10 research outputs found

    09391 Abstracts Collection -- Algorithms and Complexity for Continuous Problems

    Get PDF
    From 20.09.09 to 25.09.09, the Dagstuhl Seminar 09391 Algorithms and Complexity for Continuous Problems was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Asymptotic analysis of semidefinite bounds for polynomial optimization and independent sets in geometric hypergraphs

    Get PDF
    The goal of a mathematical optimization problem is to maximize an objective (or minimize a cost) under a given set of rules, called constraints. Optimization has many applications, both in other areas of mathematics and in the real world. Unfortunately, some of the most interesting problems are also very hard to solve numerically. To work around this issue, one often considers relaxations: approximations of the original problem that are much easier to solve. Naturally, it is then important to understand how (in)accurate these relaxations are. This thesis consists of three parts, each covering a different method that uses semidefinite programming to approximate hard optimization problems. In Part 1 and Part 2, we consider two hierarchies of relaxations for polynomial optimization problems based on sums of squares. We show improved guarantees on the quality of Lasserre's measure-based hierarchy in a wide variety of settings (Part 1). We establish error bounds for the moment-SOS hierarchy in certain fundamental special cases. These bounds are much stronger than the ones obtained from existing, general results (Part 2). In Part 3, we generalize the celebrated Lovász theta number to (geometric) hypergraphs. We apply our generalization to formulate relaxations for a type of independent set problem in the hypersphere. These relaxations allow us to improve some results in Euclidean Ramsey theory

    Multiple-Object Estimation Techniques for Challenging Scenarios

    Get PDF
    A series of methods for solving the multi-object estimation problem in the context sequential Bayesian inference is presented. These methods concentrate on dealing with challenging scenarios of multiple target tracking, involving fundamental problems of nonlinearity and non-Gaussianity of processes, high state dimensionality, high number of targets, statistical dependence between target states, and degenerate cases of low signal-to-noise ratio, high uncertainty, lowly observable states or uninformative observations. These difficulties pose obstacles to most practical multi-object inference problems, lying at the heart of the shortcomings reported for state-of-the-art methods, and so elicit novel treatments to enable tackling a broader class of real problems. The novel algorithms offered as solutions in this dissertation address such challenges by acting on the root causes of the associated problems. Often this involves essential dilemmas commonly manifested in Statistics and Decision Theory, such as trading off estimation accuracy with algorithm complexity, soft versus hard decision, generality versus tractability, conciseness versus interpretativeness etc. All proposed algorithms constitute stochastic filters, each of which is formulated to address specific aspects of the challenges at hand while offering tools to achieve judicious compromises in the aforementioned dilemmas. Two of the filters address the weight degeneracy observed in sequential Monte Carlo filters, particularly for nonlinear processes. One of these filters is designed for nonlinear non-Gaussian high-dimensional problems, delivering representativeness of the uncertainty in high-dimensional states while mitigating part of the inaccuracies that arise from the curse of dimensionality. This filter is shown to cope well with scenarios of multimodality, high state uncertainty, uninformative observations and high number of false alarms. A multi-object filter deals with the problem of considering dependencies between target states in a way that is scalable to a large number of targets, by resorting to probabilistic graphical structures. Another multi-object filter treats the problem of reducing the computational complexity of a state-of-the-art cardinalized filter to deal with a large number of targets, without compromising accuracy significantly. Finally, a framework for associating measurements across observation sessions for scenarios of low state observability is proposed, with application to an important Space Surveillance task: cataloging of space debris in the geosynchronous/geostationary belt. The devised methods treat the considered challenges by bringing about rather general questions, and provide not only principled solutions but also analyzes the essence of the investigated problems, extrapolating the implemented techniques to a wider spectrum of similar problems in Signal Processing

    On the computation of geometric features of spectra of linear operators on Hilbert spaces

    Full text link
    Computing spectra is a central problem in computational mathematics with an abundance of applications throughout the sciences. However, in many applications gaining an approximation of the spectrum is not enough. Often it is vital to determine geometric features of spectra such as Lebesgue measure, capacity or fractal dimensions, different types of spectral radii and numerical ranges, or to detect essential spectral gaps and the corresponding failure of the finite section method. Despite new results on computing spectra and the substantial interest in these geometric problems, there remain no general methods able to compute such geometric features of spectra of infinite-dimensional operators. We provide the first algorithms for the computation of many of these longstanding problems (including the above). As demonstrated with computational examples, the new algorithms yield a library of new methods. Recent progress in computational spectral problems in infinite dimensions has led to the Solvability Complexity Index (SCI) hierarchy, which classifies the difficulty of computational problems. These results reveal that infinite-dimensional spectral problems yield an intricate infinite classification theory determining which spectral problems can be solved and with which type of algorithm. This is very much related to S. Smale's comprehensive program on the foundations of computational mathematics initiated in the 1980s. We classify the computation of geometric features of spectra in the SCI hierarchy, allowing us to precisely determine the boundaries of what computers can achieve and prove that our algorithms are optimal. We also provide a new universal technique for establishing lower bounds in the SCI hierarchy, which both greatly simplifies previous SCI arguments and allows new, formerly unattainable, classifications

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft

    Putting Chinese natural knowledge to work in an eighteenth-century Swiss canton: the case of Dr Laurent Garcin

    Get PDF
    Symposium: S048 - Putting Chinese natural knowledge to work in the long eighteenth centuryThis paper takes as a case study the experience of the eighteenth-century Swiss physician, Laurent Garcin (1683-1752), with Chinese medical and pharmacological knowledge. A Neuchâtel bourgeois of Huguenot origin, who studied in Leiden with Hermann Boerhaave, Garcin spent nine years (1720-1729) in South and Southeast Asia as a surgeon in the service of the Dutch East India Company. Upon his return to Neuchâtel in 1739 he became primus inter pares in the small local community of physician-botanists, introducing them to the artificial sexual system of classification. He practiced medicine, incorporating treatments acquired during his travels. taught botany, collected rare plants for major botanical gardens, and contributed to the Journal Helvetique on a range of topics; he was elected a Fellow of the Royal Society of London, where two of his papers were read in translation and published in the Philosophical Transactions; one of these concerned the mangosteen (Garcinia mangostana), leading Linnaeus to name the genus Garcinia after Garcin. He was likewise consulted as an expert on the East Indies, exotic flora, and medicines, and contributed to important publications on these topics. During his time with the Dutch East India Company Garcin encountered Chinese medical practitioners whose work he evaluated favourably as being on a par with that of the Brahmin physicians, whom he particularly esteemed. Yet Garcin never went to China, basing his entire experience of Chinese medical practice on what he witnessed in the Chinese diaspora in Southeast Asia (the ‘East Indies’). This case demonstrates that there were myriad routes to Europeans developing an understanding of Chinese natural knowledge; the Chinese diaspora also afforded a valuable opportunity for comparisons of its knowledge and practice with other non-European bodies of medical and natural (e.g. pharmacological) knowledge.postprin
    corecore