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The goal of a mathematical optimization problem is to maximize an objective 
(or minimize a cost) under a given set of rules, called constraints. Optimization 
has many applications, both in other areas of mathematics and in the real world. 
Unfortunately, some of the most interesting problems are also very hard to 
solve numerically. To work around this issue, one often considers relaxations: 
approximations of the original problem that are much easier to solve. Naturally, it 
is then important to understand how (in)accurate these relaxations are. 

This thesis consists of three parts, each covering a different method that uses 
semidefinite programming to approximate hard optimization problems. 
In Part 1 and Part 2, we consider two hierarchies of relaxations for polynomial 
optimization problems based on sums of squares. We show improved guarantees 
on the quality of Lasserre’s measure-based hierarchy in a wide variety of settings 
(Part 1). We establish error bounds for the moment-SOS hierarchy in certain 
fundamental special cases. These bounds are much stronger than the ones 
obtained from existing, general results (Part 2).
In Part 3, we generalize the celebrated Lovász theta number to (geometric) 
hypergraphs. We apply our generalization to formulate relaxations for a type 
of independent set problem in the hypersphere.  These relaxations allow us to 
improve some results in Euclidean Ramsey theory. 

Lucas Slot (Amsterdam, The Netherlands, 1996) received his bachelor’s degrees 
in Mathematics (with honours) and Computer Science from the University of 
Amsterdam in 2016. He obtained his master’s degree in Mathematics from the 
University of Bonn in 2018.
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Introduction

If we wait for the moment when
everything, absolutely everything is
ready, we shall never begin.

Ivan Turgenev, Fathers and Sons

A mathematical optimization problem asks us to maximize an objective
(or minimize a cost) under a given set of constraints. Solving such problems
has many applications; both in the real world, and in other fields of math-
ematics. Unfortunately, some of the most interesting optimization problems
are very difficult to solve algorithmically. One way to work around this issue
is to consider so-called relaxations. That is, to consider variants of the prob-
lem which are (much) easier to solve, but whose solutions still provide good
approximations for the original problem. In this thesis, we look at relaxations
to hard problems based on semidefinite programming. We can distinguish two
settings.

First, we consider so-called sum-of-squares hierarchies. These hierarchies
allow one to define increasingly accurate – but also more computationally
expensive – relaxations for polynomial optimization problems. They yield very
good approximations in practice, and as a result they have been widely applied
and studied in the literature. The central question we wish to answer in this
setting is whether we can back their good performance up with theoretical
guarantees. We address this question in Part 1 and Part 2 of the thesis, which
each focus on a particular type of hierarchy.

Second, we look at the problem of finding independent sets of maximum
size in a graph G, which is a classical example of an NP-hard problem. The
celebrated Lovász theta number ϑ bounds the independence number of G from
above. It has been succesfully applied to the setting of geometric graphs,
yielding new results in discrete geometry and extremal combinatorics. In
Part 3 of the thesis, we will generalize ϑ to (geometric) hypergraphs. A careful
analysis of the resulting approximations allows us to improve an existing result
in Euclidean Ramsey theory.

As we shall see, the three parts that make up this thesis are rather con-
nected. First off, both the sum-of-squares hierarchies of Parts 1 and 2 and
the Lovász theta number of Part 3 are examples of semidefinite programs. In

1
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2 INTRODUCTION

fact, ϑ may be viewed in some sense as the ‘first level’ of a particular sum-of-
squares hierarchy. Beyond that, the methods we use to prove new results in
each of these settings share many similarities. In short, they all rely on clas-
sical orthogonal polynomials, and the relation between these polynomials and
polynomial (or continuous) kernels. By exploiting symmetry, these relations
allow us to move from a difficult, multivariate setting to a simpler, univari-
ate setting, where an asymptotic analysis is then possible. We explain these
connections in more detail in Chapter 1.

Polynomial optimization and sums of squares

Let f ∈ R[x] be a polynomial of degree d in n variables. We say that f is
a sum of squares if there exist polynomials p1, p2, . . . , p� ∈ R[x] such that:

f(x) = p1(x)
2 + p2(x)

2 + . . .+ p�(x)
2.

Clearly, if f is a sum of squares, then it is globally nonnegative; meaning that
f(x) ≥ 0 for all x ∈ Rn. A natural question – which goes back to work of
Hilbert in the late 19th century – is whether the converse is also true. This
turns out not to be the case: Hilbert shows that all nonnegative polynomials in
n variables of degree d are sums of squares if and only if d = 2, n = 1, or n = 2
and d = 4. The first explicit example of a nonnegative polynomial which is
not a sum of squares was given much later in 1967 by Motzkin: f(x) = x4

1x
2
2+

x2
1x

4
2−3x2

1x
2
2+1. In 1927, Artin showed that any nonnegative polynomial may

be expressed as a sum of squares of rational functions, thereby solving Hilbert’s
17th problem posed in 1900. Later results in real algebraic geometry show
existence of structured sum-of-squares decompositions for positive polynomials
on semialgebraic sets (cf. [PD01]). In recent decades, these Positivstellensätze
have found a new application in the field of mathematical programming; more
specifically in polynomial optimization.

A polynomial optimization problem asks to minimize a given polynomial
f ∈ R[x] over a semialgebraic set X ⊆ Rn, which is itself defined by polyno-
mials g1, g2, . . . , gm ∈ R[x]:

fmin := min
x∈X

f(x), where X = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Polynomial optimization problems are very general. They naturally capture
classical NP-hard combinatorial problems including MaxCut and Stable-
Set, even when the feasible region X is a relatively simple set, such as the
unit sphere, the unit ball, the binary hypercube or the standard simplex. Fur-
ther applications are found in finance, energy optimization, machine learning,
optimal control and quantum information theory.

Sum-of-squares hierarchies based on Positivstellensätze

In light of their broad applicability, polynomial optimization problems are
unsurprisingly difficult to solve numerically. Often, the best one can do is
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SUM-OF-SQUARES HIERARCHIES BASED ON POSITIVSTELLENSÄTZE 3

to approximate the value of fmin. Perhaps the most well-known and succes-
ful methods for computing such approximations are so-called sum-of-squares
hierarchies, due to Lasserre [Las01] and Parillo [Par00] in the early 2000s.
The key idea underlying these hierarchies is that nonnegativity of the poly-
nomial f on the set X may be verified by finding sum-of-squares polynomials
σ0,σ1, . . .σm ∈ Σ[x] so that:

f(x) = σ0(x) +
m�

i=1

gi(x)σi(x). (1)

For fixed r ∈ N, one may then define a lower bound lb(f)r ≤ fmin on the
minimum of f over X by setting:

lb(f)r := sup

�
λ : f(x)−λ = σ0(x)+

m�

i=1

gi(x)σi(x), σi ∈ Σ[x], deg(σi) ≤ r

�
.

The point is that while checking nonnegativity of a polynomial is hard, the
parameter lb(f)r may be computed by solving a semidefinite program of size
polynomial in the number of variables n. For fixed r, and under some minor
assumptions, this can be done efficiently, yielding a tractable bound on fmin.

Contrary to the case of global nonnegativity, the classical Positivstel-
lensätze of Putinar [Put93] and Schmüdgen [Sch91] show that any polyno-
mial f positive on X has a representation of the form (1), as long as X satisfies
a (minor) compactness condition. To be precise: Schmüdgen’s result applies
more generally, but requires the use of a slightly different representation (in-
volving also products of the constraints gi), leading to a stronger, but more

computationally intensive bound lb(f)r, satisfying fmin ≥ lb(f)r ≥ lb(f)r.
The upshot is that under such conditions, we have asymptotic convergence of
the hierarchies to the true minimum:

lim
r→∞

lb(f)r = fmin and lim
r→∞

lb(f)r = fmin.

A natural question is whether this asymptotic convergence may be quantified.
From the point of view of optimization, one may see this as proving guarantees
on the quality of the bounds lb(f)r and lb(f)r depending on the degree r. From
the point of view of real algebra, one may also see this as showing bounds on
the degree of the sums of squares σi ∈ Σ[x] required in the decomposition of
f .

As we explain in more detail in Chapter 2, we prove strong guarantees
in Part 2 of this thesis when the set X exhibits symmetric structure. This
includes the binary hypercube, the unit sphere, the standard simplex and the
box [−1, 1]n. There, the polynomial kernel method introduced in Chapter 6
allows us to express the error of Lasserre’s hierarchies in terms of the behaviour
of classical, univariate orthogonal polynomials. See also Chapter 1.
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4 INTRODUCTION

Measure-based sum-of-squares hierarchies

In addition to the hierarchies of lower bounds introduced above,
Lasserre [Las11] also defines a hierarchy of upper bounds ub(f)r on fmin,
which are obtained by a structured sampling of the feasible region X. Apart
from their inherent use in approximating fmin, these bounds actually play a
crucial role in our analysis of the hierarchies defined above. For r ∈ N, the
bound ub(f)r ≥ fmin is obtained by minimizing the expectation

�
X f(x)dν(x)

of f on X over all probability measures ν of the form dν(x) = h(x)dµ(x),
where h is a sum of squares of degree at most 2r, and µ is a fixed reference
measure supported on X. These measure-based bounds may be computed via
semidefinite programming, and asymptotic convergence to fmin is guaranteed
when the feasible region is compact [Las11]. Again, this leads to natural
questions about the rate of convergence.

As we explain in more detail in Chapter 2, the new results in Part 1 of
this thesis largely settle these convergence questions (in light of several other,
existing results). Indeed, we first extend a known best-possible convergence
guarantee established by de Klerk & Laurent [dKL20b, dKL20a] for the
box [−1, 1]n and hypersphere to a larger class of examples of semialgebraic
sets in Chapter 3. Second, we establish a convergence rate for essentially all
other semialgebraic sets which is just a log-factor away from best-possible in
Chapter 4.

To prove the former result, we show in Chapter 3 that the behaviour of
the measure-based bounds ub(f)r depends in some sense only on the local
geometry of the feasible region X near a minimizer x∗ of f . This allows us
to transport the analysis of [dKL20b] on [−1, 1]n to a larger class of convex
bodies X, including the unit ball and the standard simplex.

For the latter result, we construct in Chapter 4 explicit sum-of-squares
densities h on X of degree 2r which approximate the Dirac delta function
centered at a minimizer x∗ of f . The idea is that for such h, we have:

�

X
f(x)h(x)dµ(x) ≈ f(x∗) = fmin.

That is, the density h is a good feasible solution to the program defining the
upper bound ub(f)r. Our construction combines so-called needle polynomials
(see Section 4.1) with push-forward measures (see Section 2.1). Push-forward
measures were already considered by Lasserre [Las20] to define a more ‘eco-
nomical’ variant of the upper bounds ub(f)r (see Section 2.1). As a side result
of our proof, we establish new convergence rates for these bounds as well.

Independent sets and the theta number

The Lovász ϑ-number is perhaps the most influential application of semi-
definite programming to combinatorial optimization, providing a strong upper
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ORGANIZATION 5

bound on the independence number α(G) of a graph G = (V,E). The indepen-
dence number is the largest cardinality of an independent set in G; meaning
a subset S ⊆ V so that no two vertices v, w ∈ S are joined by an edge.

To each such independent set, we can associate an incidence vector xS ∈
RV , whose entries (xS)v are 1 if v ∈ S and 0 otherwise. This vector, in turn,
induces a positive semidefinite matrix X = xSx

�
S /|S| � 0 which additionally

satisfies
�

v,w∈V Xv,w = |S|, Tr(X) = 1 and Xvw = 0 for every edge {v, w} ∈
E. The idea of Lovász, now, is to compute the maximum of

�
v,w∈V Xv,w over

all positive semidefinite matricesX with Tr(X) = 1 andXvw = 0 ∀{v, w} ∈ E,
which may be done efficiently using semidefinite programming. This maximum
– which is known as the theta number ϑ(G) of G – is thus an upper bound on
α(G).

Among many other possible extensions, Bachoc, Nebe, Oliveira, and Val-
lentin [BNdOFV09] extend Lovász’s approach to infinite geometric graphs
on compact metric spaces; this leads to bounds on the size of spherical codes
and the densities of sphere-packings. We can view the hypersphere Sn−1 as
a graph by saying two vertices x,y ∈ Sn−1 are adjacent whenever x · y = t
for some fixed t ∈ R. The independence number in this case is the largest
volume of a (measurable) set S ⊆ Sn−1 which does not contain any adja-
cent vertices. Such a set now has an indicator function χS : Sn−1 → {0, 1},
which induces a positive kernel K(x,y) = χS(x)χS(y) on Sn−1 with certain
additional properties. The theta number in this setting is obtained by solving
an (infinite-dimensional) optimization problem over all such kernels. The key
point is that one may in fact restrict to kernels which are invariant under
the symmetry of Sn−1. Such kernels can be classified in terms of univariate
orthogonal polynomials, which leads to a more manageable formulation for ϑ.
See Chapter 1.

In Chapter 10, we develop a recursive generalization of the ϑ-number for
geometric hypergraphs on the unit sphere and on the Euclidean space, ob-
taining bounds on the independence number of such graphs. In the above
language, a set S is independent in this context if it does not contain any k-
tuple of vertices v1, v2, . . . , vk which are pairwise adjacent for some fixed k ∈ N
(thus k = 2 corresponds to the regular independence number). We call such
a tuple a k-simplex. By exploiting symmetry, we find analytical expressions
for our bounds in terms of orthogonal polynomials. An analysis of the as-
ymptotic behaviour of these polynomials then allows us to reprove a result in
Euclidean Ramsey theory ; namely that k-simplices are exponentially Ramsey.
Furthermore, we improve upon the previously known bounds for the base of
the exponential.

Organization

The thesis is organized as follows. In Chapter 1, we introduce orthogonal
polynomials and polynomial kernels, which form the foundation of our proof
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6 INTRODUCTION

techniques throughout the rest of the thesis. In Chapter 2, we introduce the
sum-of-squares hierarchies in more detail, and give an overview of known and
new results on their convergence rates.

Part 1. In Chapters 3 and 4, we prove convergence results for the measure-
based bounds in several different settings, covering the main results of [SL20]
and [SL21a], respectively. In Chapter 5, we discuss some computational as-
pects of the measure-based bounds.

Part 2. In Chapter 6, we introduce the polynomial kernel method, which may
be used to obtain convergence guarantees for sum-of-squares hierarchies on
structured feasible regions. We then apply this technique in Chapters 7, 8,
and 9, corresponding to the binary cube [SL21b], the unit ball and the stan-
dard simplex [Slo22], and the unit box [LS21], respectively.

Part 3. Finally, in Chapter 10, we introduce our new recursive theta num-
ber for geometric hypergraphs, which we apply to the unit sphere and the
Euclidean space. This covers the main results of [CSdOFSV21]. We also
include a small part of the work [CSdOFSV22].
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CHAPTER 1

Orthogonal polynomials and kernel operators

We learn by rearranging what we know.

Ludwig Wittgenstein

In this chapter, we discuss some basic facts on orthogonal polynomials and
polynomial kernels. The goal is to give the reader a high-level introduction
to these concepts, and how they will play a role in the rest of this thesis. We
prove or provide precise references for certain key results as they appear in
future chapters.

1.1. Orthogonal polynomials of one variable

We begin with some facts on orthogonal polynomials of a single variable,
which we shall need later. We also introduce a few special, well-known ex-
amples of such polynomials which feature in the rest of the thesis. For a
comprehensive reference, see the book of Szegő [Sze75].

1.1.1. Basic definitions. Let µ be a finite Borel measure supported on
an interval I ⊆ R. Often, I = [−1, 1] and µ will be of the form dµ(x) = w(x)dx
for some continuous weight function w. We then have an inner product on the
space of univariate polynomials R[x] by:

�f, g� :=
�

I
f(x)g(x)dµ(x). (1.1)

Up to scaling, there exists a unique basis {Pk : k ∈ N} of R[x] satisfying:

�Pi, Pj� =
�

I
Pi(x)Pj(x)dµ(x) = 0 (i �= j)

and for which deg(Pk) = k for all k ∈ N. We call these Pk the orthogonal
polynomials for the measure µ. There are several ways to normalize them.
For instance, we will write:

�Pk(x) = Pk(x)/
�
�Pk, Pk�

for the normalization satisfying � �Pk, �Pk� = 1. We will write:

P k(x) = Pk(x)/max
x∈I

|Pk(x)|

for the normalization whose sup-norm on I is equal to 1. Both normalizations
are unique up to sign.

9
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10 1. ORTHOGONAL POLYNOMIALS AND KERNEL OPERATORS

1.1.2. The three-term reccurence relation. A useful property of or-
thogonal polynomials is that they satisfy a so-called three-term recurrence
relation.

Proposition 1.1 (Three-term reccurence). Let {Pk : k ∈ N} be the or-
thogonal polynomials w.r.t. to some measure µ. Then for each k ≥ 0, there
exist constants ak, bk, ck ∈ R such that:

xPk(x) = akPk+1(x) + bkPk(x) + ckPk−1(x). (1.2)

Here, we have set P−1 := 0.

The renormalizations �Pk and P k satisfy (1.2) as well (but with different

constants). We note that for the orthonormal polynomials �Pk, the recurrence
coefficients in (1.2) satisfy ck = ak−1 for all k ≥ 1.

1.1.3. Extremal roots. For r ∈ N, consider the matrix J ⊆ R(r+1)×(r+1)

given by:

Ji,j = �x �Pi, �Pj� =
�

I
x �Pi(x) �Pj(x)dµ(x) (0 ≤ i, j ≤ r). (1.3)

This matrix – and its eigenvalues in particular – are closely related to Lasserre’s
measure-based bounds (2.6), see Section 2.3. A first consequence of (1.2) is
that we are able to express these eigenvalues in terms of the roots of the
polynomials Pk. These roots are known to be real, distinct, and they lie
within the interval I. As we see below, more is known about their (asymptotic)
behaviour in special cases.

Proposition 1.2 (see [dKL20b]). Let { �Pk : k ∈ N} be orthonormal

polynomials with three-term reccurence relation (1.2), and let J ⊆ R(r+1)×(r+1)

be as in (1.3). Then the smallest eigenvalue λmin(J) of J is given by:

λmin(J) = ξr+1,

where ξr+1 ∈ R is the least root of Pr+1.

Proof. We follow the proof given in [dKL20b]. Using the three-term
reccurence (1.2), we find that:

Ji,j = �x �Pi, �Pj� = �ai �Pi+1 + bi �Pi + ci �Pi−1, �Pj�

=





ai if j = i+ 1,

bi if j = i,

ci if j = i− 1,

0 otherwise.
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1.1. ORTHOGONAL POLYNOMIALS OF ONE VARIABLE 11

The matrix J is thus tridiagonal, of the form:

J =




b0 a0 0 . . . 0
c1 b1 a1 . . . 0

0
. . .

. . .
. . .

...
...

... cr−1 br−1 ar−1

0 0 . . . cr br




.

As we noted before, we have ck = ak−1, meaning J is symmetric. It follows
(see [Sze75]) that:

det(xI − J) �P0 =

� r�

j=0

aj

�
�Pr+1(x),

which implies that the eigenvalues of J are precisely the roots of �Pr+1. In

particular, λmin(J) is the smallest root of �Pr+1. �
1.1.4. Jacobi polynomials. For parameters α,β > −1, let wα,β(x) :=

(1− x)α(1 + x)β be the Jacobi weight function. For k ∈ N, we write J (α,β)
k

for the Jacobi polynomial of degree k, defined by the orthogonality relation:
� 1

−1
J (α,β)
i (x)J (α,β)

j (x)wα,β(x)dx = 0 (i �= j). (1.4)

The Jacobi polynomials satisfy the symmetry relation:

J (α,β)
k (−x) = (−1)kJ (β,α)

k (x).

For α ≥ β, the maximum max−1≤x≤1 |J (α,β)
k (x)| is attained at x = 1, and

the normalization J (α,β)
k is thus defined by setting J (α,β)

k (1) = 1. There are
several bounds known for the roots of the Jacobi polynomials, which permit
to show the following.

Proposition 1.3 ([DJ12, DN10]. See also [dKL20b]). Let α,β > −1.
For k ∈ N, let J (α,β)

k (x) be the Jacobi polynomial defined in (1.4) and write
ξk ∈ [−1, 1] for its smallest root. Then we have:

ξk = −1 +Θ(1/k2).

1.1.5. Gegenbauer polynomials. In the special case that α = β > −1,
the polynomials:

G(α)
k (x) := J (α,α)

k (x)

are known as Gegenbauer polynomials (or ultraspherical polynomials). They
are thus the orthogonal polynomials for the measure dµ(x) = (1 − x2)αdx
on [−1, 1]. As we see below in Section 1.2, the Gegenbauer polynomials are
connected to the unit sphere Sn−1; they form the basis of an analysis of sum-
of-squares hierarchies on Sn−1 in [dKL20a] and [FF21], see also Section 2.3.
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12 1. ORTHOGONAL POLYNOMIALS AND KERNEL OPERATORS

We shall use them in a similar way in Chapter 8, where we analyze sum-of-
squares hierarchies on the unit ball and the simplex. In Chapter 10, we use
them to define bounds on the size of independent sets in Sn−1.

1.1.6. Chebyshev polynomials. Specializing even further to the case
α = β = −1/2, we get the Chebyshev polynomials:

Ck(x) := J (− 1
2
,− 1

2
)

k (x).

Up to normalization, they may also be defined by the relation:

Ck(x) = cos(k arccosx) (−1 ≤ x ≤ 1).

They then satisfy a three-term recurrence with particularly simple constants:

xCk(x) =
1

2
Ck+1(x) +

1

2
Ck−1(x).

The Chebyshev polynomials appear often in mathematical optimization and
they satisfy several useful extremal properties, see for instance Theorem 7.29.
They are used to define so-called needle polynomials (see Section 4.1), which
approximate well the Dirac delta function on [−1, 1], as well as the well-known
Jackson kernel, which is used in functional approximation. These construc-
tions play a central role in Chapter 4 and Chapter 9, respectively.

1.1.7. Krawtchouk polynomials. Finally, we consider for n ∈ N the

Krawtchouk polynomials K(n)
k (x), 0 ≤ k ≤ n, which are given by:

K(n)
k (x) :=

k�

i=0

(−1)i
�
x

i

��
n− x

k − i

�
(0 ≤ k ≤ n).

They are the orthogonal polynomials with respect to the discrete measure
µ = 1

2n
�n

x=0

�
n
x

�
δx on [0, n], where δx is the Dirac measure centered at x.

Note that this is a slight departure from the previous setting, as µ now has
finite support. As a consequence, the inner product (1.1) is defined only on
the space R[x]n of polynomials of degree at most n, but all other mentioned

results carry over. The maximum max0≤x≤n |K(n)
k (x)| is attained at x = 0,

and the normalization K(n)
k is thus defined by setting K(n)

k (0) = 1.
The Krawtchouk polynomials are related to the binary hypercube {0, 1}n,

see Section 1.2. Indeed, they will feature prominently in Chapter 7, where we
analyze sum-of-squares hierarchies on {0, 1}n. They also appear in Chapter 10
to define bounds on the size of independent sets on {0, 1}n.

The asymptotic behaviour of the least root of K(n)
r (x) is studied by Lev-

enshtein [Lev98] in the regime r/n→ t ∈ [0, 1], see also Theorem 7.2.
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1.2. Polynomial kernels and kernel operators

Let X ⊆ Rn be a compact set, and let µ be a finite positive Borel measure
supported on X. Consider the space of polynomials P(X) restricted to X,
which is given by:

P(X) = R[x]/(p : p(x) = 0 ∀x ∈ X).

It is thus the quotient of the polynomial ring modulo the vanishing ideal of
X, which is the ideal generated by the polynomials that vanish on X. The
degree of an element p ∈ P(X) is the smallest degree of a polynomial h ∈ R[x]
with p(x) = h(x) for all x ∈ X. For an integer d, we write P(X)d for the
polynomials in P(X) of degree at most d. We have an inner product on P(X)
given by:

�f, g�µ =

�

X
f(x)g(x)dµ(x).

Now let K : Rn × Rn → R be a polynomial kernel, meaning that K(x,y) is
a polynomial in x and y. Using the inner product �·, ·�µ, we can associate a
linear operator K : P(X)→ P(X) to the kernel K via:

Kp(x) := �K(x, ·), p�µ =

�

X
K(x,y)p(y)dµ(y). (1.5)

1.2.1. The Christoffel-Darboux kernel. The space P(X) has an
orthonormal basis w.r.t. the inner product �·, ·�µ given by polynomials
{Pα : α ∈ A} of degree |α| satisfying:

�Pα, Pβ� =
�

X
Pα(x)Pβ(x)dµ(x) = δαβ (α,β ∈ A). (1.6)

Here, the set A ⊆ Nn depends on X. For instance, if X is full-dimensional, we
simply have A = Nn (as P(X) = R[x]). However, if for example X = {0, 1}n
is the binary hypercube, we have P(X) = span{xα : αi ∈ {0, 1}}, meaning
A = {0, 1}n ⊂ Nn. In what follows, the set A will be clear from the context,
and so we will not always denote it explicitely. We also assume throughout
that the Pα are chosen so that the space of polynomials P(X)d of polynomials
of degree at most d is spanned by the polynomials Pα with |α| ≤ d for each
d ∈ N.

Using such an orthonormal basis, we are able to construct the so-called
Christoffel-Darboux kernel CDr of degree r ∈ N, which is defined as:

CDr(x,y) =
�

α∈A:|α|≤r

Pα(x)Pα(y). (1.7)

The point is that the operator CDr associated to this kernel via (1.5) repro-
duces the space of polynomials P(X)r on X of degree at most r, meaning
that:

CDrp(x) = p(x) (1.8)
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14 1. ORTHOGONAL POLYNOMIALS AND KERNEL OPERATORS

for all p ∈ P(X) of degree at most r. Indeed, such a p may be written as:

p(x) =
�

|α|≤r

pαPα(x)

for certain pα ∈ R, whence:

CDrp(x) =
�

|α|≤r,|β|≤r

pα

�

X
Pβ(x)Pβ(y)Pα(y)dµ(y)

=
�

|α|≤r

pαPα(x) = p(x)

using the orthogonality relations (1.6). Note that for x,y ∈ X, the value of
CDr(x,y) does not depend on the choice of basis {Pα}. Indeed, the subspace
generated by the Pα of degree at most r does not depend on the choice of
basis (see also (1.10) below). Therefore, for each y ∈ X, the polynomial
x �→ CDr(x,y) of degree r in P(X) is fixed by the reproducing property (1.8).

The Christoffel-Darboux kernel has many applications in optimization,
and it will form the basis of a technique we discuss in Chapter 6 to analyze
sum-of-squares hierarchies for polynomial optimization. More specifically, we
will make use there of a class of kernels defined in the spirit of (1.7) as:

CDr(x,y;λ) :=
�

|α|≤r

λαPα(x)Pα(y) (λα ∈ R), (1.9)

which we call perturbed Christoffel-Darboux kernels. Using again the rela-
tions (1.6), the operator CDr(λ) associated to this kernel is diagonal w.r.t.
the basis {Pα}, and its eigenvalues are given by the coefficients λα.

1.2.2. Summation formulas. For certain special, structured setsX and
measures µ, the Christoffel-Darboux kernel (1.7) admits a simple, closed form
expression in terms of univariate orthogonal polynomials. These expressions
will be of great help in Part 2 and Part 3 of the thesis, where we consider for
X the binary cube {0, 1}n, the unit sphere Sn−1, the unit ball Bn and the
standard simplex Δn.

The basic idea is to consider the subspaces Hk ⊆ P(X) given by:

Hk = span{Pα : |α| = k}
= {p ∈ P(X) : �p, q�µ = 0 for all q ∈ P(X)k−1}.

(1.10)

Note that the Hk depend on X and µ, but not on the choice of basis {Pα}.
We now have the orthogonal decomposition:

P(X) =
∞�

k=0

Hk. (1.11)

Accordingly, we can write any p ∈ P(X)d of degree d as:

p(x) = p0(x) + p1(x) + . . .+ pd(x) (pk ∈ Hk), (1.12)
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1.2. POLYNOMIAL KERNELS AND KERNEL OPERATORS 15

and similarly, the Christoffel-Darboux kernel (1.7) can be written as:

CDr(x,y) =

r�

k=0

CD(k)(x,y), where CD(k)(x,y) :=
�

|α|=k

Pα(x)Pα(y). (1.13)

The operator CD(k) associated to CD(k) then satisfies:

CD(k)p(x) = pk(x). (1.14)

In the special cases mentioned above, the kernels CD(k)(x,y) may be expressed
in terms of the orthogonal polynomials of Section 1.1. For illustration, we
briefly cover the binary cube and the unit sphere below, which are the most
classical examples. See for instance [Val08]. The unit ball and standard
simplex are treated in Chapter 8.

The unit sphere. Consider the unit sphere X = Sn−1 ⊆ Rn, equipped with
the uniform surface measure µ. The space P(Sn−1) of polynomials on Sn−1 is
given by:

P(Sn−1) = R[x]/(1− �x�2).
The subspaces Hk in this case are given by:

Hk = Harmk := {p : is homogeneous of degree k and harmonic}.
A polynomial p is harmonic if it is in the kernel of the Laplace operator, i.e.,
if ∇2p = 0. An element of Harmk is also called a spherical harmonic (of
degree k). Choosing any orthonormal basis {sk,j} of Harmk, and for the right

normalization of the Gegenbauer polynomials G(α)
k , we have the summation

formula:

CD(k)(x,y) =
�

j

sk,j(x)sk,j(y) = G(n−3
2

)

k (x · y). (1.15)

What this means is that the Christoffel-Darboux kernel (1.13) is given by:

CDr(x,y) =

r�

k=0

G(n−3
2

)

k (x · y).

If we choose coeffcients λα = λ|α| depending only on |α|, the perturbed ker-
nel (1.9) is then given by:

CDr(x,y;λ) =
r�

k=0

λkG
(n−3

2
)

k (x · y).

Another way of looking at this is as follows. Let u ∈ R[x] be a univariate
polynomial of degree r ≥ d, with the following expression in the basis of
Gegenbauer polynomials:

u(x) =

r�

k=0

λkG
(n−3

2
)

k (x),
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16 1. ORTHOGONAL POLYNOMIALS AND KERNEL OPERATORS

and consider the kernel K(x,y) = u(x · y). Then, we have:

K(x,y) =

r�

k=0

λkG
(n−3

2
)

k (x · y) = CDr(x,y;λ) (1.16)

and thus, by (1.14), we get the Funk-Hecke formula:

Kp(x) =

�

X
u(x · y)p(y)dµ(y) =

d�

k=0

λkpk(x),

where p(x) =
�d

k=0 pk(x), pk ∈ Harmk is as in (1.12).

The binary cube. Consider the binary cube X = {0, 1}n ⊆ Rn, equipped
with the uniform probability measure µ. The space P({0, 1}n) is spanned by
multilinear polynomials, i.e., we have:

P({0, 1}n) = R[x]/(xi − x2
i : 1 ≤ i ≤ n) = span{xα : α ∈ {0, 1}n}.

The decomposition (1.11) in this case is given in terms of the characters :

χa(x) := (−1)x·a =
�

i:ai=1

(1− 2xi) (a ∈ {0, 1}n) ,

which are polynomials of degree |a| (on the binary cube). They form an
orthonormal basis of P({0, 1}n), and the spaces Hk of (1.10) are given by:

Hk = span{χa : |a| = k} (0 ≤ k ≤ n).

Similar to the spherical harmonics, we have a summation formula for the
characters, now in terms of Krawtchouk polynomials:

�

|a|=k

χa(x)χa(y) = K(n)
k (dham(x,y)), (1.17)

where dham(x,y) = |{i : xi �= yi}| is the Hamming distance between x and y.
Now let u ∈ R[x] be a univariate polynomial of degree n ≥ r ≥ d, expressed
in the basis of Krawtchouk polynomials as:

u(x) =
r�

k=0

λkK(n)
k (x),

and consider the kernel K(x,y) = u(dham(x,y)). Then we again get the Funk-
Hecke formula:

Kp(x) =
1

2n

�

y∈{0,1}n
u(dham(x,y))p(y) =

d�

k=0

λkpk(x)

for p(x) =
�d

k=0 pk(x), pk ∈ Hk decomposed as in (1.12).
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1.2. POLYNOMIAL KERNELS AND KERNEL OPERATORS 17

1.2.3. Symmetry and invariant kernels. An aspect we have so far ig-
nored is the role of symmetry. Both the unit sphere and binary cube are highly
symmetrical sets, and their symmetry is connected to the representations of
the Christoffel-Darboux kernel given above.

The unit sphere. For Sn−1, we have the regular O(n)-action, which induces
an action on P(Sn−1) via Tf(x) = f(T−1x). It turns out that the spaces
Harmk are precisely the invariant and irreducible orthogonal components of
P(Sn−1) under this action. What this means is that each of the spaces Harmk

is closed onder the O(n)-action, and that it contains no proper closed sub-
spaces. The inner product x · y is invariant under the O(n)-action, meaning
that x · y = T (x) · T (y) for all x,y ∈ Sn and T ∈ O(n). Therefore, ker-
nels (1.16) of the form K(x,y) = u(x · y) satisfy:

K(x,y) = K(Tx, Ty) (x,y ∈ Sn−1, T ∈ O(n)).

Such kernels are called O(n)-invariant. In fact, all invariant polynomial kernels
on Sn−1 are of this form, see [Val08].

The binary cube. For the binary cube {0, 1}n, we have an action of
(Z/2Z)n � Sn which is generated by coordinate permutations x �→ σ(x) =
(xσ(1), . . . ,xσ(n)), σ ∈ Sn, and ‘bit-flips’ x �→ a⊕ x = a+ x mod 2, a ∈
(Z/2Z)n. The spaces Hk spanned by the characters of exact degree k are
invariant and irreducible under this action. Furthermore, the Hamming dis-
tance dham(x,y) is invariant, and the invariant kernels on {0, 1}n are all of the
form K(x,y) = u(dham(x,y)), see [Val08].

1.2.4. Preview of applications. We will use kernels and their associ-
ated operators in two ways. First, as we explain in Chapter 6, one can deduce
guarantees on the quality of sum-of-squares hierarchies by constructing ker-
nel operators having certain ‘nice’ properties. In the special cases where one
has a representation of the type (1.16) for CDr(x,y;λ) in terms of a uni-
variate polynomial u ∈ R[x], one may express these properties in terms of
the coefficients λk of this polynomial u in the appropriate basis of orthogonal
polynomials. This effectively reduces the problem from a multivariate to a
univariate setting.

Second, as we see in Chapter 10, one may define bounds on the size of
independent sets in (hyper)graphs using kernels of positive type. On the unit
sphere and binary cube, invariant kernels of this type can be classified using the
expression (1.16); namely, such kernels are of positive type if and only if the
coefficients λk are nonnegative. The resulting bounds may then be studied
by analyzing certain asymptotic properties of the corresponding orthogonal
polynomials.
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CHAPTER 2

Polynomial optimization and sum-of-squares
hierarchies

You know, this is, excuse me, a damn
fine cup of coffee.

Dale Cooper, Twin Peaks

In this chapter, we introduce several hierarchies of semidefinite relaxations
for polynomial optimization problems based on sums of squares. Their analysis
will be the subject of Part 1 and Part 2 of the thesis.

A polynomial optimization problem asks to minimize a given n-variate
polynomial f ∈ R[x] over a semialgebraic set X ⊆ Rn, itself defined by poly-
nomials g1, g2, . . . , gm ∈ R[x] as:

X = {x ∈ Rn : gj(x) ≥ 0 (1 ≤ j ≤ m)}. (2.1)

That is, it asks to compute the global minimum:

fmin := inf
x∈X

f(x). (2.2)

Polynomial optimization is generally hard and non-convex. Many classical
combinatorial problems including MaxCut and StableSet may be formu-
lated as a polynomial optimization problem, already for simple feasible regions
X, such as the unit sphere, the unit ball, the binary hypercube or the stan-
dard simplex. For instance, one may compute the stability number of a graph
G = (V,E) as:

α(G) = max
x∈{0,1}V

�

i∈V
xi −

�

{i,j}∈E
xixj .

This is equivalent to (see [PH13]):

α(G) = max
x∈[0,1]V

�

i∈V
xi −

�

{i,j}∈E
xixj .

Hence, α(G) may be formulated as a polynomial optimization problem over
both the binary and continuous hypercube. The formulation (2.2) in fact
naturally includes (binary) linear programming and quadratic programming.

19
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20 2. POLYNOMIAL OPTIMIZATION AND SUM-OF-SQUARES HIERARCHIES

Alternatively, we may formulate α(G) as (see [MS65]):

1

α(G)
= min

x∈Rn




�

i∈V
x2
i + 2

�

{i,j}∈E
xixj : x ≥ 0,

�

i∈V
xi = 1



 ,

or similarly as:
1

α(G)
= min

x∈Sn−1

�

i∈V
x4
i + 2

�

{i,j}∈E
x2
ix

2
j .

Thus, as polynomial optimization problems over the unit sphere and the stan-
dard simplex.

The general intractability of (2.2) motivates the search for efficient bounds
on fmin. In this chapter, we consider bounds that are based on sums of squares
of polynomials. A polynomial σ ∈ R[x] is a sum of squares if there exist
polynomials p1, p2, . . . , p� such that:

σ(x) = p1(x)
2 + p2(x)

2 + . . .+ p�(x)
2.

We write Σ[x] ⊆ R[x] for the set of all sum-of-squares polynomials. We denote
by Σ[x]r the restriction of Σ[x] to polynomials of degree at most r. Impor-
tantly, if σ ∈ Σ[x] is a sum of squares, it is globally nonnegative, i.e., σ(x) ≥ 0
for all x ∈ Rn. Lasserre [Las01] and Parillo [Par00] use sums of squares to
define hierarchies of lower bounds on the minimum fmin of f . At fixed level
r of the hierarchy, these bounds may be computed by solving a semidefinite
program of size polynomial in the number of variables n, as we see in more
detail below. Lasserre [Las11, Las20] also uses sums of squares to define hi-
erarchies of upper bounds on fmin. These bounds may similarly be computed
using semidefinite programming.

One of the key features of these hierarchies is that they converge to the true
minimum fmin as the level r goes to infinity (under certain mild assumptions).
A natural question – which dominates a large portion of this thesis – is whether
one may quantify this convergence, that is whether one may prove guarantees
on the quality of the approximations as a function of the level r.

In the rest of this chapter, we will first introduce the sum-of-squares hier-
archies in more detail. Then, we cover the basics of semidefinite programming,
and show how it may be used to compute the resulting bounds. Next, we dis-
cuss existing results on their rates of convergence and some of the techniques
used to establish them. Finally, we summarize the main results of the first two
parts of this thesis; namely we outline new and improved convergence rates
for both the upper and lower bounds in a large variety of settings.

2.1. Certificates of nonnegativity

The program (2.2) may be reformulated as finding the largest λ ∈ R for
which the polynomial f − λ is nonnegative on X. That is, writing P+(X) ⊆
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2.1. CERTIFICATES OF NONNEGATIVITY 21

R[x] for the cone of all polynomials that are nonnegative on X, we have:

fmin = sup{λ ∈ R : f − λ ∈ P+(X)}.
This reformulation of (2.2) establishes a connection between polynomial opti-
mization and the problem of certifying nonnegativity of a polynomial over a
semialgebraic set. Using this connection and certificates of nonnegativity for
polynomials on compact semialgebraic sets based on sums of squares, Lasserre
[Las01] and Parillo [Par00] introduce several hierarchies of bounds on fmin.

Consider the quadratic module Q(X) and the preordering T (X) of X,
defined as:

Q(X) :=
� m�

j=0

σjgj : σj ∈ Σ[x]
�

(where g0 := 1),

T (X) :=
� �

J⊆[m]

σJgJ : σJ ∈ Σ[x]
�

(where gJ :=
�

j∈J
gj).

Note that strictly speaking, Q(X) and T (X) do not depend on the set X, but
rather on its description (2.1) as a semialgebraic set. We adopt this slight abuse
of notation for clarity of exposition, as canonical descriptions are available for
each of the sets X we consider. As sum-of-squares polynomials are globally
nonnegative, it is clear that:

Σ[x] ⊆ Q(X) ⊆ T (X) ⊆ P+(X).

One may thus verify nonnegativity of a polynomial f over X by showing that
f lies either in Σ[x],Q(X) or T (X).

2.1.1. Hierarchies of lower bounds. The key observation of
Lasserre [Las01] is that membership in the truncated quadratic module or
preordering, defined as:

Q(X)2r :=
� m�

j=0

σjgj : σj ∈ Σ[x], deg(σjgj) ≤ 2r
�
,

T (X)2r :=
� �

J⊆[m]

σJgJ : σJ ∈ Σ[x], deg(σJgJ) ≤ 2r
�
,

may be checked by solving a semidefinite program whose size depends on n,m
and r. This leads to the following hierarchies of lower bounds on the global
minimum fmin of f on X:

lb(f,Q(X))r := sup{λ ∈ R : f − λ ∈ Q(X)2r}, (2.3)

lb(f, T (X))r := sup{λ ∈ R : f − λ ∈ T (X)2r}. (2.4)

By definition, we have lb(f,Q(X))r ≤ lb(f, T (X))r ≤ fmin for all r ∈ N.
Furthermore, the bounds converge to the global minimum fmin as r → ∞
under mild assumptions on X. This is a consequence of the Positivstellensätze
of Putinar and Schmüdgen, respectively.
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22 2. POLYNOMIAL OPTIMIZATION AND SUM-OF-SQUARES HIERARCHIES

Theorem 2.1 (Putinar’s Positivstellensatz [Put93]). Let X ⊆ Rn be a
semialgebraic set, and assume that R − �x�2 ∈ Q(X) for some R > 0. Then
for any polynomial f ∈ P+(X) and η > 0, we have f + η ∈ Q(X).

Theorem 2.2 (Schmüdgen’s Positivstellensatz [Sch91]). Let X ⊆ Rn be
a compact semialgebraic set. Then for any polynomial f ∈ P+(X) and η > 0,
we have f + η ∈ T (X).

Semialgebraic sets X for which R − �x�2 lies in the quadratic module
Q(X) for some R > 0 satisfy the so-called Archimedean condition. Note that
such sets must be compact, and the requirement put on X in Theorem 2.1 is
thus stronger than the one in Theorem 2.2. Again, we note that our notation
assumes that X is implicitly equipped with a description (2.1).

It should also be noted that polynomials positive on X need not be sum-of-
squares (they need not even be globally nonnegative). Therefore, a hierarchy
of relaxations of the type (2.3) where one instead demands that f−λ ∈ Σ[x]2r
does not converge to fmin in general (the relaxation might not be feasible for
any r ∈ N). This is true even when X = Rn (for n ≥ 2).

Example 2.3. Consider the Motzkin polynomial

f(x1,x2) = x2
1x

2
2(x

2
1 + x2

2 − 3) + 1.

Global nonnegativity of f (on R2) is a consequence of the arithmetic-geometric
mean inequality:

1 + x1x
4
2 + x4

1x
2
2

3
≥ 3

�
x6
1x

6
2.

However, f is famously not a sum of squares. In fact, it is well-known that
f + λ is not a sum of squares for any λ ≥ 0, see [Rez00] or [Lau09]. For
any λ > 0, however, Putinar’s and Schmüdgen’s Positivstellensätze state that
f + λ lies in Q([−1, 1]2)r and T ([−1, 1]2)r for r = r(λ) ∈ N large enough. In
other words, the bounds lb(f,Q([−1, 1]2))r and lb(f, T ([−1, 1]2))r converge to
fmin = 0 as r → ∞, whereas a relaxation using only sums of squares would
not be feasible at any level (and thus give no information on the minimum of
f over [−1, 1]2).

2.1.2. Hierarchies of upper bounds. An alternative way to reformu-
late problem (2.2) is as follows:

fmin = inf
ν∈M(X)

��

X
f(x)dν(x) :

�

X
dν(x) = 1

�
. (2.5)

Here M(X) denotes the set of (positive) measures supported on X. Indeed,
we see that the optimum value of (2.5) must be at least fmin, as we are taking
the expectation of f w.r.t. some probability measure on X. On the other
hand, choosing for ν the Dirac measure centered in a minimizer of f over X
shows that the optimum value of (2.5) is at most fmin.

The idea of Lasserre [Las11] now is to optimize not over the full set of
measures on X, but only over measures of the form dν(x) = q(x)dµ(x), where
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2.1. CERTIFICATES OF NONNEGATIVITY 23

µ is a fixed reference measure supported on X, and q ∈ R[x]2r is a polynomial
known to be nonnegative on X. Such a relaxation yields an upper bound on
the global minimum fmin. Based on this observation, Lasserre [Las11] defines
for r ∈ N:

ub(f,X, µ)r := inf
q∈Σ[x]2r

��

X

f(x)q(x)dµ(x) :

�

X

q(x)dµ(x) = 1

�
, (2.6)

ub(f,Q(X), µ)r := inf
q∈Q(X)2r

��

X

f(x)q(x)dµ(x) :

�

X

q(x)dµ(x) = 1

�
, (2.7)

ub(f, T (X), µ)r := inf
q∈T (X)2r

��

X

f(x)q(x)dµ(x) :

�

X

q(x)dµ(x) = 1

�
. (2.8)

The value of these parameters depends on the choice of reference measure µ.
When this measure is clear from the context, we will sometimes leave it out of
the notation, especially when µ is the Lebesgue measure restricted to X. Note
that the bound ub(f,X, µ)r can be defined even if X is not a semialgebraic
set.

As was the case for the lower bounds, each of the upper bounds can be
computed by solving a semidefinite program whose size depends on n, r (and
the number of inequalities m that define X in the case of ub(f,Q(X), µ)r and
ub(f, T (X), µ)r). They satisfy:

fmin ≤ ub(f, T (X), µ)r ≤ ub(f,Q(X), µ)r ≤ ub(f,X, µ)r (r ∈ N).
In contrast to the lower bounds, the upper bounds ub(f,X, µ)r obtained by
optimizing over q ∈ Σ[x]2r already converge to the minimum fmin of f on X
as r → ∞ under mild conditions on X and µ [Las11]. (In the case that X
is compact, it suffices that the reference measure µ is a finite Borel measure
with support X). The upper bounds (2.7) and (2.8) relying on the quadratic
module and preordering of X, which are more computationally intensive, are
therefore not often studied in the literature. In this thesis, our focus will also
be primarily on the bounds ub(f,X, µ)r, which rely simply on the sum-of-
squares cone Σ[x].

The push-forward hierarchy. As we see below, the matrices involved in
the computation of the bound ub(f,X, µ)r are of size

�
n+r
r

�
. In an attempt

to address this rapid growth, Lasserre [Las20] introduces a second type of
upper bounds on fmin which are weaker but more economical. They provide a
univariate approach to the problem by making use of push-forward measures.
For a measure µ ∈M(X), the push-forward µf ∈M(R) of µ by f is defined
by:

µf (B) = µ(f−1(B)) (B ⊆ R Borel).

Note that for any measurable function g : R→ R, we have:�

f(X)
g(x)dµf (x) =

�

X
g(f(x))dµ(x).
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24 2. POLYNOMIAL OPTIMIZATION AND SUM-OF-SQUARES HIERARCHIES

For r ∈ N, Lasserre [Las20] then defines an upper bound ub(f,X, µ)pfr on fmin

by:

ub(f,X, µ)pfr := inf
u∈Σ[x]2r

��

f(X)
xu(x)dµf (x) :

�

f(X)
u(x)dµf (x) = 1

�

= inf
u∈Σ[x]2r

��

X
f(x)u(f(x))dµ(x) :

�

X
u(f(x))dµ(x) = 1

�
.

The difference with the parameter ub(f,X, µ)r is that we now restrict our
search to univariate sums of squares u ∈ Σ[x]2r. After composing such a
polynomial u with f , we obtain a (multivariate) sum of squares q = u ◦ f ∈
Σ[x]2rd which is a feasible solution to (2.6) (of degree d · 2r). Therefore, we
have the inequality:

fmin ≤ ub(f,X, µ)rd ≤ ub(f,X, µ)pfr .

Again, the parameter ub(f,X, µ)pfr may be computed by solving a semidefinite
program. The matrices involved, however, are now of much smaller size r+1.

2.2. Semidefinite programming and sums of squares

There is a one-to-one correspondence between sums of squares of poly-
nomials and positive semidefinite matrices. As we explain in this section,
this correspondence allows us to compute the lower and upper bounds defined
above using semidefinite programming. Our discussion here will be (very)
brief, but there are many excellent and comprehensive resources on this topic,
see, e.g., [AL12, dKL19].

Positive semidefinite matrices. A real, symmetric matrix M ∈ SN of size
N × N is called positive semidefinite (psd) if one of the following equivalent
conditions hold:

x�Mx ≥ 0 for all x ∈ RN ; (2.9)

The eigenvalues of M are all greater or equal to 0. (2.10)

We also write M � 0 when M is psd. If the conditions (2.9) or (2.10) hold
with strict inequality, we say M � 0 is strictly psd. The set SN

+ of N × N

positive semidefinite matrices is a convex cone, meaning that αA+ βB ∈ SN
+

for any two A,B ∈ SN
+ and scalars α,β ≥ 0. We have an inner product

�A,B� := Tr(AB) on SN , which allows us to define the so-called dual cone
(SN

+ )∗ := {X ∈ SN : �X,M� ≥ 0 for all M ∈ SN
+ }. In fact, the cone SN

+ is

self-dual, meaning that SN
+ = (SN

+ )∗.
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Semidefinite programming. Let C,Ai ∈ SN and bi ∈ R for i = 1, 2, . . . ,m.
An optimization problem of the form:

val = sup
X∈SN

�
�C,X� : �Ai, X� = bi (i = 1, 2, . . . ,m), X � 0

�
(P)

is called a semidefinite program (SDP). In principle, the program (P) could be
infeasible (in which case val := −∞) or unbounded (in which case val :=∞).

To each program (P), we associate the dual program:

val∗ = inf
y∈Rm

�
m�

i=1

yibi :
m�

i=1

yiAi − C � 0

�
. (D)

The programs (P) and (D) satisfy weak duality , meaning that val ≤ val∗. The
reader familiar with linear programming might expect that they also satisfy
strong duality , i.e., that val = val∗. In the case of semidefinite programming,
however, this is not always the case. Fortunately, there are several sufficient
conditions on (P) which guarantee that val = val∗. For instance, strong du-
ality holds if (P) has a feasible solution X � 0 which is strictly psd (Slater’s
condition).

2.2.1. Formulation of the lower bounds as an SDP. We show how
to reformulate the lower bounds defined above as semidefinite programs. As
we will not make use of these reformulations directly in the rest of this thesis,
we shall only give a rough sketch. The following key proposition links sums of
squares of polynomials to positive semidefinite matrices.

Proposition 2.4. Let q ∈ R[x] be a polynomial of degree 2r. For d ∈ N,
we denote Nn

d := {α ∈ Nn :
�n

i=1 αi ≤ d}. If we write q(x) =
�

α∈Nn
2r
qαx

α in

the monomial basis, then q is a sum of squares if and only if there exists a psd
matrix Q = (Qα,β)|α|,|β|≤r � 0 such that:

q(x) = [x]�r Q[x]r = �[x]r[x]�r , Q� =
�

α,β∈Nn
r

Qα,βx
α+β . (2.11)

Here [x]r = (xα)|α|≤r is the vector of monomials of degree at most r.

Thus one can check whether q is a sum of squares by checking whether
a certain SDP is feasible. In light of Proposition 2.4, a polynomial f(x) =�

γ fγx
γ has a representation in Q(X)2r if and only if:

f(x) =

m�

j=0

gj(x)�[x]r−�deg(gj)/2�[x]
�
r−�deg(gj)/2�, Qj�

for appropriately sized matrices Q0, Q1, . . . , Qm � 0. Therefore, after carefully

selecting matrices A
(j)
γ (depending on the constraints gj defining X), we may
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reformulate (2.3) as the SDP:

sup
Q0,Q1,...,Qm�0

�
f0 −

m�

j=0

�A(j)
0 , Qj� :

m�

j=0

�A(j)
γ , Qj� = fγ ∀ 1 ≤ |γ| ≤ 2r

�
.

The Schmüdgen-type bound (2.4) may be formulated as an SDP in a similar
way, but there we would need a matrix QJ for each J ⊆ [m].

We note that in the literature, one often encounters the dual formulation
of these SDPs instead (which are also known as moment relaxations). See
for instance [dKL19],[Las09b]. In general, there can be a gap between the
primal (sum-of-squares) and dual (moment) formulations. For semialgebraic
sets X whose description satisfies an Archimedean condition, however, it can
be shown that strong duality holds, see [JH16].

2.2.2. Formulation of the upper bounds as an SDP. Now, we show
how to formulate the measure-based upper bounds as semidefinite programs.
As the specifics of these formulations will play a role in the future, we will go
into more detail here.

Let X ⊆ Rn be a compact set equipped with a finite, positive Borel mea-
sure µ supported on X. For α ∈ Nn, the moment mα ∈ R of degree α of µ is
defined as:

mα(µ) :=

�

X
xαdµ(x).

For a polynomial p ∈ R[x] and r ∈ N, the (truncated) moment matrix Mp,r(µ)
of p is then given by:

�
Mp,r(µ)

�
α,β

:=

�

X
p(x)xα+βdµ(x) =

�

γ∈Nn
r

pγmα+β+γ(µ) (α,β ∈ Nn
r ).

(2.12)
In the case p(x) = 1, we also write Mr(µ) = M1,r(µ) for simplicity. Now let
q ∈ Σ[x]2r be a sum of squares of degree r, and let Q � 0 be the matrix
corresponding to q in (2.11). Then we find that:

�

X
p(x)q(x)dµ(x) = �Mp,r(µ), Q�. (2.13)

Using relation (2.13) and Proposition 2.4, we may thus reformulate the upper
bound ub(f,X, µ)r as the semidefinite program:

ub(f,X, µ)r = inf
Q�0

�
�Mf,r(µ), Q� : �Mr(µ), Q� = 1

�
. (2.14)

Here, we optimize over matrices Q � 0 of size |Nn
r | =

�
n+r
r

�
.

Similarly, the push-forward bound ub(f,X, µ)pfr is given by:

ub(f,X, µ)pfr = inf
Q�0

�
�Mx,r(µf ), Q� : �Mr(µf ), Q� = 1

�
. (2.15)
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2.2. SEMIDEFINITE PROGRAMMING AND SUMS OF SQUARES 27

Since µf is a univariate measure, the optimization is now over matrices Q � 0
of much smaller size r + 1.

Computing moments. It is important to note that the reformulations (2.14)
and (2.15) require knowledge of the moments mα(µ) and mk(µf ) of degree up
to 2r + deg(f), respectively. This is not a trivial requirement, as computing
even just the volume of a semialgebraic set is hard in general [Las09a]. For
many of the sets X and measures µ we consider, however, there are simple
analytic expressions available for these moments. We discuss this further in
Chapter 5.

An eigenvalue reformulation. The semidefinite programs (2.14) and (2.15)
are special in the sense that they have only a single equality constraint. As
we show now, this means that their dual formulations are in fact generalized
eigenvalue problems. We only consider here the formulation (2.14) for the
regular upper bounds, but the argument for (2.15) is the same. The dual
program of (2.14) is given by:

sup
y∈R

�
y : Mf,r(µ)− yMr(µ) � 0

�
.

Using condition (2.10) for psd matrices, we see that the optimum value of
this program is given by the smallest generalized eigenvalue of the system�
Mf,r(µ),Mr(µ)

�
.

When X ⊆ Rn is compact with non-empty interior, we have strong
duality [Las11], meaning that:

ub(f,X, µ)r = λmin

�
Mf,r(µ),Mr(µ)

�
. (2.16)

Solving a generalized eigenvalue problem is much easier than solving an SDP
(of the same size). The reformulation (2.16) thus reveals a potential compu-
tational advantage of the hierarchies of upper bounds over the hierarchies of
lower bounds.

Orthonormal bases. In the above, we have always represented the space
R[x]r of polynomials of degree at most r using the monomial basis. In prin-
ciple, however, we could have used any basis. Indeed, Proposition 2.4 is true
regardless of our choice of basis. Compared to (2.12), with respect to a general
basis {Pα : α ∈ Nn

r }, we get the moment matrices:

�
Mp,r(µ)

�
α,β

:=

�

X
p(x)Pα(x)Pβ(x)dµ(x) (α,β ∈ Nn

r ). (2.17)

The reformulation (2.14) is then exactly the same (but using these new mo-
ments matrices). One could also view this as a change of basis in the space of
symmetric matrices in (2.14).

The point is that for a clever choice of {Pα : α ∈ Nn
r }, the resulting

program may be greatly simplified. In particular, if we choose the Pα to be
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an orthonormal basis w.r.t. (X, µ), we find that Mr(µ) = I is the identity
matrix, in which case (2.16) reduces to:

ub(f,X, µ)r = λmin

�
Mf,r(µ)

�
. (2.18)

As we see below in Section 2.3, this observation will sometimes permit an
analysis of the upper bounds ub(f,X, µ)r when the eigenvalues of the matrix
Mf,r(µ) are known.

2.3. Convergence analysis of the hierarchies

In this section, we discuss known results on the convergence rates of the
hierarchies of lower and upper bounds defined above. An overview of all known
(and new) results is given in Table 2.1 and Table 2.2 below.

2.3.1. The lower bounds. The first quantitative versions of Putinar’s
and Schmüdgen’s Positivstellensätze are due to Nie and Schweighofer. For
general Archimedean semialgebraic sets X, they show that the Putinar-type
bounds lb(f,Q(X))r converge to fmin at a rate in O(1/ log(r)c), where c > 0
is a constant depending on X [NS07]. For compact semialgebraic sets X,
Schweighofer [Sch04] shows that the Schmüdgen-type bounds lb(f, T (X))r
converge to fmin at a rate inO(1/rc), where c > 0 is again a constant depending
on X. For a long time, these were the only general results available. In the
very recent work [BM21], however, the authors show a convergence rate in
O(1/rc) for the Putinar -type bounds on general Archimedean semialgebraic
sets. They thus match the best known (general) rate for the Schmüdgen-
type bounds and improve exponentially on the previous best known rate for
lb(f,Q(X))r of [NS07].

Very roughly, the proofs of these general results rely on a clever embedding
of the set X into a larger, simpler semialgebraic set, such as a box [−1, 1]n or a
simplex Δn. The convergence rate of the bounds on X may then be analyzed
in terms of the behaviour of the hierarchy on this simpler set. This is one
motivation for studying the hierarchies for optimization over certain special,
structured sets X. Indeed our analysis [LS21] for the unit box [−1, 1]n (see
below) is a key ingredient of the proof in [BM21].

Another motivation for studying special cases is that one may show much
stronger guarantees there. For instance, in the case that X = [−1, 1]n is the
unit box, de Klerk and Laurent [dKL10] show a convergence rate in O(1/r)
for the Schmüdgen-type bounds. The same rate is shown by de Klerk and
Kirschner [KdK21] when X = Δn is the standard simplex. When X = Sn−1

is the hypersphere, Fang and Fawzi [FF21] show a convergence rate in O(1/r2)
for the Putinar-type bounds, which improves upon an earlier result in O(1/r)
due to Doherty and Wehner [DW13]. For the binary hypercube X = {0, 1}n
one may even show that the lower bound lb(f,Q(X))r is exact when r ≥
(n+ d− 1)/2 [FSP16, STKI17].
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2.3. CONVERGENCE ANALYSIS OF THE HIERARCHIES 29

The proof techniques for the results in these special cases vary. For our
purposes, the method Fang and Fawzi use for the analysis on Sn−1 is most
important, as it forms the basis of our results on the lower bounds in Part 2.
We will discuss it in great detail in Chapter 6.

2.3.2. The upper bounds. Asymptotic convergence of the parameters

ub(f,X, µ)r and ub(f,X, µ)pfr to fmin is shown by Lasserre in [Las11] and
[Las20], respectively, under mild assumptions on X and µ. For the push-
forward bounds, no quantitative results were known in the literature before
our results in [SL21a], see below. On the other hand, rates for the parameter
ub(f,X, µ)r have been shown for different sets of assumptions on X, µ and
f . Depending on these assumptions, several strategies have been employed to
obtain these rates, which we now discuss.

Algebraic analysis via an eigenvalue reformulation. The first strategy
relies on the reformulation (2.18) of the optimization problem (2.6) as an
eigenvalue minimization problem; particularly in the univariate case n = 1.
Let {Pk ∈ R[x]k : k ∈ N} be the (unique) orthonormal basis of R[x] w.r.t. the
inner product �Pi, Pj� =

�
X Pi(x)Pj(x)dµ(x). For r ∈ N, we have seen that

ub(f,X, µ)r = λmin(Mf,r(µ)), which is the smallest eigenvalue of the matrix
moment matrix Mf,r(µ) of (2.17). Any bounds on the eigenvalues of Mf,r(µ)
thus immediately translate to bounds on ub(f,X, µ)r.

In [dKL20b], the authors determine the exact asymptotic behaviour of
λmin(Mf,r(µ)) in the case that f is a quadratic polynomial, X = [−1, 1] and
dµ(x) = (1 − x2)−

1
2dx is the Chebyshev measure. Based on this, they show

that ub(f,X, µ)r = O(1/r2) and extend this result to arbitrary multivariate
polynomials f on the hypercube [−1, 1]n equipped with the product measure

dµ(x) =
�n

i (1 − xi)
−1/2dxi. In addition, they prove that ub(f,X, µ)r =

Θ(1/r2) for linear polynomials, which thus shows that in some sense quadratic
convergence is the best we can hope for.

For this latter result they make use of the fact that the moment matrix
Mx,r(µ) for the linear polynomial f(x) = x is precisely the matrix J defined
in (1.3) for the orthogonal polynomials {Pk}. By Proposition 1.2, its smallest
eigenvalue is thus given by the smallest root of the polynomial Pr+1, which
in this case is the Chebyshev polynomial Cr+1. The smallest root of Cr+1 is
known to converge to −1 at a rate in Θ(1/r2), see Proposition 1.3.

The main disadvantage of the eigenvalue strategy is that it requires the
moment matrix of f to have a closed form expression which is sufficiently
structured so as to allow for an analysis of its eigenvalues. Closed form ex-
pressions for the entries of the matrix Mf,r(µ) are known only for special sets
X, such as the interval [−1, 1], the unit ball, the unit sphere, or the simplex,
and only with respect to certain measures.

However, as we will see in Chapter 3, the convergence analysis from
[dKL20b] in O(1/r2) for the interval [−1, 1] equipped with the Chebyshev
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measure can be transported to a large class of compact sets, such as the in-
terval [−1, 1] with more general measures, the ball, the simplex, and ‘ball-like’
convex bodies.

Analysis via the construction of feasible solutions. A second strat-
egy to bound the convergence rate of the parameters ub(f,X, µ)r is to con-
struct explicit sum-of-squares density functions qr ∈ Σ[x]r for which the inte-
gral

�
X f(x)qr(x)dµ(x) is close to fmin. In contrast to the previous strategy,

such constructions will only yield upper bounds on the convergence rate of
ub(f,X, µ)r.

As noted earlier, the integral
�
X fdν may be minimized by selecting the

probability measure ν = δx∗ , i.e., the Dirac measure centered at a global
minimizer x∗ of f on X. When the reference measure µ is the Lebesgue
measure, it thus intuitively seems sensible to consider sum-of-squares densities
qr that approximate the Dirac delta in some way.

This approach is followed in [dKLS17]. There, the authors consider trun-

cated Taylor expansions of the Gaussian function e−x2/2σ, which they use to
define the sum-of-squares polynomials:

φr(x) =

2r�

k=0

1

k!

�−x2
2σ

�k

∈ Σ[x]2r for r ∈ N.

Setting qr(x) ∼ φr(�x−x∗�) for carefully selected standard deviation σ = σ(r),
they show that

�
X f(x)qr(x)dx− f(x∗) = O(1/

√
r) when X satisfies a minor

geometrical assumption (see Chapter 3), which holds, e.g., if X is a convex
body or if it is star-shaped with respect to a ball.

In the subsequent work [dKL18], the authors show that if X is assumed
to be a convex body, then a bound in O(1/r) may be obtained by setting
qr ∼ φr(f(x)). As explained in [dKL18], the sum-of-squares density qr in
this case can be seen as an approximation of the Boltzman density function
for f , which plays an important role in simulated annealing.

The advantage of this second strategy appears to be its applicability to
a broad class of sets X with respect to the natural Lebesgue measure. This
generality, however, is offset by significantly weaker guarantees on ub(f,X, µ)r.

Analysis for the hypersphere. Tight results are known for polynomial
minimization on the unit sphere Sn−1 = {x ∈ Rn :

�
i x

2
i = 1}, equipped

with the uniform surface measure. Doherty and Wehner [DW13] have shown
a convergence rate in O(1/r), by using harmonic analysis on the sphere and
connections to quantum information theory. In the recent work [dKL20a], the
authors show an improved convergence rate in O(1/r2), by using a reduction
to the case of the interval [−1, 1] and the above mentioned convergence rate in
O(1/r2) for this case. Such a reduction will form the basis of our arguments
in Chapter 3. The reduction in [dKL20a] is based on replacing f by an easy
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(linear) upper estimator. This idea of using an upper estimator was already
exploited in [dKLS17, dKL20b] (where a quadratic upper estimator was
used) and we will also exploit it in Chapter 3.

Analysis using the Jackson kernel. Finally, we wish to mention a result of
Hess, de Klerk and Laurent [dKHL17] for X = [−1, 1]n. There, the authors
show a convergence rate in O(1/r2) for the Schmüdgen-type upper bounds
ub(f, T (X), µ)r, when µ is the Chebyshev measure. Although their result is
superceded by the later work [dKL20b] (which establishes a convergence rate
in O(1/r2) for the weaker bounds ub(f,X, µ)r), their proof technique is of
interest to us. Indeed, it relies on the well-known Jackson kernel (see, e.g.,
[WWAF06]), which will feature prominently in Chapter 9. We will also rely
there on some technical properties of this kernel established in [dKHL17].

2.3.3. Negative results. To put the positive results on the convergence
rates of the sum-of-squares hierarchies into perspective, let us summarize some
negative results. First, as we mention above, one may show already for a linear
polynomial f in the univariate setting that the upper bounds ub(f, [−1, 1], µ)r
converge at a rate in Ω(1/r2) for a class of references measures µ (which
includes the Lebesgue measure). This negative result carries over to a few other
settings, such as the hypersphere. It relies either on the connection between
the upper bounds and roots of orthogonal polynomials (see Section 2.2) or an
a connection to cubature rules (see Section 6.3). In our estimation, it shows
rather convincingly that a rate in O(1/r2) for the upper bounds is the best
one should hope for in a general setting.

For the lower bounds, there is a quite extensive literature studying neg-
ative results on the binary cube {0, 1}n. We discuss some of these results in
Chapter 7. There, the hierarchy is always exact at finite level r ≤ n, and so
one considers instead the dependence on n. In the setting where the hierarchy
does not converge in finitely many steps, we are aware of only one example
where the rate of convergence may be bounded from below. Namely, Sten-
gle [Ste96] considers the function f(x) = 1 − x2 on the interval [−1, 1] and
shows that:

fmin − lb(f,Q((1− x2)3)r = Ω(1/r2).

It should be noted that his result relies on a nonstandard semialgebraic rep-
resentation [−1, 1] = {x ∈ R : (1− x2)3 ≥ 0} of the interval (for the regular
representation we would just have 1 − x2 ∈ Q(1 − x2)2). Nonetheless, it is
quite interesting that he obtains a bound in Ω(1/r2), which matches the best
known rates in O(1/r2) on the hypersphere, the unit ball, the standard simplex
and the unit cube [−1, 1]n (see below).



582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot
Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

32 2. POLYNOMIAL OPTIMIZATION AND SUM-OF-SQUARES HIERARCHIES

2.4. Summary of results

To finish this chapter, we summarize the main new results on the hier-
archies of upper and lower bounds proven in this thesis. See Table 2.1 and
Table 2.2 for an overview.

2.4.1. The upper bounds. Our contributions for the upper bounds are
presented in Part 1. First, in Chapter 3, we extend the best-possible conver-
gence rate in O(1/r2) for the bounds ub(f, [−1, 1]n)r on the box [−1, 1] w.r.t.
the Chebyshev measure µ of [dKL20b] to a broader class of sets X and ref-
erence measures. This class includes the standard simplex, the unit ball, and
‘ball-like’ convex bodies w.r.t the Lebesgue measure. The main idea of our
proof is to transport the result of [dKL20b] to these sets by showing that the
behaviour of the upper bounds depends in essence only on the ’local behaviour’
of the set X, the measure µ and the polynomial f in the neighbourhood of a
minimizer x∗ of f .

Second, in Chapter 4, we establish a convergence rate in O(log2 r/r2) for
the upper bounds ub(f,X)r w.r.t. to the Lebesgue measure on a very large
class of sets X, which includes in particular all semialgebraic sets with dense
interior. Our work shows a stronger rate and applies more generally than
the earlier works [dKLS17, dKL18]. Indeed, the rate we show is only a
log-factor away from best-possible. Somewhat surpisingly, our result in fact

applies to the push-forward bounds ub(f,X)pfr , thereby giving the first analysis
for this hierarchy. Our proof makes use of so-called needle polynomials to
construct explicit sum-of-squares densities which approximate a Dirac function
at a minimizer x∗ of f on X. The approximations we construct are better
than those of [dKLS17, dKL18], thus yielding a stronger bound on the
convergence rate.

2.4.2. The lower bounds. We present our new results on the lower
bounds in Part 2. These results all rely on the same general proof technique,
which is the subject of Chapter 6. Roughly speaking, this technique may be
seen as a generalization of the one employed on the hypersphere in [FF21]. It
relies on the Christoffel-Darboux kernel (aka reproducing kernel) and Fourier
analysis to establish a link between the behaviour of the lower bounds on X
and certain univariate instances of the upper bounds.

When X is sufficiently structured, this connection may then be exploited
to obtain strong guarantees on the convergence rate of the lower bounds by
analyzing (the roots of) classical orthogonal polynomials. We cover the binary
cube {0, 1}n in Chapter 7. There, we make use of the Funk-Hecke formula to
express the behaviour of the bounds in terms of roots of Krawtchouk polyno-
mials, yielding an analysis in the regime n→∞ and r = Ω(n). The unit ball
and standard simplex are treated in Chapter 8, where we rely on closed form
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expressions of the Christoffel-Darboux kernel in terms of Gegenbauer polyno-
mials. Lastly, the case X = [−1, 1]n is covered in Chapter 9. It relies on the
aforementioned Jackson kernel and Chebyshev polynomials.

As we explain in Chapter 6, our analysis of the lower bounds in these set-
tings also yields an analysis of the corresponding upper bounds. The obtained
rates are included in the respective chapters and in Table 2.2 below. For the
most part, however, they are superceded by earlier results, or by the results
of Part 1.

Acknowledgments. We wish to thank Markus Schweighofer for bringing to
our attention the negative result [Ste96] for the lower bounds on the interval.
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Part 1

Measure-based hierarchies of upper
bounds
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CHAPTER 3

Convergence analysis for measure-based bounds I

The worst is yet to come.

Arthur Schopenhauer

This chapter is based on my joint work [SL20] with Monique Laurent.

Let X ⊆ Rn be a compact set equipped with a finite, positive Borel mea-
sure µ supported on X, and let f ∈ R[x] be a polynomial of degree d. Recall
the measure-based hierarchy of upper bounds on the minimum fmin of f on
X introduced in Chapter 2:

ub(f,X, µ)r := inf
q∈Σ[x]2r

��

X
f(x)q(x)dµ(x) :

�

X
q(x)dµ(x) = 1

�
. (3.1)

De Klerk and Laurent [dKL20b] show a convergence rate of the bounds (3.1)
in O(1/r2) when X = [−1, 1]n is the unit box, equipped with the Chebyshev

measure dµ(x) =
�n

i=1(1− x2
i )

− 1
2dxi. That is, they show that:

Error(f ;X, µ)r := ub(f,X, µ)r − fmin = O(1/r2)

for this choice of X and reference measure µ. In fact, they show that this rate
is best-possible already when f has degree d = 1.

Outline. In this chapter, we extend their result to a broader class of convex
bodies X ⊆ Rn and reference measures µ. First, in Section 3.3, we show that
for the hypercube X = [−1, 1]n, we have convergence in O(1/r2) for f ∈ R[x]
of arbitrary degree and all measures of the form dµ(x) =

�n
i=1(1 − x2

i )
λdxi

with λ > −1/2. Of particular interest is the case λ = 0, where we have the
Lebesgue measure on [−1, 1]n. Next, in Section 3.4, we use this result to show
convergence in O(1/r2) of the measure-based bounds on the unit ball Bn for
all references measures of the form dµ(x) = (1 − �x�2)λdx with λ ≥ 0. We
then apply this result in Section 3.5 to prove a rate in O(1/r2) when µ is the
Lebesgue measure and X is a ‘ball-like’ convex body, meaning roughly that
it has inscribed and circumscribed tangent balls at all boundary points (see
Definition 3.22 below). Finally, we consider the standard simplex Δn ⊆ Rn in
Section 3.6, where we also obtain a rate in O(1/r2) for the Lebesgue measure.

The primary new tool we use to obtain these results is Proposition 3.12 (see
Section 3.2), which tells us that the asymptotic behaviour of the measure-based

37
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38 3. CONVERGENCE ANALYSIS FOR MEASURE-BASED BOUNDS I

bounds essentially only depends on the local geometry ofX in a neighbourhood
of a global minimizer x∗ ∈ X of f , and the behaviour of f and µ in this
neighbourhood. This tool allows us to transport the result of de Klerk and
Laurent on [−1, 1]n to the new sets.

3.1. Preliminaries

We first introduce some notation that we will use throughout the rest of
this chapter and recall some basic terminology and results about convex bod-
ies. Then, we cover some basic techniques that will simplify the analysis of the
measure-based bounds in later sections. Finally, we discuss some properties
of measures and weight functions needed to prove Proposition 3.12 below.

3.1.1. Notation. For x,y ∈ Rn, �x,y� denotes the standard inner prod-
uct of x and y, and �x�2 = �x,x� the corresponding norm. We write Bn

ρ (c) :=
{x ∈ Rn : �x − c� ≤ ρ} for the n-dimensional ball of radius ρ centered at
c ∈ Rn. When ρ = 1 and c = 0, we also use our usual notation Bn = Bn

1 (0).
Throughout, X ⊆ Rn is always a compact set with non-empty interior,

and f is an n-variate polynomial. We let ∇f(x) (resp., ∇2f(x)) denote the
gradient (resp., the Hessian) of f at x ∈ Rn, and introduce the parameters:

Γgrad(f,X) := max
x∈X

�∇f(x)� and Γhess(f,X) :=
1

2
max
x∈X

�∇2f(x)�. (3.2)

Here, � · � denotes the Euclidean norm. Whenever we write an expression
of the form:

“Error(f ;X, µ)r = O(1/r2)”,

we mean that there exists a constant c > 0 such that Error(f ;X, µ)r ≤
c/r2 for all r ∈ N, where c depends only on X, µ, and the parameters
Γgrad(f,X),Γhess(f,X). Some of our results are obtained by embedding X

into a larger set �X ⊆ Rn. If this is the case, then c may depend on

Γgrad(f, �X),Γhess(f, �X) as well. If there is an additional dependence of c on
the global minimizer x∗ of f on X, we will make this explicit by using the
notation “Ox∗”.

3.1.2. Convex bodies. Let X ⊆ Rn be a convex body, i.e., a compact,
convex set with non-empty interior. We say v ∈ Rn is an (inward) normal of
X at a ∈ X if �v,x − a� ≥ 0 holds for all x ∈ X. We refer to the set of all
normals of X at a as the normal cone , and write

NX(a) := {v ∈ Rn : �v,x− a� ≥ 0 for all x ∈ X}.

We will make use of the following basic result.

Lemma 3.1 (e.g., [BL06, Prop. 2.1.1]). Let X be a convex body and let
g : Rn → R be a continuously differentiable function with local minimizer
x∗ ∈ X. Then ∇g(x∗) ∈ NX(x∗).
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3.1. PRELIMINARIES 39

Proof. Suppose not. Then, by definition of NX(x∗), there exists an ele-
ment y ∈ X such that �∇g(x∗),y − x∗� < 0. Expanding the definition of the
gradient this means that

0 > �∇g(x∗),y − x∗� = lim
t↓0

g(ty + (1− t)x∗)− g(x∗)
t

,

which implies g(ty + (1 − t)x∗) < g(x∗) for all t > 0 small enough. But
ty + (1 − t)x∗ ∈ X by convexity, contradicting the fact that x∗ is a local
minimizer of g on X. �

The set X is smooth if it has a unique unit normal v(a) at each boundary
point a ∈ ∂X. In this case, we denote by TaX the (unique) hyperplane tangent
to X at a, defined by the equation �x− a, v(a)� = 0.

For k ≥ 1, we say X is of class Ck if there exists a convex function
Ψ ∈ Ck(Rn,R) such that X = {x ∈ Rn : Ψ(x) ≤ 0} and ∂X = {x ∈ Rn :
Ψ(x) = 0}. If X is of class Ck for some k ≥ 1, it is automatically smooth in
the above sense.

We refer, e.g., to [BF87] for a general reference on convex bodies.

3.1.3. Linear transformations. Suppose that φ : Rn → Rn is a nonsin-
gular affine transformation, given by φ(x) = Ux+ a. If q is a sum-of-squares
density function w.r.t. the Lebesgue measure on φ(X), then we have:�

φ(X)
q(y)f(φ−1(y))dy = | detU | ·

�

X
q(φ(x))f(x)dx and

1 =

�

φ(X)
q(y)dy = | detU | ·

�

X
q(φ(x))dx.

As a result, the polynomial �q := (q ◦ φ)/
�
X q(φ(x))dx = (q ◦ φ) · |detU | is a

sum of squares density function w.r.t. the Lebesgue measure on X. It has the
same degree as q, and it satisfies:�

X
�q(x)f(x)dx =

�

φ(X)
q(x)f(φ−1(x))dx.

We have just shown the following.

Lemma 3.2. Let φ : Rn → Rn be a non-singular affine transformation.
Write g := f ◦ φ−1. Then we have

Error(f ;X)r = Error(g;φ(X))r.

3.1.4. Upper estimators. Given a point a ∈ X and two functions
f, g : X→ R, we write f ≤a g if f(a) = g(a) and f(x) ≤ g(x) for all x ∈ X;
we then say that g is an upper estimator for f on X, which is exact at a. The
next lemma, whose easy proof is omitted, will be very useful.

Lemma 3.3. Let g : X→ R be an upper estimator for f , exact at one of the
global minimizers of f on X. Then we have Error(f ;X, µ)r ≤ Error(g;X, µ)r
for all r ∈ N.
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40 3. CONVERGENCE ANALYSIS FOR MEASURE-BASED BOUNDS I

Remark 3.4. We make the following observations for future reference.

1. Lemma 3.3 tells us that we may always replace f in our analysis by
an upper estimator which is exact at one of its global minimizers.
This is useful if we can find an upper estimator that is significantly
simpler to analyze.

2. We may always assume that fmin = 0, in which case f(x) ≥ 0 for
all x ∈ X and Error(f ;X, µ)r = ub(f,X, µ)r. Indeed, if we consider
the function g given by g(x) = f(x)− fmin, then gmin,X = 0, and for
every density function q on X, we have:�

X
g(x)q(x)dµ(x) =

�

X
f(x)q(x)dµ(x)− fmin,

showing that Error(f ;X, µ)r = ub(g,X, µ)r for all r ∈ N.

In the remainder of this section, we derive some general upper estimators
based on the following variant of Taylor’s theorem for multivariate functions.

Theorem 3.5 (Taylor’s theorem). For f ∈ C2(Rn,R) and a ∈ X we have:

f(x) ≤ f(a) + �∇f(a),x− a�+ Γhess(X, f)�x− a�2 for all x ∈ X,

where Γhess(X, f) is the constant from (3.2).

Lemma 3.6. Let x∗ ∈ X be a global minimizer of f on X. Then f has
an upper estimator g on X which is exact at x∗ and satisfies the following
properties:

(i) g is a quadratic, separable polynomial.
(ii) g(x) ≥ f(x∗) + Γhess(X, f)�x− x∗�2 for all x ∈ X.
(iii) If x∗ ∈ int(X), then g(x) ≤ f(x∗) + Γhess(X, f)�x − x∗�2 for all

x ∈ X.

Proof. Consider the function g defined by:

g(x) := f(x∗) + �∇f(x∗),x− x∗�+ Γhess(X, f)�x− x∗�2, (3.3)

which is an upper estimator of f exact at x∗ by Theorem 3.5. As we have
�x− x∗�2 =�n

i (xi − x∗
i )

2, g is indeed a quadratic, separable polynomial.
As x∗ is a global minimizer of f on X, we know by Lemma 3.1 that

∇f(x∗) ∈ NX(x∗). This means that �∇f(x∗),x−x∗� ≥ 0 for all x ∈ X, which
proves the second property.

If x∗ ∈ int(X), we must have ∇f(x∗) = 0, and the third property follows.
�

In the special case that X is a ball and f has a global minimizer x∗ on
the boundary of X, we have an upper estimator for f , exact at x∗, which is a
linear polynomial.

Lemma 3.7. Assume that f(x∗) = fmin,Bn
ρ (c)

for some x∗ ∈ ∂Bn
ρ (c). Then

there exists a linear polynomial g with f ≤x∗ g on Bn
ρ (c).
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3.1. PRELIMINARIES 41

Proof. Write X = Bn
ρ (c) and γ = Γgrad(f,X) for simplicity. In view of

Lemma 3.6, we have f(x) ≤ g(x) for all x ∈ X, where g is the quadratic
polynomial from relation (3.3). Since x∗ ∈ ∂X is a global minimizer of f on
X, we have ∇f(x∗) ∈ NX(x∗) by Lemma 3.1, and thus ∇f(x∗) = λ(c − x∗)
for some λ ≥ 0. Therefore we have:

�∇f(x∗),x− x∗� = �λ(c− x∗),x− x∗� = λρ2 + λ�x− c, c− x∗�.

On the other hand, for any x ∈ X we have:

�x− x∗�2 = �x− c�2 + �c− x∗�2 + 2�x− c, c− x∗� ≤ 2ρ2 + 2�x− c, c− x∗�.

Combining these facts we get:

f(x) ≤ g(x) ≤ f(x∗) + (λ+ 2γ)(ρ2 + �x− c, c− x∗�) =: h(x).

So h(x) is a linear upper estimator of f with h(x∗) = f(x∗), as desired.
�

Remark 3.8. As can be seen from the above proof, the assumption in
Lemma 3.7 that x∗ ∈ ∂X = ∂Bn

ρ (c) is a global minimizer of f on X may be
replaced by the weaker assumption that ∇f(x∗) ∈ NX(x∗).

3.1.5. Measures and weight functions. A function w : int(X)→ R>0

is a weight function on X if it is continuous and satisfies 0 <
�
Xw(x)dx <∞.

A weight function w gives rise to a measure µw on X defined by dµw(x) :=

w(x)dx. We note that if X ⊆ �X, and �w is a weight function on �X, it can
naturally be interpreted as a weight function onX as well, by simply restricting
its domain (assuming

�
X �w(x)dx > 0). In what follows we will implicitly make

use of this fact.

Definition 3.9. Given two weight functions w, �w on X and a point a ∈ X,
we say that �w �a w on X if there exist constants ε,ma > 0 such that

ma�w(x) ≤ w(x) for all x ∈ Bn
ε (a) ∩ int(X). (3.4)

If the constant ma can be chosen uniformly, i.e., if there exists a constant
m > 0 such that

m�w(x) ≤ w(x) for all x ∈ int(X), (3.5)

then we say that �w � w on X.

Remark 3.10. We note the following facts for future reference:

(i) As weight functions are continuous on the interior of X by definition,
we always have �w �a w if a ∈ int(X).

(ii) If w is bounded from below, and �w is bounded from above on int(X),
then we automatically have �w � w.
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42 3. CONVERGENCE ANALYSIS FOR MEASURE-BASED BOUNDS I

X

�X

X

�X

Figure 3.1. Some examples of sets X, �X for which X ⊆a
�X.

The red dot indicates the point a, and the gray area indicates
Bn

ε (a) ∩X.

3.2. Local similarity

Assuming that the global minimizer x∗ of f onX is unique, sum-of-squares
density functions q for which the integral

�
X q(x)f(x)dµ(x) is small should in

some sense approximate the Dirac delta function centered at x∗. With this in
mind, it seems reasonable to expect that the quality of the bound ub(f,X, µ)r
depends in essence only on the local properties of f , X and µ around x∗. In
this section, we formalize this intuition.

Definition 3.11. Suppose X ⊆ �X ⊆ Rn. Given a ∈ X, we say that X

and �X are locally similar at a, which we denote by X ⊆a
�X, if there exists

ε > 0 such that

Bn
ε (a) ∩X = Bn

ε (a) ∩ �X.

Clearly, X ⊆a
�X for any point a ∈ int(X).

Figure 3.1 depicts some examples of locally similar sets.

Proposition 3.12. Let X ⊆ �X ⊆ Rn, let x∗ ∈ X be a global minimizer

of f on X and assume X ⊆x∗ �X. Let w, �w be two weight functions on X, �X,
respectively. Assume that �w(x) ≥ w(x) for all x ∈ int(X), and that �w �x∗ w.

Then there exists an upper estimator g of f on �X which is exact at x∗ and
satisfies

Error(g;X, w)r ≤
2

mx∗
Error(g; �X, �w)r

for all r ∈ N large enough. Here mx∗ > 0 is the constant defined by (3.4).

Recall that if g is an upper estimator for f which is exact at one of
its global minimizers, we then have Error(f ;X, w)r ≤ Error(g;X, w)r by
Lemma 3.3. Proposition 3.12 then allows us to bound Error(f ;X, w)r in terms

of Error(g; �X, �w)r. For its proof, we first need the following lemma.
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3.2. LOCAL SIMILARITY 43

Lemma 3.13. Let a ∈ X, and assume that X ⊆a
�X. Then any normal

vector of X at a is also a normal vector of �X. That is, NX(a) ⊆ N�X(a).

Proof. Let v ∈ NX(a). Suppose for contradiction that v �∈ N�X(a). Then,

by definition of the normal cone, there exists y ∈ �X such that �v,y − a� < 0.

As X ⊆a
�X, there exists ε > 0 for which X ∩ Bn

a (ε) = �X ∩ Bn
a (ε). Now

choose 1 > η > 0 small enough such that y� := ηy + (1 − η)a ∈ Bn
a (ε).

Then, by convexity, we have y� ∈ �X ∩ Bn
a (ε) = X ∩ Bn

a (ε). Now, we have
�v,y� − a� = η�v,y − a� < 0. But, as y� ∈ X, this contradicts the assumption
that v ∈ NX(a). �

Proof of Proposition 3.12. For simplicity, we assume here f(x∗) = 0,
which is without loss of generality by Remark 3.4. Consider the quadratic
polynomial g from (3.3):

g(x) = �∇f(x∗),x− x∗�+ γ�x− x∗�2,
where γ := Γhess(�X, f) is defined in (3.2). By Taylor’s theorem (Theorem 3.5),

we have that g(x) ≥ f(x) for all x ∈ �X, and clearly g(x∗) = f(x∗). That is, g
is an upper estimator for f on �X, exact at x∗ (cf. Lemma 3.6). We proceed
to show that:

Error(g;X, w)r ≤
2

mx∗
Error(g; �X, �w)r.

We start by selecting a degree 2r sum-of-squares polynomial �qr satisfying�

�X
�qr(x)�w(x)dx = 1 and

�

�X
g(x)�qr(x)�w(x)dx = Error(g; �X, �w)r.

We may then rescale �qr to obtain a density function qr ∈ Σ2r on X w.r.t. w
by setting:

qr :=
�qr�

X �qr(x)w(x)dx
.

By assumption, w(x) ≤ �w(x) for all x ∈ int(X). Moreover, g(x) ≥ f(x∗) = 0
for all x ∈ int(X). This implies that:

Error(g;X, w)r ≤
�

X
g(x)qr(x)w(x)dx

≤
�
�X g(x)�qr(x)�w(x)dx�

X �qr(x)w(x)dx
=

Error(g; �X, �w)r�
X �qr(x)w(x)dx

and thus it suffices to show that
�
X �qr(x)w(x)dx ≥ 1

2mx∗ . The key to proving
this bound is the following lemma, which tells us that optimum sum-of-squares
densities should assign rather high weight to the ball Bn

ε (x
∗) around x∗.

Lemma 3.14. Let ε > 0. Then, for any r ∈ N, we have:
�

Bn
ε (a)∩�X

�qr(x)�w(x)dx ≥ 1− Error(g; �X, �w)r
γε2

.
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Proof. By Lemma 3.1, we have ∇f(a) ∈ NX(a) and so ∇f(a) ∈ N�X(a)

by Lemma 3.13. As a result, we have g(x) ≥ γ�x − a�2 for all x ∈ �X (cf.
Lemma 3.6). In particular, this implies that g(x) ≥ γ�x − a�2 ≥ γε2 for all

x ∈ �X \Bn
ε (a) and so:

Error(g; �X, �w)r ≥
�

�X\Bn
ε (a)

g(x)�qr(x)�w(x)dx

≥ γε2
�

�X\Bn
ε (a)

�qr(x)�w(x)dx

= γε2
�
1−

�

Bn
ε (a)∩�X

�qr(x)�w(x)dx

�
.

The statement now follows from reordering terms. �

As X ⊆a
�X, there exists ε1 > 0 such that Bn

ε1(a) ∩ X = Bn
ε1(a) ∩ �X.

As �w �a w, there exist ε2 > 0, ma > 0 such that ma�w(x) ≤ w(x) for
x ∈ Bn

ε2(a) ∩ int(X). Set ε = min{ε1, ε2}. Choose r0 ∈ N large enough such

that Error(g; �X, �w)r <
ε2γ
2 for all r ≥ r0, which is possible since Error(g; �X, �w)r

tends to 0 as r →∞. Then, Lemma 3.14 yields:�

Bn
ε (a)∩�X

�qr(x)�w(x)dx ≥ 1

2

for all r ≥ r0. Putting things together, we obtain the desired lower bound:�

X
�qr(x)w(x)dx ≥

�

Bn
ε (a)∩X

�qr(x)w(x)dx

≥ ma

�

Bn
ε (a)∩�X

�qr(x)�w(x)dx ≥ 1

2
ma.

for all r ≥ r0. �

Corollary 3.15. Let X ⊆ �X ⊆ Rn, let x∗ ∈ X be a global minimizer of f

on X, and assume that X ⊆x∗ �X. Let w, �w be two weight functions on X, �X,
respectively. Assume that �w(x) ≥ w(x) for all x ∈ int(X) and that �w � w.

Then there exists an upper estimator g of f on �X, exact at x∗, such that

Error(g;X, w)r ≤
2

m
Error(g; �X, �w)r

for all r ∈ N large enough. Here m > 0 is the constant defined by (3.5).

3.3. The unit cube

Here we consider optimization over the hypercube X = [−1, 1]n and we
restrict to reference measures on X having a weight function of the form

�wλ(x) :=
n�

i=1

wλ(xi) =
n�

i=1

(1− x2
i )

λ (3.6)
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3.3. THE UNIT CUBE 45

with λ > −1. The following result is shown in [dKL20b] on the convergence
rate of the bound Error(f ;X,�wλ)r when using the measure �wλ(x)dx on X =
[−1, 1]n.

Theorem 3.16 ([dKL20b]). Let X = [−1, 1]n and consider the weight
function �wλ from (3.6).

(i) If λ = −1
2 , then we have:

Error(f ;X,�wλ)r = O

�
1

r2

�
. (3.7)

(ii) If n = 1 and f has a global minimizer on the boundary of [−1, 1],
then (3.7) holds for all λ > −1.

The key ingredients for claim (ii) above are: (a) when the global minimizer
is a boundary point of [−1, 1] then f has a linear upper estimator (recall
Lemma 3.7), and (b) the convergence rate of (3.7) holds for any linear function
and any λ > −1 (see Section 2.3 and[dKL20b]).

In this section we show Theorem 3.17 below, which extends the above
result to all weight functions �wλ(x) with λ ≥ −1

2 . Following the approach in
[dKL20b], we proceed in two steps: first we reduce to the univariate case, and
then we deal with the univariate case. Then the new situation to be dealt with
is when n = 1 and the minimizer lies in the interior of [−1, 1], which we can
settle by getting back to the case λ = −1

2 through applying Proposition 3.12,

the ‘local similarity’ tool, with X = �X = [−1, 1].

3.3.1. Reduction to the univariate case. Let x∗ ∈ X be a global
minimizer of f in X = [−1, 1]n. Following [dKL20b] (recall Remark 3.4
and Lemma 3.6), we consider the upper estimator f(x) ≤a g(x) := f(a) +
�∇f(a),x − a� + γf,X�x − a�2. This g is separable, i.e., we can write g(x) =�n

i=1 gi(xi), where each gi is quadratic univariate with ai as global minimizer
over [−1, 1]. Let qir be an optimum solution to the problem (3.1) corresponding
to the minimization of gi over [−1, 1] w.r.t. the weight function wλ(xi) =
(1 − x2

i )
λ. If we set qr(x) =

�n
i=1 q

i
r(xi), then qr is a sum of squares with
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degree at most 2nr, such that
�
X qr(x)�wλ(x)dx = 1. Hence we have:

ub(f,X,�wλ)rn − f(x∗) ≤
�

X
f(x)qr(x)�wλ(x)dx− f(x∗)

≤
�

X
g(x)qr(x)�wλ(x)dx− g(x∗)

=
n�

i=1

�� 1

−1
gi(x)q

i
r(xi)wλ(xi)dxi − gi(x

∗
i )

�

=
n�

i=1

�
ub(gi, [−1, 1], wλ)r − gi(x

∗
i )
�

=
n�

i=1

Error(gi; [−1, 1], wλ)r.

As a consequence, we need only to consider the case of a quadratic univariate
polynomial f on X = [−1, 1]. We distinguish two cases, depending whether
the global minimizer lies on the boundary or in the interior of X. The case
where the global minimizer lies on the boundary of [−1, 1] is settled by Theo-
rem 3.16(ii) above, so we next assume the global minimizer lies in the interior
of [−1, 1].

Case of a global minimizer x∗ in the interior of X = [−1, 1]. To deal

with this case we make use of Proposition 3.12 with X = �X = [−1, 1], weight
function w(x) := wλ(x) on X, and weight function �w(x) := w−1/2(x) on �X.

We check that the conditions of the proposition are met. As �X = X, clearly

we have X ⊆x∗ �X. Further, for any λ ≥ −1
2 , we have

wλ(x) = (1− x2)λ ≤ (1− x2)−
1
2 = w−1/2(x)

for all x ∈ (−1, 1) = int(X). As x∗ ∈ int(X), we also have wλ �x∗ w−1/2

(see Remark 3.10(i)). Hence we may apply Proposition 3.12 to find that there
exists a polynomial upper estimator g of f on [−1, 1], exact at x∗, and having

Error(g;X, w)r ≤
2

ma
Error(g; �X, �w)r

for all r ∈ N large enough. Now, (the univariate case of) Theorem 3.16(i)

allows us to claim Error(g; �X, �w)r = O(1/r2), so that we obtain:

Error(f ;X, wλ)r ≤ Error(g;X, wλ)r = Ox∗
�
Error(g; �X, �w)r

�
= Ox∗(1/r2).

In summary, in view of the above, we have shown the following extension
of Theorem 3.16.
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3.4. THE UNIT BALL 47

Theorem 3.17. Let X = [−1, 1]n and λ ≥ −1
2 . Let x∗ be a global mini-

mizer of f on X. Then we have

Error(f ;X,�wλ)r = Ox∗

�
1

r2

�
.

The constant mx∗ involved in the proof of Theorem 3.17 depends on the
global minimizer x∗ of f on [−1, 1]. It is introduced by the application of
Proposition 3.12 to cover the case where x∗ lies in the interior of [−1, 1].
When λ = 0 (i.e., when w = w0 = 1 corresponds to the Lebesgue measure),
one can replace mx∗ by a uniform constant m > 0, as we now explain.

Consider �X := [−2, 2] ⊇ [−1, 1] = X, equipped with the scaled Chebyshev

weight �w(x) := w−1/2(x/2) = (1−x2/4)−1/2. Of course, Theorem 3.16 applies

to this choice of �X, �w as well. Further, we still have �w(x) ≥ w(x) = w0(x) = 1
for all x ∈ [−1, 1]. However, we now have a uniform upper bound �w(x) ≤ �w(1)
for �w on X, which means that �w � w on X (see Remark 3.10(ii)). Indeed, we
have:

�w(x)/ �w(1) ≤ 1 = w0(x) = w(x) for all x ∈ [−1, 1].
We may thus apply Corollary 3.15 (instead of Proposition 3.12) to obtain the
following.

Corollary 3.18. If X = [−1, 1]n is equipped with the Lebesgue measure,
then:

Error(f ;X)r = O

�
1

r2

�
.

3.4. The unit ball

We now consider optimization over the unit ball X = Bn ⊆ Rn (n ≥ 2);
we restrict to reference measures on Bn with weight function of the form:

wλ(x) = (1− �x�2)λ, (3.8)

where λ > −1. For further reference we recall (see e.g. [DX14, §6.3.2]) or
[DX13, §11]) that

Cn,λ :=

�

Bn

wλ(x)dx =
π

n
2 Γ(λ+ 1)

Γ
�
λ+ 1 + n

2

� . (3.9)

For the case λ ≥ 0, we can analyse the bounds and show the following result.

Theorem 3.19. Let X = Bn be the unit ball. Let x∗ be a global minimizer
of f on X. Consider the weight function wλ from (3.8) on X.

(i) If λ = 0, we have

Error(f ;X, wλ)r = O

�
1

r2

�
.
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(ii) If λ > 0, we have

Error(f ;X, wλ)r = Ox∗

�
1

r2

�
.

For the proof, we distinguish the two cases where x∗ lies in the interior of
X or on its boundary.

3.4.1. Case of a global minimizer in the interior of X. Our strategy
is to reduce this to the case of the hypercube with the help of Proposition 3.12.

Set �X := [−1, 1]n ⊇ Bn = X. As x∗ ∈ int(X), we have X ⊆x∗ �X. Consider
the weight function w(x) := wλ(x) = (1 − �x�2)λ on X, and �w(x) := 1 on

the hypercube �X. Since λ ≥ 0, we have wλ(x) ≤ 1 ≤ �w(x) for all x ∈ X.
Furthermore, as x∗ ∈ int(X), we also have �w �a w. Hence we may apply

Proposition 3.12 to find a polynomial upper estimator g of f on �X, exact at
x∗, satisfying:

Error(g;X, w)r ≤
2

mx∗
Error(g; �X, �w)r

for all r ∈ N large enough. Here mx∗ > 0 is the constant from (3.4). Now,

Theorem 3.17 allows us to claim Error(g; �X, �w)r = Ox∗(1/r2). Hence we
obtain:

Error(f ;X, w)r ≤ Error(g;X, w)r = Ox∗(Error(g; �X, �w)r) = Ox∗(1/r2).

As in the previous section, it is possible to replace the constant mx∗ by a
uniform constant m > 0 in the case that λ = 0, i.e., in the case that we have
the Lebesgue measure on X. Indeed, in this case we have �w = w (= w0 = 1),
and so in particular �w � w. We may thus invoke Corollary 3.15 (instead of
Proposition 3.12) to obtain

Error(g;X, w)r ≤ 2Error(g; �X, �w)r

and so

Error(f ;X, w)r = O(Error(g; �X, �w)r) = O(1/r2).

Note that in this case, we do not actually make use of the fact that X = Bn.
Rather, we only need that x∗ lies in the interior of X and that X ⊆ [−1, 1]n.
As we may freely apply affine transformations to X (by Lemma 3.2), the latter
is no true restriction. We have thus shown the following result.

Theorem 3.20. Let X ⊆ Rn be a compact set, with non-empty interior,
equipped with the Lebesgue measure. Assume that f has a global minimizer x∗

on X with x∗ ∈ int(X). Then we have:

Error(f ;X)r = O

�
1

r2

�
.
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3.5. BALL-LIKE CONVEX BODIES 49

3.4.2. Case of a global minimizer on the boundary of X. Our
strategy is now to reduce to the univariate case of the interval [−1, 1]. For
this, we use Lemma 3.7, which claims that f has a linear upper estimator g
on X, exact at x∗. Up to applying an orthogonal transformation (and scaling)
we may assume that g is of the form g(x) = x1. It therefore suffices now
to analyze the behaviour of the bounds for the function x1 minimized on the
ball Bn. Note that when minimizing x1 on Bn or on the interval [−1, 1] the
minimum is attained at the boundary in both cases. The following technical
lemma will be useful for reducing to the case of the interval [−1, 1].

Lemma 3.21. Let h be a univariate polynomial and let λ > −1. Then we
have �

Bn

h(x1)wλ(x)dx = Cn−1,λ

� 1

−1
h(x1)wλ+n−1

2
(x1)dx1,

where Cn−1,λ is given in (3.9).

Proof. Change variables and set uj =
xj√
1−x2

1

for 2 ≤ j ≤ d. Then we

have

wλ(x) = (1− x2
1 − x2

2 + . . .− x2
n)

λ = (1− x2
1)

λ(1− u22 − . . .− u2n)
λ

and dx2 · · · dxn = (1 − x2
1)

n−1
2 du2 · · · dun. Putting things together we obtain

the desired result. �

Let qr(x1) be an optimal sum-of-squares density with degree at most 2r
for the problem of minimizing x1 over the interval [−1, 1], equipped with the
weight function w(x) := wλ+n−1

2
(x). Then, its scaling C−1

n−1,λqr(x1) provides

a feasible solution for the problem of minimizing g(x) = x1 over the ball
X = Bn. Indeed, using Lemma 3.21, we have

�
Bn C

−1
n−1,λqr(x1)wλ(x)dx =� 1

−1 qr(x1)w(x)dx1 = 1, and so

g
(r)
X,wλ

≤
�

Bn

x1C
−1
n−1,λqr(x1)wλ(x)dx =

� 1

−1
x1qr(x1)w(x1)dx1.

The proof is now concluded by applying Theorem 3.16(ii).

3.5. Ball-like convex bodies

Here we show a convergence rate of Error(f ;X)r in O(1/r2) for a special
class of smooth convex bodies X with respect to the Lebesgue measure. The
basis for this result is a reduction to the case of the unit ball.

We say X has an inscribed tangent ball (of radius ε) at x ∈ ∂X if there
exists ε > 0 and a closed ball Binsc of radius ε such that x ∈ ∂Binsc and
Binsc ⊆ X. Similarly, we say X has a circumscribed tangent ball (of radius ε)
at x ∈ ∂X if there exists ε > 0 and a closed ball Bcirc of radius ε such that
x ∈ ∂Bcirc and X ⊆ Bcirc.
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Definition 3.22. We say that a (smooth) convex body X is ball-like if
there exist (uniform) εinsc, εcirc > 0 such that X has inscribed and circum-
scribed tangent balls of radii εinsc, εcirc, respectively, at all points x ∈ ∂X.

Theorem 3.23. Assume that X is a (smooth) ball-like convex body, equipped
with the Lebesgue measure. Then we have

Error(f ;X)r = O

�
1

r2

�
.

Proof. Let x∗ ∈ X be a global minimizer of f onX. We again distinguish
two cases depending on whether x∗ lies in the interior of X or on its boundary;
the case of a global minimizer in the interior of X is covered directly by
Theorem 3.20.

3.5.1. Case of a global minimizer on the boundary of X. By apply-
ing a suitable affine transformation, we can arrange that the following holds:
f(x∗) = 0, x∗ = 0, e1 is an inward normal of X at a, and the radius of the
circumscribed tangent ball Bcirc at x∗ is equal to 1, i.e., Bcirc = Bn

1 (e1). See
Figure 3.2 for an illustration. Now, as a is a global minimizer of f on X,
we have ∇f(x∗) ∈ NX(x∗) by Lemma 3.1. But NX(x∗) = NBcirc(x

∗), and so
∇f(x∗) ∈ NBcirc(x

∗). As noted in Remark 3.8, we may thus use Lemma 3.7 to
find that f(x) ≤x∗ c�e1,x� = cx1 on Bcirc for some constant c > 0. In light of
Remark 3.4(i), and after scaling, it therefore suffices to analyse the function
f(x) = x1.

Again, we will use a reduction to the univariate case, now on the interval
[0, 2]. For any r ∈ N, let qr ∈ Σ[x]2r be an optimum sum-of-squares density
of degree 2r for the minimization of x1 on [0, 2] with respect to the weight
function:

w�(x1) := wn−1
2
(x1 − 1) = [1− (x1 − 1)2]

n−1
2 = [2x1 − x2

1]
n−1
2 .

That is, qr ∈ Σ[x]2r satisfies:
� 2

0
x1qr(x1)w

�(x1)dx1 = O(1/r2) and

� 2

0
qr(x1)w

�(x1)dx1 = 1, (3.10)

where the first equality relies on Theorem 3.16(ii). As

x �→ qr(x1)/(

�

X
qr(x1)dx)

is a sum-of-squares density on X with respect to the Lebesgue measure, we
have:

Error(f ;X)r ≤
�
X x1qr(x1)dx�
X qr(x1)dx

. (3.11)

We will now show that, on the one hand, the numerator
�
X x1qr(x1)dx in

(3.11) has an upper bound in O(1/r2) and that, on the other hand, the de-
nominator

�
X qr(x1)dx in (3.11) is lower bounded by an absolute constant
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that does not depend on r. Putting these two bounds together then yields
Error(f ;X)r = O(1/r2), as desired.

The upper bound. We make use of the fact that X ⊆ Bcirc to compute:
�

X
x1qr(x1)dx ≤

�

Bcirc

x1qr(x1)dx

=

�

Bn

(y1 + 1)qr(y1 + 1)dy [y = x− e1]

= Cn−1,0

� 1

−1
(y1 + 1)qr(y1 + 1)wn−1

2
(y1)dy1 [by Lemma 3.21]

= Cn−1,0

� 2

0
zqr(z)w

�(z)dz [z = y1 + 1]

= O(1/r2). [by (3.10)]

The lower bound. Here, we consider an inscribed tangent ball Binsc of X at
x∗ = 0. Say Binsc = Bn

ρ (ρe1) for some ρ > 0. See again Figure 3.2. We may
then compute:
�

X

qr(x1)dx ≥
�

Binsc

qr(x1)dx

=

�

Bn

qr
�
ρ(y1 + 1)

�
ρndy [y =

x− ρe1
ρ

]

= ρnCn−1,0

� 1

−1

qr
�
ρ(y1 + 1)

�
wn−1

2
(y1)dy1 [by Lemma 3.21]

= ρn−1Cn−1,0

� 2ρ

0

qr(z)wn−1
2

(z/ρ− 1)dz [z = ρ(y1 + 1)]

≥ ρn−1Cn−1,0

� ρ

0

qr(z)w
�(z)

wn−1
2

(z/ρ− 1)

wn−1
2

(z − 1)
dz [w�(z) = wn−1

2
(z − 1)]

≥
�

ρ

2− ρ

�n−1
2

Cn−1,0

� ρ

0

qr(z)w
�(z)dz,

where the last inequality follows using the fact that 1−(z/ρ−1)2

1−(z−1)2
≥ 1

ρ(2−ρ) for

z ∈ [0, ρ]. It remains to show that
� ρ

0
qr(z)w

�(z)dz ≥ 1

2
for all r large enough.



582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot
Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022 PDF page: 60PDF page: 60PDF page: 60PDF page: 60

52 3. CONVERGENCE ANALYSIS FOR MEASURE-BASED BOUNDS I

∇f(0)

0

X

Binsc

ρe1

Bcirce1

Figure 3.2. An overview of the situation in the second case
of the proof of Theorem 3.23.

The argument is similar to the one used for the proof of Lemma 3.14. By

(3.10), there is a constant C > 0 such that
� 2
0 zqr(z)w

�(z)dz ≤ C
r2

for all
r ∈ N. So we have:

C

r2
≥
� 2

ρ
zqr(z)w

�(z)dz ≥ ρ

� 2

ρ
qr(z)w

�(z)dz = ρ

�
1−

� ρ

0
qr(z)w

�(z)dz
�
,

which implies
� ρ
0 qr(z)w

�(z)dz ≥ 1− C
ρr2
≥ 1

2 for r large enough.

This concludes the proof of Theorem 3.23. �

3.5.2. Classification of ball-like sets. With Theorem 3.23 in mind,
it is interesting to understand under which conditions a convex body X is
ball-like. Under the assumption that X has a C2-boundary, the well-known
Rolling Ball Theorem (cf., e.g., [Kou72]) guarantees the existence of inscribed
tangent balls.

Theorem 3.24 (Rolling Ball Theorem). Let X ⊆ Rn be a convex body
with C2- boundary. Then there exists εinsc > 0 such that X has an inscribed
tangent ball of radius εinsc for each x ∈ ∂X.

Classifying the existence of circumscribed tangent balls is somewhat more
involved. Certainly, we should assume that X is strictly convex, which means
that its boundary should not contain any line segments. This assumption,
however, is not sufficient. Instead we need the following stronger notion of
2-strict convexity introduced in [DH06].

Definition 3.25. Let X ⊆ Rn be a convex body with C2-boundary and
let Ψ ∈ C2(Rn,R) such that X = Ψ−1((−∞, 0]) and ∂X = Ψ−1(0). Assume
∇Ψ(a) �= 0 for all a ∈ ∂X. The set X is said to be 2-strictly convex if the
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following holds:

xT∇2Ψ(a)x > 0 for all x ∈ TaX \ {0} and a ∈ ∂X.

In other words, the Hessian of Ψ at any boundary point should be positive
definite, when restricted to the tangent space.

Example 3.26. Consider the unit ball for the �4-norm:

X = {(x1,x2) : Ψ(x1,x2) := x4
1 + x4

2 ≤ 1} ⊆ R2.

Then, X is strictly convex, but not 2-strictly convex. Indeed, at any of the
points a = (0,±1) and (±1, 0), the Hessian of Ψ is not positive definite on
the tangent space. For instance, for a = (0,−1), we have ∇Ψ(a) = (0,−4)
and xTΨ2(a)x = 12x2

2, which vanishes at x = (1, 0) ∈ TaX. In fact, one can
verify that X does not have a circumscribed tangent ball at any of the points
(0,±1), (±1, 0).

It is shown in [DH06] that the set of 2-strictly convex bodies lies dense
in the set of all convex bodies. For X with C2-boundary, it turns out that
2-strict convexity is equivalent to the existence of circumscribed tangent balls
at all boundary points.

Theorem 3.27 ([DS07, Corollary 3.3]). Let X be a convex body with C2-
boundary. Then X is 2-strictly convex if and only if there exists εcirc > 0 such
that X has a circumscribed tangent ball of radius εcirc at all boundary points
a ∈ ∂X.

Combining Theorems 3.24 and 3.27 then gives a full classification of the
ball-like convex bodies X with C2-boundary.

Corollary 3.28. Let X ⊆ Rn be a convex body with C2-boundary. Then
X is ball-like if and only if it is 2-strictly convex.

3.5.3. A convex body without inscribed tangent balls. We now
give an example of a convex body X which does not have inscribed tangent
balls, going back to de Rham [dR47]. The idea is to construct a curve by
starting with a polygon, and then successively ‘cutting corners’. Let C0 be
the polygon in R2 with vertices (−1,−1), (1,−1), (1, 1) and (−1, 1), i.e., a
square. For k ≥ 1, we obtain Ck by subdividing each edge of Ck−1 into three
equal parts and taking the convex hull of the resulting subdivision points (see
Figure 3.3). We then let C be the limiting curve obtained by letting k tend
to ∞. Then, C is a continuously differentiable, convex curve (see [dB87] for
details). It is not, however, C2 everywhere. We indicate below some point
where no inscribed tangent ball exists for the convex body with boundary C.

Consider the point m = (0,−1) ∈ C, which is an element of Ck for all k.
Fix k ≥ 1. If we walk anti-clockwise along Ck starting at m, the first corner
point encountered is sk = (1/3k,−1), the slope of the edge starting at sk is
lk = 1/k and its end point is

ek =
�
(2k + 1)/3k, 2/3k − 1

�
.
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Now suppose that there exists an inscribed tangent ball Bε(c) at the point m.
Then, ε > 0, c = (0, ε − 1) and any point (x, y) ∈ C lies outside of the ball
Bε(c), so that

x2 + (y + 1)2 − 2ε(y + 1) ≥ 0 for all (x, y) ∈ C.

As C is contained in the polygonal region delimited by any Ck, also ek �∈
Bε(c) and thus

�
2k+1
3k

�2
+
�

2
3k

�2 − 4ε
3k
≥ 0. Letting k → ∞, we get ε = 0, a

contradiction.

Figure 3.3. From left to right: the curve Ck for k = 0, 1, 2, 8.

3.6. The simplex

We now consider a full-dimensional simplexΔn = conv({v0, v1, v2, . . . , vn})
in Rn, equipped with the Lebesgue measure. We show the following.

Theorem 3.29. Let X = Δn be a simplex, equipped with the Lebesgue
measure. Then

Error(f ;Δn)r = O

�
1

r2

�
.

Proof. Let x∗ ∈ Δn be a global minimizer of f on Δn. The idea is to
apply an affine transformation φ to Δn whose image φ(Δn) is locally similar
to [0, 1]n at the global minimizer φ(x∗) of g := f ◦ φ−1, after which we may
‘transport’ the O(1/r2) rate from the hypercube to the simplex.

Let F := conv(v1, v2, . . . , vn) be the facet of Δn which does not contain
v0. By reindexing, we may assume w.l.o.g. that x∗ �∈ F . Consider the map
φ determined by φ(v0) = 0 and φ(vi) = ei for all i ∈ [n], where ei is the i-th
standard basis vector of Rn. See Figure 3.4. Clearly, φ is nonsingular, and
φ(Δn) ⊆ [0, 1]n.

Lemma 3.30. We have φ(Δn) ⊆φ(x) [0, 1]
n for all x ∈ Δn \ F .

Proof. By definition of F , we have

Δn \ F =

� n�

i=0

λivi :
n�

i=1

λi < 1,λ ≥ 0

�
,

and so

φ(Δn \ F ) =
�
y ∈ [0, 1]n :

n�

i=1

yi < 1
�
,
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φ

φ(v0)

φ(v1)

φ(v2)v0

v1

v2

Figure 3.4. The map φ from the proof of Theorem 3.29 for n = 2

which is an open subset of [0, 1]n. But this means that for each y = φ(x) ∈
φ(Δn \ F ) there exists ε > 0 such that

Bn
ε (y) ∩ [0, 1]n ⊆ Bn

ε (y) ∩ φ(Δn \ F ),

which concludes the proof of the lemma. �
The above lemma tells us in particular that φ(Δn) ⊆φ(x∗) [0, 1]n. We

now apply Corollary 3.15 with X = φ(Δn), �X = [0, 1]n and weight functions

w = �w = 1 on X, �X, respectively. This yields a polynomial upper estimator h
of g on [0, 1]n having:

Error(g;φ(Δn))r ≤ 2Error(h; [0, 1]n)r = O(1/r2),

for r ∈ N large enough, using Theorem 3.17 for the right most equality. It
remains to apply Lemma 3.2 to obtain:

Error(f ;Δn)r = Error(g;φ(Δn))r = O(1/r2),

which concludes the proof of Theorem 3.29. �

3.7. Discussion

We have shown that the measure-based upper bounds ub(f,X, µ)r con-
verge to the global minimum fmin of f on X at a rate in O(1/r2), for a class
of special convex bodies X, w.r.t. natural references measures µ. We reiterate
that this rate is best-possible in general. In light of the results of this chapter,
the main open question is whether the convergence rate in O(1/r2) can be
extended to all convex bodies.

In particular, it is interesting to determine the exact rate of convergence
for polytopes. We could so far only deal with hypercubes and simplices. The
main tool we used was the ‘local similarity’ of the simplex with the hypercube.
For a general polytope X, if the minimum is attained at a point lying in
the interior of X or of one of its facets, then we can still apply the ‘local
similarity’ tool (and deduce the O(1/r2) rate). However, at other points (like
its vertices) X is in general not locally similar to the hypercube, so another
proof technique seems needed. A possible strategy could be splitting X into
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56 3. CONVERGENCE ANALYSIS FOR MEASURE-BASED BOUNDS I

simplices and using the known convergence rate for the simplex containing a
global minimizer; however, a difficulty there is keeping track of the distribution
of mass of an optimal sum-of-squares on the other simplices.

As we shall see in the next chapter, it is at least possible to show a rate in
O(log2(r)/r2) for all convex bodies (in fact, for all compact semialgebraic sets
with dense interior). This rate is thus only a log-factor away from the rates
shown in this chapter.
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CHAPTER 4

Convergence analysis for measure-based bounds II

Everything is more complicated than you
think. You only see a tenth of what is
true.

From Synecdoche, New York

This chapter is based on my joint works [SL20, SL21a] with Monique Laurent.

Let X ⊆ Rn be a compact set, and let f ∈ R[x] be a polynomial of degree
d to be minimized over X. Recall from Chapter 2 the measure-based upper
bound on the global minimum fmin of f :

ub(f,X)r := inf
q∈Σ[x]2r

��

X
f(x)q(x)dx :

�

X
q(x)dx = 1

�
. (4.1)

Recall also the push-forward bound:

ub(f,X)pfr := inf
u∈Σ[x]2r

��

X
f(x)u(f(x))dx :

�

X
u(f(x))dx = 1

�
, (4.2)

which is obtained from (4.1) by restricting the minimization to sums of squares
q of the form q = u ◦ f with u ∈ Σ[x]. It therefore satisfies:

ub(f,X)pfr ≥ ub(f,X)dr ≥ fmin. (4.3)

Consider the following geometric assumption on the set X.

Assumption 4.1. There exist positive constants εX, ηX > 0 and N ≥ n,
such that, for all x ∈ X and 0 < δ ≤ εX, we have:

vol(X ∩Bn
δ (x)) ≥ ηXδN vol(Bn). (4.4)

Here, Bn
δ (x) is the Euclidean ball centered at x with radius δ and Bn = Bn

1 (0).

A slightly stronger version of Assumption 4.1 (requiring N = n) was in-
troduced in [dKLS17], where it was used to give the first error analysis in
O(1/

√
r) for the bounds ub(f,X)r. The condition of [dKLS17] is satisfied,

e.g., when X is a convex body, or more generally when X satisfies an inte-
rior cone condition, or when X is star-shaped with respect to a ball (see also
[dKLS17] for a more complete discussion). The weaker condition of Assump-
tion 4.1 is satisfied additionally by compact semialgebraic sets that have a

57
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dense interior, which permits in particular that X has certain types of cusps.
We discuss Assumption 4.1 in more detail in Section 4.4 below.

Outline. In this chapter, we show a convergence rate in O(log2 r/r2) for the
measure-based hierarchy ub(f,X)r when applied to optimization over X sat-
isfying this assumption. In fact, we show that this rate holds already for the

(weaker) push-forward bound ub(f,X)pfr . This rate is only a log-factor away
from the best-possible rate in O(1/r2), see Section 2.3.

Theorem 4.2. Let X ⊆ Rn be a compact set satisfying Assumption 4.1
and let f ∈ R[x] be a polynomial. Then we have that:

ub(f,X)pfr − fmin = O(log2 r/r2).

As a direct consequence, we also have ub(f,X)r − fmin = O(log2 r/r2).

Theorem 4.2 improves upon the earlier results of [dKLS17, dKL18] in
three ways. First, it applies to a (much) broader class of compact sets X. Sec-
ond, it shows a better convergence rate in O(log2 r/r2), as opposed to O(1/

√
r)

and O(1/r), respectively. Finally, it applies not only to the (regular) measure-
based bounds ub(f,X)r, but also to the more economical push-forward bounds

ub(f,X)pfr .
The idea of our proof is to exhibit for each r ∈ N an explicit sum-of-squares

density on X of the form u ◦ f , u ∈ Σ[x]2r for which
�
X f(x)u(f(x))dx is

small. That is, to construct a feasible solution to (4.2) with suitable objective
value. This method of proof is in the same spirit as the one of the earlier
works [dKLS17, dKL18], see also Chapter 2. Our construction differs from
the one in these works in two ways. First, it makes use of so-called needle
polynomials to approximate the Dirac function on [−1, 1] or [0, 1]. This yields
a better approximation than the ones of [dKLS17, dKL18], which are based
on truncated Taylor expansions of a Gaussian function. Second, it makes use
of the push-forward bounds to reduce the analysis to a univariate setting,
which greatly simplifies the proof.

As a small additional result, we show in Section 4.3 that there exists
a class of polynomials f on the interval X = [−1, 1] for which the regular
measure-based bounds converge to fmin much much faster than the (weaker)
push-forward bounds. This result contrasts the (somewhat surprising) fact
that the general worst-case convergence rate for these two types of bounds is
quite similar; namely within a logarithmic factor of O(1/r2).

4.1. Needle polynomials

In this section, we cover some preliminaries needed to prove our main
result; in particular we introduce the needle polynomials central to our con-
struction and derive some of their technical properties.
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4.1. NEEDLE POLYNOMIALS 59

We begin by recalling some basic properties of the Chebyshev polynomials,
see also Chapter 1. The Chebyshev polynomials Cr ∈ R[x]r may be defined by
the following explicit expression:

Cr(x) =
�
cos(r arccosx) for |x| ≤ 1,
1
2(t+

√
x2 − 1)r + 1

2(x−
√
x2 − 1)r for |x| ≥ 1.

(4.5)

From this definition, it can be seen that |Cr(x)| ≤ 1 on the interval [−1, 1],
and that Cr(x) is nonnegative and monotone nondecreasing on [1,∞). The
Chebyshev polynomials form an orthogonal basis of R[x] with respect to the

Chebyshev measure (with weight function (1−x2)−1/2) on [−1, 1] and they are
used extensively in approximation theory. For instance, they are the polyno-
mials attaining equality in the Markov brother’s inequality on [−1, 1], recalled
below.

Lemma 4.3 (Markov Brothers’ Inequality; see, e.g., [Sha04]). Let p ∈ R[x]
be a univariate polynomial of degree at most r. Then, for any scalars a < b,
we have:

max
x∈[a,b]

|p�(x)| ≤ 2r2

b− a
· max
x∈[a,b]

|p(x)|.

Kroó and Swetits [KS92] use the Chebyshev polynomials to construct the
so-called (univariate) needle polynomials.

Definition 4.4. For r ∈ N, h ∈ (0, 1), we define the needle polynomial
νhr ∈ R[x]4r by

νhr (x) =
C2
r (1 + h2 − x2)

C2
r (1 + h2)

.

Additionally, we define the 1
2 -needle polynomial �νhr ∈ R[x]4r by

�νhr (x) = C2
2r

�
2 + h− 2x

2− h

�
· C−2

2r

�
2 + h

2− h

�
.

By construction, the needle polynomials νhr and �νhr are squares and have
degree 4r. They approximate well the Dirac delta function at 0 on [−1, 1] and
[0, 1], respectively. In [Sen90], a construction similar to the needles presented
here is used to obtain the best polynomial approximation of the Dirac delta
in terms of the Hausdorff distance. In our proof of Theorem 4.2 below, we
will only need the 1

2 -needle polynomials. For completeness, however, we will
cover both variants here. As we discuss briefly at the end of this Chapter, the
(regular) needle polynomials were actually used to analyse the measure-based
hierarchy in [SL20], but this analysis has since been made obsolete by the
results presented in this chapter.

The needle polynomials satisfy the following bounds (see Figure 4.1 and
Figure 4.2 for an illustration).
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-1.5 -1 -h 0 h 1 1.5

0.5

1

Figure 4.1. The needle polynomials νh4 (orange), νh6 (blue)
for h = 1/5.

-1.5 -1 -h 0 h 1 1.5

0.5

1

Figure 4.2. The 1
2 -needle polynomials �νh2

4 (orange), �νh2

6

(blue) for h = 1/5.
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4.1. NEEDLE POLYNOMIALS 61

Theorem 4.5 (cf. [KS92, KL12, Kro15]). For any r ∈ N and h ∈ (0, 1),
the following properties hold for the polynomials νhr and �νhr :

νhr (0) = 1, (4.6)

0 ≤νhr (x) ≤ 1 for x ∈ [−1, 1], (4.7)

νhr (x) ≤ 4e−
1
2
rh for x ∈ [−1, 1] with |x| ≥ h, (4.8)

�νhr (0) = 1, (4.9)

0 ≤�νhr (x) ≤ 1 for x ∈ [0, 1], (4.10)

�νhr (x) ≤ 4e−
1
2
r
√
h for x ∈ [0, 1] with x ≥ h. (4.11)

As this result plays a central role in our treatment we give a short proof,
following the argument given in [LP19]. We need the following lemma.

Lemma 4.6. For any r ∈ N, x ∈ [0, 1), we have:

Cr(1 + x) ≥ 1

2
er

√
x log(1+

√
2) ≥ 1

2
e

1
4
r
√
x.

Proof. Using the explicit expression (4.5) for Cr, we have:

2Cr(1 + x) ≥
�
1 + x+

�
(1 + x)2 − 1

�r

= (1 + x+
�

2x+ x2)r

≥ (1 +
√
2x)r = er log(1+

√
2·√x).

By concavity of the logarithm, we have:

log(1 +
√
2
√
x) = log(

√
x · (1 +

√
2) + (1−√x) · 1)

≥ √x · log(1 +
√
2) + (1−√x) log(1)

=
√
x · log(1 +

√
2) ≥ 1

4

√
x,

and so, using the above lower bound on Cr(1 + x), we obtain:

Cr(1 + x) ≥ 1

2
er

√
x log(1+

√
2) ≥ 1

2
e

1
4
r
√
x.

�
Proof of Theorem 4.5. Properties (4.6), (4.9) are clear. We first check

(4.7)-(4.8). If |x| ≤ h then 1 + h2 ≥ 1 + h2 − x2 ≥ 1, giving νhr (x) ≤ νhr (0) =
1 by monotonicity of Cr(x) on [1,∞). Assume now h ≤ |x| ≤ 1. Then
C2
r (1 + h2 − t2) ≤ 1 as 1 + h2 − x2 ∈ [−1, 1], and C2

r (1 + h2) ≥ 1 (again by

monotonicity), which implies νhr (x) ≤ 1. In addition, since Cr(1+h2) ≥ 1
2e

1
4
rh

by Lemma 4.6, we obtain νhr (x) ≤ C−2
r (1 + h2) ≤ 4e−

1
2
rh.

We now check (4.10)-(4.11). If x ∈ [0, h] then �νhr (x) ≤ �νhr (0) = 1 fol-
lows by monotonicity of C2r(x) on [1,∞). Assume now h ≤ x ≤ 1. Then,
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2+h−2x
2−h ∈ [−1, 1] and thus C2

2r

�
2+h−2x
2−h

�
≤ 1. On the other hand, we have

C2
2r

�
2+h
2−h

�
≥ 1, which gives �νhr (x) ≤ 1. In addition, as 2+h

2−h ≥ 1 + h ≥ 1, using

again monotonicity of C2r and Lemma 4.6, we get C2
2r

�
2+h
2−h

�
≥ C2

2r(1 + h) ≥
1
4e

1
2
r
√
h, which implies (4.11).

�
The following lemma gives a simple lower estimator on [0, 1] for a nonneg-

ative polynomial p of given degree with p(0) = 1. This lower estimator allows
us to lower bound the value of the 1

2 -needle polynomials on small intervals
[0, h], h > 0. Such a lower bound will be useful in the proof of Theorem 4.2
below.

Lemma 4.7. Let p ∈ R[x]r be a polynomial, which is nonnegative over R≥0

and satisfies p(0) = 1, p(x) ≤ 1 for all x ∈ [0, 1]. Let Λr : R≥0 → R≥0 be
defined by:

Λr(x) =

�
1− 2r2x if x ≤ 1

2r2
,

0 otherwise.

Then Λr(x) ≤ p(x) for all x ∈ R≥0.

Proof. Suppose not. Then there exists s ∈ R≥0 such that Λr(s) > p(s).
As p ≥ 0 on R≥0, p(0) = 1 and Λr(x) = 0 for x ≥ 1

2r2
, we have 0 < s < 1

2r2
.

We find that p(s) − p(0) < Λr(s) − 1 = −2r2s. Now, by the mean value

theorem, there exists an element z ∈ (0, s) such that p�(z) = p(s)−p(0)
s <

−2r2s
s = −2r2. But this is in contradiction with Lemma 4.3, which implies

that maxx∈[0,1] |p�(x)| ≤ 2r2. �

Corollary 4.8. Let h ∈ (0, 1), and let νhr , �νhr as above. Then Λ4r(x) ≤
νhr (x) = νhr (−x) and Λ4r(x) ≤ �νhr (x) for all x ∈ [0, 1]. In particular, we thus
have that:

�νhr (x) ≥ 1− 32r2x ≥ 1

2
for all x ∈ [0,

1

64r2
].

4.2. Proof of the main result

We show the following restatement of Theorem 4.2.

Theorem 4.9. Assume X is connected compact and satisfies the above
geometric condition (4.4). Then there exists a constant C (depending only on
n, the Lipschitz constant of f and X) such that:

ub(f,X)pfr − fmin ≤ C
log2 r

r2
(fmax − fmin) for all large r.

The rest of this section is devoted to the proof of Theorem 4.9. We will
make the following assumptions in order to simplify notation in our arguments.
Let x∗ be a global minimizer of f in X. After applying a suitable translation
(replacingX byX−x∗ and the polynomial f by the polynomial x �→ f(x−x∗)),
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we may assume that x∗ = 0, that is, we may assume that the global minimum
of f over X is attained at the origin. Furthermore, it suffices to work with the
rescaled polynomial:

F (x) :=
f(x)− fmin

fmax − fmin
,

which satisfies F (X) = [0, 1], with Fmin = 0 and Fmax = 1. Indeed, one can
easily check that:

ub(f,X)pfr − fmin ≤ (fmax − fmin)ub(F,X)pfr .

For clarity, we will denote by µ the Lebesgue measure on Rn. Recall that the
push-forward measure µF is defined by:

µF (B) = µ(F−1(B)) (B ⊆ R Borel). (4.12)

Because of the scaling, the support of the µF is equal to [0, 1], and so:

ub(F,X)pfr = inf
s∈Σ[x]2r

�� 1

0

xs(x)dµF (x) :

� 1

0

s(x)dµF (x) = 1
�

= inf
s∈Σ[x]2r

��

X

F (x)s(F (x))dµ(x) :

�

X

s(F (x))dµ(x) = 1
�
.

(4.13)

In order to analyze the bound ub(F,X)pfr , we construct a univariate sum-of-
squares polynomial s which approximates well the Dirac delta centered at the
origin on the interval [0, 1], making use of the 1

2 -needle polynomials introduced

above. Indeed, we consider the sum-of-squares polynomial s(x) := C�νhr (x),
where h ∈ (0, 1) will be chosen later, and C is chosen so that s is a density on
[0, 1] with respect to the measure µF . That is:

C =

��

X
�νhr (F (x))dµ(x)

�−1

.

Therefore, s is a feasible solution to (4.13), and so we obtain:

ub(F,X)pfr ≤
�

X
F (x)s(F (x))dµ(x) =

�
X F (x)�νhr (F (x))dµ(x)�

X �νhr (F (x))dµ(x)
.

Our goal is thus to show that:

ratio :=

�
X F (x)�νhr (F (x))dµ(x)�

X �νhr (F (x))dµ(x)
= O

�
log2 r

r2

�
. (4.14)

Define the set
Xh = {x ∈ X : F (x) ≤ h}.

We first work out the numerator of (4.14), which we split into two terms,
depending whether we integrate on Xh or on its complement:�

X
F (x)�νhr (F (x))dµ(x) =

�

Xh

F (x)�νhr (F (x))dµ(x) +

�

X\Xh

F (x)�νhr (F (x))dµ(x)

≤ h

�

Xh

�νhr (F (x))dµ(x) +

�

X\Xh

�νhr (F (x))dµ(x).
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64 4. CONVERGENCE ANALYSIS FOR MEASURE-BASED BOUNDS II

Here we have upper bounded F (x) by h on Xh and by 1 on X \Xh. On the
other hand, we can lower bound the denominator in (4.14) as follows:

�

X
�νhr (F (x))dµ(x) ≥

�

Xh

�νhr (F (x))dµ(x).

Combining the above two inequalities on the numerator and denominator we
get:

ratio ≤ h+

�
X\Xh

�νhr (F (x))dµ(x)
�
Xh
�νhr (F (x))dµ(x)

.

Thus we only need to upper bound the second term above. We first work
on the numerator. For any x ∈ X \ Xh we have F (x) > h and thus, using

Theorem 4.5, we get �νhr (F (x)) ≤ 4e−
1
2
r
√
h. This implies that:

�

X\Xh

�νhr (F (x))dµ(x) ≤ 4e−
1
2
r
√
hµ(X).

Next, we bound the denominator. Corollary 4.8 tells us that:

�νhr (x) ≥ 1− 32r2x ≥ 1

2
for all x ∈ [0,

1

64r2
].

Set ρ = 1
64r2

. We will later choose h ≥ ρ, so that Xh ⊇ Xρ := {x ∈ X :

F (x) ≤ ρ} and �νhr (F (x)) ≥ 1
2 for all x ∈ Xρ. As X is compact, there exists a

Lipschitz constant CF > 0 such that:

F (x) ≤ CF �x� for all x ∈ X.

Note that X ∩Bn
ρ/CF

⊆ Xρ. By the geometric assumption (4.4), we have:

µ(X ∩Bn
ρ/CF

) ≥ ηX

�
ρ

CF

�N

µ(Bn)

for all r large enough such that ρ/CF ≤ εX. We can then lower bound the
denominator as follows:

�

Xh

�νhr (F (x))dµ(x) ≥
�

Xρ

�νhr (F (x))dµ(x) ≥ 1

2
µ(Xρ)

≥ 1

2
µ(X ∩Bn

ρ/CF
) ≥ 1

2
ηX

�
ρ

CF

�N

· µ(Bn).

Combining the above inequalities, we obtain:

ratio ≤ h+
e−

1
2
r
√
h

ρN
· 8 · µ(X)(CF )

N

ηXµ(Bn)
.
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4.3. SEPARATION FOR A SPECIAL CLASS OF POLYNOMIALS 65

If we now select h =
�
4(N + 1) log rr

�2
, we have h ≥ ρ and a straightforward

computation shows that:

ratio = O

�
log2 r

r2

�
.

Here, the constant in the big O depends on n,N , CF , ηX and µ(X). This
concludes the proof of Theorem 4.9.

4.3. Separation for a special class of polynomials

In this section we consider in more detail the behaviour of the bounds
ub(f,X)r and ub(f,X)pfr for the class of polynomials f(x) = x2k (with k ≥ 1
integer) on the interval X = [−1, 1]. Then f([−1, 1]) = [0, 1] and, by apply-
ing (4.3) to the polynomial f(x) = x2k, we have the following inequality:

0 ≤ ub(f,X)2rk ≤ ub(f,X)pfr for any r ≥ 1.

Note that for any i ≤ 2k − 1, the ith derivative of f vanishes at its global
minimizer 0 on [−1, 1]. As we discuss a bit more at the end of this chapter, we

may thus use [SL20, Theorem 14] to find that ub(f,X)2rk = O(log2k r/r2k).

On the other hand, the convergence rate in O(log2 r/r2) for ub(f,X)pfr shown
in Theorem 4.2 is optimal up to the log-factor. Indeed, we will show here a

lower bound on ub(f,X)pfr in Ω(1/r2).

Theorem 4.10. Let X = [−1, 1] and let f(x) = x2k for k ≥ 1 integer.

Then we have ub(f,X)pfr = Ω(1/r2).

For k ∈ N, let µk := µf denote the push-forward measure (cf. (4.12))

of the Lebesgue measure on [−1, 1] by the function f(x) = x2k, and let
{pk,i(x) : i ∈ N} ⊆ R[x] denote the family of orthogonal polynomials that
provide an orthonormal basis for R[x] w.r.t. the inner product �·, ·�µk

(see
Chapter 1). Then, as shown in [dKL20b] and as explained in Chapter 2, the

parameter ub(f,X)pfr is equal to the smallest root of the polynomial pk,r+1(x).
As it turns out, the push-forward measure µk here is of Jacobi type. Hence, we
have information about the corresponding orthogonal polynomials pk,i, whose
extremal roots are well understood. Let us recall from Chapter 1 the classical
Jacobi polynomials.

Lemma 4.11. Let a, b > −1. Consider the weight function wa,b(x) =

(1 − x)a(1 + x)b on the interval [−1, 1] and let {J (a,b)
k (x) : i ∈ N} be the

corresponding family of orthogonal polynomials. Then J (a,b)
i is the degree i

Jacobi polynomial (with parameters a, b), and its smallest root ξa,bi satisfies:

ξa,bi = −1 +Θ(1/i2). (4.15)
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Lemma 4.12. For any integrable function g on [−1, 1] we have the identity:
� 1

−1
g(x2k)dx =

1

k

� 1

0
g(x)x−1+1/2kdx.

Hence, the push-forward measure µk is given by dµk(x) := 1
kx

−1+ 1
2k dx for

x ∈ [0, 1].

Proof. It suffices to show the first claim, which follows by making a
change of variables t = x2k so that we get
� 1

−1
g(x2k)dx = 2

� 1

0
g(x2k)dx = 2

� 1

0
g(t)

t−1+ 1
2k

2k
dt =

1

k

� 1

0
g(t)t−1+ 1

2k dt.

�
Proof of Theorem 4.10. By applying the change of variables x = 2t−

1, we see that the Jacobi type measure (1−x)a(1+x)bdx on [−1, 1] corresponds
to the measure 2a+b(1−t)atbdt on [0, 1] and that (up to scaling) the orthogonal

polynomials for the latter measure on [0, 1] are given by t �→ pa,bi (2t − 1) for
i ∈ N.

If we set a = 0 and b = −1+ 1/2k, then the measure obtained in this way
on [0, 1] is precisely the push-forward measure µk (see Lemma 4.12). Hence,
we can conclude that (up to scaling) the orthogonal polynomials pk,i for µk

on [0, 1] are given by pk,i(t) = J (a,b)
i (2t − 1) for each i ∈ N. Therefore, the

smallest root of pk,r+1(t) is equal to (ξa,br+1 + 1)/2 = Θ(1/r2) by (4.15). In

particular, we can conclude that ub(f, [−1, 1])pfr = Ω(1/r2) for any k ≥ 1. �

4.4. On the geometric assumption

As mentioned above, the condition (4.4) is a weaker version of a condi-
tion introduced in [dKLS17]. There, the authors demand that there exist
constants ηX, εX such that

vol(X ∩Bn
δ (x)) ≥ ηXδn vol(Bn) ∀ x ∈ X, ∀ 0 < δ ≤ εX. (4.16)

The difference is that the power of δ in (4.16) is fixed to be the dimension n
of X, whereas it is allowed to be an arbitrary N ≥ n in (4.4).

Condition (4.4) is satisfied by a significantly larger class of sets X than
(4.16). In particular, as we will observe below, sets satisfying (4.4) may have
polynomial cusps, whereas sets satisfying (4.16) may not have any cusps at
all.

Example 4.13. Consider the set X = {x ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x2
1}

(see Figure 4.3). This set X satisfies (4.4) (with N = 3), but it does not satisfy
(4.16). Indeed, for the point 0 ∈ X we have

vol(X ∩B2
δ (0)) ≤

� δ

0
t2dt =

1

3
δ3,
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4.4. ON THE GEOMETRIC ASSUMPTION 67

and conclude (4.16) cannot be satisfied at x = 0. Note that the point 0 is
indeed a polynomial cusp of the set X.

Example 4.14. Consider the set X = {x ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤
exp(−1/x1)} (see Figure 4.3). This set X does not satisfy (4.4) (and, as a
consequence, does not satisfy (4.16)). Indeed, for the point 0 ∈ X we have

vol(X ∩B2
δ (0)) ≤

� δ

0
exp(−1/t)dt ≤ δ exp(−1/δ).

Now note that for any N, η > 0 fixed, we have:

lim
δ→0

ηδN

δ exp(−1/δ) =∞,

and so (4.4) can not be satisfied at x = 0. Note that the point 0 is an expo-
nential cusp of X.

It turns out that compact semialgebraic sets which have a dense interior
(aka being fat) satisfy Assumption 4.1, as is shown essentially in [WP86].

Definition 4.15. A set X ⊆ Rn is called fat if X ⊆ int(X), i.e., the
interior of X is dense in X.

Theorem 4.16 ([WP86], Theorem 6.4, see also Remark 6.5). Let X ⊆ Rn

be a compact, fat semialgebraic1 set. Then there exist constants η > 0, N ≥ 1
and a positive integer d ∈ N such that one may find a polynomial hx of degree
d for each x ∈ X satisfying:

hx(0) = x,

hx(t) ∈ X for t ∈ [0, 1], and

Bn
ηtN (hx(t)) ⊆ X for t ∈ [0, 1]. (4.17)

Furthermore, the polynomials hx may be chosen such that �x− hx(t)� ≤ t for
all x ∈ X, t ∈ [0, 1].

Corollary 4.17. Let X ⊆ Rn be a compact, fat semialgebraic set. Then
X satisfies Assumption 4.1.

Proof. For x ∈ X, let η, N and hx be as in Theorem 4.16. We may
assume that ht := hx(t) ∈ Bn

t (x) for all t ∈ [0, 1]. For clarity, we write
B(y, a) := Bn

a (y) in the rest of the proof.
Using the triangle inequality and (4.17) we find that

volB(ht, ηt
N ) ≤ vol

�
B(x, t+ ηtN ) ∩X

�
≤ vol

�
B(x, (1 + η)t) ∩X

�

1In fact, the result is shown for subanalytic sets, of which semialgebraic sets are an
example.
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for all t ∈ [0, 1], noting that tN ≤ t in this case. But now substituting δ =
(1 + η)t yields:

vol
�
B(x, δ)∩X

�
≥ volB(ht, ηδ

N (1+ η)−N ) =

�
η

(1 + η)N

�n

· δNn volB(x, 1),

showing (4.4) holds for 0 < δ ≤ εX := (1 + η) and ηX = ηn(1 + η)−Nn.
�

0 1

1

x2 ≤ x2
1

0 1

1

x2 ≤ e−1/x1

Figure 4.3. The set X = {x ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x2
1}

(left) and X = {x ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ exp(−1/x1)}
(right).

4.5. Discussion

We have shown a convergence rate in O(log2 r/r2) for the approximations

ub(f,X)pfr of the minimum of a polynomial f over a compact set X satisfying
the minor geometric assumption (4.4). This includes in particular fat semi-
algebraic sets. As a direct consequence this rate also holds for the regular
measure-based bounds ub(f,X)r. Furthermore, we have shown that this anal-
ysis is near-optimal, in the sense that the asymptotic behaviour of the error

range ub(f,X)pfr − fmin is in O(log2 r/r2) in general and in Ω(1/r2) for an
infinite class of polynomials.

In fact, a rate in O(log2 r/r2) for the bounds ub(f,X)r is established
directly in our work [SL20]. The argument there makes use of both the needle
and 1

2 -needle polynomials. It is significantly more complicated than the proof
of Theorem 4.9 above, as it relies more intricately on the geometric properties
of the set X. Furthermore, the result applies less generally than Theorem 4.9;
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namely only to convex bodies. For these reasons, we have not included it in
this thesis.

One advantage of the (proof of) the result in [SL20], however, is that it

allows quite easily to show an improved convergence rate in O(logk r/rk) of
the bounds ub(f,X)r when the first k derivatives of f vanish at its global min-
imizer. Using this fact, we showed in Section 4.3 that although the worst-case
guarantees on the convergence of the regular measure-based bounds ub(f,X)r
and push-forward bounds ub(f,X)pfr are very similar, a large separation may
exist for certain polynomials (e.g., when f(x) = x2k, k ≥ 2).

The main question left open is whether the log-factor in our main result
can be avoided. This factor arises from our analysis technique, and in particu-
lar from our use of the needle polynomials to approximate the Dirac function
on [0, 1]. Recall from Chapter 3 that a rate in O(1/r2) may be established
for the bounds ub(f,X, µ)r in several (fundamental) special cases. To obtain
such rates, one ultimately relies on understanding the behaviour of certain or-
thogonal polynomials on the interval [−1, 1] w.r.t. the Chebyshev measure (cf.
Chapter 2). In the push-forward setting, the relevant orthogonal polynomials
are much more poorly understood. Therefore, it seems hard to establish a rate

in O(1/r2) for the bounds ub(f,X, µ)pfr , even when X is a well-structured set.
A second question is whether the upper bounds converge significantly more

slowly on sets X which do not satisfy the geometric assumption (4.4). We
suspect that this might be the case, particularly when X has exponential
cusps (see Figure 4.3).

Acknowledgments. We wish to thank Edouard Pauwels for bringing the
needle polynomials to our attention.
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CHAPTER 5

Computational aspects of measure-based bounds

Whenever a man can get hold of
numbers, they are invaluable: if correct,
they assist in informing his own mind,
but they are still more useful in deluding
the minds of others.

Charles Babbage

This chapter is partly based on my joint works [SL20, SL21a] with Monique
Laurent.

In this chapter, we discuss some computational aspects of the measure-

based upper bounds ub(f)r and ub(f)pfr for the minimization of a polynomial
f over a compact (semialgebraic) set X. In Section 5.1, we outline potential
challenges in computing the values of these bounds, and offer some suggestions
to address them. In Section 5.2, we discuss the problem of obtaining approx-
imate minimizers �x ≈ x∗ ∈ X of f based on feasible solutions (i.e., sum-of-

squares densities) to the programs defining ub(f)r and ub(f)pfr . Finally, in
Section 5.3, we present some numerical examples that illustrate the practical
behaviour of these bounds and some of the results of Chapters 3 and 4.

We only introduce a few (minor) new ideas in these sections. Their main
purpose is rather to highlight some aspects of the measure-based bounds which
are not very well explored in the literature, and offer potentially interesting
new directions for future research.

5.1. Computing the measure-based bounds

Let X ⊆ Rn be a compact set and let f ∈ R[x] be a polynomial of degree
d. We consider the optimization problem:

fmin := min
x∈X

f(x). (5.1)

71
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72 5. COMPUTATIONAL ASPECTS OF MEASURE-BASED BOUNDS

Let µ be a positive Borel measure supported on X. Recall the definition of
Lasserre’s measure-based hierarchies of upper bounds on fmin:

ub(f,X, µ)r = inf
q∈Σ[x]2r

��

X
f(x)q(x)dx :

�

X
q(x)dx = 1

�
, (5.2)

ub(f,X, µ)pfr = inf
u∈Σ[x]2r

��

X
f(x)u(f(x))dx :

�

X
u(f(x))dx = 1

�
. (5.3)

For convenience, we will often omit the dependence of these bounds on X

and µ in the notation; writing simply ub(f)r and ub(f)pfr . A feasible solution
u ∈ Σ[x]2r to (5.3) corresponds to a feasible solution q(x) = u(f(x)) to (5.2).
That is, for any r ∈ N, we have:

ub(f)pfr ≤ ub(f)rd. (5.4)

As we have seen in Section 2.2, the programs (5.2) and (5.3) may both be
reduced to an eigenvalue optimization problem. Namely, we have:

ub(f)r = λmin

�
Mf,r(µ),M1,r(µ)

�
, (5.5)

ub(f)pfr = λmin

�
Mx,r(µf ),M1,r(µf )

�
. (5.6)

Here, we make use of the (truncated) moment matrices for the measure µ
and for the push-forward measure µf (x) given by µf (A) = µ(f−1(A)). For a
polynomial g ∈ R[x] and an integer k, they are defined as:

�
Mg,r(µ)

�
α,β

=

�

X

g(x)xαxβdµ(x) (|α|, |β| ≤ r), (5.7)

�
Mxk,r(µf )

�
i,j

=

�

f(X)

xi+j+kdµf (x) =

�

X

f(x)i+j+kdµ(x) (i, j ≤ r). (5.8)

The formulations (5.5) and (5.6) (together with the equations (5.7) and (5.8))

reveal the main advantage of the push-forward bounds ub(f)pfr : Their compu-
tation involves matrices of size r + 1, thus much smaller than the matrices of
size

�
n+r
r

�
involved in the computation of the regular measure-based bounds

ub(f)r.

5.1.1. Computing moments. A major downside of the upper bounds

ub(f)r and ub(f)pfr over the more well-known lower bounds introduced in
Chapter 2 is that their computation requires explicit knowledge of the moment
matrices (5.7) and (5.8), respectively. From a practical point of view, this
excludes many sets X. Indeed, it is already hard in general to estimate the
volume of a semialgebraic set [Las09a].

In certain special cases, on the other hand, closed form expressions of
the moments

�
X xαdµ(x) are available. This includes the binary cube, the

hypersphere, the unit ball, the box [−1, 1]n and the standard simplex, see
[dKL19]. Such expressions allow one to compute the entries of the moment
matrices (5.7), (5.8) after writing f(x) =

�
|α|≤d fαx

α in the monomial basis

and taking linear combinations.
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For the regular bounds ub(f)r this is straightforward, yet still compu-
tationally intensive as the matrices in (5.5) are of large size

�
n+r
r

�
. For the

push-forward bounds ub(f)pfr , only O(r) different moments have to be com-
puted. However, they are now of the form:

�

X
f(x)kdµ(x) (k ≤ 2r). (5.9)

This poses a problem, as computing the k-th power f(x)k of f (and express-
ing it in the monomial basis) is not a trivial task. Indeed, the polynomial
f(x)k may have exponentially many terms. Naive computation of (5.9) there-
fore comes at the risk of losing any computational advantage over the regular
(asymptotically stronger) bounds ub(f)r. This motivates the following ques-
tion.

Question 5.1. Suppose we have access to the moments
�
X xαdµ(x) for

certain X ⊆ Rn and µ. Given a polynomial f ∈ R[x] and a number k ∈ N,
what is the most efficient way to (approximately) compute the integral:

�

X
f(x)kdµ(x)?

5.1.2. Symmetry reduction. The role of symmetry and sparsity in the
computation of the lower bounds lb(f,Q(X))r (and its variants) is well ex-
plored in the literature. For the upper bounds, on the other hand, little is
known.

We make here a small observation which could potentially be exploited in
this setting. Suppose G ⊆ O(n) is a compact group acting on Rn in the usual
way. We say that X ⊆ Rn is invariant under G if π(X) = X for all π ∈ G.
Similarly, we say a Borel measure µ on G is invariant if µ(π(A)) = µ(A)
for all A ⊆ X measurable. Finally, a polynomial f ∈ R[x] is invariant if
f(x) = f(π(x)) for all x ∈ Rn and π ∈ G.

Proposition 5.2. Let G ⊆ O(n) compact. Assume that X, µ and f are
all G-invariant. Then there exists an optimum solution q ∈ Σ[x]2r to the
formulation (5.2) of ub(f,X, µ)r which is G-invariant.

Proof. Let �q be any optimum solution to (5.2). Let ω be the uniform
probability measure on G, and consider the G-invariant density q ∈ Σ[x]2r
given by:

q(x) =

�

G
�q(π(x))dω(π).

Using the invariance of X, µ and f , we find that:
�

X
f(x)q(x)dµ(x) =

�

G

�

X
f(x)�q(π(x))dµ(x)dω(π) =

�

X
f(x)�q(x)dµ(x).

Therefore, q is also an optimum solution to (5.2), as desired. �
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5.1.3. Parallelization. Finally, we wish to mention that the computa-
tion of the upper bounds is particularly suited to parallelization. Solving the
eigenvalue formulations (5.5) and (5.6) requires a) computing the entries of the
appropriate moment matrices and b) solving the resulting (generalized) eigen-
value problem. Both tasks can be performed in parallel after a suitable subdi-
vision of the rows and/or columns of the involved matrices, assigning a block
to each computational node. Indeed, one may iteratively compute eigenvalues
using only matrix-vector multiplications. These matrix-vector multiplications
are straightforwardly parallelizable.

In some very preliminary experiments, this approach leads to reasonable

speedups for the bounds ub(f)r. For the push-forward bounds ub(f)pfr , a
naive parallel implementation does not seem to offer much improvement. As
relatively few different moments

�
X f(x)kdµ(x) are involved there, one should

probably focus instead on computing those integrals in parallel, see also Ques-
tion 5.1 above.

5.2. Extracting minimizers

In this section we discuss a method for extracting a feasible solution �x ∈ X
to the minimization problem (5.1) from an optimum density qr ∈ Σ[x]2r to
the relaxation (5.2). The idea behind this method is already mentioned (in a
slightly different context) in the work [dKLLS17]. In principle, we would like
such solutions to satisfy the following properties:

(1) f(�x) ≈ ub(f)r;
(2) �x ≈ x∗, meaning that ��x − x∗� is small for some minimizer x∗ ∈ X

of f ;
(3) �x ∈ X, meaning that �x is a feasible solution to (5.1).

For simplicity, we assume throughout that we are in a setting where
limr→∞ ub(f)r = fmin, i.e., where the measure-based bounds converge to the
optimum value of (5.1). We note that the optimum solution to (5.2) (and thus
the density qr) need not be unique. One should therefore interpret the results
and statements below as being true independently of the choice of optimum
solution.

5.2.1. A feasible point. For r ∈ N, consider the point �x = x(r) ∈ Rn,
defined in terms of an optimum density qr ∈ Σ[x]2r as:

x
(r)
i :=

�

X
xiqr(x)dµ(x) (1 ≤ i ≤ n).

An immediate advantage of this approach is that x(r) may easily be computed
as long as the moments of µ are known. A second advantage is that x(r) is a
feasible solution to (5.1) as long as X is convex.

Proposition 5.3 ([dKLLS17]). If X is convex, then x(r) ∈ X for all
r ∈ N.
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Finally, if the polynomial f is also assumed to be convex on X, the value
f(x(r)) of f at x(r) is at most equal to the upper bound ub(f)r. This follows
readily after applying Jensen’s inequality.

Proposition 5.4 ([dKLLS17]). Assume that X is convex and that f is
convex on X. Then for each r ∈ N, we have:

f(x(r)) ≤ ub(f)r.

A consequence of Proposition 5.4 is that x(r) converges to the set of min-
imizers of f .

Corollary 5.5. Assume that X ⊆ Rn is convex and that f is convex on
X. Write X∗ = {x ∈ X : f(x) = fmin} for the set of minimizers of f on X.
Then we have:

lim
r→∞

d∞(x(r),X∗) = 0.

Here, d∞(x(r),X∗) := minx∗∈X∗ �x(r) − x∗�∞.

Proof. As both X and f are convex, the set X∗ is convex as well. Fur-
thermore, X∗ ⊆ X is closed and thus compact (asX is compact). Now suppose

that limr→∞ d∞(x(r),X∗) �= 0. Then there exists an η > 0 and a subsequence

(ri)i∈N such that d∞(x(ri),X∗) ≥ η for all i ∈ N. Let X∗
η := {x ∈ X :

d∞(x,X∗) ≥ η}. Then X∗
η is a compact subset of X which does not intersect

X∗, and so:

min
x∈X∗

η

f(x) > fmin.

We may conclude that lim infr→∞ f(x(r)) > fmin, which contradicts Proposi-
tion 5.4 (recalling that we assume that limr→∞ ub(f)r = fmin). �

The assumption that f is convex on X is rather prohibitive. In the rest of
this section, we therefore explore what happens when we drop this assumption.

5.2.2. A negative result. We begin with a negative result showing that,
in general, we cannot hope that x(r) approximates a minimizer x∗ of f if we
drop the convexity assumption on f . For this purpose, consider the interval
X = [−1, 1], equipped with the Lebesgue measure and set f(x) = 1−x2. Then
the minimum fmin = 0 of f on X is attained at x∗ ∈ {−1, 1}.

Lemma 5.6. Let r ∈ N. There exists an optimum solution qr ∈ Σ[x]2r to
the program (5.2) which is an even function, i.e., satisfying qr(x) = qr(−x)
for x ∈ R.

Proof. Let �qr ∈ Σ[x]2r be any optimum solution to (5.2). Consider the
polynomial qr ∈ R[x] given by:

qr(x) =
�qr(x) + �qr(−x)

2
.
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Clearly, qr ∈ Σ[x]2r is an even function. Furthermore, using the fact that
f(x) = 1− x2 is even, we have:

� 1

−1
f(x)qr(x)dx =

� 1

−1
f(x)�qr(x)dx = ub(f)r.

Thus, qr is an optimum solution to (5.1), as desired. �

Now suppose that we select our optimum density qr for each r as in
Lemma 5.6. Then, since qr is even, the candidate solution x(r) is given for
each r by:

x(r) =

� 1

−1
xqr(x)dx = 0.

We thus obtain no information on the minimizers {−1, 1} of f in this case.

5.2.3. A positive result. As the following proposition shows, when f
has a unique minimizer x∗ on X, asymptotic convergence of x(r) to x∗ is
guaranteed. This may be seen as a generalization of Corollary 5.5.

Proposition 5.7. If X is compact and f has a unique minimizer x∗ ∈ X,
then we have:

lim
r→∞

x(r) = x∗.

We recall that x(r) is defined in terms of an optimum density qr ∈ Σ[x]2r

in (5.2) by x
(r)
i =

�
X xiqr(x)dµ(x), 1 ≤ i ≤ n.

Lemma 5.8. For x ∈ Rn and η ∈ R, let D(x, η) := {y ∈ Rn : �x− y�∞ < η}.
Let X ⊆ Rn be compact and assume that f has unique minimizer x∗ on X.
Then for any η > 0, the optimum densities qr in (5.2) satisfy:

lim
r→∞

�

X\D(x∗,η)
qr(x)dµ(x) = 0.

Proof. Suppose not. Then there exists a subsequence (ri)i∈N and an
ε > 0 so that: �

X\D(x∗,η)
qri(x)dµ(x) > ε

for all i ∈ N. By compactness of X and uniqueness of the minimizer x∗, we
have:

min
x∈X\D(x∗,η)

f(x) > fmin.
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But this implies that:

ub(f)ri =

�

X
qri(x)f(x)dµ(x)

=

�

D(x∗,η)
qri(x)f(x) +

�

X\D(x∗,η)
qri(x)f(x)

> (1− ε)fmin + ε · min
x∈X\D(x∗,η)

f(x),

= fmin + ε ·
�

min
x∈X\D(x∗,η)

f(x)− fmin

�

for all i ∈ N, contradicting the fact that limr→∞ ub(f)r = fmin. �
Proof of Proposition 5.7. Let ε > 0 and fix an i ∈ [n]. As X is

compact, there exists ρ > 0 such that |xi − x∗
i | < ρ for all x ∈ X. For r ∈ N,

let qr ∈ Σ[x]2r be an optimum density in (5.2). Then we have:

lim
r→∞

|x(r)
i − x∗

i | = lim
r→∞

|
�

X
(xi − x∗

i )qr(x)dµ(x)|

≤ lim
r→∞

|
�

D(x∗,ε)
(xi − x∗

i )qr(x)dµ(x)|

+ |
�

X\D(x∗,ε)
(xi − x∗

i )qr(x)dµ(x)|

≤ ε+ ρ lim
r→∞

|
�

X\D(x∗,ε)
(xi − x∗

i )qr(x)dµ(x)| = ε,

making use of Lemma 5.8 (with η = ε) for the last equality. We have thus

shown that limr→∞ x(r) = x∗. �

5.2.4. A quantitative result. We may bound the rate of convergence
of x(r) to x∗ in terms of the convergence rate of ub(f)r to fmin. This rate will
depend on the local behaviour of f near x∗.

Proposition 5.9. Assume that X is compact and that f has a unique
minimizer x∗ ∈ X. Assume further that there exist c > 0 and k ∈ N such that:

f(x) ≥ c�x− x∗�k + f(x∗) (x ∈ X).

Then we have:

�x(r) − x∗�∞ ≤ 2

�
diam∞(X)

c
· (ub(f)r − fmin)

� 1
k+1

.

Here, diam∞(X) := maxx,y∈X �x− y�∞ <∞.

Lemma 5.10 (See also Lemma 3.2 in [SL20]). Suppose the conditions of
Proposition 5.9 are met. Then, for any ε > 0, we have:

�

X\D(x∗,ε)
qr(x)dµ(x) ≤

ub(f)r − fmin

cεk
.
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Proof. By assumption, we have f(x) ≥ cεk + fmin for all x �∈ D(x∗, ε).
Therefore, we find that:

ub(f)r − fmin =

�

X
(f(x)− fmin)qr(x)dµ(x) ≥ cεk

�

X\D(x∗,ε)
qr(x)dµ(x).

�

Proof of Proposition 5.9. Let ε > 0 and fix i ∈ [n]. We have that:

|x(r)
i − x∗

i | = |
�

X
(xi − x∗

i )qr(x)dµ(x)|

≤ |
�

D(x∗,ε)
(xi − x∗

i )qr(x)dµ(x)|+ |
�

X\D(x∗,ε)
(xi − x∗

i )qr(x)dµ(x)|

≤ ε+ diam∞(X)

�

X\D(x∗,ε)
qr(x)dµ(x)

≤ ε+ diam∞(X)
ub(f)r − fmin

cεk
,

making use of Lemma 5.10 for the last inequality. Now set:

ε =
�diam∞(X)

c
(ub(f)r − fmin)

�1/(k+1)

to finish the proof. �

We note that the rate we obtain in Proposition 5.9 for the convergence of
x(r) to x∗ is likely far from best-possible.

5.2.5. Sampling from the optimum density. One may also obtain
feasible points �x ∈ X by sampling �x according to an optimum density
qr ∈ Σ[x]2r coming from the relaxation (5.2). This idea is explored in some
detail in [dKLS17, dKLLS17]. The main advantage of this approach is that
such points �x satisfy E[�x] ≤ ub(f)r (without the need of any convexity as-
sumptions). Indeed, this is by definition of the program (5.2). Furthermore,
in certain cases, one may sample relatively efficiently using the method of con-
ditional distributions, see [dKLS17] for details. Therefore, one may obtain a
good feasible point �x with high probability after generating several samples.

5.3. Numerical examples

In this section, we illustrate the practical behaviour of the bounds

ub(f)r and ub(f)pfr using some numerical examples. Following earlier
works [dKLS17, dKL18, dKLLS17], we mostly consider the test functions
listed in Table 5.1, which are well-known in optimization. We compute the
bounds using the eigenvalue reformulations, and solve the resulting eigenvalue
problems using the linear algebra module of the SciPy package [VGO+20].
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Name Formula fmin

Booth fbo(x) = (10x1 + 20x2 − 7)2 + (20x1 + 10x2 − 5)2 fbo(
1
10 ,

3
10 ) = 0

Matyas fma(x) = 26(x2
1 + x2

2)− 48x1x2 fma(0, 0) = 0

Camel fca(x) = 50x2
1 − 2625

4 x4
1 +

15625
6 x6

1 + 25x1x2 + 25x2
2 fca(0, 0) = 0

Motzkin fmo(x) = 64x4
1x

2
2 + 64x2

1x
4
2 − 48x2

1x
2
2 + 1 fmo(± 1

2 ,± 1
2 ) = 0

Table 5.1. Polynomial test functions. In each case, fmin is
the global minimum of f on [−1, 1]2.

5.3.1. Comparison of ub(f)r and ub(f)pfr for polynomial test func-

tions. First, we compare the bounds ub(f)r and ub(f)pfr directly for the test
functions f ∈ {fbo, fma, fca, fmo} on the unit box [−1, 1]2 and the unit ball B2

(w.r.t. the Lebesgue measure). Recall from (5.4) that ub(f)rd ≤ ub(f)pfr for
d = deg(f), i.e., that the regular bound ub(f)r is (asymptotically) stronger

than the push-forward bound ub(f)pfr .
For 1 ≤ r ≤ 20, we compute the values of the fraction:

ratio(f)r :=
ub(f)pfr − fmin

ub(f)r − fmin
.

So, values of ratio(f)r smaller than 1 indicate good performance of the bounds

ub(f)pfr in comparison to ub(f)r. The results can be found in Figure 5.3. Re-

markably, it appears that the performance of the bound ub(f)pfr is comparable
to (or better than) the performance of ub(f)r in each instance, except for the

Camel function. Additionally, we note that the performance of ub(f)pfr for
the Motzkin polynomial is comparatively much better on the unit ball than
on the unit box. Figure 5.1 shows a plot of the Camel function, as well as

the sum-of-squares densities corresponding to ub(f)6 and ub(f)pf6 on the unit
box.

Note that while the density corresponding to ub(f)6 resembles the Dirac
delta function centered at the global minimizer (0, 0) of the Camel function,

the density corresponding to ub(f)pf6 instead mirrors the Camel function itself.
This is not suprising, as the densities considered in the program (5.3) defining

ub(f)pfr are of the form q(x) = u(fca(x)).

5.3.2. Comparison of ub(f)r and ub(f)pfr for a special class of poly-
nomials. Next, we consider the polynomials f(x) = x2k for k ≥ 1 on the
interval [−1, 1], which were treated in Section 4.3. Recall that this class of
polynomials was used to show a large separation between the bounds ub(f)r
and ub(f)pfr ; namely we showed that for these polynomials, we have:

ratio(f)r :=
ub(f)pfr − fmin

ub(f)r − fmin
= Ω(r2k−3).
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In Figure 5.4, the values of ratio(f)r are shown for 1 ≤ r ≤ 20 and

1 ≤ k ≤ 5. It can be seen that the performance of ub(f)pfr is compara-
ble to the performance of ub(f)r for k = 1 (indeed, in this case we have

ub(f)pfr = ub(f)2r), but it is much worse for k > 1, which matches our earlier
findings in Section 4.3. In Figure 5.2, the optimal sum-of-squares densities

σ (corresponding to ub(f)r) and σpf (corresponding to ub(f)pfr ) are depicted
for k = 1, 3, 5 and r = 6. Note that while the density σ changes very little
as we increase k, the density σpf grows increasingly ‘flat’ around the mini-
mizer 0 of f (mirroring the behavior of f itself). As such, the density σpf is a
comparatively much worse approximation of the Dirac delta function centered
at 0 than σ. Note also that in this instance ub(f)r = ub(f)r+1 for even r,
explaining the ‘zig-zagging’ behaviour of the ratio ratio(f)r.

Comparison of ub(f)pfr and ub(f)r for random instances of maximum
cut. Finally, we consider some polynomial maximization problems on [−1, 1]n
coming from small instances of MaxCut. An instance of MaxCut with
vertex set [n] and edge weights wij ≥ 0 can be written as:

opt := max
x∈[−1,1]n

f(x), where f(x) :=
1

4

�

i,j∈[n]
wij(xi − xj)

2. (5.10)

Note that while f is usually maximized over the discrete cube {−1, 1}n, the
formulation (5.10) is equivalent as f is convex.

Following [Las11], we create our instances by setting wij = 0 with proba-
bility p, and sampling wij uniformly from [0, 1] otherwise. In Table 5.2, we list

values of ub(f)pfr and ub(f)r for a few such random instances with p = 1/2

and n = 8. In each case, ub(f)pfr provides a better bound than ub(f)r. In
Table 5.3, we list the average over 50 randomly generated instances of the
ratios:

Error =
opt− ub(f)r

opt
and Errorpf =

opt− ub(f)pfr
opt

for r ≤ 4 and p ∈ {1/4, 1/2, 3/4}. Although it seems ub(f)pfr is more sensitive
to changes in the density of the instances, we find again that it provides a
better bound in general than ub(f)r.

5.3.3. Comparison of ub(f,X, µ)r for different sets X and mea-
sures µ. Finally, we compare the behaviour of the error Error(f ;X, µ)r for
the test functions of Table 5.1 on different sets X; namely the hypercube,
the unit ball, and a regular octagon in R2. On the unit ball and the regular
octagon, we consider the Lebesgue measure. On the hypercube, we consider
both the Lebesgue measure and the Chebyshev measure. In each case, we
compute the Lasserre bounds of order r in the range 1 ≤ r ≤ 20, correspond-
ing to sos-densities of degree up to 40. For the hypercube, simplex and unit
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r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 opt

Ex1
ub(f)r 1.58 2.06 2.45 2.82 3.16 3.46

6.09
ub(f)pfr 1.98 2.65 3.20 3.67 4.06 4.38

Ex2
ub(f)r 2.20 2.77 3.27 3.73 4.16 4.54

8.07
ub(f)pfr 2.61 3.41 4.11 4.72 5.25 5.71

Ex3
ub(f)r 2.03 2.56 3.02 3.43 3.81 4.14

7.24
ub(f)pfr 2.46 3.19 3.81 4.34 4.79 5.15

Ex4
ub(f)r 1.59 2.05 2.44 2.81 3.13 3.42

5.80
ub(f)pfr 1.98 2.62 3.15 3.60 3.97 4.28

Table 5.2. Values of ub(f)r and ub(f)pfr for randomly gener-
ated instances of MaxCut (n = 8, p = 1/2).

r = 1 r = 2 r = 3 r = 4

p = 1/4
Error 0.72 0.65 0.59 0.53

Errorpf 0.66 0.57 0.48 0.40

p = 1/2
Error 0.73 0.65 0.59 0.53

Errorpf 0.68 0.56 0.47 0.39

p = 3/4
Error 0.73 0.64 0.57 0.49

Errorpf 0.65 0.53 0.43 0.35

Table 5.3. Average performance of the bounds ub(f)r and

ub(f)pfr for random instances of MaxCut (n = 8).

ball, closed form expressions for these moments are known (see, e.g., Table 1
in [dKL19]). For the octagon, they can be computed by triangulation.

5.3.4. The linear case. We consider first the case of a linear polyno-
mial f(x) = fli(x) = x1 on X = [−1, 1]2, equipped with the Lebesgue
measure. Figure 5.5 shows the values of the parameters Error(fli;X)r and
Error(fli;X)r · r2. In accordance with Theorem 3.17 (and 3.16(ii)), it ap-
pears indeed that Error(fli;X)r = O(1/r2), as suggested by the fact that the
parameter Error(fli;X)r · r2 approaches a constant value as r grows.

The unit ball. Next, we consider the unit ball B2, again equipped with the
Lebesgue measure. Figure 5.6 shows the values of the ratio:

Error(f∗;B2)r/Error(f∗; [−1, 1]2)r (5.11)
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Figure 5.1. The Camel function (left) and its sum-of-squares

densities corresponding to ub(f)6 (middle) and ub(f)pf6 (right)
on the unit box.

Figure 5.2. The functions f(x) = x2k and their sum-of-

squares densities corresponding to ub(f)6 and ub(f)pf6 on the
interval [−1, 1] for k = 1 (left), k = 3 (middle) and k = 5
(right).

for ∗ ∈ {li, qu, bo,ma, ca,mo}. Here, fqu ∈ R[x] is the quadratic polynomial:

fqu(x) = x1 + x2
2.

In each case, the ratio (5.11) appears to tend to a constant value, suggesting
that the error Error(f∗;X)r has similar asymptotic behaviour for X = [−1, 1]2
and X = B2. This matches the result of Theorem 3.19 both in the case of a
minimizer on the boundary (∗ ∈ {li, qu}) and in the case of a minimizer in the
interior (∗ ∈ {bo,ma, ca,mo}).

5.3.5. A regular octagon. Consider now a regular octagon:

Oct = conv{(±1, 0), (0,±1), (±1

2

√
2,±1

2

√
2)} ⊆ [−1, 1]2, (5.12)

equipped with the Lebesgue measure. This is an example of a convex body
that is not ball-like (see Definition 3.22). Note that as a result, the strongest
theoretical guarantee we have shown for the convergence rate of the Lasserre
bounds on Oct is in O(log2 r/r2) (see Theorem 4.2). Figure 5.7 shows the
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Figure 5.3. Comparison of the bounds ub(f)r and ub(f)pfr
for the four functions in Table 5.1, computed on the unit box
(left) and unit ball (right).
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Figure 5.4. Comparison of the bounds ub(f)r and ub(f)pfr
for functions of the form f(x) = x2k on the interval [−1, 1].

values of the ratio:

Error(f∗; Oct)r/Error(f∗; [−1, 1]2)r (5.13)

for ∗ ∈ {li, qu, bo,ma, ca,mo}. As for the unit ball, the ratio (5.13) seemingly
tends to a constant value for each of the test polynomials. This indicates a
similar asymptotic behaviour of the error Error(f∗;X)r for X = [−1, 1]2 and
X = Oct, and suggests that the convergence rate guaranteed by Theorem 4.2
might not be tight in this instance.

5.3.6. The Chebyshev measure. Finally, we consider the Chebyshev
measure dµ(x) = (1 − x2

1)
−1/2(1 − x2

2)
−1/2dx on [−1, 1]2, which we compare
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Figure 5.5. The error of the upper bounds ub(f)r for
f(x) = x1 computed on [−1, 1]2 w.r.t. the Lebesgue measure.

to the Lebesgue measure. Figure 5.8 shows the values of the fraction:

Error(f∗; [−1, 1]2, µ)r/Error(f∗; [−1, 1]2)r (5.14)

for ∗ ∈ {li, qu, bo,ma, ca,mo}. Again, we observe that the fraction (5.14)
appears to tend to a constant value in each case, matching the result of The-
orem 3.17.
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Part 2

Polynomial kernels and
sum-of-squares hierarchies
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CHAPTER 6

The polynomial kernel method

One of these days, I’m gonna get
organezized.

From Taxi Driver

This chapter is based in part on my work [Slo22].

Let f be a polynomial of degree d. We consider the polynomial optimiza-
tion problem:

fmin := min
x∈X

f(x),

whereX ⊆ Rn is a compact semialgebraic set, defined by polynomials g1, . . . , gm ∈
R[x] as:

X = {x ∈ Rn : gj(x) ≥ 0 (1 ≤ j ≤ m)}.

Recall from Chapter 2 that the cone P+(X) of nonnegative polynomials on
X may be approximated by the quadratic module Q(X) and the preordering
T (X) of X:

Q(X) :=
� m�

j=0

σjgj : σj ∈ Σ[x]
�

(where g0 := 1),

T (X) :=
� �

J⊆[m]

σJgJ : σJ ∈ Σ[x]
�

(where gJ :=
�

j∈J
gj).

By considering degree-restricted versions of the quadratic module and pre-
ordering, we obtain corresponding hierarchies of lower bounds on the global
minimum fmin of f on X:

lb(f,Q(X))r := sup{λ ∈ R : f − λ ∈ Q(X)2r}, (6.1)

lb(f, T (X))r := sup{λ ∈ R : f − λ ∈ T (X)2r}, (6.2)

89
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90 6. THE POLYNOMIAL KERNEL METHOD

as well as upper bounds:

ub(f,X, µ)r := inf
q∈Σ[x]2r

��

X

f(x)q(x)dµ(x) :

�

X

q(x)dµ(x) = 1

�
, (6.3)

ub(f,Q(X), µ)r := inf
q∈Q(X)2r

��

X

f(x)q(x)dµ(x) :

�

X

q(x)dµ(x) = 1

�
, (6.4)

ub(f, T (X), µ)r := inf
q∈T (X)2r

��

X

f(x)q(x)dµ(x) :

�

X

q(x)dµ(x) = 1

�
. (6.5)

Outline. In this chapter, we present a unified approach to establish con-
vergence rates for the lower bounds on certain structured sets X. Namely,
we show a connection between the behaviour of the lower bounds defined in
(6.1), (6.2), the upper bounds defined in (6.3), (6.4), (6.5), and the Christoffel-
Darboux kernel introduced in Chapter 1. As we explain in Section 6.1, this
connection relies on an application of the polynomial kernel method, employ-
ing a perturbed version of the Christoffel-Darboux kernel. Following this ap-
proach, we are able to show strong convergence results in upcoming chapters
for the lower bounds on the binary cube {0, 1}n (Chapter 7), the unit ball and
the standard simplex (Chapter 8), and the unit box [−1, 1]n (Chapter 9).

The Christoffel-Darboux kernel has recently seen increased interest in
the context of (polynomial) optimization [dCGHL21, LP19, MPW+21,
PPL21]. Of particular relevance is the recent work of Lasserre [Las21], where
a link is established between this kernel and the hierarchy of lower bounds (6.1)
(although this link is entirely different from the one we present below).

Essentially as a side result of our proof technique, we also obtain conver-
gence rates for the corresponding hierarchies of upper bounds in these settings.
Indeed, as we explain in Section 6.2, our approach actually makes this rather
elementary. As we will see, however, the obtained rates mostly do not improve
upon existing results. The exception is the binary cube (see Chapter 7).

Finally, our approach allows us to nicely present some known and new
connections between the sum-of-squares hierarchies and bounds for polynomial
optimization problems based on cubature rules . This is the topic of Section 6.3.

6.1. The polynomial kernel method

Here, we present the technique we use to prove the main results of Chap-
ter 7, Chapter 8 and Chapter 9. It is inspired by the strategy used to prove
convergence results for the lower bounds (6.1) on the hypersphere in [FF21].

Let f ∈ R[x] be a polynomial of degree d ∈ N. Assume for simplicity that
we are interested in analyzing the Putinar-type bound lb(f,Q(X))r for the
minimization of f over a semialgebraic set X. We then wish to show for each
r ∈ N that:

f − fmin + ε ∈ Q(X)2r

for some small ε = ε(r) > 0. Up to translation and scaling, we may assume
that fmin = 0 and that �f�X := maxx∈X |f(x)| = 1. Recall from Chapter 1
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6.1. THE POLYNOMIAL KERNEL METHOD 91

that P(X) denotes the space of polynomials on X. Suppose that we are able to
construct an (invertible) linear operator K : P(X)d → P(X)d which satisfies
the following three properties:

K(1) = 1, (P1)

Kp ∈ Q(X)2r for all p ∈ P+(X)d (P2)

max
x∈X

|K−1f(x)− f(x)| ≤ ε. (P3)

We claim that we then have f + ε ∈ Q(X)2r. Indeed, since f is nonnegative
on X by assumption, we know that f(x) + ε ≥ ε for x ∈ X. By properties
(P1) and (P3), it follows that K−1(f + ε) ∈ P+(X). Using property (P2), we
may thus conclude that:

f + ε = K
�
K−1(f + ε)

�
∈ Q(X)2r,

meaning that fmin − lb(f,Q(X))r ≤ ε.
We may thus establish convergence rates for the Putinar-type bounds (6.1)

by showing the existence (for each r ∈ N) of an operator K which satisfies
(P1), (P2) and (P3) with ε = ε(r) small. We summarize this observation in
the following Lemma for future reference.

Lemma 6.1. Let X ⊆ Rn be a compact semialgebraic set and let f be a
polynomial on X of degree d. Suppose that there exists a nonsingular linear
operator K : P(X)d → P(X)d which satisfies the properties (P1), (P2) and
(P3) for certain ε ≥ 0. Then fmin − lb(f,Q(X))r ≤ ε.

Note that by replacing the quadratic module Q(X) by the preordering
T (X) in the above, we may use the exact same technique to establish conver-
gence rates for the Schmüdgen-type bounds (6.2). For clarity, we will use the
quadratic module throughout this chapter, but all results carry over immedi-
ately.

6.1.1. Constructing a linear operator. In light of Lemma 6.1 above,
we wish to construct linear operators that satisfy (P1), (P2) and (P3). For
this purpose, we apply the polynomial kernel method. Let us recall the setup
for kernel operators from Chapter 1.

Let K : X ×X → R be a polynomial kernel on X, meaning that K(x,y)
is a polynomial in the variables x,y. After choosing a finite, Borel measure
µ supported on X, we have an inner product �·, ·�µ on the space P(X) of
polynomials on X given by:

�p, q�µ :=

�

X
p(x)q(x)dµ(x) (p, q ∈ P(X)).

Using this inner product, we may associate a linear operatorK : P(X)→ P(X)
to K by setting:

Kp(x) := �K(x, ·), p�µ =

�

X
K(x,y)p(y)dµ(y) (p ∈ R[x]). (6.6)
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92 6. THE POLYNOMIAL KERNEL METHOD

It turns out the operator K associated to a kernel K via (6.6) satisfies (P2)
if the polynomial x �→ K(x,y) lies in Q(X)2r for all fixed y ∈ X.

Lemma 6.2. Let X ⊆ Rn be a compact semialgebraic set, and let µ be a
finite measure supported on X. Let Q ⊆ R[x] be a convex cone, and suppose
that K : X×X→ R is a polynomial kernel for which K(·,y) ∈ Q for each
y ∈ X fixed. Then if p ∈ R[x] is nonnegative on X, we have Kp ∈ Q. That
is, when selecting Q = Q(X)2r, the operator K associated to K satisfies (P2).

Proof. Let {(yi, wi) : 1 ≤ i ≤ N} ⊆ X × R>0 be a cubature rule (see
also Section 6.3 below) for the integration of polynomials of degree up to
deg(p) + deg(K) over X w.r.t. the measure µ, whose existence is guaranteed
by Tchakaloff’s Theorem [Tch57] (see also [dKL19]). Then by definition, we
have:

Kp(x) =

�

X
K(x,y)p(y)dµ(y) =

N�

i=1

K(x,yi)wip(yi) (x ∈ X).

As wip(yi) ≥ 0 and K(·,yi) ∈ Q for all 1 ≤ i ≤ N , this shows thatKp ∈ Q. �
Recall the Christoffel-Darboux kernel CD2r of degree 2r, which is defined

in Chapter 1 in terms of a (graded) orthornormal basis {Pα : α ∈ Nn} for P(X)
w.r.t. �·, ·�µ as:

CD2r(x,y) :=
�

|α|≤2r

Pα(x)Pα(y).

The operator CD2r associated to CD2r via (6.6) reproduces the space of poly-
nomials of degree up to 2r, i.e., it satisfies:

CD2rp(x) = p(x) (x ∈ X, p ∈ R[x]2r).
In other words, it is diagonal w.r.t. the basis {Pα}, and its eigenvalues are
all equal to 1. The idea now is to choose our kernel K by perturbing the
Christoffel-Darboux kernel, that is, to consider a kernel of the form:

K(x,y) = CD2r(x,y;λ) :=
�

|α|≤2r

λαPα(x)Pα(y) (λα ∈ R), (6.7)

whose associated operator K has eigenvalues equal to the coefficients λα. It
then remains to select these coefficients in such a way that the properties (P1),
(P2) and (P3) are all satisfied.

6.1.2. Choosing the coefficients. Consider a kernel K(x,y) =
CD2r(x,y;λ), together with its associated operator K. As we have:

K(1) = λ0,

it is clear that K satisfies (P1) if and only if λ0 = 1. As we explain now,
(P3) is satisfied when the coefficients λα, |α| ≤ d are sufficiently close to 1.
Recall that we consider in (P3) a polynomial f on X of degree d, whose sup-
norm �f�X over X is at most 1 by assumption, and that we wish to bound
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6.1. THE POLYNOMIAL KERNEL METHOD 93

�K−1f − f�X. As the polynomials {Pα : |α| ≤ d} form a basis of P(X)d, we
may write:

f(x) =
�

|α|≤d

fα(x),

where fα ∈ span{Pα}. Assuming that λ0 = 1 and λα �= 0 for |α| ≤ d, we then

have K−1f =
�d

k=0(1− 1/λα)fα and so:

�K−1f − f�X = �
�

|α|≤d

(1− 1/λα)fα�X ≤ max
|α|≤d

�fα�X ·
�

|α|≤d

|1− 1/λα|. (6.8)

In light of (6.8) and Lemma 6.2, we thus want to find coefficients λ = (λα)|α|≤2r

such that:

(1) λ0 = 1 and λα ≈ 1 for all |α| ≤ d;
(2) x �→ K(x,y) = CD2r(x,y;λ) ∈ Q(X)2r for all y ∈ X.

How one might find λ simultaneously satisfying these both conditions de-
pends on the structure of X. Roughly speaking, one may distinguish three
cases: a) the binary cube and unit sphere; b) the unit ball and the standard
simplex; and c) the unit box [−1, 1]n. These cases are discussed in detail in
their respective chapters. Here, we sketch the main ideas.

The binary cube and unit sphere. On the binary cube and the unit sphere,
the Christoffel-Darboux kernel may be written in a particularly simple form
using addition formulas for Krawtchouk and Gegenbauer polynomials, respec-
tively. Let us use the unit sphere to illustrate. As we saw already in Chapter 1,
the Christoffel-Darboux kernel there is of the form:

CD2r(x,y) =
2r�

k=0

G(n−3
2

)

k (x · y). (6.9)

Therefore, we should define our kernel K by:

K(x,y) = CD2r(x,y;λ) =

2r�

k=0

λkG
(n−3

2
)

k (x · y).

Note that with respect to (6.7), we write here λ|α| = λα = λβ whenever
|α| = |β|. It is not hard to see that K(·,y) ∈ Q(X)2r when the univariate
polynomial:

q(x) :=
2r�

k=0

λkG
(n−3

2
)

k (x)

is a sum of squares of degree 2r. It thus remains to find a such a univariate
q ∈ Σ[x]r for which λ0 = 1 and λk ≈ 1 for all 0 ≤ k ≤ d. This is precisely
what Fang and Fawzi do in [FF21], and what we will do (in the context of the
binary cube) in Chapter 7. As we explain in more detail there, the problem
of finding an optimal q in fact reduces to analyzing a univariate instance of
the upper bounds (6.3). This reduction relies on the fact that the Gegenbauer
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94 6. THE POLYNOMIAL KERNEL METHOD

polynomials form an orthogonal basis for R[x], and the coefficients λk are thus
given (up to scaling) by:

λk ∝
� 1

−1
G(n−3

2
)

k (x)q(x)(1− x2)
n−3
2 dx.

(Note in particular that the condition λ0 = 1 means that q is a density!).
As we have seen in Chapter 2 and Chapter 3, the upper bounds may be
analyzed in the univariate case by considering the roots of the respective or-
thogonal polynomials. As these roots are well-understood for Gegenbauer
and Krawtchouk polynomials, this yields the convergence rate O(1/r2) for the
lower bounds lb(f,Q(Sn−1))r in [FF21], and the convergence rate of Theo-
rem 7.1 for lb(f,Q({0, 1}n))r, respectively.

The unit ball and the standard simplex. For the unit ball Bn and the
standard simplex Δn, expressions of the Christoffel-Darboux kernel as nice
as (6.9) are not available. Fortunately, we can make use there of alternative
expressions (8.17), (8.19) due to Xu [Xu99, Xu98]. These expressions are
more complicated than (6.9), but they retain a key property; namely they
allow CD2r(x,y;λ) to be written as the composition of a (relatively simple)
multivariate polynomial with a univariate polynomial q of degree 2r. The
coefficients λ are then again related to the decomposition of q into the basis of
Gegenbauer polynomials. Although it will be slightly more involved to show
this, it turns out again that CD2r(x,y;λ) lies in Q(Bn)2r (resp. T (Δn)2r) if
q is a sum of squares of degree 2r. From there, the rest of the analysis is very
similar to the case of the unit sphere. In Chapter 8, this yields convergence
rates in O(1/r2) for the lower bounds lb(f,Q(Bn))r and lb(f, T (Δn))r.

The unit box [−1, 1]n. Finally, we treat the unit box [−1, 1]n in Chapter 9.
Our strategy there is a bit different. Namely, we make use of the so-called Jack-

son kernel Kjac
2r on the interval [−1, 1]. This kernel is equal to the perturbed

Christoffel-Darboux kernel CD2r(x, y;λ) on [−1, 1] with respect to the Cheby-
shev measure µ for a certain choice of coefficients λ. These coefficients are
known to tend to 1 at a rate in O(1/r2). As mentioned in Chapter 2, this fact
was already exploited in [dKHL17] to obtain convergence rates for the upper

bounds ub(f, T ([−1, 1]n), µ)r. Furthermore, it is known that Kjac
2r (x, y) ≥ 0

for all x, y ∈ [−1, 1], which immediately implies that Kjac
2r (·, y) has a represen-

tation in T ([−1, 1])2r (see Section 9.2). As we will see in Chapter 9, in order
to move from the univariate to the multivariate case, one should then consider
the kernel:

Kjac
2r (x,y) :=

n�

i=1

Kjac
2r (xi,yi).

6.1.3. The harmonic constant. We have so far conveniently ignored
the constants �fα�X that occur in (6.8). Using only the equivalence of norms
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on finite-dimensional vector spaces, one may say immediately that there exists
a constant (depending on n and d) so that �fα�X ≤ c�f�X for all polynomials
f of degree d. In the special cases we consider, however, one can say more.
We will go into this in quite some detail in upcoming chapters. Roughly
speaking, one may show for the unit sphere and the binary cube that these
constants may be bounded independently of the dimension n, see [FF21] and
Section 7.4, respectively. For the unit ball, the standard simplex and the
box [−1, 1]n, the constants may be shown to depend polynomially on n (for
fixed d) and polynomially on d (for fixed n), see Section 8.3.1 and Section 9.3,
respectively. As we discuss later, it is an open question whether a bound
independent of the dimension may be shown in these cases as well.

6.2. Analysis of the hierarchies of upper bounds

In this section, we explain how to use the polynomial kernel method devel-
oped in this chapter to obtain convergence results for the upper bounds (6.4),
(6.5). As we have seen in Chapter 4, one method of analyzing the behaviour of
the upper bounds (employed, e.g., in [dKHL17, dKL10, dKL18, dKLS17,
SL20]) is to exhibit an explicit probability density σ ∈ R[x] on (X, µ) which
lies in the appropriate cone, and for which the difference:

�

X
f(x)σ(x)dµ(x)− fmin

can be bounded from above. We exhibit such a σ here based on the perturbed
Christoffel-Darboux kernels (6.7) constructed in Section 6.1.

Write K(x,y) = CD2r(x,y;λ) for such a kernel. Assume that the associ-
ated operator K satisfies (P1) and that:

max
x∈X

|Kf(x)− f(x)| ≤ ε. (6.10)

for some ε > 0. The difference with (P3) is that we consider there the inverse
kernel operator K−1. As we explained though, we establish (P3) by showing
that the eigenvalues λ of K are sufficiently close to 1, in which case (6.10) also
holds. For details, see Section 7.2.

Assume finally that K(·,y) ∈ Q(X)2r for all y ∈ X (which we recall is
the condition we use to show that K satisfies (P2) in Lemma 6.2 above). Let
x∗ ∈ X be a global minimizer of f over X, and consider the polynomial σ
given by:

σ(x) = K(x,x∗) (x ∈ X).

By assumption, σ ∈ Q(X)2r. As K satisfies (P1), we have:
�

X
σ(x)dµ(x) = K(1) = 1,
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meaning that σ is a probability density on X w.r.t. µ. The polynomial σ is
thus a feasible solution to (6.4). Furthermore, by (6.10) we have:

�

X
f(x)σ(x)dµ(x)− fmin = Kf(x∗)− f(x∗) ≤ ε.

We may thus conclude that ub(f,Q(X), µ)r ≤ ε. By replacing Q(X) by T (X)
in the above, the same argument works for ub(f, T (X), µ)r.

The upshot is that whenever we apply the polynomial kernel method in
future chapters to obtain convergence rates for the hierarchies of lower bounds,
we more or less automatically obtain rates for the corresponding upper bounds
as well. As we have mentioned, these rates are usually not better than the
ones yielded by a direct analysis.

6.3. Sum-of-squares hierarchies and cubature rules

To close this chapter, we present some connections between sum-of-squares
hierarchies and cubature rules. Let X ⊆ Rn be a compact set equipped with
a measure µ. Let r ∈ N. We say that:

W := {(xj , wj) : 1 ≤ j ≤ N} ⊆ X× R (6.11)

is a cubature rule for (X, µ) of power r and size N if:

�

X
p(x)dµ(x) =

N�

i=1

wjp(xj)

for all polynomials p ∈ P(X) of degree r. We say that W is positive when
wj > 0 for all 1 ≤ j ≤ N .

6.3.1. An upper bound. Let us move back to the context of minimizing
a polynomial f of degree d over X. Given a cubature rule W for (X, µ) as
in (6.11), one may naturally define an upper bound on the global minimum
fmin of f by setting:

ub(f,X,W)cub := min
1≤j≤N

f(xj) ≥ fmin.

Indeed, we have simply sampled the feasible region X. The point is that when
W is positive and has power at least 2r+d, the resulting bound ub(f,X,W)cub
is at least as good as the measure-based upper bound ub(f,X, µ)r. This
fact was first pointed out in [MPSV20]. It was used by de Klerk and Lau-
rent [dKL19] to show tightness of their analysis in [dKL20b] of the measure-
based bounds on [−1, 1]n. Some further implications can be found in [dKL19]
as well. It can be proven as follows. Let σ∗ ∈ Σ[x]r be an optimum solution
to the program (6.3) defining ub(f,X, µ)r, meaning σ∗ is a density and

�

X
f(x)σ∗(x)dµ(x) = ub(f,X, µ)r.
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Using the definition of a cubature rule, the fact that deg(σ∗) = 2r and the
fact that wj > 0, we see that:

ub(f,X, µ)r =

�

X
f(x)σ∗(x)dµ(x) =

N�

i=1

wjf(xj)σ
∗(xj)

≥ min
1≤j≤N

f(xj) ·
N�

i=1

wjσ
∗(xj) = ub(f,X,W)cub.

A similar argument works for the bounds ub(f,Q(X), µ)r, ub(f, T (X), µ)r and
the push-forward bound ub(f,X, µ)r.

Optimizing over gridsets. Having seen that optimizing over the points of
a cubature rule on X yields a good upper bound on fmin, it is natural to
ask what happens when we optimize instead over a simpler subset of X, and
indeed, this question has been considered in the literature. For example, op-
timizing over the mesh Gr = {i/r : 0 ≤ i ≤ r}n ⊆ [0, 1]n, r ∈ N yields an
upper bound which is within O(1/r2) of the true minimum of a polynomial
f on [0, 1]n, see [dKLLS17]. An analogous statement holds on the simplex,
see [dKLVS17]. These upper bounds thus have the same asymptotic error in
r as Lasserre’s measure-based upper bounds. Importantly, though, we should
note that for fixed r ∈ N, the set Gr (used for the hypercube) is of expo-
nential size (r+ 1)n, whereas the measure-based bounds may be computed in
polynomial time.

6.3.2. A lower bound. One may also use cubature rules to define lower
bounds on fmin. As we will see now, though, this is a bit more involved. We
begin with a slight reinterpretation of the polynomial kernel method above.
Let K be a polynomial kernel on X whose associated operator K satisfies
properties (P1) and (P2). Consider the parameter:

lb(f,X,K)harm := min
x∈X

K−1f(x). (6.12)

As the notation suggests, this parameter is a lower bound on fmin. In fact, it
is a lower bound on lb(f,Q(X))r. Indeed, the function

K−1f − lb(f,X,K)harm

is nonnegative on X by definition. By (P1) and (P2), we thus have:

f − lb(f,X,K)harm = K
�
K−1f − lb(f,X,K)harm

�
∈ Q(X)2r,

showing that (cf. (6.1)):

lb(f,X,K)harm ≤ lb(f,Q(X))r ≤ fmin. (6.13)

This gives us the following (informal) reinterpretation of Lemma 6.1 (which
we find rather clarifying).
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Remark 6.3. Let ε > 0, and suppose that we are able to find a kernel K
on X which satisfies (P1), (P2) and for which:

fmin − lb(f,X,K)harm ≤ ε. (6.14)

Then fmin − lb(f,Q(X))r ≤ ε.

In light of this remark, all that remains to analyze lb(f,Q(X))r is thus to
construct kernels K for which fmin− lb(f,X,K)harm is small, which is precisely
what we will do in upcoming chapters.

From a practical point of view, the problem with the bound lb(f,X,K)harm
is that it is not clear how one may compute it. Indeed, even if one is able to
evaluate the function K−1f(x) for all x ∈ X, one still has to determine the
minimum (6.12). We can address this problem using a cubature rule; which
is an idea due essentially to Christancho and Velasco [CV22] (who consider
specifically the case X = Sn−1). Let W = {(xj , wj) : 1 ≤ j ≤ N} again be a
positive cubature rule for (X, µ) of power 2r + d. Consider the parameter:

lb(f,X,K,W)cub := min
1≤j≤N

K−1f(xj),

which may be computed by evaluating K−1f(x) at only N points x ∈ X.
Again, as our notation suggests, this parameter is a lower bound on fmin.
More precisely, we have:

lb(f,X,K)harm ≤ lb(f,X,K,W)cub ≤ lb(f,Q(X))r ≤ fmin. (6.15)

The first inequality is by definition. The second inequality follows in a way
similar to (6.13) (the attentive reader may also recognize the argument from
the proof of Lemma 6.2): Note that K−1f(xj)− lb(f,X,K,W)cub ≥ 0 for all
1 ≤ j ≤ N by definition. Assuming that K(·,y) ∈ Q(X)2r for all y ∈ X, it
follows that:

f(x)− lb(f,X,K,W)cub = KK−1
�
f(x)− lb(f,X,K,W)cub

�

=

�

X
K(x,y)

�
K−1f(y)− lb(f,X,K,W)cub

�
dµ(y)

=
N�

j=1

K(x,xj)wj

�
K−1f(xj)− lb(f,X,K,W)cub

�

which shows that f(x)− lb(f,X,K,W)cub lies in Q(X)2r, and thus that:

lb(f,X,K,W)cub ≤ lb(f,Q(X))r.

In upcoming chapters and in the work [FF21] on Sn−1, convergence rates
for the sum-of-squares bounds lb(f,Q(X))r are always shown by constructing
kernels Kr in Q(X)2r of increasing degree r for which the (weaker) bounds
lb(f,X,Kr)harm are close to fmin. By (6.15), this immediately implies conver-
gence rates for the bounds lb(f,X,Kr,W)cub as well.
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The hypersphere. Consider the special case of minimization of a polynomial
f over the unit sphere Sn−1. In [FF21], the authors construct kernels Kr in
Q(Sn−1)2r that satisfy (6.14) with ε = O(1/r2), thereby showing that the
bounds lb(f,Q(Sn−1))r converge to fmin at a rate in O(1/r2). By (6.15),
this directly implies the same convergence rate for the cubature based bounds
lb(f, Sn−1,Kr,W)cub. In light of this fact, it would be interesting to actually
compute these bounds. There are two potential obstacles in doing so. First,
one needs to be able to evaluate K−1

r f(x) for x ∈ X. Second, one needs a
(preferably small) positive cubature rule W of power 2r + deg(f) for Sn−1

(w.r.t. the uniform measure). As the kernels Kr are of the form (6.7), the first
obstacle can be overcome using the formula (6.9). In [CV22], the authors
overcome the second obstacle in part by using numerically stable cubature
rules of size N ≈ rn. Fixing n, this results in an alternative hierarchy of
tractable lower bounds on fmin which may be computed without the need to
solve any semidefinite programs.

6.4. Discussion

We have presented a unified approach to prove convergence rates for the
lower bounds based on kernel operators, and the Christoffel-Darboux kernel
in particular. In upcoming chapters, we specialize our method to particular
sets X, which include the binary cube, the unit ball, the standard simplex and
the box [−1, 1]n.

Connecting different hierarchies. Our method also reveals some connec-
tions between upper and lower bounds using sums of squares and bounds
using cubature rules, which we have presented in Section 6.2 and Section 6.3.
They may be summarized as follows. Let X be a compact semialgebraic set
equipped with a measure µ. Suppose we have a kernel K on X in Q(X)2r and
assume that its associated operator K satisfies K(1) = 1. Furthermore, let
W = {(xj , wj) : 1 ≤ j ≤ N} be a positive cubature rule for (X, µ) of power
2r + deg(f). Then we have:

lb(f,X,K)harm ≤ lb(f,X,K,W)cub ≤ lb(f,Q(X))r ≤ fmin ≤ ub(f,X,W)cub ≤ ub(f,X)r ≤ Kf(x∗)

min
x∈X

K−1f(x) min
1≤j≤N

K−1f(xj) f(x∗) min
1≤j≤N

f(xj) min
x∈X

Kf(x)

= = = = ≤

Possible extensions. In Part 1 of this thesis, we saw that one can show
(near) tight convergence rates for the measure-based upper bounds in a very
general setting. Obtaining such general results for the lower bounds using
our method of proof seems difficult; so far it can only be applied to highly
structured sets X, where the Christoffel-Darboux kernel admits a nice expres-
sion. It is an important open question whether one may adapt our method to
settings with less structure.
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In regards to the lower bounds based on cubature rules discussed in Sec-
tion 6.3, it should in principle be possible to perform explicit computations
on some of the sets we consider in future chapters. In order to do so, one
would have to adapt the ideas used in [CV22] for the hypersphere Sn. Most
importantly, one would need to find good cubature rules for these sets.

Acknowledgments. We thank Monique Laurent and Mauricio Velasco for
fruitful discussions on the presentation of the material and the connection to
cubature rules.
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CHAPTER 7

Application: The binary cube

I have completely forgotten the symbolic
calculus.

Emily Noether

This chapter is based on my joint work [SL21b] with Monique Laurent.

We consider the problem of minimizing a polynomial f ∈ R[x] of degree
d ≤ n over the n-dimensional binary hypercube Bn = {0, 1}n, i.e., of comput-
ing:

fmin := min
x∈Bn

f(x). (7.1)

This optimization problem is NP-hard in general. Indeed, as is well-known,
one can model an instance of max-cut on the complete graph Kn with edge
weights w = (wij) as a problem of the form (7.1) by setting:

f(x) = −
�

1≤i<j≤n

wij(xi − xj)
2.

As another example one can compute the stability number α(G) of a graph
G = (V,E) via the program

α(G) = max
x∈B|V |

�

i∈V
xi −

�

{i,j}∈E
xixj .

One may replace the binary cube Bn = {0, 1}n by the discrete cube {±1}n, in
which case maximizing a quadratic polynomial x�Ax has many other appli-
cations, e.g., to max-cut [GW95], to the cut norm [AN04], or to correlation
clustering [BBC04]. Approximation algorithms are known depending on the
structure of the matrix A (see [AN04, CW04, GW95]), but the problem
is known to be NP-hard to approximate within any factor less than 13/11
[ABH+05].

Sum-of-squares hierarchies on the binary cube. The binary cube is a
semialgebraic set, with description:

Bn = {x2
i − xi = 0 : 1 ≤ i ≤ n}.

101
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102 7. APPLICATION: THE BINARY CUBE

The space P(Bn) of polynomials on {0, 1}n is given by R[x]/I, where I is the
ideal generated by the polynomials x1 − x2

1, . . . ,xn − x2
n. Alternatively, we

have:

P(Bn) = span{xα : α ∈ {0, 1}n}.

Lower bounds. The quadratic module Q(Bn) and preordering T (Bn) in this
case are rather special; namely, we have:

Q(Bn) = T (Bn) = {p ∈ R[x] : p is a sum of squares on Bn}.

Here, ‘p is a sum of squares on Bn’ means that there exists a sum of squares
q ∈ Σ[x] such that p(x) = q(x) for all x ∈ Bn; or alternatively that p− q lies
in the ideal I. The lower bounds lb(f,Q(Bn))r and lb(f, T (Bn))r on fmin are
therefore equal, and given by:

sup
λ∈R

{f − λ is a sum-of-squares of degree at most 2r on Bn} .

For simplicity, we will write lb(f)r for these bounds throughout this chapter.
Another peculiarity of this setting is that the bounds lb(f)r have finite

convergence: lb(f)r = fmin for r ≥ n [Las01, Lau03a]. In fact, it has been
shown in [STKI17] that the bound lb(f)r is exact already for 2r ≥ n+ d− 1.
That is:

lb(f)r = fmin for r ≥ n+ d− 1

2
. (7.2)

In addition, it is shown in [STKI17] that the bound lb(f)r is exact for
2r ≥ n+ d− 2 when the polynomial f has only monomials of even degree.
This extends an earlier result of [FSP16] shown for quadratic forms (d = 2),
which applies in particular to the case of max-cut. Furthermore, this result
is tight for max-cut, since one needs to go up to order 2r ≥ n in order to
reach finite convergence (in the cardinality case when all edge weights are 1)
[Lau03b]. Similarly, the result (7.2) is tight when d is even and n is odd
[KLM16].

Upper bounds. Let µ be the uniform probability measure on Bn. In addition
to the lower bound lb(f)r, we also consider the measure-based upper bound
ub(f,Bn, µ)r on fmin, which we recall is defined as follows:

ub(f,X, µ)r := inf
s∈Σ[x]2r

��

Bn

f(x) · s(x)dµ(x) :
�

Bn

s(x)dµ(x) = 1

�
. (7.3)

Throughout this chapter, we shall simply write ub(f)r for this bound. The
bound ub(f)r also converges to fmin in finitely many steps [Las11]; in fact it
is not difficult to see that it is exact at order r = n and that this is tight (see
Section 7.3).
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Outline. The main contribution of this chapter is an analysis of the quality
of the bounds lb(f)r for parameters r, n ∈ N with 2r < n+d−1, i.e., for which
the bounds are not exact. The following is our main result, which expresses
the error of the bound lb(f)r in terms of the roots of Krawtchouk polynomials,
which we recall from Chapter 1 are classical univariate orthogonal polynomials
with respect to a discrete measure on the set {0, 1, . . . , n} (see also Section 7.1
below).

Theorem 7.1. Fix d ≤ n and let f ∈ R[x] be a polynomial of degree d. For
r, n ∈ N, let ξnr be the least root of the degree r Krawtchouk polynomial (7.11)
with parameter n. Then, if (r + 1)/n ≤ 1/2 and d(d+ 1) · ξnr+1/n ≤ 1/2, we
have:

fmin − lb(f)r
�f�∞

≤ 2Cd · ξnr+1/n. (7.4)

Here Cd > 0 is an absolute constant depending only on d and we set �f�∞ :=
maxx∈Bn |f(x)|.

The extremal roots of Krawtchouk polynomials are well-studied in the
literature. The following result of Levenshtein [Lev98] shows their asymptotic
behaviour.

Theorem 7.2 ([Lev98], Section 5). For t ∈ [0, 1/2], define the function

ϕ(t) = 1/2−
�
t(1− t). (7.5)

Then the least root ξnr of the degree r Krawtchouk polynomial with parameter
n satisfies

ξnr /n ≤ ϕ(r/n) + c · (r/n)−1/6 · n−2/3 (7.6)

for some universal constant c > 0.

Applying (7.6) to (7.4), we find that the relative error of the bound lb(f)r
in the regime r ≈ t · n behaves as the function ϕ(t) = 1/2 −

�
t(1− t), up

to a term in O(1/n2/3), which vanishes as n tends to ∞. As an illustration,
Figure 7.1 in Section 7.5 shows the function ϕ(t).

As we explain below, we will use the polynomial kernel method of Chap-
ter 6 to prove Theorem 7.1. As we saw in Section 6.2, we can show the
following analog of Theorem 7.1 for the upper bounds ub(f)r as a side result.
To our knowledge this is the first analysis of the upper bounds on Bn.

Theorem 7.3. Fix d ≤ n and let f ∈ R[x] be a polynomial of degree d.
Then, for any r, n ∈ N with (r + 1)/n ≤ 1/2, we have:

ub(f)r − fmin

�f�∞
≤ Cd · ξnr+1/n,

where Cd > 0 is the constant mentioned in Theorem 7.1.
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Note that the above analysis of ub(f)r does not require any condition on
the size of ξnr+1 as was necessary for the analysis of lb(f)r in Theorem 7.1.
Indeed, as will become clear later, the condition put on ξnr+1 follows from a
technical argument (see Lemma 7.13), which is not required in the proof of
Theorem 7.3.

Asymptotic analysis for both hierarchies. The results above show that
the relative error of both hierarchies is bounded asymptotically by the function
ϕ(t) from (7.5) in the regime r ≈ t · n. This is summarized in the following
corollary, which can be seen as an asymptotic version of Theorem 7.1 and
Theorem 7.3.

Corollary 7.4. Fix d ≤ n and for n, r ∈ N write

E(r)(n) := sup
f∈R[x]d

�
fmin − lb(f)r : �f�∞ = 1

�
,

E(r)(n) := sup
f∈R[x]d

�
ub(f)r − fmin : �f�∞ = 1

�
.

Let Cd be the constant of Theorem 7.1 and let ϕ(t) be the function from (7.5).
Then, for any t ∈ [0, 1/2], we have:

lim
r/n→t

E(r)(n) ≤ Cd · ϕ(t)

and, if d(d+ 1) · ϕ(t) ≤ 1/2, we also have:

lim
r/n→t

E(r)(n) ≤ 2 · Cd · ϕ(t).

Here, the limit notation r/n → t means that the claimed convergence holds
for all sequences (nj)j and (rj)j of integers such that limj→∞ nj = ∞ and
limj→∞ rj/nj = t.

We close with some remarks. First, note that ϕ(1/2) = 0. Hence Corollary
7.4 tells us that the relative error of both hierarchies tends to 0 as r/n→ 1/2.
We thus ‘asymptotically’ recover the exactness result (7.2) of [STKI17].

Our results in Theorems 7.1 and 7.3 and Corollary 7.4 extend directly to
the case of polynomial optimization over the discrete cube {±1}n instead of
the binary cube Bn = {0, 1}n, as can easily be seen by applying a change of
variables x ∈ {0, 1} �→ 2x − 1 ∈ {±1}. In addition, as we show in Appendix
7.5, our results extend to the case of polynomial optimization over the q-ary
cube {0, 1, . . . , q − 1}n for q > 2.

Overview of the proof. As mentioned, we follow the proof strategy of Chap-
ter 6. For convenience, we sketch here the specialization of this method to the
setting of the binry cube. Let f ∈ R[x]d be the polynomial with degree d
for which we wish to analyze the bounds lb(f)r and ub(f)r. After rescaling,
and up to a change of coordinates, we may assume w.l.o.g. that f attains
its minimum over Bn at 0 ∈ Bn and that fmin = 0 and fmax = 1. So we
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have �f�∞ := maxx∈Bn |f(x)| = 1. To simplify notation, we will make these
assumptions throughout this chapter.

Let µ be the uniform probability measure on Bn. A kernel K : Bn × Bn → R
induces a linear operator K on the space of polynomials P(Bn) by:

Kp(x) :=

�

Bn

p(y)K(x,y)dµ(y) =
1

2n

�

y∈Bn

p(y)K(x,y).

Recall from Chapter 6 that in order to analyze the lower bounds lb(f)r, it
suffices to construct a kernel K whose associated operator K is invertible and
satisfies:

K(1) = 1, (P1)

Kp ∈ Q(Bn)2r for all p ∈ P+(Bn)d (P2)

max
x∈Bn

|K−1f(x)− f(x)| ≤ ε. (P3)

Lemma 7.5 (Specialization of Lemma 6.1). Let K be a kernel whose asso-
ciated operator satisfies (P1), (P2) and (P3). Then we have fmin− lb(f)r ≤ ε.

Proof. Writing f̃(x) = f(x) + ε, we have:

�K−1f̃ − f̃�∞ = �K−1f − f�∞ ≤ ε�f�∞ = ε,

where we use the fact that K(1) = 1 = K−1(1) for the first equality and (P3)

for the inequality. We then see that K−1f̃(x) ≥ f̃(x) − ε = f(x) ≥ fmin = 0
on Bn, and so (P2) implies that:

f(x) + ε = KK−1(f + ε) ∈ Q(Bn),

or in other words that fmin − lb(f)r ≤ ε. �

As we see below, the key feature of this setting is that the Christoffel-
Darboux kernel CD2r is given by:

CD2r(x,y) =
2r�

k=0

K(n)
k (d(x,y)) (x,y ∈ Bn),

where K(n)
k is the Krawtchouk polynomial of degree k, and d(x,y) = �x−y�1

denotes the Hamming distance between x and y. The idea is then to consider
a kernel K on Bn of the form:

K(x,y) = u2(d(x,y)),

where u ∈ R[x]r is a univariate polynomial of degree at most r. This kernel
clearly lies in Q(Bn)2r for fixed y ∈ Bn. By Lemma 6.2, this implies that
its associated operator K satisfies (P2). Furthermore, if we write u2(x) =
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�2r
k=0 λkK(n)

k (x) in the basis of Krawtchouk polynomials, we then have:

K(x,y) = u2(d(x,y)) =
2r�

k=0

λkK(n)
k (d(x,y)) = CD2r(x,y;λ),

where CD2r(x,y;λ) is the perturbed Christoffel-Darboux kernel (6.7). The
eigenvalues of K are thus equal to λ0,λ1, . . . ,λ2r. As we have seen in Chap-
ter 6, K therefore satisfies (P1) if λ0 = 1, and (P3) if λk ≈ 1 for 1 ≤ k ≤ d
(we make this precise in Section 7.2).

Interestingly, the problem of finding a polynomial u for which the co-
efficients λk satisfy these properties reduces to analyzing the quality of the
measure-based upper bounds in a particular univariate setting. In order to
perform this analysis and conclude the proof of Theorem 7.1, we make use of
the connection between the upper bounds and roots of orthogonal polynomials
(in this case the Krawtchouk polynomials) mentioned first in Chapter 2.

Organization. The rest of the chapter is structured as follows. We review the
necessary background on Fourier analysis on the binary cube in Section 7.1.
Then, in Section 7.2, we give a proof of Theorem 7.1. In Section 7.3, we
discuss how to generalize the proofs of Section 7.2 to obtain Theorem 7.3. In
Section 7.4, we give the proof of a technical lemma needed in the proof of The-
orem 7.1. Finally, we we indicate in Section 7.5 how our arguments extend to
the case of polynomial optimization over the q-ary hypercube {0, 1, . . . , q − 1}n
for q > 2.

7.1. Preliminaries

In this section, we cover some standard Fourier analysis on the binary
cube, most of which can also be found in Chapter 1. We also prove some
small statements on Krawtchouk polynomials that we will need later.

7.1.1. Notations. For n ∈ N, we write Bn = {0, 1}n for the binary
hypercube of dimension n. We let µ denote the uniform probability measure on
Bn, given by µ = 1

2n
�

x∈Bn δx, where δx is the Dirac measure at x. Further, we
write |x| =�i xi = |{i ∈ [n] : xi = 1}| for the Hamming weight of x ∈ Bn, and
d(x,y) = |{i ∈ [n] : xi �= yi}| for the Hamming distance between x,y ∈ Bn.
We let Sym(n) denote the set of permutations of the set [n] = {1, . . . , n}.

We consider polynomials p : Bn → R on Bn. The space P(Bn) of such
polynomials is given by the quotient ring of R[x] over the equivalence relation
p ∼ q if p(x) = q(x) on Bn. In other words, P(Bn) = R[x]/I, where I is
the ideal generated by the polynomials xi − x2

i for i ∈ [n], which can also be
seen as the vector space spanned by the (multilinear) polynomials

�
i∈I xi for

I ⊆ [n].
For a ≤ b ∈ N, we let [a : b] denote the set of integers a, a+ 1, . . . , b.
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7.1.2. The character basis. Let �·, ·�µ be the inner product on P(Bn)
given by:

�p, q�µ =

�

Bn

p(x)q(x)dµ(x) =
1

2n

�

x∈Bn

p(x)q(x).

The space P(Bn) has an orthonormal basis w.r.t. �·, ·�µ given by the charac-
ters :

χa(x) := (−1)x·a =
�

i:ai=1

(1− 2xi) (a ∈ Bn) . (7.7)

In other words, the set {χa : a ∈ Bn} of all characters on Bn forms a basis for
P(Bn) and

�χa,χb�µ =
1

2n

�

x∈Bn

χa(x)χb(x) = δa,b ∀a, b ∈ Bn. (7.8)

Then any polynomial p ∈ P(Bn) can be expressed in the basis of characters,
known as its Fourier expansion:

p(x) =
�

a∈Bn

�p(a)χa(x) ∀x ∈ Bn (7.9)

with Fourier coefficients �p(a) := �p,χa�µ ∈ R.
The group Aut(Bn) of automorphisms of Bn is generated by the coordinate

permutations, of the form x �→ σ(x) := (xσ(1), . . . ,xσ(n)) for σ ∈ Sym(n), and
the automorphisms corresponding to bit-flips, of the form x ∈ Bn �→ x⊕a ∈ Bn

for a ∈ Bn. If we set

Hk := span{χa : |a| = k} (0 ≤ k ≤ n),

then each Hk is an irreducible, Aut(Bn)-invariant subspace of P(Bn) of dimen-
sion

�
n
k

�
. Using (7.9), we may then decompose P(Bn) as the direct sum:

P(Bn) = H0 ⊥ H1 ⊥ · · · ⊥ Hn,

where the subspaces Hk are pairwise orthogonal w.r.t. �·, ·�µ. In fact, we have
that P(Bn)d = H0 ⊥ H1 ⊥ · · · ⊥ Hd for all d ≤ n, and we may thus write any
p ∈ P(Bn)d (in a unique way) as

p = p0 + p1 + · · ·+ pd (pk ∈ Hk).

The polynomials pk ∈ Hk (k = 0, . . . , d) are known as the harmonic compo-
nents of p and the decomposition (7.1.2) as the harmonic decomposition of p.
We will make extensive use of this decomposition throughout.

Let St(0) ⊆ Aut(Bn) be the set of automorphisms fixing 0 ∈ Bn, which
consists of the coordinate permutations x �→ σ(x) = (xσ(1), . . . ,xσ(n)) for
σ ∈ Sym(n). The subspace of functions in Hk that are invariant under St(0)
is one-dimensional and it is spanned by the function

Xk(x) :=
�

|a|=k

χa(x). (7.10)



582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot
Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022 PDF page: 116PDF page: 116PDF page: 116PDF page: 116

108 7. APPLICATION: THE BINARY CUBE

These functions Xk are known as the zonal spherical functions with pole
0 ∈ Bn.

7.1.3. Krawtchouk polynomials. For k ∈ N, the Krawtchouk polyno-
mial of degree k (and with parameter n) is the univariate polynomial in x
given by:

K(n)
k (x) :=

k�

i=0

(−1)i
�
x

i

��
n− x

k − i

�
. (7.11)

The Krawtchouk polynomials form an orthogonal basis for R[x] with respect
to the inner product given by the following discrete probability measure on
the set [0 : n] = {0, 1, . . . , n}:

ω :=
1

2n

n�

t=0

w(x)δx, with w(x) :=

�
n

x

�
.

Indeed, for all k, k� ∈ N we have:

�K(n)
k ,K(n)

k� �ω :=
1

2n

n�

x=0

K(n)
k (x)K(n)

k� (x)w(x) = δk,k�

�
n

k

�
. (7.12)

The following (well-known) lemma explains the connection between the
Krawtchouk polynomials and the character basis on P(Bn).

Lemma 7.6. Let x ∈ [0 : n] and choose x,y ∈ Bn so that d(x,y) = x.
Then for any 0 ≤ k ≤ n we have:

K(n)
k (x) =

�

|a|=k

χa(x)χa(y). (7.13)

In particular, we have:

K(n)
k (x) =

�

|a|=k

χa(1
x0n−x) = Xk(1

x0n−x), (7.14)

where 1x0n−x ∈ Bn is given by (1x0n−x)i = 1 if 1 ≤ i ≤ x and (1x0n−x)i = 0
if x+ 1 ≤ i ≤ n.

Proof. Noting that χa(x)χa(y) = χa(x + y) and |x + y| = d(x,y) = x,
we have:

�

|a|=k

χa(x)χa(y) =

k�

i=0

(−1)i ·#{|a| = k : a · (x+ y) = i}

=

k�

i=0

(−1)i
�
x

i

��
n− x

k − i

�
= K(n)

k (x).

�
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From this, we see that any polynomial p ∈ P(Bn)d that is invariant under

the action of St(0) is of the form
�d

k=1 λkK(n)
k (|x|) for some scalars λk, and

thus p(x) = u(|x|) for some univariate polynomial u ∈ R[x]d.
It will sometimes be convenient to work with a different normalization of

the Krawtchouk polynomials, given by:

�Kn
k (x) := K(n)

k (x)/K(n)
k (0) (k ∈ N). (7.15)

So �Kn
k (0) = 1. Note that for any k ∈ N, we have

�K(n)
k �2ω := �K(n)

k ,K(n)
k �ω =

�
n

k

�
= K(n)

k (0),

meaning that �Kn
k (x) = K(n)

k (x)/�K(n)
k �2ω.

Finally we give a short proof of two basic facts on Krawtchouk polynomials
that will be used below.

Lemma 7.7. We have:

�Kn
k (x) ≤ �Kn

0 (x) = 1

for all 0 ≤ k ≤ n and x ∈ [0 : n].

Proof. Given x ∈ [0 : n] consider an element x ∈ Bn with Hamming
weight x, for instance the element 1x0n−x from Lemma 7.6. By (7.14) we have

K(n)
k (x) =

�

|a|=k

χa(x) ≤
�
n

k

�
= K(n)

k (0),

making use of the fact that |χa(x)| = 1 for all a ∈ Bn. �
Lemma 7.8. We have:

| �Kn
k (x)− �Kn

k (x+ 1)| ≤ 2k

n
, (x = 0, 1, . . . , n− 1)

| �Kn
k (x)− 1| ≤ 2k

n
· x (x = 0, 1, . . . , n)

(7.16)

for all 0 ≤ k ≤ n.

Proof. Let x ∈ [0 : n− 1] and 0 < k ≤ d. Consider the elements 1x0n−x

and 1x+10n−x−1 of Bn from Lemma 7.6. We have:

|K(n)
k (x)−K(n)

k (x+ 1)| (7.14)= |
�

|a|=k

χa(1
x0n−x)− χa(1

x+10n−x−1)|

≤ 2 ·#
�
a ∈ Bn : |a| = k, ax+1 = 1

�
= 2

�
n− 1

k − 1

�
,

where for the inequality we note that χa(1
x0n−x) = χa(1

x+10n−x−1) if ax+1 = 0.

As K(n)
k (0) =

�
n
k

�
, this implies that:

| �Kn
k (x)− �Kn

k (x+ 1)| ≤ 2

�
n− 1

k − 1

�
/

�
n

k

�
=

2k

n
.
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110 7. APPLICATION: THE BINARY CUBE

This shows the first inequality of (7.16). The second inequality follows using
the triangle inequality, a telescope summation argument and the fact that
�Kn
k (0) = 1. �

7.1.4. Invariant kernels and the Funk-Hecke formula. Given a uni-
variate polynomial u ∈ R[x] of degree r with 2r ≥ d, consider the kernel
K : Bn × Bn → R defined by

K(x,y) := u2(d(x,y)). (7.17)

A kernel of the form (7.17) coincides with a polynomial of degree 2deg(u) in
x on the binary cube Bn, as d(x,y) =

�
i(xi + yi − 2xiyi) for x,y ∈ Bn.

Furthermore, it is invariant under Aut(Bn), in the sense that:

K(x,y) = K(π(x),π(y)) ∀x,y ∈ Bn,π ∈ Aut(Bn).

The kernel K acts as a linear operator K : P(Bn)→ P(Bn) by:

Kp(x) :=

�

Bn

p(y)K(x,y)dµ(y) =
1

2n

�

y∈Bn

p(y)K(x,y).

We may expand the polynomial u2 ∈ R[x]2r in the basis of Krawtchouk poly-
nomials as:

u2(x) =

2r�

k=0

λkK(n)
k (x) (λk ∈ R). (7.18)

As we show now, the eigenvalues of the operator K are given precisely by the
coefficients λk occurring in this expansion. This relation is analogous to the
classical Funk-Hecke formula for spherical harmonics, see also Chapter 1.

Theorem 7.9 (Funk-Hecke). Let p ∈ P(Bn)d with harmonic decomposition
p = p0 + p1 + · · ·+ pd. Then we have:

Kp = λ0p0 + λ1p1 + · · ·+ λdpd. (7.19)
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7.2. PROOF OF MAIN RESULT 111

Proof. It suffices to show that Kχz = λ|z|χz for all z ∈ Bn. So we
compute for x ∈ Bn:

Kχz(x) =
1

2n

�

y∈Bn

χz(y)u
2(d(x,y))

(7.18)
=

1

2n

�

y∈Bn

χz(y)

2r�

i=0

λiK(n)
i (d(x,y))

(7.13)
=

2r�

i=0

λi

�

y∈Bn

χz(y)
�

|a|=i

χa(x)χa(y)

=
2r�

i=0

λi

�

|a|=i

� �

y∈Bn

χz(y)χa(y)
�
χa(x)

(7.8)
=

1

2n

2r�

i=0

λi

�

|a|=i

2nδz,aχa(x)

= λ|z|χz(x).

�

Finally, we note that since the Krawtchouk polynomials form an orthogonal
basis for R[x], we may express the coefficients λk in the decomposition (7.18)
of u2 in the following way:

λk = �K(n)
k , u2�ω / �K(n)

k �2ω = ��Kn
k , u

2�ω. (7.20)

In addition, since in view of Lemma 7.7 we have �Kn
k (x) ≤ �Kn

0 (x) for all x ∈
[0 : n], it folllows that

λk ≤ λ0 for 0 ≤ k ≤ 2r. (7.21)

7.2. Proof of main result

We consider a polynomial f of degree d ∈ N to be minimized over Bn,
which we assume w.l.o.g. to satisfy fmin = f(0) = 0 and �f�∞ = 1. Let
u ∈ R[x] be a univariate polynomial of degree r (which we select later) with
2r ≥ d. Recall that we decompose u2 in the basis of Krawtchouck polynomials
as:

u2(x) =
2r�

k=0

λkK(n)
k (x) (λk ∈ R). (7.22)

Consider the kernel K(x,y) = u2(d(x,y)) and its associated linear operator
K, which has eigenvalues λ0,λ1, . . . ,λ2r by the Funk-Hecke formula (7.19). In
order to prove Theorem 7.1, it suffices to show that u may be chosen so that
K satisfies (P1), (P2) and (P3).

Let us first note that the polynomial x→ K(x,y) lies in Q(Bn)2r for each
y ∈ Bn by definition. Therefore, K always satisfies (P2).
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112 7. APPLICATION: THE BINARY CUBE

Lemma 7.10 (Specialization of Lemma 6.2). Let K be a polynomial kernel
on Bn and assume that K(x,y) lies in Q(Bn)2r for each y ∈ Bn. Then the
associated operator K satisfies (P2).

Proof. Let p ∈ R[x] be a polynomial, and assume that p(x) ≥ 0 for all
x ∈ Bn. Then we have:

Kp(x) :=
1

2n

�

y∈Bn

K(x,y)� �� �
∈Q(Bn)

p(y)����
≥0

,

which lies in the cone Q(Bn)2r. �

Next, we note that K(1) = λ0, and so (P1) is satisfied precisely when
λ0 = 1. It remains to consider (P3). Recall that we are interested there in
bounding the quantity:

max
x∈Bn

|K−1f(x)− f(x)|.

Our approach consists of two parts. First, we relate this quantity to the
coefficients λk in the decomposition (7.22). Then, using this relation and the
connection between Lasserre’s upper bounds and extremal roots of orthogonal
polynomials outlined in Section 2.2, we show that u may be chosen such that
the quantity is of the order ξnr+1/n, where ξnr+1 is the smallest root of the
degree r + 1 Krawtchouk polynomial (with parameter n).

7.2.1. Expressing (P3) in terms of the coefficients λk. We need the
following technical lemma, which bounds the sup-norm �pk�∞ of the harmonic
components pk of a polynomial p ∈ P(Bn) in terms of �p�∞, the sup-norm of
p itself. The key point is that this bound is independent of the dimension n.
We delay the proof which is rather technical to Section 7.4.

Lemma 7.11. There exists a constant γd > 0, depending only on d, such
that for any p = p0 + p1 + . . .+ pd ∈ P(Bn)d, we have:

�pk�∞ ≤ γd�p�∞ for all 0 ≤ k ≤ d.

Corollary 7.12. Assume that λ0 = 1 and λk �= 0 for 1 ≤ k ≤ d. Then
we have:

max
x∈Bn

|K−1f(x)− f(x)| ≤ γd · Λ, where Λ :=

d�

k=1

|λ−1
k − 1|. (7.23)

Proof. By assumption, the operator K is invertible and, in view of Funk-

Hecke formula (7.19), its inverse is given by: K−1p =
�d

i=0 λ
−1
i pk for any
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7.2. PROOF OF MAIN RESULT 113

p = p0 + p1 + . . .+ pd ∈ P(Bn)d. For each x ∈ Bn, we therefore have:

|K−1f(x)− f(x)| = |
d�

k=1

(λ−1
i − 1)fk(x)| ≤

d�

k=1

|λ−1
k − 1|�fk�∞

≤
d�

k=1

|λ−1
k − 1| · γd,

where we use Lemma 7.11 for the last inequality. �
The expression Λ in (7.23) is difficult to analyze. Therefore, following

[FF21], we consider instead the simpler expression:

Λ̃ :=
d�

k=1

(1− λk) = d−
d�

k=1

λk,

which is linear in the λk. Under the assumption that λ0 = 1, we have
λk ≤ λ0 = 1 for all k (recall relation (7.21)). Thus, Λ and Λ̃ are both mini-
mized when the λk are close to 1. The following lemma makes this precise.

Lemma 7.13. Assume that λ0 = 1 and that Λ̃ ≤ 1/2. Then we have

Λ ≤ 2Λ̃, and thus that:

max
x∈Bn

|K−1f(x)− f(x)| ≤ 2γd · Λ̃.

Proof. As we assume Λ̃ ≤ 1/2, we must have 1/2 ≤ λk ≤ 1 for all k.
Therefore, we may write:

Λ =

d�

k=1

|λ−1
k − 1| =

d�

k=1

|(1− λk)/λk| =
d�

k=1

(1− λk)/λk ≤ 2
d�

k=1

(1− λk) = 2Λ̃.

�
7.2.2. Optimizing the choice of the univariate polynomial u. In

light of Lemma 7.13, and recalling (7.20), we wish to find a univariate poly-
nomial u ∈ R[x]r for which:

λ0 = �1, u2�ω = 1, and

Λ̃ = d−
d�

k=1

λk = d−
d�

k=1

� �Kn
k , u

2�ω is small.

Unpacking the definition of �·, ·�ω, we thus need to solve the following opti-
mization problem:

inf
u∈R[x]r

��
g(x) · u2(x)dω(x) :

�
u2(x)dω(x) = 1

�
,

where g(x) := d−
d�

k=1

�Kn
k (x).

(7.24)
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114 7. APPLICATION: THE BINARY CUBE

(Indeed
�
gu2dω = �g, u2�ω = Λ̃ and

�
u2dω = �1, u2�ω.) We recognize that

this is exactly1 the program that defines the upper bound ub(g, [0 : n],ω)r for
the minimization of g on [0 : n]! Hence the optimal value of (7.24) is equal
to ub(g)r := ub(g, [0 : n],ω)r and, using Lemma 7.13, we may conclude the
following.

Theorem 7.14. Let g be as in (7.24). Assume that ub(g)r ≤ 1/2. Then
there exists a polynomial u ∈ R[x]r such that λ0 = 1 and:

max
x∈Bn

|K−1f(x)− f(x)| ≤ 2γd · ub(g)r.

It remains, then, to analyze ub(g)r. For this purpose, we follow a technique
outlined in Section 2.3. Note that gmin = g(0) = 0. We first show that g can
be upper bounded by its linear Taylor approximation at x = 0.

Lemma 7.15. We have:

g(x) ≤ �g(x) := d(d+ 1) · (x/n) ∀x ∈ [0 : n].

Furthermore, the minimum ĝmin of ĝ on [0 : n] clearly satisfies �gmin = �g(0) =
g(0) = gmin.

Proof. Using (7.16), we find for each k ≤ n that:

�Kn
k (x) ≥ �Kn

k (0)−
2k

n
· x = 1− 2k

n
· x ∀x ∈ [0 : n].

Therefore, we have:

g(x) := d−
d�

k=1

�Kn
k (x) ≤

d�

k=1

2k

n
· x = d(d+ 1) · (x/n) ∀x ∈ [0 : n].

�

Lemma 7.16. We have:

ub(g)r ≤ d(d+ 1) · (ξnr+1/n),

where ξnr+1 is the smallest root of the Krawtchouk polynomial K(n)
r+1.

Proof. This follows immediately from Proposition 1.2, noting that the
Krawtchouk polynomials are indeed orthogonal w.r.t. the measure ω on [0 : n]
(cf. (7.12)). �

Putting things together, we may prove our main result, Theorem 7.1.

1Technically, the density should be allowed to be a sum of squares, whereas the pro-
gram (7.24) requires it to be an actual square. This is no true restriction, though, since, as a
straightforward convexity argument shows, the optimum solution to (2.6) can in fact always
be chosen to be a square [Las11].
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7.3. THE UPPER BOUNDS 115

Proof of Theorem 7.1. Assume that r is large enough so that
d(d+ 1) · (ξnr+1/n) ≤ 1/2. By Lemma 7.16, we then have

ub(g)r ≤ d(d+ 1) · (ξnr+1/n) ≤ 1/2.

We are thus able to choose a polynomial u ∈ R[x]r whose associated operator
K satisfies K(1) = 1 and

max
x∈Bn

|K−1f(x)− f(x)| ≤ 2γd · d(d+ 1) · (ξnr+1/n).

That is, we may construct an operator K satisfying (P1), (P2) and (P3) with
ε = 2γd · d(d + 1) · (ξnr+1/n). We may use Lemma 7.5 to obtain Theorem 7.1
with constant Cd := γd · d(d+ 1).

�

7.3. The upper bounds

We turn now to analyzing the hierarchy ub(f)r of upper bounds defined
in (7.3) for a polynomial f ∈ R[x]d on the binary cube, whose definition is
repeated for convenience:

ub(f)r := inf
s∈Σ[x]r

��

Bn

f(x) · s(x)dµ :

�

Bn

s(x)dµ = 1

�
≥ fmin.

In principle, our analysis follows immediately from the proof of Theorem 7.1;
see Section 6.2. For exposition, we provide here a more direct argument.

As before, we may assume w.l.o.g. that fmin = f(0) = 0 and that fmax = 1.
To facilitate the analysis of the bounds ub(f)r, the idea is to restrict in (7.3)
to polynomials s(x) that are invariant under the action of St(0) ⊆ Aut(Bn),
i.e., depending only on the Hamming weight |x|. Such polynomials are of the
form s(x) = u(|x|) for some univariate polynomial u ∈ R[x]. Hence this leads
to the following, weaker hierarchy, where we now optimize over univariate
sums-of-squares:

ub(f)symr := inf
u∈Σ[x]r

��

Bn

f(x) · u(|x|)dµ(x) :
�

Bn

u(|x|)dµ(x) = 1

�
.

By definition, we must have ub(f)symr ≥ ub(f)r ≥ fmin, and so an analysis of
ub(f)symr extends immediately to ub(f)r.

The main advantage of working with the hierarchy ub(f)symr is that we
may now assume that f is itself invariant under St(0), after replacing f by its
symmetrization:

1

|St(0)|
�

σ∈St(0)
f(σ(x)).
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Indeed, for any u ∈ Σ[x]2r, we have that:�

Bn

f(x)u(|x|)dµ(x) = 1

|St(0)|
�

σ∈St(0)

�

Bn

f(σ(x))u(|σ(x)|)dµ(σ(x))

=

�

Bn

1

|St(0)|
�

σ∈St(0)
f(σ(x))u(|x|)dµ(x).

So we now assume that f is St(0)-invariant, and thus we may write:

f(x) = F (|x|) for some polynomial F (x) ∈ R[x]d.
By the definitions of the measures µ on Bn and ω on [0 : n] we have the
identities: �

Bn

u(|x|)dµ(x) =
�

[0:n]
u(x)dω(x),

�

Bn

F (|x|)u(|x|)dµ(x) =
�

[0:n]
F (x)u(x)dω(x).

Hence we get

ub(f)symr = inf
u∈Σ[x]2r

��

[0:n]
F (x) · u(x)dω(x) :

�

[0:n]
u(x)dω(x) = 1

�

= ub(F, [0 : n],ω)r.

In other words, the behaviour of the symmetrized hierarchy ub(f)symr over the
binary cube w.r.t. the uniform measure µ is captured by the behaviour of the
univariate hierarchy ub(F, [0 : n],ω)r over [0 : n] w.r.t. the discrete measure ω.

Now, we are in a position to make use again of the technique we employed

at the end of Section 7.2. First we find a linear upper estimator �F for F on
[0 : n].

Lemma 7.17. We have

F (x) ≤ �F (x) := d(d+ 1) · γd · x/n ∀x ∈ [0 : n],

where γd is the same constant as in Lemma 7.11.

Proof. Write F (x) =
�d

k=0 λk
�Kn
k (x) for some scalars λk. By assumption,

F (0) = 0 and thus
�d

k=0 λk = 0. We now use an analogous argument as for
Lemma 7.15:

F (x) =
d�

k=0

λk( �Kn
k (x)− 1) ≤

d�

k=0

|λk|| �Kn
k (x)− 1|

(7.16)

≤ max
k

|λk| · x ·
d�

k=0

2k

n

≤ max
k

|λk| · x · d(d+ 1)

n
.

As �f�∞ = 1, using Lemma 7.11, we can conclude that:

|λk| = max
x∈[0:n]

|λk
�Kn
k (x)| ≤ γd



582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot
Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022 PDF page: 125PDF page: 125PDF page: 125PDF page: 125

7.4. THE HARMONIC CONSTANT 117

which gives the desired result. �

In light of Lemma 7.16, we may now conclude that:

ub(F, [0 : n],ω)r ≤ d(d+ 1)γd · ξnr+1/n.

As ub(f)r ≤ ub(f)symr = ub(F, [0 : n],ω)r, we have thus shown Theorem 7.3
with constant Cd = d(d+ 1)γd. Note that in comparison to Lemma 7.16, we
only have the additional constant factor γd.

7.3.1. Exactness of the inner hierarchy. As is the case for the outer
hierarchy, the inner hierarchy is exact when r is large enough. Whereas the
outer hierarchy, however, is exact for r ≥ (n+ d− 1)/2, the inner hierarchy is
exact in general if and only if r ≥ n. We give a short proof of this fact below,
for reference.

Lemma 7.18. Let f be a polynomial on Bn. Then ub(f)r = fmin for all
r ≥ n.

Proof. We may assume w.l.o.g. that f(0) = fmin. Consider the interpo-
lation polynomial:

s(x) :=
√
2n

n�

i=1

(1− xi) ∈ R[x]n,

which satisfies s2(0) = 2n and s2(x) = 0 for all 0 �= x ∈ Bn. Clearly, we have:
�

Bn

f(x)s2(x)dµ(x) = f(0) = fmin and

�

Bn

s2(x)dµ(x) = 1,

and so ub(f)n = fmin. �

The next lemma shows that this result is tight, by giving an example of
polynomial f for which the bound ub(f)r is exact only at order r = n.

Lemma 7.19. Let f(x) = |x| = x1+ . . .+xn. Then ub(f)r− fmin > 0 for
all r < n.

Proof. Suppose not. That is, ub(f)r = fmin = 0 for some r ≤ n− 1. As
f(x) > 0 = fmin for all 0 �= x ∈ Bn, this implies that there exists a polynomial
s ∈ R[x]r such that s2 is interpolating at 0, i.e. such that s2(0) = 1 and
s2(x) = 0 for all 0 �= x ∈ Bn. But then s is itself interpolating at 0 and has
degree r < n, a contradiction. �

7.4. The harmonic constant

In this section we give a proof of Lemma 7.11, where we bound the sup-
norm �pk�∞ of the harmonic components pk of a polynomial p by γd�p�∞
for some constant γd depending only on the degree d of p. The following
definitions will be convenient.
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118 7. APPLICATION: THE BINARY CUBE

Definition 7.20. For n ≥ d ≥ k ≥ 0 integers, we write:

γ(Bn)d,k := sup{�pk�∞ : p = p0 + p1 + · · ·+ pd ∈ P(Bn)d, �p�∞ ≤ 1}, and

γ(Bn)d := max
0≤k≤d

γ(Bn)d,k.

We are thus interested in finding a bound γd depending only on d such that:

γd ≥ γ(Bn)d for all n ∈ N.

We will now show that in the computation of the parameter γ(Bn)d,k we may
restrict to feasible solutions p having strong structural properties. First, we
show that we may assume that the sup-norm of the harmonic component pk
of p is attained at 0 ∈ Bn.

Lemma 7.21. We have:

γ(Bn)d,k = sup
p∈P(Bn)d

{pk(0) : �p�∞ ≤ 1} (7.25)

Proof. Let p be a feasible solution for γ(Bn)d,k and let x ∈ Bn for which
pk(x) = �pk�∞ (after possibly replacing p by −p). Now choose σ ∈ Aut(Bn)
such that σ(0) = x and set �p = p ◦σ. Clearly, �p is again a feasible solution for
γ(Bn)d,k. Moreover, as Hk is invariant under Aut(Bn), we have:

��pk�∞ = �pk(0) = (p ◦ σ)k(0) = (pk ◦ σ)(0) = �pk�∞,

which shows the lemma. �

Next we show that we may in addition restrict to polynomials that are highly
symmetric.

Lemma 7.22. In the program (7.25) we may restrict the optimization to
polynomials of the form:

p(x) =
d�

i=0

λi

�

|a|=i

χa(x) =
d�

i=0

λiK(n)
i (|x|) where λi ∈ R.

Proof. Let p be a feasible solution to (7.25). Consider the following
polynomial �p obtained as symmetrization of p under action of St(0), the set
of automorphism of Bn corresponding to the coordinate permutations:

�p(x) = 1

|St(0)|
�

σ∈St(0)
(p ◦ σ)(x).

Then ��p�∞ ≤ 1 and �pk(0) = pk(0), so �p is still feasible for (7.25) and has the
same objective value as p. Furthermore, for each i, �pi is invariant under St(0),
which implies that �pi(x) = λiXi(x) = λi

�
|a|=i χa(x) = λiK(n)

i (|x|) for some

λi ∈ R (see (7.10)). �
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7.4. THE HARMONIC CONSTANT 119

A simple rescaling λi ← λi ·
�
n
i

�
allows us to switch from K(n)

i to

�Kn
i = K(n)

i /
�
n
i

�
and to obtain the following reformulation of γ(Bn)d,k as a linear

program.

Lemma 7.23. For any n ≥ d ≥ k we have:

γ(Bn)d,k = max λk

s.t. − 1 ≤
d�

i=0

λi
�Kn
i (t) ≤ 1 (t = 0, 1, . . . , n).

(7.26)

7.4.1. Limit functions. The idea now is to prove a bound on γ(Bn)d,k
which holds for fixed d and is independent of n. We will do this by considering
‘the limit’ of problem (7.26) as n → ∞. For each k ∈ N, we define the limit
function:

�K∞
k (t) := lim

n→∞
�Kn
k (nt),

which, as shown in Lemma 7.25 below, is in fact a polynomial. We first present

the polynomial �K∞
k (t) for small k as an illustration.

Example 7.24. We have:

�Kn
0 (nt) = 1 =⇒ �K∞

0 (t) = 1,

�Kn
1 (nt) = −2t+ 1 =⇒ �K∞

1 (t) = −2t+ 1,

�Kn
2 (nt) =

2n2t2 − 2n2t+
�
n
2

�
�
n
2

� =⇒ �K∞
2 (t) = 4t2 − 4t+ 1 = (1− 2t)2.

Lemma 7.25. We have: �K∞
k (t) = (1− 2t)k for all k ∈ N.

Proof. The Krawtchouk polynomials satisfy the following three-term re-
currence relation (see, e.g., [MS83]):

(k + 1)K(n)
k+1(t) = (n− 2t)K(n)

k (t)− (n− k + 1)K(n)
k−1(t)

for 1 ≤ k ≤ n− 1. By evaluating the polynomials at nt we obtain:

(k + 1)K(n)
k+1(nt) = (n− 2nt)K(n)

k (nt)− (n− k + 1)K(n)
k−1(nt),

=⇒ (k + 1)

�
n

k + 1

�
�Kn
k+1(nt) = (n− 2nt)

�
n

k

�
�Kn
k (nt)

− (n− k + 1)

�
n

k − 1

�
�Kn
k−1(nt),

=⇒ �Kn
k+1(nt) =

n(1− 2t)

(n− k)
· �Kn

k (nt)−
k

n− k
· �Kn

k−1(nt),

=⇒ �K∞
k+1(t) = (1− 2t) �K∞

k (t).
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120 7. APPLICATION: THE BINARY CUBE

As �K∞
0 (t) = 1 and �K∞

1 (t) = 1−2t we can conclude that indeed �K∞
k (t) = (1− 2t)k

for all k ∈ N. �
Next, we show that solutions to (7.26) remain feasible after increasing the

dimension n.

Lemma 7.26. Let λ = (λ0,λ1, . . . ,λd) be a feasible solution to (7.26) for a
certain n ∈ N. Then it is also feasible to (7.26) for n + 1 (and thus for any
n� ≥ n + 1). Therefore, γ(Bn+1)d,k ≥ γ(Bn)d,k for all n ≥ d ≥ k and thus
γ(Bn+1)d ≥ γ(Bn)d for all n ≥ d.

Proof. We may view Bn as a subset of Bn+1 via the map a �→ (a, 0),
and analogously P(Bn) as a subspace of P(Bn+1) via χa �→ χ(a,0). Now for
m, i ∈ N we consider again the zonal spherical harmonic (7.10):

Xm
i =

�

|a|=i,a∈Bm

χa.

Consider the set St(0) ⊆ Aut(Bn+1) of automorphisms fixing 0 ∈ Bn+1, i.e.,
the coordinate permutations arising from σ ∈ Sym(n + 1). We will use the
following identity:

1

|St(0)|
�

σ∈St(0)

Xn
i�
n
i

� ◦ σ =
Xn+1

i�
n+1
i

� . (7.27)

To see that (7.27) holds note that its left hand side is equal to

1

(n+ 1)!
�
n
i

�
�

σ∈Sym(n+1)

�

a∈Bn,|a|=i

χ(a,0) ◦ σ =
1

(n+ 1)!
�
n
i

�
�

b∈Bn+1,|b|=i

Nbχb,

where Nb denotes the number of pairs (σ, a) with σ ∈ Sym(n + 1), a ∈ Bn,
|a| = i such that b = σ(a, 0). As there are

�
n
i

�
choices for a and i!(n+ 1− i)!

choices for σ we have Nb =
�
n
i

�
i!(n+ 1− i)! and thus (7.27) holds.

Assume λ is a feasible solution of (7.26) for a given value of n. Then, in
view of (7.13), this means

���
d�

i=0

λi ·
Xn

i (x)�
n
i

�
��� ≤ 1 for all x ∈ Bn, and thus for all x ∈ Bn+1.

Using (7.27) we obtain:

���
d�

i=0

λi
Xn+1

i (x)�
n+1
i

�
��� =

���
d�

i=0

λi ·
1

|St(0)|
�

σ∈St(0)

Xn
i (σ(x))�

n
i

�
���

=
���
�

1

|St(0)|
�

σ∈St(0)

� d�

i=0

λi
Xn

i�
n
i

�� ◦ σ
�
(x)
��� ≤ 1

for all x ∈ Bn+1. Using (7.13) again, this shows that λ is a feasible solution
of program (7.26) for n+ 1. �
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7.4. THE HARMONIC CONSTANT 121

Example 7.27. To illustrate the identity (7.27), we give a small example
with n = i = 2. Consider:

X2
2 =

�

|a|=2,a∈B2

χa = χ11.

The automorphisms in St(0) ⊆ Aut(B3) fixing 0 ∈ B3 are the permutations of
x1, x2, x3. So we get:

1

|St(0)|
�

σ∈St(0)
X2

2 ◦ σ =
1

6
(χ110 + χ101 + χ110 + χ011 + χ101 + χ011)

=
2

6
(χ110 + χ101 + χ011) =

1

3
X3

2 ,

and indeed
�
2
2

�
/
�
3
2

�
= 1/3.

Lemma 7.28. For d ≥ k ∈ N, define the program:

γd,k := max λk

s.t. − 1 ≤
d�

i=0

λi
�K∞
i (x) ≤ 1 (x ∈ [0, 1]).

(7.28)

Then, for any n ≥ d, we have: γ(Bn)d,k ≤ γd,k.

Proof. Let λ be a feasible solution to (7.26) for (n, d, k). We show that
λ is feasible for (7.28). For this fix t ∈ [0, 1]∩Q. Then there exists a sequence
of integers (nj)j → ∞ such that nj ≥ n and tnj ∈ [0, nj ] is integer for each
j ∈ N. As nj ≥ n, we know from Lemma 7.26 that λ is also a feasible solution
of program (7.26) for (nj , d, k). Hence, since njt ∈ [0 : nj ] we obtain

|
d�

i=0

λi
�Knj

i (njt)| ≤ 1 ∀j ∈ N.

But this immediately gives:

|
d�

i=0

λi
�K∞
i (t)| = lim

j→∞
|

d�

i=0

λi
�Knj

i (njt)| ≤ 1. (7.29)

As [0, 1]∩Q lies dense in [0, 1] (and the �K∞
i ’s are continuous) we may conclude

that (7.29) holds for all t ∈ [0, 1]. This shows that λ is feasible for (7.28) and
we thus have γ(Bn)d,k ≤ γd,k, as desired. �

It remains now to compute the optimum solution to the program (7.28).
In light of Lemma 7.25, and after a change of variables, this program may be
reformulated as:

max |λk|

s.t. − 1 ≤
d�

i=0

λix
i ≤ 1 (x ∈ [−1, 1]).

(7.30)
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122 7. APPLICATION: THE BINARY CUBE

In other words, we are tasked with finding a polynomial p(x) of degree d
satisfying |p(x)| ≤ 1 for all x ∈ [−1, 1], whose k-th coefficient is as large as
possible in absolute value. This is a classical extremal problem solved by
V. Markov.

Theorem 7.29 (see, e.g., Theorem 7, pp. 53 in [Nat64]). For m ∈ N,
let Tm(x) =

�m
i=0 tm,ix

i be the Chebyshev polynomial of degree m. Then the
optimum solution λ to (7.30) is given by:

d�

i=0

λix
i =

�
Td(x) if k ≡ d mod 2,

Td−1(x) if k �≡ d mod 2.

In particular, γd,k is equal to |td,k| (resp. |td−1,k|).
As the coefficients of the Chebyshev polynomials are known explicitely,

Theorem 7.29 allows us to give exact values of the constant γd appearing in
our main results (see Table 7.1). Using the following identity:

d�

i=0

|td,i| =
1

2
(1 +

√
2)d +

1

2
(1−

√
2)d ≤ (1 +

√
2)d,

we are also able to concretely estimate:

γd ≤ max
k≤d

γd,k ≤ (1 +
√
2)d.

7.5. The q-ary cube

In this section, we indicate how our results for the binary cube Bn may be
extended to the q-ary cube (Z/qZ)n = {0, 1, . . . , q− 1}n when q > 2 is a fixed
integer. Here Z/qZ denotes the cyclic group of order q, so that (Z/qZ)n = Bn

when q = 2. The lower bound lb(f)r for the minimum of a polynomial f over
(Z/qZ)n is defined analogously to the case q = 2; namely we set

lb(f)r := sup
λ∈R

{λ : f(x)− λ is sos of degree at most 2r on (Z/qZ)n} ,

where the condition means that f(x) − λ agrees with a sum of squares s ∈
Σ[x]2r for all x ∈ (Z/qZ)n or, alternatively, that f −λ− s belongs to the ideal
generated by the polynomials xi(xi − 1) . . . (xi − q + 1) for i ∈ [n]. Similarly,
the upper bound ub(f)r is defined as in (7.3) after equipping (Z/qZ)n with
the uniform measure µ. The parameters lb(f)r and ub(f)r may again be
computed by solving a semidefinite program of size polynomial in n for fixed
r, q ∈ N, see [Lau07a].

As before d(x,y) denotes the Hamming distance and |x| denotes the Ham-
ming weight (number of nonzero components). Note that, for x,y ∈ (Z/qZ)n,
d(x,y) can again be expressed as a polynomial in x,y, with degree q − 1 in
each of x and y.

We will prove Theorem 7.32 below, which can be seen as an analog of
Corollary 7.4 for (Z/qZ)n. The general structure of the proof is identical to
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7.5. THE q-ARY CUBE 123

that of the case q = 2. We therefore only give generalizations of arguments as
necessary. For reasons that will become clear later, it is most convenient to
consider the sum-of-squares bound lb(f)r on the minimum fmin of a polyno-
mial f with degree at most (q − 1)d over (Z/qZ)n, where d ≤ n is fixed.

7.5.1. Fourier analysis on (Z/qZ)n and Krawtchouk polynomials.
Consider the space

P((Z/qZ)n) := C[x]/(xi(xi − 1) . . . (xi − q + 1) : i ∈ [n])

consisting of the polynomials on (Z/qZ)n with complex coefficients. We equip
P((Z/qZ)n) with its natural complex inner product:

�f, g�µ =

�

(Z/qZ)n
f(x)g(x)dµ(x) =

1

qn

�

x∈(Z/qZ)n
f(x)g(x),

where µ is the uniform measure on (Z/qZ)n. The space P((Z/qZ)n) has di-
mension |(Z/qZ)n| = qn over C and it is spanned by the polynomials of degree
up to (q−1)n. The reason we now need to work with polynomials with complex
coefficients is that the characters have complex coefficients when q > 2.

Let ψ = e2πi/q be a primitive q-th root of unity. For a ∈ (Z/qZ)n, the
associated character χa ∈ P((Z/qZ)n) is defined by:

χa(x) = ψa·x (x ∈ (Z/qZ)n).
So (7.7) is indeed the special case of this definition when q = 2. The set of all
characters {χa : a ∈ (Z/qZ)n} forms an orthogonal basis for P((Z/qZ)n) w.r.t.
the above inner product �·, ·�µ. A character χa can be written as a polynomial
of degree (q − 1) · |a| on (Z/qZ)n, i.e., we have χa ∈ P((Z/qZ)n)(q−1)|a| for all
a ∈ (Z/qZ)n.

As before, we have the direct sum decomposition into pairwise orthogonal
subspaces:

P((Z/qZ)n) = H0 ⊥ H1 ⊥ · · · ⊥ Hn,

where Hi is spanned by the set {χa : |a| = i} and Hi ⊆ R[x](q−1)i. The
componentsHi are invariant and irreducible under the action of Aut((Z/qZ)n),
which is generated by the coordinate permutations and the action of Sym(q) on
individual coordinates. Hence any p ∈ P((Z/qZ)n) of degree at most (q − 1)d
can be (uniquely) decomposed as:

p = p0 + p1 + · · ·+ pd (pi ∈ Hi).

As before St(0) ⊆ Aut((Z/qZ)n) denotes the stabilizer of 0 ∈ (Z/qZ)n, which
is generated by the coordinate permutations and the permutations in Sym(q)
fixing 0 in {0, 1, . . . , q − 1} at any individual coordinate. We note for later
reference that the subspace ofHi invariant under action of St(0) is of dimension
one, and is spanned by the zonal spherical function:

Xi =
�

|a|=i

χa ∈ Hi. (7.31)
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124 7. APPLICATION: THE BINARY CUBE

The Krawtchouk polynomials introduced in Section 7.1 have the following
generalization in the q-ary setting:

K(n)
k (x) = K(n)

k,q (x) :=

k�

i=0

(−1)i(q − 1)k−i

�
x

i

��
n− x

k − i

�
.

Analogously to relation (7.12), the Krawtchouk polynomials K(n)
k (0 ≤ k ≤ n)

are pairwise orthogonal w.r.t. the discrete measure ω on [0 : n] given by:

ω(x) =
1

qn

n�

x=0

w(x)δx, with w(x) := (q − 1)x
�
n

x

�
.

To be precise, we have:

n�

x=0

K(n)
k (x)K(n)

k� (x)(q − 1)x
�
n

x

�
= δk,k�(q − 1)k

�
n

k

�
.

As K(n)
k (0) = (q − 1)k

�
n
k

�
= �K(n)

k �2ω, we may normalize K(n)
k by setting:

�Kn
k (x) := K(n)

k (x)/K(n)
k (0) = K(n)

k (x)/�K(n)
k �2ω,

so that �Kn
k satisfies maxnx=0

�Kn
k (x) =

�Kn
k (0) = 1 (cf. (7.15)).

We have the following connection (cf. (7.14)) between the characters and
the Krawtchouk polynomials:

�

a∈(Z/qZ)n:|a|=k

χa(x) = K(n)
k (i) for x ∈ (Z/qZ)n with |x| = i. (7.32)

Note that for all a,x,y ∈ (Z/qZ)n, we have:

χ−1
a (x) = χa(x) = χa(−x), χa(x)χa(y) = χa(x+ y).

Hence, for any x,y ∈ (Z/qZ)n, we also have (cf. (7.13)):
�

a∈(Z/qZ)n:|a|=k

χa(x)χa(y) =
�

a∈(Z/qZ)n:|a|=k

χa(x− y) = K(n)
k (i)

when d(x,y) = |x− y| = i.

7.5.2. Invariant kernels. In analogy to the binary case q = 2, for a
degree r univariate polynomial u ∈ R[x]r we define the associated polyno-
mial kernel K(x,y) := u2(d(x,y)) (x,y ∈ (Z/qZ)n) and the associated kernel
operator:

Kp(x) =

�

(Z/qZ)n
p(y)K(x,y)dµ(y) =

1

qn

�

y∈(Z/qZ)n
p(y)K(x,y) (p ∈ P((Z/qZ)n)).

Note that K(x,y) is a polynomial on (Z/qZ)n with degree 2r(q−1) in each of x
and y. Let us decompose the univariate polynomial u(x)2 in the Krawtchouk
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7.5. THE q-ARY CUBE 125

basis as

u(x)2 =
2r�

i=0

λiK(n)
i (x).

Then the kernel operator K acts as follows on characters: for z ∈ (Z/qZ)n,

Kχz = λ|z|χz,

which can be seen by retracing the proof of Theorem 7.9, and we obtain the
Funk-Hecke formula (recall (7.19)): for any polynomial p ∈ P((Z/qZ)n)(q−1)d

with Harmonic decomposition p = p0 + . . .+ pd,

Kp = λ0p0 + · · ·+ λdpd.

7.5.3. Performing the analysis. It remains to find a univariate poly-

nomial u ∈ R[x] of degree r with u2(x) =
�2r

i=0 λiK(n)
i (x) for which λ0 = 1

and the other scalars λi are close to 1. As before (cf. (7.20)), we have:

λi = �K(n)
i , u2�ω/�K(n)

i �2ω = ��Kn
i , u

2�ω.
So we would like to minimize

�2r
i=1(1−λi). We are therefore interested in the

inner Lasserre hierarchy applied to the minimization of the function g(x) =

d−�d
i=0

�Kn
i (x) on the set [0 : n] (equipped with the measure ω from (7.5.1)).

We show first that this function g again has a nice linear upper estimator.

Lemma 7.30. We have:

| �Kn
k (x)− �Kn

k (x+ 1)| ≤ 2k

n
, (x = 0, 1, . . . , n− 1)

| �Kn
k (x)− 1| ≤ 2k

n
· x (x = 0, 1, . . . , n)

(7.33)

for all k ≤ n.

Proof. The proof is almost identical to that of Lemma 7.8. Let x ∈
[0 : n− 1] and 0 < k ≤ d. Consider the elements 1x0n−x, 1x+10n−x−1 ∈
(Z/qZ)n from Lemma 7.6. Then we have:

|K(n)
k (x)−K(n)

k (x+ 1)| (7.32)= |
�

|a|=k

χa(1
x0n−x)− χa(1

x+10n−x−1)|

≤ 2 ·#
�
a ∈ (Z/qZ)n : |a| = k, ax+1 �= 0

�

= 2 · (q − 1)k ·
�
n− 1

k − 1

�
,

where for the inequality we note that χa(1
x0n−x) = χa(1

x+10n−x−1) if ax+1 = 0.

As K(n)
k (0) = (q − 1)k

�
n
k

�
, this implies that:

| �Kn
k (x)− �Kn

k (x+ 1)| ≤ 2 ·
�
n− 1

k − 1

�
/

�
n

k

�
=

2k

n
.
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126 7. APPLICATION: THE BINARY CUBE

This shows the first inequality of (7.33). The second inequality follows using
the triangle inequality, a telescope summation argument and the fact that
�Kn
k (0) = 1. �

From Lemma 7.30 we obtain that the function g(x) = d −�d
i=0

�Kn
i (x)

admits the following linear upper estimator: g(x) ≤ d(d + 1) · (x/n) for x ∈
[0 : n]. Now the same arguments as used for the case q = 2 enable us to
conclude:

ub(f)(q−1)r − fmin ≤ Cd · ξnr+1,q/n

and, when d(d+ 1)ξnr+1,q/n ≤ 1/2,

fmin − lb(f)(q−1)r ≤ 2Cd · ξnr+1,q/n.

Here Cd is a constant depending only on d and ξnr+1,q is the least root of the

Krawtchouk polynomial K(n)
r+1,q. Note that as the kernel K(x,y) = u2(d(x,y))

is of degree 2(q−1)r in x (and y), we are only able to analyze the corresponding
levels (q− 1)r of the hierarchies. We come back below to the question on how
to show the existence of the above constant Cd.

But first we finish the analysis. Having shown analogs of Theorem 7.1 and
Theorem 7.3 in this setting, it remains to state the following more general
version of Theorem 7.2, giving information about the smallest roots of the
q-ary Krawtchouk polynomials.

Theorem 7.31 ([Lev98], Section 5). Fix t ∈ [0, q−1
q ]. Then the smallest

roots ξnr,q of the q-ary Krawtchouk polynomials K(n)
r,q satisfy:

lim
r/n→t

ξnr,q/n = ϕq(t) :=
q − 1

q
−
�
q − 2

q
· t+ 2

q

�
(q − 1)t(1− t)

�
.

Here the above limit means that, for any sequences (nj)j and (rj)j of integers

such that limj→∞ nj = ∞ and limj→∞ rj/nj = t, we have limj→∞ ξ
nj
rj ,q/nj =

ϕq(t).

Note that for q = 2 we have ϕq(t) =
1
2 −

�
t(1− t), which is the function

ϕ(t) from (7.5). To avoid technical details we only quote in Theorem 7.31 the
asymptotic analog of Theorem 7.2 (and not the exact bound on the root ξnr,q
for any n). Therefore we have shown the following q-analog of Corollary 7.4.

Theorem 7.32. Fix d ≤ n and for n, r ∈ N write

E(r)(n) := sup
f∈R[x](q−1)d

�
fmin − lb(f)r : �f�∞ = 1

�
,

E(r)(n) := sup
f∈R[x](q−1)d

�
ub(f)r − fmin : �f�∞ = 1

�
.
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7.5. THE q-ARY CUBE 127

There exists a constant Cd > 0 (depending also on q) such that, for any

t ∈ [0, q−1
q ], we have:

lim
r/n→t

E((q−1)r)(n) ≤ Cd · ϕq(t)

and, if d(d+ 1) · ϕq(t) ≤ 1/2, then we also have:

lim
r/n→t

E((q−1)r)(n) ≤ 2 · Cd · ϕq(t).

Here ϕq(t) is the function defined in (7.31). Recall that the limit notation
r/n → t means that the claimed convergence holds for any sequences (nj)j
and (rj)j of integers such that limj→∞ nj =∞ and limj→∞ rj/nj = t.

For reference, the function ϕq(t) is shown for several values of q in Fig-
ure 7.1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

t

ϕq(t)

q = 2
q = 3
q = 4
q = 5

Figure 7.1. The function ϕq(t) for several values of q. Note
that the case q = 2 corresponds to the function ϕ(t) of (7.5).

7.5.4. A generalization of Lemma 7.11. The arguments above omit
a generalization of Lemma 7.11, which is instrumental to show the existence
of the constant Cd claimed above. In other words, we still need to show
that if p : (Z/qZ)n → R is a polynomial of degree (q − 1)d on (Z/qZ)n with
harmonic decomposition p = p0 + . . .+ pd, there then exists a constant γd > 0
(independent of n) such that:

�pi�∞ ≤ γd�p�∞ for all 0 ≤ i ≤ d.

Then, as in the binary case, we may set Cd = d(d+ 1)γd. The proof given in
Section 7.4 for the case q = 2 applies almost directly to the general case, and
we only generalize certain steps as required. So consider again the parameters:

γ((Z/qZ)n)d,k := sup{�pk�∞ : p = p0 + p1 + · · ·+ pd ∈ R[x](q−1)d, �p�∞ ≤ 1},
γ((Z/qZ)n)d := max

0≤k≤d
γ((Z/qZ)n)d,k.
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128 7. APPLICATION: THE BINARY CUBE

Lemmas 7.21 and 7.22, which show that the optimum solution p to γ((Z/qZ)n)d,k
may be assumed to be invariant under St(0) ⊆ Aut((Z/qZ)n), clearly apply
to the case q > 2 as well. That is to say, we may assume p is of the form2:

p(x) =
d�

i=0

λiXi(x) (λi ∈ R)

where Xi =
�

|a|=i χa ∈ Hi is the zonal spherical function of degree (q−1)i (cf.

(7.31) and (7.10)). Using (7.32), we obtain a reformulation of γ((Z/qZ)n)d,k
as an LP (cf. (7.26)):

γ((Z/qZ)n)d,k = max λk

s.t. − 1 ≤
d�

i=0

λi
�Kn
i,q(x) ≤ 1 (x = 0, 1, . . . , n).

For k ∈ N, let �K∞
k (x) := limn→∞ �Kn

k (nx) =
�
1 − q

q−1x
�k

and consider the

program (cf. (7.28)):

γd,k := max λk

s.t. − 1 ≤
d�

i=0

λi
�K∞
i (x) ≤ 1 (x ∈ [0, 1]).

As before, we have γ((Z/qZ)n)d,k ≤ γd,k, noting that (the proofs of)
Lemma 7.26 and Lemma 7.28 may be applied directly to the case q > 2.
From there, it suffices to show γd,k <∞, which can be argued in an analogous
way to the case q = 2.

7.6. Discussion

Using the polynomial kernel method introduced in Chapter 6, we have
shown a theoretical guarantee on the quality of the sum-of-squares hierarchy
lb(f)r ≤ fmin for approximating the minimum of a polynomial f of degree d
over the binary cube Bn. As far as we are aware, this is the first such analysis
that applies to values of r smaller than (n + d)/2, i.e., when the hierarchy is
not exact. Additionally as we explained in Section 6.2, our guarantee may be
extended to the measure-based hierarchy of bounds ub(f)r ≥ fmin. Our result
may therefore also be interpreted as bounding the range ub(f)r− lb(f)r. Our
analysis also applies to polynomial optimization over the cube {±1}n (by a
simple change of variables) and over the q-ary cube.

2Note that as p is assumed to be real-valued, the coefficients λi must be real. Indeed,

for each a ∈ (Z/qZ)n, we have �p,χa�µ = λ|a|�χa�2 = λ|a|�χ−1
a �2 = �p,χa�µ = �p,χa�µ.
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7.6. DISCUSSION 129

Analysis for small values of r. A limitation of Theorem 7.1 is that the
analysis of lb(f)r applies only for choices of d, r, n satisfying d(d+1)ξnr+1 ≤ 1/2.
One may partially avoid this limitation by proving a slightly sharper version
of Lemma 7.13, showing instead that Λ ≤ Λ̃/(1− Λ̃), assuming now only that

Λ̃ ≤ 1. Indeed, Lemma 7.13 is a special case of this result, assuming that
Λ̃ ≤ 1/2 to obtain Λ ≤ 2Λ̃. Nevertheless, our methods exclude values of r
outside of the regime r = Ω(n).

The constant γd. The strength of our results depends in large part on the
size of the constant Cd appearing in Theorem 7.1 and Theorem 7.3, where
we may set Cd = d(d + 1)γd. Recall that γd is defined in Lemma 7.11 as a
constant for which �pk�∞ ≤ γd�p�∞ for any polynomial p = p0 + p1 + . . .+ pd
of degree d and k ≤ d on Bn, independently of the dimension n. In Section 7.4
we have shown the existence of such a constant. Furthermore, we have shown
there that we may choose γd ≤ (1+

√
2)d, and have given an explicit expression

for the smallest possible value of γd in terms of the coefficients of Chebyshev
polynomials. Table 7.1 lists these values for small d.

d 1 2 3 4 5 6 7 8 9 10

γd 1 2 4 8 20 48 112 256 576 1280

Table 7.1. Values of the constant γd.

Computing extremal roots of Krawtchouk polynomials. Although

Theorem 7.2 provides only an asymptotic bound on the least root ξnr of K(n)
r ,

it should be noted that ξnr can be computed explicitely for small values of r, n,
thus allowing for a concrete estimate of the error of both Lasserre hierarchies
via Theorem 7.1 and Theorem 7.3, respectively. Indeed, as we have seen, the
root ξnr+1 is equal to the smallest eigenvalue of the (r + 1)× (r + 1) matrix J

(aka Jacobi matrix), whose entries are given by Ji,j = �x �Kn
i (x),

�Kn
j (x)�ω for

i, j ∈ {0, 1, . . . , r}. See also [Sze75] for details.

Matrix-valued polynomials. The results of this chapter carry over to the
setting of matrix-valued polynomials. Indeed, the proof technique we use may
be applied there rather straightforwardly. This was already noted in [FF21] in
the context of polynomial optimization on the hypersphere Sn−1. As matrix-
valued polynomials fall outside the scope of this thesis, we refer the reader to
our paper [SL21b] (on which this chapter is based) for details.

Acknowledgments. We wish to thank Sven Polak and Pepijn Roos Hoefgeest
for several useful discussions.
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CHAPTER 8

Application: The unit ball and standard simplex

Als je het opschrijft, staat het meteen op
papier ook.

Gerard Reve

This chapter is based on my work [Slo22].

In this chapter, we apply the method of Chapter 6 to obtain convergence
rates for sum-of-squares hierarchies on the unit ball Bn and on the standard
simplex Δn. Let us briefly recall the setup. Let f ∈ R[x] be a polynomial of
degree d. We consider the polynomial optimization problem:

fmin := min
x∈X

f(x),

where X = Bn or X = Δn. The unit ball and the standard simplex are both
semialgebraic sets, with description:

Bn = {x ∈ Rn : 1− �x�2 = 1−
n�

i=1

x2
i ≥ 0},

Δn = {x ∈ Rn : 1−
n�

i=1

xi ≥ 0, xi ≥ 0 (1 ≤ i ≤ n)}.

We may thus define lower bounds lb(f,Q(X))r, lb(f, T (X))r on the minimum
fmin using the (truncated) quadratic module Q(X)2r and preordering T (X)2r,
respectively. See Section 2.1 for the definitions. We note that since Bn is
defined using only a single inequality constraint, we have Q(Bn)2r = T (Bn)2r
for each r ∈ N, and the Putinar- and Schmüdgen-type bounds for Bn thus
coincide:

lb(f,Q(Bn))r = lb(f, T (Bn))r.

If X is equipped with a finite Borel measure µ, we also have corresponding
hierarchies of upper bounds on fmin (see Section 2.1), which are given by:

ub(f,Q(X), µ)r = inf
q∈Q(X)2r

��

X
f(x)q(x)dµ(x) :

�

X
q(x)dµ(x) = 1

�
,

ub(f, T (X), µ)r = inf
q∈T (X)2r

��

X
f(x)q(x)dµ(x) :

�

X
q(x)dµ(x) = 1

�
(8.1)

131
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132 8. APPLICATION: THE UNIT BALL AND STANDARD SIMPLEX

Main results. The main contribution of this chapter is to show a convergence
rate in O(1/r2) of the lower bounds lb(f, T (X))r to the global minimum fmin

of a polynomial f on the unit ballX = Bn or on the standard simplexX = Δn.
These rates match the best-known rates for the hypersphere Sn−1 of [FF21],
see also Table 2.1. For the unit ball, no (specialized) rates were known before.
For the simplex, we improve upon the previously best known bound in O(1/r)
due to Kirschner & de Klerk [KdK21].

Theorem 8.1. Let X = Bn = {x ∈ Rn : �x�2 ≤ 1} be the n-dimensional
unit ball and let f ∈ R[x] be a polynomial of degree d. Then for any r ≥ 2nd,
the lower bound lb(f, T (X))r for the minimization of f over Bn satisfies:

fmin − lb(f, T (X))r ≤
CB(n, d)

r2
· (fmax − fmin).

Here, CB(n, d) is a constant depending only on n, d. This constant depends
polynomially on n (for fixed d) and polynomially on d (for fixed n). See relation
(8.28) for details.

Theorem 8.2. Let X = Δn = {x ∈ Rn : 1−�i xi ≥ 0, x ≥ 0} be the n-
dimensional standard simplex and let f ∈ R[x] be a polynomial of degree d.
Then for any r ≥ 2nd, the lower bound lb(f, T (X))r for the minimization of
f over Δn satisfies:

fmin − lb(f, T (X))r ≤
CΔ(n, d)

r2
· (fmax − fmin).

Here, CΔ(n, d) is a constant depending only on n, d. This constant depends
polynomially on n (for fixed d) and polynomially on d (for fixed n). See relation
(8.29) for details.

As we have seen in Section 6.2, we may obtain a convergence rate in
O(1/r2) for the upper bounds ub(f, T (X), µX)r on the unit ball and simplex
essentially as a side result of our main proof technique. The reference measures
µB and µΔ are defined below in (8.16) and (8.18). However, the obtained
rates do not improve meaningfully upon previous results. Indeed, we showed
in Chapter 3 that even the weaker bounds ub(f,X)r already converge to the
global minimum at a rate in O(1/r2) for these sets (although for different
reference measures).

Theorem 8.3. Let X = Bn be the n-dimensional unit ball equipped with
the measure µB defined in (8.16). Let f ∈ R[x] be a polynomial of degree d.
Then for any r ≥ d, the upper bound ub(f, T (X), µ)r for the minimization of
f over Bn satisfies:

ub(f, T (X), µ)r − fmin ≤
CB(n, d)

2r2
· (fmax − fmin).

Here, CB(n, d) is the constant of Theorem 8.1.
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Theorem 8.4. Let X = Δn be the n-dimensional standard simplex equipped
with the measure µΔ defined in (8.18). Let f ∈ R[x] be a polynomial of degree
d. Then for any r ≥ d, the Lasserre-type upper bound ub(f, T (X), µ)r for the
minimization of f over Δn satisfies:

ub(f, T (X), µΔ)r − fmin ≤
CΔ(n, d)

2r2
· (fmax − fmin).

Here, CΔ(n, d) is the constant of Theorem 8.2.

Outline of the proof. We outline how the polynomial kernel method of
Chapter 6 specializes to this setting. Let f ∈ R[x] be a polynomial of degree
d ∈ N. We wish to show that

f − fmin + ε ∈ T (X)2r

for some small ε > 0. Up to translation and scaling, we may assume that
fmin = 0 and that �f�X := maxx∈X |f(x)| = 1. Let ε > 0. Recall that
we wish to construct an (invertible) linear operator K : R[x]d → R[x]d which
satisfies the following three properties:

K(1) = 1, (P1)

Kp ∈ T (X)2r for all p ∈ P+(X)d (P2)

max
x∈X

|K−1f(x)− f(x)| ≤ ε. (P3)

As we saw in Section 6.1, the existence of such an operator implies that f + ε ∈
T (X)2r. Indeed, since f is nonnegative on X by assumption, we know that
f(x)+ ε ≥ ε for x ∈ X. By properties (P1) and (P3), it follows that K−1(f +
ε) ∈ P+(X). Using property (P2), we may thus conclude that:

f + ε = K
�
K−1(f + ε)

�
∈ T (X)2r,

meaning that fmin − lb(f, T (X))r ≤ ε.
The statements of Theorem 8.1 and Theorem 8.2 may thus be proven by

showing the existence (for each r ∈ N large enough) of an operator K which
satisfies (P1), (P2) and (P3) with ε = O(1/r2). We summarize this observation
in the following Lemma for future reference.

Lemma 8.5. Let X ⊆ Rn be a compact semialgebraic set and let f be a
polynomial on X of degree d. Suppose that there exists a nonsingular linear
operator K : R[x]d → R[x]d which satisfies the properties (P1), (P2) and (P3)
for certain ε ≥ 0. Then fmin − lb(f, T (X))r ≤ ε.

We use the polynomial kernel method to construct operators that satisfy
(P1), (P2) and (P3) is: Let K : X × X → R be a polynomial kernel on X,
meaning that K(x,y) is a polynomial in the variables x,y. After choosing a
measure µ supported onX, we may associate a linear operatorK : R[x]→ R[x]
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to K by setting:

Kp(x) :=

�

X
K(x,y)p(y)dµ(y) (p ∈ R[x]). (8.2)

By Lemma 8.8 the operator K satisfies (P2) if the polynomial x �→ K(x,y)
lies in T (X)2r for all fixed y ∈ X. Furthermore, (P1) and (P3) may be verified
by analyzing the eigenvalues of K; roughly speaking, K satisfies (P1), (P3) if
its eigenvalues are sufficiently close to 1.

It remains, then, to construct a suitable kernel K on X. For this purpose,
we consider the (perturbed) Christoffel-Darboux kernel:

CD2r(x,y;λ) :=
2r�

k=0

λkCD
(k)(x,y) (λk ∈ R, 0 ≤ k ≤ 2r), (8.3)

whose associated operator has eigenvalues equal to λ0, . . . ,λ2r (with multiplic-
ity). See also (6.7). In Chapters 1 and 7, we saw that this kernel is given on
the binary cube {0, 1}n by:

CD2r(x,y;λ) =

2r�

k=0

λkK(n)
k (|x− y|1). (8.4)

The idea there was to select a univariate polynomial q ∈ R[x]r of degree r and
consider the kernel:

K(x,y) = q2(|x− y|1),
which clearly lies in Q({0, 1}n). Using the closed form expression (8.4), the
eigenvalues of the operator K associated to K are given by the coefficients λk
in the expansion:

q2(x) =

2r�

k=0

λkK(n)
k (|x− y|1).

Therefore, the analysis could be concluded by finding a q for which these
coefficients are sufficiently close to 1.

The closed form expression of the Christoffel-Darboux kernel on the binary
cube follows from a classical summation formula for the Krawtchouk polyno-
mials, see Section 1.1 and also Section 7.1. As we saw in Chapter 1, a similar
summation formula is available for Gegenbauer polynomials, which yield a
closed form of the Christoffel-Darboux kernel on the hypersphere Sn−1. Fang
and Fawzi [FF21] in fact used this closed form to analyze the lower bounds
on Sn−1.

In this chapter, we shall use different summation formulas for Gegenbauer
polynomials due to Xu [Xu99, Xu98], which yield closed form expressions of
the Christoffel-Darboux kernel on the unit ball and on the standard simplex.
These expressions are significantly more complicated than the ones for {0, 1}n
and Sn−1, but they are nonetheless very useful.
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Organization. The rest of this chapter is organized as follows. In Section 8.1,
we introduce some notations and cover the necessary preliminaries on orthog-
onal (Gegenbauer) polynomials. In Section 8.2, we present closed form expres-
sions of the Christoffel-Darboux kernel and use them to obtain kernels whose
associated operators satisfy (P2) and whose eigenvalues are given by the co-
efficients of a univariate sum of squares in an appropriate basis of orthogonal
polynomials. In Section 8.3, we show how to choose this sum of squares so that
(P1), (P3) are satisfied and finish the proof of Theorem 8.1 and Theorem 8.2.
In Section 8.4, we extend our proof technique to the upper bounds to obtain
Theorem 8.3 and Theorem 8.4.

8.1. Preliminaries

8.1.1. Notations. We write R[x] for the univariate polynomial ring, while
reserving the bold-face notation R[x] = R[x1,x2, . . . ,xn] to denote the ring
of polynomials in n variables. We denote �p�X := maxx∈X |p(x)| for the
supremum-norm of p ∈ R[x] on X. We call a univariate polynomial p even if
p(x) = p(−x) for all x ∈ R, and odd if p(x) = −p(−x) for all x ∈ R. Finally,
we write |x| :=�n

i=1 xi for x ∈ Rn
≥0.

8.1.2. Gegenbauer polynomials. We recall some properties of the
Gegenbauer polynomials (also known as ultraspherical polynomials), intro-

duced in Chapter 1. For n ≥ 2, let wn(x) := cn(1 − x2)
n−2
2 , where cn > 0 is

chosen so that: � 1

−1
wn(x)dx = 1.

The Gegenbauer polynomials {G(n−2
2

)

k : k ∈ N} are defined as the set of
orthogonal polynomials on [−1, 1] w.r.t. the weight function wn. That is,

the polynomial G(n−2
2

)

k is of exact degree k for each k ∈ N, and the following
orthogonality relations hold:

� 1

−1
G(n−2

2
)

k (x)G(n−2
2

)

k� (x)wn(x)dx = 0 (k �= k�). (8.5)

For notational convenience, we adopt the normalization in this chapter for
which:

G(n−2
2

)

k (x) = �G(n−2
2

)

k (1)�G(n−2
2

)

k (x) (x ∈ R), (8.6)

where �G(n−2
2

)

k is the orthonormal Gegenbauer polynomial of degree k, i.e.,
satisfying:

� 1

−1

�G(n−2
2

)

k (x)�G(n−2
2

)

k� (x)wn(x)dx = δkk� (k, k� ∈ N).
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We have that maxx∈[−1,1] |G
(n−2

2
)

k (x)| = G(n−2
2

)

k (1), and so it will also be con-
venient to write:

G(n−2
2

)

k (x) :=
G(n−2

2
)

k (x)

G(n−2
2

)

k (1)
=
�G(n−2

2
)

k (x)

�G(n−2
2

)

k (1)
(x ∈ R)

for the normalization of the Gegenbauer polynomials which satisfies:

max
x∈[−1,1]

|G(n−2
2

)

k (x)| = G(n−2
2

)

k (1) = 1 (k ∈ N).

The upshot is that for these choices of normalization, we have:
� 1

−1
G(n−2

2
)

k (x)G(n−2
2

)

k� (x)wn(x)dx =

� 1

−1

�G(n−2
2

)

k (x)�G(n−2
2

)

k� (x)wn(x)dx = δkk� .

(8.7)
We will make use of the expansion:

q(x) =
d�

k=0

λkG
(n−2

2
)

k (x) (x ∈ R) (8.8)

of a univariate polynomial q of degree d in the basis of Gegenbauer polynomi-
als. Using (8.7), the coefficients λk in (8.8) are given by:

λk =

� 1

−1
G(n−2

2
)

k (x)q(x)wn(x)dx (0 ≤ k ≤ d). (8.9)

Using (8.9) and the fact that G(n−2
2

)

k (x) ≤ G(n−2
2

)

0 (x) = 1 for every x ∈ [−1, 1]
and k ∈ N, we find that:

λk ≤ λ0 (1 ≤ k ≤ d) (8.10)

whenever q is nonnegative on [−1, 1]. Furthermore, we note that if q is an
even polynomial of degree 2d, we may write:

q(x) =
d�

k=0

λ2kG
(n−2

2
)

2k (x) (x ∈ R). (8.11)

Indeed, as the odd degree Gegenbauer polynomials are odd functions, the
integral (8.9) vanishes for odd k in this case.

8.2. Construction of the linear operator

In this section, we explain how to construct a suitable linear operator K.
We recall briefly the setup of kernel operators. Let X ⊆ Rn be a compact set
and let µ be a measure whose support is exactly X. We may define an inner
product �·, ·�µ on the space P(X) of polynomials on X by setting:

�p, q�µ :=

�

X
p(x)q(x)dµ(x) (p, q ∈ P(X)).
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8.2. CONSTRUCTION OF THE LINEAR OPERATOR 137

We write {Pα : α ∈ Nn} for an orthonormal basis of P(X) w.r.t. this inner
product, ordered so that Pα is of exact degree |α| = �n

i=1 αi for all α ∈ Nn.
The Christoffel-Darboux kernel CDr : X×X→ R of degree r ∈ N for (X, µ)
is then defined as:

CDr(x,y) =
�

α∈Nn
r

Pα(x)Pα(y) (x,y ∈ X). (8.12)

From the orthonormality of the Pα, it follows that the operatorCDr associated
to the Christoffel-Darboux kernel CDr via (6.6) acts as the identity on P(X)r.
That is, we have:

CDrp(x) =

�

X
CDr(x,y)p(y)dµ(y) = p(x) (x ∈ X, p ∈ P(X)r).

For k ∈ N, we write Hk := span{Pα : |α| = k} for the subspace of P(X)
spanned by the Pα of exact degree k. Note that we may equivalently define
Hk as:

Hk := {p ∈ P(X)k : �p, q�µ = 0 for all q ∈ P(X)k−1}.

In particular, we see that Hk does not depend on our choice of basis {Pα},
but only on the measure µ. In light of this fact, it is convenient to adopt the
vector-notation:

Pk(x) := (Pα(x))|α|=k (k ∈ N).

The kernel CD(k)(x,y) := Pk(x)
�Pk(y) does not depend on the choice of basis

{Pα}, and its associated operator reproduces the subspace Hk. That is, if we
decompose a polynomial p ∈ P(X) as:

p(x) =

deg(p)�

k=0

pk(x) (pk ∈ Hk), (8.13)

we then have that:

CD(k)p(x) =

�

X
Pk(x)

�Pk(y)p(y)dµ(y) = pk(x) (x ∈ X, k ∈ N). (8.14)

After regrouping the terms in (8.12), we can express the Christoffel-Darboux
kernel as:

CDr(x,y) =

r�

k=0

CD(k)(x,y) =

r�

k=0

Pk(x)
�Pk(y). (8.15)

As we have seen, a closed form expression for CDr may be derived based
on the regrouping (8.15) on the binary cube and the unit sphere. See rela-
tions (1.15) and (1.17). In these special cases, the term Pk(x)

�Pk(y) may
be expressed by composing a univariate polynomial with a relatively simple
multivariate polynomial.

As we see now, such expressions also exist for the unit ball and the simplex.
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8.2.1. A closed form for the unit ball. Consider the unit ball Bn :=
{x ∈ Rn : �x�2 ≤ 1} ⊆ Rn, which we equip with the O(n)-invariant probability
measure µB given by:

dµB (x) = cn(1− �x�2)−
1
2dx (x ∈ Bn), (8.16)

with cn > 0 a normalization constant. As Bn is full-dimensional, we have
P(Bn) = R[x]. Xu derives the following closed form of the Christoffel-Darboux
kernel on Bn.

Theorem 8.6 (Xu [Xu99], Theorem 3.1). Let {Pα : α ∈ N} be an or-
thonormal basis of P(Bn) w.r.t. µB . Then the Pα satisfy the following sum-
mation formula in terms of the Gegenbauer polynomials1 (8.5):

Pk(x)
�Pk(y) =

1

2
·
�
G(n−2

2
)

k (x · y +
�

1− �x�2
�

1− �y�2) +

G(n−2
2

)

k (x · y −
�

1− �x�2
�

1− �y�2)
� (x,y ∈ Bn).

(8.17)

Using (8.17), we have the following closed form of the Christoffel-Darboux
kernel CDr:

CDr(x,y) =
1

2

r�

k=0

�
G(n−2

2
)

k (x · y +
�

1− �x�2
�
1− �y�2) +

G(n−2
2

)

k (x · y −
�

1− �x�2
�
1− �y�2)

�
(x,y ∈ Bn).

8.2.2. A closed form for the standard simplex. Consider the stan-
dard simplex:

Δn := {x ∈ Rn : x ≥ 0, 1− |x| ≥ 0} ⊆ Rn.

We equip Δn with the probability measure µΔ given by:

dµΔ(x) = cnx
−1/2
1 x

−1/2
2 . . .x−1/2

n (1− |x|)−1/2dx (x ∈ Δn), (8.18)

where cn > 0 is a normalization constant. As the simplex is full-dimensional,
we have P(Δn) = R[x]. Xu derives the following closed form of the Christoffel-
Darboux kernel.

Theorem 8.7 (Xu [Xu98], Corollary 2.4). Let {Pα : α ∈ N} be an or-
thonormal basis of P(Δn) w.r.t. µΔ. Then the Pα satisfy the following sum-
mation formula in terms of the Gegenbauer polynomials (8.5):

Pk(x)
�Pk(y) =

1

2n+1

�

t∈{−1,1}n+1

G(n−2
2

)

2k

� n+1�

i=1

√
xiyiti

�
(x,y ∈ Δn). (8.19)

1Note that the Gegenbauer polynomial of degree k in [Xu99] differs by a factor
(k + n−1

2
)/n−1

2
from the one used here (compare (2.10) in [Xu99] to (8.6)).
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8.2. CONSTRUCTION OF THE LINEAR OPERATOR 139

Here, we write xn+1 := 1 − |x|, yn+1 := 1 − |y|. Using (8.19), we have the
following closed form of the Christoffel-Darboux kernel CDr:

CDr(x,y) =
1

2n+1

r�

k=0

�

t∈{−1,1}n+1

G(n−2
2

)

2k

� n+1�

i=1

√
xiyiti

�
(x,y ∈ Δn).

8.2.3. Sum-of-squares representations. Based on the closed forms of
the Christoffel-Darboux kernel derived above, we may define kernels K(x,y)
for the unit ball and simplex whose associated operators satisfy property (P2).
Recall from Lemma 6.2; that it suffices for (P2) to hold that x �→ K(x,y) lies
T (X)2r for all y ∈ X fixed.

Lemma 8.8 (Restatement of Lemma 6.2). Let X ⊆ Rn be a compact semi-
algebraic set, and let µ be a finite measure supported on X. Let Q ⊆ R[x]
be a convex cone, and suppose that K : X×X→ R is a polynomial kernel for
which K(·,y) ∈ Q for each y ∈ X fixed. Then if p ∈ R[x] is nonnegative on
X, we have Kp ∈ Q. That is, when selecting Q = T (X)2r, the operator K
associated to K satisfies (P2).

In Chapter 7, it was very straightforward to see that the kernel K(x,y) =
q2(|x−y|1) lies in Q({0, 1}n)2r for any polynomial q ∈ R[x] of degree at most
r. Turning now to the unit ball and simplex, the situation is slightly more
complicated.

The unit ball. Let q ∈ Σ[x]2r be a univariate sum of squares, with expansion

q(x) =
�2r

k=0 λkG
(n−2

2
)

k (x) in the basis of Gegenbauer polynomials (8.8). In
light of the closed form (8.17) of the Christoffel-Darboux kernel on the unit
ball, we have:

CD2r(x,y;λ) =
1

2

�
q(x · y +

�
1− �x�2

�
1− �y�2) +

q(x · y −
�

1− �x�2
�
1− �y�2)

� (x,y ∈ Bn).

(8.20)

Lemma 8.9. Let q ∈ Σ[x]2r be a univariate sum of squares. Then the kernel
CD2r(x,y;λ) in (8.20) satisfies CD2r(·,y;λ) ∈ T (Bn)2r for fixed y ∈ Bn. As
a result, its associated operator satisfies (P2) by Lemma 8.8.

The simplex. Let q(x) =
�4r

k=0 λkG
(n−2

2
)

k (x) again be a univariate sum of
squares, now of degree 4r. Using (8.11), we have:

qeven(x) :=
q(x) + q(−x)

2
=

2r�

k=0

λ2kG
(n−2

2
)

2k (x) (x ∈ R). (8.21)
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In light of the closed form (8.19) of the Christoffel-Darboux kernel on the
simplex, we find:

CD2r(x,y;λeven) =
1

2n+1

�

t∈{−1,1}n+1

qeven
� n+1�

i=1

√
xiyiti

�
(x,y ∈ Δn). (8.22)

Here, λeven := (λ2k)0≤k≤2r and xn+1 = 1− |x|, yn+1 = 1− |y|.

Lemma 8.10. Let q ∈ Σ[x]4r be a univariate sum of squares of degree 4r,
and let qeven be as in (8.21). Then the kernel CD2r(x,y;λeven) in (8.22) sat-
isfies CD2r(·,y;λeven) ∈ T (Δn)2r for fixed y ∈ Δn. As a result, its associated
operator satisfies (P2) by Lemma 8.8.

For the proof of Lemma 8.9 and Lemma 8.10, we need the following lemma.

Lemma 8.11. Let p ∈ R[x] be a univariate polynomial of degree r. Let
u,v be formal variables. Then the polynomial p(u+ v)2 + p(u− v)2 admits a
representation:

p(u+ v)2 + p(u− v)2 = v2hodd(u,v
2)2 + heven(u,v

2)2,

where vhodd(u,v
2) and heven(u,v

2) ∈ R[u,v] are polynomials of degree r.

Proof. For convenience, let u ∈ R[u,v] be given by u(u,v) = u + v, so
that:

p(u+ v)2 + p(u− v)2 = p(u(u,v))2 + p(u(u,−v))2 = h(u,v)2 + h(u,−v)2,

where h = p ◦ u ∈ R[u,v]r. If we expand h in the monomial basis of R[u,v]
as:

h(u,v) =
�

i+j≤r

hiju
ivj (hij ∈ R),
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we may perform the following computation (where all summations are taken
over i+ j ≤ r):

h(u,v)2 + h(u,−v)2

=
��

hiju
ivj
�2

+
��

hiju
i(−v)j

�2

=
� �

j odd

hiju
ivj +

�

j even

hiju
ivj
�2

+
� �

j odd

hiju
i(−v)j +

�

j even

hiju
i(−v)j

�2

=
� �

j odd

hiju
ivj +

�

j even

hiju
ivj
�2

+
�
−
�

j odd

hiju
ivj +

�

j even

hiju
ivj
�2

= (
�

j odd

hiju
ivj)2 + (

�

j even

hiju
ivj)2 + 2(

�

j odd

hiju
ivj)(

�

j even

hiju
ivj)

+ (
�

j odd

hiju
ivj)2 + (

�

j even

hiju
ivj)2 − 2(

�

j odd

hiju
ivj)(

�

j even

hiju
ivj)

= 2(
�

j odd

hiju
ivj)2 + 2(

�

j even

hiju
ivj)2

= 2v2(
�

j odd

hiju
ivj−1)2 + 2(

�

j even

hiju
ivj)2.

But now we see that there exist hodd, heven ∈ R[u,v] of appropriate degree
such that:

p(u+v)2+p(u−v)2 = h(u,v)2+h(u,−v)2 = v2hodd(u,v
2)2+heven(u,v

2)2,

as required. �

Proof of Lemma 8.9. We may assume w.l.o.g. that q = p2 is a square.
For x,y ∈ Bn, write u = x · y and v =

�
1− �x�2

�
1− �y�2, so that:

CD2r(x,y;λ) = p(u+ v)2 + p(u− v)2.

By Lemma 8.11, there exist hodd, heven ∈ R[v,u] of appropriate degree so that:

CD2r(x,y;λ) = v2hodd(u,v
2)2 + heven(u,v

2)2,

which lies in T (Bn)2r for y ∈ Bn as u = x · y and v2 = (1− �x�2)(1− �y�2).
�

Proof of Lemma 8.10. Note first that qeven(x) = 1
2

�
q(x) + q(−x)

�
is

itself a sum of squares. In view of (8.22), it now suffices to show that for any
square p2 of degree 4r, the kernel:

K(x,y) :=
�

t∈{−1,1}n+1

p2
� n+1�

i=1

√
xiyiti

�

lies in T (Δn)2r for fixed y ∈ Δn (recall that we write xn+1 = 1− |x|,yn+1 =
1 − |y|). We prove this by successive application of Lemma 8.11. Set first
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u(0) =
�n

i=1

√
xiyiti and v(0) =

√
xn+1yn+1. Then Lemma 8.11 tell us that:

K(x,y) =
�

t∈{−1,1}n+1

p2(u(0) + v(0)tn+1)

=
�

t∈{−1,1}n

�
p2(u(0) + v(0)) + p2(u(0) − v(0))

�

=
�

t∈{−1,1}n

�
v2
(0)h0(u(0),v

2
(0))

2 + h1(u(0),v
2
(0))

2
�
,

for polynomials h0, h1 of appropriate degree. We may set u(1) =
�n−1

i=1

√
xiyiti

and v(1) =
√
xnyn and proceed to find:

K(x,y) =
�

t∈{−1,1}n

�
v2
(0)h0(u(0),v

2
(0))

2 + h1(u(0),v
2
(0))

2
�

=
�

t∈{−1,1}n−1

�
v2
(0)

�
h20(u(1) + v(1),v

2
(0)) + h20(u(1) − v(1),v

2
(0)

�

+ h21(u(1) + v(1),v
2
(0)) + h21(u(1) − v(1),v

2
(0))

�

=
�

t∈{−1,1}n−1

�
v2
(0)v

2
(1)h

2
00(u(1),v

2
(1),v

2
(0)) + v2

(0)h
2
01(u(1),v

2
(1),v

2
(0)

�

+ v2
(1)h

2
10(u(1),v

2
(1),v

2
(0)) + h211(u(1),v

2
(1),v

2
(0))

�
.

for polynomials h00, h01, h10, h11 of appropriate degree. After n applications
of this procedure, we find that:

K(x,y) =
�

a∈{0,1}n+1

n�

i=0

v2ai
(i) · h2a(v2

(0), . . . ,v
2
(n)), (8.23)

for polynomials ha of appropriate degree, where v2
(i) = xn+1−iyn+1−i for 0 ≤

i ≤ n. As Δn = {x ∈ Rn : xi ≥ 0 (1 ≤ i ≤ n + 1)}, this means that
K(x,y) ∈ T (Δn)2r for y ∈ Δn fixed. Take note that while the summands in
(8.23) are of degree 4r in the variables v(1), . . . ,v(n), they indeed have degree
2r in the variables x1, . . . ,xn. �

8.3. Analysis of the linear operator

For X = Bn,Δn and r ∈ N, let K = CD2r(λ) : P(X)2r → P(X)2r be the
operator associated to the perturbed Christoffel-Darboux kernel CD2r(x,y;λ)
defined in (8.3). As we have shown in Lemma 8.9 and Lemma 8.10 above, the
operator K satisfies (P2) for Q = T (X)2r if λ = (λk) (resp. λev = (λ2k)) is
given by the coefficients of a univariate sum of squares q ∈ σ[x]2r in the expan-

sion q(x) =
�2r

k=0 λkG
(n−2

2
)

k (x) in the basis of Gegenbauer polynomials (8.8).



582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot
Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022 PDF page: 151PDF page: 151PDF page: 151PDF page: 151

8.3. ANALYSIS OF THE LINEAR OPERATOR 143

We now expand on the second claim made in Section 8; namely that (P3) may
be expressed in terms of the difference between the λk and 1.

Let q(x) =
�2

k=0 rλkG
(n−2

2
)

k (x) be a univariate sum of squares. In the
above, we have shown that the operator K corresponding to the perturbed
Christoffel-Darboux kernel (8.20) on the ball (resp., (8.22) on this simplex)
satisfies (P2).

Recall from (8.14) that for any polynomial p on X of degree d, we have

Kp =
�d

k=0 λkpk, where p =
�d

k=0 pk is the decomposition of (8.13). We see
immediately that K satisfies (P1) if and only if λ0 = 1 (i.e., when K(1) =
λ0 = 1). We now expand on the second claim made in Section 8; namely that
(P3) may be shown for the operator K by analyzing the difference between
the coefficients λk and 1.

Recall that we consider in (P3) a polynomial f on X of degree d, whose
sup-norm �f�X over X is at most 1 by assumption, and that we wish to bound
�K−1f − f�X. Assuming that λ0 = 1 and λk �= 0 for 1 ≤ k ≤ d, we have

K−1f =
�d

k=0(1− 1/λk)fk and so:

�K−1f − f�X = �
d�

k=1

(1− 1/λk)fk�X ≤ max
1≤k≤d

�fk�X ·
d�

k=1

|1− 1/λk|.

We have shown the following.

Lemma 8.12. Let K be the operator associated to the perturbed Christoffel-
Darboux kernel K(x,y) := CD2r(x,y;λ) defined in (8.3) of degree 2r for cer-
tain λ = (λk)0≤k≤2r. Then K satisfies (P1) if λ0 = 1, and it satisfies (P3)
with:

ε = max
1≤k≤d

�fk�X ·
d�

k=1

|1− 1/λk|. (8.24)

We now work to bound the quantity (8.24).

8.3.1. The harmonic constant. In light of the factor max1≤k≤d �fk�X
in (8.24), we define the parameter:

γ(X)d := max
p∈R[x]d

max
0≤k≤d

�pk�X
�p�X

. (8.25)

for any compact semialgebraic set X (equipped with a measure µ). Recall
that we already studied this parameter for X = Bn in Chapter 7. Note that
max1≤k≤d �fk�X ≤ γ(X)d by definition. Let us first remark that γ(X)d <∞.
Indeed, this follows immediately from equivalence of norms on the finite-
dimensional vector space P(X)d. In particular, γ(Bn)d and γ(Δn)d are finite
constants depending only on n and d.
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For special cases of X, more can be shown. For instance, when X is the
hypersphere or binary cube, the constant γ(X)d may be bounded indepen-
dently of the dimension n [FF21, SL21b]. For the unit ball and simplex, we
have the following.

Proposition 8.13. Let γ(Bn)d and γ(Δn)d be the constants of (8.25)
on the unit ball and simplex, respectively. Then γ(Bn)d and γ(Δn)d depend
polynomially on n (when d is fixed) and polynomially on d (when n is fixed).

Proof. Let X = Bn,Δn, equipped with the probability measure µX =
µB , µΔ , respectively. Let p ∈ R[x]d be a polynomial of degree d and assume
that �p�X = 1. For k ≤ d, we know from (8.14) that:

pk(x) = CD(k)p(x) =

�

X
CD(k)(x,y)p(y)dµX(y) (x ∈ X).

Using the fact that �p�X = 1 and µX is a probability measure, as well as the
Cauchy-Schwarz inequality, we find for x ∈ X that:

|pk(x)|2 = |
�

X
CD(k)(x,y)p(y)dµX(y)|2

≤
�

X
CD(k)(x,y)2dµX(y) ·

�

X
p(y)2dµX(y)

≤
�

X
CD(k)(x,y)2dµX(y)

Using (8.14) again, we have:
�

X
CD(k)(x,y)2dµX(y) = CD(k)(x,x) (x ∈ X). (8.26)

It follows that:

γ(X)2d ≤ max
0≤k≤d

max
x∈X

CD(k)(x,x).

The closed forms (8.17) and (8.19) of CD(k) allow us to bound (8.26). On the
ball, we have:

CD(k)(x,x) =
1

2
·
�
G(n−2

2
)

k (1) + G(n−2
2

)

k (2�x�2 − 1)
�

(x ∈ Bn).

In particular, we have:

γ(Bn)2d ≤ max
0≤k≤d

�
max
x∈Bn

CD(k)(x,x)
�

≤ max
0≤k≤d

�
max

−1≤x≤1
|G(n−2

2
)

k (x)|
�
= max

0≤k≤d
G(n−2

2
)

k (1).

On the simplex, we similarly have:

CD(k)(x,x) =
1

2n+1

�

t∈{−1,1}n+1

G(n−2
2

)

2k

� n+1�

i=1

xiti
�

(x ∈ Δn)
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and so:

γ(Δn)2d ≤ max
0≤k≤d

�
max
x∈Δn

CD(k)(x,x)
�

≤ max
0≤k≤d

�
max

−1≤x≤1
|G(n−2

2
)

2k (x)|
�
= max

0≤k≤d
G(n−2

2
)

2k (1).

Finally, we note that (see, e.g., (2.9) in [Xu99]):

G(n−2
2

)

k (1) = (1 +
2k

n− 1
) ·
�
k + n− 2

k

�
(n, k ∈ N).

We conclude that the constant γ(Bn)d satisfies:

γ(Bn)2d ≤ max
0≤k≤d

G(n−2
2

)

k (1) = max
0≤k≤d

(1 +
2k

n− 1
) ·
�
k + n− 2

k

�
.

The constant γ(Δn)d similarly satisfies:

γ(Δn)2d ≤ max
0≤k≤d

G(n−2
2

)

2k (1) = max
0≤k≤d

(1 +
4k

n− 1
) ·
�
2k + n− 2

2k

�
.

�

8.3.2. Selecting a univariate square. The final ingredient we need
for the proof of our main theorems is the following result of Fang and Fawzi
[FF21].

Lemma 8.14 ([FF21], Theorem 6). Let n, d ∈ N. Then for every r ≥
2(n + 1)d there exists a univariate sum of squares q(x) =

�2r
k=0 λkG

(n−2
2

)

k (x)
of degree 2r with λ0 = 1 and:

d�

k=1

|1− 1/λk| ≤
2(n+ 1)2d2

r2
.

We outline how to obtain this result here, following the strategy of [FF21].
It is quite similar to what happens in Section 7.2. We emphasize again a con-
nection to the upper bounds in a univariate setting which was only implicitely
present in [FF21]. We also state the intermediary result Lemma 8.16, which
we need to prove Theorem 8.3 and Theorem 8.4 in Section 8.4. The first step

of the argument is to linearize the quantity
�d

k=1 |1− 1/λk|.

Lemma 8.15. Let n, d, r ∈ N and let q(x) =
�2r

k=0 λkG
(n−2

2
)

k (x) be a sum
of squares. Assuming that λ0 = 1 and λk ≥ 1/2 for 1 ≤ k ≤ d we have:

d�

k=1

|1− 1/λk| ≤ 2

d�

k=1

(1− λk)
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Proof. As q is nonnegative on [−1, 1], we know that λk ≤ λ0 = 1 by
(8.10). As λk ≥ 1/2 for each k, we have:

d�

k=1

|1− 1/λk| =
d�

k=1

|1− λk|
λk

≥ 2
d�

k=1

|1− λk| = 2
d�

k=1

(1− λk).

�

It remains to choose a sum of squares q minimizing
�d

k=1(1 − λk). This
turns out to reduce to analyzing a univariate instance of the upper bounds (2.6).

Lemma 8.16. Let n, d ∈ N. Then for every r ≥ d there exists a univariate

sum of squares q(x) =
�2r

k=0 λkG
(n−2

2
)

k (x) of degree 2r with λ0 = 1 and:

d�

k=1

(1− λk) ≤
(n+ 1)2d2

r2
.

Proof. For a univariate sum of squares q(x) =
�2r

k=0 λkG
(n−2

2
)

k (x), the
coefficients λk are equal to (see relation (8.9)):

λk =

� 1

−1
G(n−2

2
)

k (x)q(x)wn(x)dx (0 ≤ k ≤ 2r),

where G(n−2
2

)

k is the normalization of the Gegenbauer polynomial of de-

gree k satisfying max−1≤x≤1 |G
(n−2

2
)

k (x)| = G(n−2
2

)

k (1) = 1. Let h(x) :=

d−�d
k=1 G

(n−2
2

)

k (x). Note that:

� 1

−1
h(x)q(x)wn(x)dx = d−

d�

k=1

λk.

Selecting q optimally is thus equivalent to solving the optimization problem:

inf
q∈Σ[x]2r

�� 1

−1
h(x)q(x)wn(x)dx :

� 1

−1
q(x)wn(x)dx = 1

�
. (8.27)

We recognize the program (8.27) as the upper bound ub(h)r of (2.6) on the
minimum hmin = h(1) = 0 on [−1, 1] w.r.t. the measure dµ(x) = wn(x)dx.

As we have mentioned several times, the behaviour of the upper bounds
in this univariate setting is well-understood. It is known that for the linear
polynomial u(x) = x, the bounds have error u(r) − umin = (ξr+1 + 1), where

ξr+1 is the smallest root of the Gegenbauer polynomial G(n−2
2

)

r+1 of degree r+ 1

[dKL20b]. These roots satisfy (ξr+1+1) = O(1/r2). The error h(r)−hmin may
then be bounded by considering the linear Taylor estimate of h at 1, which
satisfies h(1) + h�(1)x ≥ h(x) for all x ∈ [−1, 1]. See [FF21] for details. �
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8.3.3. Proof of Theorem 8.1 and Theorem 8.2. We have now gath-
ered all tools required to prove our main results. First, let X = Bn and let f
be a polynomial on X of degree d. Recall that we may assume w.l.o.g. that
fmin = 0 and that �f�X = 1. We show how to construct an operator K satisfy-
ing the properties (P1), (P2) and (P3) for appropriate ε > 0, whose existence
will immediately imply Theorem 8.1 by Lemma 8.5. See also Figure 8.1.

For r ≥ 2(n+ 1)d, we select a univariate sum of squares:

q(x) =
2r�

k=0

λkG
(n−2

2
)

k (x)

as in Lemma 8.14, i.e., such that λ0 = 1 and
�d

k=1 |1− 1/λk| is small. Consider
the kernel K(x,y) := CD2r(x,y;λ) of (8.20). By Lemma 8.9, we know that
the operator K associated to K satisfies (P2). Furthermore, Lemma 8.12 tell
us that K satisfies (P1) and that it satisfies (P3) with:

ε = max
1≤k≤d

�fk�X ·
d�

k=1

|1− 1/λk| ≤ γ(Bn)d ·
2(n+ 1)2d2

r2
.

Here, we use (8.25) and Lemma 8.14 for the inequality. We may thus apply
Lemma 8.5 to conclude the statement of Theorem 8.1 with constant:

CB(n, d) = 2(n+ 1)2d2γ(Bn)d. (8.28)

In light of Proposition 8.13, this constant has the promised polynomial depen-
dence on n (for fixed d) and on d (for fixed n).

The proof of Theorem 8.2 for X = Δn is nearly identical. The only differ-

ence is that we should now select a sum of squares q(x) =
�4r

k=0 λkG
(n−2

2
)

k (x) of
degree 4r by applying Lemma 8.14 for d← 2d, r ← 2r and consider the kernel
K defined in (8.22). The associated operator satisfies (P2) by Lemma 8.10.
By Lemma 8.12, it satisfies (P1) and (P3) with:

ε ≤ γ(Δn)d ·
2(n+ 1)2(2d)2

(2r)2
= γ(Δn)d ·

2(n+ 1)2d2

r2
,

using (8.24), Lemma 8.14 and (8.21). We may apply Lemma 8.5 to conclude
the statement of Theorem 8.2 with:

CΔ(n, d) = 2(n+ 1)2d2γ(Δn)d, (8.29)

which also has the required dependencies on n and d by Proposition 8.13.

8.4. The upper bounds

We apply the method of Section 6.2 to extend our results to the hierarchies
of upper bounds lb(f, T (X))r on the unit ball and the simplex. Recall that in
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�2r
k=0 λkG

(n−2
2

)

k (x) q(x) Σ[x]2r

CD2r(x,y;λ) K(x,y) T (Bn)2r

Choose q s.t. λ0 = 1 and�n
k=1 |1− 1/λk| = O(1/r2)

(P1) + (P3) K (P2)

=

(8.17)

∈

(8.20) Lem. 8.9

=

Lem. 8.14

∈

(8.2) Lem. 8.8

Lem. 8.12 + Prop. 8.13

Figure 8.1. Overview of the construction of a a linear op-
erator K : R[x]d → R[x]d satisfying the properties (P1), (P2),
(P3) of Section 8 for the unit ball. The construction for the
standard simplex is analogous.

order to analyze these bounds, it is enough to exhibit an explicit probability
density σ ∈ R[x] on (X, µ) which lies in T (X)2r, and for which the difference:

�

X
f(x)σ(x)dµ(x)− fmin

can be bounded from above. We exhibit such a σ here for X = Bn, µ = µB

based on the perturbed Christoffel-Darboux kernels constructed in Section 8.2.
Write K(x,y) = CD2r(x,y;λ) for such a kernel, where λ is chosen as in

Lemma 8.16. Let x∗ ∈ X be a global minimizer of f over X, and consider the
polynomial σ given by:

σ(x) = K(x,x∗) (x ∈ X).

By Lemma 8.9, σ ∈ T (X)2r. For any polynomial p ∈ R[x]d, we have:

�

X
σ(x)p(x)dµ(x) = Kp(x∗) =

d�

k=0

λkpk(x
∗) (pk ∈ Hk),

by definition. Therefore, as λ0 = 1, σ is a probability density on X. The
polynomial σ is thus a feasible solution to the program (2.8) defining the
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bound lb(f, T (X))r. Furthermore, we have:

�

X
f(x)σ(x)dµ(x)− fmin = Kf(x∗)− f(x∗) ≤

d�

k=1

|(1− λk)fk(x
∗)|

≤ γ(X)d ·
d�

k=1

|1− λk| ≤ γ(X)d ·
(n+ 1)2d2

r2
.

We find that lb(f, T (X))r−fmin ≤ γ(X)d · (n+1)2d2/r2. Theorem 8.3 follows
immediately. For X = Δn, an analogous construction yields Theorem 8.4.

8.5. Discussion

We have shown a convergence rate in O(1/r2) for the Schmüdgen-type
hierarchy of lower bounds lb(f, T (X))r for the minimization of a polynomial
f over the unit ball or simplex. Our result matches the best known rates for
the hypersphere [FF21] and the hypercube (see Chapter 9). As a side result,
we show similar convergence rates for the upper bounds (8.1) on these sets
as well (w.r.t. the measures µB and µΔ). We repeat that convergence rates
in O(1/r2) for the upper bounds on Bn and Δn were already available (but
w.r.t. different reference measures).

Putinar- vs. Schmüdgen-type certificates. In light of the recent re-
sult [BM21], there is no longer a (large) theoretical gap between the best
known convergence rates for the Putinar- and Schmüdgen-type hierarchies
(see also Chapter 2). On the other hand, specialized convergence result for
the Putinar-type bound lb(f,Q(X))r are so far available only in those cases
where Q(X)2r = T (X)2r, i.e. where the Putinar- and Schmüdgen-type bounds
coincide (which is the case on the binary hypercube, the hypersphere and the
unit ball). It is an interesting open question whether specialized results for
lb(f,Q(X))r can be shown in non-trivial cases as well, for instance on the sim-
plex and hypercube (see Chapter 9). It seems unclear whether the techniques
of the present chapter may be applied to the Putinar-type bounds on the sim-
plex. This would require an analog of Lemma 8.10 showing membership of the
kernel in the quadratic module rather than the preordering. Such an analog
seems difficult to prove using the representation (8.22), and no obvious other
representation is available.

The harmonic constant. We have shown in Proposition 8.13 that γ(Bn)d
and γ(Δn)d depend polynomially on n (for fixed d) and on d (for fixed n).
As we have seen, the corresponding constants γ(Sn−1)d and γ({0, 1}n)d for
the sphere and binary cube may actually be bounded independently of the
dimension n for fixed d ∈ N. It is an interesting open question whether this is
true for γ(Bn)d and γ(Δn)d as well. In a forthcoming paper, we will study the
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constants γ(X)d in more generality, focusing in particular on its asymptotic
properties.

Acknowledgments. We wish to thank Monique Laurent for helpful sugges-
tions on the presentation of the material, and Fernando Oliviera for fruitful
discussions about kernels on the unit ball.
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CHAPTER 9

Application: The unit box [−1, 1]n

Intelligence is the ability of a living
creature to perform pointless or
unnatural acts.

Arkady Strugatsky, Roadside Picnic

This chapter is based on my joint work [LS21] with Monique Laurent.

Consider the problem of computing the global minimum:

fmin := min
x∈[−1,1]n

f(x)

of a polynomial f of degree d ∈ N over the unit box [−1, 1]n ⊆ Rn. The set
[−1, 1]n has the semialgebraic description:

[−1, 1]n = {x ∈ Rn : gi(x) := (1− x2
i ) ≥ 0 ∀i ∈ [n]}.

The (truncated) preordering T ([−1, 1]n)r is then defined as:

T ([−1, 1]n)r := {
�

J⊆[n]

σJgJ : σJ ∈ Σ[x], deg(σJgJ) ≤ r} (gJ :=
�

j∈J
gj).

The preordering satisfies T ([−1, 1]n)r ⊆ P+([−1, 1]n) for all r ∈ N, where
P+([−1, 1]n) denotes the cone of polynomials nonnegative on [−1, 1]n. For
ease of exposition, we depart slightly from our earlier notation in this chapter
and define the Schmüdgen-type lower bounds on fmin as:

lb(f, T ([−1, 1]n))r := sup{λ ∈ R : f − λ ∈ T ([−1, 1]n)r} (9.1)

(note that usually, we allow f − λ ∈ T ([−1, 1]n)2r). The reason for this small
change is our later application of Theorem 9.8 below. As this is the only
type of lower bound we consider in this chapter, we shall also write simply
lb(f)r = lb(f, T ([−1, 1]n))r. By definition, we have fmin ≥ lb(f)r+1 ≥ lb(f)r
for all r ∈ N. Furthermore, we have limr→∞ lb(f)r = fmin, which follows
directly from the following special case of Schmüdgen’s Positivstellensatz.

Theorem 9.1 (Special case of Schmüdgen’s Positivstellensatz [Sch91]).
Let f ∈ P+([−1, 1]n) be a polynomial. Then for any η > 0 there exists an
r ∈ N such that f + η ∈ T ([−1, 1]n)r.

151
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Outline. In this chapter, we show a bound on the convergence rate of the
lower bounds lb(f)r to the global minimum fmin of f over [−1, 1]n in O(1/r2).
Alternatively, our result can be interpreted as a bound on the degree r in
Schmüdgen’s Positivstellensatz of the order O(1/

√
η) of a positivity certificate

for f + η when f ∈ P+([−1, 1]n).

Theorem 9.2. Let f be a polynomial of degree d ∈ N. Then there exists
a constant C(n, d) > 0, depending only on n and d, such that:

fmin − lb(f)(r+1)n ≤
C(n, d)

r2
· (fmax − fmin) for all r ≥ πd

√
2n.

Furthermore, the constant C(n, d) may be chosen such that it either depends
polynomially on n (for fixed d) or it depends polynomially on d (for fixed n),
see relation (9.13) for details.

Corollary 9.3. Let f ∈ P+([−1, 1]n) with degree d. Then, for any η > 0,
we have:

f+η ∈ T ([−1, 1]n)(r+1)n for all r ≥ max
�
πd
√
2n,

1√
η

�
C(n, d)(fmax − fmin)

�
,

where C(n, d) is the constant from Theorem 9.2. Hence we have f + η ∈
T ([−1, 1]n)r for r = O(1/

√
η).

Proof. Let η > 0 and set Cf := C(n, d) · (fmax − fmin). Pick an integer

r ≥ max{πd
√
2n,
�
Cf/η}. Then we have:

f + η = f − lb(f)(r+1)n� �� �
∈T ([−1,1]n)(r+1)n

+
�
lb(f)(r+1)n − fmin +

Cf

r2� �� �
≥0 by Theorem 9.2

�
+ fmin����

≥0

+
�
η − Cf

r2� �� �
≥0

�
,

which shows f + η ∈ T ([−1, 1]n)(r+1)n. �

Overview of the proof. Let f ∈ R[x] be a polynomial of degree d. To
simplify our arguments and notation, we will work with the scaled function:

F :=
f − fmin

fmax − fmin
,

for which Fmin = 0 and Fmax = 1. Since the inequality (9.2) is invariant under
a positive scaling of f and adding a constant, it indeed suffices to show the
result for the function F . To prove Theorem 9.2, we apply the method of
Chapter 6. We outline the specialization of the method to this setting for
convenience.

Let ε > 0 and consider the polynomial F̃ := F+ε. Let r ≥ d. Suppose that
we are able to construct a (nonsingular) linear operator Kr : R[x]r → R[x]r
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9. APPLICATION: THE UNIT BOX [−1, 1]n 153

which has the following two properties:

Kr(1) = 1, (P1)

Krp ∈ T ([−1, 1]n)(r+1)n for all p ∈ P+([−1, 1]n)d, (P2)

�K−1
r F̃ − F̃�∞ := max

x∈[−1,1]n
|K−1

r F̃ (x)− F̃ (x)| ≤ ε. (P3)

Then, by (P3), we haveK−1
r F̃ ∈ P+([−1, 1]n)d. Indeed, as F is nonnegative on

[−1, 1]n, F̃ (x) = F (x)+ε is greater than or equal to ε for all x ∈ [−1, 1]n, and
so (P3) tells us that after application of the operator K−1

r , the resulting poly-

nomial K−1
r F̃ is nonnegative on [−1, 1]n. Using (P2), we may then conclude

that F̃ = Kr(K
−1
r F̃ ) ∈ T ([−1, 1]n)(r+1)n. It follows that Fmin − F((r+1)n) ≤ ε

and thus fmin − lb(f)(r+1)n ≤ ε · (fmax − fmin). We collect this in the next
lemma for future reference.

Lemma 9.4. Assume that for some r ≥ d and ε > 0 there exists a non-
singular operator Kr : R[x]r → R[x]r which satisfies the properties (P2) and
(P3). Then we have:

fmin − lb(f)(r+1)n ≤ ε · (fmax − fmin).

In what follows, we will construct such an operator Kr for each r ≥ πd
√
2n

and the parameter ε := C(n, d)/r2, where the constant C(n, d) will be specified
later. Our main Theorem 9.2 then follows after applying Lemma 9.4.

We make use of the polynomial kernel method for our construction: after
choosing a suitable kernel Kr : Rn × Rn → R, we define the linear operator
Kr : R[x]r → R[x]r via the integral transform:

Krp(x) :=

�

[−1,1]n
Kr(x,y)p(y)dµ(y) (p ∈ R[x]r).

Here, µ is the Chebyshev measure on [−1, 1]n as defined in (9.2) below. A
good choice for the kernel Kr is a multivariate version (see Section 9.2) of

the well-known Jackson kernel Kjac
r of degree r (see Section 9.1.3). For this

choice of kernel, the operator Kr naturally satisfies (P2) (see Section 9.2.1).
Furthermore, it diagonalizes with respect to the basis of R[x] given by the
(multivariate) Chebyshev polynomials (see Section 9.1.2). Property (P3) can
then be verified by analyzing the eigenvalues of Kr, which are closely related

to the expansion of Kjac
r in the basis of (univariate) Chebyshev polynomials

(see Section 9.3). We end this section by illustrating our method of proof with
a small example.

Example 9.5. Consider the polynomial f(x) = 1 − x2 − x3 + x4, which
is nonnegative on [−1, 1]. For r ∈ N, let Kr be the operator associated to the
univariate Jackson kernel (9.6) of degree r, which satisfies (P2) (see Section
9.2.1). For η = 0.1, we observe that applying K−1

7 to f+η yields a nonnegative

function on [−1, 1], whereas applying K−1
5 does not (see Figure 9.1). Applying
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−1 −0.5 0 0.5 1

0

1

2

3
f(x) + η

K−1
5

�
f(x) + η

�

K−1
7

�
f(x) + η

�

Figure 9.1. The polynomial f(x)+η of Example 9.5 and its trans-
formations under the inverse operators K−1

5 and K−1
7 associated to

the Jackson kernels of degree 5 and 7.

the arguments of Section 9, we may thus conclude that f + η ∈ T ([−1, 1]n)8,
but not that f + η ∈ T ([−1, 1]n)6.

9.1. Preliminaries

9.1.1. Notation. We write R[x] for the univariate polynomial ring, while
reserving the bold-face notation R[x] = R[x1,x2, . . . ,xn] to denote the ring
of polynomials in n variables. Similarly, Σ[x] ⊆ R[x] and Σ[x] ⊆ R[x] de-
note the sets of univariate and n-variate sum-of-squares polynomials, respec-
tively, consisting of all polynomials of the form p = p21 + p22 + · · · + p2m for
certain polynomials p1, . . . , pm and m ∈ N. For a polynomial p ∈ R[x], we
write pmin, pmax for its minimum and maximum over [−1, 1]n, respectively,
and �p�∞ := supx∈[−1,1]n |p(x)| for its sup-norm on [−1, 1]n.

9.1.2. Chebyshev polynomials. We recall some properties of the Cheby-
shev polynomials, introduced in Chapter 1. Let µ be the normalized Chebyshev
measure on [−1, 1]n, defined by:

dµ(x) =
dx1

π
�
1− x2

1

. . .
dxn

π
�
1− x2

n

. (9.2)

Note that µ is a probability measure on [−1, 1]n, meaning that
�
[−1,1]n dµ = 1.

We write �·, ·�µ for the corresponding inner product on R[x], given by:

�f, g�µ :=

�

[−1,1]n
f(x)g(x)dµ(x).
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For k ∈ N, let Ck be the univariate Chebyshev polynomial of degree k, defined
by:

Ck(cos θ) := cos(kθ) (θ ∈ R).
Note that |Ck(x)| ≤ 1 for all x ∈ [−1, 1] and that C0 = 1. The Chebyshev
polynomials satisfy the orthogonality relations:

�Ca, Cb�µ =

� 1

−1
Ca(x)Cb(x)dµ(x) =





0 a �= b,

1 a = b = 0,
1
2 a = b �= 0.

(9.3)

A univariate polynomial p may therefore be expanded as:

p = p0 +

deg(p)�

k=1

2pkCk, where pk := �Ck, p�µ.

For κ ∈ Nn, we consider the multivariate Chebyshev polynomial Cκ, defined
by setting:

Cκ(x) :=
n�

i=1

Cκi(xi).

The multivariate Chebyshev polynomials form a basis for R[x] and satisfy the
orthogonality relations:

�Cα, Cβ�µ =

�

[−1,1]n
Cα(x)Cβ(x)dµ(x) =





0 α �= β,

1 α = β = 0,

2−w(α) α = β �= 0.

(9.4)

Here, w(α) := |{i ∈ [n] : αi �= 0}| denotes the Hamming weight of α ∈ Nn.
We use the notation Nn

d ⊆ Nn to denote the set of n-tuples α ∈ Nn with
|α| = �n

i=1 αi ≤ d. As in the univariate case, we may expand any n-variate
polynomial p as:

p =
�

κ∈Nn
deg(p)

2w(κ)pκCκ, where pκ := �Cκ, p�µ. (9.5)

9.1.3. The Jackson kernel. For r ∈ N and for coefficients λ
(r)
k ∈ R to

be specified below in (9.7), consider the kernel Kjac
r : R× R→ R given by:

Kjac
r (x, y) := 1 + 2

r�

k=1

λ
(r)
k Ck(x)Ck(y). (9.6)

Note that Kjac
r (x, y) = CD(x, y;λ(r)) thus equals the perturbed Christoffel-

Darboux kernel for [−1, 1] w.r.t. the Chebyshev measure defined in (6.7). We

associate a linear operator Kjac
r : R[x]r → R[x]r to this kernel by setting:

Kjac
r p(x) :=

� 1

−1
Kjac

r (x, y)p(y)dµ(y) (p ∈ R[x]r).
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Using the orthogonality relations (9.3), and writing λr
0 := 1, we see that:

Kjac
r Ck(x) :=

� 1

−1
Kjac

r (x, y)Ck(y)dµ(y) = λr
kCk(x) (0 ≤ k ≤ r).

In other words, Kjac
r is a diagonal operator with respect to the Chebyshev

basis of R[x]r, and its eigenvalues are given by λr
0 = 1,λ

(r)
1 , . . . ,λ

(r)
r . In what

follows, we set:

λ
(r)
k =

1

r + 2

�
(r + 2− k) cos(kθr) +

sin(kθr)

sin(θr)
cos(θr)

�
(1 ≤ k ≤ r), (9.7)

with θr = π
r+2 . We then obtain the so-called Jackson kernel (see, e.g.,

[WWAF06]). The following properties of the Jackson kernel are crucial to
our analysis.

Proposition 9.6. For every d, r ∈ N with d ≤ r, we have:

(i) Kjac
r (x, y) ≥ 0 for all x, y ∈ [−1, 1],

(ii) 1 ≥ λ
(r)
k > 0 for all 0 ≤ k ≤ r, and

(iii) |1− λ
(r)
k | = 1− λ

(r)
k ≤ π2d2

(r+2)2
for all 0 ≤ k ≤ d.

Proof. Nonnegativity of the Jackson kernel is a well-known fact, and is
verified, e.g., in [dKHL17]. We check that the other properties (ii)-(iii) hold
as well.

Second property (ii): Note that when k ≤ (r + 2)/2, both terms of (9.7)

are positive, and so certainly λ
(r)
k > 0. So assume (r + 2)/2 < k ≤ r. Set

h = r + 2− k, so that kθr = π − hθr, 2 ≤ h < (r + 2)/2, and

(r + 2)λ
(r)
k = −h cos(hθr) +

sin(hθr)

(sin θr)
cos(θr) (9.8)

It remains to show that the RHS of (9.8) is positive for all 2 ≤ h < (r+ 2)/2.
Note that 1 > cos(θr) > 0, sin(θr) ≥ 0 and that sin(hθr) ≥ 0 for all 2 ≤ h <
(r + 2)/2. We proceed by induction. For h = 2, we compute:

−h cos(hθr) +
sin(hθr)

sin(θr)
cos(θr) = −2(2 cos2(θr)− 1) + 2 cos2(θr)

= −2 cos2(θr) + 2 > 0,
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which settles the base of induction. For h ≥ 2, we compute:

−(h+ 1) cos((h+ 1)θr) + sin((h+ 1)θr)
cos(θr)

sin(θr)

= −(h+ 1)
�
cos(hθr) cos(θr)− sin(hθr) sin(θr)

�

+
�
sin(hθr) cos(θr) + cos(hθr) sin(θr)

�cos(θr)
sin(θr)

= −h cos(hθr) cos(θr) + (h+ 1) sin(hθr) sin(θr) +
sin(hθr)

sin(θr)
cos2(θr)

= cos(θr)� �� �
>0

�
− h cos(hθr) +

sin(hθr)

sin(θr)
cos(θr)

�

� �� �
≥0 by the induction assumption

+(h+ 1) sin(hθr) sin(θr)� �� �
≥0

≥ 0.

We conclude that λ
(r)
k > 0 for all k ∈ [r]. To see that λ

(r)
k ≤ 1, note that for

all k ∈ N, Ck(x) ≤ 1 for −1 ≤ x ≤ 1 and Ck(1) = 1. We can thus compute:

λ
(r)
k = λ

(r)
k Ck(1) =

� 1

−1
Kjac

r (1, y)Ck(y)dµ(y) ≤
� 1

−1
Kjac

r (1, y)dµ(y) = λ
(r)
0 = 1,

making use of the nonnegativity of Kjac
r (x, y) on [−1, 1]2 for the inequality.

Third property (iii): Using the expression of λk
r in (9.7) we have

1− λk
r = 1− r + 2− k

r + 2
cos(kθr)−

1

r + 2

sin(kθr) cos(θr)

sin(θr)
.

We now bound each trigonometric term using the fact that:

cos(x) ≥ 1− 1

2
x2, x− 1

6
x3 ≤ sin(x) ≤ x (x ∈ R). (9.9)

When k = 1 we immediately get:

1− λ1
r = 1− cos(θr) ≤

1

2
θ2r =

π2

2(r + 2)2
≤ d2π2

(r + 2)2
.

Assume now 2 ≤ k ≤ d. Using (9.9) combined with cos(θr), sin(θr), sin(kθr) >
0 we obtain:

sin(kθr) cos(θr)

sin(θr)
≥
�
kθr −

1

6
k3θ3r

��
1− 1

2
θ2r
� 1
θr
≥ k − k

2
θ2r
�
1 +

k2

3

�
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and thus:

1− λk
r ≤ 1− r + 2− k

r + 2

�
1− k2θ2r

2

�
− 1

r + 2

�
k − k

2
θ2r
�
1 +

k2

3

��

=
r + 2− k

r + 2� �� �
≤1

k2θ2r
2

+
k

2(r + 2)� �� �
≤1/2

θ2r
�
1 +

k2

3

�
� �� �
≤ 2

3
k2 if k≥2

≤ k2θ2r ≤
d2π2

(r + 2)2
.

This concludes the proof if k ≥ 2. �

9.2. Construction of the linear operator

As noted before, in order to prove Theorem 9.2 it suffices to construct
a linear operator Kr : R[x]r → R[x]r that is nonsingular and satisfies (P1),
(P2) and (P3). For this purpose we define the multivariate Jackson kernel

Kjac
r : Rn × Rn → R by setting:

Kjac
r (x,y) :=

n�

i=1

Kjac
r (xi, yi),

where Kjac
r is the (univariate) Jackson kernel from (9.6). Now let Kr be the

corresponding kernel operator defined by:

Krp(x) =

�

y∈[−1,1]n
Kjac

r (x,y)p(y)dµ(y) (p ∈ R[x]r).

The operator Kr is diagonal w.r.t. the (multivariate) Chebyshev basis, and

its eigenvalues can be expressed in terms of the coefficients λ
(r)
k of the Jackson

kernel, as the following lemma shows.

Lemma 9.7. The operator Kr is diagonal w.r.t. the Chebyshev basis for
R[x]r, and its eigenvalues are given by:

λ(r)
κ :=

n�

i=1

λ(r)
κi

(κ ∈ Nn
r ).

Proof. For κ ∈ Nn
r , we see that:

KrCκ(x) =
�

y∈[−1,1]n
Kjac

r (x,y)Cκ(y)dµ(y)

=
n�

i=1

��

yi∈[−1,1]
Kjac

r (xi,yi)Cκi(yi)dµ(yi)

�

=
n�

i=1

λ(r)
κi

Cκi(xi) = λ(r)
κ Cκ(x),

as required. �
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Note that Kjac(x,y) = CD(x,y;λ(r)) is thus the perturbed Christoffel-Darboux
kernel for [−1.1]n w.r.t. the Chebyshev measure defined in (6.7). It follows
immediately from Proposition 9.6(ii) that Kr has only nonzero eigenvalues

and thus is non-singular. As λ
(r)
0 = 1, we also have Kr(1) = 1, meaning Kr

satisfies (P1). We show that it further satisfies (P2) and (P3).

9.2.1. Verification of property (P2). Consider the following strength-
ening of Schmüdgen’s Positivstellensatz in the univariate case.

Theorem 9.8 (Fekete, Markov-Lukácz (see [PR00])). Let p be a univari-
ate polynomial of degree r, and assume that p ≥ 0 on the interval [−1, 1].
Then p admits a representation of the form:

p(x) = σ0(x) + σ1(x)(1− x2), (9.10)

where σ0,σ1 ∈ Σ[x] and σ0 and σ1 · (1 − x2) are of degree at most r + 1. In
other words, in view of (9), we have p ∈ T ([−1, 1])r+1.

By Proposition 9.6(i), for any y ∈ [−1, 1], the polynomial x �→ Kjac
r (x, y) is

nonnegative on [−1, 1] and therefore admits a representation of the form (9.10).

This implies directly that the multivariate polynomial x �→ Kjac
r (x,y) =�n

i=1K
jac
r (xi,yi) belongs to T ([−1, 1]n)(r+1)n for all y ∈ [−1, 1]n.

Lemma 9.9 (Specialization of Lemma 6.2). The operator Kr satisfies prop-
erty (P2), that is, we have Krp ∈ T ([−1, 1]n)(r+1)n for all p ∈ P+([−1, 1]n).

Proof. One way to see this is as follows. Let p ∈ P+([−1, 1]n) and let
{yi : i ∈ [N ]} ⊆ [−1, 1]n and wi > 0 (i ∈ [N ]) form a quadrature rule
for integration of polynomials up to degree r + deg(p) over [−1, 1]n; that is,�
[−1,1]n q(x)dµ(x) =

�N
i=1wiq(yi) for any q ∈ R[x]r+deg(p). Then, we have

Krp(x) =
�N

i=1Kr(x,yi)p(yi)wi with p(yi)wi ≥ 0 for all i, which shows that
Krp ∈ T ([−1, 1]n)(r+1)n. �

9.3. Analysis of the linear operator

Wemay decompose the polynomial F̃ = F + ε into the multivariate Cheby-
shev basis (9.5):

F̃ = ε+
�

κ∈Nn
d

2w(κ)FκCκ, where Fκ = �F, Tκ�µ.

By Lemma 9.7, we then have:

�K−1
r F̃ − F̃�∞ = �

�

κ∈Nn
d

(1/λ(r)
κ )2w(κ)FκCκ − 2w(κ)FκCκ�∞

≤
�

κ∈Nn
d

2w(κ)|Fκ||1− 1/λ(r)
κ |,

(9.11)
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making use of the fact that λ0 = 1 and |Cκ(x)| ≤ 1 for all x ∈ [−1, 1]n. It
remains to analyze the expression at the right-hand side of (9.11). First, we
bound the size of |Fκ| for κ ∈ Nn.

Lemma 9.10. We have |Fκ| = |�F, Cκ�µ| ≤ 2−w(κ)/2 for all κ ∈ Nn.

Proof. Since µ is a probability measure on [−1, 1]n, we have �F�µ ≤
�F�∞ ≤ 1. Using the Cauchy-Schwarz inequality and (9.4), we then find:

�F, Cκ�µ ≤ �Fκ�µ�Cκ�µ ≤ �Cκ�µ = 2−w(κ)/2.

�
To bound the parameter |1−1/λ

(r)
κ |, we first prove a bound on |1−λ

(r)
κ |, which

we obtain by applying Bernoulli’s inequality.

Lemma 9.11 (Bernoulli’s inequality). For any x ∈ [0, 1] and t ≥ 1, we
have:

1− (1− x)t ≤ tx. (9.12)

Lemma 9.12. For any κ ∈ Nn
d and r ≥ πd, we have:

|1− λ(r)
κ | ≤ nπ2d2

r2
.

Proof. By Proposition 9.6, we know that 0 ≤ γk := (1−λ(r)
k ) ≤ π2d2/r2 ≤

1 for 0 ≤ k ≤ d. Writing γ := max0≤k≤d γk, we compute:

1− λ(r)
κ = 1−

n�

i=1

λ(r)
κi

= 1−
n�

i=1

(1− γκi) ≤ 1− (1− γ)n ≤ nγ ≤ nπ2d2

r2
,

making use of (9.12) for the second to last inequality. �
Lemma 9.13. Assuming that r ≥ πd

√
2n, we have:

|1− 1/λ(r)
κ | ≤ 2nπ2d2

r2
.

Proof. Under the assumption, and using the previous lemma, we have

|1− λ
(r)
κ | ≤ 1/2, which implies that λ

(r)
κ ≥ 1/2. We may then bound:

|1− 1/λ(r)
κ | = |1− λ

(r)
κ

λ
(r)
κ

| ≤ 2|1− λ(r)
κ | ≤ 2nπ2d2

r2
.

�
Putting things together and using (9.11), Lemma 9.10 and Lemma 9.12 we
find that:

�K−1
r F̃ − F̃�∞ ≤

�

κ∈Nn
d

2w(κ)|Fκ||1− 1/λ(r)
κ |

≤
�

κ∈Nn
d

2w(κ)/2 · 2nπ
2d2

r2
≤ |Nn

d | · max
κ∈Nn

d

2w(κ)/2 · 2nπ
2d2

r2
.
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Hence Kr satisfies (P3) with ε = C(n, d)/r2, where:

C(n, d) := |Nn
d | · max

κ∈Nn
d

2w(κ)/2 · 2nπ2d2.

In view of Lemma 9.4, we have thus proven Theorem 9.2. Finally, we can
bound the constant C(n, d) in two ways. On the one hand, we have:

|Nn
d | =

�
n+ d

n

�
=

n�

i=1

d+ i

i
≤ (d+ 1)n and max

κ∈Nn
d

w(κ) ≤ n,

resulting in a polynomial dependence of C(n, d) on d for fixed n. On the other
hand, we have:

|Nn
d | =

�
n+ d

d

�
≤ (n+ 1)d and max

κ∈Nn
d

w(κ) ≤ d,

resulting in a polynomial dependence of C(n, d) on n for fixed d. Namely, we
have:

C(n, d) ≤ 2π2d2n2n/2(d+ 1)n and C(n, d) ≤ 2π2d2n2d/2(n+ 1)d. (9.13)

9.4. Discussion

We have shown that the error of the degree r + 1 Lasserre-type bound
(9.1) for the minimization of a polynomial over the hypercube [−1, 1]n is of
the order O(1/r2) when using a sum-of-squares decomposition in the truncated
preordering. Alternatively, if f is a polynomial nonnegative on [−1, 1]n and
η > 0, our result may be interpreted as showing a bound in O(1/

√
η) on the

degree of a Schmüdgen-type certificate of positivity for f+η. The dependence
on the dimension n and the degree d of f in the constants of our result is both
polynomial in n (for fixed d), and polynomial in d (for fixed n).

Earlier results. A convergence rate in O(1/r) for the lower bounds lb(f)r
was already known in the literature [dKL10]. This rate holds in fact for a
weaker hierarchy of bounds obtained by restricting in (9.1) to decompositions
of the polynomial f − λ involving factors σJ that are nonnegative scalars
(instead of sums of squares), also known as Handelman-type decompositions
(thus replacing the preordering T ([−1, 1]n)r by its subset Hr of polynomials
having a Handelman-type decomposition). The analysis in [dKL10] relies on
employing the Bernstein operator Br, which has the property of mapping a
polynomial nonnegative over the hypercube to a polynomial in the set Hrn ⊆
T ([−1, 1]n)rn.

An application of our main result. As we discussed in Section 2.3,
Baldi & Mourrain [BM21] have recently improved the previously best-
known convergence rate of [NS07] for the Putinar-type bounds on a general
Archimedean semialgebraic set X. Roughly speaking, their method of proof
relies on embedding X in a box [−R,R]n of large enough size R > 0, and then
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relating positivity certificates on X to those on [−R,R]n. Our present result
on [−1, 1]n then allows them to conclude their analysis. Their argument relies
on the fact the constant C(n, d) in Theorem 9.2 may be chosen to depend
polynomially on the degree d of f . Such a dependence was not shown in the
earlier work [dKL10].

The harmonic constant. A question left open in this work is whether it is
possible to show Theorem 9.2 with a constant C(d) that only depends on the
degree d of f , and not on the number of variables n (cf. (9.13)). This question
is motivated by the fact that for the analysis of the analogous hierarchies for
the unit sphere in [FF21] and for the boolean hypercube in Chapter 7 the
existence of such a constant (depending only on d) was in fact shown.

Improving upon the Jackson kernel. We choose to use the (multivari-
ate) Jackson kernel in this chapter mostly because its relevant properties are
well-understood and it is thus easy to analyze. In principle, there could be
other kernels that would yield better convergence guarantees. In particular,
it would be nice to have kernels that lie in the quadratic module Q([−1, 1]n)r
(instead of the preordering), thereby allowing an analysis of the Putinar-type
bounds. In their recent work [KdK22], the authors show how to construct
non-negative kernels numerically whose associated operators converge to the
identity quickly. Their results could potentially be used to analyze the lower
bounds. However, one would probably first have to find analytical expressions
for their kernels (after which it might be possible to show membership in the
preordering or quadratic module).

The upper bounds. As we explain in Section 6.2, our method of proof in
this chapter would in principle allow us to obtain convergence rates for the
upper bounds ub(f, T ([−1, 1]n), µ)r as well. In fact, this is precisely what
Hess, de Klerk and Laurent do in [dKHL17]. There, they implicitely use the
polynomial kernel method, and the Jackson kernel in particular, to obtain a
convergence rate in O(1/r2) for these bounds.

Acknowledgments. We thank Lorenzo Baldi and Bernard Mourrain for
their helpful suggestions. We also thank Etienne de Klerk and Felix Kirschner
for useful discussions.
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Part 3

Independent sets in geometric
hypergraphs



582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot
Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022 PDF page: 172PDF page: 172PDF page: 172PDF page: 172



582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot582661-L-bw-Slot
Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022Processed on: 26-8-2022 PDF page: 173PDF page: 173PDF page: 173PDF page: 173

CHAPTER 10

A recursive theta number for geometric
hypergraphs

It seems all paths lead to ϑ!

Michel Goemans

This chapter is based on my joint works [CSdOFSV21, CSdOFSV22] with
Fernando de Oliveira, Davi Silva and Frank Vallentin.

Let G = (V,E) be a (finite) graph. A subset S ⊆ V is called a stable (or
independent) set if no two vertices v, w ∈ S are adjacent, i.e., if {v, w} �∈ E
for all v, w ∈ S. The stability number (or independence number) α(G) of G is
equal to the largest cardinality of a stable set in G. Computing the stability
number of a graph is a classical NP-hard problem [Kar72].

The celebrated Lovász theta number ϑ(G) of G satisfies α(G) ≤ ϑ(G) ≤
χ(G), where α(G) is the independence number of G and χ(G) is the chromatic
number of the complement of G. That is, the edges of G are the non-edges
of G and vice versa. Crucially, the theta number can be computed efficiently
using semidefinite programming.

Originally, Lovász [Lov79] introduced ϑ to determine the Shannon ca-
pacity of the 5-cycle. The theta number turned out to be a versatile tool in
optimization, with applications in combinatorics and geometry. It is related to
spectral bounds like Hoffman’s bound, as noted by Lovász in his paper (cf. Ba-
choc, DeCorte, Oliveira, and Vallentin [BDdOFV14]), and also to Delsarte’s
linear programming bound in coding theory, as observed independently by
McEliece, Rodemich, and Rumsey [MRR78] and Schrijver [Sch79].

One way to define ϑ(G) is to consider the following formulation of α(G)
as an integer program:

α(G) = max
x∈{0,1}V

{
�

i∈V
xi : xixj = 0 ∀{i, j} ∈ E}. (10.1)

The feasible solutions of (10.1) are precisely the incidence vectors xS of stable
sets S ⊆ V , defined by (xS)i = 1 if i ∈ S and 0 otherwise. For such a feasible
solution xS , the positive semidefinite matrix X = xSx

�
S /|S| satisfies Xij = 0

for {i, j} ∈ E and Tr(X) = 1. Furthermore, if J is the all-ones matrix, we

165
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166 10. A RECURSIVE THETA NUMBER FOR GEOMETRIC HYPERGRAPHS

have �X, J� := Tr(XJ) =
�

i,j∈V Xij = |S|. Therefore, we get:

α(G) ≤ ϑ(G) := max
X�0

{�X, J� : Tr(X) = 1, Xij = 0 ∀{i, j} ∈ E} .

Bachoc, Nebe, Oliveira, and Vallentin [BNdOFV09] extended ϑ to infi-
nite geometric graphs on compact metric spaces. They also showed that this
extension leads to the classical linear programming bound for spherical codes
of Delsarte, Goethals, and Seidel [DGS77]; the linear programming bound of
Cohn and Elkies for the sphere-packing density [CE03] can also be seen as
an appropriate extension of ϑ [dLdOFV14, dOFV19]. These many applica-
tions illustrate the power of the Lovász theta number as a unifying concept in
optimization; Goemans [Goe97] even remarked that “it seems all paths lead
to ϑ!”.

Outline. In this chapter, we show how a recursive variant of ϑ can be used
to find explicit upper bounds for the independence ratio of certain geometric
hypergraphs on the sphere and on the Euclidean space; this will lead to new
bounds for a problem in Euclidean Ramsey theory. As we discuss at the end of
the chapter, our recursive ϑ-number may also be applied to geometric graphs
on the binary cube {0, 1}n. Analysis of the resulting upper bounds, however,
is more difficult in that setting.

10.1. Overview of the construction

Let us begin by giving a high-level overview of the construction of our
recursive theta number. Let G = (V,E) be a (finite) graph. For k ≥ 2, we
say a subset S ⊆ V contains a k-clique if there are k vertices v1, . . . , vk ∈ S
such that {vi, vj} is an edge for all distinct i, j ∈ [k]. That is, the complete
graph Kk is a subgraph of the induced graph G[S]. One may then consider
the parameter:

α(G, k) := max
S⊆V

{|S| : S contains no k-clique} .

Note that for k = 2, we simply have the independence number α(G, 2) = α(G),
and that α(G, 1) = 0 by definition. The parameter α(G, k) can also be seen
as the independence number of the (regular) hypergraph with vertex set V
whose hyperedges are the k-cliques of G.

The key observation is the following. Suppose S ⊆ V contains no k-clique,
and let v ∈ S. Write NG(v) = {w ∈ V : {v, w} ∈ E} for the neighboorhood
of v in G. Then the intersection S ∩ NG(v) cannot contain a (k − 1)-clique.
Indeed, the union of such a clique with v would form a k-clique in S. Therefore,
the incidence vector xS of S satisfies:

(xS)v ·
�

i∈NG(v)

(xS)i ≤ α(G[NG(v)], k − 1) (v ∈ V ). (10.2)
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The constraints (10.2) allow us to formulate a semidefinite upper bound on
α(G, k) in terms of the parameters α(G[NG(v)], k − 1), which takes a sim-
ilar form to ϑ. The issue is that these parameters are not known to us.
Note however, that we may replace the RHS of (10.2) by any upper bound
on α(G[NG(v)], k − 1). For instance, we could replace it by the upper bound
arising from the inequalities (10.2) for α(G[NG(v)], k−1) itself (thus in terms
of parameters of the form α(·, k − 2)). After recursively applying this proce-
dure k− 2 times, we end up with a bound in terms of parameters of the form
α(·, 2) = α(·), which we may upper bound using the (regular) theta number!
This finally leads to a semidefinite upper bound on α(G, k). If k ∈ N is fixed,
this bound may be computed in polynomial time, see [CSdOFSV22].

The approach outlined above may be formulated entirely in the language
of (regular) hypergraphs. Furthermore, it can then be shown that some of
the fundamental geometrical properties of the feasible region of the program
defining the classical theta number are preserved for our recursive bound. This
is the main subject of the work [CSdOFSV22], which we do not cover fully in
this thesis. Rather, we focus here on an application of the idea presented above
to geometric graphs, particularly on the hypersphere and on the Euclidean
space. As we shall see below, the symmetry exhibited by these graphs allows
us to formulate our recursive ϑ number in a very elegant way, permitting us
to find analytical expressions for the resulting upper bounds.

10.2. Main results

10.2.1. The unit sphere. We call a set {x(1), . . . ,x(k)} of k ≥ 2 points
in the (n − 1)-dimensional unit sphere Sn−1 = {x ∈ Rn : �x� = 1 } a

(k, t)-simplex if x(i) · x(j) = t for all i �= j. Note that a (k, t)-simplex
has dimension k − 1. There is a (k, t)-simplex in Sn−1 for every k ≤ n
and t ∈ [−1/(k − 1), 1).

Fix n ≥ k ≥ 2 and t ∈ [−1/(k − 1), 1). A set of points in Sn−1 avoids
(k, t)-simplices if no k points in the set form a (k, t)-simplex. We are interested
in the parameter

α(Sn−1, k, t) = sup
I⊆Sn−1

{ω(I) : I is measurable and avoids (k, t)-simplices },

where ω is the surface measure on the sphere normalized so the total measure
is 1. This is the independence ratio of the hypergraph whose vertex set is Sn−1

and whose edges are all unit (k, t)-simplices.
In Section 10.3 we will define the parameter ϑ(Sn−1, k, t) recursively as

the optimal value of the problem

sup
�
Sn−1

�
Sn−1 f(x · y) dω(y)dω(x)

f(1) = 1,
f(t) ≤ ϑ(Sn−2, k − 1, t/(1 + t)),
f ∈ C([−1, 1]) is a function of positive type for Sn−1
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for k ≥ 3 (see Section 10.3 for the definition of functions of positive type). The
base of the recursion is k = 2: ϑ(Sn−1, 2, t) is the optimal value of the problem
above when “f(t) ≤ ϑ(Sn−2, k − 1, t/(1 + t))” is replaced by “f(t) = 0”.

From Theorem 10.3 below it follows that ϑ(Sn−1, k, t) ≥ α(Sn−1, k, t).
Using extremal properties of Gegenbauer polynomials, an explicit formula can
be computed for this bound, as shown in Theorem 10.5.

10.2.2. The Euclidean space. Transferring these concepts from the
compact unit sphere to the non-compact Euclidean space requires a bit of
care; this is done in Section 10.4.

A unit k-simplex in Rn is a set {x(1), . . . ,x(k)} of k ≤ n + 1 points such

that �x(i) − x(j)� = 1 for all i �= j. As before, note that the dimension of a
unit k-simplex is k − 1. A set of points in Rn avoids unit k-simplices if no k
points in the set form a unit k-simplex. We are interested in the parameter

α(Rn, k) = sup{ δ(I) : I ⊆ Rn is measurable and avoids unit k-simplices },

where δ(X) is the upper density of X ⊆ Rn, that is,

δ(X) = lim sup
T→∞

vol(X ∩ [−T, T ]n)
vol[−T, T ]n .

Again, this parameter has an interpretation in terms of the independence
ratio of a hypergraph on the Euclidean space and again we can bound the in-
dependence ratio from above by an appropriately defined parameter ϑ(Rn, k).
Theorem 10.7 below gives an explicit expression for ϑ(Rn, k) in terms of Bessel
functions and Gegenbauer (ultraspherical) polynomials.

The key point is that the maximum density α(Rn, k) of unit k-simplices
in Rn is related to the maximum density α(Sn−1, k − 1, 1/2) of (k − 1, 1/2)-
simplices in the hypersphere. This is made precise in Theorem 10.3 below.

10.2.3. Euclidean Ramsey theory. The central question of Euclidean
Ramsey theory is: given a finite configuration P of points in Rn and an in-
teger r ≥ 1, does every r-coloring of Rn contain a monochromatic congruent
copy of P?

The simplest point configurations are unit k-simplices, which are known to
have the exponential Ramsey property: the minimum number χ(Rn, k) of col-
ors needed to color the points of Rn in such a way that there are no monochro-
matic unit k-simplices grows exponentially in n. This was first proved by
Frankl and Wilson [FW81] for k = 2 and by Frankl and Rödl [FR87]
for k > 2. Results in this area are usually proved by the linear algebra method;
see also Sagdeev [Sag18a].

Recently, Naslund [Nas20] used the slice-rank method from the work of
Croot, Lev, and Pach [CLP17] and Ellenberg and Gijswijt [EG17] on the
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cap-set problem1 to prove that

χ(Rn, 3) ≥ (1.01466 + o(1))n.

This is the best lower bound known at the moment.
For simplices of higher dimension there are also explicit lower bounds.

Currently, the best such bound was obtained by Sagdeev [Sag18b] using a
quantitative version of the Frankl-Rödl theorem:

χ(Rn, k) ≥
�
1 +

1

22k+3 + o(1)

�n

.

Denote by H(n, k) the unit-distance hypergraph, namely the k-uniform hy-
pergraph whose vertex set is Rn and whose edges are all unit k-simplices. The
parameter χ(Rn, k) is the chromatic number of this hypergraph. A theorem of
de Bruijn and Erdős [dBE51] shows that computing χ(Rn, k) is a combina-
torial problem: the chromatic number of H(n, k) is the maximum chromatic
number of any finite subgraph of H(n, k).

The combinatorial nature of the chromatic number makes it hard to use
analytical tools in its study. This led Falconer [Fal81], in the case k = 2,
to introduce the measurable counterpart of χ(Rn, k), denoted by χm(Rn, k),
by requiring the color classes to be Lebesgue-measurable sets. Of course,
χm(Rn, k) ≥ χ(Rn, k), but it is not known whether the two numbers differ.

The restriction to measurable color classes is natural and allows us to use
the analytical tools developed in this chapter. Since

α(Rn, k)χm(Rn, k) ≥ 1,

any upper bound for α(Rn, k) gives a lower bound for χm(Rn, k), hence

χm(Rn, k) ≥ �1/ϑ(Rn, k)�.
In Section 10.5 we analyze the upper bounds ϑ(Sn−1, k, t) for simplex-

avoiding sets on the sphere and ϑ(Rn, k) for simplex-avoiding sets on the Eu-
clidean space by using properties of Gegenbauer (ultraspherical) polynomials,
obtaining the following theorem.

Theorem 10.1. If k ≥ 2, then:

(i) for every t ∈ (0, 1), there is a constant c = c(k, t) ∈ (0, 1) such that
ϑ(Sn−1, k, t) ≤ (c+ o(1))n;

(ii) there is a constant c = c(k) ∈ (0, 1) such that ϑ(Rn, k) ≤ (c+ o(1))n.

From this theorem we get an exponential lower bound for χm(Rn, k). Rig-
orous estimates of the constant c then yield significantly better lower bounds
for χm(Rn, k) than those coming from χ(Rn, k).

1The slice-rank method is only implicit in the original works; the actual notion of slice
rank for a tensor was introduced by Tao in a blog post [Tao16].
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Indeed, in the case k = 3 we obtain (see Section 10.5.1)

α(Rn, 3) ≤ (0.95622 + o(1))n,

and so

χm(Rn, 3) ≥ (1.04578 + o(1))n.

We also obtain the rougher estimate

α(Rn, k) ≤
�
1− 1

9(k − 1)2
+ o(1)

�n

,

valid for all k ≥ 3, which immediately implies

χm(Rn, k) ≥
�
1 +

1

9(k − 1)2
+ o(1)

�n

.

Though our lower bounds for χm(Rn, k) do not necessarily hold for χ(Rn, k),
they do imply some structure for general colorings. If a coloring of H(n, k)
uses fewer than 1/α(Rn, k) colors, then the closure of one of the color classes
is a measurable set with density greater than α(Rn, k), and so it contains a
unit k-simplex. This means that in such a coloring there are monochromatic
k-point configurations arbitrarily close to unit k-simplices.

10.2.4. Notation and preliminaries. We will denote the Euclidean
inner product between x, y ∈ Rn by x · y. The surface measure on the sphere
is denoted by ω and is always normalized so the total measure is 1.

We always normalize the (left-invariant) Haar measure on a compact group
so the total measure is 1. By O(n) we denote the group of n × n orthogonal
matrices. If X ⊆ Sn−1 is any measurable set and if µ is the Haar measure
on O(n), then for every e ∈ Sn−1 we have

µ({T ∈ O(n) : Te ∈ X }) = ω(X).

We will need the following technical lemma, which will be applied to the
sphere and the torus. For a proof, see Lemma 5.5 in DeCorte, Oliveira, and
Vallentin [DdOFV20].

Lemma 10.2. Let V be a metric space and Γ be a compact group that acts
transitively on V ; let ν be a finite Borel measure on V that is positive on
open sets. Denote by µ the Haar measure on Γ. If the metric on V and the
measure ν are Γ-invariant and if f ∈ L2(V ; ν), then the function K: V ×V →
R such that

K(x,y) =

�

Γ
f(σx)f(σy) dµ(σ)

is continuous.
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10.3. Simplex-avoiding sets on the sphere

We call a continuous kernel K: Sn−1 × Sn−1 → R positive if for every
finite set U ⊆ Sn−1 the matrix

�
K(x,y)

�
x,y∈U is positive semidefinite. A

continuous function f : [−1, 1]→ R is of positive type for Sn−1 if the kernel K ∈
C(Sn−1 × Sn−1) given by K(x,y) = f(x · y) is positive.

Fix n ≥ k ≥ 3 and t ∈ [−1/(k − 1), 1). For any γ ≥ 0, consider the
optimization problem

sup
�
Sn−1

�
Sn−1 f(x · y) dω(y)dω(x)

f(1) = 1,
f(t) ≤ γ,
f ∈ C([−1, 1]) is a function of positive type for Sn−1.

(10.3)

The following theorem is the main technical result required to derive our
recursive theta number for Sn−1 in Theorem 10.4 below.

Theorem 10.3. Fix n ≥ k ≥ 3, t ∈ [−1/(k − 1), 1). If γ ≥ α(Sn−2, k −
1, t/(1+t)), then the optimal value of (10.3) is an upper bound for α(Sn−1, k, t).

Proof. Let I ⊆ Sn−1 be a measurable set that avoids (k, t)-simplices and
assume ω(I) > 0. Consider the kernel K: Sn−1 × Sn−1 → R such that

K(x,y) =

�

O(n)
χI(Tx)χI(Ty) dµ(T ),

where χI is the characteristic function of I and where µ is the Haar measure
on O(n).

By taking V = Sn−1 and Γ = O(n) in Lemma 10.2, we see that K is contin-
uous. By construction, K is also positive and invariant, that is, K(Tx, Ty) =
K(x,y) for all T ∈ O(n) and x, y ∈ Sn−1. Such kernels are of the form
K(x,y) = g(x · y), where g ∈ C([−1, 1]) is of positive type for Sn−1. Note
that

K(x,x) =

�

O(n)
χI(Tx) dµ(T ) = ω(I),

so g(1) = ω(I) > 0.
Set f = g/g(1). Immediately we have that f is continuous and of positive

type and that f(1) = 1; moreover�

Sn−1

�

Sn−1

f(x · y) dω(y)dω(x) = ω(I).

Hence, if we show that f(t) ≤ γ, the theorem will follow.
If x ∈ Sn−1 is a point in a (k, t)-simplex, all other points in the simplex

lie in the link Ux,t = {y ∈ Sn−1 : y · x = t }. Note that Ux,t is an (n − 2)-

dimensional sphere with radius (1− t2)1/2 (see also Figure 10.1); let ν be the
surface measure on Ux,t normalized so the total measure is 1.

If T ∈ O(n) is any orthogonal matrix, then TI avoids (k, t)-simplices.
Hence if x ∈ TI, then TI ∩ Ux,t cannot contain k − 1 points with pairwise
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Ux,t

x

0

y

t

sin θ

x

0

y

θ

Figure 10.1. The link Ux,t = {y ∈ Sn−1 : y · x = t }.
Note that cos θ = t, implying that Ux,t has radius sin θ =√
1− cos2 θ =

√
1− t2.

inner product t, and so ν(TI ∩ Ux,t) ≤ α(Sn−2, k − 1, t/(1 + t)) ≤ γ. Indeed,
the natural bijection between Ux,t and Sn−2 maps pairs of points with inner
product t to pairs of points with inner product t/(1 + t), and so TI ∩ Ux,t is
mapped to a subset of Sn−2 avoiding (k − 1, t/(1 + t))-simplices.

Now fix x ∈ Sn−1 and note that g(t) = K(x,y) for any y ∈ Ux,t. An
averaging argument now shows that:

g(t) =

�

Ux,t

K(x,y) dν(y) =

�

Ux,t

�

O(n)
χI(Tx)χI(Ty) dµ(T )dν(y)

=

�

O(n)
χI(Tx)

�

Ux,t

χI(Ty) dν(y)dµ(T )

≤ γω(I),

whence f(t) = g(t)/ω(I) ≤ γ, and we are done. �

One obvious choice for γ in Problem (10.3) is the bound given by the same
problem for (k − 1, t/(1 + t))-simplices. The base for the recursion is k = 2:
then we need an upper bound for the measure of a set of points on the sphere
that avoids pairs of points with a fixed inner product. Such a bound was
given by Bachoc, Nebe, Oliveira, and Vallentin [BNdOFV09] and looks very
similar to (10.3). They show that, for n ≥ 2 and t ∈ [−1, 1), the optimal value
of the following optimization problem is an upper bound for α(Sn−1, 2, t):

sup
�
Sn−1

�
Sn−1 f(x · y) dω(y)dω(x)

f(1) = 1,
f(t) = 0,
f ∈ C([−1, 1]) is a function of positive type for Sn−1.

Combining this with Theorem 10.3 yields the following.
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Theorem 10.4. Let ϑ(Sn−1, 2, t) denote the optimal value of the opti-
mization problem above, so ϑ(Sn−1, 2, t) ≥ α(Sn−1, 2, t). For k ≥ 3 and t ∈
[−1/(k−1), 1), let ϑ(Sn−1, k, t) be the optimal value of Problem (10.3) when γ =
ϑ(Sn−2, k − 1, t/(1 + t)). We then have

ϑ(Sn−1, k, t) ≥ α(Sn−1, k, t).

There is actually a simple analytical expression for ϑ(Sn−1, k, t), as we see

now. For n ≥ 2 and j ≥ 0, let G(n−3
2

)

j denote the Gegenbauer polynomials

with parameter α = (n− 3)/2 and degree j, normalized so G(n−3
2

)

j (1) = 1, see
Chapter 1.

In Theorem 6.2 of Bachoc, Nebe, Oliveira, and Vallentin [BNdOFV09] it

is shown that for every t ∈ [−1, 1) there is some j ≥ 0 such that G(n−3
2

)

j (t) < 0.

Theorem 8.21.8 in the book by Szegő [Sze75] implies that, for every t ∈
(−1, 1),

lim
j→∞

G(n−3
2

)

j (t) = 0.

Hence, for every t ∈ (−1, 1) we can define

Mn(t) = min{ G(n−3
2

)

j (t) : j ≥ 0 }, (10.4)

and we see that Mn(t) < 0. With this we have [BNdOFV09, Theorem 6.2]

ϑ(Sn−1, 2, t) =
−Mn(t)

1−Mn(t)
.

The expression for ϑ(Sn−1, k, t) is very similar, but requires some work to
derive.

Theorem 10.5. If n ≥ k ≥ 3 and if t ∈ [−1/(k − 1), 1), then

ϑ(Sn−1, k, t) =
ϑ(Sn−2, k − 1, t/(1 + t))−Mn(t)

1−Mn(t)
. (10.5)

The proof requires the following characterization of functions of positive
type (see the beginning of Section 10.3 above) due to Schoenberg [Sch42]. A
function f : [−1, 1]→ R is continuous and of positive type for Sn−1 if and only
if there are nonnegative numbers f0, f1, . . . such that

�∞
j=0 fj <∞ and

f(t) =
∞�

j=0

fjG
(n−3

2
)

j (t),

with uniform convergence in [−1, 1]. Compare to the summation formula (1.15).

Proof of Theorem 10.5. Using the orthogonality of Gegenbauer poly-
nomials (see also (1.15)), we see that for any i �= j:�

Sn−1

�

Sn−1

G(n−3
2

)

i (x · y)G(n−3
2

)

j (x · y) dω(y)dω(x) = 0
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As G(n−3
2

)

0 = 1, this implies in particular that, if j ≥ 1, we have:
�

Sn−1

�

Sn−1

G(n−3
2

)

j (x · y) dω(y)dω(x) = 0.

We may use this and Schoenberg’s characterization of positive type functions
to rewrite (10.3) with γ = ϑ(Sn−2, k − 1, t/(1 + t)), obtaining the equivalent
problem:

sup f0�∞
j=0 fj = 1,

�∞
j=0 fjG

(n−3
2

)

j (t) ≤ ϑ(Sn−2, k − 1, t/(1 + t)),

fj ≥ 0 for all j ≥ 0.

It remains to solve this problem. Note that

∞�

j=0

fjG
(n−3

2
)

j (t)

is a convex combination of the numbers G(n−3
2

)

j (t). We want to keep this

convex combination below ϑ(Sn−2, k − 1, t/(1 + t)) while maximizing f0. The
best way to do so is to concentrate all the weight of the combination on f0

and fj∗ , where j
∗ is such that G(n−3

2
)

j∗ (t) is the most negative number appearing

in the convex combination, meaning G(n−3
2

)

j∗ (t) = Mn(t).
That is, we may assume that the only nonzero variables in an optimum

solution are f0 and fj∗ . It thus remains to maximize f0 under the conditions
that f0 + fj∗ = 1, and:

f0 + fj∗G
(n−3

2
)

j (t) = f0 + fj∗Mn(t) ≤ ϑ(Sn−2, k − 1, t/(1 + t)),

which precisely yields the optimal value in the statement of the theorem. �

The expression for ϑ(Sn−1, k, 0) is particularly simple. Indeed, for n ≥ 2 it
follows from the recurrence relation for the Jacobi polynomials that Mn(0) =

G(n−3
2

)

2 (0) = −1/(n− 1), whence

ϑ(Sn−1, k, 0) = (k − 1)/n.

Figure 10.2 shows the behavior of ϑ(Sn−1, 3, t) for a few values of n as t
changes. Plots for k > 3 are very similar.

10.4. Simplex-avoiding sets in Euclidean space

An optimization problem similar to (10.3) provides an upper bound for α(Rn, k).
To introduce it, we need some definitions and facts from harmonic analysis
on Rn; for background, see e.g. the book by Reed and Simon [RS75].
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−0.5 1

0.66

0.64

0.5

−0.5 1

0.66

0.29

Figure 10.2. Plots of ϑ(Sn−1, 3, t) for t ∈ [−0.5, 1] and n = 3
(left) and 5 (right).

A continuous function f : Rn → R is of positive type if for every finite
set U ⊆ Rn the matrix

�
f(x − y)

�
x,y∈U is positive semidefinite. Such a

function f has a well-defined mean value

M(f) = lim
T→∞

1

vol[−T, T ]n
�

[−T,T ]n
f(x) dx.

We say that a function f : Rn → R is radial if f(x) depends only on �x�. In
this case, for t ≥ 0 we denote by f(t) the common value of f for vectors of
norm t.

Fix n ≥ 2 and k ≥ 3 such that k ≤ n + 1. For every γ ≥ 0, consider the
optimization problem

sup M(f)
f(0) = 1,
f(1) ≤ γ,
f : Rn → R is continuous, radial, and of positive type.

(10.6)

We have the analogue of Theorem 10.3:

Theorem 10.6. Fix n ≥ 2 and k ≥ 3 such that k ≤ n + 1. If γ ≥
α(Sn−1, k − 1, 1/2), then the optimal value of (10.6) is an upper bound
for α(Rn, k).

We need a few facts about periodic sets and functions. A set X ⊆ Rn

is periodic if it is invariant under some lattice Λ, that is, if X + v = X for
all v ∈ Λ. Similarly, a function f : Rn → R is periodic if there is a lattice Λ
such that f(x+ v) = f(x) for all v ∈ Λ. We say that Λ is a periodicity lattice
of X or f . A periodic function f with periodicity lattice Λ can be seen as a
function on the torus Rn/Λ; its mean value is

1

vol(Rn/Λ)

�

Rn/Λ
f(x) dx.
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Proof of Theorem 10.6. Let I ⊆ Rn be a measurable set of positive
upper density avoiding unit k-simplices. The first step is to see that we can
assume that I is periodic. Indeed, fix R > 1/2. Erase a border of width 1/2
around I∩ [−R,R]n and paste the resulting set periodically in such a way that
there is an empty gap of width 1 between any two pasted copies. The resulting
periodic set still avoids unit k-simplices and is measurable. Its upper density
is

vol(I ∩ [−R+ 1/2, R− 1/2]n)

vol[−R,R]n
;

by taking R large enough, we can make this density as close as we want to the
upper density of I.

Assume then that I is periodic, so its characteristic function χI is also
periodic; let Λ be a periodicity lattice of I. Set

g(x) =
1

vol(Rn/Λ)

�

Rn/Λ
χI(y)χI(x+ y) dy.

Lemma 10.2 with V = Γ = Rn/Λ applied to χI implies that g is continuous.
Direct verification yields that g is of positive type, g(0) = δ(I), and M(g) =
δ(I)2.

Now set

f(x) = δ(I)−1

�

O(n)
g(Tx) dµ(T ),

where µ is the Haar measure on O(n). Note that f is continuous, radial, and of
positive type. Moreover, f(0) = 1 and M(f) = δ(I). If we show that f(1) ≤ γ,
then f is a feasible solution of (10.6) with M(f) = δ(I), and so the theorem
will follow.

To see that f(1) ≤ γ, note that if x is a point of a unit k-simplex in Rn,
then all the other points in the simplex lie on the unit sphere x+Sn−1 centered
at x. Hence if x ∈ I, then I ∩ (x+ Sn−1) is a measurable subset of x+ Sn−1

that avoids (k − 1, 1/2)-simplices, and so the measure of I ∩ (x + Sn−1) as a
subset of the unit sphere is at most α(Sn−1, k − 1, 1/2). Hence if ξ ∈ Rn is
any unit vector, then

f(1) = δ(I)−1

�

O(n)
g(T ξ) dµ(T )

= δ(I)−1

�

O(n)

1

vol(Rn/Λ)

�

Rn/Λ
χI(x)χI(T ξ + x) dxdµ(T )

= δ(I)−1 1

vol(Rn/Λ)

�

Rn/Λ
χI(x)

�

O(n)
χI(T ξ + x) dµ(T )dx

≤ α(Sn−1, k − 1, 1/2) ≤ γ,

as we wanted. �
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Denote by ϑ(Rn, k) the optimal value of (10.6) when setting γ =
ϑ(Sn−1, k − 1, 1/2). Then ϑ(Rn, k) ≥ α(Rn, k).

An expression akin to the one for ϑ(Sn−1, k, t) can be derived for ϑ(Rn, k).
For n ≥ 2 and u ≥ 0, let

Ωn(u) = Γ(n/2)(2/u)(n−2)/2J(n−2)/2(u),

where Jα is the Bessel function of the first kind with parameter α. Let mn

be the global minimum of Ωn, which is a negative number (cf. Oliveira and
Vallentin [dOFV10]). The following theorem is the analogue of Theorem 10.5.

Theorem 10.7. For n ≥ 2 we have

ϑ(Rn, k) =
ϑ(Sn−1, k − 1, 1/2)−mn

1−mn
.

The proof uses again a theorem of Schoenberg [Sch38], that this time
characterizes radial and continuous functions of positive type on Rn: these are
the functions f : Rn → R such that

f(x) =

� ∞

0
Ωn(z�x�) dν(z) (10.7)

for some finite Borel measure ν.

Proof. If f is given as in (10.7), then M(f) = ν({0}) (see e.g. Section 6.2
in DeCorte, Oliveira, and Vallentin [DdOFV20]). Using Schoenberg’s theo-
rem, we can rewrite (10.6) (with γ = ϑ(Sn−1, k − 1, 1/2)) equivalently as:

sup ν({0})
ν([0,∞)) = 1,
�∞
0 Ωn(z) dν(z) ≤ ϑ(Sn−1, k − 1, 1/2),

ν is a Borel measure.

We are now in the same situation as in the proof of Theorem 10.5. If z∗ is
such that mn = Ωn(z

∗), then the optimal ν is supported at 0 and z∗. Solving
the resulting system yields the theorem. �

Table 10.1 contains some values for ϑ(Rn, k).

10.5. Exponential density decay

In this section we analyze the asymptotic behavior of ϑ(Sn−1, k, t)
and ϑ(Rn, k) as functions of n, proving Theorem 10.1.

The main step in our analysis is to understand the asymptotic behavior of

Mn(t) = min{ G(n−3
2

)

j (t) : j ≥ 0 },

as defined in (10.4). For t ∈ [−1, 0) we have Mn(t) ≤ G(n−3
2

)

1 (t) = t, and
so Mn(t) does not approach 0. We have seen in Section 10.3 that Mn(0) =
−1/(n − 1), so for t = 0 we have that Mn(t) approaches 0 linearly fast as n
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n / k 3 4 5 6 7 8 9 10 11
2 0.64355 — — — — — — — —
3 0.42849 0.69138 — — — — — — —
4 0.29346 0.49798 0.73225 — — — — — —
5 0.20374 0.36768 0.55035 0.76580 — — — — —
6 0.15225 0.28471 0.42777 0.60262 0.79563 — — — —
7 0.11866 0.22740 0.34071 0.48493 0.64681 0.81972 — — —
8 0.09339 0.18405 0.27471 0.39559 0.53374 0.68268 0.83882 — —
9 0.07387 0.15030 0.22864 0.33042 0.44903 0.57816 0.71431 0.85537 —
10 0.05846 0.12340 0.19194 0.27851 0.38158 0.49496 0.61521 0.74026 0.86882

Table 10.1. The bound ϑ(Rn, k) for n = 2, . . . , 10 and k = 3,
. . . , 11, with values of n on each row and of k on each column.

grows. Things get interesting when t ∈ (0, 1): then Mn(t) approaches 0 expo-
nentially fast as n grows.

Theorem 10.8. For every t ∈ (0, 1) there is c ∈ (0, 1) such that

|Mn(t)| ≤ (c+ o(1))n.

We will need the following lemma showing that, for every t ∈ (0, 1),

if j = Ω(n), then |G(n−3
2

)

j (t)| decays exponentially in n. The statement of the
lemma is quite a bit more precise than that, since we later want to do a more
detailed analysis of the base of the exponential. The proof is a refinement of
the analysis carried out by Schoenberg [Sch42].

Lemma 10.9. If for θ ∈ (0,π) and δ ∈ (0,π/2) we write

C = (cos2 θ + sin2 θ sin2 δ)1/2,

then |G(n−3
2

)

j (cos θ)| ≤ πn1/2 cosn−3 δ + Cj for all n ≥ 3.

Proof. An integral representation for the ultraspherical polynomials due
to Gegenbauer (take λ = (n − 2)/2 in Theorem 6.7.4 from Andrews, Askey,
and Roy [AAR99]) gives us the formula

G(n−3
2

)

j (cos θ) = R(n)−1

� π

0
F (φ)j sinn−3 φ dφ,

where

F (φ) = cos θ + i sin θ cosφ and R(n) =

� π

0
sinn−3 φ dφ.

Note that |F (φ)|2 = cos2 θ+sin2 θ cos2 φ and that |F (φ)| ≤ 1. Split the in-
tegration domain into the intervals [0,π/2− δ], [π/2− δ,π/2 + δ], and [π/2 + δ,π]
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to obtain

|G(n−3
2

)

j (cos θ)| ≤ R(n)−1

� π

0
|F (φ)|j sinn−3 φ dφ

≤ 2R(n)−1

� π/2−δ

0
sinn−3 φ dφ

+R(n)−1

� π/2+δ

π/2−δ
|F (φ)|j sinn−3 φ dφ.

For the first term above, note that

R(n) =
π1/2Γ(n/2− 1)

Γ((n− 1)/2)
.

Take x = (n− 2)/2 and a = 1/2 in (7) of Wendel [Wen48] to get

R(n)−1 ≤ π−1/2((n− 2)/2)1/2 < n1/2.

Now

2R(n)−1

� π/2−δ

0
sinn−3 φ dφ ≤ 2n1/2

� π/2−δ

0
sinn−3(π/2− δ) dφ

= 2n1/2(π/2− δ) cosn−3 δ

≤ πn1/2 cosn−3 δ.

For the second term we get directly

R(n)−1

� π/2+δ

π/2−δ
|F (φ)|j sinn−3 φ dφ ≤ R(n)−1

� π/2+δ

π/2−δ
Cj sinn−3 φ dφ ≤ Cj ,

and we are done. �

We can now prove the theorem.

Proof of Theorem 10.8. Our strategy is to find a lower bound on the

largest j0 such that G(n−3
2

)

j (t) ≥ 0 for all j ≤ j0. Then we know that Mn(t) is

attained by some j ≥ j0, and we can use Lemma 10.9 to estimate |Mn(t)|.
Recall [Sze75] that the zeros of G(n−3

2
)

j are all in [−1, 1] and that the

rightmost zero of G(n−3
2

)

j+1 is to the right of the rightmost zero of G(n−3
2

)

j . For

convenience, let Cλ
j denote the Gegenbauer polynomial with shifted parame-

ter λ− 1/2 and degree j, so

G(n−3
2

)

j (t) =
C

(n−2)/2
j (t)

C
(n−2)/2
j (1)

. (10.8)
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Let xj be the largest zero of Cλ
j . Elbert and Laforgia [EL90, p. 94] show

that, for λ ≥ 0,

x2j <
j2 + 2λj

(j + λ)2
.

If for a given j we have that

j2 + 2λj

(j + λ)2
≤ t2, (10.9)

then we know that the rightmost zero of Cλ
j is to the left of t, and so Cλ

j (t) ≥ 0.

Note that the left-hand side in (10.9) is increasing in j. Let us estimate
the largest j for which (10.9) holds. We want

j2 + 2λj − t2(j + λ)2 ≤ 0.

The left-hand side above is quadratic in j, and since t2 < 1 the coefficient of j2

is positive. So all we have to do is to compute the largest root of the left-hand
side, which is 2a(t)λ, where a(t) = ((1− t2)−1/2 − 1)/2.

Hence for j ≤ 2a(t)λ we have Cλ
j (t) ≥ 0. From (10.8) we see

that G(n−3
2

)

j (t) ≥ 0 if

j ≤ a(t)n− 2a(t).

Now plug the right-hand side above into the upper bound of Lemma 10.9 to
get

|Mn(t)| ≤ (πn1/2 cos−3 δ) cosn δ + Ca(t)n−2a(t)

= O(n1/2) cosn δ +O(1)(Ca(t))n,

with C as defined in Lemma 10.9 with cos θ = t. For any choice of δ ∈ (0,π/2),
we have that cos δ, C ∈ (0, 1), and since a(t) > 0 for all t ∈ (0, 1), the theorem
follows.

�

Proof of exponential decay. We now get exponential decay for ϑ(Sn−1, k, t)
for any k ≥ 3 and t ∈ (0, 1). Indeed, consider the recurrence F0 = t and Fi =
Fi−1/(1+Fi−1) for i ≥ 1, whose solution is Fi = t/(1+it). Using Theorem 10.8
to develop our analytic solution (10.5), we get

ϑ(Sn−1, k, t) ∼
k−2�

i=0

|Mn−i(Fi)| =
k−2�

i=0

|Mn−i(t/(1 + it))|,

where an ∼ bn means that limn→∞ an/bn = 1. Since t/(1 + it) > 0 for all i,
each term decays exponentially fast, and so we get exponential decay for the
sum.
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1

1

0.9383

Figure 10.3. The best constant c obtained in our proof of
Theorem 10.8, for each value of t ∈ (0, 1).

We also get exponential decay for ϑ(Rn, k) for any k ≥ 3. Indeed, from
Theorem 10.7 we have that

ϑ(Rn, k) ∼ |mn|+
k−3�

i=0

|Mn−i(1/(2 + i))|.

From Theorem 10.8 we know that every term in the summation above decays
exponentially fast. Bachoc, Nebe, Oliveira, and Vallentin [BNdOFV09] give
an asymptotic bound for |mn| that shows that it also decays exponentially
in n, namely

|mn| ≤ (2/e+ o(1))n/2 = (0.8577 . . .+ o(1))n.

This finishes the proof of Theorem 10.1.

10.5.1. Explicit bounds. We now compute explicit constants c(k, t) and
c(k) which can serve as bases for the exponentials in Theorem 10.1, in partic-
ular obtaining the bounds advertised in Section 10.2.3.

The constant c given in Theorem 10.8 depends on t. Following the proof,
we can find the best constant for every t ∈ (0, 1) by finding δ ∈ (0,π/2) such

that cos δ = Ca(t), that is, by solving the equation

cos4 δ = (t2 + (1− t2) sin2 δ)(1−t2)−1/2−1 (10.10)

and taking c = cos δ > 0.
For any given t ∈ (0, 1) it is easy to solve (10.10) numerically. For t = 1/2

we get cos δ = 0.95621 . . . as a solution, and so |Mn(1/2)| ≤ (0.95622+ o(1))n,
leading to the the bound

ϑ(Rn, 3) ∼ |Mn(1/2)| ≤ (0.95622 + o(1))n.

Figure 10.3 shows a plot of the best constant c for every t ∈ (0, 1).
With a little extra work, it is possible to show that, for all k ≥ 2,

|Mn(1/k)| ≤
�
1− 1

9k2
+ o(1)

�n

, (10.11)
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whence

ϑ(Rn, k) ∼ |Mn−k+3(1/(k − 1))| ≤
�
1− 1

9(k − 1)2
+ o(1)

�n

for all k ≥ 3.
Direct verification shows that (10.11) holds for k = 2, so let us assume

k ≥ 3. Writing c for the (unique) positive solution cos δ of (10.10) and tak-
ing θ ∈ (0,π/2) such that cos θ = t, we can rewrite (10.10) in the more
convenient form

c4 sin θ/(1−sin θ) = 1− c2 sin2 θ.

Now say c = 1− x and use Bernoulli’s inequality (1 + z)r ≥ 1 + rz to get

(1− x)4 sin θ/(1−sin θ) ≥ 1− 4 sin θ

1− sin θ
x and

1− (1− x)2 sin2 θ ≤ 1− (1− 2x) sin2 θ.

Equating the left-hand sides of both inequalities above and solving for x, we
get

c = 1− x ≤ 1− sin θ(1− sin θ)

4 + 2 sin θ(1− sin θ)
.

In particular, when cos θ = 1/k we get

|Mn(1/k)| ≤
�
1− 1

4k2(1 +
�

k2/(k2 − 1)) + 2
+ o(1)

�n

≤
�
1− 1

9k2
+ o(1)

�n

for all k ≥ 3.

10.6. Triangle-avoiding sets in the binary cube

For an integer n ≥ 1, consider the binary cube Bn = {0, 1}n equipped with
the Hamming distance, which for x, y ∈ Bn is denoted by d(x,y) and equals
the number of bits in which x and y differ. A classical problem in coding
theory is to determine the parameter A(n, d), which is the maximum size of a
subset I of Bn such that d(x,y) ≥ d for all distinct x, y ∈ I.

If we let G(n, d) be the graph with vertex set Bn in which x, y ∈ Bn are
adjacent if d(x,y) < d, then A(n, d) = α(G(n, d)). A simple variant of the
Lovász theta number of G(n, d) then provides an upper bound for A(n, d),
which is easy to compute given the abundant symmetry of G(n, d). This
bound, known as the linear programming bound, was originally described by
Delsarte [Del73]; its relation to the theta number was later discovered by
McEliece, Rodemich, and Rumsey [MRR78] and Schrijver [Sch79].

Now let s ≥ 1 be an integer. Three distinct points x(1), x(2), x(3) ∈ Bn

form an s-triangle if d(x(i),x(j)) = s for all i �= j. It is easy to show that there
is an s-triangle if and only if s is even and 0 < s ≤ �2n/3�. We want to find
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the largest size α(Bn, 3, s) of a set of points in Bn that avoids s-triangles. This
is thus the analogue of the problem we have so far considered on Sn−1, but
restricted to 3-simplices (i.e., triangles).

We sketch how to obtain the corresponding recursive theta number;
the idea of the construction is exactly the same as for Sn−1. See
also [CSdOFSV22].

The functions of positive type on Bn are of the form:

f(t) =

n�

k=0

akK(n)
k (t),

where K(n)
k is the Krawtchouck polynomial of degree k and a0, . . . , an ≥ 0.

Compare to the summation formula (1.17). In light of this characterization,
we get the following upper bound on α(Bn, 3, s):

ϑ(Bn, 3, s) := max 2na0�n
k=0 ak = 1,�n
k=0 akK

(n)
k (s) ≤ |Bn

s |−1ϑ(Bn
s ),

a0, . . . , an ≥ 0.

(10.12)

Here, Bn
s is the the link of 0 ∈ Bn, which consists of the set of all words

of weight s (the weight of a word is the number of 1s in it); two words are
adjacent in Bn

s if they are at distance s and ϑ(Bn
s ) is the regular theta number.

As before, the program (10.12) admits a simple analytical optimum solution.

Theorem 10.10. Write Mn
K(s) = min{Kn

k (s) : k = 0, . . . , n } for s ≥ 0.
If n ≥ 1 is an integer and 0 < s ≤ �2n/3� is an even integer, then we have:

α(Bn, 3, s) ≤ ϑ(Bn, 3, s) = 2n
Mn

K(s)− |Bn
s |−1ϑ(Bn

s )

Mn
K(s)− 1

.

To compute ϑ(Bn
s ) we again use symmetry. Let A : Bn

s × Bn
s → R be a

matrix. If A is Iso(Bn
s )-invariant, then A(x,y) depends only on d(x,y), and

so we write A(t) for the value of A(x,y) when d(x,y) = t. The matrix A is
Iso(Bn

s )-invariant and positive semidefinite if and only if there are numbers a0,
. . . , as ≥ 0 such that

A(t) =
s�

k=0

akQ
n,s
k (t/2)

(note that Hamming distances in Bn
s are always even), where Qn,s

k is the Hahn
polynomial of degree k, which for an even integer t ≥ 0 is such that

Qn,s
k (t) =

k�

i=0

(−1)i
�s
i

�−1�n− s

i

�−1�k
i

��n+ 1− k

i

�� t
i

�
.

The polynomials are normalized so Qn,s
k (0) = 1; if Ek(x,y) = Qn,s

k (d(x,y)/2),
then �Ek, El� = 0 whenever k �= l (see Delsarte [Del78], in particular Theo-
rem 5, and Dunkl [Dun78]).
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With this characterization, �J,A� = |Bn
s |2a0 since E0 = J . We see that ϑ(Bn

s )
is the optimal value of the problem

max |Bn
s |a0�s
k=0 ak = 1,�s
k=0 akQ

n,s
k (s/2) = 0,

a0, . . . , as ≥ 0.

With Mn
Q(s) = min{Qn,s

k (s/2) : k = 0, . . . , s }, we have the following
analogue of Theorem 10.10.

Theorem 10.11. If n ≥ 1 is an integer and 0 < s ≤ �2n/3� is an even
integer, then

ϑ(Bn
s ) = |Bn

s |
Mn

Q(s)

Mn
Q(s)− 1

.

Putting things together, we obtain an expression for ϑ(Bn, 3, s) in terms of
Mn

K(s) and Mn
Q(s) (similar to the one we derived earlier for simplex-avoiding

sets on Sn−1).
Using this expression, one could attempt to analyze how the density of a

subset of Bn that avoids s-triangles behaves as n goes to infinity. For a fixed s,
this question is not interesting, as |Bn

s | is exponentially smaller than |Bn|.
Therefore, we should consider a regime where s tends to infinity as well. For
instance, what if we take as s the even integer closest to n/c for some c > 1?
Numerical evidence (Figure 10.4) suggests that ϑ(Bn, 3, s)/2n decays expo-
nentially fast in n for all c > 2; for c = 2, there seems to be no exponential
decay.

The open problem, which we leave for future work, is whether an analytical
proof for this exponential decay may be given similar to the one presented
above for Sn−1. It has so far proven difficult to analyze the parameters Mn

K(s)
and Mn

Q(s). It does not seem possible to transport the techniques we used for
the Gegenbauer polynomials directly. In particular, we lack a suitable integral
representation for the Krawtchouk and (especially) the Hahn polynomials.

10.7. Discussion

We have defined a recursive theta number for (geometric) hypergraphs,
which allows us to bound the size of simplex-avoiding sets on the hyper-
sphere Sn−1. We express the resulting bound in terms of a parameter related
to Gegenbauer polynomials. After careful analysis of this parameter, we are
able to show exponential decay of the density of simplex-avoiding sets as n
tends to infinity. This in turn allows us to show an improved version of an
existing result in Euclidean Ramsey theory. Furthermore, we have seen that
our approach may be applied to obtain bounds on the size of triangle-free
sets in the binary cube, which may similarly by expressed in terms of param-
eters related now to Krawtchouk and Hahn polynomials. These parameters,
unfortunately, appear to be much harder to analyze.
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20 15085

−2.3

−11.4

Figure 10.4. The plot shows, for every n = 20, . . . , 150 on the
horizontal axis, the value of ln(ϑ(Bn, 3, s)/2n) on the vertical
axis, where s is the even integer closest to n/2 (in green), n/3
(in red), and n/4 (in blue).

A recursive theta body for hypergraphs. The theta body of a graph
is a convex relaxation of the independent-set polytope, defined by Grötschel,
Lovász, and Schrijver [GLS88]. As the name suggest, it is closely related to
the theta number. Indeed, ϑ is obtained by optimizing a linear function over
the theta body. In the work [CSdOFSV22], we recursively extend the theta
body to uniform hypergraphs, using ideas similar to the ones presented in this
chapter. We show that some of the nice structural properties of the regular
theta body are preserved in this setting.

Relation to other bounds. Finally, let us compare our recursive theta num-
ber to some similar, existing bounds in the literature. First, there is the
classical Hoffman bound h(G), which bounds the stability number α(G) of a
regular graph G in terms of the smallest eigenvalue of its adjacency matrix.
The theta number is known to be a tighter bound on α(G) than the Hoff-
man bound: α(G) ≤ ϑ(G) ≤ h(G) for regular graphs G [Lov79]. Filmus,
Golubev, and Lifshitz [FGL21] extend the Hoffman bound to the setting of
(edge-weighted) hypergraphs, and give applications in extremal combinatorics.
As we show in [CSdOFSV22], our resursive theta number is always at least
as tight as their high-dimensional Hoffman bound.

Second, there are the semidefinite hierarchies of so-called k-point bounds,
which may be thought of as higher levels of a Lasserre-type hierarchy of bounds
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on α(G) (just as ϑ may be thought of as the first level of a Lasserre hierarchy).
These have been applied succesfully to geometrical problems on Sn−1 and Rn

(see, e.g., [BV08] and [dLMdOFV21]), although it is only known how to
compute the resulting bounds for small values of k. They may also be applied
to bound the size of codes on the binary cube, see, e.g, [Sch05], [Lau07b],
[Pol19]. The k-point approach can probably be adapted to yield bounds for
the parameters we consider in this chapter as well, especially for α(Bn, 3, s)
(with k = 3). We are not aware of the relation between such bounds and
the ones we have derived here, but it would be interesting to compare them.
Furthermore, it would be interesting to see whether the k-point approach leads
to bounds with nice analytical expressions similar to the ones we have seen in
this chapter.

Acknowledgments. We would like to thank Christine Bachoc for helpful
discussions and comments at an early stage of this work.
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of lower bounds, 21
of upper bounds, 22

summation formula, 14, 134

tangent ball
circumscribed, 49
inscribed, 49

tangent hyperplane, 39
theta number, 165
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List of symbols

x, y ∈ R Variables.
x,y ∈ Rn n-variate variables.
x · y, �x,y� Standard inner product of x and y.
�x� Euclidean norm of x.
R[x],R[x] Univariate and multivariate polynomial ring.
R[x]d,R[x]d Polynomial rings truncated at degree d.
Rn×n Space of n× n real matrices.
Sn
+ Space of n× n positive semidefinite matrices.
�A,B� Trace inner product on Rn×n.
[n] Integers 1, 2, . . . , n.
[a : b] Integers a, a+ 1, . . . , b.

Special sets
X Feasible region for polynomial optimization problems
Bn The binary hypercube {0, 1}n.
Bn The unit ball {x ∈ Rn : �x�2 ≤ 1}.
Bn

ρ (c) The ball of radius ρ centered at c.
Δn The standard simplex {x ∈ Rn : x ≥ 0,

�n
i=1 xi ≤ 1}.

Sn−1 The unit sphere {x ∈ Rn : �x�2 = 1}.

Polynomial optimization
f Objective polynomial to be minimized on X.
fmin Minimum of f on X.
x∗ Minimizer of f on X.
�f�X, �f�∞ Supremum norm of f on X (if no ambiguity is possible).
P+(X), P+(X)r Nonnegative polynomials on X (truncated at degree r).
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Sum-of-squares hierarchies
Σ[x],Σ[x]r Sum-of-squares polynomials (truncated at degree r).
Q(X),Q(X)r Quadratic module (truncated at degree r).
T (X), T (X)r Preordering (truncated at degree r).
M(X) Cone of positive Borel measures supported on X.
lb(f,Q(X))r Putinar-type lower bound on fmin.
lb(f, T (X))r Schmüdgen-type lower bound on fmin.
ub(f,X, µ)r Measure-based upper bound on fmin.
ub(f,Q(X), µ)r Measure-based Putinar-type upper bound on fmin.
ub(f, T (X), µ)r Measure-based Schmüdgen-type upper bound on fmin.

ub(f,X, µ)pfr Push-forward measure-based upper bound on fmin.

Polynomial kernels
K(·, ·) A kernel on X.
K(·) The linear operator associated to K.

Kjac
r (·, ·) The Jackson kernel of degree r.

CDr(·, ·) The Christoffel-Darboux kernel of degree r.
CDr(·, · ;λ) The perturbed Christoffel-Darboux kernel of degree r.
lb(f,X,K)harm The harmonic lower bound on fmin w.r.t. the kernel K.

Cubature rules
W ⊆ X× R A (positive) cubature rule for (X, µ).
ub(f,X,W)cub The cubature-based upper bound on fmin.
lb(f,X,W ,K)cub The cubature-based lower bound on fmin w.r.t. the kernel K.

Orthogonal polynomials
P(X) Quotient ring of polynomials restricted to X.
Pα(·) Orthonormal polynomial of degree |α| for P(X) w.r.t a measure µ.
Hk Subspace of P(X) spanned by the Pα of degree |α| = k.
Pk(·) Orthogonal polynomial of degree k on I ⊆ R w.r.t. a measure µ.
P k(·) Normalization of Pk satisfying maxx∈I |Pk(x)| = 1.
�Pk(·) Normalization of Pk satisfying �Pk, Pk�µ = 1.

G(α)
k (·) Gegenbauer polynomials.

J (α,β)
k (·) Jacobi polynomials.

K(n)
k (·) Krawtchouk polynomials.

Ck(·) Chebyshev polynomials.

Needle polynomials and (convex) geometry
νhr (·) Needle polynomial of degree r with parameter h.
�νhr (·) 1

2 -needle polynomial of degree r with parameter h.
int(X) Interior of X.
Ta Tangent hyperplane at a ∈ X.
Nx(X) Normal cone of x ∈ X.
v(x) ∈ Nx(X) Normal vector of x ∈ X.
f ≤a g g is an upper estimator for f exact at a ∈ X.
w1 � w2, w1 �a w2 See Section 3.1.5.
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Graph theory
G = (V,E) Graph with vertex set V and edge set E.
G Complement of G.
xS ,χS Incidence vector, indicator function of S ⊆ V .
α(G) Stability number of G.
χ(G) Chromatic number of G.
ϑ(G) Theta number of G.

δ(X) Upper density of X ⊆ Rn.
α(Sn−1, k, t) Largest size of a (k, t)-simplex avoiding set in Sn−1.
α(Rn, k) Largest upper density of a k-simplex avoiding set in Rn.
ϑ(Sn−1, k, t) Recursive theta number for α(Sn−1, k, t).
ϑ(Rn, k) Recursive theta number for α(Rn, k).
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CENTER DISSERTATION SERIES 
 

CentER for Economic Research, Tilburg University, the Netherlands 

 

No. Author Title ISBN Published 

638 Pranav Desai Essays in Corporate Finance and 
Innovation 

978 90 
5668 639 0 

January 2021 

639 Kristy Jansen Essays on Institutional Investors, Asset 
Allocation Decisions, and Asset Prices 

978 90 
5668 

640 6 

January 2021 

640 Riley Badenbroek Interior Point Methods and Simulated 
Annealing for Nonsymmetric Conic 
Optimization 

978 90 
5668 641 3 

February 
2021 

641 Stephanie Koornneef It’s about time: Essays on temporal 
anchoring devices 

978 90 
5668 642 0 

February 
2021 

642 Vilma Chila Knowledge Dynamics in Employee 
Entrepreneurship: Implications for 
parents and offspring  

978 90 
5668 643 7 

March 
2021 

643 Minke Remmerswaal Essays on Financial Incentives in the 
Dutch Healthcare System 

978 90 
5668 644 4 

July  
2021 

644 Tse-Min Wang Voluntary Contributions to Public Goods: 
A multi-disciplinary examination of 
prosocial behavior and its antecedents 

978 90 
5668 645 1 

March  
2021 

645 Manwei Liu Interdependent individuals: how 
aggregation, observation, and persuasion 
affect economic behavior and judgment 

978 90 
5668 646 8 

March  
2021 

 

646 Nick Bombaij Effectiveness of Loyalty Programs 978 90 
5668 647 5 

April 2021 

647 Xiaoyu Wang Essays in Microeconomics Theory 978 90 
5668 648 2 

April 2021 

648 Thijs Brouwer Essays on Behavioral Responses to 
Dishonest and Anti-Social Decision-
Making  

978 90 
5668 649 9 

May 2021 

649 Yadi Yang Experiments on hold-up problem and 
delegation 

978 90 
5668 650 5 

May 2021 

650 Tao Han Imperfect information in firm growth 
strategy: Three essays on M&A and FDI 
activities 

978 90 
5668 651 2 

June 2021 
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651 Johan Bonekamp Studies on labour supply, spending and 
saving before and after retirement 

978 90 
5668 652 9 

June 2021 

652 Hugo van Buggenum Banks and Financial Markets in 
Microfounded Models of Money 

978 90 
5668 653 6 

August 2021 

653 Arthur Beddock Asset Pricing with Heterogeneous Agents 
and Non-normal Return Distributions 

978 90 
5668 654 3 

September 
2021 

654 Mirron Adriana 
Boomsma 

 

On the transition to a sustainable 
economy: Field experimental evidence on 
behavioral interventions 

978 90 
5668 655 0 

September 
2021 

655 Roweno Heijmans On Environmental Externalities and 
Global Games 

978 90 
5668 656 7 

August 2021 

656 Lenka Fiala Essays in the economics of education 978 90 
5668 657 4 

September 
2021 

657 Yuexin Li Pricing Art: Returns, Trust, and Crises 978 90 
5668 658 1 

September 
2021 

658 Ernst Roos Robust Approaches for Optimization 
Problems with Convex Uncertainty 

978 90 
5668 659 8 

September 
2021 

659 Joren Koëter Essays on asset pricing, investor 
preferences and derivative markets 

978 90 
5668 660 4 

September 
2021 

660 Ricardo Barahona Investor Behavior and Financial Markets 978 90 
5668 661 1 

October 
2021 

660 Stefan ten Eikelder Biologically-based radiation therapy 
planning and adjustable robust 
optimization 

978 90 
5668 662 8 

October 
2021 

661 Maciej Husiatyński Three essays on Individual Behavior and 
New Technologies 

978 90 
5668 663 5 

October 
2021 

662 Hasan Apakan Essays on Two-Dimensional Signaling 
Games 

978 90 
5668 664 2 

October 
2021 

663 Ana Moura Essays in Health Economics 978 90 
5668 665 9 

November 
2021 

664 Frederik Verplancke Essays on Corporate Finance: Insights on 
Aspects of the General Business 
Environment  

978 90 
5668 666 6 

October 
2021 
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665 Zhaneta Tancheva Essays on Macro-Finance and Market 
Anomalies 

978 90 
5668 667 3 

November 
2021 

666 Claudio Baccianti Essays in Economic Growth and Climate 
Policy 

978 90 
5668 668 0 

November 
2021 

667 Hongwei Zhang Empirical Asset Pricing and Ensemble 
Machine Learning 

978 90 
5668 669 7 

November 
2021 

668 Bart van der Burgt Splitsing in de Wet op de 
vennootschapsbelasting 1969 Een 
evaluatie van de Nederlandse 
winstbelastingregels voor splitsingen ten 
aanzien van lichamen 

978 90 
5668 670 3 

December 
2021 

669 Martin Kapons Essays on Capital Markets Research in 
Accounting 

978 90 
5668 671 0 

December 
2021 

670 Xolani Nghona From one dominant growth mode to 
another: Switching between strategic 
expansion modes 

978 90 
5668 672 7 

December 
2021 

671 Yang Ding Antecedents and Implications of Legacy 
Divestitures 

978 90 
5668 673 4 

December 
2021 

672 Joobin Ordoobody The Interplay of Structural and Individual 
Characteristics 

978 90 
5668 674 1 

February 
2022 

673 Lucas Avezum Essays on Bank Regulation and 
Supervision 

978 90 
5668 675 8 

March 2022 

674 Oliver Wichert Unit-Root Tests in High-Dimensional 
Panels 

978 90 
5668 676 5 

April 2022 

675 Martijn de Vries Theoretical Asset Pricing under 
Behavioral Decision Making 

978 90 
5668 677 2 

June 2022 

676 Hanan Ahmed Extreme Value Statistics using Related 
Variables 

978 90 
5668 678 9 

June 2022 

677 Jan Paulick Financial Market Information 
Infrastructures: Essays on Liquidity, 
Participant Behavior, and Information 
Extraction 

978 90 
5668 679 6 

June 2022 

678 Freek van Gils Essays on Social Media and Democracy 978 90 
5668 680 2 

 

June 2022 
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679 Suzanne Bies Examining the Effectiveness of Activation 
Techniques on Consumer Behavior in 
Temporary Loyalty Programs 

978 90 
5668 681 9 

July 2022 

680 Qinnan Ruan Management Control Systems and Ethical 
Decision Making 

978 90 
5668 682 6 

June 2022 

681 Lingbo Shen Essays on Behavioral Finance and 
Corporate Finance 

978 90 
5668 683 3 

August 2022 

682 Joshua Eckblad Mind the Gales: An Attention-Based View 
of Startup Investment Arms 

978 90 
5668 684 0 

August 2022 

683 Rafael Greminger Essays on Consumer Search 978 90 
5668 685 7 

August 2022 

684 Suraj Upadhyay Essay on policies to curb rising healthcare 
expenditures  

978 90 
5668 686 4 

September 
2022 

685 Bert-Jan Butijn From Legal Contracts to Smart Contracts 
and Back Again: An Automated Approach 

978 90 
5668 687 1 

September 
2022 

686 Sytse Duiverman Four essays on the quality of auditing: 
Causes and consequences 

978 90 
5668 688 8 

October 
2022 

687 Lucas Slot Asymptotic Analysis of Semidefinite 
Bounds for Polynomial Optimization and 
Independent Sets in Geometric 
Hypergraphs 

978 90 
5668 689 5 

September 
2022 

     

 



The goal of a mathematical optimization problem is to maximize an objective 
(or minimize a cost) under a given set of rules, called constraints. Optimization 
has many applications, both in other areas of mathematics and in the real world. 
Unfortunately, some of the most interesting problems are also very hard to 
solve numerically. To work around this issue, one often considers relaxations: 
approximations of the original problem that are much easier to solve. Naturally, it 
is then important to understand how (in)accurate these relaxations are. 

This thesis consists of three parts, each covering a different method that uses 
semidefinite programming to approximate hard optimization problems. 
In Part 1 and Part 2, we consider two hierarchies of relaxations for polynomial 
optimization problems based on sums of squares. We show improved guarantees 
on the quality of Lasserre’s measure-based hierarchy in a wide variety of settings 
(Part 1). We establish error bounds for the moment-SOS hierarchy in certain 
fundamental special cases. These bounds are much stronger than the ones 
obtained from existing, general results (Part 2).
In Part 3, we generalize the celebrated Lovász theta number to (geometric) 
hypergraphs. We apply our generalization to formulate relaxations for a type 
of independent set problem in the hypersphere.  These relaxations allow us to 
improve some results in Euclidean Ramsey theory. 

Lucas Slot (Amsterdam, The Netherlands, 1996) received his bachelor’s degrees 
in Mathematics (with honours) and Computer Science from the University of 
Amsterdam in 2016. He obtained his master’s degree in Mathematics from the 
University of Bonn in 2018.

ISBN: 978 905668 689 5
DOI: 10.26116/wsbs-kt84
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