99 research outputs found

    Image Compression using Discrete Cosine Transform & Discrete Wavelet Transform

    Get PDF
    Image Compression addresses the problem of reducing the amount of data required to represent the digital image. Compression is achieved by the removal of one or more of three basic data redundancies: (1) Coding redundancy, which is present when less than optimal (i.e. the smallest length) code words are used; (2) Interpixel redundancy, which results from correlations between the pixels of an image & (3) psycho visual redundancy which is due to data that is ignored by the human visual system (i.e. visually nonessential information). Huffman codes contain the smallest possible number of code symbols (e.g., bits) per source symbol (e.g., grey level value) subject to the constraint that the source symbols are coded one at a time. So, Huffman coding when combined with technique of reducing the image redundancies using Discrete Cosine Transform (DCT) helps in compressing the image data to a very good extent. The Discrete Cosine Transform (DCT) is an example of transform coding. The current JPEG standard uses the DCT as its basis. The DC relocates the highest energies to the upper left corner of the image. The lesser energy or information is relocated into other areas. The DCT is fast. It can be quickly calculated and is best for images with smooth edges like photos with human subjects. The DCT coefficients are all real numbers unlike the Fourier Transform. The Inverse Discrete Cosine Transform (IDCT) can be used to retrieve the image from its transform representation. The Discrete wavelet transform (DWT) has gained widespread acceptance in signal processing and image compression. Because of their inherent multi-resolution nature, wavelet-coding schemes are especially suitable for applications where scalability and tolerable degradation are important. Recently the JPEG committee has released its new image coding standard, JPEG-2000, which has been based upon DWT

    Colour image coding with wavelets and matching pursuit

    Get PDF
    This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio

    Steered mixture-of-experts for light field images and video : representation and coding

    Get PDF
    Research in light field (LF) processing has heavily increased over the last decade. This is largely driven by the desire to achieve the same level of immersion and navigational freedom for camera-captured scenes as it is currently available for CGI content. Standardization organizations such as MPEG and JPEG continue to follow conventional coding paradigms in which viewpoints are discretely represented on 2-D regular grids. These grids are then further decorrelated through hybrid DPCM/transform techniques. However, these 2-D regular grids are less suited for high-dimensional data, such as LFs. We propose a novel coding framework for higher-dimensional image modalities, called Steered Mixture-of-Experts (SMoE). Coherent areas in the higher-dimensional space are represented by single higher-dimensional entities, called kernels. These kernels hold spatially localized information about light rays at any angle arriving at a certain region. The global model consists thus of a set of kernels which define a continuous approximation of the underlying plenoptic function. We introduce the theory of SMoE and illustrate its application for 2-D images, 4-D LF images, and 5-D LF video. We also propose an efficient coding strategy to convert the model parameters into a bitstream. Even without provisions for high-frequency information, the proposed method performs comparable to the state of the art for low-to-mid range bitrates with respect to subjective visual quality of 4-D LF images. In case of 5-D LF video, we observe superior decorrelation and coding performance with coding gains of a factor of 4x in bitrate for the same quality. At least equally important is the fact that our method inherently has desired functionality for LF rendering which is lacking in other state-of-the-art techniques: (1) full zero-delay random access, (2) light-weight pixel-parallel view reconstruction, and (3) intrinsic view interpolation and super-resolution

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Rate scalable image compression in the wavelet domain

    Get PDF
    This thesis explores image compression in the wavelet transform domain. This the- sis considers progressive compression based on bit plane coding. The rst part of the thesis investigates the scalar quantisation technique for multidimensional images such as colour and multispectral image. Embedded coders such as SPIHT and SPECK are known to be very simple and e cient algorithms for compression in the wavelet do- main. However, these algorithms require the use of lists to keep track of partitioning processes, and such lists involve high memory requirement during the encoding process. A listless approach has been proposed for multispectral image compression in order to reduce the working memory required. The earlier listless coders are extended into three dimensional coder so that redundancy in the spectral domain can be exploited. Listless implementation requires a xed memory of 4 bits per pixel to represent the state of each transformed coe cient. The state is updated during coding based on test of sig- ni cance. Spectral redundancies are exploited to improve the performance of the coder by modifying its scanning rules and the initial marker/state. For colour images, this is done by conducting a joint the signi cant test for the chrominance planes. In this way, the similarities between the chrominance planes can be exploited during the cod- ing process. Fixed memory listless methods that exploit spectral redundancies enable e cient coding while maintaining rate scalability and progressive transmission. The second part of the thesis addresses image compression using directional filters in the wavelet domain. A directional lter is expected to improve the retention of edge and curve information during compression. Current implementations of hybrid wavelet and directional (HWD) lters improve the contour representation of compressed images, but su er from the pseudo-Gibbs phenomenon in the smooth regions of the images. A di erent approach to directional lters in the wavelet transforms is proposed to remove such artifacts while maintaining the ability to preserve contours and texture. Imple- mentation with grayscale images shows improvements in terms of distortion rates and the structural similarity, especially in images with contours. The proposed transform manages to preserve the directional capability without pseudo-Gibbs artifacts and at the same time reduces the complexity of wavelet transform with directional lter. Fur-ther investigation to colour images shows the transform able to preserve texture and curve.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Statistical atmospheric parameter retrieval largely benefits from spatial-spectral image compression

    Get PDF
    The infrared atmospheric sounding interferometer (IASI) is flying on board of the Metop satellite series, which is part of the EUMETSAT Polar System. Products obtained from IASI data represent a significant improvement in the accuracy and quality of the measurements used for meteorological models. Notably, the IASI collects rich spectral information to derive temperature and moisture profiles, among other relevant trace gases, essential for atmospheric forecasts and for the understanding of weather. Here, we investigate the impact of near-lossless and lossy compression on IASI L1C data when statistical retrieval algorithms are later applied. We search for those compression ratios that yield a positive impact on the accuracy of the statistical retrievals. The compression techniques help reduce certain amount of noise on the original data and, at the same time, incorporate spatial-spectral feature relations in an indirect way without increasing the computational complexity. We observed that compressing images, at relatively low bit rates, improves results in predicting temperature and dew point temperature, and we advocate that some amount of compression prior to model inversion is beneficial. This research can benefit the development of current and upcoming retrieval chains in infrared sounding and hyperspectral sensors

    Efficient Image Coding and Transmission in Deep Space Communication

    Full text link
    The usefulness of modern digital communication comes from ensuring the data from a source arrives to its destination quickly and correctly. To meet these demands, communication protocols employ data compression and error detection/correction to ensure compactness and accuracy of the data, especially for critical scientific data which requires the use of lossless compression. For example, in deep space communication, information received from satellites to ground stations on Earth come in huge volumes captured with high precision and resolution by space mission instruments, such as Hubble Space Telescope (HST). On-board implementation of communication protocols poses numerous constraints and demands on the high performance given the criticality of data and a high cost of a space mission, including data values. The objectives of this study are to determine which data compression techniques yields the a) minimum data volumes, b) most error resilience, and c) utilize the least amount and power of hardware resources. For this study, a Field Programmable Gate Array (FPGA) will serve as the main component for building the circuitry for each source coding technique. Furthermore, errors are induced based on studies of reported errors rates in deep space communication channels to test for error resilience. Finally, the calculation of resource utilization of the source encoder determines the power and computational usage. Based on the analysis of the error resilience and the characteristics of errors, the requirements to the channel coding are formulated

    Photo Based 3D Walkthrough

    Get PDF
    The objective of 'Photo Based 3D Walkthrough' is to understand how image-based rendering technology is used to create virtual environment and to develop aprototype system which is capable ofproviding real-time 3D walkthrough experience by solely using 2D images. Photo realism has always been an aim of computer graphics in virtual environment. Traditional graphics needs a great amount of works and time to construct a detailed 3D model andscene. Despite the tedious works in constructing the 3D models andscenes, a lot ofefforts need to beput in to render the constructed 3D models and scenes to enhance the level of realism. Traditional geometry-based rendering systems fall short ofsimulating the visual realism of a complex environment and are unable to capture and store a sampled representation ofa large environment with complex lighting and visibility effects. Thus, creating a virtual walkthrough ofa complex real-world environment remains one of the most challenging problems in computer graphics. Due to the various disadvantages of the traditional graphics and geometry-based rendering systems, image-based rendering (IBR) has been introduced recently to overcome the above problems. In this project, a research will be carried out to create anIBR virtual walkthrough by using only OpenGL and C++program without the use of any game engine or QuickTime VR function. Normal photographs (not panoramic photographs) are used as the source material in creating the virtual scene and keyboard is used asthe main navigation tool in the virtual environment. The quality ofthe virtual walkthrough prototype constructed isgood withjust a littlejerkiness

    Dense light field coding: a survey

    Get PDF
    Light Field (LF) imaging is a promising solution for providing more immersive and closer to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for applications in different areas, such as virtual and augmented reality. Due to the recent technological advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment of many tech giants in this area, it is expected that soon many LF transmission systems will be available to both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG), triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount of data involved in such systems. Since then, the topic of LF content coding has become a booming research area, attracting the attention of many researchers worldwide. In this context, this paper provides a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on angularly dense LFs. Special attention is placed on a thorough description of the different LF coding methods and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into open research challenges and future research directions for LF coding.info:eu-repo/semantics/publishedVersio
    corecore