-space. Castaldo et al. [2018b] have indeed established that the field expressions for 

this model are the gradient of a Newtonian potential in the form ϕ =
1

𝑟
, which is a 

harmonic function; therefore, by remembering equations (1.15) and (1.16), for the ground 

deformation u generated by the Mogi source, we have: 

𝐮 = ∇ϕ =

(

 
 

𝜕ϕ

𝜕𝑥
𝜕ϕ

𝜕𝑦

𝜕ϕ

𝜕𝑧)

 
 

= (
𝑢
𝑣
𝑤

)     (1.24). 
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1.3 Homogeneity and local-homogeneity properties of harmonic deformation 

field. 

A homogeneous function 𝑓 of degree 𝑛 satisfies the following scaling law, called 

homogeneity equation, in the region R [Stavrev and Reid, 2007; Fedi, 2016; Vitale and 

Fedi, 2020]: 

𝑓(𝑡𝑥, 𝑡𝑦, 𝑡𝑧) = 𝑡𝑛𝑓(𝑥, 𝑦, 𝑧)    (1.25), 

where 𝑡 > 0 and 𝑛 ∈ ℝ is the homogeneity degree of the homogeneous field 𝑓. 

When 𝑓 is continuously differentiable and homogeneous of degree 𝑛 in R, Euler’s 

theorem [Olmsted, 1961] shows that its homogeneity may be expressed by the differential 

equation: 

∇𝑓(𝐫) · (𝐫 − 𝑟0) = −𝑛𝑓(𝐫)    (1.26), 

where 𝐫𝟎 represent the source position. 

In the PFT framework, 𝑛 is an important parameter since it often reflects the falloff 

rate of the potential field anomaly with the scale variation [Thompson, 1982; Reid et al., 

1990; Fedi, 2007] and, in the case of fields of ideal sources, also known as one-point 

sources [Vitale and Fedi, 2020] (i.e., a field generated by a source distribution having its 

support in just one point), 𝑛 is constant at any considered scale and either integer or 

fractional [Fedi et al., 2015]. For the gravity case, 𝑛 = 1 and 𝑛 = −2 characterize the 

boundary values of the homogeneity degree, and they are referred to fields generated by 

3D non-concentrated (i.e., a contact) and concentrated (i.e., a pole source) bodies, 

respectively, with a constant density distribution. 

Similarly, Castaldo et al. [2018b] have shown that a pole source with hydrostatic 

variation of the pressure (i.e., constant distribution) generates a homogeneous ground 

deformation field with 𝑛 = −2. 

The homogeneity law is therefore useful to characterize the source type; the field 

parameter 𝑛 is indeed related to the homogeneity degree of the source 𝑛𝑠 which, according 

to equation (1.24), can be expressed as: 

𝑛𝑠 = 𝑛 + 𝑝 − 2     (1.27), 
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where 𝑝 is the differentiation order of the analysed potential function respect to its 

Newtonian potential, and we can define the Structural Index 𝑁, as follows [Fedi, 2007]: 

𝑁 = −𝑛𝑠     (1.28). 

𝑁 takes on an important meaning since it represents a source parameter 

characterizing its shape [Fedi, 2016]. For gravity and magnetic fields, Poisson’s equation 

relates the homogeneity properties of the magnetic and gravity gradient to those of 

susceptibility and density, respectively [Fedi, 2016]. Similarly, this relation occurs 

between the field gradient and the pressure variation for the deformation case. 

Following Fedi et al. [2015; 2016], we define 𝑁 as an integer number varying from 

0 to 3 going from a 3D non-concentrated to concentrated sources when the distribution 

of the pressure variation is constant; on the contrary, fractional values of 𝑁 characterize 

the ideal sources. 

In a more realistic case, the causative bodies are complex sources generating 

inhomogeneous fields, whose homogeneity degree is not a constant function at different 

scales. Fedi et al. [2015] show how to handle this case by generalizing the homogeneity 

equation into a local-homogeneity law: 

𝑓(𝑡𝑥, 𝑡𝑦, 𝑡𝑧) = 𝑡𝑛(𝑥,𝑦,𝑧)𝑓(𝑥, 𝑦, 𝑧)   (1.29), 

so that the differential Euler equation becomes 

∇𝑓(𝐫) · (𝐫 − 𝑟0) = −𝑛(𝐫)𝑓(𝐫)    (1.30), 

 

where 𝑛(𝐫) ∈ ℝ. 

Therefore, equation (1.29) allows the use of homogeneous fields as suitable models 

to approximate in a local sense (i.e., at different scale) the behaviour of any real field, 

even inhomogeneous [Fedi et al., 2015; Chauhan et al., 2018; Vitale and Fedi, 2020]. 

  



25 
 

CHAPTER 2 

MODELING OF VOLCANIC SOURCES 

In this chapter, we describe the forward problems of the most used AM for modeling 

volcanic reservoirs; these forward problems are based on analytical equations and express 

how the elastic problem reduces to particular solution for different source mechanisms. 

Despite of their usefulness for inverse modeling, we will stress that the AM reflect 

specific physical and geometrical conditions approximating the volcanic system. 

We firstly deal with the AM whose forward problems are described by biharmonic 

and non-harmonic functions; then, we treat the cases in which these solutions also satisfy 

the Laplace’s equation (harmonic criteria). 

We briefly introduce the most used inverse approach for modeling volcanic 

deformation sources and, finally, we will describe the proposed integrated multi-scale 

methods, enjoying the properties of the harmonic functions. 

Moreover, we will evidence that the harmonic and biharmonic properties of the 

deformation field are preserved also in the case of DInSAR measurements along LOS, 

since they represent a linear combination between the deformation components and the 

LOS vector for ascending and descending satellite orbits. 

All the equations reported in this chapter are referred to source centres located at the 

points (𝑥0, 𝑦0) = (0,0) and assume a reference 𝑧-level = 0. 
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2.1 Analytical models satisfying the general solution. 

In this paragraph, we briefly describe the forward problems of AM whose fields are 

biharmonic but non-harmonic. Such models are used to simulate the deformation field of 

volcanic systems, as sills, dikes, pipes, vertical conduits, and 3D finite spherical magma 

chambers. 

Many of these models involve sources where the physical parameters are null within 

the volume excepted at their boundary, and all of them involve sources embedded in a 

homogeneous elastic half-space.  

For each model, we apply the Laplacian operator to their analytical expressions to 

verify whether the Laplace’s equation is satisfied. We do not show their biharmonic 

properties since every solution of the elastic problem can be expressed by biharmonic 

functions, according to equation (1.14.3) [Love, 1906].  

 

2.1.1 Induced Horizontal Fractures. 

R. J. Sun [1969] proposed a simple model for environmental purposes, which also 

simulates a sill-like source. It indeed describes the deformations generated by a horizontal 

circular crack by considering the tensile component of the stress, as follows: 

𝐮 =

(

 
 

𝐵𝑟𝑧0

𝑎
{𝐴1𝑥 − 𝐴2𝑥}

𝐵𝑟𝑧0

𝑎
{𝐴1𝑥 − 𝐴2𝑥}

𝐵 (√𝑘 sin
𝐴3

2
−

𝑧0

𝑎√𝑘
cos

𝐴3

2
)
)

 
 

    (2.1), 

where: 𝐵, 𝑎, 𝑧0 and 𝑟 are the maximum separation, the radius, the depth and the radial 

distance characterizing the hydraulically induced fracture; 

𝐴1 =
(𝑎+𝑎√𝑘 sin

𝐴3

2
)

[(𝑧0+𝑎√𝑘 cos
𝐴3

2
)
2
+((𝑎+𝑎√𝑘 sin

𝐴3

2
))

2

]

;  √𝑘 = [(
𝑟2

𝑎2 +
𝑧0

𝑎2 − 1)
2

+ (
2𝑧0

𝑎
)
2

]

1

4

; 

𝐴2 =
(𝑧0√𝑘 cos

𝐴3

2
−𝑎√𝑘 sin

𝐴3

2
+𝑎𝑘 cos𝐴3)

[(𝑧0√𝑘 cos
𝐴3

2
−𝑎√𝑘 sin

𝐴3

2
+𝑎𝑘 cos𝐴3)

2
+(𝑎√𝑘 cos

𝐴3

2
+ℎ√𝑘 sin

𝐴3

2
+𝑎𝑘 sin𝐴3)

2
]
;  

𝐴3 = cot−1 𝑟2+𝑧0
2−𝑎2

2𝑎𝑧0
. 
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As we can observe from equation (2.1), the deformation field only depends on the 

position, the radius, and the thickness of the crack source. 

The expressions describing this model do not satisfy the Laplace’s equation, indeed: 

∇2

(

 
 

𝐵𝑟𝑧0

𝑎
{𝐴1𝑥 − 𝐴2𝑥}

𝐵𝑟𝑧0

𝑎
{𝐴1𝑥 − 𝐴2𝑥}

𝐵 (√𝑘 sin
𝐴3

2
−

𝑧0

𝑎√𝑘
cos

𝐴3

2
)
)

 
 

≠ 0    (2.2). 

 

2.1.2 Shear and tensile faults. 

A more useful model was proposed by Okada [1985; 1992] to simulate the 

deformation field due to the shear and tensile faults. Specifically, the tensile-component 

solution is widely used in the volcanic framework to simulate sources as sills and dikes. 

Accordingly, by defining the components of the dislocation vector at the fault plane 

as 𝑈1, 𝑈2, 𝑈3, and the depth, the areal extension and the dip of this plane as 𝑧0, ∆S and 𝜃, 

respectively, the deformation fields generated by a point source with mechanism of strike-

slip (𝐮𝑠𝑠), dip-slip (𝐮𝑑𝑠) and tensile (𝐮𝑡) faults are expressed as follows: 

𝐮𝑠𝑠 =

(

 
 

−
𝑈1

2𝜋
(
3𝑥2𝑞𝑟

𝑅5 + 𝐼1 𝑠𝑖𝑛 𝜃)∆𝑆

−
𝑈1

2𝜋
(
3𝑥𝑦𝑞𝑟

𝑅5 + 𝐼2 𝑠𝑖𝑛 𝜃)∆𝑆

−
𝑈1

2𝜋
(
3𝑥 𝑧0𝑞𝑟

𝑅5
+ 𝐼4 𝑠𝑖𝑛 𝜃)∆𝑆)

 
 

    (2.3), 

𝐮𝑠𝑑 =

(

 
 

−
𝑈2

2𝜋
(
3𝑥𝑝𝑞𝑟

𝑅5 + 𝐼3 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃)∆𝑆

−
𝑈2

2𝜋
(
3𝑦𝑝𝑞𝑟

𝑅5 + 𝐼1 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃) ∆𝑆

−
𝑈2

2𝜋
(
3 𝑧0𝑝𝑞𝑟

𝑅5
+ 𝐼5 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃) ∆𝑆

)

 
 

   (2.4), 

𝐮𝑡 =

(

 
 

−
𝑈3

2𝜋
(
3𝑥𝑞𝑟

2

𝑅5 + 𝐼3 𝑠𝑖𝑛2 𝜃) ∆𝑆

−
𝑈3

2𝜋
(
3𝑦𝑞𝑟

2

𝑅5
+ 𝐼1 𝑠𝑖𝑛2 𝜃)∆𝑆

−
𝑈3

2𝜋
(
3𝑧0𝑞𝑟

2

𝑅5 + 𝐼5 𝑠𝑖𝑛2 𝜃) ∆𝑆)

 
 

    (2.5), 

where: 𝐼1 =
𝜇

𝜆+𝜇
𝑦 [

1

𝑅(𝑅+𝑧0)2
− 𝑥2 3𝑅+𝑧0

𝑅3(𝑅+𝑧0)3
]; 𝐼2 =

𝜇

𝜆+𝜇
𝑥 [

1

𝑅(𝑅+𝑧0)2
− 𝑦2 3𝑅+𝑧0

𝑅3(𝑅+𝑧0)3
];  
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𝐼3 =
𝜇

𝜆+𝜇
𝑥 [

𝑥

𝑅3] − 𝐼2; 𝐼4 =
𝜇

𝜆+𝜇
[−𝑥𝑦

2𝑅+𝑧0

𝑅3(𝑅+𝑧0)2
]; 𝐼5 =

𝜇

𝜆+𝜇
[

1

𝑅(𝑅+𝑧0)
− 𝑥2 2𝑅+𝑧0

𝑅3(𝑅+𝑧0)2
]; and 

𝑝 = 𝑦 cos 𝜃 + 𝑧0 sin 𝜃, 𝑞𝑟 = 𝑦 sin 𝜃 − 𝑧0 cos 𝜃, 𝑅2 = 𝑥2 + 𝑦2 + 𝑧0
2 = 𝑥2 + 𝑝2 + 𝑞𝑟

2. 

Through integrations of equations (2.3), (2.4) and (2.5), it is possible to derive the 

deformation field generated by a finite rectangular fault with length 𝐷 and width 𝑊; in 

particular, by introducing the spatial variables (𝜉, 𝜂), we can write the expression of the 

deformation field 𝑓𝑢(𝜉, 𝜂) according to the Chinnery’s notation ||: 

𝑓𝑢(𝜉, 𝜂)|| = 𝑓𝑢(𝑥, 𝑝) − 𝑓𝑢(𝑥, 𝑝 − 𝑊) − 𝑓𝑢(𝑥 − 𝐷, 𝑝) + 𝑓𝑢(𝑥 − 𝐷, 𝑝 − 𝑊) (2.6). 

Therefore, the deformation field produced by sill- and dike-like sources is modeled 

by the tensile component of a rectangular finite fault 𝐮 as: 

𝐮 =

(

 
 

𝑈3

2𝜋
(

𝑞𝑟
2

𝑅(𝑅+𝜂)
− 𝐼3 𝑠𝑖𝑛2 𝜃) ||

𝑈3

2𝜋
(

−𝑧0̃𝑞𝑟

𝑅(𝑅+𝜉)
− 𝑠𝑖𝑛 𝜃 {

𝜉𝑞𝑟

𝑅(𝑅+𝜂)
− 𝑡𝑎𝑛−1 𝜉𝜂

𝑞𝑟𝑅
} − 𝐼1 𝑠𝑖𝑛2 𝜃) ||

𝑈3

2𝜋
(

−�̃�𝑞𝑟

𝑅(𝑅+𝜉)
− 𝑐𝑜𝑠 𝜃 {

𝜉𝑞𝑟

𝑅(𝑅+𝜂)
− 𝑡𝑎𝑛−1 𝜉𝜂

𝑞𝑟𝑅
} − 𝐼5 𝑠𝑖𝑛2 𝜃) ||)

 
 

  (2.7), 

where: 𝐼1 =
𝜇

𝜆+𝜇
[

−1

𝑐𝑜𝑠𝜃

𝜉

𝑅+𝑧0̃
] −

𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠 𝜃
𝐼5; 𝐼3 =

𝜇

𝜆+𝜇
[

1

𝑐𝑜𝑠𝜃

�̃�

𝑅+𝑧0̃
− 𝑙𝑛(𝑅 + 𝜂)] +

𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠 𝜃
𝐼4;  

𝐼4 =
𝜇

𝜆+𝜇

1

𝑐𝑜𝑠 𝜃
[𝑙𝑛(𝑅 + 𝑧0̃) − 𝑠𝑖𝑛 𝜃 𝑙𝑛(𝑅 + 𝜂)]; �̃� = 𝜂 𝑐𝑜𝑠 𝜃 + 𝑞𝑟 𝑠𝑖𝑛 𝜃; 

𝐼5 =
𝜇

𝜆+𝜇

2

𝑐𝑜𝑠 𝜃
𝑡𝑎𝑛−1 𝜂(𝑋+𝑞𝑟 𝑐𝑜𝑠 𝜃)+𝑋(𝑅+𝑋)𝑠𝑖𝑛 𝜃

𝜉(𝑅+𝑋) 𝑐𝑜𝑠 𝜃
; 𝑧0̃ = 𝜂 𝑠𝑖𝑛 𝜃 − 𝑞𝑟 𝑐𝑜𝑠 𝜃; 

𝑅2 = 𝜉2 + 𝜂2 + 𝑞𝑟
2 = 𝜉2 + �̃�2 + 𝑧0̃

2
; 𝑋2 = 𝜉2 + 𝑞𝑟

2;  

and when cos 𝜃 = 0, the coefficients are rewritten as: 

𝐼1 = −
𝜇

2(𝜆+𝜇)

𝜉𝑞𝑟

(𝑅+𝑧0̃)2
, 𝐼3 =

𝜇

2(𝜆+𝜇)
[

𝜂

𝑅+𝑧0̃
+

�̃�𝑞𝑟

(𝑅+𝑧0̃)2
− 𝑙𝑛(𝑅 + 𝜂)], 𝐼5 = −

𝜇

𝜆+𝜇

𝜉 𝑠𝑖𝑛 𝜃

𝑅+𝑧0̃
. 

As described by equation (2.7), the Okada’s model simulates a source that better 

approximates the volcanic system respect to what proposed by Sun. Indeed, the former is 

a finite body also characterized by the dip and strike parameters to both simulate sill- and 

dike-like sources. We again find that this model does not satisfy the Laplace’s equation 

since the Laplacian of equations (2.3), (2.4), (2.5) and (2.7) is not equal to zero. 
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2.1.3 Finite spherical magma body. 

This model was proposed by McTigue [1987] considering higher order corrections 

for the stress tensor to approximate the deformation generated by a pressurized finite 

spherical source with null physical parameters within the volume excepted at their 

boundary. We can express the deformation field 𝐮 generated by hydrostatic variation of 

pressure ∆𝑃, source radius 𝑎 and depth 𝑧0, as follows: 

𝐮 =

(

 
 
 
 

𝑎3∆𝑃
(1−𝜈)

𝐺
(1 + (

𝑎

𝑧0
)
3

(
(1−𝜈)

2(−7+5𝜈)
+

15𝑧0
2(−2+𝜈)

4𝑅2(−7+5𝜈)
))

𝑥

𝑅3

𝑎3∆𝑃
(1−𝜈)

𝐺
(1 + (

𝑎

𝑧0
)
3

(
(1−𝜈)
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+

15𝑧0
2(−2+𝜈)

4𝑅2(−7+5𝜈)
))

𝑦

𝑅3

𝑎3∆𝑃
(1−𝜈)

𝐺
(1 + (

𝑎

𝑧0
)
3

(
(1−𝜈)

2(−7+5𝜈)
+

15𝑧0
2(−2+𝜈)

4𝑅2(−7+5𝜈)
))

𝑧0

𝑅3)

 
 
 
 

  (2.8), 

where 𝐺 and 𝜈 represent the shear modulus and the Poisson’s coefficient of the considered 

medium, respectively, and 𝑅 = √𝑥2 + 𝑦2 + 𝑧0
2. In this case, the Laplace’s equation is 

still not satisfied: 

∇2

(

 
 
 
 

𝑎3∆𝑃
(1−𝜈)

𝐺
(1 + (

𝑎

𝑧0
)
3

(
(1−𝜈)

2(−7+5𝜈)
+

15𝑧0
2(−2+𝜈)

4𝑅2(−7+5𝜈)
))

𝑥

𝑅3

𝑎3∆𝑃
(1−𝜈)

𝐺
(1 + (

𝑎

𝑧0
)
3

(
(1−𝜈)

2(−7+5𝜈)
+

15𝑧0
2(−2+𝜈)

4𝑅2(−7+5𝜈)
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𝑦

𝑅3

𝑎3∆𝑃
(1−𝜈)

𝐺
(1 + (

𝑎

𝑧0
)
3

(
(1−𝜈)

2(−7+5𝜈)
+

15𝑧0
2(−2+𝜈)

4𝑅2(−7+5𝜈)
))

𝑧0

𝑅3)

 
 
 
 

≠ 0  (2.9). 

This model may be useful to separate the contributions of the source pressure change 

and its radius. However, it leads to a wrong estimate of the pressure change because of 

the assumed null distribution of the physical parameters within the source volume. 

 

2.1.4 Dipping finite prolate spheroid. 

Yang et al. [1988] proposed this model for simulating deformations in volcanic 

environment. The following parameters mainly characterize this spheroidal source: semi-

major axis (𝑎𝑧); semi-minor axis (𝑎𝑥𝑦); distance between centre of the spheroid and focal 

points (𝑐); intensities of double forces (𝑃𝑑) and centres of dilatation (𝑃𝑐); dip angle (𝜃). 
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For this model, the effect of double forces and centres of dilatation between the 

spheroid foci, which satisfies the constant pressure boundary condition on its surface, 

expresses the deformation field; in particular, the general relation (𝑢𝑖) on which this 

model is based can be summarized as follow: 

𝑢𝑖 = ∫ {𝑃𝑐𝜆
𝜕𝑢𝑖𝑗

𝜕𝜉𝑗
+ 𝑃𝑑2𝜇 [

𝜕𝑢𝑖𝑦

𝜕𝜉𝑦
cos2 𝜃 +

𝜕𝑢𝑖𝑧

𝜕𝜉𝑧
sin2 𝜃 + sin 𝜃 cos 𝜃 (

𝜕𝑢𝑖𝑦

𝜕𝜉𝑧
+

𝜕𝑢𝑖𝑧

𝜕𝜉𝑦
)]}

+𝑐

−𝑐
𝑑𝜉 (2.10), 

where 𝑢𝑖𝑗 is the 𝑖th component of displacement at (𝑥, 𝑦, 𝑧) due to forces of unit magnitude 

acting in the 𝑗-direction at (𝜉𝑥, 𝜉𝑦, 𝜉𝑧). 

As described in equation (2.10), this model allows simulating different volcanic 

sources since the expressions take into account the aspect ratio (included in the 𝑃𝑐 and 𝑃𝑑 

terms), the dip and also the strike angles of the source; therefore, the Yang’s source model 

can approximate both 3D finite and pipe-like sources through high and low values of the 

aspect ratio parameter, respectively. However, the elastic problem is here simplified with 

a line integral instead of a volume one, and the condition of hydrostatic pressure of the 

source is not fully satisfied. 

We again find that the mathematical formulas describing such model do not satisfy 

the Laplace’s equation since the Laplacian of equations (2.10) is not equal to zero. 

 

2.1.5 Vertical volcanic conduits. 

As for the previous one, this model was proposed by Bonaccorso and Davis [1999] 

to simulate the magma ascent along a vertical conduit, that is a pipe-like source. In their 

work, the authors describe three cases in dilatation condition related to the closed pipe, 

the open pipe, and the pipe-shaded region.  

For example, the deformation field 𝐮 generated by a pressure variation ∆𝑃 within a 

closed pipe with radius 𝑎 can be expressed as: 

𝐮 =

[
 
 
 
 
 
𝑎2∆𝑃

4𝐺
(

𝑐1
3

𝑅1
3 +

2𝑐1(−3+5𝜈)

𝑅1
+

5𝑐2
3(1−2𝜈)−2𝑐2𝑟2(−3+5𝜈)

𝑅2
3 )

𝑥

𝑟2

𝑎2∆𝑃

4𝐺
(

𝑐1
3

𝑅1
3 +

2𝑐1(−3+5𝜈)

𝑅1
+

5𝑐2
3(1−2𝜈)−2𝑐2𝑟2(−3+5𝜈)

𝑅2
3 )

𝑦

𝑟2

𝑎2∆𝑃

4𝐺
(

𝑐1
2

𝑅1
3 +

2(−2+5𝜈)

𝑅1
+

5𝑐2
2(3−10𝜈)−2𝑟2(−2+5𝜈)

𝑅2
3 ) ]

 
 
 
 
 

   (2.11), 
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where 𝑐1 and 𝑐2 are the depth to the top and to the bottom of the source, respectively, 

while 𝑟 = √𝑥2 + 𝑦2, 𝑅1 = √𝑟2 + 𝑐1
2 and 𝑅2 = √𝑟2 + 𝑐2

2. 

Equation (2.11) is very simple, but it just represents a simplification of the Yang’s 

relations in the case of negligible width of the vertical spheroidal source. Once more, it 

does not satisfy the Laplace’s equation: 

∇2

[
 
 
 
 
 
𝑎2∆𝑃

4𝐺
(

𝑐1
3

𝑅1
3 +

2𝑐1(−3+5𝜈)

𝑅1
+

5𝑐2
3(1−2𝜈)−2𝑐2𝑟2(−3+5𝜈)

𝑅2
3 )

𝑥

𝑟2

𝑎2∆𝑃

4𝐺
(

𝑐1
3

𝑅1
3 +

2𝑐1(−3+5𝜈)

𝑅1
+

5𝑐2
3(1−2𝜈)−2𝑐2𝑟2(−3+5𝜈)

𝑅2
3 )

𝑦

𝑟2

𝑎2∆𝑃

4𝐺
(

𝑐1
2

𝑅1
3 +

2(−2+5𝜈)

𝑅1
+

5𝑐2
2(3−10𝜈)−2𝑟2(−2+5𝜈)

𝑅2
3 ) ]

 
 
 
 
 

≠ 0  (2.12). 
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2.2 Analytical models satisfying the Laplace’s equation. 

In this paragraph, we describe the forward problems of AM whose fields are both 

biharmonic and harmonic so that, in turn, satisfy the Laplace’s equation. Such models are 

used to simulate the deformation field of simple volcanic systems, where the depth to the 

source is larger than its extents.  

 

2.2.1 The Mogi’s source. 

The Mogi’s source model [1958] represents the simplest and most used AM for 

modeling the volcanic deformation sources. For this reason, we deeply study its 

properties; in particular, the outcomes of this study have been already published in the 

following paper: 

Castaldo, R., Barone, A., Fedi, M., Tizzani, P. (2018b). Multiridge Method for Studying 

Ground-Deformation Sources: Application to Volcanic Environments. Scientific Reports, 

8:13420, DOI:10.1038/s41598-018-31841-4. 

Here, we report an excerpt of this paper treating both the harmonic and homogeneity 

properties of the Mogi’s source model: 

“We show that the ground deformation field modeled with the Mogi source also 

encompasses harmonic properties.  

The deformation field modeled by a hydrostatic pressure change within a spherical 

cavity embedded in an elastic half-space, with a radius much smaller than its depth 

[Mogi, 1958], is given by: 

𝐮 =

(

 
 

𝑎3𝛥𝑃
1−𝜈

𝐺

𝑥−𝑥0

|𝐑|3

𝑎3𝛥𝑃
1−𝜈

𝐺

𝑦−𝑦0

|𝐑|3

𝑎3𝛥𝑃
1−𝜈

𝐺

𝑧−𝑧0

|𝐑|3 )

 
 

     (2.13), 

where (𝑥0, 𝑦0, 𝑧0) represents the coordinates of the source centre, 𝑎 the radius of the 

sphere, 𝛥𝑃 the variation in pressure, 𝑧0 the depth of the source from the centre of the 

sphere, |𝐑| = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2, 𝐺 the shear modulus and 𝜈 the 

Poisson ratio.  
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It is simple to argue that u is the gradient of the Newtonian potential in the form 1/r, 

which is a harmonic function. Therefore, all the components of the deformation field u 

are also harmonic, and we find that: 

∇ ∙ ∇𝐮 = ∇2𝐮 = 0     (2.14). 

In the case of the LOS satellite data analysis, the projection of the modeled 

deformation (𝑢𝐿𝑂𝑆) can be simply calculated by combining the ground deformation field 

components (𝑢, 𝑣, 𝑤) with the LOS unit vector, as follows: 

𝑢𝑙𝑜𝑠 = 𝑢 𝑐𝑥 + 𝑣 𝑐𝑦 + 𝑤 𝑐𝑧    (2.15), 

where 𝑐𝑥, 𝑐𝑦, and 𝑐𝑧 are the components of the LOS vector 𝐜𝐥. Also, 𝑢𝑙𝑜𝑠 is a harmonic 

function since we consider the mean values of 𝑐𝑥, 𝑐𝑦, and 𝑐𝑧. 

Consider again the ground deformation field modeled through the Mogi source, and 

let us evaluate its homogeneity properties. By inserting equation (1.26) into (2.13), it is 

obvious that each component of 𝐮 for Mogi’s source model is homogeneous of degree 

𝑛 = −2.  

The homogeneity degree of the field (𝑛) may be used to estimate the homogeneity 

degree of the source (𝑛𝑠) and, in turn, the Structural Index (𝑁); in particular, by 

remembering equations (1.27) and (1.28) we conclude that the Mogi source is 

characterized by 𝑛𝑠 = −3 and 𝑁 = 3 since 𝑝 = 1.” 

 

2.2.2 The prism source. 

Geerstma and Van Opstal [1973] proposed this model for predicting subsidence 

above compacting reservoirs and, in the last years, different authors [Camacho and 

Fernandez, 2019; Camacho et al., 2020] have considered it to study different phenomena, 

including the volcanic one.  

The model is based on the linear poroelasticity theory of strain nuclei to reproduce 

the deformation field of a reservoir with its lateral extent much larger than its thickness 

and, so, when the lateral strain is neglected. 
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Accordingly, the deformation field 𝐮 generated by a hydrostatic pore-pressurized 

(∆𝑃) prismatic body with sides ∆𝑥, ∆𝑦, and ∆𝑧0 can be expressed as: 

𝐮 =

(
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3
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  (2.16), 

where (𝜉, 𝜂, 𝜁) represent the coordinates of the source centre. By assuming the direct 

proportionality between the thickness ∆𝑧0 and 𝐮, the volume integration (2.16) can be 

simplified with an integration in the horizontal plane, as follows: 

𝐮 =

(

 
 

∆𝑃
1−𝜈

𝐺

3

4𝜋
𝐼𝑥∆𝑧0

∆𝑃
1−𝜈

𝐺

3
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3
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     (2.17), 

where:  

𝐼 = 𝐼𝑖 (𝑥 +
∆𝑥

2
, 𝑦 +

∆𝑦

2
, 𝑧) − 𝐼𝑖 (𝑥 +

∆𝑥

2
, 𝑦 −

∆𝑦

2
, 𝑧) − 𝐼𝑖 (𝑥 −

∆𝑥

2
, 𝑦 +

∆𝑦

2
, 𝑧) + 𝐼𝑖 (𝑥 −

∆𝑥

2
, 𝑦 −

∆𝑦

2
, 𝑧) 

and 𝐼𝑖(𝑝, 𝑞𝑟 , 𝑟) =

(

 
 

arcsin ℎ
𝑝
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+
𝜋

2
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. 

Equation (2.17) satisfies the Laplace’s equation, indeed: 

∇2

(

 
 

∆𝑃
1−𝜈

𝐺

3

4𝜋
𝐼𝑥∆𝑧0

∆𝑃
1−𝜈

𝐺

3

4𝜋
𝐼𝑦∆𝑧0

∆𝑃
1−𝜈

𝐺

3

4𝜋
𝐼𝑧∆𝑧0)

 
 

= 0     (2.18). 

However, the prism side extent respect to the scale is crucial since a very small source 

produces a field tending to the Mogi’s one, while a very large one produces a field 

affected by the uniaxial compaction assumption, on which this model is based. 
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2.3 Inherent limitations of parametric inverse algorithms. 

Let us begin defining as 𝐦 and 𝐝 the column vectors of the Earth model parameters 

and of the discrete data. To derive the properties of the Earth, we must be able to calculate 

theoretical data for an assumed Earth model. When we are able to establish a theoretical 

relationship between data and model (even approximate) we have solved the so-called 

forward problem:  

𝐝 = ℊ(𝐦)      (2.19). 

If the forward problem is solved in terms of simple relationship, characterized by a 

small number of parameters, the problem is called parametric. The aim of the parametric 

inverse algorithms is to infer the model parameters by iteratively fitting the observed data 

with the theoretical predictions from the assumed expressions of the relative forward 

problems and by finding an optimal value of a misfit function to minimize. The misfit 

function expresses the differences between the observations and the data calculated, under 

a specific forward problem, by considering the found Earth model at each step of an 

iteration cycle.  The misfit is therefore expressed in function of the iteration step and, in 

case the problem is nonlinear, it will be characterized by several minima [Sen and Stoffa, 

2013]. 

The local optimization methods usually start from a guess model and lead to nearest 

local misfit minimum. The global optimization methods instead search directly for the 

global minimum, defined by the lowest misfit in a set of local minima. Therefore, these 

procedures are knowns as Global or Local Optimization methods depending on whether 

they have been conceived to find global or local minima [Sen and Stoffa, 2013].  

In particular, the application of the forward modeling operator ℊ  (equation 2.19) to 

any possible solution 𝐦 gives back the synthetic data vector 𝐝𝑠𝑦𝑛: 

𝐝𝑠𝑦𝑛 = ℊ(𝐦)      (2.20). 

The inverse problem now reduces to determining a model that minimize the misfit 

between the observed data, 𝐝𝑜𝑏𝑠, and the computed data 𝐝𝑠𝑦𝑛.  

The misfit function, also called objective function, must be defined in terms of a 

suitable norm 𝐿 and, considering that the error vector 𝐞 is given by 

𝐞 = 𝐝𝑜𝑏𝑠 − 𝐝𝑠𝑦𝑛 = 𝐝𝑜𝑏𝑠 − ℊ(𝐦)    (2.21), 
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a general norm 𝐿𝑙 is defined as 

‖𝐞‖𝑙 = [∑ |𝑒𝑖|
𝑙𝑁𝐷

𝑖−1 ]
1

𝑙       (2.22), 

where ND is the number of data points. The usual norm is 𝐿2, given by 𝑙 = 2 and, if ‖𝐞‖2 

is divided by ND, we get the well-known and commonly used root mean square (RMS) 

error [Sen and Stoffa, 2013].  

In this framework, many algorithms have been proposed to search for the minima of 

a defined objective function of multiple variables by considering a general nonlinear form 

of ℊ(𝐦) [Sen and Stoffa, 2013]. 

The simplest approach is when the forward problem relationship is linear. In this 

case, ℊ is a linear operator expressed by a matrix 𝐆, and linear algebra methods are used 

to solve the inverse problem [Sen and Stoffa, 2013]. 

 If the forward problem is nonlinear the standard strategy adopted in geophysical 

inversion involves the conversion of the nonlinear problem into an approximate linear 

form by expanding the functional ℊ(𝐦) in Taylor series about an initial guess 𝐦𝟎: 

𝐝 − ℊ(𝐦) = 𝐝 − ℊ(𝐦𝟎) − ∑
𝜕ℊ𝑖(𝐦

𝟎)

𝜕𝑚𝑗
𝑑𝑚𝑗

𝑀
𝑗=1    (2.23). 

For notational simplicity, let us define the vector 𝐲 = 𝐝 − ℊ(𝐦𝟎) as representing the 

differences between the actual data and the those calculated for our initial model, and 

denote the quantities 
𝜕ℊ𝑖

𝜕𝑚𝑗
 and 𝒅𝒎 as the matrix 𝐉 and the vector 𝐱. We can restate equation 

(2.23) as  

𝐝 − ℊ(𝐦) = 𝐲 − 𝐉𝐱      (2.24), 

which has again a linear form and where 𝐉 is the Jacobian matrix, 𝐱 is the unknown 

perturbation model that is determined as m for the linear problem. Updating the 

linearization process within a cycle of iterations, we will finally determine the solution of 

the nonlinear problem. 

In order to search for a global minimum, the enumerative or grid-search methods 

involve sampling the model space by using different starting points in a grid and so finally 

determine the global minimum. However, when the model space is large, this is not a 

practical solution. In this last case, the most used approach is the Monte Carlo methods, 
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used for a random sampling of the model space, hoping that in some small and finite 

numbers of trials we may be able to finally determine the global minimum. The approach 

is a blind search and, so, it can be very computationally expensive. In some cases, the 

search is guided by some directivity during the random sampling, as for the simulated 

annealing (SA) and the genetic algorithms (GAs) [Sen and Stoffa, 2013]. 

We note here some features of the parametric inverse algorithm for the ground 

deformation field in the volcanic environment: 

• the forward problem is often relative to a too simple approximation of the 

distribution of the model in the Earth; 

• the forward problem operator ℊ may be affected by theoretical 

approximations, leading to theoretical errors, unless it is supported by strong 

a priori information; 

• the best model is often a priori chosen after a misfit analysis among different 

forward problem definitions (i.e., different operators ℊ), each one with 

different inherent theoretical errors, and, therefore, it can be wrongly 

selected;  

• ℊ is in general a non-linear operator and the derived error function will not 

have only one well-defined minimum; however, the local-minimum solution 

can be valid if the starting model is supported by strong a priori information; 

• the generation of 𝐝𝑠𝑦𝑛 is a highly time-consuming task, especially in the case 

of complex forward problems. 

It follows that parametric inverse modeling provide unambiguous solutions to the 

inverse problem only if valid constraints about the starting model parameters and the 

source shape are available. 
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2.4 Tomographic inverse algorithms. 

The tomographic inverse algorithm involves the partition of the subsoil volume into 

3D blocks to infer the source property of each of them by finding an optimal value of a 

misfit function. 

For the ground deformation field in the volcanic environment, Camacho et al. [2011] 

proposed this approach for simultaneous inversion of surface deformation and gravity 

data. Then, Camacho et al. [2020] has proposed some advances of this procedure by only 

considering geodetic data, which we will describe below. 

In this algorithm, the considered forward problems are four elementary source 

models: the strike-slip (equation 2.3), dip-slip (equation 2.4) and tensile components of 

buried dislocations points (equation 2.5) [Okada, 1985], and the pressure elemental 

prismatic body (equation 2.17) [Geerstma and Van Opstal, 1973]. So, more deformation 

mechanisms are considered to interpret the observed data. 

The required a priori information is: the 3D partition of the subsoil (number of blocks 

𝑚 and their centres position 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖, volume Δ𝑉𝑖 = Δ𝑥𝑖Δ𝑦𝑖Δ𝑧𝑖 of the blocks for the 

pressure elemental prismatic body or small dislocation surfaces Δ𝑆𝑖 for the buried 

dislocations points), which affects the distribution of the source property; the physical 

elastic parameters of the half-space, as the shear modulus 𝐺 and the Poisson’s Coefficient 

𝜈, or the Lame’s Constants 𝜆 and 𝜇. Furthermore, it is assumed that hydrostatic conditions 

characterize the system and, in turn, Δ𝑃, 𝑈1, 𝑈2 and 𝑈3 are constant. 

The causative 3D source is in practice the aggregation of elemental sources according 

to an iterative growth process [Camacho et al., 2007; 2011] that fits the dataset within 

some regularity conditions.  

The procedure is able to solve for the following unknown parameters for each block: 

the deformation mechanisms (strike-slip, dip-slip, tensile dislocations or pressure 

variation of a prismatic body); the position (𝑥0, 𝑦0, 𝑧0) along the 𝑥, 𝑦, 𝑧 directions; the 

constant pressure variation Δ𝑃 for the elemental prismatic body; the constant dislocation 

(𝑈1, 𝑈2 and 𝑈3), the dip (𝜃) and strike (𝛼) angles for the buried dislocations points.  

In particular, the misfit is: 

𝛆 = 𝐝𝐫 − 𝐝𝐫𝐜      (2.25), 
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where 𝐝𝐫, 𝐝𝐫𝐜 and 𝛆 are the vectors of the observed data, the forward-calculated ones, 

and the residual values; 𝐝𝐫𝐜 corresponds to the accumulation of the effects of the filled 

blocks (i.e., the blocks which are selected as idoneous to be added to the source property 

distribution) for 𝑖 𝜖 Φ𝑃, the set of pressured blocks, 𝑖 𝜖 Φ𝑆 , the set of strike dislocations 

blocks, 𝑖 𝜖 Φ𝐷 , the set dip-slip and thrust dislocation blocks, and 𝑖 𝜖 Φ𝑇, the set for tensile 

dislocation blocks). 

The forward problem is: 

𝐝𝐫𝐜 = ∑ (
𝑢
𝑣
𝑤

)Φ𝑃
+ ∑ (

𝑢
𝑣
𝑤

)Φ𝑆,Φ𝐷,Φ𝑇
    (2.26), 

where (𝑢, 𝑣, 𝑤) are defined by equations (2.3), (2.4), (2.5) and (2.17). 

Equation (2.26) expresses a linear relationship for the set 𝛷𝑃 and a non-linear one vs. 

𝜃, 𝛼 for the sets 𝛷𝑠, 𝛷𝐷 and 𝛷𝑇 of the filled blocks.  

To solve the inverse problem the Tikhonov objective function is minimized: 

𝛷(𝚳) = 𝛆𝑇𝐐𝐷
−1𝛆 + 𝛾𝚳𝑇𝐐𝑀

−1𝚳 = min    (2.27), 

where: 𝐐𝐷 is the covariance matrix for observed data, by assuming that the measurements 

are normally distributed; 𝚳 is the unknown vector; 𝐐𝑀 is a suitable covariance matrix 

corresponding to the physical configuration of blocks and data points. Finally, 𝛾 is the 

regularization parameter, which is optimally chosen as the value generating a null 

autocorrelation distribution of the residuals respect to the observed and modeled data. 

As we said, the problem is solved by adopting an exploration approach, where, at 

each step, successive explorations allow the selection of only one new block whose 

properties, in turn, are aggregated to the final source.  

The model space to be explored is composed by: 𝑚 neighbouring blocks to be added 

to the body, four deformation mechanisms, positive or negative value for each 

pressure/dislocation and 190 possible orientations for dislocation elements (from 0° to 

180° and from 0° to 90° for 𝛼 and 𝜃, respectively, with step 10°). The unknowns Δ𝑃, 𝑈1, 

𝑈2 and 𝑈3 are linearly related to the data and the problem is solved by a normalized linear 

fit. 
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In particular, for any (𝑘 + 1)𝑡ℎ step of the growth process a new block is filled, 

according to: 

𝐝𝐫 = 𝑙𝑘+1𝐝𝐫𝐜 + 𝛆     (2.28), 

Γ𝑘+1(𝚳) = 𝛆𝑇𝐐𝐷
−1𝛆 + 𝛾𝑙𝑘+1

2 𝚳𝑇𝐐𝑀
−1𝚳 = min    (2.29), 

where 0 < 𝑙𝑘+1<𝑙𝑘 is a normalizing factor for fitting the provisional modeled data with 

respect to the observed one. The process continues until 𝑙 reaches a prescribed small value 

or when the selection of a new block leads 𝑙 and Γ to increase. 

The choice of a priori information is therefore crucial for the final solution since 

different regularization parameters and 3D partitions of the subsoil may lead to different 

acceptable models. Moreover, the wrong definition of the system elastic parameters may 

cause an equally wrong definition of the source parameters. Finally, the assumption of 

constant pressure of the deformation sources may affect the final solution of a multi-

source case. 

We conclude that the tomographic inverse methods also provide ambiguous solutions 

if valid constraints are unavailable. 
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2.5 Integrated multi-scale methods and procedures. 

In this paragraph, we describe the proposed methods for analysing the ground 

deformation field in the volcanic environment and the related procedures. These methods 

can be used if the elastic field conditions expressed by equation (1.23) are satisfied, that 

is in the case of hydrostatic pressure variation of sources embedded in a homogeneous 

elastic half-space. 

 

2.5.1 Multiridge method. 

The Multiridge method [Fedi et al., 2009] is a multi-scale procedure based on the 

analysis of so-called ridges, which are defined as lines passing through the extrema of the 

considered field, and of its derivatives, at different scales. The method provides 

geometrical parameters of the source, as its position (i.e., depth and horizontal location). 

Here, we describe the method for the ground deformation field by reporting an excerpt 

from Castaldo et al. [2018b]:  

“We consider a coordinate system where the 𝑥- and 𝑦-directions are represented by 

the North-South and East-West directions, respectively, and the 𝑧-axis is definite and 

positive downward. If 𝑃𝑓(𝑥, 𝑦, 𝑧) is a generic field generated by a simple point source 

𝑃𝑠(𝑥0, 𝑦0, 𝑧0) and by considering the cross section 𝑦 = 𝑦0, it is possible to obtain three 

equations for the ridges [Fedi et al., 2009]: 

𝑥 = 𝑥0

𝑥 − 𝑥0 = 𝜗(𝑧 − 𝑧0)

𝑥 − 𝑥0 = −𝜗(𝑧 − 𝑧0)
     (2.30), 

where 𝜗 is the angular coefficient of the straight line 𝜗 = 𝑡𝑎𝑛 𝛽 and 𝛽 represents the 

angle of the ridge line from the vertical 𝑧-axis. Since the three ridges intersect at the 

source centre (𝑥0, 𝑧0), its position can be simply individuated with this geometric method.  

Specifically, the Multiridge method mainly consists of three phases: 

(1) the creation of a multi-scale dataset by performing upward continuation;  

(2) individuation of the multiridge subset at different scales; 

(3) representation and continuation of the ridges down to the source-region, to 

individuate the correct depth of the source at the intersection of more ridges.  
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We clarify that more than one subset can be defined: a multiridge subset, 𝑅1, that is 

individuated by the zeros of the horizontal derivatives; a multiridge subset, 𝑅2, that is 

individuated by the zeros of the first-order vertical derivative; and a multiridge subset, 

𝑅3, that is individuated by the maxima of the field [Fedi et al., 2009].  

Moreover, since the method involves the field at different scales (i.e., multi-scale), 

high-wavenumber noise can be easily recognized in the multiridge subsets and excluded 

from the analysis.  

We specify that each ridge is determined by a best-fit linear regression within a 95% 

confidence interval; in particular, we calculate the determination coefficient R2, where R 

is the correlation coefficient, which represents a statistical measure of how the data 

(multiridge subset) are close to the fitted regression line (ridges).  

Moreover, we evaluate the solution uncertainties (intersection at the ridges) by 

considering the error on the best-fit linear regression coefficients (intercept and slope 

constants).” 

The Multiridge method therefore provides constraints about the position of the 

causative body according to the multipolar expansion of potential fields and their 

asymptotic expressions.  

In the case of fields of ideal sources, the ridges converge to the singularities of the 

sources and their slope is constant with the scale. For example, the ridges of a point source 

field just intersect each other in the source centre, that is where the source distribution 

has its support; while, in the case of a fields of an infinite vertical line or a thin sheet, the 

ridges converge to the top or the edges of the source, respectively.  

For regular sources, defined here as bodies that can be approximated by ideal ones, 

the ridges tend to converge to the singular points of the sources but their slope changes 

with the scale. Indeed, the ridges of a vertical prolate ellipsoidal source tend to intersect 

to its top at low scale and to its centre at larger one, which is consistent with the 

asymptotic expression of the multipolar expansion of potential fields.  

The same behavior occurs for any source distribution. For instance, for a horizontal 

prism, the ridges tend to converge to the edges of the source at low scales and to the center 

at larger ones. 
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2.5.2 ScalFun method. 

The ScalFun [Fedi, 2007] method is based on the properties of the so-called scaling 

function, which, given the availability of a multi-scaled dataset, provides information 

about the morphological features of the field source through the Structural Index 

parameter (𝑁).  

Here, we describe the method for the ground deformation field by reporting an 

excerpt from Castaldo et al. [2018b]:  

“The ScalFun method is based on the properties of the scaling function, which was 

introduced into the framework of the DEXP theory [Fedi, 2007] to estimate the 

homogeneity degree of the observed field (𝑛); this is, in turn, related to the homogeneous 

property of the source (𝑛𝑠). For any 𝑝𝑡ℎ-order vertical derivative of Newtonian potential 

of a pole source 𝑓𝑝(𝑧) at 𝑥 = 𝑥0 and 𝑦 = 𝑦0, we define the scaling function 𝜏𝑝 of order 

𝑝𝑡ℎ as: 

𝜏𝑝 =
𝜕 𝑙𝑜𝑔(𝑓𝑝(𝑧))

𝜕 𝑙𝑜𝑔(𝑧)
= −

(𝑝𝑡ℎ+1)𝑧

𝑧−𝑧0
    (2.31), 

where 𝑛 = −(𝑝 + 1) represents the degree of homogeneity of 𝑓𝑝. 

Equation (2.31) can be rewritten putting 𝑧 =
1

𝑞
; therefore, 𝜏𝑝 becomes a function of 

𝑞: 

𝜏𝑝(𝑞) =
𝑛

1−𝑧0𝑞
      (2.32), 

which means that when 𝑞 → 0, 𝜏𝑝(𝑞) tends to 𝑛. 

Hence, in a plot diagram of 𝜏𝑝 as function of 𝑞, the intercept gives an estimate of the 

homogeneity degree 𝑛.  

Starting from the 𝑧0 source depth retrieved by using the Multiridge method, we can 

use equation (2.32) to estimate 𝑛, 𝑛𝑠 and N; these values give us information about the 

geometry of the source.” 

Therefore, the use of ScalFun method depends on both the harmonic and 

homogeneity properties of the deformation field since we need to analyse a multi-scale 

dataset retrieved by upward continuation transform. 
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According to equation (2.32), ScalFun method provides information about the type 

of a source if its depth is known.  

Another approach does not require this information and it is based on finding the 

depth value such that the slope of 𝜏𝑝 in function of 𝑞 is null. However, we use the first 

approach through the depth information given by Multiridge. 

The simplest analysis can be performed under the approximation of the ideal sources 

with constant source distribution [Thompson, 1984; Reid et al., 1990].  

For example, 𝑁~3 characterizes fields where the multipolar terms of potential field 

expressions vanish and, therefore, we are analysing the field generated by a source that 

can be associated to one concentrated point, that is its centre, or to any equivalent source 

volume having the same centre and the same product among the pressure variation ∆𝑃, 

the radius 𝑎 and the medium elastic parameters 𝜈 and 𝐺, as specified by the Mogi’s model 

[Mogi, 1958].  

Instead, in the case of 𝑁~2 , a linear source (i.e., a concentrated source along only 

two directions) is the cause of the analysed field and the Multiridge depth value may refer 

to the top or the centre of a vertically or horizontally elongated one, respectively 

[Thompson, 1984; Reid et al., 1990]; this may be the case of a pipe-like or prolate 

ellipsoidal sources, with high value of aspect ratio.  

On the contrary, in the case of planar bodies (i.e., a concentrated source along only 

one direction, such as sills or dykes), with the Multiridge analysis we are able to identify 

the source edges of the sill or the top of the dyke and 𝑁~1 will characterize the retrieved 

depth solution.  

Finally, when 𝑁~0 we are analysing the field from a contact-like source, while for 

𝑁~0.4 the field from a fault with a finite throw. 

This last case, 𝑁~0.4, strictly refers to an inhomogeneous field source, whose 

homogeneity degree changes with the scales [Fedi et al., 2015]. In these cases, we have 

to resort to a more complex theory based on the local-homogeneity.  

However, approximate estimates may be made even no resorting to this theory: for 

example, at larger scales, we should expect 𝑁 between 3 and 2, which characterizes the 
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depth solution as representative of the centre source, while at low scales we should find 

𝑁 between 2 and 1, which characterizes the depth solution as representative of the top. 

We remark that the Structural Index parameter (𝑁) is a property of the source and it 

does not change with the differentiation order 𝑝 of the analysed function respect to its 

Newtonian potential.  

For example, consider the field of a point source; according to equation (2.31) and 

(2.32), in a plot diagram of 𝜏𝑝 as function of 𝑞, when 𝑞 → 0, 𝜏𝑝(𝑞) tends to 𝑛, which is 

~ − 2; for equation (1.27) and (1.28), it corresponds to 𝑛𝑠 = −3 and 𝑁 = 3 since 𝑝 = 1. 

Similarly, the analysis of the second-order vertical derivative of the same field will get                       

𝑛~ − 4 but 𝑛𝑠~ − 3 and 𝑁~3, since 𝑝 = 3.  

In Table 2.1, we summarize the values of 𝑛 and 𝑁 for different orders 𝑝 (expressed 

respect to the Newtonian potential) and related to the ideal sources case. 

 

Table 2.1. Summary of 𝒏 and 𝑵 values. Values of 𝑛 and 𝑁 parameters by considering different 

order 𝑝 (expressed respect to the Newtonian potential) related to ideal sources. 

 

SOURCE TYPE 𝒑 𝒏 𝑵 = −𝒏𝒔 = 𝒏 + 𝒑 − 𝟐 

 

Point 

Source * 

 

1 -2  

3 

 

2 -3 

3 -4 

4 -5 

 

Linear 

Source ** 

 

1 -1  

2 

 

2 -2 

3 -3 

4 -4 

 

Planar 

Source *** 

1 0  

1 

 

2 -1 

3 -2 

4 -3 

*the values are referred to the source centre. 

**the values are referred to the top or centre of a vertical or horizontal source. 

***the values are referred to the edges or the top of a horizontal or vertical source. 
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2.5.3 THD technique. 

The Total Horizontal Derivative (THD) is another widely employed technique [Cella 

et al., 2015; Paoletti et al., 2017] in the PFT framework, based on the source edges 

detection, and known as Horizontal Gradient (HG) or Horizontal Derivative (HD) 

[Blakely, 1996]. This technique provides information about the horizontal sizes and 

positions of multipolar field sources; therefore, we can not apply it to the Mogi’s source 

model for which it yields not the radius information but only the centre position one. 

In particular, the technique has been defined in the following paper:  

Pepe, S., De Siena, L., Barone, A., Castaldo, R., D’Auria, L., Manzo, M., Casu, F., Fedi, 

M., Lanari, R., Bianco, F., Tizzani, P. (2019). Volcanic structures investigation through 

SAR and seismic interferometric methods: The 2011-2013 Campi Flegrei unrest episode. 

Rem. Sensing of Environment, 234, 111440, https://doi.org/10.1016/j.rse.2019.111440. 

Here, we report an excerpt of this paper describing the technique: 

“We use the Total Horizontal Derivative (THD) technique to perform a basic 

detection of the deformation source boundaries; we remark that the THD technique is an 

edge detection filter commonly employed for analysing potential field data [Blakely, 

1996; Florio et al., 1999] and it is based on analysing the maxima of the horizontal 

gradient magnitude, as computed from the first order x- and y-derivatives of the field; 

their distribution depends on the source geometry since the maxima occur where the 

physical property has the greatest variation, that is at the boundaries of the sources. This 

is also true for higher-order field derivatives of related quantities such as the enhanced 

horizontal derivative method [Fedi and Florio, 2001; Luiso et al., 2018]. In particular, 

the maxima horizontal gradient magnitude matches with the physical edges of the source; 

despite some limitations in its applicability and accuracy, it is a powerful boundary 

analysis technique and it provides reliable results in the case of abrupt lateral contrasts 

of the investigated property [Blakely et al., 1996], typical of volcanic areas.  

The THDw for the vertical deformation is defined here as: 

𝑇𝐻𝐷𝑤 = √(
𝜕𝑤(𝑥,𝑦,𝑧) 

𝜕𝑥
)
2

+ (
𝜕𝑤(𝑥,𝑦,𝑧) 

𝜕𝑦
)
2

    (2.33), 
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where 𝑤(𝑥, 𝑦, 𝑧) represents the vertical component of the ground deformation at spatial 

coordinates (𝑥, 𝑦, 𝑧). The horizontal derivatives are calculated using simple finite-

difference formulas.”  

The THD technique provides reliable information on the horizontal extent 

(boundaries) of magmatic reservoirs and/or volcanic structures modulating the observed 

deformation patterns, with an overestimation which however increases with the scale. 

 

2.5.4 Functional transformations for the ground deformation field. 

The most important functional transformation used in this work is certainly the 

upward continuation [Baranov, 1975; Blakely, 1996] since it allows the creation of the 

multi-scale dataset. While it is a rather popular and well-known transformation for gravity 

and magnetic fields, its role for the deformation field is less obvious from a physical point 

of view, but nevertheless valid and relevant. 

Here, we describe its application to the ground deformation field by reporting an 

excerpt from Castaldo et al. [2018b]:  

“Regarding the application of the upward continuation operator to the deformation 

field, we specify that we are clearly not considering that the deformation field could 

propagate into the air. The upward-continued deformation field instead corresponds to 

that which would have been produced by the same source in a region that was upper 

extended by the same amount of upward continuation.  

For example, if the analysed field is observed by a source with a depth of 𝑧0 = 2 km, 

the upward-continued field towards a 1-km altitude is generated by the same source but 

with a centre depth at 𝑧0 = 3 km.” 

A particular type of upward continuation filter, known as draped-to-flat [Blakely, 

1996], is also used before the application of Multiridge, ScalFun methods and THD 

technique to refer each point of the field to the same scale. This procedure is referred as 

constant-level reduction procedure in the framework of Castaldo et al. [2018b], as 

follows: 

“We remark that in the case of irregular (not flat) data measurement levels, we have 

to perform another procedure before applying the Multiridge method. Since the method 
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is based on a level-to-level algorithm, and the ground deformation field is measured at 

the topographic surface (which is generally detailed), the dataset must be processed to 

numerically generate a ground deformation field that could have been measured in the 

case of constant distance between the source volume and the measurement surface. This 

transformation relocates the analysed field onto the constant reduction level, which is 

performed in this study by using a CWT-domain algorithm [Ridsdill-Smith, 1999].” 

However, we specify that the reliability of this procedure depends on the 

topographical gradient; indeed, the greatest errors are expected at points where the field 

gradient is large. 

The last crucial and considered functional transformation is the Vertical Derivative 

filter [Rao et al., 1981; Gupta et al., 1982; Butler et al., 1984] of order 𝑝 which, however, 

enhances the high-wavenumber part of the field and which is in turn related to the 

shallowest portion of the subsoil. 

The results of Multiridge and ScalFun methods depend on the scale. For example, let 

consider a vertically elongated deep ellipsoid with small aspect ratio; although the latter 

can be well approximated by an ideal linear source, at large scales the information 

retrievable from the field about its morphological features is attenuated and we could not 

be able to retrieve this information with Multiridge and ScalFun analysis. However, at 

low scales, thanks to the enhancement of the high-wavenumber part of the field signal we 

will likely achieve more detailed information on the morphological features of the source. 

This filter is also crucial for solving other cases, as when the local-homogeneity 

properties are relatively stable within a particular scale-interval.  When instead a ground 

deformation pattern is the result of the interference among field signals related to different 

sources it could be interesting to use a vertical derivative filter.  

In the coordinate system where the 𝑥- and 𝑦-directions are represented by the North-

South and East-West directions, respectively, and the 𝑧-axis is definite positive 

downward, the vertical derivative operator (here defined VDS) corresponds to the 

difference between fields, 𝑓(𝑥, 𝑦, 𝑧0) and 𝑓(𝑥, 𝑦, 𝑧0 + ∆𝑧) where ∆𝑧 is small: 

𝜕

𝜕𝑧
𝑓(𝑥, 𝑦, 𝑧)~

𝑓(𝑥,𝑦,𝑧0)−𝑓(𝑥,𝑦,𝑧0+∆𝑧)

∆𝑧
    (2.34). 
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Here, we use the properties of the proposed solution to the elastic problem to 

calculate the vertical derivative operator in the wavenumber-domain.  

Indeed, in the wavenumber domain, for harmonic functions the 𝑝𝑡ℎ-order vertical 

derivative is given by [Blakely, 1996; Cooper et al., 2004]: 

𝐀′(𝐤) = 𝐀(𝐤)|𝐤|𝐩       (2.35), 

where 𝐀(𝐤) indicates the signal amplitude, 𝐤 and 𝑝 are the wavenumbers and the 

differentiation order, respectively.  

Therefore, the 𝑝𝑡ℎ-order vertical derivative is finally retrieved by substituting 𝐀(𝐤) 

with 𝐀′(𝐤) and anti-transforming the so obtained Fourier transform of the deformation 

field back to the space-domain (here defined VDF).  

In this way, we can perform this procedure also in the real case of measured 

deformation field. 
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CHAPTER 3 

APPLICATION TO HARMONIC DEFORMATION FIELDS: 

SYNTHETIC CASES 

In this Chapter, we apply the integrated multi-scale approach to synthetic fields 

which satisfy the relation (1.23) and, in turn, the Laplace’s equation. The fields are in the 

case of hydrostatic pressure variation of sources embedded in a homogeneous elastic half-

space.  

Where not specified, the simulated ground deformation field is calculated by using 

the FEM approach (COMSOL Multiphysics software package) to accurately reproduce 

the required physical scenario. 

We remark this work is developed for analysing DInSAR measurements; therefore, 

we do not consider the North-South component of the ground deformation field in these 

simulations; although this component should be important for further constraining the 

volcanic scenario, the combination between LOS ascending and descending data does not 

provide information about the North-South deformation with acceptable accuracy. 

From now on and according to the paragraph 2.5.2 and equations (2.31) and (2.32), 

the homogeneity degree of the field 𝑛 is calculated through 𝜏; in particular, the value 

assuming 𝜏(𝑞) when 𝑞 tends to 0 is observed since, in this condition, 𝜏(𝑞) tends to 𝑛. 

Moreover, 𝑛𝑠 and 𝑁 parameters are calculated by considering the differentiation order 𝑝 

of the analysed function respect to its Newtonian potential.  
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3.1 Validation of the Upward Continuation transform. 

Although the FEM allows reproducing the essential physical conditions for this 

validation, numerical upward continuation is affected by edge errors related to the lack 

of enough extension of the measurements surface. From a practical point of view, the 

higher the continuation scale, the larger the measurement surface should be. However, 

we can attenuate this error by resorting to some extrapolation algorithms (e.g., zero 

padding, smooth extension of order 0 or 1 [Fedi et al., 2012]).  

In the FEM framework, the domain discretization is strictly related to the mesh size 

and to the dimension of the modeled half-space, which should be theoretically infinitely 

vertically and horizontally extended; it is indeed difficult to reproduce the half-space 

condition. 

To evaluate the error of FEM geometrical limitations for the upward continuation 

transform, we perform a first simulation by considering the deformation field at ground 

or zero level due to an over-pressurized (2 GPa) point-spherical source (radius equal to 

0.05 m) embedded in a homogeneous elastic half-space; we therefore reproduce the 

conditions of the Mogi model, for which we have already verified that its analytical 

expressions satisfy the Laplace’s equation and so admits upward continuation [Castaldo 

et al., 2018b]. For this case, we estimate the error on the upward continuation transform 

and we use it as reference value to assert the validity of the other solutions by using source 

with different geometry.  

For all the simulations reported in this paragraph, we fixed the half-space physical 

and geometrical parameters as follows: Young’s modulus 𝐸 = 1 GPa; Poisson’s 

coefficient 𝜈 = 0.25 (adimensional); extent along the 𝑥- and 𝑦- direction equal to 100 

km; extent along the 𝑧- direction equal to 50 km; tetrahedral mesh of the entire domain 

and source with ranging dimension from 0.2 to 8 km and from 0.005 to 0.01 km, 

respectively; mapped mesh for the free-surface with 0.4 km sampling step; fixed 

constraint and roller as boundary conditions of the half-space bottom and sides, 

respectively. 

Starting from the field of a source located at the depth 𝑧0 = 1 km and with horizontal 

coordinate (𝑥0, 𝑦0) = (50,50) km along both the 𝑥- and 𝑦-directions, we evaluate the 

percentage error of the upward continued field to +4 km with respect to the zero level 

(i.e., the modeled ground deformation field on the flat free surface). We consider both the 
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vertical and E-W deformation components (Figure 3.1) and, as expected, in the case of 

the point-spherical source, we retrieve a very low error, calculated by normalizing the 

difference between the +4 km continued field and the simulated one at that scale. Its 

maximum value is equal to 0.36 % (Figure 3.1a) at the source centre, and 0.65 % (Figure 

3.1b) at the half-space lateral sides for both the vertical and the E-W components of the 

deformations, respectively. We consider these error values as reference ones. 

As first representative test, we analyse a prism with the 𝑧-extent less than the others; 

in particular, we build a 0.1 km thick body with an extent along the 𝑥- and 𝑦-directions 

equal to 0.5 km. In this case, we retrieve a discrepancy between the continued and the 

expected field with maximum error of 0.44% (Figure 3.1c) at the source centre and 0.65 

% (Figure 3.1d) at the half-space lateral sides for the vertical and the E-W ground 

deformation components, respectively. 

As second representative test, we consider a vertical cylinder with radial dimension 

equal to 0.2 m and 0.8 m vertical extent. Also in this case, the upward continuation 

procedure leads to a very low error, with maximum value of 0.47% (Figure 3.1e) for the 

vertical deformation and 0.65% (Figure 3.1f) for the E-W one, at the source centre and 

half-space lateral sides, respectively. 

Finally, we also tested other source configurations, whose results are reported in the 

Table A.1 and Figure A.1 of the Appendix A. 

All these results show the correct application of the upward continuation filter and, 

in turn, they validate equation (1.23), according to which the elastic problem reduces to 

a harmonic solution in the case of sources with hydrostatic variation of pressure and 

embedded in a homogeneous elastic half-space, whatever the geometrical source 

configurations is. We specify that this operator works finely for both the vertical and E-

W components of the deformation field and, so, it is also valid in the case of DInSAR 

measurements with LOS components since equations (2.15) is satisfied. 

We remark that it is also possible to resort to the draped-to-level upward continuation 

and to the VDF, for which please refer to the Appendix B and C, respectively. 
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Figure 3.1. Validation of the Upward Continuation transform. Error maps [%] for the upward 

continuation applied to the (a) vertical (b) and E-W components of the deformation field at ground 

level generated by a point-spherical source, (c-d) horizontal prism and (e-f) vertical cylinder.  
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3.2 Use of integrated multi-scale methods. 

We show several cases by simulating harmonic and biharmonic fields, and 

biharmonic but non-harmonic ones. Moreover, we consider deformation sources with 

geometrically regular and irregular shapes; this allows exploiting the homogeneity and 

local-homogeneity properties of the proposed solution of the elastic problem.  

Among the regular sources, we analyse the cases of a vertically elongated body for 

simulating the volcanic scenarios of ascent pipe and reproducing shape like the Yang’s 

AM [Yang and Davis, 1988], and of a horizontal planar one for sills emplacement and 

the Okada’s AM [Okada, 1985]. We consider the analysis of both the vertical and E-W 

components of the deformation field. Note that these bodies approximate the ideal sources 

and, therefore, they can be treated according to the homogeneity theory. 

We remark that the homogeneity properties are primarily important for this work; so, 

for briefly introducing the approach about geometrically irregular sources and the local-

homogeneity, we consider only two cases, which are the vertical deformations of a 3D 

complex body and a multi-source scenario. 

In Appendix D, we also report the results of tests about Multiridge and Scalfun 

methods starting from the field of a Mogi source and by considering the noise in the 

dataset, the LOS components and the constant-level reduction procedure. 

 

3.2.1 Geometric parameters detection of regular sources. 

We start with the application of Multiridge and ScalFun methods for analysing 

vertically elongated bodies, which are representative of ascent pipe mechanisms and 

whose shapes are equivalent to the Yang’s AM. 

In particular, we model three scenario: (I) the Sphere Case, where the semi-axes of 

the source 𝑟𝑥 = 𝑟𝑦 = 𝑟𝑧 = 0.5 km and for which a point source describes its behaviour; 

(II) the Ellipsoid 1 Case, where 𝑟𝑥 = 𝑟𝑦 = 0.5 km while 𝑟𝑧 = 1.5 km (aspect ratio of the 

ellipsoid equal to 0.33); (III) the Ellipsoid 2 Case, where 𝑟𝑥 = 𝑟𝑦 = 0.5 km while 𝑟𝑧 = 2.5 

km (aspect ratio of the ellipsoid equal to 0.2) and for which at low scales a linear ideal 

source describes its behaviour.  
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In these cases, the depth to the source and its over-pressure are fixed to 3 km and 5 

MPa, respectively; the other parameters of the model setting are equal to the already 

described test in the Paragraph 3.1, except for the source mesh size, which is here ranging 

from 0.01 to 0.1 km. 

We consider the vertical deformation modeled at zero level, for which Figure 3.2a-

b-c shows the anomalies of the different source geometries. We extract the AB profile 

(black dashed line in Figure 3.2a-b-c) passing through the maximum value of the three 

anomalies (Figure 3.2d), in order to define the multiridge subset (green dots, red stars 

and black triangles in Figure 3.2e), to represent the ridges (green dashed lines, red and 

black continuous lines in Figure 3.2e) and to compare their trends at different scales. 

First, we analyse the Sphere Case. We apply the Multiridge method by calculating a 

multi-scale dataset from the zero level to the 10 km upward continued field, with 0.4 km 

of continuation sampling. We represent the ridges (solid green dashed lines Figure 3.2e) 

through linear regression, whose slopes are constant at any scale. Their intersection 

indicates a source located at 50 km along the 𝑥-direction at exactly 3 km of depth. We 

apply the ScalFun method to the central ridge; the results (green stars in Figure 3.2f) 

indicate that 𝑛~ − 2 (exact value: 2.01) and, so, since 𝑝 = 1, 𝑁~3 (Table 2.1) 

characterizes the retrieved source at 3 km of depth, which is the point where the source 

distribution has its centre. 

For the second scenario, the Ellipsoid 1 Case, we apply the Multiridge method in the 

same way of the previous test. The ridges above the 4.8 km scale line up along the same 

straight line of the previous one, while below this scale they slightly change their slope. 

However, we use only the ridges above the 4.8 km scale (black continuous lines in Figure 

3.2e) which intersect at exactly 3 km of depth and horizontally at 50 km along the 𝑥-

direction. As in the previous case, we apply the ScalFun method (black stars in Figure 

3.2f) characterizing this source with 𝑛~ − 2 (exact value: -2.06) and 𝑁~3 (Table 2.1).  

Similar considerations arise from the last case of Ellipsoid 2, whose source behaves 

at low scale like a linear source. We apply the Multiridge method by considering the 

upward continued field until 12 km. In this case, the ridges stabilize along a straight line 

as the Sphere Case from 8.8 km scale (red continuous lines in Figure 3.2e) by intersecting 

at the point 𝑥0 = 50 km and 𝑧0 = 2.8 km. Also in this case, the result of the ScalFun 

method (red stars in Figure 3.2f) suggests that the retrieved information is related to the 
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centre of the deformation source, since the 𝑛~ − 2 (exact value: -2.07) and, therefore, 

𝑁~3 (Table 2.1). Instead, at lower scales the ridges change their slope tending to 

converge to the singular point of the source, that is its top (red dashed lines in Figure 

3.2e).  

These results are consistent with the asymptotic expression of the multipolar 

expansion of potential fields. Indeed, at large scales the multipolar terms vanish allowing 

the identification of the source centre, while at low ones they do not vanish affecting the 

slope ridges. However, we will show in the next tests how the VDF enhances the high-

wavenumber part of the field allowing a better characterization of the source shape.  

We underline these results are expected since we are analysing bodies which 

approximate the ideal sources and change their homogeneity properties with the scale. 
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Figure 3.2. Vertically elongated sources test: vertical component. Modeled vertical 

component related to the (a) Sphere, (b) Ellipsoid 1 and (c) Ellipsoid 2 cases, to which Multiridge 

and ScalFun methods are applied. (d) Vertical deformation profiles extracted along the AB trace 

(black dashed lines) for the three considered fields. (e) Results of Multiridge method for the three 

considered cases; the horizontal black dashed line indicates the modeled data reference level. (f) 

Results of ScalFun method applied on the central ridge for each case; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑤(𝑧))

𝜕 log𝑧
, 

where 𝑤 and 𝑧 represent the vertical deformation and the vertical scale, respectively. 
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Subsequently, we use Multiridge and ScalFun methods to analyse the horizontal 

planar bodies, which are representative of sill emplacement mechanisms and whose 

shapes are like the Okada’s AM.  

Also, we model three scenarios: (I) the Cube Case, where the source sides 𝐿𝑥 = 𝐿𝑦 =

𝐿𝑧 = 1 km; (II) the Prism 1 Case, where 𝐿𝑧 = 1 km, while 𝐿𝑥 = 𝐿𝑦 = 2.5 km; (III) the 

Prism 2 Case, where 𝐿𝑧 = 1 km, 𝐿𝑥 = 𝐿𝑦 = 5 km and for which at low scale a planar 

ideal source describes its behaviour.  

The other model setting parameters are the same of the above-described set of tests. 

We start from the vertical deformation modeled at zero level, for which Figure 3.3a-

b-c shows the anomalies of the different cases, and we extract the CD profile (black 

dashed line in Figure 3.3a-b-c) passing through the maximum value of the three 

anomalies (Figure 3.3d). After, we define the multiridge subset (green dots, red stars and 

black triangles in Figure 3.3e) to represent the ridges (green dashed lines, red and black 

continuous lines in Figure 3.3e) and to compare their trends at different scales. 

We first consider the simple Cube Case where we create a multi-scale dataset from 

the zero level to the upward continued field to 10 km, with 0.4 km of continuation 

sampling. In this case, constant slopes characterize the represented ridges at different 

scales (green dashed lines in Figure 3.3e), which are like those of the Sphere Case (green 

dashed lines in Figure 3.2e) since they line up along the same single straight line. This 

behaviour is consistent with the asymptotic expression of the multipolar expansion of 

potential fields since the scale is not so low to enhance the multipolar terms of the field. 

The retrieved intersection indicates a body located at 50 km along the 𝑥-direction at 

exactly 3 km of depth and the ScalFun method (green stars in Figure 3.3f) characterizes 

it with 𝑛~ − 2 (exact value: -2.01) and 𝑁~3  (Table 2.1) since  𝑝 = 1. 

Subsequently, we analyse the Prism 1 Case by considering the upward continued 

field until 15 km. We note the ridges up to 7.2 km scale have different slopes respect to 

those at larger ones, where they intersect in the point at 50 km along the 𝑥-direction and 

at exactly 3 km of depth (black continuous lines in Figure 3.3e); while, at low scales the 

singularities of the body, or its edges, affect the ridges, which do not tend to converge in 

a point within the source. However, at larger scales the multipolar terms vanish, and the 

ridges intersect at the source centre. Indeed, the results of ScalFun method (black stars in 
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Figure 3.3f) characterizes the retrieved source at larger scales with 𝑛~ − 2 (exact value: 

-2.03) and 𝑁~3  (Table 2.1). 

Finally, we observe a similar behaviour for the Prism 2 Case, for which we consider 

the upward continued field up to 17 km. In this case, the singularities of the body are so 

well defined to affect the multiridge subset that, at low scales, tend to the edges of the 

body. When the multipolar terms vanish, that is above the 11.2 km scale for this case, the 

ridges converge to the point with horizontal position and depth of 50 km along the 𝑥-

direction and 3 km, respectively (red continuous lines in Figure 3.3e). Values as 𝑛~ − 2 

(exact value: -2.05) and 𝑁~3  (Table 2.1) characterize this source through ScalFun 

method (red stars in Figure 3.3f), which confirms that this solution represents the centre 

of the source. 

We again underline that these results are expected since we are analysing bodies 

which approximate the ideal sources and change their homogeneity properties with the 

scale. Moreover, we specify for studying the singularities of such planar body we must 

resort to VDF, as it will be shown in the next tests. 
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Figure 3.3. Horizontal planar sources test: vertical component. Modeled vertical component 

related to the (a) Cube, (b) Prism 1 and (c) Prism 2 cases, to which Multiridge and ScalFun 

methods are applied. (d) Vertical deformation profiles extracted along the CD trace (black dashed 

lines) for the three considered fields. (e) Results of Multiridge method for the three considered 

cases; the horizontal black dashed line indicates the modeled data reference level. (f) Results of 

ScalFun method applied on the central ridge for each case; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑤(𝑧))

𝜕 log𝑧
, where 𝑤 

and 𝑧 represent the vertical deformation and the vertical scale, respectively. 
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To complete the analysis with the components of the field, we consider the E-W 

deformation for both the Ellipsoid 2 (Figure 3.4a) and Prism 2 (Figure 3.4b) cases.  

We extract the same EF profile (black dashed line in Figure 3.4a-b) passing through 

the maximum value of the field for both models (Figure 3.4c).  

For the first and second cases, we create the multi-scale datasets up to the 12 km and 

15 km scales, respectively, with 0.4 km of continuation sampling. 

We firstly discuss about the ridges behaviour at low scales. Similar for the vertical 

component, in the first case, they intersect nearby the singular point of the source, that is 

its top for the vertically elongated one (blue dashed lines in Figure 3.4d); in the second 

case, the edges of the body affect the distribution of the multiridge subset (Figure 3.4d).  

Then, we analyse the larger scales case. In particular, we represent the ridges as linear 

regression up to 6 km and to 7 km for the Ellipsoid 2 (blue continuous lines in Figure 

3.4d) and Prism 2 (red dashed lines in Figure 3.4d). The retrieved intersections show that 

the sources are located at 50 km along the 𝑥-direction at depths of 3.02 and 3.04 km for 

the first and second cases, respectively (Figure 3.4d). We validate these source solutions 

by applying the ScalFun method on the ridges representative of the maximum value of 

the considered field and for both the cases values as 𝑛~ − 2 (exact value: -2.07 and 2.01 

for the Ellipsoid 2 and Prism 2 cases) and 𝑁~3  (Table 2.1) characterize these sources 

(blue stars and red dots in Figure 3.4e for the first and second cases). The results confirm 

that these source solutions are representative of the centres of the bodies. 

We remark these analyses are consistent with the asymptotic expression of the 

multipolar expansion of potential fields. 
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Figure 3.4. Vertically elongated and Horizontal planar sources test: E-W component. 

Modeled E-W component related to the (a) Ellipsoid 2 and (b) Prism 2 cases, to which Multiridge 

and ScalFun methods are applied. (c) E-W deformation profiles extracted along the EF trace 

(black dashed lines) for both the considered cases. (d) Results of Multiridge method for both the 

cases; the horizontal black dashed line indicates the modeled data reference level. (e) Results of 

ScalFun method applied on the right-hand ridge for each case; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑢(𝑧))

𝜕 log 𝑧
, where 

𝑢 and 𝑧 represent the E-W deformation and the vertical scale, respectively. 
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At this stage, we consider the VDF, by equation (2.35), to better investigate about the 

deformation sources and their morphological attributes, for which the field analysis has 

already provided preliminary information. This filter indeed enhances the high-

wavenumber part of the field and its multipolar terms, allowing a better characterization 

of the shallowest singularities of the source.  

We still consider the homogeneity properties of the ideal sources and the most 

interesting cases of the Ellipsoid 2 and Prism 2. 

We start from the vertical deformations and we calculate the first (𝑝 = 2) and the 

second order (𝑝 = 3) VDF for the Ellipsoid 2 (Figure 3.5a) and Prism 2 (Figure 3.5b) 

cases; we extract the same GH profile (black dashed line in Figure 3.5a-b) passing 

through the maximum value of the field for both models (Figure 3.5c-d) and we consider 

a multi-scale datasets up to the 6 km with 0.4 km of continuation sampling. Note that we 

consider lower scales, compared to the previous cases, since our aim is focusing the 

analysis on the shallowest portion of the source. 

For the Ellipsoid 2 Cases, we individuate two sets of ridges: the first one (blue dashed 

lines in Figure 3.5e), characterized by large horizontal distance to the source, tends to 

converge to the centre of the body; the second and most interesting one (blue continuous 

lines in Figure 3.5e) instead allows the individuation of a 0.51 km depth source at the 

point with 𝑥= 50 km. Specifically, the ScalFun method characterizes this solution with 

values as 𝑛~ − 2 (exact value: -2.01) and 𝑁~2  (Table 2.1) since 𝑝 = 2 (blue stars in 

Figure 3.5f). Therefore, we can model this as a vertical or horizontal linear source, whose 

top or centre is located at 0.51 km. However, we exclude the second possibility since the 

field anomaly suggests the sources is not horizontally elongated. 

For the Prism 2 Case, the ridges converge to two points with coordinates (𝑥 , 𝑧) =

(47.6 , 2.4) km and (𝑥 , 𝑧) = (52.4 , 2.4) km (red solid lines in Figure 3.5e), nearby the 

edges of the bodies. The ScalFun method characterizes these solutions with values as 

𝑛~ − 2 (exact value: -2.02) and 𝑁~1  (Table 2.1) since 𝑝 = 3 (red stars in Figure 3.5f). 

Therefore, we can interpret these solutions as the edges of a horizontal planar source or 

the tops of two vertical planar bodies. However, the field anomaly (Figure 3.2c) suggests 

the source is only one and we exclude the second possibility.  
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Figure 3.5. Vertically elongated and Horizontal planar sources test: VDF of vertical 

deformation. Modeled first and second order VDF of the vertical component related to the (a) 

Ellipsoid 2 and (b) Prism 2 cases, respectively, to which Multiridge and ScalFun methods are 

applied. (c-d) Deformation profiles extracted along the GH trace (black dashed lines) and (e) 

results of Multiridge method for both the considered cases; the horizontal black dashed line 

indicates the modeled data reference level. (f) Results of ScalFun method applied on the central 

ridge for each case; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents the vertical scale. 
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Furthermore, we also consider the analysis of the E-W component by calculating its 

second-order (𝑝 = 3) VDF for both Ellipsoid 2 (Figure 3.6a) and Prism 2 (Figure 3.6b) 

cases; we extract the same IL profile (black dashed line in Figure 3.6a-b) passing through 

the maximum value of the field for both models (Figure 3.6c) and we consider a multi-

scale datasets up to the 6 km with 0.4 km of continuation sampling.  

The results are like the previous test. 

For the Ellipsoid 2 Cases, the ridges tend to converge at 50 km along the 𝑥-direction 

and 0.6 km of depth (blue continuous lines in Figure 3.6d); the ScalFun method 

characterizes this solution with values as 𝑛~ − 3 (exact value: -3.02) and 𝑁~2  (Table 

2.1) since 𝑝 = 3 (blue stars in Figure 3.6e). 

For the Prism 2 Case, the ridges converge to two points with coordinates (𝑥 , 𝑧) =

(47.6 , 2.4) km and (𝑥 , 𝑧) = (52.4 , 2.4) km (red continuous lines in Figure 3.6d), 

nearby the edges of the bodies. The ScalFun method characterizes these solutions with 

values as 𝑛~ − 2 (exact value: -2.05) and 𝑁~1  (Table 2.1) since 𝑝 = 3 (red stars in 

Figure 3.6e).  
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Figure 3.6. Vertically elongated and Horizontal planar sources test: VDF of E-W 

deformation. Modeled second-order VDF of the E-W component related to the (a) Ellipsoid 2 

and (b) Prism 2 cases, respectively, to which Multiridge and ScalFun methods are applied. (c) 

Deformation profiles extracted along the IL trace (black dashed lines) and (d) results of Multiridge 

method, for both the considered cases; the horizontal black dashed line indicates the modeled data 

reference level. (e) Results of ScalFun method; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents 

the vertical scale. 
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Finally, we conclude this paragraph by applying the THD technique for the detection 

of the sources horizontal extent. We remark that the use of this technique depends on the 

depth to the source respect to its extent and on its geometrical configuration. Therefore, 

we consider the low (i.e., Prism 2) and large (i.e., Prism 1) scale cases. 

We calculate the THDw on the vertical deformation (Figure 3.3b-c) for both the cases 

(Figure 3.7). As expected, in the first case we retrieve acceptable results on the exact 

horizontal sizes of source since the maxima of THDw tend to match with the boundaries 

of the deformation body (Figure 3.7a); while, in the second one we retrieve an 

overestimation of its horizontal extent (2.5 km) ~0.8 km; indeed, the maxima of THDw 

indicate a ~3.3 km horizontally extended source (Figure 3.7b). 

 

 

Figure 3.7. THDw for the detection of source horizontal extent. Results of THDw 

(adimensional) for the vertical deformations of the (a) low and (b) large scale cases. The green 

continuous lines represent the projection of the sources boundaries on the horizontal plane. 
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3.2.2 Geometric parameters detection of irregular sources. 

We apply the integrated multi-scale approach to analyse deformation field of sources 

with irregular geometry. We remark that the aim of these tests is just to introduce how 

approaching to the inhomogeneous fields by considering the local-homogeneity 

properties.  

In particular, we consider only two cases: Case 1, in which the deformation source is 

unique and complex one (Figure 3.8a) and it produces the vertical deformation mapped 

in Figure 3.8b; Case 2, in which the analysed vertical component (Figure 3.8d) is 

produced by two separated sources, as shown in Figure 3.8c.  

 

 

Figure 3.8. Geometrical configurations for irregular sources. Geometrical configuration of 

the considered sources and the associated vertical deformation [cm] for (a-b) the Case 1 and (c-

d) the Case 2, respectively. The black dashed lines represent the traces we use to show the results. 
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In the Case 1 (Figure 3.8a) the source extends 20 and 10 km along the 𝑥- and 𝑦-

directions, respectively, with a variable depth from 4 to 7 km. In the Case 2 (Figure 3.8b), 

instead, we have a reproduction of the previous one without both the morphologically flat 

portions. The settled physical scenario satisfies the equation (1.23) according to which 

the deformation field satisfy the Laplace’s equation in the case of hydrostatic pressure 

variation of the source embedded in a homogeneous elastic half-space; the other model 

parameters are similar to those set in the previous simulations, except for the over-

pressure of the source, which here is equal to 0.5 MPa, and the mesh size, which is ranging 

from 0.3 to 6 km for both the source and the entire domain. For each case, we consider 

the results of Multiridge and ScalFun methods by selecting four profile (black dashed 

lines in Figure 3.8b and 3.8d). 

We start from the Case 1 by considering the E-W oriented profile A1-B1, passing 

through both the highest morphological zones of the source (black dashed lines in Figure 

3.8b). We analyse the second-order VDF (𝑝 = 3) because of the complexity of source 

geometry. 

The Multiridge and ScalFun analysis provide information from four ridge 

intersections (Figure 3.9a): the first one (blue continuous lines in Figure 3.9a) is almost 

centred with respect to the first highest morphological part of the source at a depth of 

about 6 km; stable not integer values of 𝑛~ − 3.5 and 𝑁~2.5 (blue stars in Figure 3.9b) 

characterizes this source; the second one (green continuous lines in Figure 3.9a) is 

located almost at the centre between the second highest morphological zone and the 

second flat morphologically portion of the source; the retrieved depth is almost equal to 

6.5 km and the associated stable not integer value of 𝑛~ − 3.5 (green stars in Figure 

3.9b) corresponds to 𝑁~2.5; the third (red continuous lines in Figure 3.9a) and the fourth 

(magenta continuous lines in Figure 3.9a) intersections correspond to two points lying 

on the top of the body with depth values equal to 4 and 4.5 km, respectively; these 

retrieved sources are characterized by locally stable not integer values of 𝑛~ − 2.25 (red 

stars in Figure 3.9b) and 𝑛~ − 2.35 (magenta stars in Figure 3.9b), which correspond 

to 𝑁~1.25 and 𝑁~1.35 for the third and fourth ones, respectively.  
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Figure 3.9. Case 1 detection: profile A1-B1. (a) Multiridge results related to the A1-B1 extracted 

profile of the second-order VDF of the vertical component. (b) ScalFun results related to the four 

retrieved solutions by Multiridge method. The horizontal black dashed line indicates the modeled 

data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents the vertical scale. 

 

The second trace is a N-S oriented one, named as C1-D1 (Figure 3.8b), passing 

through the first morphologically highest zone of the source. We consider the second-

order VDF (𝑝 = 3) of the vertical deformation and we retrieve information about three 

intersections: (Figure 3.10a): the first one (red continuous lines in Figure 3.10a) is 

almost locally centred respect to the source at a depth of about 6 km and it is characterized 

by a stable not integer values of 𝑛~ − 3.6 (red stars in Figure 3.10b) and 𝑁~2.6; the 

second (blue continuous lines in Figure 3.10a) and the third ones (green continuous lines 

in Figure 3.10a) almost correspond to the boundaries of the source at a depth almost 

equal to 4 km, and the related values of 𝑛~ − 2.4 and 𝑛~ − 2.3 are locally stable not 

integer ones (blue and green stars in Figure 3.10b) which correspond to 𝑁~1.4 and 

𝑁~1.3 for the second and third intersections, respectively. 
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Figure 3.10. Case 1 detection: profile C1-D1. (a) Multiridge results related to the C1-D1 

extracted profile of the second-order VDF of the vertical component. (b) ScalFun results related 

to the three retrieved solutions by Multiridge method. The horizontal black dashed line indicates 

the modeled data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents the vertical 

scale. 

 

 

The third N-S profile, E1-F1 (Figure 3.8b), passes through the morphologically flat 

portion of the source. We show the results related to the first-order VDF (𝑝 = 2) of the 

vertical deformation, for which we retrieve only one intersection (Figure 3.11a). This 

last (green continuous lines in Figure 3.11a) is almost locally centred respect to the 

source at a depth of about 6.5 km and stable not integer values of 𝑛~ − 2.8 and 𝑁~2.8 

(green stars in Figure 3.11b) characterize this last. 
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We note that at low scales the central ridges tend to converge in a region not occupied 

by sources, for which the ScalFun method provides not acceptable values of 𝑛. We will 

better analyse this case in the next test.  

 

 

Figure 3.11. Case 1 detection: profile E1-F1. (a) Multiridge results related to the E1-F1 

extracted profile of the first-order VDF of the vertical component. (b) ScalFun results related to 

one retrieved solution by Multiridge method. The horizontal black dashed line indicates the 

modeled data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log 𝑧
, where 𝑧 represents the vertical scale. 

 

 

The last considered N-S profile, named as G1-H1 (Figure 3.8b), passes through the 

second morphologically highest region of the source. We consider the second-order VDF 

(𝑝 = 3) of the vertical deformation and we retrieve information about three intersection 

(Figure 3.12a): the first one (green continuous lines in Figure 3.12a) is representative of 

the local centre of the source, with depth almost equal to 6 km, and it is characterized by 

a stable not integer values of 𝑛~ − 3.7 (green stars in Figure 3.12b) and 𝑁~2.7; instead, 
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the second (blue continuous lines in Figure 3.12a) and the third (red continuous lines in 

Figure 3.12a) ones identify the source boundaries at a depth of about 4 km, and the 

related values 𝑛~ − 2.3 (blue stars in Figure 3.12b) and 𝑛~ − 2.2 (red stars in Figure 

3.12b), which correspond to 𝑁~1.3 and 𝑁~1.2 for the second and third intersections, 

respectively. 

 

 

Figure 3.12. Case 1 detection: profile G1-H1. (a) Multiridge results related to the G1-H1 

extracted profile of the second-order VDF of the vertical component. (b) ScalFun results related 

to the three retrieved solutions by Multiridge method. The horizontal black dashed line indicates 

the modeled data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents the vertical 

scale. 
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We go on with the Case 2 analysis by considering the same E-W oriented profile A2-

B2, passing at the same time through both the highest morphological zones of both the 

sources (black dashed lines in Figure 3.8d). We firstly consider the first-order VDF (𝑝 =

2) of the vertical component, from which the Multiridge and ScalFun analysis provide 

information about two intersections (Figure 3.13a), both located near the source centres: 

the first one (blue continuous lines in Figure 3.13a) with about 6 km depth and 

characterized by a stable not integer value of 𝑛~ − 2.55 (blue stars in Figure 3.13b), 

which corresponds to 𝑁~2.55; the second one (red continuous lines in Figure 3.13a) at 

a depth of almost 6.3 km with the associated value 𝑛~ − 2.53 that is still a stable not 

integer one (red stars in Figure 3.13b) and corresponding to 𝑁~2.53.  

Then, we consider the second-order VDF (𝑝 = 3) of the vertical deformation and, 

again, we retrieve two intersections (Figure 3.13c), corresponding this time to the source 

top: the first (blue continuous lines in Figure 3.13c) and the second (red continuous lines 

in Figure 3.13c) ones occur at depth values almost equal to 4 and 4.5 km, respectively, 

and we can characterize them by locally stable not integer values of 𝑛~ − 2.2 (blue stars 

in Figure 3.13d) and 𝑛~ − 2.5 (red stars in Figure 3.13d), which correspond to 𝑁~1.2 

and 𝑁~1.5 for the first and second intersections, respectively. 
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Figure 3.13. Case 2 detection: profile A2-B2. Multiridge and ScalFun methods results related 

to the A2-B2 extracted profile of the (a-b) first- and (c-d) second-order VDF of the vertical 

component. The horizontal black dashed line indicates the modeled data reference level; 𝑞 =
1

𝑧
  

while 𝜏 =
𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents the vertical scale. 

 

 

 



76 
 

The second considered profile is a N-S oriented one, named as C2-D2 (Figure 3.8d), 

passing through the morphologically highest zone of the first source. We consider the 

second-order VDF (𝑝 = 3) of the vertical deformation and we retrieve information about 

three intersections (Figure 3.14a): the first one (green continuous lines in Figure 3.14a) 

is almost locally centred respect to the source at a depth of about 6 km and it is 

characterized by a stable not integer value of 𝑛~ − 3.7 (green stars in Figure 3.14a), 

which corresponds to 𝑁~2.7; the second (blue continuous lines in Figure 3.14a) and the 

third ones (red continuous lines in Figure 3.14a) almost correspond to the boundaries of 

the source at a depth almost equal to 4 km, and the related 𝑛~ − 2.4 values are locally 

stable not integer ones (blue and red stars in Figure 3.14b), which correspond to 𝑁~1.4 

for both the intersections. 

 

 

Figure 3.14. Case 2 detection: profile C2-D2. (a) Multiridge results related to the C2-D2 

extracted profile of the second-order VDF of the vertical component. (b) ScalFun results related 

to the three retrieved solutions by Multiridge method. The horizontal black dashed line indicates 

the modeled data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents the vertical 

scale. 
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The third considered profile is a N-S oriented one, E2-F2 (Figure 3.8d), passing 

through the area with no sources between them. We show the retrieved results using the 

first-order VDF (𝑝 = 2) of the vertical component (Figure 3.15).  

Here, we retrieve only one intersection (red dashed lines in Figure 3.15a): the related 

𝑛 values are very unstable and, for some low-intermediate scales they are not acceptable 

(red stars in Figure 3.15b). 

 

 

Figure 3.15. Case 2 detection: profile E2-F2. (a) Multiridge results related to the E2-F2 

extracted profile of the first-order VDF of the vertical component. (b) ScalFun results related to 

the only one retrieved solution by Multiridge method. The horizontal black dashed line indicates 

the modeled data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents the vertical 

scale. 

 

 

As last profile, we analyse the N-S oriented one, named as G2-H2 (Figure 3.8d), 

which is passing through the morphologically highest zone of the second source.  

We use the second-order VDF (𝑝 = 3) of the vertical deformation for retrieving 

information about three intersections (Figure 3.16a): the first one (green continuous lines 

in Figure 3.16a) is representative of the source centre with a depth value almost equal to 
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6 km and it is characterized by a stable not integer values of 𝑛~ − 3.6 (green stars in 

Figure 3.16a) and 𝑁~2.6; the second (blue continuous lines in Figure 3.16a) and the 

third (red continuous lines in Figure 3.16a) ones almost correspond to the boundaries of 

the source with depth values of about 4 km, while the related 𝑛~ − 2.4 values are locally 

stable not integer ones (blue and red stars in Figure 3.16b), which correspond to 𝑁~1.4 

for both the intersections. 

 

 

Figure 3.16. Case 2 detection: profile G2-H2. (a) Multiridge results related to the G2-H2 

extracted profile of the second-order VDF of the vertical component. (b) ScalFun results related 

to the three retrieved solutions by Multiridge method. The horizontal black dashed line indicates 

the modeled data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents the vertical 

scale. 
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Finally, we apply the THD technique to accomplish the study of the geometrically 

irregular sources. We calculate the THDw, whose results are reported in Figure 3.17, for 

both the vertical deformations of Case 1 and Case 2 (Figure 3.8b and 3.8d). 

In the Case 1, the maxima of THDw highlight the presence of a single source and its 

intensity distribution is greater at the western part respect to the eastern one. This result 

suggests the presence of a source at different local depth, or at the same one but with 

irregular distribution in the space (Figure 3.17a).  

On the other hand, for the Case 2, the maxima of THDw almost well line up in 

correspondence of two different bodies and, similarly to the previous case, the western 

expected source is characterized by a larger intensity of the THDw anomaly (Figure 

3.17b). 

 

 

Figure 3.17. THDw for the detection of geometrically irregular sources. Results of THDw 

(adimensional) for the vertical deformations of the (a) Case 1 and (b) Case 2. The black 

continuous lines represent the projection of the sources boundaries on the horizontal plane. 
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3.2.3 Geometric parameters detection of biharmonic field sources. 

We apply the integrated multi-scale approach to biharmonic but non-harmonic 

deformation fields, which satisfy only the equation (1.14.3). 

The first test simulates the case occurring when the distribution of physical 

parameters of the half-space is not homogeneous and the Laplace’s equation is therefore 

not satisfied, according to equations (1.23).  

We consider a spherical source embedded in a multi-layer elastic space, characterized 

by the increasing of the Young’s modulus 𝐸 with the depth (Figure 3.18a); we set the 

model parameters as follows: depth to the source centre 𝑧0 = 2 km, E-W position of the 

source 𝑥0 = 60 km, N-S position of the source 𝑦0 = 60 km, radius of the source 𝑎 = 0.3 

km, overpressure of the source ∆𝑃 = 10 Mpa, Poisson’s coefficient of the medium 𝜈 =

0.25 (-), 𝐸1 = 4 GPa from 0 to 1 km, 𝐸2 = 5 GPa from 1 to 2 km; 𝐸3 = 7 GPa from 2 to 

3 km and 𝐸4 = 9 GPa from 3 km to 20 km.  

The other model specifications are set like the upward continuation test described in 

Paragraph 3.1.  

The modeled vertical component is reported in Figure 3.18b.  

By analysing the X-X’ profile (Figure 3.18c), we retrieve a source at 2.1 km depth 

and 60 km along the 𝑥-direction (Figure 3.18d). The application of the ScalFun method 

provides 𝑛~ − 2 (exact value: 2.04) and 𝑁~3 (Figure 3.18e), since 𝑝 = 1. 
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Figure 3.18. Detection of a spherical source embedded in a heterogeneous medium. (a) 2D 

section of the heterogeneous 3D model used for the performed test; the black body represents the 

source projection on the considered plane. (b) Vertical component of the deformation field 

produced by this model configuration; the black dashed line represents the XX’ trace which 

deformation trend is reported in (c). Results of the (d) Multiridge method applied along the XX’ 

trace and (e) ScalFun method applied on the central ridge. The horizontal black dashed line 

indicates the modeled data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑤(𝑧))

𝜕 log 𝑧
, where 𝑤 and 𝑧 represent 

the vertical deformation and the vertical scale, respectively. 
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In the second test, we instead consider a vertical cylinder embedded in a multi-layer 

elastic space characterized by a larger variation of the Young’s modulus 𝐸 of the medium 

(Figure 3.19a); we set the model parameters as follows: depth to the source centre 𝑧0 =

1 km, E-W position of the source 𝑥0 = 50 km, N-S position of the source 𝑦0 = 50 km, 

radius of the cylinder 𝑟ℎ = 0.2 km, vertical extent of the cylinder 𝐿𝑧 = 0.8 km, 

overpressure of the source ∆𝑃 = 10 Mpa, Poisson’s coefficient of the medium 𝜈 = 0.25 

(-), 𝐸1 = 0.5 GPa from 0 to 0.5 km, 𝐸2 = 1 GPa from 0.5 to 1.5 km; 𝐸3 = 8 GPa from 

1.5 to 100 km.  

The other model specifications are set as for the already described test in Paragraph 

3.1.  

The modeled vertical component is reported in Figure 3.19b. 

By analysing the X1-X1’ profile (Figure 3.19c), we retrieve a source depth of 

approximately 0.8 km at 𝑥 = 50 km (Figure 3.19d). The ScalFun method provides 𝑛~ −

2.09 (Figure 3.19e) and 𝑁~3, since 𝑝 = 1. 
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Figure 3.19. Detection of a vertical cylinder embedded in a heterogeneous medium. (a) 2D 

section of the heterogeneous 3D model used for the performed test; the black continuous lines 

represent the source projection on the considered plane. (b) Vertical component of the ground 

deformation field produced by this model configuration; the black dashed line represents the X1-

X1’ trace which deformation trend is reported in (c). Results of the (d) Multiridge method applied 

along the X1-X1’ trace and (e) ScalFun method applied on the central ridge. The horizontal black 

dashed line indicates the modeled data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑤(𝑧))

𝜕 log𝑧
, where 𝑤 and 

𝑧 represent the vertical deformation and the vertical scale, respectively. 
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On the contrary, the third considered test simulates the case of non-hydrostatic 

variation of the source pressure, where, according to equations (1.23), the Laplace’s 

equation is still not satisfied. Therefore, we consider the same vertical cylinder of the 

previous test embedded in a homogeneous elastic half-space characterized by a Poisson’s 

coefficient of the medium 𝜈 = 0.25 (-) and a Young’s modulus 𝐸 = 1 GPa. Here, the 

overpressure ∆𝑃 = 10 Mpa is applied only to the upper and lower bases of the cylinder. 

The modeled vertical component is reported in Figure 3.20a.  

By analysing the X2-X2’ profile (Figure 3.20b), we retrieve a source depth of 

approximately 0.65 km, and a location of 50 km along the 𝑥-direction (Figure 3.20c). 

However, the ScalFun method provides acceptable 𝑛 values only in correspondence of 

low scale interval of the upward continued field, where 𝑛~ − 2.08 (Figure 3.20d) and 

𝑁~3, since 𝑝 = 1. 
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Figure 3.20. Detection of a no hydrostatically over-pressurized source. (a) Vertical 

component of the deformation field; the black dashed line represents the X2-X2’ trace, which 

deformation trend is reported in (b). Results of the (c) Multiridge method applied along the X2-

X2’ trace and (d) ScalFun method applied to the central ridge. The horizontal black dashed line 

indicates the modeled data reference level; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑤(𝑧))

𝜕 log 𝑧
, where 𝑤 and 𝑧 represent 

the vertical deformation and the vertical scale, respectively. 
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We conclude this Chapter with the THD test. We simulate a sill-like source by 

considering the tensile rectangular fault model AM (i.e., Okada [1985]), for which the 

Laplace’s equation is not satisfied. The model parameters are set as follows: depth to the 

source centre 𝑧0 = 1 km, E-W position of the source 𝑥0 = 6 km, N-S position of the 

source 𝑦0 = 6 km; length of the source 𝐷 = 3 km; width of the source 𝑊 = 3 km; 

opening of the source 𝑈3 = 0.001 km; dip 𝜃 and strike of the source 𝛼 = 0°. We apply 

the THD technique on the modeled vertical component, which is reported in Figure 

3.21a. Specifically, the THDw maxima distribution delineates the presence of an about 

3 × 3 km squared deformation source (Figure 3.21b). We also show the results by 

considering the profile X3-X3’ passing through the maximum value of the vertical 

deformation (Figure 3.21c). 

 

 

Figure 3.21. THD technique for the analysis of non-harmonic fields. (a) Vertical component 

of the deformation field produced by a rectangular tensile fault source model. (b) Results of THDw 

computed on (a); the black dashed line represents the X3-X3’ trace along which the deformation 

trend and the THDw results are reported in (c); the black vertical dashed lines correspond to the 

maxima of the THDw. The black continuous lines represent the projection of the source on the 

considered plane in (b) or profile in (c). 



87 
 

CHAPTER 4 

APPLICATION TO REAL CASES 

In this Chapter, we show the application of the proposed integrated multi-scale 

methods to real ground deformation patterns. Therefore, we consider Multiridge, ScalFun 

methods and THD technique to perform the geometrical modeling of the volcanic 

deformation sources. Specifically, we analyse five volcanic sites characterized by 

different scenarios.  

The first application is to the Okmok Volcano (Alaska, USA), for which we consider 

a single interferogram related to the 2003-2004 time interval. We apply the Multiridge 

and ScalFun methods on the LOS component of the measured ground deformation field. 

This analysis represents a validation case study since it is the first application of the 

proposed approach to model the deformation sources [Castaldo et al., 2018b].  

The second volcanic site is the Uturuncu Volcano (Bolivia), where we consider the 

cumulative 2005-2008 vertical deformation to perform a multi-source analysis through 

Multiridge method. In this case study, we show how to investigate more than one source 

by analysing the same deformation dataset [Barone et al., 2019].  

The third analysis concerns the vertical unrest episode occurred at Campi Flegrei 

caldera (Italy); here, we apply the THD technique as supporting tool to understand the 

physical phenomenon occurring during the 2012-2013 time interval. This analysis still 

represents a validation case study since we apply for the first time this technique to study 

volcanic reservoirs [Pepe et al., 2019].  

The 2013 unrest event at Fernandina Volcano (Galapagos Archipelago, Ecuador) 

represents the fourth case study, for which we use Multiridge and ScalFun methods to 

define the depth and the source type by considering the homogeneity properties of the 

cumulative E-W component of the measured ground deformation field. 

Finally, we study the uplift phenomena occurred at Yellowstone caldera (Wyoming, 

USA) by considering the Mallard Lake and Sour Creek resurgent domes; in this 

framework, we apply the integrated multi-scale methods to analyse the 2005-2007 

cumulative vertical deformation by using a local-homogeneity approach.  
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4.1 Multiridge and ScalFun methods: the Okmok Volcano (Alaska, USA) 

analysed with LOS components. 

“The Okmok volcano is an active caldera field located on the oceanic crust of the 

central Aleutian arc (Alaska – USA) [Finney et al., 2008] that represents the surface 

expression for the subduction of the Pacific Plate as it moves northwards beneath the 

North American Plate.  

In particular, it is a dominantly a basaltic shield volcano covering most of the 

northeastern end of Umnak Island in Alaska [Lu et al., 2005]. The Okmok physiography 

is dominated by a central caldera, with a diameter of 10 km; the rim and caldera floor 

have elevations of approximately 900 and 400 m a.s.l., respectively [Masterlark et al., 

2012]. This physiography is the result of two different and large (≈ 15 km3) caldera-

forming events [Finney et al., 2008] caused by catastrophic pyroclastic eruptions that 

occurred approximately 12.0 and 2.05 kyr ago, respectively [Byers, 1959; Finney et al., 

2008]. These eruptions began with a small Plinian rhyodacite event, followed by the 

emplacement of a dominantly andesitic ash-flow unit, whereas effusive inter- and post-

caldera lavas have been more basaltic [Finney et al., 2008]. Subsequent eruptions 

produced a field of small cones [Miller, 1998].  

For the past 200 years, the Okmok volcano has had an effusive and basaltic eruption 

every 10-20 years, generally from the intracaldera cones [Miller, 1998]. The most recent 

eruption, in 2008, originated from several new vents and occurred near the eastern rim 

of the caldera [Masterlark et al., 2012], while the three previous eruptions (1945, 1958 

and 1997) originated near the southwest rim of the caldera [Larsen et al., 2009]. In 

particular, the 1997 eruption began with steam and ash plumes and progressed into 

moderate Strombolian activity, producing explosive ash plumes and lava that flowed 

toward the centre of the caldera. Geochemical analyses of the erupted products are 

consistent with the primitive magma from the depth and brief storage of the shallow 

reservoirs [Finney et al., 2008]. 

We analyse the Okmok volcano ground deformation pattern retrieved by processing 

the ENVISAT SAR images. The interferogram is related to the period 15 July 2003 – 29 

June 2004, with images acquired by the ENVISAT satellite (ESA) along the descending 

orbit (Track 115). The ENVISAT dataset was processed by using the online P-SBAS web 

tool available within ESA’s Grid Processing On Demand (G-POD) environment, which 
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is within the framework of ESA’s Geohazards Exploitation Platform (GEP) [De Luca et 

al., 2015; De Luca et al., 2017]. The P-SBAS results from the ENVISAT data were 

spatially averaged (i.e., multilooked) to obtain a pixel size of approximately 80 m by 80 

m on the ground. The ENVISAT satellite look angle is 23°, and the mean values of the 

LOS unit vector are [0.346, -0.081, 0.935] relative to the satellite descending orbit. 

After the processing steps, the descending interferogram is unwrapped to retrieve the 

LOS deformation measurements (Figure 4.1a). In the considered period, the DInSAR 

measurements shown an uplift phenomenon, with a maximum deformation value of 

approximately 12 cm. Since the measurement surface is detailed (i.e., the Okmok volcano 

topography), the LOS deformation dataset is processed to obtain the ground deformation 

field evaluated at the constant reduction scale, specifically at 1.5 km a.s.l. (Figure 4.1b). 

 

 

Figure 4.1. Okmok DInSAR measurements. (a) Descending LOS deformation map between 15 

July 2003 and 29 June 2004, which is superimposed onto the Okmok volcano topography. (b) 

Descending LOS deformation map reduced to a flat surface, which is located 1.5 km a.s.l. The 

black dashed lines indicate the positions of the E-W and N-S profiles, while the black continuous 

line represents the island coastline. 

 

At this stage, we applied our methodology to the DInSAR measurements to evaluate 

the geometric parameters of the active source; we applied both the Multiridge and 

ScalFun methods along the E-W (Figure 4.2a) and N-S (Figure 4.2b) profiles to retrieve 

the following results: 

• Multiridge method: a source was located at a -4.9±0.06 km depth (Figures 4.2c 

and 4.2d) from the constant reduction scale (1.5 km a.s.l.) along the z-axis, which 

corresponded to a depth of -3.4±0.06 km b.s.l. with horizontal UTM coordinates 
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equal to 690.9±0.08 km East (Figure 4.2c) and 5924±0.07 km North (Figure 

4.2d); 

• ScalFun method: a homogeneity degree of 𝑛~ − 2 (Figures 4.2e and 4.2f) was 

computed on the central cyan ridge for both the E-W and N-S profiles; this value 

corresponds to a Structural Index of 𝑁~3, suggesting that the source geometry 

related to the measured ground deformation field can be well-approximated by a 

point-spherical reservoir. 

 

 
Figure 4.2. Multiridge and ScalFun methods: the Okmok volcano case. (a-b) LOS deformation 

in the E-W and N-S profiles evaluated from Figure 4.1b. (c-d) The results of the Multiridge 

method applied to the E-W and N-S profiles; the red solid lines, which represent the regression 

lines, estimate the source position at their intersection. For each regression line we indicate the 

coefficient of determination (R2); (e-f) the results of the ScalFun method applied to the central 

cyan multiridge subsets reported in (c-d);𝑞 =
1

𝑧
  while 𝜏 =

𝜕 𝑙𝑜𝑔(𝜒(𝑧))

𝜕 𝑙𝑜𝑔 𝑧
, where 𝜒 and 𝑧 represent 

the LOS deformation and the vertical scale, respectively.” 

 

From Castaldo et al. [2018b]. 
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4.2 Multiridge method: the Uturuncu Volcano (Bolivia) analysed with 

cumulative vertical deformation. 

“The Andean Central Volcanic Zone represents one of the largest updoming volcanic 

zones on the Earth [Pritchard et al., 2018; Gottsmann et al., 2017], in which almost at 

its centre the Uturuncu volcano (southwestern Bolivia) lies (Figure 4.3). The magmatism 

in this area is the result of eastwards subduction of the Nazca oceanic plate beneath the 

South American continent [De Silva and Gosnold, 2007]. In this setting, tectonic and 

magmatic processes have shaped the broad elevated (≈ 4 km) Altiplano Puna Volcanic 

Complex (APVC), which has been related at depth to a large continental crustal magma 

body, known as Altiplano Puna Magma Body (APMB) [Allmendinger et al., 1997; 

Schmitz et al., 1997; Schilling et al., 1997; Chmielowski et al., 1999; Sparks et al., 2008; 

Perkins et al., 2016].  

Uturuncu volcano is a long-dormant effusive stratovolcano [Muir et al., 2014]; the 

volcanic edifice is a dominant morphological peak that rises for ≈ 6 km and covers a ≈ 

400 km2 area. Its activity has been related to minor degassing and low-temperature 

fumaroles, while its products are dominated by Pleistocene dacitic lava domes and flows 

[Sparks et al., 2008; Michelfelder et al., 2014]; even the youngest summit lavas are 

excessively abraded by glaciers [de Silva, 1989]. Geochronological analysis outcomes 

reveal the activity range around Uturuncu is about 10-15 Ma, with its deposits covered 

by 0.9-0.5 Ma lava flows; the youngest dating, and so the evidence of the last eruptive 

activity, is related to the 0.27 Ma summit lava dome [Sparks et al., 2008].  

This region was studied within the PLUTONS project [PLUTONS project, 2009], 

focused on large-scale surface uplift areas through an interdisciplinary analysis 

[Pritchard et al., 2018]. Several geophysical and geochemical studies show some 

evidences of a deep magma body, connected to the APMB, and of a possible shallower 

source: teleseismic and local receiver function analysis results highlight low-velocity 

zones at about 19 km [Chmielowski et al., 1999] and 20 km [Zandt et al., 2003] depth 

b.g.l., respectively. Seismic tomography turns out to be characterized by a deep Vp/Vs 

anomaly from 1-2 to 75-76 km depth [Kukarina et al., 2017], while about 4 to 25 km 

depth low-velocity zone is retrieved by seismicity and receiver function analysis [Ward et 

al., 2014; Ward et al., 2017; McFarlin et al., 2017]; vertically elongated low-density 3D 

structures rooted at the top of the APMB (15 km of depth) are highlighted from the gravity 
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measurements modeling [Del Potro et al., 2013]. At the same time, petrological studies, 

besides a dacitic magma intrusion at depth major than 17 km, support the hypothesis of 

a shallow magma storage with a depth major than 1.5 km [Sparks et al., 2008]; seismicity 

and ambient noise tomography show a shallow low-velocity zone [Jay et al., 2012]; 

several earthquakes occur at 4-6 km depth for the 2010-2012 time interval [Alvizuri and 

Tape, 2016]; the existence of a shallow magma storage is supported by geochemical 

analysis [Muir et al., 2014]. Furthermore, evidence of low-resistivity zones is also 

emphasized by magnetotelluric data modeling. In particular, Comeau et al., [2015] show 

a 2D regional model estimating a depth of the APMB at about 18-19 km, whereas [2016], 

by performing a 3D model, highlight the existence of two low-resistivity anomalies 

located at 3-5 km and 13-14 km depth, respectively. All these studies are summarized in 

[Pritchard et al., 2018], in which the authors describe the main aspect of each magmatic 

system interpretation. Accordingly, we remark that a comparison between the above 

reviewed results should be careful since the used methodologies have a different 

resolution and are related to a specific physical parameter distribution.  

Since 1992 the APVC area knowledge has significantly increased thanks to the 

exploitation of satellite Synthetic Aperture Radar (SAR) sensors [Pritchard and Simons, 

2002; Pritchard and Simons, 2004; Fialko and Pearse, 2012; Henderson and Pritchard, 

2013; Hickey et al., 2013; Walter and Motagh, 2014; Gottsmann et al., 2017; Henderson 

and Pritchard, 2017; Lau et al., 2018]. The interpretation of these measurements is 

focused on the characterization of the APMB deep source (about 15-30 km b.s.l.): 

Pritchard et al. [2004] study ERS satellite data between 1992-2000 to simultaneously 

model the deformation source as a sphere (17.3 km depth), a horizontal and vertical 

ellipsoid (18.8 and 18.2 km depth, respectively), a point and finite crack (25 and 12 km 

depth, respectively); Fialko et al. [2012] proposed an ascending diapiric source, with 

depth > 15 km, by considering the 1992-2010 time interval; Henderson et al. [2013] 

identified a 19-20 km depth point-spherical source by analysing the 1992-2011 time 

interval; Hickey et al. [2013] studied the 1996-2010 time interval by modeling the 

deformation source as a sphere (30.4 km depth b.g.l.), a prolate and oblate spheroid (20.6 

and 32.8 km depth b.g.l., respectively); Walter et al. [2014] modeled the ENVISAT 

satellite measurements related to the 2003-2009 time interval by considering an inflating 

flat-topped source at 17-18 ± 9 km depth; for the 1992-2011 time interval, Gottsmann et 

al. [2017] suggested the use of the magmatic column source model for the APMB, with 
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the top and bottom at 13 and 25 km depth, respectively, while Henderson et al. [2017] 

proposed a dipole source model whose top is located at 15.4-30.4 km depth. Otherwise, 

Gottsmann et al. [2017] and Lau et al. [2018] have shown the evidences of shallow 

sources, although their results are not directly related to volcanic deformations. 

Starting from the information collected by the geodetic studies, the classical 

procedures of the geodetic modeling seem to be suitable to investigate only the existence 

of the deep source, related to APMB. To investigate a further shallower source beneath 

the Uturuncu volcano, we propose an alternative approach, based on the analysis of the 

2003-2010 ENVISAT Differential SAR Interferometry (DInSAR) measurements. We apply 

two multi-scale methods to investigate possible active multi-source localized at different 

depths. In particular, focusing on the vertical component relevant to the 2005-2008 time 

interval, we use the Cross-correlation analysis [Stanton et al., 2001; Tizzani et al., 2007] 

and the Multiridge method [Fedi et al., 2009; Castaldo et al., 2018b] to emphasize the 

spatial and temporal multi-scale properties of the field during the considered period. 

We consider a catalogue of SAR images acquired by ENVISAT satellite (European 

Spatial Agency - ESA) sensor during the 2003-2010 time interval. We process 26 and 31 

images acquired along ascending (track 89 – look angle 𝝑 equal to 36.35°) and 

descending (track 282 – look angle 𝝑 equal to 20.45°) orbits, respectively. The ENVISAT 

dataset was processed by using the online Parallel Small Baseline Subset (P-SBAS) web 

tool available within ESA’s Grid Processing On Demand (G-POD) environment, which 

is within the framework of ESA’s Geohazards Exploitation Platform (GEP) [De Luca et 

al., 2015; De Luca et al., 2017]. In detail, we perform 76 and 89 interferograms for the 

ascending and descending orbits, respectively. The P-SBAS results from ENVISAT data 

were spatially averaged (i.e., multilooked) to obtain a pixel size of approximately 80 m 

by 80 m on the ground. The use of the Small Baseline Subset (SBAS) approach [Berardino 

et al., 2002; Casu et al., 2014] allows retrieving the spatial-temporal evolution of the 

Earth’s surface deformation, since its results provide the mean deformation velocity maps 

and the corresponding time-series for each coherent pixel. 

The Line Of Sight (LOS) mean velocity maps, both along ascending and descending 

orbits (Figure 4.3a), show the deformation phenomenon of a wide area (about 900 km2) 

in the APVC zone, with maximum velocity values ≈ 0.6-0.8 cm/a. The 2003-2010 LOS 

time-series of two selected pixels (black solid triangles in the Figure 4.3a) are reported 
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in Figure 4.3b; the P1 pixel, almost localized at centre of APVC area (Easting 680650 

[m]; Northing 7535580 [m] – UTM WGS84 coordinate system), shows a general quasi-

linear deformation trend; the P2 pixel, localized at Uturuncu volcano (Easting 687460 

[m]; Northing 7537700 [m] – UTM WGS84 coordinate system), shows a long-term 

deformation trend with a period of unrest between August 2006 and February 2007.  

 

 

Figure 4.3. DInSAR measurements of APVC and Uturuncu volcano. (a) LOS mean velocity 

maps (cm/a) retrieved by ENVISAT satellite data acquired along ascending (right – track 89) and 

descending (left – track 282) orbits, superimposed on Shuttle Radar Topography Mission (SRTM) 

Digital Elevation Model (DEM); the reference map in upper centre shows the study area (red 

box); the white solid square shows the reference point, the white solid circles indicate the 

Uturuncu and Quetana volcanoes location, while the solid black triangles show the location of 

the selected P1 and P2 pixels; (b) LOS displacement time-series (cm) related to the 2003-2010 

interval at the P1 (up) and P2 (down) pixels; the blue and red triangles represent the time-series 

related to the tracks 89 and 282, respectively, while the light red rectangle indicates the 

considered 2005-2008 time interval for the following analysis. 
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The displacement time-series of the selected coherent pixels are representative of 

deformation behavior of their surrounding zone. 

Subsequently, in order to estimate the vertical and horizontal East-West components 

of the ground deformation field, we combine the LOS DInSAR measurements along 

ascending and descending orbits [Manzo et al., 2006]; only the coherent pixels in both 

ascending and descending mean velocity maps have been combined and, since both 

images are acquired at different times, the time-series are resampled via linear 

interpolation to common constant sampling interval before applying the combination 

procedure. This operation is possible since nonlinear deformation events, such as 

eruption or earthquake, occur within the temporal sampling. We specify that by 

comparing the temporal sampling between the measurements acquired along ascending 

and descending orbits, we restrict our analysis to the 2005-2008 time interval (light red 

rectangle in Figure 4.3b), since a similar sampling both for ascending and descending 

LOS displacements is observed. 

The retrieved vertical mean velocity map relevant to 2005-2008 time interval (left in 

the Figure 4.4a) shows a wide uplift zone at APVC, with maximum velocity values ≈ 0.6-

0.8 cm/a, while the East-West component (right in the Figure 4.4a) does not display a 

relevant pattern. The AA’ profile (blue continuous line in the Figure 4.4a) of vertical 

velocity, is reported in Figure 4.4b and highlights a high deformation rate of the 

Uturuncu volcanic edifice. This result is also confirmed by the analysis of the vertical 

deformation time-series at P1 and P2 pixels (Figure 4.4c), revealing the existence of two 

different deformation trends: the first one is characterized by a quasi-linear uplift trend 

for the 2005-2008 time interval, while the second one shows a higher velocity episode 

during the August 2006 - February 2007 time interval (marked by the blue dashed lines 

in the Figure 4.4c), showing an abrupt change of the long-term uplift deformation. 

We carry out this analysis by evaluating the correlation coefficients with respect to 

P1 and P2 deformation time-series, setting as lower threshold a value of 0.97. These 

results, reported in Figure 4.5, show that a large number of pixels, covering the central 

part of APVC, are characterized by the same deformation trend observed at P1 (red solid 

circles at the left of Figure 4.5), while the Uturuncu volcano area is entirely interested 

by the same deformation trend recorded at P2 (blue solid circles at the right of Figure 

4.5). The performed Cross-correlation analysis highlights the existence of two distinctive 
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areas with different temporal deformation behavior that gives us a further evidence 

supporting the multi-source scenario. 

 

 

Figure 4.4. Vertical and East-West deformations at APVC and Uturuncu volcano. (a) Mean 

deformation velocity maps (cm/a) of vertical (left) and East-West (right) components, 

superimposed on the SRTM DEM; the white solid square shows the reference point, the white 

solid circles indicate the Uturuncu and Quetana volcanoes location, the solid black triangles 

show the location of the P1 and P2 pixels, while the blue continuous line represents the AA’ trace; 

(b) AA’ profile of the vertical mean velocity (colored solid circles) and of the topography (grey 

solid circles); the black solid triangles represent P1 and P2 pixels on the AA’ profile; (c) Vertical 

deformation time-series at the pixels P1 (left) and P2 (right) related to the analysed 2005-2008 

interval; the blue dashed lines indicate the time interval in which an higher uplift deformation 

rate is observed. 
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Figure 4.5. Spatial-temporal Cross-correlation analysis. Cross‐correlation map: the red and 

blue points indicate coherent cluster pixels with respect to the deformation time series at P1 and 

P2 pixel (black solid triangles), respectively, during the 2005-2008 time interval; these points are 

characterized by a correlation coefficient greater than 0.97.  

 

The 2005-2008 cumulative vertical deformation, reported in Figure 4.6a, appears 

as a very long-wavelength signal, covering a wide ground area. We apply the Multiridge 

method to the VDF of the cumulative deformation by considering mostly the multiridge 

subsets related to large scales. In this context, we exploit the VDF because it increases 

the signal resolution due to different interfering components and so it can represent an 

important tool to solve multi-source case. Furthermore, we take into account large-scales 

interval since they are related to the contribution of the deep source (i.e., long 

wavelength), while we do not treat the multiridge subsets regarding to the low scales, 

even avoiding the ridges portion affected by other signal interference effects, probably 

due to a contribution of high-wavenumber noise and/or a shallower source. 

We show the inferred results by considering the E-W and N-S profiles (black dashed 

lines in Figure 4.6a), passing through about the maximum of the deformation field. In 

particular, from both cases, the depth and the horizontal position of the active source are 

detected at two-ridges intersection (Figure 4.6b): from the BB’ profile analysis (along 

the E-W direction), we deduce a depth value equal to -18.7 ± 0.3 km at the point with East 

UTM coordinate equal to 682800 ± 200 m (left in the Figure 4.6b), while, by analysing 

the CC’ profile (along the N-S direction), we infer a -18.7 ± 0.8 km depth at the point 

with North UTM coordinate equal to 7532300 ± 200 m (right in the Figure 4.6b). 



98 
 

 

Figure 4.6. Multiridge analysis of 2005-2008 time interval. (a) Gridded vertical deformation 

(cm); the black dashed lines represent the BB’ and CC’ traces; (b) Detection of deformation 

sources by using Multiridge method applied to the BB’ (left) and CC’ (right) profiles of the VDF 

of the vertical deformation map (in (a)); the red solid and dashed lines represent the best-fit 

regression lines and the linear regression boundary solutions within a 95% confidence interval, 

respectively; the black solid circles indicate the ridges intersections; for each regression line, we 

indicate the R2 coefficient. 

 

The August 2006 and February 2007 cumulative vertical deformation (Figure 4.7a) 

appears as a shorter-wavelength signal, well centreed at Uturuncu volcano, and it should 

be not affected by long-wavelength-signal interference effects. Unlike to previous case, 

we apply the Multiridge method directly on the cumulative vertical deformation avoiding 

the increase of the high-wavenumber contributions and considering the multiridge 

subsets at the low scales. 
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Figure 4.7. Multiridge analysis of August 2006 – February 2007 time interval. (a) Gridded 

vertical deformation (cm); the black dashed lines represent the DD’ and EE’ traces; (b) Detection 

of deformation sources by using Multiridge method applied to the DD’ (left) and EE’ (right) 

profiles of the vertical deformation map (in (a)); the red solid and dashed lines represent the best-

fit regression lines and the linear regression boundary solutions within a 95% confidence 

interval, respectively; the black solid circles indicate the ridges intersections; for each regression 

line, we indicate the R2 coefficient. 

 

In Figure 4.7b, we show the retrieved results by considering an E-W and N-S profiles 

(black dashed lines), passing through the volcano edifice centre. In particular, for both 

cases, the depth and the horizontal position of the active source are detected at two-ridges 

intersection (Figure 4.7b): from the DD’ profile analysis (along the E-W direction), we 
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infer a depth value equal to -4.5 ± 0.5 km at the point with East UTM coordinate equal 

to 687400 ± 500 m (left in the Figure 4.7b), while, by analysing the EE’ profile (along 

the N-S direction), we deduce a -4.5 ± 0.3 km depth at the point with North UTM 

coordinate equal to 7537800 ± 200 m (right in the Figure 4.7b).” 

 

From Barone, A., Fedi, M., Tizzani, P., Castaldo, R. (2019): Multiridge Analysis of 

DInSAR Measurements for Multi-Source Investigation at Uturuncu Volcano (Bolivia). 

Remote Sensing, 11, 703, doi:10.3390/rs11060703. 

 

In this thesis, we integrate these results by considering the ScalFun method for the 

active source during the August 2006 – February 2007 time interval. We use the central 

cyan ridges reported in Figure 4.7b for both the profiles at larger scales; we characterize 

this source with 𝑛~ − 2 values (Figure 4.8a-b) and, since 𝑝 = 1, with 𝑁~3 ones. 

 

 

Figure 4.8. ScalFun analysis of August 2006 – February 2007 time interval. Results of the 

ScalFun method applied on the central cyan ridges related to the analysis of the (a) DD’ and (b) 

EE’ profiles; the red stars represent the solution by considering the intersection of the best fit 

linear regressions, while the black circles and triangles regard to the retrieved boundary ones; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑤(𝑧))

𝜕 log𝑧
, where 𝑤 and 𝑧 represent the vertical deformation and the vertical scale, 

respectively.  
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4.3 THD technique: the 2012 – 2013 uplift event at Campi Flegrei caldera 

(Italy). 

“Volcanoes are an ideal environment to test the ability of both proximal and remote-

sensing techniques to characterize the internal features of the volcanic feeding system, 

and to model their temporal evolution [Tizzani et al., 2010; Masterlark et al. 2012; Del 

Negro et al. 2013; Mattia et al., 2015; Masterlark et al. 2016; Castaldo et al., 2018]. 

DInSAR results (i.e., mean deformation velocities maps and the corresponding time-

series) are used to infer the source and dynamics of deformation phenomena in volcanic 

areas. In particular, these models work well for bell-shaped deformation anomalies, 

typical for caldera floors like Long Valley and Yellowstone [Tizzani et al. 2007; 2009; 

2015]. In contrast, the relatively simple models employed to infer the location and size of 

deformation sources suffer from major biases if pre-existing tectonic structures [Orsi et 

al., 1999], shallow horizontal interfaces [Vanorio et al., 2015] and/or cold magmatic 

intrusions [Chiodini et al., 2015] exist. These structural constraints modulate the ground 

deformation pattern [Trasatti et al., 2008; Amoruso et al 2008; Manconi et al., 2010; 

D’Auria et al., 2015]: without any constraint on the volcanic structures at depth, the 

geometry and the characteristics of the deformation sources may become uncertain, 

leading to incorrect interpretations of volcanic unrest from deformation data at the 

earlier stages of a volcanic crisis, when the signal-to-noise ratio is still low. 

Seismic tomography maps the Earth subsurface using seismic waves produced by 

active and passive sources and recorded at a seismic network. The derived seismic models 

of velocity or attenuation provide an image of structural, thermal, or compositional 

variations inside the Earth; in volcanoes, these tomographic models can constrain 

geodynamical and volcanological simulations [Masterlark et al. 2012; Reuber et al., 

2018]. At Campi Flegrei caldera (CFc), seismic tomography gives the structural 

constraints necessary to map fractures, interfaces, and older plumbing systems [Zollo et 

al., 2003; Vanorio et al. 2005; Battaglia et al. 2008; De Siena et al. 2010; 2017a; 2017b; 

Calò and Tramelli 2018]. The seismic tomography images of the onshore CFc mentioned 

above are built on seismic earthquake data recorded between 1982-84: they were thus an 

image of this period of unrest [Aster & Meyer, 1988]. The maps show that, in 1982-84, a 

reservoir containing high-pressure fluids was repeatedly fractured by magmatic 

intrusions [Amoruso et al., 2008] and/or fluid injections [Vanorio et al., 2015] under the 

town of Pozzuoli [De Siena et al., 2017b]. Since 1985, seismicity has mostly been limited 
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to the shallow hydrothermal systems, progressively shifting towards the eastern side of 

the caldera [Di Luccio et al., 2015]. The only seismic imaging available since 1985 was 

thus obtained in 2001 by using the active data of the SERAPIS seismic experiment, shot 

in the submerged centre of the caldera [Zollo et al. 2008; Serlenga et al. 2016], at least 

until De Siena et al. [2018] published an Ambient Noise Tomography (ANT) of the 

caldera. 

With this technique, De Siena et al. [2018] have imaged the Rayleigh-wave velocity 

of the fluid feeder-pathway responsible for the 2011-2013 deformation unrest at CFc. The 

model shows-surface wave group velocities that are mostly consistent with the P- and S-

wave velocity maps imaged during 1982-84, including the low-velocity fluid storage zone 

under Pozzuoli [Vanorio et al. 2005] and high velocity anomalies underlining the caldera 

rim [Battaglia et al. 2008]. The main difference between 2011-13 and 1982-84 is the 

presence of a high-velocity anomaly under Solfatara, at ~1.7 km which shifts towards 

Pisciarelli at ~1km and disappears at shallower depths. This is the first tomographic 

image of the onshore caldera since 1984, therefore the first that can be used in 

conjunction with DInSAR data. 

The nucleation of microearthquakes and the spatial cutoff at depth are strongly 

linked to the rheological stratification of the crust beneath the CFc [Castaldo et al., 

2018]. We stress that the seismicity currently recorded at CFc is too low in magnitude 

and sparse to apply local earthquake tomography [D’Auria et al., 2011]. On September 

7th, 2012 a deep seismic swarm, possibly of magmatic origin, occurred during the rapid 

uplift event (2012-2013). This seismic activity diverged from the last 28 years almost 

exclusively driven by shallow hydrothermal processes [D’Auria et al., 2015]. Ground 

deformation observed in 2012-13 derived through satellite interferometry and GPS 

measurements has previously been interpreted as resulting from a magmatic sill intrusion 

of 0.0042 ± 0.0002 km3 at shallow depth (3090 ± 138 m) [D’Auria et al., 2015], whose 

location agrees with the low-velocity zone imaged by ANT at a depth of ~2 km [De Siena 

et al., 2018]. 

In the present study, SAR and ANT maps obtained between 2011 and 2013 provide 

dynamic and structural information that can be jointly used to interpret the deformation 

processes. While the former allows identifying the deformation source boundaries 

laterally and/or the involved volcanic structures that modulate the observed deformation 

pattern, the latter yields a velocity model characterizing the structure of the volcano in 
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3D. The comparison of these results with the 2005-2016 earthquake locations highlights 

the volume where the stresses were concentrated, confirming that the caldera structures 

play an active role in modulating the deformation signals. 

We apply the Small BAseline Subset (SBAS) approach [Berardino et al., 2002; Pepe 

et al., 2005] to detect and follow the temporal evolution of the surface deformation 

affecting CFc during the time interval of interest. To this aim, we process the SAR data 

acquired from the Italian COSMO-SkyMed constellation along ascending and 

descending orbits. Specifically, we processed 215 ascending and 46 descending SAR data 

relevant to the February 2011 - January 2014 time-interval, and computed about 750 

interferograms from the ascending orbits and 102 from the descending ones (selected by 

imposing maximum perpendicular and temporal baseline values of 800 m and 400 days, 

respectively). The interferograms were inverted by applying the above mentioned SBAS-

DInSAR technique to generate mean deformation velocity maps (Figure 4.9a-b) and the 

corresponding time-series. The achieved results were computed on an output grid with 

30 m × 30 m spatial resolution and are referred to a reference pixel in the centre of the 

city of Naples. 

The availability of DInSAR measurements for both the ascending and descending 

radar LOS (Figure 4.9a-b) allows discriminating the Vertical (V) and East–West (E-W) 

mean velocity components (Figure 4.9c-d) [Wright et al., 2004; Manzo et al., 2006]. 

Moreover, due to the non-uniform temporal sampling, the ascending and descending data 

were resampled to 11 days by using a linear interpolation [Del Negro et al., 2013]. This 

allowed the computation of time-series pairs representing the temporal evolution of the 

E-W and Vertical deformation components (Figure 4.9e-g).  

In addition, we show that both the ascending and descending LOS mean-deformation 

velocity maps record a maximum of about 6 cm/year at the Pozzuoli harbor, with the 

velocity pattern accommodated within the caldera boundaries. Figure 4.9c-d depicts the 

vertical and E-W components of the mean velocity field, respectively. The first reveals an 

extended deformation pattern that involves the whole caldera, the latter the presence of 

a region of very-low velocity that separates the eastern and western sides of the caldera. 

Three pixels were selected to represent the Vertical and E-W components (Figure 4.9e-

g) and they are located within the caldera (P1 in Figure 4.9c, P2 and P3 in Figure 4.9d).  
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Figure 4.9: SAR Interferometry. (a-b) Contour maps of the LOS mean deformation velocity, 

computed by applying the SBAS algorithm to the exploited COSMO-SkyMed ascending and 

descending SAR data processing the 2011-2013, respectively. (c-d) Contour maps of the Vertical 

and E-W mean deformation velocity components; P1, P2 and P3 identify three pixels located in 

the areas of maximum vertical (P1), western (P2) and eastern (P3) mean velocity. The magenta 

filled circles represent the location of Pozzuoli site (PZ), Napoli city (NA) Monte Nuovo (NU), 

Pozzuoli Harbor (HR), Astroni crater (AS), Solfatara crater (SO), Pisciarelli fumarole spring 

(PI), Mount Gauro (GA) and San Vito (SA), Mofete (MF). All results are superimposed on the 

SRTM DEM of the area. (e-g) Vertical (P1) and East-West (P2 and P3) displacement time-series. 

The analysed time period is divided in three steps (gray color regions) for different linear 

deformation trends analysis.  
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Note that the vertical component of the ground deformation reaches a maximum 

value of about 18 cm (plot of Figure 4.9e), while the horizontal displacements towards 

East and West reach maximum values of 8 cm (plot of Figure 4.9f) and about 6 cm (plot 

of Figure 4.9g), respectively. 

The advanced DInSAR measurements, specifically, the vertical and E-W 

displacements of the whole caldera relevant to the three identified temporal steps (see 

Figure 4.9), are shown in Figure 4.10. 

 

 

Figure 4.10: DInSAR analysis relevant to the investigated steps. (a-b) Contour maps of the 

vertical and E-W displacements, respectively, measured during the step 1: Feb. 2011 – May 2012, 

(c-d) the step 2: May 2012 – April 2013, and (e-f) the step 3: April 2013- Jan. 2014. All results 

are superimposed on the SRTM DEM of the area. 
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We observe that the E-W and Up-Down deformations drastically increase both 

spatially and in magnitude from step 1 to step 2 (Figure 4.10a-d). The region of maximum 

vertical displacement corresponds to the area of lowest E-W deformation, particularly at 

step 2 (from May 2012 to April 2013), when the maximum deformation rate is recorded. 

To investigate the volcanic source boundaries (i.e., possible magmatic reservoirs) 

and/or the involved structures that modulate the observed deformation pattern, we apply 

the THD technique to the displacement occurred during the second step. We first spatially 

regularize the dataset via ordinary kriging [Li and Heap, 2008], then we process the 

gridded vertical component by performing the constant scale reduction at 200 m a.s.l. 

Finally, we compute the THDw and analyse the spatial distribution of its maxima (Figure 

4.11), which is described by a bi-lobed shape having its axis of symmetry along the WNW-

ESE direction. The alignment of the maxima is clearly defined to the east of Pozzuoli 

harbor, while the intensity of the maxima decreases in the western part of the caldera.  

 

 

Figure 4.11: THD analysis of the temporal step 2. a) THDw results of the deformation related to 

step 2 (May 2012 – April 2013). The green crosses identify the maxima of the THD. The magenta 

circles represent the location of Pozzuoli site (PZ), Napoli city (NA) Monte Nuovo (NU), Pozzuoli 

Harbor (HR), Astroni crater (AS), Solfatara crater (SO), Pisciarelli fumarole spring (PI), Mount 

Gauro (GA), Mofete (MF) and San Vito (SA). The results are superimposed on the SRTM DEM 

of the area. 
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Figure 4.12 shows the contour maps of the ANT group-velocity model obtained at 

periods 0.9 s (~0.9 km of depth), 1.2 s (~1 km of depth) and 2 s (~1.7 km of depth) by De 

Siena et al. [2018]. 

 

 

Figure 4.12: ANT group-velocity model at different periods. Surface-wave (Rayleigh) group-

velocity contour maps retrieved at different periods (0.9s, 1.2s, 2s) by the ANT analysis during 

the 2011-2013 unrest. The shaded polygon shows low-to-no resolution area. 
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In Figure 4.13a, we show the seismicity divided in three periods, considering the 

same time intervals identified within the SAR interferometry analysis. 

 

 

Figure 4.13: 2005-2016 seismicity and SAR vs Seismic Interferometry. (a) Epicentral 

distribution of local seismicity relevant to the three temporal steps reported in Figure 31. (b) 

Comparison between the maxima of THDw (green crosses) and the 1.2 s period (~ 1 km depth) 

seismic velocity contour map with the 2005-2011 (blue circles), 2012-2013 (red circles), 2014-

2016 (yellow circles) earthquake distributions between 800 m and 1200 m of depth.” 

 

From Pepe et al. [2019]. 
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4.4 Multiridge and ScalFun methods: the Fernandina volcano (Galapagos 

Archipelago, Ecuador) analysed with cumulative E-W deformation. 

The Galapagos Archipelago, located on the Nazca Plate, represents the emerged 

portion of an oceanic hotspot. A cluster of basaltic volcanoes with large summit calderas 

forms the Islands and the youngest active ones lie on its western part.  

Fernandina Volcano is one of the most active centres and it mainly erupts tholeiite 

basalt by offering examples to detect the relationship between the caldera morphology 

and the eruptive behaviour for basaltic shields [McBirney and Williams, 1969]. This 

volcano is located on the homonymous Island and it consists of a 1470 m elevated edifice 

with deep centred caldera and vents occurred on all parts of the volcano [Rowland, 1996]. 

The summit caldera shows circumferential eruptive fissures, while lower on the flanks 

the pattern consists of radial ones. [Simkin, 1984]. The vents alignment is the surface 

expression of dyke’s emplacement that has propagated from both deep and shallow 

magma reservoirs. The interaction between stresses and the regional field characterizes 

this structural evidence, while the radial stress field produced by a magmatic pressure 

source at the centre of an axisymmetric volcanic edifice represents the explanation to the 

radial dykes [Odé, 1957; Pollard, 1987]; furthermore, the stress state in the volcano 

controls their orientations [Chadwick and Howard, 1991]. Most of the eruptions during 

the period 1968-2008 (13 times in this time interval) were effusive and occurred along 

linear fissures; instead, the 1968 eruption induced the caldera collapse [Simkin and 

Howard, 1970], which morphology is the result of multiple collapse features, also 

distributed along the NW-SE direction [Rowland and Munro, 1992]. The alternation 

between circumferential and radial fissure eruptions characterizes the most recent activity 

form the 1982 to 2009 [Rowland and Munro, 1992; Chadwick and Dieterich, 1995; 

Chadwick et al., 2011]. 

Regarding to the modeling of the volcanic deformation source, different authors have 

used both DInSAR and GPS measurements to retrieve for temporally different volcanic 

stages a source mechanism as sill- and dike-like bodies [Jonsson et al., 1999; Chadwick 

et al., 2011; Bagnardi and Amelung, 2012]; furthermore, Bagnardi et al. [2013] proposed 

a shallow dipping sill intrusion at about 1 km b.s.l. as the more appropriate deformation 

mechanism; this model demonstrates the change of the eruptive fissures orientations from 

sub horizontal to vertical and it is verified when the feeding of circumferential fissures is 

near to the caldera margin or when a twist occurs to feed fissure eruptions on the flanks 
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of the volcano [Bagnardi et al., 2013]. Recently, Pepe et al. [2017] have analysed the 

2012-2013 unrest event through DInSAR measurements by proposing for the first time a 

pipe-like volcanic structure (with depth of about 1.5 km b.s.l.) as the more suitable 

geodetic solution. The authors interpret this last as the interconnection zone between 

shallow volcanic reservoirs and deep cumulate complex within the same extended 

Magmatic Feeding System (MFS) [Pepe et al., 2017]. 

In this scenario, we consider Multiridge and ScalFun methods to analyse the same 

processed dataset by Pepe et al. [2017]; in particular, we focus on the 2013 uplift event 

to perform the “geodetic” source shape detection under the assumptions of the validity of 

the Laplace’s equation and, in turn, of the homogeneity properties of the considered 

ground deformation field. 

The used dataset consists of 26 and 34 images acquired by the CSK satellite 

constellation along the ascending, from 2012 March to 2013 June, and descending, from 

2012 March to 2013 November, orbits, respectively, with a radar look angle at mid-scene 

of about 45°. The authors considered the SBAS approach [Berardino et al., 2002; Casu et 

al., 2014] for retrieving both the LOS mean velocity maps and time-series with a precision 

of 1 mm/year and 5mm/epoch, respectively [Casu et al., 2006; De Luca et al., 2015]. An 

exceptional resolution characterizes the data since the minimum temporal sampling 

interval is equal to 8 days and the spatial one is 3 m × 3 m. The final resolution is however 

reduced to 30 m × 30 m after the computation of 57 ascending and 81 descending 

differential interferograms and the application of a multilook (averaging) factor of 10 in 

azimuth and range directions. 

Finally, by combining the ascending and descending LOS measurements, the vertical 

and E-W components of the ground deformation fields are retrieved in terms of both mean 

velocity maps and time-series. This combination is based on a pixel-by-pixel procedure 

by considering only the coherent ones in both the ascending and descending mean 

velocity maps [Manzo et al., 2006], before having resampled the time-series to a common 

sampling interval of 8 days [Del Negro et al., 2013] since no intrinsically non-linear 

events (i.e., eruptions) occur. 

We show the mean vertical (Figure 4.14a) and E-W (Figure 4.14b) velocity maps 

by considering as reference pixel (black triangles in Figure 4.14a-b) an undeformed point 

at the North-western sector of the Fernandina Island. In particular, during the 2012-2013 
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the volcano uplifts with a mean vertical velocity larger than 10 cm/yr and it horizontally 

deforms with a mean E-W velocity greater than 8 cm/yr.  

 

 

Figure 4.14. DInSAR data and mean velocity maps at Fernandina volcano. Maps of the mean 

(a) vertical and (b) E-W velocity [cm/yr] related to the time interval 2012-2013.5 for Fernandina 

Volcano; the black triangles indicate the reference pixel, while the green, blue and red triangles 

corresponds to location of P1, P2 and P3 pixels, respectively, along which the time-series are 

displayed; (c) vertical and (d) E-W components of the deformation measured during the 2012-

2013.5 time interval at P1 and P2-P3 pixels, respectively; the black vertical continuous lines 

represent the selected temporal period for performing the proposed analysis; the green, blue and 

red continuous lines represent the linear regression at each pixels for the considered time interval. 
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We show the time-series of the vertical deformation (Figure 4.14c) at P1 pixel (green 

triangle in Figure 4.14a), that is at the maximum value of the mean vertical velocity map, 

and the E-W one (Figure 4.14d) by considering P2 (blue triangle in Figure 4.14b) and 

P3 (red triangle in Figure 4.14b) pixels, which are the points showing the maximum value 

of the mean velocity toward East and West, respectively.  

Both the components reveal a similar deformation pattern in the considered interval: 

we observe a first uplift phenomenon with no very high deformation velocity until about 

the 2012.8 epoch; then, the volcano is almost in stasis up to the 2013 date; finally, an 

unrest event characterized by a greater velocity respect to the first uplift occurs. 

Since the pattern of the vertical deformation component (Figure 4.14a) does not 

allow well characterizing the area of the field maxima (decorrelated signals), which is 

quite crucial for the ScalFun method, we analyse only the E-W deformation component. 

We select a time interval, within the greatest unrest episode, for which both the East and 

West deformations reveal the same behaviour, that is between the 2013 and the 2013.5 

epochs (vertical black continuous lines in Figure 4.14d).  

Therefore, we calculate the cumulative E-W deformation occurred during the 2013 

– 2013.5 time interval and, after a gridding operation by using the natural neighbor 

interpolator with 0.1 km of sampling step along both the 𝑥- and 𝑦-directions, we apply 

the constant-level reduction procedure, with a flat scale chosen at 1.5 km a.s.l.. This 

procedure is necessary to relocates the analysed field on a flat measurement surface since 

the considered methods are based on a level-to-level algorithm.  

We show the retrieved processed data in Figure 4.15. 
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Figure 4.15. Processed 2013-2013.5 cumulative E-W deformations. Map of the processed E-

W component [cm] of the ground deformation field for Fernandina Volcano in the 2013-2015 

time interval; the black dashed lines represents the profiles location along which the results of 

Multiridge and ScalFun methods are displayed. 

 

 

We select three profiles (black dashed lines in Figure 4.15), named as AB, CD and 

EF, along which we show the results of Multiridge and ScalFun methods. In particular, 

we analyse the first- (𝑝 = 2), second- (𝑝 = 3) and third-orders (𝑝 = 4) VDF of the 

processed E-W component to fully characterize the deformation source in terms of depth 

and shape.  

We specify that best-fit linear regressions within a 95% confidence interval represent 

the ridges, for which we calculate the determination coefficient R2 as a statistical measure 

of how the multiridge subsets are close to the fitted regression line (ridges).  

We also evaluate the solution uncertainties (intersection at the ridges) by considering 

the error on the best-fit linear regression coefficients (intercept and slope constants). 

Moreover, for each analysis, we report with the green dashed lines the scale below 

which the multi-scale dataset is surely affected by high-wavenumber noise. We mainly 

associate this noise to the constant-level reduction procedure at greater slope of the 
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volcano topography; in particular, the noise affects the choice of the ridges and multi-

scale dataset, for which we have chosen a maximum scale of 11.5 km a.s.l. with 0.1 km 

of continuation sampling. 

We start from the AB profile (black dashed line in Figure 4.15), where the ridges 

intersect in the point with coordinates 662800 E ± 200 m, 9958500 N ± 200 m at a depth 

of 1.6 ± 0.3 km b.s.l. and 662800 E ± 200 m, 9958500 N ± 200 m at a depth of 1.6 ± 0.4 

km by considering the first- (Figure 4.16a) and the second-order (Figure 4.16b) VDF of 

the E-W deformation, respectively. We apply the ScalFun method to both the left and 

right cyan ridges of both the VDF and we characterize these solutions with 𝑛~ − 3 

(Figure 4.16c-d, respectively) and 𝑛~ − 4 (Figure 4.16e-f, respectively) values, which 

correspond both to 𝑁~3 since 𝑝 changes from 2 to 3 (Table 2.1). 

Furthermore, we also analyse the third-order VDF of the E-W deformation, which 

results indicate a source located in the point with coordinates 662800 E ± 200 m, 9958500 

N ± 200 m at a depth of 0.5 ± 0.3 km b.s.l. (Figure 4.17a). 𝑛~ − 4 (Figure 4.17b) 

characterizes this source, for which 𝑁~2 since 𝑝 = 4 (Table 2.1). 
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Figure 4.16. AB profile: first- and second orders VDF. Results of the Multiridge method 

applied on the (a) first- and (b) second-order VDF of the E-W deformation; the red solid and black 

dashed lines represent the best-fit linear regression lines and the linear regression boundary 

solutions within a 95% confidence interval, respectively, while the black solid lines indicate the 

volcano topography and the green dashed lines define the scale below which the multi-scale 

dataset is surely affected by high-wavenumber noise; for each regression line, we indicate the R2 

coefficient. Results of ScalFun method applied on the left and right ridges of the (c-d) first- and 

(e-f) second-order VDF cases; the red dots represent the solution using the intersection of the best 

fit linear regressions, while the black circles and triangles regard to the retrieved boundary 

solutions; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log 𝑧
, where 𝑧 represents the vertical scale. 
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Figure 4.17. AB profile: third-order VDF. Results of the (a) Multiridge and (b) ScalFun methods 

applied on the third-order VDF of the E-W deformation; the red solid and black dashed lines 

represent the best-fit linear regression lines and the linear regression boundary solutions within a 

95% confidence interval, respectively, while the black solid lines indicate the volcano topography 

and the green dashed line defines the scale below which the multi-scale dataset is surely affected 

by high-wavenumber noise; for each regression line, we indicate the R2 coefficient; the red dots 

represent the solution using the intersection of the best fit linear regressions, while the black 

circles and triangles regard to the retrieved boundary solutions; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, 

where 𝑧 represents the vertical scale. 
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Similarly to the previous case, we consider the E-W oriented CD profile (black 

dashed line in Figure 4.15), for which the Multiridge analysis provides a single 

intersection located in the point with coordinates 662700 E ± 100 m, 9958800 N at a 

depth of 1.7 ± 0.5 km b.s.l. for the first-order VDF (Figure 4.18a) and 662800 E ± 100 

m, 9958800 N at a depth of 1.6 ± 0.4 km for the second-order one (Figure 4.18b). 

Applying the ScalFun method to both the left and right cyan ridges of both the VDF we 

characterize these solutions with 𝑛~ − 3 (Figure 4.18c-d, respectively) and 𝑛~ − 4 

(Figure 4.18e-f, respectively) values, that are 𝑁~3 since 𝑝 changes from 2 to 3 (Table 

2.1)  

Moreover, the third-order VDF analysis indicates a source located in the point with 

coordinates 662700 E ± 100 m, 9958800 N at a depth of 0.6 ± 0.5 km b.s.l. (Figure 4.19a) 

and characterized by values of 𝑛~ − 4 (Figure 4.19b) and 𝑁~2, since 𝑝 = 4 (Table 2.1). 
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Figure 4.18. CD profile: first- and second orders VDF. Results of the Multiridge method 

applied on the (a) first- and (b) second-order VDF of the E-W deformation; the red solid and black 

dashed lines represent the best-fit linear regression lines and the linear regression boundary 

solutions within a 95% confidence interval, respectively, while the black solid lines indicate the 

volcano topography and the green dashed lines define the scale below which the multi-scale 

dataset is surely affected by high-wavenumber noise; for each regression line, we indicate the R2 

coefficient. Results of ScalFun method applied on the left and right ridges of the (c-d) first- and 

(e-f) second-order VDF cases; the red dots represent the solution using the intersection of the best 

fit linear regressions, while the black circles and triangles regard to the retrieved boundary 

solutions; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log 𝑧
, where 𝑧 represents the vertical scale. 
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Figure 4.19. CD profile: third-order VDF. Results of the (a) Multiridge and (b) ScalFun 

methods applied on the third-order VDF of the E-W deformation; the red solid and black dashed 

lines represent the best-fit linear regression lines and the linear regression boundary solutions 

within a 95% confidence interval, respectively, while the black solid lines indicate the volcano 

topography and the green dashed line defines the scale below which the multi-scale dataset is 

surely affected by high-wavenumber noise; for each regression line, we indicate the R2 

coefficient; the red dots represent the solution using the intersection of the best fit linear 

regressions, while the black circles and triangles regard to the retrieved boundary solutions; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log 𝑧
, where 𝑧 represents the vertical scale. 
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The Multiridge analysis for the last analysed EF profile yields a single intersection 

located in the point with coordinates 662700 E ± 200 m, 9959300 N ± 100 m at a depth 

of 1.7 ± 0.5 km b.s.l. and 662500 E ± 200 m, 9959300 N ± 100 m at a depth of 1.6 ± 0.4 

km by computing the first- (Figure 4.20a) and the second-order (Figure 4.20b) VDF of 

the E-W deformation, respectively. The ScalFun method for both the left and right cyan 

ridges provides values of 𝑛~ − 3 (Figure 4.20c-d, respectively) and 𝑛~ − 4 (Figure 

4.20e-f, respectively) for both the analysed VDF. Also, 𝑁~3 since 𝑝 changes from 2 to 3 

(Table 2.1). 

Finally, the analysis of the third-order VDF highlights a source located in the point 

with coordinates 662500 E ± 200 m, 9959300 N ± 100 m at a depth of 0.6 ± 0.5 km b.s.l. 

(Figure 4.21a) and characterized by 𝑛~ − 4 (Figure 4.21b) and 𝑁~2, since 𝑝 = 4 

(Table 2.1). 
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Figure 4.20. EF profile: first- and second orders VDF. Results of the Multiridge method applied 

on the (a) first- and (b) second-order VDF of the E-W deformation; the red solid and black dashed 

lines represent the best-fit linear regression lines and the linear regression boundary solutions 

within a 95% confidence interval, respectively, while the black solid lines indicate the volcano 

topography and the green dashed lines define the scale below which the multi-scale dataset is 

surely affected by high-wavenumber noise; for each regression line, we indicate the R2 

coefficient. Results of ScalFun method applied on the left and right ridges of the (c-d) first- and 

(e-f) second-order VDF cases; the red dots represent the solution using the intersection of the best 

fit linear regressions, while the black circles and triangles regard to the retrieved boundary 

solutions; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log 𝑧
, where 𝑧 represents the vertical scale. 
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Figure 4.21. EF profile: third-order VDF. Results of the (a) Multiridge and (b) ScalFun methods 

applied on the third-order VDF of the E-W deformation; the red solid and black dashed lines 

represent the best-fit linear regression lines and the linear regression boundary solutions within a 

95% confidence interval, respectively, while the black solid lines indicate the volcano topography 

and the green dashed line defines the scale below which the multi-scale dataset is surely affected 

by high-wavenumber noise; for each regression line, we indicate the R2 coefficient; the red dots 

represent the solution using the intersection of the best fit linear regressions, while the black 

circles and triangles regard to the retrieved boundary solutions; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, 

where 𝑧 represents the vertical scale. 
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In the following Table 4.1, we list and summarize the retrieved results for each 

analysed profile. 

 

Table 4.1. “Geodetic” solutions for Fernandina volcano retrieved from the E-W deformation and 

its VDF. The depth values are referred to the sea level. 

 

PROFILE 
ANALYSED 

TRANSFORMATION 

EAST 

[km] 

NORTH 

[km] 

DEPTH 

[km] 
N 

 

AB 

 

1st-order VDf 662.8 ± 0.2 9958.5 ± 0.2 -1.6 ± 0.3 3 

2nd-order VDf 662.8 ± 0.2 9958.5 ± 0.2 -1.6 ± 0.4 3 

3rd-order VDf 662.8 ± 0.2 9958.5 ± 0.2 -0.5 ± 0.3 2 

 

CD 

 

1st-order VDf 662.7± 0.1 9958.8 -1.7 ± 0.5 3 

2nd-order VDf 662.8 ± 0.1 9958.8 -1.6 ± 0.4 3 

3rd-order VDf 662.7 ± 0.1 9958.8 -0.6 ± 0.5 2 

 

EF 

 

1st-order VDf 662.7 ± 0.2 9959.3 ± 0.1 -1.7 ± 0.5 3 

2nd-order VDf 662.5 ± 0.2 9959.3 ± 0.1 -1.6 ± 0.4 3 

3rd-order VDf 662.5 ± 0.2 9959.3 ± 0.1 -0.6 ± 0.5  2 
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4.5 Integrated multi-scale methods: the Yellowstone caldera (Wyoming, 

USA) analysed with cumulative vertical deformation. 

Yellowstone caldera represents a volcanic field formed by three massive caldera-

forming eruptions, around 2.1, 1.3 and 0.64 Ma. After the last eruption, the Mallard Lake 

(ML) and Sour Creek (SC) structural resurgent domes formed in the South-western and 

North-eastern caldera areas. In the last 0.64 Ma, the caldera floor has been characterized 

by covering of rhyolitic lava flows, while outside the caldera, especially towards North 

and South, basaltic eruptions occurred [Christiansen, 2001]. The high convective ground 

water circulation affects this volcanic area and widespread hydrothermal systems with 

geysers, as the Norrys Geyser Basin (NGB), hot springs and fumaroles testify to this 

feature [Fournier, 1989]. Geodetic techniques, as precise levelling, GPS and DInSAR 

reveals the occurrence of inflation and deflation cycles [Wicks et al., 2006; Puskas et al., 

2007; Chang et al., 2007; Chang et al., 2010; Aly and Cochran 2011; Tizzani et al., 2015] 

and the migration of the deformation between both the resurgent domes [Wicks et al., 

1998], with variable deformation rates during the years. 

The volcanic mechanisms of the observed deformation at Yellowstone caldera are 

mainly based on hydrothermal phenomena or magmatic ones, which retrieved source 

depths should be shallower or deeper than the brittle-ductile transition, respectively. 

Concerning to the magmatic model, the authors [Wicks et al., 2006; Puskas et al., 2007; 

Vasco et al., 2007; Chang et al., 2007; Chang et al., 2010; Aly and Cochran 2011; Tizzani 

et al., 2015] have proposed geodetic solutions by using parametric inverse procedures for 

GPS, DInSAR and leveling measurements and providing different results for ML and SR 

resurgent domes. Indeed, for Chang et al. [2007; 2010] the source of deformation is a 

sinlge tabular body at 6 – 16 km ranging depth beneath the caldera, while Aly and Cohran 

[2011] considered two point sources and one tabular body, with variable depth between 

10 and 18 km below the caldera, for modeling the ML, SR and the area between them. 

Finally, Tizzani et al. [2015] proposed as best fitting geodetic solution a model with two 

prolate spheroids located beneath the brittle-ductile transition for ML and SR, 

respectively. 

However, the 3D P-wave velocity model proposed by Farrell et al. [2014] images an 

unique magmatic body corresponding with a low velocity zone just below both ML and 

SR and at locally variable depth from 5 to 15 km b.s.l.. 
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We specify another deformation pattern occurs at the northern caldera rim, at NGB, 

for which a hydrothermal model is often considered [Wicks et al., 2020]. 

In this framework, we apply the integrated multi-scale approach, i.e. Multiridge, 

ScalFun methods and THD technique, to study the geometrical features of the active 

deformation sources for ML and SR resurgent domes. In particular, we analyse the 2005-

2007 uplift event by assuming that its cumulative vertical deformation satisfies the 

Laplace’s equation and the local-homogeneity law. 

The considered dataset (not published yet) consists of SAR images acquired by the 

ERS-1/2 (31) and ENVISAT (22) sensors from June 1992 to May 2007 and from May 

2005 to September 2010, respectively, along both the ascending and descending orbits. 

The DInSAR – SBAS technique [Berardino et al., 2002; Pepe et al., 2005; Lanari et al., 

2007] is used to process the dataset; the differential interferograms are computed after the 

estimation of the topographic phase components [Franceschetti and Lanari, 1999] by 

considering precise satellite orbital information and the three-arc sec Digital Elevation 

Model (DEM) of the study area, retrieved by the Shuttle Radar Topography Mission 

(SRTM) [Rosen et al., 2001]. In addition, a complex multilook operation [Rosen et al., 

2000], with four and twenty looks in the range and azimuth directions, respectively, and 

an advanced multitemporal noise-filtering process [Yang et al., 2013], for mitigating the 

noise decorrelation effects [Zebker and Villasenor, 1992; Bamler and Hartl, 1998], has 

been applied. The original phase signals are then retrieved by using the Extended 

Minimum Cost Flow phase unwrapping procedure [Pepe and Lanari, 2006]. Finally, the 

SBAS algorithm provides the 2013-2010 mean velocity maps and the time-series in terms 

of LOS projection of the deformation along both the ascending and descending orbits, 

from which the incoherent pixels were excluded [Pepe and Lanari, 2006] and the 

displacement rate related to the North American Plate were removed. 

We show both the ascending (Figure 4.22a) and descending (Figure 4.22b) LOS 

mean velocity maps as relative deformation respect to a stable reference pixel (black filled 

triangle in Figure 4.22a-b) located at the North-western part of the region. For both the 

orbits, we observe the NGB area moves away from the satellite, while the ML and SR 

resurgent domes tends to get closer to it, with a maximum deformation rate of 4 cm/yr 

(Figure 4.22a-b). This evidence reveals that the movement is predominantly vertical. 

 



126 
 

 

Figure 4.22. LOS data and mean velocity maps at Yellowstone caldera. Maps of the mean (a) 

ascending and (b) descending velocity [cm/yr] related to the 2003.5-2010 time interval for 

Yellowstone caldera; the black filled triangles indicate the reference pixel location, while the blue, 

black, red empty triangles, and the blue, black, red dots correspond to the location of P1A, P2A, 

P3A, and P1D, P2D, P3D pixels, respectively, along which the time-series are displayed; measured 

deformation values along the (c) ascending and (d) descending orbits during the 2003.5-2010 time 

interval at P1A, P2A, P3A, and P1D, P2D, P3D pixels, respectively. 

 

 

 

We display the temporal behaviour of the LOS deformation pattern by selecting the 

pixels characterized by the maximum mean velocity around SR, P1A (blue empty triangle 

in Figure 4.22a) and P1D (blue dot in Figure 4.22b), ML, P2A (black empty triangle in 

Figure 4.22a) and P2D (black dot in Figure 4.22b), and NGB, P3A (red empty triangle in 
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Figure 4.22a) and P3D (red dot in Figure 4.22b), for both the ascending (Figure 4.22c) 

and descending (Figure 4.22d) orbits. We notice the three areas reflect the same 

deformation trends, but with different rate during the considered time (Figure 4.22c-d). 

To analyse the field in terms of E-W and vertical deformation, the ascending and 

descending LOS measurements are combined according to a pixel-by-pixel procedure 

based on the individuation of the coherent ones in both the mean velocity maps [Manzo 

et al., 2006]. Before this, the time-series have been resampled to a common temporal 

sampling interval [Del Negro et al., 2013], since no intrinsically non-linear events (i.e., 

eruptions) occur. 

The mean vertical (Figure 4.23a) and E-W (Figure 4.23b) velocity maps show a 

comparable deformation rate respect to the previous ones in terms of intensity (i.e., 4 

cm/yr). In particular, ML and SR are in uplift and they move toward East, while a 

subsidence phenomenon characterizes NGB, that moves toward West (Figure 4.23a-b). 

Also, we show the field patterns during the time at the pixels characterized by the 

maximum mean velocity around SR, P1V and P1H (black empty triangles in Figure 4.23a-

b, respectively), ML, P2V and P2H (black dots in Figure 4.23a-b, respectively), and NGB, 

P3V and P3H (black stars in Figure 4.23a-b, respectively), for both the vertical (Figure 

4.23c) and E-W (Figure 4.23d) components, respectively. We notice the three areas 

reflect the same deformation trends highlighted by the mean velocity, but with different 

rate during the considered time for both the components (Figure 4.23c-d). We observe 

that uplift phenomena characterize ML and SR resurgent domes, while a subsidence one 

affects the NGB area (Figure 4.23c). However, SR tends to move toward East during 

almost all the considered time interval, while different E-W trends seem to characterize 

the ML and NGB zones (Figure 4.23d).  

For these reasons, we decide to analyse only the vertical component of the ground 

deformation field since it shows more definite and constant trends. Specifically, we focus 

on the 2005-2007 uplift event, which is characterized by the highest velocity (orange 

vertical continuous lines in Figure 4.23c). 
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Figure 4.23. Mean velocity maps and deformation components at Yellowstone caldera. Maps 

of the mean (a) vertical and (b) E-W velocity [cm/yr] related to the 2003.5-2010 time interval for 

Yellowstone caldera; the black filled triangles indicate the reference pixel location, while the 

black empty triangles, the black dots, the black stars correspond to the location of P1V and P1H, 

P2V and P2H, P3V and P3H pixels, respectively, along which the time-series are displayed; 

measured (c) vertical and (d) E-W deformation values during the 2003.5-2010 time interval at 

P1V, P2V, P3V, and P1H, P2H, P3H pixels, respectively; the orange vertical continuous lines 

represent the selected temporal period for performing the proposed analysis. 

 

Therefore, we calculate the cumulative vertical deformation occurred during the 

2005 – 2007 time interval and, after a gridding operation by considering the natural 

neighbor interpolator with 0.1 km of sampling step along both the 𝑥- and 𝑦-directions, 
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we apply the constant-level reduction procedure, which flat scale is chosen to be at 4 km 

a.s.l.. We show the retrieved processed data in Figure 4.24.  

To compare our results with the aforementioned ones, we study the ML and SR uplift 

regions by considering five profiles as spatially distributed in Figure 4.24 (black and blue 

dashed lines). 

 

 

Figure 4.24. Processed 2005-2007 cumulative vertical deformation. Map of the vertical 

component [cm] of the ground deformation field measured at Yellowstone caldera in the 2005-

2007 time interval; the original data is gridded by considering the natural neighbor interpolator 

with 0.1 km of sampling step along both the 𝑥- and 𝑦-directions and, then, the constant-level 

reduction procedure is applied to 4 km a.s.l.; the black dashed line and the blue ones represent the 

profiles location along which the results of Multiridge and ScalFun methods are displayed by 

performing the field and its second-order VDF analyses, respectively. 

 

 

We remark that the ridges are representative of the best-fit linear regressions within 

a 95% confidence and that we calculate the determination coefficient R2 as a statistical 

measure of how the multiridge subsets are close to the fitted regression line (ridges). We 

also evaluate the solution uncertainties (intersection at the ridges) by considering the error 

on the best-fit linear regression coefficients (intercept and slope constants) and, for each 
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analysis, we report with the green dashed lines the scale below which the multi-scale 

dataset is surely affected by high-wavenumber noise. 

The first considered profile is the SW – NE oriented AB profile passing through both 

the local deformation anomalies of ML and SC (black dashed line in Figure 4.24). We 

apply the Multiridge and ScalFun methods to the field component (𝑝 = 1) by considering 

9 km a.s.l. as maximum scale for the multi-scale dataset, with 0.2 km of continuation 

sampling. The results show two possible “geodetic” sources: the first one, beneath ML, 

is located at 9.8 ± 1 km b.s.l. in the point with coordinate 524200 E ± 500 m, 4919400 N 

± 500 m (blue continuous lines in Figure 4.25a); the second one is located 9.1 ± 1.6 km 

b.s.l. deep beneath SR at the coordinates point 550600 E ± 1000 m, 4942500 N ± 1000 m 

(red continuous lines in Figure 4.25a). Both the sources reflect values of 𝑛~ − 2 (Figure 

4.25b-c) and, since 𝑝 = 1, 𝑁~3 (Table 2.1). 

 

 

Figure 4.25. Analysis of the vertical deformation. Results of the Multiridge method applied on 

the (a) 2005-2007 vertical cumulative deformation; the coloured solid and black dashed lines 

represent the best-fit linear regression lines and the linear regression boundary solutions within a 

95% confidence interval, respectively, while the black solid lines indicate the caldera topography 

and the green dashed lines define the scale below which the multi-scale dataset is surely affected 

by high-wavenumber noise; for each regression line, we indicate the R2 coefficient; results of 

ScalFun method for the (b) first and (c) second retrieved intersections by Multiridge method; the 

coloured dots represent the solution of the best fit linear regressions, while the black circles and 

triangles regard to the retrieved boundary ones; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑤(𝑧))

𝜕 log𝑧
, where 𝑤 and 𝑧 

represent the vertical deformation and the vertical scale, respectively. 
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We consider the second-order VDF (𝑝 = 3) of the same vertical deformation to 

analyse the other four profiles (blue dashed line in Figure 4.24), which transversely cross 

the AB one, by considering ~12 km as maximum scale for the multi-scale dataset, with 

0.2 km of continuation sampling. 

We briefly report the results (Figure 4.26): from the CD profile, passing through the 

ML resurgent dome, we individuate one ridges intersection to the depth of 6.9 ± 0.6 km 

b.s.l. at the coordinates point 528250 E ± 200 m, 4923500 N ± 200 m (Figure 4.26a), 

characterized by a locally stable values of 𝑛~ − 2.6 (Figure 4.26e) and 𝑁~1.6; from the 

EF profile, passing between the ML and SR resurgent domes, we individuate one ridges 

intersection to the depth of 7.5 ± 0.5 km b.s.l. at the coordinates point 536600 E ± 200 m, 

4929500 N ± 200 m (Figure 4.26b), characterized by a locally stable values of 𝑛~ − 2.6 

(Figure 4.26f) and 𝑁~1.6; from the GH profile, also passing between the ML and SR 

resurgent domes, we individuate one ridges intersection to the depth of 8 ± 0.4 km b.s.l. 

at the coordinates point 541600 E ± 200 m, 4933950 N ± 200 m (Figure 4.26c), 

characterized by a locally stable values of 𝑛~ − 2.55 (Figure 4.26g) and 𝑁~1.55; 

finally, from the IL profile, passing through the SR resurgent dome, we individuate one 

ridges intersection to the depth of 6 ± 0.6 km b.s.l. at the coordinates point 550600 E ± 

200 m, 4942200 N ± 200 m (Figure 4.26d), characterized by a locally stable values of 

𝑛~ − 2.4 (Figure 4.26h) and 𝑁~1.4.  

In the Table 4.2, we list and summarize the retrieved results for each profile. 
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Figure 4.26. Analysis of the second-order VDF. Results of (a-d) Multiridge and (e-h) ScalFun 

methods for the CD, EF, GH and IL profiles; the red solid and black dashed lines represent the 

best-fit linear regression lines and those of the boundary solutions within a 95% confidence 

interval, respectively, while the black solid lines indicate the caldera topography and the green 

dashed lines define the scale below which the multi-scale dataset is surely affected by high-

wavenumber noise; for each regression line, we indicate the R2 coefficient; the red dots represent 

the solutions of the best fit linear regressions, while the black circles and triangles regard to the 

retrieved boundary solutions; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 log(𝑉𝐷𝐹(𝑧))

𝜕 log𝑧
, where 𝑧 represents the vertical scale. 
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Finally, we consider the THD technique for the boundary analysis of the deformation 

sources. We apply this technique on the 2005-2007 cumulative vertical deformation, and 

we map the results, THDw, in Figure 4.27.  

THD shows clear extreme alignments, whose seems to delineate the presence of a 

single 50 × 20 km extended body (blue dashed lines in Figure 4.27). In particular, the 

maxima intensity increases at NE and NW respect to the caldera. We specify the results 

related to the southern part of the caldera are strictly depending on the data spatial 

distribution. 

 

 

 

Figure 4.27. THDw results at Yellowstone caldera. Results of THDw [-] calculated on the 2005-

2007 cumulative vertical component of the ground deformation field measured at Yellowstone 

caldera. The blue dashed lines follow the main maxima alignments.  
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Table 4.2. “Geodetic” solutions for resurgent domes at Yellowstone caldera from the analysis of 

the vertical deformation and its VDF. The depth values are referred to the sea level. 

 

PROFILE LOCATION 
EAST 

[km] 

NORTH 

[km] 

DEPTH 

[km] 
N 

AB ML 524.2 ± 0.5 4919.4 ± 0.5 -9.8 ± 1 3 

AB SR 550.6 ± 1 4942.5 ± 1 -9.1 ± 1.6 3 

CD ML 528.25 ± 0.2 4923.5 ± 0.2 -6.9 ± 0.6 1.6 

EF Between domes 536.6 ± 0.2 4929.5 ± 0.2 -7.5 ± 0.5 1.6 

GH Between domes 541.6 ± 0.2 4933.95 ± 0.2 -8 ± 0.4 1.55 

IL SR 550.6 ± 0.2 4942.2 ± 0.2 -6 ± 0.6 1.4 
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CHAPTER 5 

DISCUSSION 

We propose and validate an integrated multi-scale approach for modeling volcanic 

deformation sources by DInSAR measurements; in particular, we consider the Multiridge, 

ScalFun and THD methods to retrieve information on geometrical parameters of the 

causative bodies.  

Modeling volcanic deformation sources is commonly accomplished with inverse 

methods and the use of the AM. This approach is mostly based on the general solution of 

the elastic problem, which describes the deformation field as a biharmonic but non-

harmonic function. Many problems affect these procedures, including the inherent 

ambiguity, the theoretical ambiguity, the choice of a priori information and the 

availability of constraints. Moreover, the inverse methods and the AM may not well 

approximate the real physical scenario. This approach however represents the fastest way 

allowing an acceptable modeling of the volcanic deformation sources. 

We studied the integrated multi-scale approach; we prove its validity in the case of a 

volcanic region approximated by hydrostatic pressure variation within the source 

embedded in a homogeneous elastic half-space. In this physical scenario, we can indeed 

use Multiridge, ScalFun and THD methods to retrieve unambiguous solutions in terms of 

depth, horizontal position, shape, and horizontal extent of the deformation sources. This 

information represents a reliable source model, which can be also used as constraint for 

a subsequent inverse modeling, characterizing the volcanic system from both geometrical 

and physical point of views. 

We demonstrate that the proposed methods do not require defining complex forward 

and inverse problems, do not depend on the distribution of the medium elastic parameters 

within the elastic regime (i.e., small variations of the elastic parameters), and are stable 

vs. noise; they are also crucial in case of a single component availability and for multi-

source scenarios, while their solutions only depend on the harmonic properties of the 

analysed field, which has to satisfy the Laplace’s equation. We remark that Laplace 

Equation is surely satisfied in the case of hydrostatic pressure variation of a source 

embedded in a homogeneous elastic half-space, which often also characterize the AM 

expressions. 
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However, some general limitations affect the proposed approach, as the sampling 

ambiguity, experimental/instrumental errors, the scale, and the high gradients of the 

measurement surface. 

In addition, we also consider the homogeneity and local-homogeneity properties of 

harmonic deformation field. Specifically, the first one allows the analysis of sources 

whose field properties do not particularly vary with the scale, while the second one allows 

studying volcanic bodies with a geometrically irregular shape. Moreover, we introduce 

the VDF to emphasize the high-wavenumber contributions to the signal. 

In the following paragraphs, we report some comments about the use of the proposed 

approaches on the already described simulated and real ground deformation field, 

highlighting their advantages and limitations. 
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5.1 Comments on the applications to the synthetic cases. 

3D finite bodies often represent the volcanic reservoirs, and, in many cases, regular 

geometries can approximate them. The simplest model of magma chamber is the spherical 

source, for which the Mogi’s model [Mogi, 1958] is widely used; volcanic mechanisms 

as ascent pipes or sills/dikes emplacement are instead modeled with the Yang’s [Yang 

and Davis, 1988] or Okada’s [Okada, 1985] AM, respectively. Therefore, we performed 

many tests to study these sources with the Multiridge and ScalFun methods and by 

resorting to the FEM environment, to accurately reproduce fields which satisfy the 

Laplace’s equation. 

We first consider the vertical deformation analysis and the Sphere Case (Figure 3.2), 

for which the ridges have constant slopes vs. scale: ridges exactly converge to the centre 

of the body (green dashed lines in Figure 3.2e). Indeed, the spherical source is the 

common example of source distribution having its support in its centre at any considered 

scale, that is typical of the ideal source with 𝑁~3 (Table 2.1) according to the 

homogeneity law. The ScalFun analysis confirms this result by providing values of 𝑛~ −

2 (green stars in Figure 3.2f) and, in turn, 𝑁~3 (Table 2.1). Indeed, the spherical source, 

as expressed by the Mogi’s model, is the most evident example of inherent ambiguity of 

the deformation field, for which an unambiguous model about its radius, its pressure 

variation and the half-space physical parameters cannot be achieved.   

In the Ellipsoid 2 Case (Figure 3.2), that is representative of the ascent pipe 

mechanisms and of the Yang’s AM, we can define two sets of ridges because these last 

change their slope with the scale; in particular, at low scales they tend to intersect nearby 

the top of the source (red dashed lines in Figure 3.2e), that is at its shallowest singular 

point, while, at larger scales, the ridges tend to converge to the source centre (red 

continuous lines in Figure 3.2e) and their features are similar to those of the Sphere Case 

(green dashed lines in Figure 3.2e). This is consistent with the asymptotic expression of 

the multipolar expansion of potential fields, for which, at large scales, the field behaviour 

is like that of a point ideal source. The ScalFun methods indeed provides values of 𝑛~ −

2 (red stars in Figure 3.2f) and, in turn, 𝑁~3 (Table 2.1). Moreover, we can make similar 

comments for the Ellipsoid 1 Case (Figure 3.2). 

The change of the ridge slopes with the scale also occurs in the Prism 2 Case (Figure 

3.3), which we consider for representing mechanisms of sill emplacement and the 
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Okada’s AM. In particular, at low scales the ridges are strongly affected by the body 

edges, that are the singular points of the sources, while, at larger ones they exactly 

intersect to the source centre (red continuous lines in Figure 3.3e) since the multipolar 

terms of the field expression vanish with the scale increase; we indeed characterize this 

last depth estimate by ScalFun method with values of 𝑛~ − 2 (red stars in Figure 3.3f) 

and, in turn, 𝑁~3 (Table 2.1). The results of the Prism 1 and Cube Case (Figure 3.3e-f) 

are also consistent with the asymptotic expression of the multipolar expansion of potential 

fields: they indeed show how the deformation field tend to that of a point ideal source 

with the decrease of the bodies extent, which acts as the scale increase. 

Similar comments arise from the analysis of the E-W components, for which we only 

show the results of the Ellipsoid 2 and Prism 2 cases (Figure 3.4). 

At this stage, we use the VDF of the field since it allows enhancing the high-

wavenumber contributions of the signal and, in turn, the multipolar terms of the field 

expressions. For this reason, we only consider the Ellipsoid 2 and Prism 2 cases, which 

are a good approximation of linear and planar ideal sources, respectively. 

For the Ellipsoid 2 Case, we apply the Multiridge and ScalFun analysis on the first-

order VDF (Figure 3.5), observing that the central ridges just intersect at the source top 

(blue continuous lines in Figure 3.5e). The ScalFun analysis provides value as 𝑛~ − 2 

(blue stars in Figure 3.5f), which corresponds to 𝑁~2   since 𝑝 = 2. This is in accordance 

with the homogeneity law (Table 2.1), for which this value characterizes the linear source 

and the depth estimate by Multiridge refers to its top. Therefore, although this body is 

only an approximation of ideal sources, as can also be seen from the intersection nearby 

the centre of the ridges far from the source (blue dashed lines in Figure 3.5e), the use of 

the VDF allows deriving crucial morphological information of the causative body by 

highlighting the multipolar terms of the field expression that, in this case, are related to 

the source top. Indeed, we can correctly interpret the field as generated by a vertical 

elongated source at the expected depth. 

We can make similar comments for the Prism 2 Case (Figure 3.5), where we consider 

the second-order VDF by observing the intersections of the ridges nearby the body edges 

(red continuous lines in Figure 3.5e). We characterize these solutions by ScalFun method 

with values of 𝑛~ − 2 and 𝑁~1  (Table 2.1) since 𝑝 = 3 (red stars in Figure 3.5f). This 

result agrees with the homogeneity law, for which 𝑁~1  arises by considering the edges 
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depth of planar sources. Therefore, also in this case we can correctly interpret the field as 

generated by a planar source, although the modeled field is just an approximation of the 

homogeneous ones. 

Such observations are also valid for the E-W deformation, as shown in Figure 3.6.  

These tests show that Multiridge and ScalFun methods are valid tools to study 

deformation sources since they provide the horizontal position of the bodies and their 

depth to the centre, whose estimate is affected by 6.7 % error in the worst case. However, 

we note that this value has characterized the Ellipsoid 2 Case analysis, where the 

difference between the estimated and expected values is equal to 0.2 km, that is less than 

the sampling step of the modeled dataset. Moreover, the use of the VDF also provides 

information about the shape of the considered source, and the position of its top/edges, 

with a difference between the observed and expected parameters of only 0.1 km, in the 

worst considered case, and less than the sampling step of the dataset. Regarding the 

ScalFun method, the maximum retrieved discrepancies between the observed and 

expected 𝑛 value correspond to an approximation of 0.07 respect to integer expected 

number. However, this last also occurs because the modeled bodies approximate the ideal 

sources. 

We conclude the tests of the regular sources with the application of the THD method 

for both the low- and large-scale cases for the detection of the source horizontal sizes 

(Figure 3.7). The results confirm a well-known limitation of this technique since it 

provides an overestimation of the horizontal extent of field sources that increases vs. the 

scale. We again point out that the accuracy of the THD outcomes also depend on the data 

sampling. 

In the case of volcanic reservoirs of geometrically irregular sources, we need to use 

the generalized homogeneity theory, allowing the study of complex bodies through 

fractional 𝑁 values and the definition of the local-homogeneity properties of the 

inhomogeneous fields [Fedi et al., 2015]. To briefly introduce this approach, we build 

other tests by considering two cases of source with irregular shape (Figure 3.8). The 

results (Figure 3.9-3.17) show that the integrated multi-scale approach provides valid 

information also for these cases; specifically, we show that the Multiridge solutions 

related to the centre of the analysed sources, or near this last, are characterized by 𝑁 

values ranging from 3 to 2, while the depth estimates related to the top and the boundaries 
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of the bodies are described by values of 𝑁 ranging from 2 to 1. Moreover, in the multi-

source case characterized by only one anomalous pattern, we can distinguish the source 

regions from the surroundings by the retrieved unstable and not acceptable 𝑁 values. 

Finally, the THD technique is still a supporting tool, which provides information about 

the source horizontal extent and the number of the active sources. 

Furthermore, we discuss a last set of simulations, whose physical scenario does not 

satisfy the Laplace’s equation. We remember that the deformation field does not enjoy 

the harmonic properties mainly in two cases: non-constant distribution in the space of the 

elastic parameters within the half-space; non-hydrostatic variation of the source pressure.  

In the first case, we analyse the simple scenario of a multi-layered half-space by 

considering the increasing of the 𝐸 parameter with the depth, acceptable within the elastic 

regime. We show that the proposed approach provides valid results characterized by only 

5 % on the source depth estimate (Figure 3.18). When the variation of the medium elastic 

parameters is larger, the modeled system moves away from the homogeneous half-space 

condition, and the proposed approach can also provide source depth value with 20 % of 

error respect to the expected one (Figure 3.19).  

For the second case, we consider a source with over-pressure applied only along the 

𝑧-direction; this condition causes an underestimation of the source depth with the 

Multiridge and ScalFun methods that, in this particular simulation, is affected by 35 % 

error (Figure 3.20c). Also, the ScalFun method provides unstable results especially for 

the larger scales, where the error related to the upward continuation transform is as much 

larger (Figure 3.20d).  

Regarding the THD technique, we consider the tensile component of rectangular 

source calculated by the Okada’s AM. This test confirms that the THDw (Figure 3.21) 

depends on the scale since we are able to define the horizontal extent of the body even if 

the generated field does not satisfy the Laplace’s equation. 
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5.2 Comments on the applications to the real cases. 

In this paragraph, we report some comments about the application of the proposed 

methods to the ground deformation patterns. 

 

5.2.1 The case study of Okmok volcano. 

“We use the interferogram related to the period 15 July 2003 – 29 June 2004, with 

images acquired by the ENVISAT satellite along the descending orbit (Figure 4.1). The 

Okmok volcano deformation field has been studied by many authors [Lu et al., 2005; 

Masterlark et al., 2010; Biggs et al., 2010; Masterlark et al., 2012], which all interpreted 

that deformation was due to the inflation or deflation of a spherical magma chamber. In 

most of these studies, the source model type was a priori assumed, and the elastic 

parameters were fixed before inverting the data. Only in one case [Masterlark et al., 

2012] did the authors use seismic tomography as a priori information to set the 

heterogeneous distribution of the elastic parameters. For these authors, the source depth 

ranged from 3.1 to 3.5 km, while the source position ranged from 690.3 km to 690.72 km 

for the East UTM coordinate and 5923.6 km to 5923.98 km for the North UTM coordinate 

(Table 5.1). Our results (Figure 4.2) are in good agreement with those of the 

aforementioned works, indicating a depth source equal to 3.4±0.06 km and a horizontal 

position at 690.9±0.08 km E and 5924±0.07 km N (Table 5.1). Moreover, we estimated a 

Structural Index of 𝑁~3 and, therefore, we can state that the geodetic source geometry 

is well represented by the point-spherical model. 

Table 5.1. Source locations for the Okmok magma chamber retrieved from the DInSAR 

measurements. 

STUDY PERIOD EAST [km] NORTH [km] DEPTH* [km] 

Zhong Lu et al., 

2005 
1992-2003 690.55 5923.85 -3.2 

Masterlark et al., 

2010 
1995-1997 690.72 5923.98 -3.11 

Biggs et al., 2010 1992-2008 690.30 5923.60 -3.4 

Masterlark et al., 

2012 
1995-1997 690.70 5923.91 -3.52 

This study 2003-2004 690.90 5924.00 -3.4 

*Depths are below sea level.” 

 

From Castaldo et al. [2018b]. 
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5.2.2 The multi-source case study of Uturuncu volcano. 

“The results retrieved by the application of multi-scale approaches for the analysis 

of DInSAR measurements support the hypothesis of a multi-source scenario for APVC 

and Uturuncu volcano region. A first evidence is provided by the mean vertical velocity 

field (Figure 4.4a,b), which highlighted a higher deformation rate at Uturuncu respect 

to the pattern measured at the APVC; indeed, different deformation trends are shown at 

P1 and P2 selected pixels (Figure 4.4c), located at centre of APVC and at Uturuncu 

volcano, respectively. Specifically, the APVC area is characterized by a quasi-linear 

vertical deformation rate, while the P2 time-series points out a higher vertical velocity 

pattern between August 2006 and February 2007.  

The Cross-correlation maps (Figure 4.5) remark the existence of two areas with 

different vertical deformation behavior both in space and in time, providing a further 

evidence of multi-source scenario.  

Subsequently, we have used the Multiridge method to investigate the sources 

responsible of the observed DInSAR measurements, detecting their depths and horizontal 

positions. The findings about the sources location provided a better characterization of 

the volcanic scenario; in particular, we retrieve a depth of 18.7 ± 0.8 km (Figure 4.6), 

and we identify a shallow source, beneath the Uturuncu volcano, at a depth of 4.5 ± 0.5 

km (Figure 4.7). To interpret our geodetic results, we take into account other information 

assessing the volcanic system configuration.  

Regarding to the deep source, we interpret the retrieved result as referred to the 

APMB deformation source. To support our interpretation, we compared our results with 

those achieved by other works based on DInSAR measurements (Table 5.2 and Figure 

5.1). In particular, the retrieved depth values and horizontal position about the APMB 

source are in good agreement with the findings of several geodetic modeling [Pritchard 

and Simons, 2004; Fialko and Pearse, 2012; Henderson and Pritchard, 2013; Hickey et 

al., 2013; Walter and Motagh, 2014; Gottsmann et al., 2017; Henderson and Pritchard, 

2017;], as well as with petrological observations [Sparks, 2008] and geophysical studies 

[Pritchard et al., 2018; Chmielowski et al., 1999; Zandt et al., 2003; Kukarina et al., 

2017; Ward et al., 2014; McFarlin et al., 2017; Del Potro et al., 2013; Comeau et al., 

2015; Comeau et al., 2016]. 
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Table 5.2. Summary of deformation sources. Volcanic source modeling for APMB and Uturuncu 

volcano retrieved from satellite geodetic measurements. Where not specified, depths are referred 

to sea level. 

 

Study Period Depth [km] Source type 

    

Pritchard et al. 1992-2000 

17.3 

18.8 

18.2 

25 

12 

Sphere 

Horizontal Ellipsoid 

Vertical Ellipsoid 

Point Crack 

Finite Crack 

    

Fialko et al. 1992-2010 > 15 
Prolate spheroid and 

tabular body 

    

Henderson et al. 1992-2011 19-20 Point-spherical 

    

Hickey et al. 1996-2010 

20.6 (18-25) b.g.l. 

32.8 (30-35) b.g.l. 

30.4 (28-33) b.g.l. 

Prolate spheroid 

Oblate spheroid 

Sphere 

    

Walter et al. 2003-2009 17-18 ± 9 Inflating flat-topped body 

    

Gottsmann et al. 1992-2011 

6-14 (top and 

bottom) 

13-25 (top and 

bottom) 

Magmatic column 

APMB 

    

Henderson et al. 1992-2011 15.4-30.4 
Point source (top of a 

dipole source) 

    

This study 
2005-2008 

2006-2007 

18.7 ± 0.8 

4.5 ± 0.5 

Deep inflation body 

Shallow inflation body” 
    

Several studies based on the classical procedure of geodetic modeling examine only 

the existence of a deep source (Table 5.2 and Figure 5.1), although [Gottsmann et al., 

2017; Lau et al., 2018] suppose the existence of a shallow hydrothermal active system 

beneath Uturuncu volcano. In this context, our approach reveals a transient inflating 

shallower source, characterizing the August 2006 - February 2007 unrest event. The 

retrieved source location (depth 4.5 ± 0.5 km) matches with the interpretation of a hybrid 

system beneath Uturuncu volcano, formed by an igneous mush and fractured plutonic 

complex through which exsolved fluids migrate toward the surface. These fluids, being 

temporarily trapped, could cause an overpressured reservoir and an uplift phenomenon 

[Pritchard et al., 2018; Gottsmann et al., 2017]. In addition, the proposed interpretation 

is in accordance with the existence of low resistivity zone at this depth, explained by saline 

fluids of magmatic and/or meteoric origin [Comeau et al., 2015; Comeau et al., 2016] 
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and with the shallow anomaly achieved by geophysical and petrological data analysis 

[Pritchard et al., 2018 and the references within]. Moreover, the shallow overpressured 

source is located just beneath the cluster of the seismicity between 4 and 6 km of depth 

b.g.l. occurred during 2009-2010 time interval [Jay et al., 2012; Pritchard et al., 2018].  

 
 

Figure 5.1. Location and depth of deformation sources. (a) SRTM DEM of the study area with 

the green continuous line representing the XX’ trace and the red and the violet solid circles 

indicating the position of the deep and the shallow deformation sources, respectively; (b) XX’ 

section redrawn from [21,23-24], in which the location and depth of retrieved deformation 

sources are reported; the solid blue stars represent the earthquakes location; the red solid 

rectangle indicates the depths to the APMB [15], while the green continuous line represents the 

topography; the grey continuous lines, numbered from 1 to 5, indicate the solutions proposed by 

1-Pritchard and Simons [26], 2-Pritchard and Simons [26], 3-Hickey et al. [29], 4-Fialko and 

Pearse [27], 5-Walter and Motagh [30], respectively.” 

 

 

From Barone et al. [2019].  
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5.2.3 The THD technique as supporting tool for Campi Flegrei caldera. 

“The joint analysis of DInSAR and seismic interferometry results provides further 

insight into how geological structures modulate the deformation processes of the CFc 

caldera. The comparison of the THDw maxima computed from the ground deformation 

measurements with the contrasts in the ANT group-velocity model (between 0.8 and 1.1 

km/s) of different periods (0.9 s, 1.2 s and 2 s) indicates that the best spatial correlation 

is obtained at 1.2 s (i.e., depths of about 1km). Both the THD and ANT analyses resolve 

the same bi-lobed feature with an axis of symmetry along the WNW-ESE direction 

(Figure 4.13b). The distribution of the THDw maxima intensifies toward the East of 

Pozzuoli and is paired by an increased group-velocity contrast of the eastern lobe 

(Figure 4.13b). A good spatial correlation between the THDw maxima and the ANT 

velocity contrasts is also found in the region at West of the Pozzuoli, but this contrast is 

aseismic (Figure 4.13a) except for the 2012 deeper swarm [D’Auria et al. 2015]. 

The eastern THDw maxima and the achieved ANT velocity contrasts intersect a 

significant hydrothermal vent near Pisciarelli, which activated in 2013 [Chiodini et al., 

2015]. Sparse background seismicity between 2005 and 2016 is spread throughout the 

eastern CFc; however, earthquakes located at a depth of 1 ± 0.2 km (i.e., ANT 1.2 s 

period) are predominantly concentrated under Pisciarelli, just east of the boundary 

retrieved by THD and ANT technique (Figure 4.13b). The most relevant aspect of our 

study is thus that the eastern structure lineaments detected by the ANT at 1km of depth 

are the only dynamically-active structures in the considered period, as they show (1) high 

rates of the ground deformation (see THDw maxima) and (2) earthquakes concentrated 

on the eastern side of the THDw maxima (Figure 4.13b). 

The high velocity contrasts and high values of THDw (corresponding to the 

boundaries of the source of deformation) mark the secondary deformation source (depth 

of ~1 km) modeled by Amoruso et al. [2014] at Solfatara/Pisciarelli (Figure 4.11). This 

region of secondary deformation and seismicity corresponds to volcanic vents last active 

in 1982-84 [Vilardo et al., 2010; Vitale et al., 2014; De Siena et al., 2017b]. We infer 

that during the 2011-2013 unrest the shallower secondary source of deformation and 

seismicity recorded at Solfatara is the result of a structural effect, triggered by 

pressure/thermal gradient [Chiodini et al., 2015] and induced stress produced by the 

primary deformation source [Amoruso et al. 2014]. The structures modulating stress, 

secondary deformation, and seismicity, are likely those in the shallower part of the high-
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Vp (>4.4 km/s), low Vp/Vs (<1.45) and low-scattering body recently imaged by Calò and 

Tramelli [2018] under the eastern sector of the caldera. 

Several authors have shown the significant role played by pre-existing tectonic 

structures [Orsi et al., 1999, De Natale et al., 2006; Trasatti et al., 2008; Manconi et al., 

2010], horizontal interfaces [Amoruso et al. 2014; D’Auria et al., 2015; Vanorio et al., 

2015] and/or cold magmatic intrusions (Chiodini et al., 2015) on the modulation of the 

ground deformation pattern at CFc. This role is confirmed by our maps and becomes 

crucial to understand the stress variations due to magmatic intrusion within sills 

[Amoruso et al. 2014], contributing to the dynamic assessment of vent opening 

probability at CFc [Giudicepietro et al, 2016]. The spatial distribution of the anomalies 

(Figure 4.13b) indicates that these shallower structures are able to channel fluids in the 

Solfatara/Pisciarelli area, where they produce stress and propagate to surface along 

almost-vertical structures. This inference is supported by the high-resistivity vertical 

plume recently imaged by audiomagnetotellurics studies under Solfatara [Siniscalchi et 

al. 2019]; this plume coincides with the boundaries retrieved by THD and ANT 

techniques, with the 1km seismicity concentrated east of it. In this scenario, the source 

boundaries at depth overlap to the pre-existing tectonic structures due to the magma 

and/or hydrothermal fluids predisposition to fill the voids during the unrest events. The 

fluids travel from the central feeder-pathway through the fractures to the eastern part of 

the caldera; here, they are ultimately channeled by the high-velocity structures to (1) 

activate vents at the end of the unrest (Pisciarelli, Figure 4.12); (2) produce the vertical 

high-resistive plume [Siniscalchi et al. 2019]; (3) enhance the secondary deformation 

source depicted by the THD analysis [Amoruso et al., 2014]. In summary, our results and 

published literature depict Solfatara as an almost-vertical very-low rigidity, low-velocity, 

highly-fractured zone [D’Auria et al. 2015; Di Luccio et al 2015; Isaia et al. 2016; 

Siniscalchi et al. 2019], dynamically stressed from the west or SW at least since the 1982–

1984 crisis [De Siena et al. 2017]. 

The shape of the low-velocity anomaly at ~1km is comparable with that retrieved by 

gravity and magnetic fields data analysis in the past [Florio et al., 1999]; especially in 

its northern boundary it spatially corresponds to an alignment of maxima obtained by 

using these techniques in the offshore caldera. This correlation suggests that a similar 

boundary may be present offshore, on the SW side of the anomaly. Nevertheless, the 
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resolution of the seismic tomography images is much lower offshore [De Siena et al. 

2018], while the SAR measurements are of course missing. 

The main evidence against the existence of a setting similar to that at Solfatara 

across the western onshore boundaries retrieved by THD and ANT techniques (e.g. Monte 

Nuovo, the location of the last eruption at CFc, De Vito et al. [2016]) is the absence of 

recorded seismicity between 0 and 2 km. This absence can be affected by the sparser 

distribution of station in the western caldera but agrees with the weaker volcanic activity, 

e.g., at Mofete, with respect to Solfatara. The only seismic activity of the last 15 years 

detected in the western caldera is the September 7th, 2012, magmatic swarm. The swarm 

was located at a depth of ~3 km (red circles in Figure 4.13a) and at the boundary between 

the high-velocity anomaly at Monte Gauro and the low-velocity primary anomaly [De 

Siena et al. 2018]. Its occurrence corresponded to a local increase in the shear stress, 

modeled by the inflation of a sill-shaped reservoir located a depth of 2.5-3.1 km [D’Auria 

et al., 2015]. Considering this swarm, both the lower contrast in ANT velocities and the 

decrease in density of THDw maxima across the western caldera can be interpreted as a 

marker of deeper magmatic dynamics. The rim of the caldera [Battaglia et al. 2008] and 

especially the residual of eruptive conduits created during the last eruption [Chiodini et 

al. 2015; De Vito et al. 2016; De Siena et al. 2018] are structures that may hinder 

shallower magmatic propagation in the western caldera or dampen its deformation 

signals. 

In conclusion, we present the first comparison of SAR and ANT interferometric 

images at CFc, in order to achieve relevant information about the subsurface structures 

and caldera dynamics. A significant spatial correlation was identified between the ANT 

velocity contrasts and the THDw maxima distribution under Solfatara/Pisciarelli between 

May 2012 and March 2013, which DInSAR data define as the main phase of deformation 

unrest. The comparison with both the spatial seismicity distribution between 2005 and 

2013 and the patterns of extinct volcanic vents in the eastern caldera part (specifically at 

Solfatara/Pisciarelli and Astroni crater) demonstrate that these boundaries are 

dynamically active, with seismicity concentrated at ~1km to the east of the boundary. We 

infer that the imaged ANT velocity contrasts constrain the dynamics of the deformation 

source and the propagation of the magmatic intrusion within a sill-like structure also 

channeling the eastward propagation of magmatic fluids. Both the absence of seismicity 
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and fading of the THDw maxima in the first 2 km of the crust suggest that deeper (or no) 

magma dynamics are likely affecting the western side of CFc. 

This work shows the importance of imaging shallow lateral heterogeneities when 

modeling the ground deformation patterns. Indeed, secondary structural effects may 

amplify local deformation in the early stage of an unrest: these signals can be mistakenly 

defined as early signs of impending eruptions [Del Gaudio et al. 2009]. Accordingly, the 

importance of these structural effects should not be underestimated when interpreting 

geodetic data, modeling deformation sources or in the design of future monitoring 

networks. The joint exploitation of the DInSAR measurements and seismic data revealed 

to be an excellent option to better understand the nature and the spatio-temporal pattern 

of the ground deformation source(s) at CFc. A combined application of DInSAR and 

seismic tomography techniques like the one proposed here can provide a new perspective 

to understand the origin of deformation signal at other volcanoes, especially in calderas 

where magma propagation is expected to occur preferentially within sills.” 

 

From Pepe et al. [2019]. 
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5.2.4 Source shape detection at Fernandina volcano via homogeneity properties of 

the ground deformation field. 

We perform the geometrical modeling of the volcanic deformation source 

responsible of the 15 cm uplift occurred in 2013 at Fernandina volcano, for which several 

authors use different sources as sill, dike, and pipe mechanisms at about 1 km b.s.l. to 

simulate the measured deformation dataset [Jonsson et al., 1999; Chadwick et al., 2011; 

Bagnardi and Amelung, 2012; Bagnardi et al., 2013; Pepe et al., 2017].  

In this framework, we discuss on one of the methods limitations regarding the 

entirety of the observed deformation anomaly. Indeed, the vertical component at summit 

caldera (Figure 4.14a) is not well defined and, therefore, the results of ScalFun method 

may be unreliable since the data gridding operation may provide an equally unreliable 

outcomes; this last procedure is certainly more reliable in the specific case of the E-W 

component (Figure 4.14b), although less data accuracy characterizes this retrieved 

component. Therefore, we apply the Multiridge and ScalFun methods on the 2013-2013.5 

cumulative E-W deformation, and its VDF, by showing the results along three profiles. 

Here, we consider the homogeneity theory assumptions for the harmonic ground 

deformation field since we expect the presence of a single geometrically regular source. 

The retrieved outcomes are robust in terms of East and depth coordinates source position; 

we indeed define two clusters of solutions: ranging coordinates 662500-663000 E, 1.5-

1.7 km b.s.l. depth and 𝑁~3 for the deeper one, while 0.5-0.7 km b.s.l. of depth, and 𝑁~2 

for the shallower one (Figure 5.2a-b). We instead estimate the North coordinate source 

position with a wider range of solutions (9958500 – 9959500 N); although its high 

variability, the result represents a good constraint for the North coordinate parameter of 

the deformation source. 

We associate both the retrieved clusters to the same volcanic body; in particular, we 

interpret the analysed ground deformation pattern as produced by a vertically elongated 

source characterized by the depth of the centre at 1.5-1.7 km and the top depth at 0.5-0.6 

km b.s.l.. This interpretation is supported by the retrieved values of the Structural Index 

parameter, which are typical of the centre (𝑁~3) and of the top (𝑁~2) of an ideal linear 

vertical source.  

The interpretation of our results is in agreement with those proposed by Pepe et al. 

[2017], where a closed pipe-like source could represent one of possible paths of the MFS 
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through which the magma migrate from a higher to a lower energy level (from the deep 

to the surface) during the 2012-2013 time interval.  

 
 

Figure 5.2. Location and depth of deformation sources at Fernandina volcano. (a) contour 

map of SRTM DEM of the study area with the blue triangles and the yellow dots indicating the 

position of the two retrieved clusters of solution characterized by 𝑁~3 and 𝑁~2, respectively; 

the black continuous lines represent the solution ranges. (b) CD section (black dashed lines in 

Figure 4.15) in which the location and depth of retrieved solutions are reported; the red triangles 

and dots indicate the solutions with 𝑁~3 and 𝑁~2, respectively; the blue continuous lines 

represent the solution range, while the black continuous line describes the volcano topography. 
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5.2.5 Source analysis at Yellowstone caldera via local-homogeneity properties of 

the ground deformation field. 

We apply Multiridge, ScalFun methods, and THD technique to detect the 

deformation source(s) at Yellowstone caldera. We focus on the caldera region related to 

the ML and SC resurgent domes for which different results have been published [Wicks 

et al., 2006; Puskas et al., 2007; Vasco et al., 2007; Chang et al., 2007; Chang et al., 2010; 

Aly and Cochran 2011; Tizzani et al., 2015] and we analyse the vertical cumulative 

deformation, and its VDF, related to the 2005-2007 time interval and by considering the 

local-homogeneity properties of the field. In particular, we retrieve two solutions of depth 

9.8 and 9.1 km b.s.l. beneath ML and SC, respectively, with 𝑁~3; furthermore, we 

investigate the region between the two resurgent domes with four different depth 

solutions, ranging between 6 – 8 km b.s.l. and with not integer values of 𝑁 ranging from 

1 to 2 (Figure 5.3a-b). We interpret these solutions as characterizing the same unique 

geometrically irregular deformation source beneath ML and SC; therefore, we associate 

the 𝑁~3 depth values to the local centres of the extended volcanic body, while we 

consider the 1 < 𝑁 < 2 ones as coordinates of its top surface. 

The THDw (Figure 5.3a-b) supports the proposed interpretation since there is no 

maxima distribution between the resurgent domes, but only maxima alignments, which 

seem to outline a single about 50×20 km large planar body or surrounding fault systems. 

Hence, the THD maxima may represent an overestimation of the horizontal extension of 

the magmatic bodies since they coincide at NE with quaternary faults, which behaves as 

secondary sources modulating the measured ground deformation pattern. Finally, we 

specify the NGB deformation source could contribute to increase the maxima intensity in 

correspondence of the North-western boundary of the analysed body. 

Our interpretation agrees with the results proposed by Chang et al., [2007; 2010] 

based on geodetic measurements and proposing as source mechanism a single tabular 

body beneath ML and SC resurgent domes. Moreover, these results are in agreement with 

the three-dimensional P-wave velocity model proposed by Farrell et al. [2014], in which 

a unique geometrically irregular magmatic structure is imaged below this area. 

Finally, we highlight the deepest retrieved deep solution are characterized by 

different values of Structural Index respect to 𝑁~3 and, therefore, we do not consider as 

acceptable in the scenario of the proposed interpretation. 
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Figure 5.3. Location and depth of deformation sources at Yellowstone caldera. (a) Map of 

the normalized THDw superimposed on the SRTM DEM of the study area with the colored circles 

and the black dashed line representing the location of the retrieved solutions and the AB trace; 

(b) AB section in which the location and depth of retrieved solutions are reported with the colored 

symbols, while the red continuous line represents the normalized THDw; the black continuous 

lines indicate the uncertainties of the retrieved solutions, while the black dashed line describes 

the volcano topography. 
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CONCLUSIONS 

We proposed and validated a new approach for the modeling of deformation sources 

in the volcanic environment by using the DInSAR measurements and their large sampling 

density; we revealed its features that also make it a valid tool for the volcanoes monitoring 

purposes. 

Differently from the commonly used procedures, we proposed a solution of the 

elastic problem which satisfies the Laplace’s equation, and we considered the properties 

of the harmonic functions for using integrated multi-scale methods, such as Multiridge, 

ScalFun and THD methods; this approach provides source information about its 

geometrical parameters, as the location, the depth, the shape and the horizontal extent (or 

its overestimation).  

In particular, we showed that the Laplace’s equation is satisfied for the deformation 

field in the case of hydrostatic pressure variation within a source embedded in a 

homogeneous elastic half-space. Accordingly, we can use the Multiridge method for 

univocally estimating the location and the depth parameters of the analysed field sources.  

Then, we considered a particular class of harmonic functions which also satisfy the 

homogeneity theory and we used the ScalFun method for retrieving information about the 

morphological attributes through the Structural Index parameter. This analysis allows the 

investigation of geometrically regular sources. Therefore, we extended the proposed 

approach by considering the generalized form of the homogeneity laws and we also 

introduced the case of complex and irregular bodies. Finally, we integrated the approach 

with one more common technique, here named as THD, as supporting tool since it 

provides information about the horizontal extent of the field sources. 

We demonstrated with several synthetic tests that the proposed approach represents 

the fastest way to provide results, especially because they do not require a priori assuming 

a specific, and often complex, formulation of the forward problem and of the distribution 

of the elastic parameters within the elastic regime (i.e., small variations of the elastic 

parameters). Moreover, they do not depend on the signal-to-noise ratio and are also 

reliable in the case of one component analysis and multi-source scenario, while their 

solutions only depend on the harmonic properties of the analysed field, which has to 

satisfy the Laplace’s equation; this condition is surely satisfied in the case of hydrostatic 
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pressure variation of a source embedded in a homogeneous elastic half-space, which often 

also characterize the forward problem formulations of AM. 

We validated the proposed approach by applying Multiridge, ScalFun and THD 

methods to simulated deformation patterns in the FEM environment, whose modeled field 

enjoy the properties of the harmonic functions. In particular, we firstly considered 

geometrically regular volcanic source for modeling pipe- and sill-like reservoirs, and we 

showed the possibility to correctly detect the depth, the horizontal position, the 

morphological attributes and the horizontal extent of these simple sources, by analysing 

only one component between the vertical and the E-W ones.  

Then, we treated the geometrically irregular bodies, and we briefly show how to 

retrieve valid information about the source geometrical parameters by considering the 

local-homogeneity properties of the inhomogeneous field. 

We also highlighted the advantages and the limitations of the proposed approach 

through its application to study simulated fields which do not satisfy the Laplace’s 

equation. Specifically, we retrieved acceptable results in the case of acceptable variation 

of the medium elastic parameters within the elastic regime; while, in the other cases, they 

may be characterized by also a 30 % of discrepancies respect to the real scenario.  

Finally, we applied the proposed approach for investigating different five case studies 

by using the ground deformation patterns measured via DInSAR technique. The first 

analysed case is the Okmok volcano (Alaska, USA), where we applied the Multiridge and 

ScalFun methods, for the first time, on a single interferogram related to measurements 

acquired along descending orbit. We characterized the depth and the horizontal position 

of the spherical source approximating its volcanic reservoir. 

We performed the second analysis to study the multi-source scenario of Uturuncu 

Volcano (Bolivia). We mainly applied the Multiridge method on the vertical deformation 

to detect the existence of two different active sources: the first one is related to the deep 

APMB volcanic body and the second one is characterizing shallow hydrothermal 

phenomenon beneath Uturuncu volcano. 

In the third case, we considered the THD technique for the analysis of Campi Flegrei 

caldera and to jointly compare DInSAR and ANT data. In particular, THDw is crucial to 
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interpret ANT results and to understand the depth and the mechanism of the volcanic 

source. 

The fourth analysed case regarded the application of Multiridge and ScalFun 

methods on the E-W deformation of the 2013 unrest at Fernandina volcano. The retrieved 

solution agrees with the pipe-like source proposed by Pepe et al. [2017], as guiding 

structure for magma migration from deeper to shallower portions of the same volcanic 

system. 

Finally, we analysed the case of the Yellowstone caldera by considering Multiridge, 

ScalFun methods and THD technique We modeled the 2005-2007 cumulative vertical 

deformation as caused by a unique horizontally planar single source beneath ML and SC 

resurgent domes and characterized by an irregular geometry. We remark that the retrieved 

results agree with other geodetic [Chang et al., 2007; Chang et al., 2010] and seismic 

[Farrell et al., 2014] studies. 

The proposed solution of the elastic problem allows solving ambiguous cases for 

modeling volcanic deformation sources. However, we point out some limitations 

affecting this approach, which are mainly associated to the sampling ambiguity, the 

experimental/instrumental errors, and the high gradient of the measurement surface. 

Furthermore, it provides a certain error when the harmonic properties of the field are not 

satisfied; these discrepancies are still comparable to those of the widely used inverse 

modeling. We remark that the proposed approach does not provide information about the 

whole set of physical parameters of the volcanic system, but its solutions represent a good 

constraint for possible subsequent accurate modeling. 

We conclude this thesis by introducing some possible future developments:  

• automation of the proposed procedure for the geometrical modeling of volcanic 

deformation sources, in order to fully take advantages of the properties of the fields 

satisfying the Laplace’s equation;  

• use of the DInSAR time series to allows retrieving real time information about the 

evolution of magmatic sources in space and in time, which is the crucial feature to 

consider the proposed approach as a superb tool for monitoring purposes; 

• deeply study and use of the local-homogeneity theory for the ground deformation field 

to provide exhaustive information on the analysed volcanic deformation source in the 

case of complex magmatic bodies, generating inhomogeneous deformation fields.  
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APPENDIX A 

Table A.1. Results of the Upward Continuation test by considering fields satisfying the Laplace’s 

equation. The outcomes are expressed as maximum percentage error. 

 Sphere Cube Horizontal 

prism 

Vertical 

prism 

Vertical 

cylinder 

Vertical prolate 

ellipsoid 

 

Vertical 

component 

 

 

0.36 

 

0.36 

 

0.44 

 

0.37 

 

0.47 

 

0.42 

 

E-W 

component 

 

 

0.65 

 

0.77 

 

0.65 

 

0.64 

 

0.65 

 

0.64 

 

 

 

Figure A.1. Mogi model vertical component: Upward continuation results. (a) Map of the 

modeled vertical component of deformation field generated by a Mogi source located at 2 km of 

depth and calculated on a flat surface level of 𝑧 = 0; (b) Upward-continued field at 1 km. (c) 

Map of the modeled vertical component of deformation field generated by a Mogi source, located 

at 3 km of depth and calculated on a flat surface level of 𝑧 = 0. (d) Differences between (b) and 

(c) maps. The model parameters are: radius = 0.3 [km], ΔP = 5 [MPa], G = 1 [GPa], ν = 0.25 

[-]. 

From Castaldo et al. [2018b]. 
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APPENDIX B 

 

 

Figure B.1. LOS-projected Mogi model deformation field: constant-level reduction procedure. 

(a) Map of the modeled Ascending LOS deformation calculated on Okmok volcano topography 

and generated by a Mogi source at 2 km depth. (b) Ascending LOS deformation map reduced to 

the constant-level starting from (a); the flat surface is at 1.5 km a.s.l.. (c) Ascending LOS modeled 

deformation field generated by a Mogi source located at 3.5 km depth and measured on a flat 

surface 𝑧 = 0. (d) Differences between (b) and (c). (e) Sketch showing the different data level 

between the case (a) and (b). The model parameters are: radius = 0.3 [km], ΔP = 5 [MPa], G = 

1 [GPa], ν = 0.25 [-]. The used mean LOS vector ([0.346, -0.081, 0.935]) is related to a 23° 

satellite look angle.  

From Castaldo et al. [2018b]. 
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“We consider an oblate spheroidal over-pressurized model (ΔP= 0.2 MPa), located 

at 15 km of depth, and with semimajor and semiminor axes extended for 5 and 1 km, 

respectively. The elastic half-space is characterized by a shear modulus and Poisson’s 

coefficient equal to 1 GPa and 0.25 (-), respectively. In particular, to validate this 

procedure, we firstly calculate the modeled vertical deformation measured on the detailed 

measurement surface of the Uturuncu volcano topography (Figure B.2a); we process the 

latter by applying the constant-level reduction procedure, which level is chosen to be at 

6 km a.s.l. (Figure B.2b). Then, we compute the modeled vertical deformation measured 

directly on a flat measurement surface at 6 km a.s.l. (Figure B.2c) and, finally, we 

compare both the processed (blue continuous line in the Figure B.2d) and the computed 

(red continuous line in the Figure B.2d) vertical components referring to the same scale. 

This test shows how the used procedure provides results in agreement with the expected 

ones. 

 

Figure B.2. Constant-level reduction procedure test. (a) Modeled vertical deformation measured 

on the ground surface of Uturuncu volcano; (b) Results of the constant-level reduction procedure 

(cm) applied on (a); the constant-level reduction is chosen to be at 6 km a.s.l.; (c) Modeled 

vertical deformation (cm) measured on a flat level at 6 km a.s.l.; the black dashed lines represent 

the traces passing from the maxima; (d) Black, blue and red profiles extrapolated from (a), (b) 

and (c), respectively, along the above mentioned traces.” 

 

From Barone et al. [2019]. 
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APPENDIX C 

We show the correctness of VDF, equation (2.35), by a comparison with VDS, 

expressed by relation (2.34), through synthetic modeled deformations. The computation 

of VDS is not a simple task because of the difficulties in simulating in FEM environment 

the fields of the same source at infinitesimally different depths. Therefore, we will show 

how the VDS tends to VDF when the depth difference (∆𝑧) decreases.  

We consider the same model setting of the paragraph 3.1, where the vertical 

deformation is generated by a spherical source at a depth 𝑧0 = 1 km and the minimum 

mesh dimension of the model is set to 0.2 km. We calculate the VDF on this field and the 

VDS by fixing ∆𝑧 = 0.2 km, which corresponds to the minimum mesh dimension of the 

model. We compute the error as the difference between the VDS and the VDF, normalized 

by the VDS maximum value (Figure C.1a). We repeat the same procedure by considering 

a smaller ∆𝑧, and, in turn, changing the minimum mesh dimension of the model, sized 

0.05 km (Figure C.1b) by 0.02 km (Figure C.1c). The results confirm that the matching 

between VDF and VDS improves reducing ∆𝑧; in particular, the maximum modulus of the 

error decreases from ~27% (Figure C.1a) to ~8% (Figure C.1b), even reaching 3% 

(Figure C.1c) for a 0.02 km ∆𝑧.  

Specifically, for lower discrepancies between we need to consider a very small ∆𝑧, 

and, to exactly appreciate changes between fields of sources spaced by a so small ∆𝑧,  we 

should set the minimum mesh dimension of the model along the 𝑧-direction at least less 

than the considered ∆𝑧  value. The synthetic models with these conditions are 

computationally hard to be calculated.  

We propose an alternative approach to overcome this issue: we calculate the VDC as 

the equation (2.34) but substituting the term 𝑓(𝑥, 𝑦, 𝑧0 + ∆𝑧) with the upward continued 

field to the ∆𝑧 scale. The upward continuation procedure allows considering very small 

∆𝑧,  without incurring computational issues as in the case of FEM model. With this aim, 

we first compare VDS and VDC; then, we use this last to validate the VDF.  

We consider the case of ∆𝑧 = 0.05 km and we compare VDC and VDS; we do not 

consider the 0.02 km case since mesh irregularity are noticeable (Figure C.1c). The error 

map (Figure C.1d) shows both the procedures provide results with only ~0.1 % 

discrepancy, suggesting we can use VDC instead of the VDS for the VDF validation.  
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Finally, we calculate the VDC for ∆𝑧 = 0.001 and 0.0001 km and we compare them 

with VDF. The results indicate the VDF tends even more to VDC as well as ∆𝑧 decreases; 

indeed, VDF reproduces the expected VDS with negligible errors equal to ~0.15 % 

(Figure C.1e) and ~0.015 % (Figure C.1f) for ∆𝑧 = 0.001 and 0.0001 km, respectively. 

 

 

Figure C.1. Validation of VDF. Error maps [%] related to the comparison between: VDS and 

VDF by considering ∆𝑧 = 0.2 km (a), 0.05 km (b) and 0.02 km (c); VDS and VDC by setting ∆𝑧= 

0.05 km (d); VDC and VDF in the case of ∆𝑧 = 0.001 (e) and 0.0001 km (f); the model parameters 

are specified in the main text.  
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We show the validity of the VDF for vertical and E-W deformations of source 

geometries different from the spherical one. In particular, we calculate the error of VDF 

to VDC by considering the Ellipsoid 2 and Prism 2 cases (please refer to the paragraph 

3.2 for model descriptions). The results (Figure C.2) confirm VDF reproduce VDS for 

∆𝑧 = 0.0001 km and for both the components with maximum errors of ~0.012 % (Figure 

C.2a and C.2b) and ~0.003 % (Figure C.2c and C.2d) in the case of the Ellipsoid 2 

(Figure C.2a and C.2b) and Prism 2 (Figure C.2c and C.2d), respectively. 

 

 

Figure C.2. VDF test for different source geometries. Error maps [%] of VDF to VDS 

considering the (a) vertical and (b) E-W components for Ellipsoid 2 and (c-d) Prism 2 cases. The 

VDC are calculated by fixing ∆𝑧 = 0.0001 km. 
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“We consider an oblate spheroidal over-pressurized model (∆𝑧 = 0.2 MPa) located 

at 15 km of depth, and with semimajor and semiminor axes extended for 5 and 1 km, 

respectively. The elastic half-space is characterized by a shear modulus and Poisson’s 

coefficient equal to 1 GPa and 0.25 (-), respectively.  

We calculate VDS by setting ∆𝒛 = 0.05 km with respect to the referred depth, 15 km 

(Figure C.3a). Then, we compute VDF according to equation (2.35) (Figure C.3b). In 

Figure C.3c, we show the results along a profile passing from the maxima of VDS and 

VDF (black dashed lines in Figure C.3a-b): VDF (Figure C.3b and blue continuous line 

in the Figure C.3c) provides well approximated results, within the 5 % root mean square 

error, respect VDS (Figure C.3a and red continuous line in the Figure C.3c).  

 

 
 

Figure C.3. VDF test. (a) Results of VDS of the modeled vertical deformation (cm) and (b) VDF; 

the black dashed lines represent the traces passing from the maxima; (c) Red and blue continuous 

lines represent the VDS and VDF values, respectively.” 

 

From Barone et al. [2019]. 
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APPENDIX D 

“We perform several synthetic tests based on the analysis of the deformation field of 

a spherical source. We chose Cartesian reference system, with the origin of the system 

located at the point 𝑶(0,0); the 𝑥- and 𝑦-axes are oriented in the E-W and N-S directions, 

respectively, and the 𝑧-axis is negative downward. For all of the following tests, the 

deformation field is simulated with a grid of 120 km x 120 km sampled at 0.1 km intervals. 

We generate the vertical component of the ground deformation field on a flat surface 

(𝑧 = 0) by using the Mogi model, as produced by the overpressured (∆𝑃 = 10 MPa) 

spherical magma chamber (Figure D.1a). The active source depth is -2 km and it is 

located 60 km along both the 𝑥- and 𝑦-directions; its radius is 0.3 km, while the medium 

shear modulus and Poisson’s coefficient are 1 GPa and 0.25 [-], respectively.  

We apply the Multiridge method to the vertical component and we analyse the AA’ 

E-W profile passing for the maximum value of the field (Figure D.1b). The results allow 

us to easily identify a source at an approximate -2.05±0.01 km depth and located at 

60±0.02 km along the 𝑥-direction (Figure D.1c). The estimation reliability is supported 

by the high values of R2.  

Then, we apply the ScalFun method to the central ridge (cyan) and we achieve a 

homogeneity degree of 𝑛~ − 2 (Figure D.1d). This value corresponds to the Structural 

Index 𝑁~3, suggesting that the representative geometry of the source is spherical, which 

agrees with the features of the true source. 
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Figure D.1. Multiridge and ScalFun methods: the Mogi model vertical component. (a) Map of 

the modeled vertical component of the deformation field calculated on a flat surface level of 𝑧 =
0. The black dashed line indicates the AA’ trace. (b) AA’ profile of the vertical component of the 

deformation field; (c) The results of the Multiridge method applied to the AA’ profile; the red 

solid lines, which represent the regression lines, estimate the source position at their intersection, 

and the black solid line indicates the real source depth. For each regression line we indicate the 

coefficient of determination (R2); (d) the results of the ScalFun method applied to the central cyan 

multiridge subset reported in (c); 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 𝑙𝑜𝑔(𝑤(𝑧))

𝜕 𝑙𝑜𝑔 𝑧
, where 𝑤 and 𝑧 represent the 

vertical deformation and the vertical scale, respectively. 

 

 

Subsequently, we consider the previous test adding to the modeled vertical 

component a 10% of high-wavenumber noise (with respect to the maximum value of the 

anomaly) (Figure D.2a-b). The results show that the estimates are not conditioned by the 

lower signal-to-noise ratio since and (also in this case) we identify a source depth of 

approximately -2.04±0.02 km, and a location of 60±0.03 km along the 𝑥-direction 

(Figure D.2c). Then, we apply the ScalFun method to the central ridge (cyan) in order to 

evaluate the homogeneity degree of the field, 𝑛~ − 2 (𝑁~3) which, in turn, gives us an 

evaluation of the geometric shape of the source (Figure D.2d). 
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Figure D.2. Multiridge and ScalFun methods: the Mogi model vertical component with noise. 

(a) Map of the modeled vertical component of the deformation field calculated on a flat surface 

level of 𝑧 = 0 and perturbed by 10% (with respect to the maximum value) of high-wavenumber 

noise. The black dashed line indicates the AA’ trace. (b) AA’ profile of the vertical component of 

the noisy deformation field. (c) The results of the Multiridge method applied to the AA’ noisy 

profile; the red solid lines, which represent the regression lines, estimate the source position at 

their intersection, and the black solid line indicates the real source depth. For each regression 

line we indicate the coefficient of determination (R2); (d) the results of the ScalFun method 

applied to the central cyan multiridge subset reported in (c); 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 𝑙𝑜𝑔(𝑤(𝑧))

𝜕 𝑙𝑜𝑔 𝑧
, where 

𝑤 and 𝑧 represent the vertical deformation and the vertical scale, respectively. 

 

We consider the same source model parameters as those of the first test, changing 

only the horizontal position beneath the caldera floor: 58 km in the 𝑥-direction and 53 

km in the 𝑦-direction. By combining the simulated components of the ground deformation 

field with the LOS unit vectors ([-0.346, -0.081, 0.935]: mean values for ascending orbit; 

[0.346, -0.081, 0.935]: mean values for descending orbit), we obtain the projected field 

along the ascending (Figure D.3a-c) and descending (Figure D.3b-d) orbits. In both 

cases, the retrieved source depth is approximately -2.05±0.02 km, and the location equal 

to 58.02±0.02 km along the 𝑥-direction (Figure D.3e-f). The application of the ScalFun 

method to both the ascending and descending cases confirms the expected value of the 

Structural Index (𝑁~3) (Figure D.3g-h). 
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Figure D.3. Multiridge and ScalFun methods: LOS-projected Mogi model. (a-b) LOS 

deformation maps projected along ascending and descending orbits, respectively; the fields are 

calculated on a flat measurement level of 𝑧 = 0. The black dashed lines indicate the positions of 

the AA’ traces. (c-d) LOS deformation profiles evaluated along the AA’ traces for both the 

ascending and descending orbits. (e-f) The results of the Multiridge method applied to the AA’ 

profiles; (c) the red solid lines, which represent the regression lines, estimate the source position 

at their intersection, and the black solid line indicates the real source depth. For each regression 

line we indicate the coefficient of determination (R2); (g-h) the results of the ScalFun method 

applied to the central cyan multiridge subsets reported in (e-f) for ascending and descending 

orbits, respectively; 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 𝑙𝑜𝑔(𝜒(𝑧))

𝜕 𝑙𝑜𝑔 𝑧
, where 𝜒 and 𝑧 represent the LOS deformations 

and the vertical scale, respectively. 
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Then, we consider the previous test configuration projected along the descending 

LOS by changing only the surface measurements from 𝑧 = 0 to 𝑧 equal to the Okmok 

volcano topography. We process the simulated dataset to relocate the analysed field at 

the new constant reduction level, which is chosen to be 1.5-km a.s.l. After this 

transformation, the expected depth is equal to -3.5 km. We apply the Multiridge and 

ScalFun methods to the processed field shown in Figure D.4a by considering the AA’ 

profile (Figure D.4b): the first method allows us to identify the source at an approximate 

-3.53±0.02 km depth (Figure D.4c), and the horizontal position at 58.01±0.02 km along 

the 𝑥-direction; the second method reveals the homogeneity degree of the field, 𝑛~ − 2 

(Figure D.4d). This value corresponds to a source with a Structural Index of 𝑁~3, 

suggesting that the source geometry is well represented by a spherical geometry. 

 

 

Figure D.4. Multiridge and ScalFun methods: LOS-projected Mogi model evaluated at a 

constant reduction level. (a) Descending LOS modeled deformation map retrieved on a 1.5 km 

flat surface a.s.l.; the original data level is represented by the Okmok volcano topography. The 

black dashed line indicates the position of the AA’ trace. (b) The LOS deformation profile 

evaluated along the AA’ trace. (c) The results of the Multiridge method applied to the AA’ profile; 

the red solid lines, which represent the regression lines, estimate the source position at their 

intersection, and the black solid line indicates the real source depth. For each regression line we 

indicate the coefficient of determination (R2); (d) the results of the ScalFun method applied to the 

central cyan multiridge subset reported in (c); 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 𝑙𝑜𝑔(𝜒(𝑧))

𝜕 𝑙𝑜𝑔 𝑧
, where 𝜒 and 𝑧 

represent the LOS deformation and the vertical scale, respectively. 
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Finally, we consider the aforementioned test configuration, with 10% high-

wavenumber noise (with respect to the maximum value), on the descending LOS 

deformation field (Figure D.5a-b). The achieved results confirm that the estimated 

geometric parameters of the source (-3.55±0.04 km for depth and 58.01±0.02 km for 

horizontal position) are not influenced by the presence of high-wavenumber noise in the 

dataset (Figure D.5c-d). 

 

 

Figure D.5. Multiridge and ScalFun methods: the LOS-projected Mogi model evaluated at a 

constant reduction level with noise. (a) Descending LOS modeled deformation map perturbed 

by 10% (with respect to the maximum value) of the high-wavenumber noise and retrieved on a 

1.5-km flat surface a.s.l.; the original data level is represented by the Okmok volcano topography. 

The black dashed line indicates the position of the AA’ trace. (b) LOS deformation profile 

evaluated along the AA’ trace. (c) The results of the Multiridge method applied to the AA’ noise 

profile; the red solid lines, which represent the regression lines, estimate the source position at 

their intersection, and the black solid line indicates the real source depth. For each regression 

line we indicate the coefficient of determination (R2); (d) the results of the ScalFun method 

applied to the central cyan multiridge subset reported in (c); 𝑞 =
1

𝑧
  while 𝜏 =

𝜕 𝑙𝑜𝑔(𝜒(𝑧))

𝜕 𝑙𝑜𝑔 𝑧
, where 

𝜒 and 𝑧 represent the LOS deformation and the vertical scale, respectively.” 

 

From Castaldo et al. [2018b].  
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