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Steered Mixture-of-Experts for Light Field Images
and Video: Representation and Coding
Ruben Verhack , Thomas Sikora, Glenn Van Wallendael , and Peter Lambert

Abstract—Research in light field (LF) processing has heavily
increased over the last decade. This is largely driven by the
desire to achieve the same level of immersion and navigational
freedom for camera-captured scenes as it is currently available
for CGI content. Standardization organizations such as MPEG
and JPEG continue to follow conventional coding paradigms
in which viewpoints are discretely represented on 2-D regular
grids. These grids are then further decorrelated through hybrid
DPCM/transform techniques. However, these 2-D regular grids are
less suited for high-dimensional data, such as LFs. We propose a
novel coding framework for higher-dimensional image modalities,
called Steered Mixture-of-Experts (SMoE). Coherent areas in
the higher-dimensional space are represented by single higher-
dimensional entities, called kernels. These kernels hold spatially
localized information about light rays at any angle arriving at
a certain region. The global model consists thus of a set of
kernels which define a continuous approximation of the underlying
plenoptic function. We introduce the theory of SMoE and illustrate
its application for 2-D images, 4-D LF images, and 5-D LF video.
We also propose an efficient coding strategy to convert the model
parameters into a bitstream. Even without provisions for high-
frequency information, the proposed method performs comparable
to the state of the art for low-to-mid range bitrates with respect to
subjective visual quality of 4-D LF images. In case of 5-D LF video,
we observe superior decorrelation and coding performance with
coding gains of a factor of 4x in bitrate for the same quality. At
least equally important is the fact that our method inherently has
desired functionality for LF rendering which is lacking in other
state-of-the-art techniques: (1) full zero-delay random access, (2)
light-weight pixel-parallel view reconstruction, and (3) intrinsic
view interpolation and super-resolution.

Index Terms—Mixture of experts, light fields, mixture models,
sparse representation, bayesian modeling.
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I. INTRODUCTION

V IRTUAL reality (VR) for camera-captured scenes is fun-
damentally different and more complex compared to VR

consumption of computer-generated (CG) scenes (e.g. as in
gaming). The problem is much more challenging due to the
lack of geometrical knowledge. 360◦ video is inadequate at de-
livering a full VR experience as it does not allow for important
visual clues (e.g., parallax) and does not deliver positional free-
dom to the user. As such, there is a large interest in overcoming
these limitations and allowing the same level of autonomy for
the viewer.

Two general strategies exist for allowing true immersive ex-
periences of camera-captured scenes. The first strategy con-
sists of reverse-engineering a 3-D model. Such methods rely on
image-based 3-D modeling techniques that require a large num-
ber of fixed cameras. After the 3-D model construction, a texture
is estimated based on the input images. All these approximation
steps are inherently lossy, time-consuming and often require
manual intervention (e.g., to address temporal consistency of
3-D models). Furthermore, they struggle with non-rigid objects
such as smoke, fire, water, and transparent surfaces. The decoder
then consists of a traditional 3-D renderer, in which the decoding
speed heavily depends on the scene’s complexity. The second
strategy relies on known hybrid transform/difference-coding
techniques commonly used for video. Following this philosophy,
scenes are represented by coding a minimal set of 2-D images,
and reconstructing the missing ones by view synthesis. These
methods provide excellent coding performance for video and
for problems that can be translated to video. However, classical
video coding is becoming less translatable (and thus less appli-
cable) to VR, especially with future extensive user autonomy.
Firstly, the number of possible views grows exponentially with
the level of user’s autonomy. Secondly, the time-order in video is
adequately exploited by motion-compensation, however, in VR,
it is difficult to exploit the order of the frames as the end-user
defines the order at playback. Thirdly, the decoder complexity
grows when less views are transmitted due to a more complex
view synthesis process. Fourthly, the reconstruction is not truly
pixel-level parallel due to the intra-coding techniques. Finally,
these systems do not cope well with irregularly-sampled data
and heterogeneous camera setups in scene acquisition systems.

In this paper, we propose a novel third strategy which we be-
lieve is a more adequate fit for higher-dimensional image data.
Our Steered Mixture-of-Experts (SMoE) methodology models
the light information as higher-dimensional data. More specifi-
cally, we sparsely approximate the underlying pixel-generating

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6636-629X
https://orcid.org/0000-0001-9530-3466
https://orcid.org/0000-0001-5313-4158
mailto:ruben.verhack@ugent.be
mailto:sikora@nue.tu-berlin.de
mailto:glenn.vanwallendael@ugent.be
mailto:peter.lambert@ugent.be


580 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 3, MARCH 2020

plenoptic function using inherently higher-dimensional atoms
called ‘kernels’. These kernels allow for simultaneous harvest-
ing of pixel color correlation in various directions: e.g. time,
pixel position, camera position. In essence, the observed 2-D
views in a VR scene at each position and gaze orientation are
2-D projections of higher-dimensional light data. Our belief is
that we should accept the fact that light data is intrinsically of
high dimensionality, and we should not reduce the problem to
2-D problems. Our aim is to embrace the high-dimensional na-
ture and to develop a tailored technique. Furthermore, this data
is likely to be irregularly positioned due to novel complex acqui-
sition systems [1]. We argue that 2-D regular sampling grids are
thus not optimal representations for storing high-dimensional
data, such as light fields (LFs). The light information in a phys-
ical space is mathematically defined by the 5-D plenoptic func-
tion (discarding time): I(X,Y, Z, α, γ) yielding the color and
intensity of the incoming ray at location (X,Y, Z) and angles
(α, γ) [2]. However, under the assumption of “open space” (no
occluding objects), the 5-D plenoptic function can be reduced
to the 4-D light field [3].

Our proposed representation is sparse and consequently com-
pact, which is well suited for compression. Furthermore, our
representation leverages desired functionality for VR consump-
tion for the following reasons. Firstly, information about the light
incoming at any orientation at a certain point is locally available
in our model and can be decoded independently. This yields
potential for granular random access. Secondly, our representa-
tion is continuous and is thus unaware of resolution at encoding
and decoding side. The modeling takes any irregularly-sampled
data and reconstructing a view at arbitrary position boils down
to merely sampling our representation at a desired output res-
olution, independent of the other reconstructed pixels. Conse-
quently, pixel-parallel rendering is made possible [4].

SMoE was previously proposed for images and video, and
has the extraordinary property of scaling towards images of
arbitrary dimensionality [5], [6]. In this paper, we focus on
LF images and video, and more specifically the reconstruction
performance with coded model parameters as a LF compres-
sion tool. Other applications of this representation are super-
resolution, denoising, segmentation, etc. However, these are not
the focus of this paper. An initial short paper on SMoE for
4-D LFs has been published before [7] and results were used
in a comparative study [8], but suffered from unstable modeling
which is examined and fixed in this work. The novelties of this
paper are: (1) an in-depth presentation of SMoE (even though
some parts have been presented scattered over multiple short pa-
pers [5]–[7], no sufficiently complete presentation was present
to date); (2) faster and more robust modeling using minibatches
(x100 speed-up) and a detailed evaluation; (3) a better quantiza-
tion of the covariance matrices; and (4) novel objective and sub-
jective experimental validation on the coding performance for
4-D LF images and objective coding results for 5-D LF video.

The paper is structured as follows. Section II discusses prior
work, standardization efforts, and related work. Next, Section
III introduces the general theory in SMoE. Section IV discusses
the application and properties of SMoE applied to 2-D images,
LF images and LF video. We propose a coding method based on
the SMoE representation in Section V and evaluate the proposed

robust modeling and coding in Section VI. Finally, we present
our conclusions and future work in Section VII.

II. RELATED WORK

The standardization organization Moving Pictures Experts
Group (MPEG) is considering Depth-Image-Based Rendering
(DIBR) for their efforts in standardizing a codec that allows
for broad Six Degrees-of-Freedom (6-DoF, i.e. full translational
and gaze direction freedom) which is targeted for 2021 [9],
[10]. This will likely build further on the 3-D extension of
High Efficiency Video Coder (HEVC), which allows for the us-
age of geometrical side-information for free-viewpoint naviga-
tion [11]. MPEG’s vision consists of two phases at the encoder
side: (1) identifying a minimal set of representative views and
(2) compressing these views [9]. The receiving side then per-
forms some view synthesis. However, the acquisition of this
geometrical side information suffers from the same inherent
problems as 3-D reverse-engineering techniques. Finally, even
methods for coding holographic data by using HEVC have been
proposed [12].

Light field imaging allows for photorealistic reproduction of
a real scene without geometrical information, however, it limits
the user’s autonomy, i.e. the user can not step “into the scene”
within the objects, but remains an outside viewer [1], [3]. The
extent of translatory movement depends on the width of the cam-
era array and defines the viewable region on the camera plane.
The resolution within this region is defined by the length of the
baseline, i.e. the inter-camera distance [1]. The shortest possi-
ble baselines are typically captured using a microlens array on
top of a single image sensor, dubbed lenslet cameras, e.g. Lytro
cameras [13]. In case of the specific lenslet sensor hardware,
intra-prediction can be applied directly on the lenslet sensor
image. Examples include self-similarity [14] and local linear
embedding [15] intra-prediction methods, both embedded into
HEVC. However, these methods are only applicable for these
specific lenslet hardware architectures.

A more hardware-agnostic approach handles the light field
more generally as a 2-D matrix of 2-D camera views. Such cod-
ing schemes often rely on video coding techniques by forming
a pseudo video-sequence of the captured views that serves as
input for HEVC [16]. This is commonly used as an anchor in
light field coding [17], and is also used as such in this article. A
hierarchical reference structure was proposed for inter-coding of
the pseudo video-sequence [18]. Furthermore, a coding method
that allows for Field-of-View scalability was recently proposed
using HEVC as a base layer combined with an exemplar-based
inter-layer prediction [19]. A method based on the multiview
extension of HEVC (MV-HEVC) has also been proposed [20].
A similar technique to MPEG’s 6-DoF vision is present in the
work on lenslet light fields using structural key views [21]. Ideas
of compressed sensing are incorporated in order to achieve min-
imal parameters to define the whole light field. An effective,
although elaborate view synthesis for wide-baseline camera ar-
rays was recently introduced in [22], and is considered to be the
state of the art at the time of writing.

Recently, JPEG has started standardization activities for cod-
ing methods targeting light fields. This is as part of their larger
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ambition of JPEG-Pleno, which is aimed to arrive at a single
unifying format for point-clouds, LFs and holographic image
data [23]. One promising method under consideration is a 4-D
DCT-based codec [24]. This method achieves very competitive
results on lenslet LFs using a conceptually-simple design. How-
ever, it remains a dense representation that requires regularly
sampled data, and also requires as many coefficients as there
are pixels in all views. Furthermore, the efficiency on wide-
baseline light fields is not ensured as larger shifts in views
introduce discontinuities along camera dimensions and discon-
tinuities are usually not well represented by a DCT.

Our work is inspired by the works of Mumford-Shah,
Prandoni & Vetterli, and Takeda [25]–[27]. The Mumford-Shah
variational model shows that natural images are characterized
by having regions that behave smooth but are separated by dis-
continuities (edges) [25]. This allows us to assume images have
a piecewise stationary nature. Prandoni & Vetterli’s theoretical
and experimental work on the approximation and compression
of piecewise smooth functions showed that for such functions,
a sparse coding scheme is much more efficient than fixed grids
[26]. Takeda introduced Steered Kernel Regression (SKR) for
image processing in which kernels were steered along image fea-
tures in order to perform denoising, super-resolution, etc [27]. In
our proposed method, we combine these ideas to represent the
coherent regions in image modalities by a sparse set of kernels.
The introduced SMoE approach borrows many concepts from
non-linear regression techniques in the machine learning world
in which kernel approaches are well-known, i.e. Radial Basis
Function Networks (RBF) [28] and non-linear Support Vector
Regression (SVR) [29].

Early work already employed SKR for image coding as a
reconstruction of the full image that was stored heavily sub-
sampled [30]. In contrast, our proposed approach has the stark
difference that the kernel parameters are stored instead of pixel
data. Furthermore, these kernels can be irregularly positioned.
One limitation of SKR was the limited support by kernels, i.e.
there is no guarantee that all pixels are covered by a kernel. In
SMoE, each expert function has global support and is weighted
to ensure that each pixel has support. One remarkable property
of SMoE is that it is applicable to data of any dimensionality,
which lifts the limitation that Prandoni & Vetterli had in their
technique that did not scale to 2-D.

Other related work also involves sparse light field coding
in order to reveal scene structure [31], [32]. As in SMoE, the
central idea is to represent a signal as a linear combination of
some core atoms. However, SMoE’s atoms are Gaussian kernels
that have a certain position in the coordinate space, whereas
the elements in [32] belong to a patch dictionary. Similar to our
kernel representation idea is the work on identifying coherent
4-D atoms in light fields, i.e. “superrays” for efficient light
field processing [33]. SMoE provides a continuous represen-
tation of the 4-D light field. Similarly, the excellent work on
shearlets also approximates a continuous camera plane based
on a limited set of views for light field reconstruction [34].
Finally, higher-dimensional image modeling is also typically
found in medical image processing in e.g. 4-D perfusion
reconstruction [35].

III. STEERED MIXTURE-OF-EXPERTS (SMOE)

A. Introduction

In SMoE, we approximate image modalities, and in general
signals, by modeling them as a set of coherent kernels. We define
a coordinate space Rp and a color space Rq . For images, video,
LF images, and LF video, the dimensionality p is respectively 2,
3, 4, and 5. For monochrome images, q is 1, and for color images
q is typically 3. The underlying assumption is that image pix-
els are instantiations of a non-linear or non-stationary random
process that can be modeled by spatially-piecewise stationary
stochastic processes, very similar to the Mumford-Shah varia-
tional model for 2-D images [25]. As such, the model takes into
account different regions of the image and their segmentation
borders. Furthermore, in light fields, the epipolar-plane images
consist of diagonally-structured lines, and in video, motion can
be approximated by line segments as is done in motion compen-
sation in HEVC. Therefore, we target a piecewise approximation
of image modalities.

The goal is to divide the coordinate space X into station-
ary regions, and to find local regressors (f : Rp �→ Rq) that lo-
cally approximate this stationary region well. This is the general
Mixture-of-Experts (MoE) strategy, well known in the machine
learning field. However, SMoE is based on a mixture model (or
“alternative”) version of the MoE approach [36]. In this version,
both segmentation and local regressors (the experts) are derived
from the modes of a mixture model. This mixture model models
the joint probability distribution of the random vectors X ∈ Rp

andY ∈ Rq in respectively the coordinate space and color space.
In this paper, we limit ourselves to the Gaussian Mixture

Model (GMM) case. One Gaussian kernel in the model defines
a linear regressor through the conditional Y |X , and all kernels
combined define a segmentation of the coordinate space. The
model thus only consists of a set of Gaussian kernels which are
defined by their centers and covariances. The reason for choos-
ing GMMs is that they offer elegant mathematics and limited
parametrization. Furthermore, the MoE based on GMMs results
in smoothed piecewise approximations, which fit natural image
modalities quite well, as mentioned above. However, the linear
nature might fail to capture high spatial frequencies such as noise
and fine texture. Therefore, we do not exclude future models
with more expressive regressors. The parameters of these ker-
nels are found using likelihood optimization. Consequently, the
kernels harvest correlation over all dimensions and steer along
the dimensions with highest correlation. As such they align with
e.g. edges (in spatial dimensions) and temporal flow (in the time
dimension) in the case of video [5], [6].

The next subsections provide firstly, the theory of Mixture-
of-Experts based on GMMs. Secondly, we discuss the improved
training method used in this work and, finally, we illustrate the
concept of SMoE on a 1-D signal.

B. Mixture-of-Experts Based on GMMs

In general, the goal of regression is to optimally predict a
realization of a random vector Y ∈ Rq , based on a known ran-
dom vector X ∈ Rp. MoE regression follows a tree structure
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Fig. 1. Illustration of a Mixture-of-Experts with one layer for regression. The
gating function soft-partitions the input space in regions where particular experts
(in this case regressors) are the most influential.

as illustrated in Fig. 1. Given K experts with gate parameters
Θg = {θg,j}Kj=1, expert parameters Θe = {θe,j}Kj=1, the total
probability of observing y, given an input vector x, can be writ-
ten in terms of the experts, as

pY (y|X = x,Θ) =

K∑

j=1

pX(j|x, θg,j)︸ ︷︷ ︸
gate access

pY (y|x, θe,j)︸ ︷︷ ︸
expert posterior

. (1)

Due to the modular structure, the gates can be placed in a tree-
structure forming hierarchical MoEs (HME) [36]. The original
MoE approach and modeling differentiated between the model
parameters for the gates Θg and for the experts Θe, and relied
on iteratively recursive least mean squares (IRLS) for estimating
the expert parameters.

In the following, we will elaborate on the “alternative” MoE
definition which is deeply rooted in a Bayesian framework based
on GMMs [36]. This method has the advantage that both the
gates Θg and the experts Θe are simultaneously defined by the
Gaussian components of the mixture model. Thus, the estimation
of the parameters for gates and experts are optimized simulta-
neously and IRLS is not needed.

Consider a mixture of distributions of which the joint proba-
bility is given by

pXY (x,y) =
K∑

j=1

πjφj(x,y; θj), (2)

with πj being the prior for distribution φj .
Regressing the mixture model is equal to finding a measure

of central tendency. For example, the expectation or maximum-
a-posteriori of Y given X of the mixture model, e.g. the mean,
median and mode of the marginal pY (Y |X = x). Note that the
mean is the easiest to compute, and does not rely on the vari-
ance of pY (Y |X = x). As such, less information needs to be
transmitted in the case of coding. We will focus on the expected
value of the conditional: E[Y |X = x].

GMMs offer elegant and relatively-easy descriptions for dis-
tributions and are frequently used to approximate multi-modal,
multivariate distributions pXY (x,y). Given a GMM, one can
derive a regression as follows [37], [38]. Assume data D =
{xi,yi}Ni=1 with joint probability density:

pXY (x,y) =

K∑

j=1

πjN (x,y;µj , Rj) (3)

and
∑K

j=1 πj = 1,µj = [µX,j

µY ,j
], Rj = [RXX,j

RY X,j

RXY ,j

RY Y ,j
].

The parameters of this model are Θ = [θ1, . . . , θK ], with
θj = (πj ,µj , Rj), respectively being the priors, centers, and
covariances. A normal probability density function (pdf) of di-
mension p+ q can be factorized as

Np+q

([
µX

µY

]
, σ2

)
= Nq(µY |X , RY |X)Np(µX , RXX),

where RY |X is the Schur complement:

RY |X = RY Y −RY XR−1
XXRXY . (4)

Accordingly the factorization for a mixture becomes:

pXY (x,y) =
K∑

j=1

[
πjNY |X,j(y;mj(x), RY |X,j) (5)

×NX,j(x;µX,j , RXX,j)
]
, (6)

with

mj(x) = µY ,j +RY X,jR
−1
XX,j(x− µX,j). (7)

mj(x) defines one of the above mentioned MoE Rp �→ Rq

expert functions which in our GMM case are q linear func-
tions. The slope is defined by RY X,jR

−1
XX,j . If steered, i.e.

non-homogeneous Gaussians in GMM are used, our desired lin-
ear steering kernels for SMoE are obtained. Each kernel adapts
to local statistics but - in contrast to RBFs, SVR and SKR - each
kernel has global support over the entire signal domain.

The MoE approximation function is derived from the condi-
tional pdf Y |X [38]

pY (Y |X = x) =

K∑

j=1

wj(x)N (x;mj(x), RY |X,j), (8)

with mixing weights

wj(x) =
πjN (x;µX,j , RXX,j)∑K
i=1 πiN (x;µX,i, RXX,i)

. (9)

Note that the MoE gating function in Eq. (9) corresponds to the
normalized exponential or the softmax function frequently used
in artificial neural networks. It defines the support region for
each kernel and ensures that each sample has support.

We enable non-linear regression by adopting the expected
value ŷ given a sample locationx through the conditional. From
Eq. (8) and (9) follows the non-linear regression functionm(x):

ŷ = m(x) = E[Y |X = x] =

K∑

j=1

wj(x)mj(x). (10)

The trustworthiness of the prediction of the ith component in
Y , can then be evaluated by calculating the prediction variance
var[Y i|X = x].

C. Robust Modeling of GMMs for SMoE

The previous section showed how to perform smoothed piece-
wise regression based on a GMM. The GMM models the joint
probability density function of both X and Y , which in our
approach correspond to the pixel coordinates and the pixel am-
plitudes. The question remaining is how to estimate the GMM
parameters given image pixel data.
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Fig. 2. A 1-D regression example using SMoE on a part of a scanline taken from Lena using three Gaussian kernels (K = 3). The 2-D GMM models the joint
probability between X and Y (a). From this model, a gating function (b) and the regressors (c) are derived. The regressors are summed according to the gating
function to yield the regressed function in (d).

The Expectation-Maximization (EM) algorithm is frequently
used for estimating parameters Θ of a mixture model in an unsu-
pervised learning approach [39]. The EM algorithm iteratively
maximizes the loglikelihood, which in the case of the joint prob-
ability of X and Y given a mixture model of exponential distri-
butions is given by

l(Θ|X,Y ) = E[log p(x,y|Θ)] (11)

=
1

N

N∑

i=1

log
K∑

j=1

πjpXY (xi,yi|θj). (12)

In each iteration k, first the soft-membership ẑij of a pixel
i ≤ N to each Gaussian j ≤ K is estimated, i.e. the likelihood of
that sample originating from that Gaussian (Expectation step, or
E-step). Secondly, based on these soft-memberships the kernel
parameters are re-estimated based on the pixel data that belong
to that cluster (Maximization step, or M-step) [40]:

(M-step)Θk+1 = argmax
Θ

ẑij . (13)

As such, the Gaussians are iteratively fit onto the data. The op-
timization problem is unfortunately non-convex and converges
to a local optimum [41]. Consequently, EM is sensitive to the
initialization of the parameters of the Gaussians, i.e. the posi-
tions and steering. Furthermore, it is clear that this formulation
scales badly in terms of complexity. We can divide the problem
into smaller blocks as in Section V-B, but even then for light
field data, these blocks possibly consist of millions of pixels.
Previous works on SMoE always relied on the batch version as
described above. However, in the application to light fields, our
old approach suffered from robustness issues when the amount
of kernels became large [7]. The more kernels that are added, the
more the optimization becomes sensitive towards local optima
due to the vastly increasing number of parameters to optimize.

In order to mitigate these issues, a stochastic online version of
the EM algorithm, or minibatch EM was proposed [42], [43]. In
minibatch EM, parameters are updated in a stochastic fashion by
taking random minibatches of sizem (randomly sampled pixels)
and performing the M-step according to a learning speed η:

Θk+1 = (1− η)Θk + η
(
argmax

Θ
ẑij

)
(14)

By using minibatches, the local optimum change in every
iteration. As such, it converges more easily to a solution closer
to the global optimum. Furthermore, as m � N , each iteration
takes up N/m times less memory in the E-step and substantially

lowers the duration of a single iteration. Section VI-B provides
experimental evidence for these claims.

D. Example: 1-D Steered Mixture-of-Experts (SMoE)

For illustration purposes, Fig. 2 depicts a SMoE regression
of samples from a 1-D image scan line. The Gaussians/kernels
were optimized using the EM algorithm. Notice that both X and
Y are 1-D, we thus estimate 2-D pdfs using steered Gaussians.
In Fig. 2a, the Gaussians in the GMM are visualized as ellipses,
which indicate iso-probability. Each Gaussian is responsible for
a region in X defined by the weights (Eq. 9), as visualized in
Fig. 2b. Fig. 2c shows that each kernel also yields a linear re-
gressor based on the expectation of the conditional Y |X = x.
Finally, the resulting smoothed piecewise linear regression func-
tion by the weighted sum over all kernels is shown in Fig. 2d.

IV. SMOE FOR 2-D IMAGE, 4-D LF IMAGES, AND 5-D LF
VIDEO REPRESENTATION

A. Introduction

In this section, we outline the application of the SMoE regres-
sion approach on 2-D images, and provide a number of illustra-
tive results. Consequently, this provides easier understanding of
the SMoE framework before introducing the extension to 4-D
LF images and 5-D LF video in Section IV-C.

For grayscale images, we define xi ∈ R2 as the locations
and yi ∈ R1 as the amplitudes of image pixels. Regressing the
model is equal to finding the expected amplitude ŷi given a lo-
cation xi = [xi,1, xi,2] through the “learned” conditional pdf,
i.e. ŷ = m(x). Each kernel defines a linear expert function
R2 �→ R : mj as their regressor, which visually describes a gra-
dient per kernel. The gradient indicates how the signal behaves
around the center of the kernel (Eq. 7). Furthermore, each ker-
nel defines a 2-D window gating function R2 �→ R : wj , which
defines the operating region, or support of the expert. The win-
dow functionwj gives weight to each sample, indicating the soft
membership of that pixel to that component (Eq. 9). Note that
by jointly modeling the pixel locations and amplitudes, our ker-
nel windows can steer along edges and adapt to regional signal
intensity flow, similar to the locally-supported SKR [27].

When extended to support and regress color values in images,
the output Y becomes a 3-D random variable (e.g. in case of the
YCbCr color space). In this case the steered kernels are based
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Fig. 3. Example of a black-white image (a) modeled by 9 kernels for 10.000
pixels (1 kernel covers ±1111 pixels on average). The kernels are visualized in
(b) in R3 joint coordinate and color space. In (c) the spatial spread of the kernels
is shown as an overlay on the original image. Illustration (d) shows the mixing
weight wj (or responsibility) of each kernel j on each pixel after softmax. The
continuous regression is shown in (e) and the regression quantized into 1 bit in
(f). Note how the kernels in (b) are virtually flat in the Y dimension as they
represent constant colors.

on a “learned” 5-dimensional pdf (2-D location, 3 color chan-
nels), although the regression for each channel is independent
to each other. The 5-D kernels now explore correlation in hori-
zontal and vertical dimensions as well as in 3-D color space. In
consequence, each color channel has the same 2-D window wj

(Eq. 9), but different and independent regressors mY,j (luma),
mCb,j , and mCr,j (chroma):

mY,j(x) = µY ,j +RY X,jR
−1
XX,j(x− µX,j), (15)

mCb,j(x) = µCb,j +RCbX,jR
−1
XX,j(x− µX,j), (16)

mCr,j(x) = µCr,j +RCrX,jR
−1
XX,j(x− µX,j). (17)

In the following we briefly illustrate the functioning and prop-
erties of SMoE on binary, gray-scale and color images, and,
finally, 4-D light fields.

B. 2-D Image Examples

We use the binary image in Fig. 3a to illustrate the approxima-
tion of the binary pixel values using only a very small number of
kernels (K = 9). The GMM (after learning using EM) results in
the 3-D mixture model illustrated in Fig. 3b and 3c. Due to the
fact that only two luma values are present in the image, the esti-
mated 3-D ellipsoids are flat along the Y-dimension, i.e. RY Y ,j

and RY X,j are zero for each component j. From Eq. (7) and Eq.
(4) results that the regressors defined by each kernel are constant
planes, and the conditional variance is zero. Also note that the
full background is covered by a single large white kernel. While
all other experts are gated to provide only local support within
this image, one expert provides local as well as global support.

The gating windows are shown in Fig. 3d and confirm the di-
rectional steering operation of the experts. The windows softly
overlap while forming arbitrarily-shaped segments. When the
expected value of the conditional of the mixture model is

Fig. 4. Example of SMoE modeling and reconstruction on a 32× 32 pixel crop
from Lena (a). The kernels are visualized in joint coordinate and color space R3

(d) and as an overlay to the image only showing the spatial spread in X (e). (f)
illustrates how these kernels are responsible for irregularly-shaped regions after
softmax. At the same bitrate, JPEG (b) results in block artifacts whereas SMoE
has a reconstruction (c) that is smoothed along image features. Note how each
component covers a range of luma values in Y and the corresponding regressors
thus result in gradients.

calculated (mean estimator), we arrive at a continuous-tone im-
age shown in Fig. 3e. A binary image can be yielded in two
ways: (1) by hard thresholding as illustrated in Fig. 3f, i.e. map-
ping all luma values y ≥ 0.5 to be white, and all luma < 0.5 to
be black, or (2) by using the mode of the conditional pdf (mode
estimator). Even though we only used nine kernels to represent
the image content, it is clear that all “objects” are represented.
It is apparent that image approximation using SMoE results in
geometrical distortion of image objects.

Fig. 4 illustrates the modeling and reconstruction of a 32× 32
pixel crop of Lena usingK = 10 components. The SMoE model
parameters were quantized prior to reconstruction to arrive at a
designated bit rate in order to allow a comparison with JPEG
(Fig. 4b) as a simple compressed and coded representation. For
fair comparison, the bits required for the JPEG header were
subtracted. Both representations are at around 0.35 bit/sample
[5]. Comparing Fig. 4b and 4c, it is apparent that especially the
edges are reconstructed with impressive quality and sharpness
by our approach. It can be argued that SMoE provides for a
much more efficient and sparse image representation than JPEG
for this type of image content. Fig. 4d shows the steering of the
3-D ellipsoid Gaussian “cigar” components, which define themj

“global” 2-D steering planes (gradients) for regression. Fig. 4e
illustrates steering of the ellipsoids projected onto the 2-D pixel
domain. It is apparent the SMoE kernels harvest directional pixel
correlation.

The respective window functions dictate how the kernel gra-
dients are gated. The windows overlap adaptively into adjacent
image regions and enable either smooth transitions between re-
gions, or abrupt changes. The windows are of arbitrary shape
and steer along edges. This assures that dominant edges are well
reconstructed considering the low amount of components. Note
that the dominant gradient on the right is very well approximated
by a single kernel. Fine details and noise are eliminated which
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Fig. 5. An example of mean estimated reconstructions of a 128 × 128 image. Original (left) followed by models with 25, 100, 250, 750, and 2000 components,
i.e. ranging from 1 kernel covering ±655 to ±8 pixels on average. It is clear that SMoE provides a continuously-refined low-pass version of the original.

is the result of the very sparse representation with only 10 com-
ponents. Fig. 5 shows the extension towards color images with
SMoE models with varying levels of sparsity (number of compo-
nents K between 25 and 2000). Fig. 5 thus illustrates that SMoE
provides a continuously-refined low-pass version of the original.

One of the most interesting properties is that SMoE yields a
representation that is a continuous parametric closed-form ex-
pression. Furthermore, the kernel centers are not limited by a
sampling grid and the kernel steering can have subpixel pre-
cision. SMoE can therefore sample anywhere on the image
plane and thus has intrinsic interpolation, resampling, and super-
resolution with sharp edges readily available. Another feature is
that the kernel parameters provide novel image descriptors, e.g.
the steering parameters, local gradients, intensity flow [5]. Fur-
thermore, the gating functions provide a segmentation of the
image. These tools are readily available for several (decoder)
post-processing tasks. This may include tasks such as segmen-
tation, noise reduction, scale conversion, image similarity re-
trieval, classification and object recognition, to name a few. An
elaborate discussion on the extended additional functionality is
beyond the scope of this article.

C. 4-D Light Field Representation

The 4-D light fields considered in this section are short-
baseline light fields resulting from lenslet-type cameras. How-
ever, the theory does not rely on any hardware assumptions and
is thus applicable to LFs from any acquisition source. In the fol-
lowing, we adopt the LF parametrization LF(a1, a2, x1, x2) =
(Y,Cb,Cr), in which (a1, a2) are the camera (row, column)-
coordinates on the camera plane and (x1, x2) are the pixel
(row, column)-coordinates on the image sensor. This is conform
with the data structure that is yielded by the LF Toolbox v0.4
[44]. Consequently, our GMM is 7-D, with the X-coordinate
being 4-D and the Y -amplitude being 3-D. Consequently, the
soft-windows wj(x) (Eq. 9), describe a 4-D volume per kernel,
and the expert function mj(x) (Eq. 7) describes for each color
channel a 4-D gradient, i.e. a linear function from R4 to R.

Fig. 6a shows a small LF, including the epipolar-plane im-
ages (EPI) on the bottom and right side. The red lines indicate
where the 4-D space is sliced, i.e. indicating where the EPIs
are located spatially. As the kernels are likelihood optimized,
they are expected to steer along the diagonal EPI structures. As
such, kernels can be responsible for different pixel coordinates
(x1, x2) depending on the camera coordinate (a1, a2). Visually,
it seems thus that kernel windows move over the image plane
when moving the viewpoint. The magnitudes of these shifts
correspond to the slopes within the EPIs. Interestingly, these

Fig. 6. SMoE modeling and reconstruction of a cropped LF (I01 Bikes [45]
[46]) using a very low amount of kernels for visualization purposes (K=35). The
original is shown in (a). The kernels are visualized in the 4-D coordinate space
with camera coordinate dimensions (a1, a2) and pixel coordinate dimensions
(x1, x2) in (b). The EPI images are shown below and right of the spatial crop,
corresponding to the pixels indicated by the red lines. The reconstruction is
shown in (d). Note that SMoE implicitly provides a 4-D consistent segmentation
(c), when we indicate for each pixel x which kernel j is dominant (highest
wj(x)). The segmentation illustrates how the kernels are steered along the EPI
diagonal lines.

slopes are proportional to the depth of that point in the scene
[31]. The orientation of the kernels along the EPIs thus im-
plicitly codes depth and could potentially be used as a depth
estimator [7]. Furthermore, a single kernel can yield different
color values when viewed from a different camera coordinate
through the 4-D gradient. As such, it allows us to model
non-Lambertian reflectance.

Fig. 6b shows a low order GMM fit onto the data, note that our
kernels have a spread in all four X dimensions simultaneously.
Fig. 6c illustrates the segmentation, which is nothing more than
the hard-decision of our soft-windows wj(x). It is clear that
our windows steer along the EPI structure and soft-partition
the entire 4-D space, thus yielding global support. Using Eq.
((10)), the reconstruction is illustrated in Fig. 6d. Fig. 7b shows
the reconstructed (7,7)-view from the I01 Bikes LF shown in
Fig. 7a [45]. The modeling is detailed in Section V. Note how
the rust speckles turn into smudges in the reconstruction, which
could arguably be seen as a visually-pleasing quality decay. This
is however heavily penalized when using objective metrics such
as Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity
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Fig. 7. I01 Bikes [45] [46] light field example (K = 8960), showing a central
view with (a1, a2) = (7, 7)with mean PSNRYCbCr: 30.71 dB and mean SSIMY:
0.86 (objective evaluation as in [45]). Note the smoothing artifacts in (b) which
originates from kernels being responsible for a large number of pixels. For
example, the mud speckles on the “peugeot” bar in (a) turn into smudges in (b).

Fig. 8. In the original light field there are missing views due to the sensor
architecture. Views that are at the outer edges of the camera plane are shown in
black, with a1 and a2 corresponding to row and column in the camera plane.
However, view reconstruction using SMoE (26 × 27 spatial crop from I02)
shows consistent extrapolation of these outer views.

(SSIM) [47]. Note that, the reconstruction is slightly blurred
due to the relatively low number of components (K = 8960)
compared to 41,483,904 original pixels in the lenslet image.
Thus resulting in 4,630 pixels for one component on average,
i.e. each 4-D soft-window spans 4,630 samples on average.

Important to note is that SMoE is able to reconstruct views
that were not captured, which is in stark contrast to dense rep-
resentations that require a separate view synthesis process. Our
model has a continuous representation, as such any view in the
domain can be readily reconstructed. Limited extrapolation is
also possible. Fig. 8a, shows that the LF data structure (obtained
through the LF Toolbox [44]) results in black views in the cor-
ners of the camera plane. Our method is able to estimate these
views with remarkable consistency by excluding the black views
during training. The effect is clearly visible by the position of
the red square on the background (Fig. 8b). However, extensive
evaluation is considered out of scope.

D. 5-D Light Field Video Representation

Light field videos are LFs captured at intervals over time
and thus yield a 5-D coordinate space (t, a1, a2, x1, x2). The
theory remains identical and the (a1, a2, x1, x2) keep the same

properties identically to 4-D LF image models, only a time di-
mension t is added. However, the time dimension does behave
very differently compared to the camera-plane dimensions and
the spatial dimensions. In practice, the kernels are all maximally
elongated along the EPI strips while having a rather limited spa-
tial spread. Interestingly, along the time dimension both are com-
monly present. Kernels that represent the light irradiated by a
static or a linearly-moving object will have a large spread along
the time dimension. However, in the case of non-linear move-
ment or rapidly changing color values, kernels will be short
along the time dimension. This needs to be taken into account
during modeling as an adequate kernel density over the whole
5-D coordinate space is desired. In most cases, the frames for
each viewpoint are synchronized during acquisition or are re-
sampled before processing. However, as our representation is
resolution agnostic, frames can be captured at irregular inter-
vals. Only the absolute timestamp t of the frame is necessary for
our modeling process. Furthermore, as our model is continuous,
we can reconstruct all views at synchronous timestamps without
any other methods involved.

The main challenge in LF video is the incredible number
of samples that need to be modeled. A LF video with 10 ×
10 viewpoints, in full HD at 30 fps thus yields 6,220,800,000
pixels per second! Sparse representations such as SMoE are
hugely beneficial for such higher-dimensional modalities as a
single kernel can span over a large number of pixels spread out
over five dimensions simultaneously. Table I shows the number
of kernels K for the models used in the coding experiments
in Section VI. We observe the maximum K to be 33,415 for
the train1 LF video sequence which consists of 1,257, 242,
624, i.e. over 1 billion original samples. One SMoE kernel
thus covers 37,625 original pixel on average while resulting
in a reconstruction with 0.96 SSIM and 36.24 dB PSNR. To
illustrate, the previously shown examples showed an average
pixel-coverage per kernel to be 8 to 655 pixels for the presented
2-D image (Fig. 5) and an average pixel-coverage of ±4, 630
pixels for the 4-D LF image example (Fig. 7). This is one of
the strengths of such a sparse representation, i.e. whereas the
number of pixels grows exponentially with p, the number of
required kernels has more of a linear relation and thus performs
better as p increases. The exact relation is not defined as the
number of required kernels depends on the image content.

Analogously, the descriptors that were enabled by SMoE for
4-D LF images (e.g. depth and 4-D segmentation) are similarly
available for 5-D LF video, e.g. 5-D segmentation and rough
depth at each point in time. Furthermore, the orientation of the
kernels are likely to follow motion as the modeling process steers
the kernels to harvest correlation over time. Extensive evaluation
is considered future work.

V. PROPOSED CODING SCHEME

A. Introduction

Our coding strategy is illustrated in Fig. 9. First, kernels are
fit onto the LF data during modeling. The modeling thus results
in a set of parameters per kernel j, as described in Section IV-C.
However, not all kernel parameters are needed for reconstruc-
tion, or can be fixed. Such parameters are thus not coded in
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TABLE I
CODING PARAMETERS, OBJECTIVE AND SUBJECTIVE RESULTS

Coding parameters, objective (PSNR, SSIM) and subjective (MOS, Confidence Interval CI) quality results for both 4-D LF images and 5-D LF video SMoE models. The models
contain K kernels. The covariance matrix RXX is normalized by dividing the scale s = |RXX |1/p. The normalized RXX is then coded using a dictionary with L entries. The
identifier of the closest kernel in that dictionary is then coded using log2(L) bits. The dictionary is trained on the set of normalized RXX of this specific model and is transmitted
along with the other parameters. All other parameters are normalized to have zero mean and a certain standard deviation σ depending on the parameter type. We then quantize
using a fixed quantization step by dividing the maximum range into 2b steps. All σ are ≤ 1. The rationale is that parameters with σ < 1 are quantized with more distortion, in
order to save bits on these less important parameters. σ is 1, Except for σT , σA, σUV , corresponding to the components of the prediction error e corresponding to time (eT ),
camera coordinates (eA), luma center (eYY

), and chrome centers (eYCb
, eYCr

). Next, σs, σXY , σTY , σAY are the σ-values for respectively the scale s per kernel, the
covariance between the luma channel and spatial, time, and camera coordinates. All parameters are then arithmetic coded, assuming a Laplace distribution as initialization.

Fig. 9. The block diagram of the proposed encoding process. The 4-D
LF is modeled in a blockwise manner and results in the parameters θj =

{µj , RXX,j , RXY ,j}Kj=1 for all K kernels (other parameters are not coded).
Firstly, all except RXX,j are coded similarly, each parameter type i is normal-
ized to have zero mean and a standard deviation σi (according to the importance
of that parameter). These parameters are then quantized and coded in a single
bitstream using an adaptive arithmetic coder (AAC). Secondly, RXX,j is first
scaled by 1/sj , with sj = |RXX,j |1/4 so that each determinant equals one.
The normalized RXX,j are then used to build a codebook with centers Cl. The
codebook centers Cl are then quantized and arithmetic encoded. Finally, for
each kernel j, we encode the index lj of the nearest cluster Cl.

order to save bits. We discard RY Y ,j as it is not necessary for
the reconstruction (however, this removes the ability to calculate
prediction variance at the decoder side). Furthermore, the priors
πj are assumed uniform, and are thus fixed to 1/K for 4-D LF
images. Whereas, the πj were coded similar to the gradient co-
variance coefficients for 5-D LF video. Also, the human visual
system is less sensitive to changes in color than to changes in

luminance. Therefore, the chroma slope components RXYCb,Cr,j

are assumed zero.
Secondly, the covariance matrices of the kernels in the coor-

dinate space (i.e. RXX,j) are highly redundant and a codebook
approach is proposed. Finally, all other parameters are normal-
ized, quantized and entropy coded. However, the centers µj are
quantized in a difference-coded method along an approxima-
tion of the shortest path. Note that both the modeling and the
coefficient quantization contribute to the approximation error.

B. Local Modeling

The EM algorithm is used to estimate the parameters θj =
(πj ,µj , Rj) for each component j [48]. In order to lower the
computation demands, modeling is performed using a divide-
and-conquer strategy. For 4-D LF images we chose to divide the
LF into 4-D overlapping blocks that are independently modeled.
Overlapping blocks mitigate block-artifacts that were present in
[5]. Furthermore, in contrast to [5], all blocks in this work re-
ceived the same budget of kernels. As such, we limit the number
of free parameters. The blocks range over the full camera plane
(a1, a2), but are limited on the image sensor plane, i.e. over the
(x1, x2) dimensions. The reason here is that we expect kernels to
have a large spread along the camera dimensions (aligning with
the EPI lines), and limited spatial spread. A similar modeling
strategy was used for 5-D LF video using minibatch updates.

C. Window RXX,j Quantization

As shown in Fig. 10, there is a high level of redundancy in
the shapes of the kernels which are defined by the covariance
in the coordinate space, i.e. RXX,j . Therefore, we employ a
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Fig. 10. On the left side, we illustrate all normalized RXX,j of a single 4-D
LF image model (K = 8960) as ellipses. The RXX,j is the covariance in coor-
dinate dimensions and defines the spread of each kernel in the coordinate space.
For illustration purposes, we show only the two spatial dimensions (x1, x2). It
is clear that there is a high level of redundancy. In order to reduce the redundancy
in possible kernel shapes, we developed a codebook algorithm. The right plot
illustrates the resulting codebook with only 64 dictionary entries. Codebooks
are trained and binarized per model.

vector quantization-like method for coding the window covari-
ance RXX,j . We propose an EM-like algorithm based on the
Kullback-Leibler (KL) divergence. As such, the probability den-
sities are compared, which are more informative than the covari-
ance parameters. Thus, instead of coding the 4x4 matrixRXX,j ,
we need to encode three items: (1) the smaller codebook with L
entries Cl, l ≤ L, (2) we code the index l of the closest cluster
center for each kernel j and (3) a scale sj for each kernel, as the
codebook entries are normalized. The assumption is that similar
reconstruction quality can be achieved with L � K.

We normalize all RXX,j by |RXX,j |1/p. As such, the con-
structed codebook contains normalized shapes with a determi-
nant of one. The coding of the magnitude of the shape, i.e.
sj = |RXX,j |1/p is discussed in the next subsection.

The KL-divergence for multivariate Gaussians A ∼ N (µA,
RA) and B ∼ N (µB , RB) is given by

DKL(A || B) =
1

2

[
log

( |RA|
|RB |

)
− d+ tr(R−1

B RA)

]

+
1

2

[
(µB − µA)

TR−1
B (µB − µA)

]
(18)

As our data is normalized, |RA| and |RB | equal one. Further-
more, the windows are assumed to be centered on the origin, i.e.
µA and µB are zero. In order to obtain a symmetric similarity
measure, we define our distance as

d(A,B) =
DKL(A || B) + DKL(A || B)

2

=
1

4

(−2p+ tr(R−1
B RA) + tr(R−1

A RB)
)

Covariances are clustered around a centroid using d(A,B). At
each iteration, the new centroid covariance Cl is calculated as
the mean covariance of the members of the cluster l, and renor-
malized.

This codebook was trained at encoder side, and transformed
to ensure robustness. As eachCl is semi-positive definite,Cl can
be decomposed using Cholesky:Cl = UTU .U is vectorized and
each coefficient is coded analogously to the slopes RXY ,j (see
Section V-D). At decoder side, the multiplication UTU ensures
the reconstructed covariance to be semi-positive definite again.

At decoder side, RXX,j is thus reconstructed as follows:

R̃XX,j = sj × Clj , (19)

with lj the index of the closest codebook center C to the original
normalized kernel covariance matrix and is coded using log2(L)
bits per kernel.

However, the outlined algorithm is known to scale badly to
high numbers of kernels. At each iteration, the distance is be-
tween each kernel’s RXX,j and codebook center’s Cl is calcu-
lated (cfr. Section III-C). Similar to the minibatch approach for
the EM algorithm, we developed a minibatch codebook train-
ing method by employing a per-cluster learning rate as in [49].
This allows us to converge orders of magnitudes faster while
requiring vastly less memory.

D. Center µ and Slope RXY ,j Quantization and Arithmetic
Coding

The kernels are sorted by the centers µ = [µX ,µY ] by defin-
ing a path that comprises every component once in a greedy
fashion. Start with the component j closest to the origin. Find
component k (k 
= j) so that |µj − µk| is minimal. As such,
each µj−1 is a good predictor for µj . We then choose to only
quantize and binarize the prediction error. Note that the predic-
tion error ej is calculated based on the dequantized µ̃j−1 in
order to prevent error propagation.

ej = µj − µ̃j−1 (20)

This scheme is generally known as Differential Pulse Code
Modulation (DPCM) and is illustrated by the feedback loop in
Fig. 9. We thus arrive at a (p+ q)-dimensional prediction error
vector for each kernel j, i.e. 7-D and 8-D respectively for LF
images and video. These vectors typically follow a Laplacian
distribution.

Secondly, the full p× 3 covariance matrix RXY ,j is not en-
tirely encoded. As we operate in the 3-D YCbCr space, we intend
only to encode the gradients along the luma channel. We thus
continue working with a p× 1 covariance matrix, the other ele-
ments are assumed to be zero. From our tests, we observed that
the remaining values naturally follow a Laplacian distribution.
The final parameter to be encoded is the magnitude of the covari-
ance matrix RXX,j , which is sj = |RXX,j |1/p. This parameter
naturally follows a distribution close to a positive-Laplacian dis-
tribution.

For LF images and video, a total of respectively 12 or 15
parameters are thus encoded per kernel j, i.e. the prediction
errors ej , the p dimensions in RXY ,j (discarding the chroma
dimensions) and the shape magnitude sj . Furthermore, the pri-
ors πj are also included for light field video. Due to these ob-
servations, we aim to encode all these parameters in a single
Adaptive Arithmetic Coder (AAC) which assumes a Laplacian
distribution. Therefore, we need to align all the distributions
of the remaining 12 or 15 parameters. Furthermore, we want
more distortion in less important parameters in order to save
bits.

In order to align the distributions and to allow more distor-
tion in some parameters than others, we propose the following.
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Fig. 11. Performance evaluation of batch EM vs. minibatch EM in terms of speed (a) and SSIM (b, c) on a dataset of light field crops. Note the logarithmic
x-axis for (a), (b), and (c), as well as the logarithmic y-axis in (a). There are two things that are worth noting. First, an impressive x100 speed-up is visible in (a).
Secondly, when comparing the samples for batch (b) and the samples for minibatch (c), it is visible that higher quality is more consistently achieved for minibatch.
In contrast to the batch method (b), where the quality could be unacceptable for even a large number of kernels for certain samples. The reconstruction quality of
complete light fields is validated in (11d). It is clear that the minibatch approach heavily increases the robustness for large Ks, while achieving a x100 speed-up.

We normalize the resulting parameters to have zero mean and
a certain standard deviation σi, with σi ≤ 1. We then quantize
using a fixed quantization step |min_val,max_val|/2b, based
on the minimum and maximum value of all normalized parame-
ters. The rationale is that parameters with σi < 1 are quantized
with more distortion, in order to save bits on these less impor-
tant parameters. Finally, we entropy code the quantized values
by employing an adaptive arithmetic coder which is initialized
by a Laplacian distribution.

To summarize, the following choices can be made in order to
save bits. Note that all choices lead to a possible visual degra-
dation of the reconstructed light field:

1) Modeling using a lower number of kernels K;
2) Decreasing the standard deviation σi of each parameter

type i during normalization;
3) Increasing the quantization step size by decreasing b;
4) Decreasing the number of elements in the codebook.

VI. APPROXIMATION AND CODING EXPERIMENTS

A. Introduction

In this section, we firstly investigate the performance of our
new robust modeling technique as introduced in Section III-
C. We evaluate in terms of speed and reconstruction quality,
compared to the modeling used in [7]. Secondly, we validate
our proposed coding scheme using models trained using our
robust modeling scheme using objective metrics. Thirdly, we
evaluate the subjective quality of the coded light fields. Finally,
the compression efficiency for light field video is investigated.

For these experiments, three datasets are used. First, a new
dataset with 324 small light field crops was extracted from the
EPFL lenslet dataset used for ICIP Grand Challenge and the
Call for Proposals for JPEG Pleno [8]. The crops have 10-bit
color depth, 64× 64 image pixel resolution and 13× 13 camera
coordinates. Each block thus contains 692,224 samples. Second,
five full LFs from the same EPFL dataset were used. Finally, two
light field video sequences were used: cats and train1 [50]. The
LF videos resulted from temporally upscaling a lenslet camera
to 30fps with two light field video sequences of resolution 512×
352 for approximately 100 frames and 8× 8 views.

B. Minibatch vs. Batch EM

As mentioned in Section III-C, the online EM introduces two
new parameters: the batch size m and a driver for the learning
rate α. From our experiments, we found that for large K, the
reconstruction quality becomes sensitive towards the values of
(m,α), with differences of up to 10 dB PSNR. A careful anal-
ysis of these parameters is thus advised. Empirically, we found
the following parameters for blocks of 13 × 13 × 64 × 64:
m = 1000, and α = 0.5 when K < 1000, and α = 0.8 when
K > 1000. Both the batch and the minibatch approaches are
implemented using MATLAB.

Fig. 11 shows results of the reconstruction quality and mod-
eling speed of the above mentioned dataset. It is clear that for
the same number of kernels K, the minibatch approach is up
to 100x faster. Furthermore, the results confirm the increase of
robustness. The desired behavior of having monotonous positive
relation between number of kernel K and reconstruction qual-
ity is experimentally confirmed. Given 10,000 kernels (1 kernel
per 92 pixels), the minibatch EM algorithm reaches up to 37 dB
PSNR on average and 0.95 SSIM. Using the local block-based
modeling (with 3-pixel overlapping blocks) in Section V-B, we
compare the performance of the modeling on the full LFs. Firstly,
we can clearly see that there is a strong increase of robustness.
Whereas using the batch EM does not guarantee a monotonic
increase of SSIM, the minibatch method does. Secondly, the
strong decrease in runtime allows us to create models with a
much higher number of kernels. We can conclude that, given
careful a priori analysis of the hyperparameters, the usage of
minibatches for training GMMs is beneficial in terms of speed,
robustness and accuracy of reconstruction.

C. Light Field Image Coding

The following parameters were found using random search:
blocksize, kernels per block Ki, quantization steps, and code-
book size. The blocksize for the minibatch was fixed to 64 with
Ki between 10 and 4000, whereas the blocksize for the batch
EM ranged [11, 17, 21, 32, 64, 128] with Ki between 6 and 48.
The quantization step ranged [10,12,14], ratios σi = [1, 1/2,
1/4, 1/8], and book sizes L = [26, 28, 210, 211, 212, 213].
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Fig. 12. Coding results comparing the three HEVC (All-Intra, Low-Delay, and GOP-16) and SMoE (batch and minibatch) in terms of PSNR, SSIM, and MOS
scores. Notice the difference between the objective metrics (PSNR and SSIM) and subjective scores. It is clear that the distortions produced by SMoE (e.g.
geometrical distortions, smoothing) are punished heavily by PSNR, and in lesser amount by SSIM. The SMoE distortions seem to have a visually pleasing effect
as a MOS score of 4 indicates “Perceptual difference, but not annoying”. Nonetheless, the loss of fine texture make it hard to achieve a MOS score closer to 5 “No
perceptual difference”. In general, we can say that up to and including a MOS score of 4, SMoE is competitive with motion-compensated pseudo-video coding of
light fields using HEVC. Furthermore, note that PSNR and SSIM only capture the exact view reconstructions, whereas the MOS scores also captures smoothness
between views and refocusing.

The largest portion of the computational complexity is sit-
uated in the local modeling and the codebook building and is
very dependent on the number of kernels per block in model-
ing (see Fig. 11a). A model of 30 K kernels requires two hours,
whereas 270 K kernels requires three days. The training of the
codebooks depends on the number of kernels K and size of the
codebook L, and range between some minutes and two hours.
Note that this is non-optimized code in MATLAB running on
a single thread of a IntelXeonCPU E5-2650 v3 @ 2.30 GHz
machine. Reconstruction can be done in realtime [4].

For comparison, we have encoded the LFs as HEVC videos
using the reference encoder HM-16.17 [51]. In order to have a
logical ordering, the video is built by traversing in a snakelike-
manner from the top left view towards the bottom right view.
In order to ensure a fair comparison, we did not encode the
outer most views, i.e. 2 ≤ a1 ≤ 14 and 2 ≤ a2 ≤ 14, as they are
not used in calculating the objective metrics. We compare three
HEVC configurations ranging from granular random access (like
SMoE) to low random access: HEVC All-Intra (GOP = 1), low-
delay (GOP = 4), and with GOP = 16 with GOP being the
Group-of-Pictures. For both GOP = 4 and GOP = 16, only a
single I-frame is used in the first GOP, all following GOPs start
with a P-frame.

Fig. 12 shows the rate-distortion (RD) curves for three LFs:
I01, I02, I03 optimized to SSIM. Table I shows the parameters
and the metrics for each RD-point. We compare three HEVC
configurations with batch- and minibatch-based SMoE. It is

clear that for all images SMoE performs better than All-Intra
HEVC with granular random access. However, SMoE is be-
ing consistently outperformed by motion-compensated HEVC.
Batch and minibatch perform equally well, up until the point the
batch-method does not allow higher kernel numbers.

Subjective tests were performed in order to assess a more
general quality of experience, which aims to capture view re-
construction quality, view consistency, and refocus quality si-
multaneously. We exactly followed the recommended guidelines
on passive subjective evaluation of light fields as in [17]. Mean
Opinion Scores (MOS) were measured using a Double Stimulus
Impairment Scale (DSIS), i.e. showing both the ground truth
and the compressed sequence side-by-side. Four RD-points of
the three HEVC configurations and for the minibatch SMoE
method were selected in the lowest range, as this was assumed
to cover the highest variance in MOS scores. Eleven refocused
images were calculated using the LFFiltShiftSum function of the
Matlab light field toolbox [44], the same slope values were used
as suggested in [17].

The participant was not able to interact with the content, but
a video was constructed for each RD-point that traverses the
LF going through 97 selected viewpoints in a snake-like man-
ner at 10 frames-per-second (fps) [17]. Next, the eleven refo-
cused images were shown in an animation of 4 fps, going from
a focused foreground to a focused background and back. The
participant was asked to rate the compressed sequence on a
scale: 1 (Very Annoying), 2 (Annoying), 3 (Slightly annoying), 4
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Fig. 13. The setup used for the subjective experiments showing the 1080p
Barco LC-47 monitor at eye-height. Both the ground truth and compressed
sequences were shown side-by-side at native resolution.

Fig. 14. Rate-distortion performance of MV-HEVC versus SMoE for two
different light field video sequences. It is clear that SMoE provides high bitrate
savings up to a factor of 4x.

(Perceptible but not annoying), and 5 (Imperceptible). The ex-
periment was done in two sessions. Each session showed 40
stimuli side-by-side (±15 min per session) in a dark controlled
environment as shown in Fig. 13. The monitor was a high-quality
and color-calibrated Barco LC-47 at 1080p native resolution.
The 30 subjects (24 male and 6 female of which 6 experts) were
aged between 23 and 64 (mean 31).

Results are shown in the last column of Fig. 12. Confidence
intervals are plotted according to the ITU-R BT.500-13 recom-
mendation [52]. It is very interesting to notice that subjectively
SMoE scores much better compared to the objective metrics
PSNR and SSIM, with PSNR differences up to 6 dB. One ex-
planation could be that the distortions introduced by SMoE (e.g.
geometrical distortions and smoothing) are visually pleasing
degradations. Furthermore, due to the continuous representa-
tion over all dimensions, SMoE is extremely view consistent.
HEVC often introduced flickering when moving through views.
We conclude that for MOS scores up to 4 (Perceptible but not an-
noying), we are competitive with motion-compensated HEVC.
However, a MOS score of 5 (Imperceptible) remains hard to
achieve as our kernels fail to capture higher spatial frequencies.

D. Light Field Video Coding

In our experiments, the RD-performance of MV-HEVC is
compared to our SMoE approach. The MV-HEVC configura-
tion includes only a single I-frame, each center-view per frame
is predicted from other center-views. Other views in a frame are
then subsequently estimated from the center-view. Fig. 14 illus-
trates the RD-curves in terms of SSIM (as SSIM correlated better
with the subjective results above compared to PSNR). It is clear

Fig. 15. Subjective comparison of SMoE (left) vs MV-HEVC (right) of cats
(top) and train1 (bottom) at frame 60. Metrics are indicated in PSNR and SSIM.
SMoE is shown at respectively 7.5% and 33.7% less bitrate compared to MV-
HEVC, while achieving superior objective quality around +3 dB PSNR and
+0.05 SSIM.

that SMoE impressively outperforms MV-HEVC for the cats and
train1 sequences with bitrate savings up to a factor of 4x for the
same quality. Table I shows the parameters used for the SMoE
encoding of the model parameters and the corresponding results
in PSNR and SSIM. Fig. 15 provides a subjective comparison.
At low bitrates, SMoE results in spatio-temporal smoothing. In
contrast, MV-HEVC typically exhibits more blocking artifacts,
e.g. visible in the horizontal lines behind the train and around
the train chimney. Furthermore, SMoE exhibits in general better
temporal consistency, especially in static segments. Such ker-
nels have a long spread along the temporal dimension t and the
camera coordinate plane (a1, a2). As such, these kernels yield
consistent views. In such areas, extra kernels can thus be used to
increase spatial detail instead of temporal detail. To conclude,
the application of the SMoE representation becomes increas-
ingly interesting as the dimensionality p of the coordinate space
increases.

VII. CONCLUSION AND FUTURE WORK

This paper provided an in-depth presentation of Steered
Mixture-of-Experts (SMoE): a novel framework for approximat-
ing image modalities with numerous applications. The image it-
self is not stored, instead, the underlying function that could have
generated this image is approximated and stored. The function
approximation is performed by dividing the coordinate space
into many smaller patches that focus on parts of the underlying
function (coinciding with regions in the image). Each such patch
is approximated by a single expert-function, defined by a ker-
nel. The total model thus consists of a set of kernels. The main
benefits of SMoE compared to standard approaches are as fol-
lows. Firstly, the multi-dimensional kernels harvest long-term
correlation over all dimensions simultaneously, which makes
it inherently easy to tackle higher-dimensional image modali-
ties. Secondly, although one Gaussian kernel has more parame-
ters than e.g. a pixel, one kernel can cover thousands of pixels.
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Thirdly, there is high potential for granular random access as
each kernel is specialized in a region. Finally, the model provides
a continuous approximation of the underlying pixel-generative
function. Rendering a view thus means merely sampling that
approximated function consisting only of the kernels relevant
for that view. Furthermore, each pixel can be calculated inde-
pendently, which thus allows for pixel-level parallel rendering.

In this work, we focused on the SMoE model for light field
images and video and the application to coding. It was shown
that the efficiency of SMoE increases when the dimensionality
of the image modality increases. The reason is twofold. First, in
dense representations the number of necessary pixels grows ex-
ponentially with the dimensionality. In contrast, sparse represen-
tations follow a more linear relationship depending on the image
content. As a result, the average pixel-coverage by kernels in-
creases exponentially as the dimensionality increases. Secondly,
the number of parameters per kernel increases only linearly
when the dimensionality increases. A dimension-agnostic cod-
ing scheme was introduced to binarize the kernel parameters. For
static 4-D light fields, the SMoE-based codec was outperformed
by HEVC when using motion-compensation (low random ac-
cess, complex decoding structure) in terms of PSNR and SSIM,
the SMoE-based codec did strongly outperform HEVC All-Intra
(which allows similar granular random access as SMoE). Sub-
jective tests were performed in order to assess view quality, view
consistency, and refocusing after coding. These results remark-
ably show that SMoE is competitive with the best HEVC con-
figuration up to the range of a MOS score above 4 (Perceptible
but not annoying), arguably the most interesting range for coding
schemes from a practical point of view. For 5-D light field video,
we found that our approach can heavily outperform MV-HEVC
up to bitrate savings up to a factor of 4x.

Our representation employs only linear regressors and thus
assumes natural images to be able to be approximated as a
smoothed piecewise linear function. However, the reality is more
that image modalities resemble more piecewise stationary func-
tions and can exhibit high spatial frequencies in textured re-
gions. With the current model, an infeasible number of small
kernels would be necessary to capture all detail. Current work
aimed and succeeded in proving feasibility to design a sparse
information-rich representation that scales to any dimensionality
with desired functionality for VR consumption, e.g. random ac-
cess, inherent view interpolation, and pixel-parallel reconstruc-
tions. Future work will thus consist of introducing provisions
for residual texture. However, we have shown that even with-
out these provisions, our model is competitive for low-to-mid
range bitrates. Furthermore, the model is not trained to maxi-
mize PSNR of the reconstruction, but to maximize the likelihood
of the model. As such, PSNR optimization could be a way to
increase the RD-performance as early evidence shows [53], [54].
Finally, other properties and applications of SMoE need to be
investigated and assessed.
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