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Abstract

A series of methods for solving the multi-object estimation problem in the context sequen-
tial Bayesian inference is presented. These methods concentrate on dealing with challenging
scenarios of multiple target tracking, involving fundamental problems of nonlinearity and non-
Gaussianity of processes, high state dimensionality, high number of targets, statistical depen-
dence between target states, and degenerate cases of low signal-to-noise ratio, high uncertainty,
lowly observable states or uninformative observations. These difficulties pose obstacles to most
practical multi-object inference problems, lying at the heart of the shortcomings reported for
state-of-the-art methods, and so elicit novel treatments to enable tackling a broader class of
real problems.

The novel algorithms offered as solutions in this dissertation address such challenges by
acting on the root causes of the associated problems. Often this involves essential dilemmas
commonly manifested in Statistics and Decision Theory, such as trading off estimation accuracy
with algorithm complexity, soft versus hard decision, generality versus tractability, conciseness
versus interpretativeness etc. All proposed algorithms constitute stochastic filters, each of which
is formulated to address specific aspects of the challenges at hand, while offering tools to achieve
judicious compromises in the aforementioned dilemmas.

Two of the filters address the weight degeneracy observed in sequential Monte Carlo filters,
particularly for nonlinear processes. One of these filters is designed for nonlinear non-Gaussian
high-dimensional problems, delivering representativeness of the uncertainty in high-dimensional
states while mitigating part of the inaccuracies that arise from the curse of dimensionality. This
filter is shown to cope well with scenarios of multimodality, high state uncertainty, uninformative
observations and high number of false alarms. A multi-object filter deals with the problem of
considering dependencies between target states in a way that is scalable to a large number of
targets, by resorting to probabilistic graphical structures. Another multi-object filter treats
the problem of reducing computational complexity of a state-of-the-art cardinalized filter to
deal with large number of targets, without compromising accuracy significantly. Finally, a
framework for associating measurements across observation sessions for scenarios of low state
observability is proposed, with application to an important Space Surveillance task: cataloging
of space debris in the geosynchronous/geostationary belt.

The devised methods treat the considered challenges by bringing about rather general ques-
tions, and provide not only principled solutions, but also analyzes the essence of the investigated
problems, extrapolating the implemented techniques to a wider spectrum of similar problems
in Signal Processing.
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MH-JPDA Multiple-Hypothesis Joint Probabilistic Data Association.

MHF Multiple Hypothesis Filter.

MHT Multiple Hypothesis Tracking.

ML Maximum likelihood.

MMSE Minimum mean square error.

MMSE-MAP Minimum mean square error (state), maximum a posteriori (association).

MMSE-ML Minimum mean square error (state), maximum likelihood (association).

MOSPA Mean Optimal Subpattern Assignment.

MPF Marginal Particle Filter.

MSE Mean square error.

MTT Multiple Target Tracking.

MUPF Marginal UKF-based Particle Filter.

NEES Normalized estimation error squared.

OD Orbit Determination.

ODE Ordinary Differential Equation.

OSPA Optimal Subpattern Assignment.

PDA Probabilistic Data Association.

PDE Partial Differential Equation.

PDF Probability density function.

PF Particle Filter.

PGF Probability generating function.

PGFL Probability generating functional.

PHD Probability Hypothesis Density.

RFS Random Finite Set.
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RMSE Root mean square error.

ROC Receiver Operating Characteristics.

RSO Resident Space Object.

SDE Stochastic Differential Equation.

SDPF Scaled-drift Particle Flow.

SIR Sequential Importance Resampling.

SIS Sequential Importance Sampling.

SMC Sequential Monte Carlo.

SmHMC Sequential manifold Hamiltonian Monte Carlo.

SmMALA Sequential manifold Metropolis-Adjusted Algorithm.

SPF Stochastic Particle Flow.

SPF-GS Stochastic Particle Flow, Gaussian sum.

SPF-MPF Stochastic Particle Flow, Marginal Particle Filter.

SSA Space Situational Awareness.

UCT Uncorrelated Track.

UKF Unscented Kalman Filter.

UPF Unscented Particle Filter.
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Nomenclature

α Acceptance probability (Ch. 1 and 2); index of vehicles in IDM (Ch. 2); location
parameter (Ch. 2); shape parameter of the Gamma distribution (Ch. 4); right
ascension (Ch. 5 and App. A)

x̄S,k, PS,k Sample mean and empirical covariance matrix
n̄max Maximum number of terms for approximating derivatives of the predicted discrete-

Gamma probability generating functional
w̄a Multidimensional quadrature weight with index a
w̄j Gauss-Hermite quadrature weight with index j
β Parameter of the spatial correlation matrix (Ch. 2); rate parameter of the Gamma

distribution (Ch. 4)
β Fitted coefficients to a parametric curve (orbital arc)
q Position vector of the observation site
r Geocentric position vector
ρ Line of sight vector
x̆(a) Transformed multidimensional grid abscissa with index a
w̆

(i)
k Unnormalized importance weight of sample i at time step k

δ Infinitesimal variation; declination (Ch. 5 and App. A)
δx Dirac-delta at x

δij Kronecker delta
ηc(·), c(·) Spatial distribution of false alarms
γ, γ(·) Parameter of the Generalized Hyperbolic distribution (Ch. 2); Euler-Mascheroni

constant (Ch. 4); parametric curve (Ch. 5)
Γu(·) Incomplete Gamma function
π̂(·), π̃(·) Approximated target distribution
N̂k Estimated number of targets at time step k
q̂(·), q̃(·) Approximated proposal distribution
λ Pseudo-time (Ch. 2); rate of false alarms (Ch. 4)
λfa Rate of false alarms
λc, λV,fa Rate of clutter density
Ji(·) Bessel function of first kind, of order i
Ki[·] Modified Bessel function of second kind, of order i
i Orbit inclination
u Argument of latitude
Ma[N (i)] Set of measurements directly assigned to node N (i)

D Matrix of information gain due to representing pairs of targets as dependent
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E Set of edges of a graph
F(X ) σ-algebra on the state vector space
F(Y) σ-algebra on the observation vector space
Hx[·] Hessian matrix with respect to x

In Index set containing n distinct natural numbers
Jx[·], Jx[·] Jacobian matrix with respect to x

L[·] Forward Kolmogorov operator
L[λ], Lλ Langevin diffusion at pseudo-time instant λ
L{·}(s) Laplace transform
Mi Set of validated measurements for the ith target
P Probability measure
Pπ Target probability measure
R Matrix of (binary) relations between pairs of targets
S Region of the state space
Sj Physical location of the jth sensor
T (·) Deterministic filtering map
V Set of vertices (nodes) of a graph
X State vector space
Y Observation vector space
a(·) Measurement-to-node association map (Ch. 3); measurement-to-measurement as-

sociation map (Ch. 5)
h(·) Markov chain speed function
B Input matrix (Ch. 2 and App. A); matrix for computing bounds of fitted coeffi-

cients (Ch. 5)
D Diffusion matrix
F, A State transition matrix
G Rao tensor metric
H Observation matrix
K Kalman gain matrix
Q State process noise covariance matrix
R Observation noise covariance matrix
S Innovation covariance matrix
uk, ξk State process noise vector at discrete time step k
vk, υk Observation noise vector at discrete time step k
wt, Wt Standard Wiener process vector at time instant t
x(t), xt State vector at time instant t
x(a) Multidimensional grid abscissa with index a
xk State vector at discrete time step k
x

(i)
k Sample (particle) i at time step k

y(t), yt Observation vector at time instant t
Yk Set of observations at time step k
yk Observation vector at discrete time step k
Vk,i Validation region for the ith target
µ Mean, drift vector (Ch. 2); Earth gravitational constant (Ch. 5 and App. A)
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µ
(i)
m , Σ

(i)
m Mean vector and covariance matrix of the ith mixture component

µN , σ
2
N Cardinality mean and variance

ν True anomaly (Ch. 5)
Ω Sample space (Ch. 1 and 2); right ascension of the ascending node (Ch. 5 and

App. A)
ω Argument of perigee
de(i) Set of nodes that are not i or any of its descendents
φ Joint association event (Ch. 2)
π(·) Target distribution
Ψ Random finite set of observations
ψ(·) Graph factor
σm,i(·) Elementary homogeneous symmetric function of degree i over m elements
σm Permutation of m elements
σ2
q , σ

2
r State process and observation noise variance parameters

an(i) Set of ancestors of node i
ch(i) Set of children of node i
cs(i) Set of cousins of node i, composed of all non-descendents nodes that are not

ancestors of i
de(i) Set of descendents of node i
pa(i) Set of parents of node i
sb(i) Set of siblings of node i: sb(i) , ch(pa(i)) \ {i}
Θ Polynomial terms for computing the posterior intensity function (DG-CPHD);

state vector of orbital elements (Ch. 5)
θ Elevation (Ch. 1); association event (Ch. 2); polynomial terms for computing

cardinality moments (Ch. 4)
L̃[λ], L̃λ Approximated Langevin diffusion at pseudo-time instant λ
p̃(i)(·) Locally approximated prior density based on the ith mixture component
ε Desired accuracy (Ch. 2); probability that the cardinality is within a specified

interval (Ch. 4)
ϕ(·) Test function, function to be estimated
ς(·) Single-target spatial probability density
Ξ Random finite set of target states
{Fk}k∈N0

Filtration of the σ-algebra F over discrete time steps
{Ft}t≥0 Filtration of the σ-algebra F over continuous time
a Index of abscissae (Ch. 1); acceleration (Ch. 2); measurement-to-target associa-

tion map (Ch. 3); semi-major axis (Ch. 5 and App. A)
ak Association random variable (process) that maps targets to measurements, at

time step k
ck Mixture index random variable that indicates the component of a target’s state

at time step k
Dk Detection event at time step k (Ch. 3); intensity function (Ch. 4)
dk Detection random variable at time step k
dx Dimension of vector x

e Eccentricity (first eccentricity)

12



Ek Existence event at time step k
ek Existence random variable at time step k
f(·), f(·) State function; test function of a probability generating functional (Ch. 4)
G Graph (Ch. 3)
g(·), g(·) Test function; function of the state process noise (Ch. 3))
G(·), G[·] Probability generating function; probability generating functional (Ch. 4)
h(·), h(·) Observation function; test function of a probability generating functional (Ch. 4)
Hj , H̆j Hermite polynomial of order j
k Discrete time step
L Number of integration steps (Ch. 2); factors for approximating derivatives of

polylogarithms (Ch. 4)
M Number of grid nodes per dimension (Ch. 1); number of measurements (Ch. 3

and 4); mean anomaly (Ch. 5)
N Number of samples (Ch. 1 and 2); number of targets (Ch. 3 and 4)
n Cardinality random variable (Ch. 4); mean motion (Ch. 5)
N (i) Node in a graph corresponding to the ith target
nmax Maximum number of terms for the cardinality probability mass function (CPHD)
Nb Number of newborn targets
Nd Number of detections
Nm Number of measurements
Ns Number of sensors (Ch. 2); number of survived targets (Ch. 4)
Nt Number of targets
p Position; semi-latus rectum (Ch. 5)
p(·) Probability density function
p`(y|·), `y(·) Likelihood function for observation y

pbirth(·) Spatial distribution of a newborn target
pΞ(·) Multi-target probability density
pb Probability of birth
pb(·) Probability distribution of birth cardinality (number of newborn targets)
pc(·) Probability distribution of clutter cardinality (number of false alarms)
Pd, pd Probability of detection
pN (·) Probability distribution of cardinality (target number)
Po Probability that an object is observed more than once
ps Probability of survival
pt(·|·), Pt(·, ·) Markov transition kernel
px(·) Prior probability density function
q(·) Proposal distribution
qd Probability of misdetection
S Probability current
T Time horizon (Ch. 2); simulation horizon (Ch. 3), fixed sampling time ∆t := T

t Continuous time instant
V Surveillance region volume
v Velocity
w

(i)
π,k Mixture weight of the ith target component at time step k
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wB Backward weights
wF Forward weights
w

(i)
k Normalized importance weight of sample i at time step k

xj One-dimensional Gauss-Hermite abscissa with index j
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0
Introduction

Multiple target tracking concerns estimating the states of various objects in a scene. This is
performed based on a hypothesis of how each object moves (state model) and how the sensor
observes the states (sensor model), by incorporating information from collections of noisy obser-
vations, under the possibility of misdetections and false alarms (a.k.a. clutter), and uncertainty
about the origin of each measurement. The standard formulation of the problem is probabilis-
tic, referring to the states and observations as random processes and the state estimates are
taken in some optimal sense1, usually resorting to the Bayesian statistics formalism.

Although multi-target tracking (MTT) is an established field and innumerous methods exist,
the task remains far from easy in practical terms. In usual applications, the typical scenario
(and technology) imposes the observation of targets’ states as unable to provide a mechanism
to identify the origin of each measurement in its association to a real detected object. Thus,
besides the Bayesian inference to be carried out, the practitioner is left with a complex decision
of which candidate measurements should be incorporated into the state estimation of each
object. This gives rise to a data association problem, since, in order to jointly estimate the
states of all targets, under the uncertainty of which measurement pertains to which object,
various measurement-to-target association hypotheses are possible. Distinct approaches to this
problem lead to different classes of estimators:

I. A standard class of filters where the decision is explicitly posed as a combinatorial
problem (e.g., Probabilistic Data Association [6]).

II. A class of filters where the decision is avoided by estimating the state of all objects
jointly in a coupled way, by considering all measurements to update the joint multi-
target state (e.g., Coupled Probabilistic Data Association [16]).

III. A class of filters where the description of the multi-object state and observation pro-
cesses is given as random finite sets [131] or stochastic populations [143], internalizing
permutations of objects to implicitly account for the universe of measurement-to-target
associations (e.g., Probability Density Hypothesis [126]).

Indeed, the scenario where several targets are reported in the same neighborhood, with the
possibility of clutter, is complicated. In the literature, this condition is commonly understood
as resulting in a persistent interference, caused by neighboring targets, along with a random
interference, caused by clutter among the measurements [7]. When targets are close to each
other, there is a strong interdependence of the measurement-to-target associations, as illustrated
by Figure 1. In the illustration, three targets currently in custody are predicted to be in the
positions of T1, T2 and T3, respectively. At the current time step, a sensor collects five

1Suboptimal in some approximations.
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measurements at the positions of M1, M2, M3, M4 and M5. The ellipses in Figure 1 represent
the uncertainties (covariance matrices) of T1, T2 and T3, enclosing regions for a certain level
of confidence. In this scene, the following measurement origins could be possible:

H1. Measurement M1 was generated from target T2 or is clutter;

H2. Measurement M2 was generated from target T2, or target T1, or is clutter;

H3. Measurement M3 was generated from target T1 or is clutter;

H4. Measurement M4 was generated from target T1, or target T3, or is clutter;

H5. Measurement M5 was generated from target T3 or is clutter.

The interdependence becomes clear when one observes that, for instance, if M2 originated
from target T1, then it is likely that M1 originated from target T2. The usual assumption
that produces the set of hypotheses H1–H5 is that each measurement may have originated
from at most one target or is a false alarm. Extended hypotheses can also be formulated
under more general premises, by either considering that multiple targets may generate only one
measurement (merged measurement model), as a result of targets falling in the same resolution
cell of the sensor, or that a single target may generate a collection of measurements (extended
target model) when it occupies more than one resolution cell. Sensors with finite resolution are
subject to these possibilities and expand the scope of the standard measurement model.

T1

T2 T3

M1

M2

M3

M4

M5

Figure 1: Example of several targets in the same neighbourhood

In general, multiple target trackers propose estimates in the minimum mean square error
(MMSE) sense [7]. Filters of class I advocate an approach by which the conditional expectation
of the state is taken considering marginal probabilities (or likelihoods) of events in a set of
mutually and exhaustive association hypotheses. Some variants in class I propose the MMSE
state estimate with maximum a posteriori association (MMSE-MAP), which selects the asso-
ciation event with highest posterior probability as a realization, on which the expectation of
the state is conditioned. A similar approach proposes MMSE state estimate with maximum
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likelihood association (MMSE-ML). Heuristic approaches are also common, such as the nearest
neighbor that selects which measurement is associated with which target based on a distance
metric. Filters of class II are built purely in the MMSE sense, without the need for an explicit
solution of the data association problem. Filters of class III also avoid the data association
problem but require a special treatment for producing estimates. They are based on a function
that consolidates the whole multi-target state configuration, the intensity function2 [126], and
so filters of class III require extraction of peaks or distinguishable components of this function.

0.1 Multi-object filtering problem

Let us formalize the multi-object filtering problem. Consider that the state of each individual
object evolves with time, denoted as t ∈ R+, according to a stochastic process, {xt}t≥0, xt ∈
X ⊆ Rdx , where dx is the number of elements of xt. Observables about each object are realized
according to another stochastic process, {yt}t≥0, yt ∈ Y ⊆ Rdy , where dy is the number of
elements of yt. Since the description is given in terms of random processes, it is usual to fix
the underlying probability space, (Ω,F ,P), where Ω is the sample space, F is a σ-algebra
on Ω that accounts for the universe of possible events, and P is a probability measure that
assigns probabilities to events. In addition, the description considers the measurable spaces
(X ,Ft(X )) and (Y,Ft(Y)) of the state and observation processes, respectively, with σ-algebras
Ft(X ) , σ{xt|t ≥ 0} and Ft(Y) , σ{yt|t > 0} that compose the filtrations {Ft(X )}t≥0

and {Ft(Y)}t≥0 of the σ-algebra F . The filtering problem concerns characterizing the object
states by estimates conditioned on observations. In the optimal filtering formalism, the problem
consists in finding the best L2-estimate of some Ft(X )-measurable function of the state process,
ϕ(xt), based on the observations, that is, one wishes to find an Ft(Y)-measurable quantity
ϕ̂t that minimizes ‖ϕ̂t − ϕ(xt)‖2. The formal solution to this problem is generally given by
ϕ̂t = E [ϕ(xt)|Ft(Y)] admitting almost sure equivalence, where E denotes the expectation with
respect to the probability measure P. In practice, observations are acquired at discrete time
instants and so can be thought of as random sequences {yk}k∈N realized at t = 1∆t, . . . , k∆t.
Similarly, as the state process shall be characterized conditioned on the observations, the states
can also be denoted as discrete-time random sequences {xk}k∈N0 .

Now consider a number n of targets in a multiple target context. By indexing all targets in
the scene by an index set In,k := {i1, . . . , in} ⊂ N, each target state is described as x

(i)
k such

that i ∈ In,k. The set of all targets in the scene at time step k can be denoted as x
(1:n)
k =

x
In,k
k := {x(i)

k |i ∈ In,k}. Similarly, a number m of observations of targets’ states are collected,
indexed by Im,k := {j1, . . . , jm} ⊂ N, and so each measurement can be identified as y

(j)
k such

that j ∈ Im,k. The complete set of measurements is denoted as Yk , y
(1:m)
k := {y(j)

k |j ∈ Im,k}
and we write the history of observations up to time step k as Y1:k := {Y1, . . . ,Yk}. Multi-
object state and observation spaces can be denoted as the Cartesian products Xn =

∏
i∈In,k X

and Ȳm =
∏
j∈Im,k Ȳ respectively, where Ȳ , Y ∪ Yfa and, in this context, the observation

process is assumed to admit false alarms y
(j)
k,fa ∈ Yfa as realizations and missed detections may

be present (m ≤ n).
In the multi-object framework, the ultimate goal of any multiple-target tracker is to infer

estimates about target states conditioned on information provided by the observation history,
2First order moment of the associated point process.
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that is, obtaining

Pk[ϕ] = E
[
ϕ(x

(1:n)
k )|Fk(Ȳm)

]
≡
ˆ
Xn

ϕ(x
(1:n)
k )Pk(dx

(1:n)
k ,Y1:k), (1)

for a test function ϕ : Xn → X ′, measurable in Fk(Xn) = σ{x(1:n)
t |0 < t ≤ k∆t}, where

Pk(·,Y1:k) is a posterior multi-target probability measure, and x
(1:n)
k should be understood in

terms of the joint event X
(1:n)
k =

⋂n
i=1 X

(i)
k in the measurable space (Xn,Fk(Xn)). In practical

terms, computing estimates as in (1) involves expressing the posterior multi-target measure
explicitly, which constitutes the main scope of most multiple target trackers.

0.2 Some challenges in multiple target tracking

In the standard setting, the multi-target tracking problem manifests itself as hybrid, character-
ized by a continuous uncertainty in the multi-target state space, and by a discrete uncertainty
arising from the measurement-to-target association ambiguities. A challenge arises when one
tries to track a large number of targets in this setting because a high computational effort is
demanded to solve the association ambiguities. This is particularly true when the problem is
set in a combinatorial form, where an exhaustive enumeration of data association hypotheses
must be performed. Usual solutions, as per class I, involve techniques to manage the number of
hypotheses [163] or mixing the marginal data association components to consolidate the state
estimates [73]. An alternative approach, per class III, deals with this challenge by interpreting
the multi-target state process as a composite random process: either in the form of a random
finite set [131], a point process [44], or a stochastic population [143]. In this interpretation,
realizations of these processes are symmetric (unordered) and the filtering procedure internal-
izes all association possibilities such that the data association has not to be explicitly treated.
The drawbacks of this alternative approach are either loss of the ability to keep target iden-
tities [126], increased computational complexity when incorporating labels in the multi-target
state process [164], or increased computational complexity when maintaining distinguishable
hypotheses [58].

A typical assumption of the multi-target tracking problem considers that target states are
mutually independent conditioned on the observations. In general, this assumption simplifies
the multi-target state estimation, since in that case the uncertainty of each target state can
be fully represented independently of the others, and the joint multi-target state probability
measure is the product of the individual target measures. In the standard class I this assumption
plays an essential role as the target states are represented and updated separately, and in class
III it is fundamental to enable a formulation that requires points3 of the joint multi-target state
process to be mutually independent. Filters in class II relax the independence assumption by
estimating the target states jointly along with their dependencies, but often at the expense
of higher complexity and nonscalability to large numbers of targets. The presumed target
independence is reasonable in a number of cases, when targets are well separated for most
of the time, but it may result in relevant inaccuracies when targets get into proximity and
stay in this condition for a considerable duration of time, largely due to the interdependences
illustrated in Figure 1. Representing mutual target dependencies accurately while maintaining

3In the sense of point processes.
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scalability in terms of numbers of targets constitutes an important challenge for the field.
From a different perspective, an aspect that poses another challenge to the multi-target

tracking problem is the effect of nonlinearity and non-Gaussianity in the sequential evolution of
the multi-target state uncertainty. Nonlinearity is present in the mathematical description of a
wide range of physical phenomena, usually appearing as a model is devised for high represen-
tation fidelity or for explaining second and higher-order effects. In contrast, non-Gaussianity is
related to the nature of the uncertainty source, and may appear due to many factors including,
not exhaustively, spatial constraints (e.g., a robot moving close to a wall), dynamical constraints
(e.g., an object orbiting the Earth), nonlinear combination of two or more uncertainty sources
(e.g., uncertainty in range due to noise in Cartesian components), inherent asymmetry (e.g.,
counting numbers of objects must consider only nonnegative integers), etc.

Representing the probability distributions that delineate the target state uncertainty can be
achieved in closed form for only a few special cases (e.g., linear, Gaussian state and observation
processes). In the general case, representing the associated probability distributions requires a
comprehensive description to some accuracy level, which must also be concise enough to enable
computational tractability. One could think in terms of analytical requirements to represent
smooth probability density functions, and note that an exact representation would only be
possible in terms of function series with infinitely many terms4. Hence, the challenge lies
in approximating the state uncertainty by a finite number of parameters, under a structured
model, which must be judiciously chosen. This is usually achieved by means of approximations
based on the Kalman filter [108] (e.g., Extended Kalman filter), mixtures (e.g., [185]), grid
methods (e.g., [21]) or sequential Monte Carlo methods (e.g., [83]). Each of these methods reacts
differently to two fundamental (statistical) principles: (i) dimensionality, whose increase dilutes
representativity of the uncertainty by a finite number of parameters (curse of dimensionality),
and (ii) inhomogeneity, by which the uncertainty poses distinct demands of representativity
for different regions of the state space (heteroscedasticity). As a consequence, state-of-the-art
filters have their particular shortcomings, and hence show characteristics with problem-specific
suitability while opportunities for better uncertainty representations and filtering techniques
remain open.

In cases marked by observations with low signal-to-noise ratio, both the challenges of solv-
ing data association ambiguity and accurate uncertainty representation are exacerbated. This
happens because low signal-to-noise ratio involves high measurement noise variances, low prob-
ability of detection or a large number of false alarms. In fully probabilistic frameworks this
scenario renders hypotheses where each measurement might originate from a target or a false
alarm with comparable probabilities. In some extreme cases, the probability of a measure-
ment being a false alarm can be much higher than that of originating from a real target (e.g.,
multistatic sonar applications). In these cases, the resulting posterior multi-target probability
measure and the corresponding intensity function are very diffuse, consisting of several modes
that are significant for the description, which calls forth the need for an accurate uncertainty
representation. As an illustration, think of the relative difficulty of approximating a multi-
modal measure in comparison to approximating a single mode. Concomitantly, the uncertainty
about the origin of each measurement is very high, either because the observation likelihood is
very uninformative (due to large noise variances or small probability of detection), or because

4This is the criterion to tell if the function is analytic.
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of a relatively large number of false alarms that leads to a relevant number of equally likely
hypotheses. For filters whose complexity is dominated by the number of measurements (e.g.,
[127]), the case with a high number of false alarms is particularly difficult, and these filters may
become infeasible for scenarios with a moderate to large number of targets.

A similar problem appears in situations where the state observability is low. It is important
to note that observability is a characteristic mostly related to the observation settings (sensor
coordinate frame, observation period etc) rather than to the object’s attributes or to the obser-
vation noise. In those situations, measurements may be well accurate and yet offer insufficient
information for the state estimation to be accomplished. This is true to a great extent in Space
Surveillance applications, where short-periodic observation of geostationary satellites (and de-
bris) by electro-optical instruments provide accurate angular measurements but offers little
information about which orbit the objects describe. Specifically for this example, the settings
impose that, in order to determine the orbit of the observed objects, more than one observation
batch must be obtained in different sessions separated by hours to days. Since multiple ob-
jects appear in the observations, the scenario elicits a technique for associating measurements
from different observation sessions, i.e., solving the measurement-to-measurement association
problem. This problem is very important as its solution facilitates cataloging space debris
in the context of Space Surveillance for supporting new satellite launching and maintaining
safe operations. The problem is as challenging as important since the association ambiguities
are enormous, hundreds of objects are observed in short-term campaigns, and purely heuris-
tic strategies (e.g., nearest neighbor) are prone to discard most of the redundant information
contained in multiple observation sessions.

0.3 Thesis Statement and Contributions

This dissertation contributes to some important subdomains of Computer Science and Signal
Processing, namely, multi-target tracking and data fusion, stochastic filtering and sequential
Monte Carlo methods, dynamical modeling, and to some specific methods of Celestial Mechanics
for orbit determination. The dissertation proposes techniques at the boundary between target
tracking with sensor data fusion and modern pre-eminent techniques in stochastic filtering and
probabilistic transport, and also explores the interconnection of multiple target tracking with
probabilistic graphical inference to contribute to the enhancement of the status quo of filtering
with data fusion, with applications including, but not limited to, maritime, terrestrial, aerial
and space surveillance. As a primary objective, this dissertation works on and tests the following
hypothesis.

Hypothesis. State-of-the-art multi-object estimators are frequently studied under benign sce-
narios, driven by well-characterized problems, under mild conditions, such that reported suc-
cesses of established algorithms are largely dependent on the problem settings. In the literature,
it is often the case that these estimators are demonstrated to perform satisfactorily for well-
known problems and standard settings, possibly outperforming some other methods, however,
the very important cases and settings for which the estimators don’t apply or will not perform
appropriately are virtually not explored, and commonly unknown. This typical circumstance
leads to algorithm evaluations that predominantly demonstrate adequacy to the stated problem
(and its specificities) while revealing only a small subset of inherent characteristics and involved
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principles in the filtering techniques.
We propose that by exploring extreme cases, where the fundamental shortcomings of esti-

mators are exposed via exacerbation of the problem scenario, mathematical principles and root
causes of defects can be analyzed to a greater extent, which not only clarifies important ques-
tions about the methods but also establishes the context for novel methods to be proposed. We
also propose that, with such a deeper understanding at hand, adopting methodologies from other
scientific domains and elaborating on mathematical principles to work around essential imper-
fections may successfully solve many estimation challenges. Ultimately, in this context, we
propose a series of novel methods, each of which addresses a subset of aspects that limit the
performance of state-of-the-art estimators, and extends the applicability to relevant challenging
scenarios.

It is worth noting that the correctness or falsehood of this hypothesis may not admit a
formal proof. Nevertheless, this dissertation is focused on providing evidence, in an empirical
sense, for or against its validity. It does so by analyzing limitations of state-of-the-art filters
under challenging multi-target tracking scenarios and introducing a series of methods to deal
with those challenges, treating problems of nonlinearity and non-Gaussianity of processes, high
state dimensionality and large numbers of targets, statistical dependence between target states,
low signal-to-noise ratio, and lowly observable states.

Each chapter presents a novel estimation technique to deal with one or more challenging
scenarios described in the previous section, and so each contribution of this dissertation is
organized in a single chapter. Each chapter is self-contained, providing a detailed overview of
the problem context, literature review, problem statement, mathematical derivations, numerical
experiments, discussion, conclusions and the bibliographical references used within the chapter.
In this structure, the reader may consider each chapter as a completely independent article, and
no specific order is necessary to understand the content. Appendix A is an account of a well-
established method for discretization of linear state-space models from the author’s perspective.
Chapter 6 summarizes and concludes the dissertation. The contributions of the dissertation are
briefly described as follows.

Chapter 1: Hybrid Gauss-Hermite filter

The first contribution is a filter for treating the problem of representing the target state un-
certainty for highly nonlinear processes while partially avoiding a limitation of filters based on
sequential importance sampling (particle filter). In Chapter 1 this novel algorithm for sequential
Bayesian estimation is presented, consisting of a hybrid method that combines a particle-based
representation of the prior state uncertainty with an efficient grid-based method to estimate the
posterior probability density. The proposed filter uses a prior Monte Carlo empirical measure
to induce a probability mass function that approximates the posterior probability distribution.
Such an approximation enables accurate numerical integration, by means of the Gauss-Hermite
quadrature, to compute the state estimates and covariance matrices.

Chapter 2: Stochastic Particle Flow

The second contribution involves an in-depth analysis of the problem of representing the multi-
target state uncertainty for high-dimensional nonlinear problems, which is as difficult as impor-
tant. As a result, the contribution proposes a sophisticated method that capitalizes on modern
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findings on a variational formulation of uncertainty propagation and transport-based filters,
to represent high-dimensional nonlinear processes accurately. In addition, in Chapter 2, the
method addresses successfully the challenges of tracking dependent targets by estimating all
targets states jointly and excels in scenarios with low signal-to-noise ratio.

This novel method is based on an alternative way of performing Bayesian updates, by
defining a continuum of densities between the prior probability density and the posterior, i.e.,
the filtering density. The novel filter uses equally weighted samples, each of which is associated
with a local solution of the Fökker-Planck equation. This hybrid of Monte Carlo and local
parametric approximation gives rise to a global approximation of the filtering density of interest.
In Chapter 2, we show that, when compared with state-of-the-art methods, the Gaussian-
mixture implementation of the new filtering technique, which we call Stochastic Particle Flow,
has utility in the context of benchmark nonlinear high-dimensional filtering problems.

Chapter 3: Multi-target tracking of dependent targets

The contribution of Chapter 3 provides a scalable multi-target tracking framework that consid-
ers dependence between target states due to association uncertainty, and enables track man-
agement. This method builds on a target tracker previously developed to efficiently maintain
target dependence structures, incorporating mechanisms for initiating new tracks via birth pro-
cess and by inferring existence probabilities to cater for track confirmation and deletion. The
proposed framework does not maintain a joint probability distribution over all the target states
but rather relies on target dependence trees on which discrete probability distributions of adja-
cent targets are calculated. These dependence trees constitute probabilistic graphical models,
where each node represents a target-related discrete random variable and the edges represent
the probabilistic relations between nodes. Each node variable can take different values, one
for each mixture component of the corresponding target state, with probabilities given by a
discrete marginal distribution, and each edge is described by a conditional probability distribu-
tion relating two nodes. These probabilistic trees are predicted and updated at each time step
such that the information lost in the approximation is minimal. For computing the marginal
association probabilities, an exact, very efficient algorithm known as Efficient Hypothesis Man-
agement (EHM) is adopted in its most general form, which enables computations for pairs of
dependent targets.

Chapter 4: Discrete-Gamma Cardinalized Probability Hypothesis Density

The fourth contribution is in the context of efficiently filtering large numbers of targets, and
catering for low signal-to-noise scenarios while also estimating the number of targets (car-
dinality) in the scene in a fully probabilistic way. The resulting filter is a computationally
efficient approximation of the Cardinalized Probability Hypothesis Density (CPHD) filter, one
of the most acclaimed algorithms for multi-target Bayesian filtering due to its ability to accu-
rately estimate the number of objects and the object states. The CPHD filter generalizes the
Probabilistic Hypothesis Density (PHD) filter by jointly propagating the first-order multi-target
moment (intensity function) along with the entire probability distribution on the number of tar-
gets (cardinality distribution). In general, the CPHD recursion is computationally intractable,
however, successful approximations have been devised with reported computational complexity
dominated by O(m3) operations per filtering iteration, wherem is the number of measurements.
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In Chapter 4, the idea of approximating the cardinality distribution by two-parameter distri-
butions is explored to provide an efficient approximation of the CPHD where the cardinality
distribution is modeled as a discretized Gamma distribution.

Chapter 5: Measurement-to-measurement association for Space Surveillance

The contribution described in Chapter 5 treats the problem of probabilistic inference under
low state observability (in the orbital elements space). The problem is stated in the con-
text of a Space Surveillance application and has been solved by an algorithm that performs
measurement-to-measurement associations across multiple observation sessions. Angles-only
orbit determination of nearly geosynchronous and geostationary objects based on short-arc ob-
servations is challenging both because of their low observability and measurement uncertainty
commensurate with the observed arc length. In general, the scenario requires multiple obser-
vation sessions, several hours apart, to deliver enough observability and reduced susceptibility
of orbit determination to measurement noise. Ultimately, this obliges that observations from
different sessions be correctly associated under the presence of other objects. In this chapter we
propose a new framework to effectively associate observations from multiple sessions for uncor-
related tracks. The proposed framework is based on a new initial orbit determination method
that enables a reasonable description of nearly-geosynchronous and geostationary orbits and
their uncertainties, and a procedure for statistical comparison between estimated orbits in a
space comprising orbital elements and measurements. The comparison generates likelihood
values that quantify the similarity of observations across sessions. The new initial orbit deter-
mination algorithm is based on Escobal’s method along with estimates of orbital elements by a
new unperturbed two-body angular motion model.

Appendix A: Discretization of linear state-space models

The contribution of Appendix A is literary. It gives a brief account, in the perspective of
the author, of an established method to discretize linear state space models. The method is
well documented in the Control Engineering literature, however, apart from few exceptions,
it is rarely discussed in the multi-target tracking literature. Appendix A provides a simple
derivation of the procedure to discretize a continuous-time linear state-space model. The intent
is clarifying how discrete-time models widely used in multi-target and multi-sensor tracking
can be obtained from continuous-time models, by resorting to transformations in the Laplace
domain and other techniques for solving stochastic differential equations.
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1
Hybrid Gauss-Hermite Filter

This chapter is intended to address one of the challenges identified in Chapter 0, namely, that
of representing the probability distributions for highly nonlinear and non-Gaussian processes
in an effective way while avoiding well-known defects in sequential Monte Carlo representa-
tions. To that end, we present an algorithm for sequential Bayesian estimation consisting of
a hybrid method that combines a particle-based representation of the prior state uncertainty
with an efficient grid-based method to estimate the posterior probability density. The proposed
filter uses a prior Monte Carlo empirical measure to induce a probability mass function that
approximates the posterior probability distribution. Such an approximation enables accurate
numerical integration, by means of the Gauss-Hermite quadrature, to compute the state es-
timates and covariance matrices. The filter is prone to estimation errors dominated by the
same approximation errors as those found in conventional particle filters, but it is well suited
to generally solve nonlinear non-Gaussian filtering problems without the well-known weight
degeneracy problem1. Simulation results demonstrate the versatility of the filter for practical
problems, showing performance similar to that of particle filters with optimal proposal densities,
for nonlinear non-Gaussian dynamic state-space models, with the advantage that the weight
degeneracy problem is absent.

1.1 Overview

Probabilistic inference based on state-space models with stochastic transitions and partially ob-
servable states are well described by hidden Markov models (HMM). The generality of Markov
models enables a description of stochastic processes in continuous state spaces that is applicable
to a wide variety of problems in Statistics, Computer Science and Engineering. Nevertheless,
these models lead to intractability in practice because, except for a few special cases, analytic
solutions for exact inference are impossible for processes with continuous distributions. Particle
filters arose as a class of sequential Monte Carlo algorithms for obtaining approximate solu-
tions to inference problems, expressed in the framework of Markov models, for which analytic
solutions cannot be achieved [83, 4, 66]. These algorithms are based on recursive Monte Carlo
simulations of the state model at hand, via importance sampling, to provide weighted samples
(also known as particles) that represent the probability density of the state process. In contrast
to standard approximating methods for nonlinear systems, such as the Extended Kalman Filter
(EKF), particle filters have the advantage that they do not rely on parametric statistics, local
linearization for uncertainty propagation or crude functional approximations. The counterpart
of this advantage is a higher computational demand when compared to filters similar to the

1As opposed to the particle degeneracy that is present in all sequential Monte Carlo filters due to the curse
of dimensionality.
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Kalman filter, and the statistical anomalies that arise from the sequential utilization of the
importance sampling technique.

Two fundamental problems of particle filtering are manifested. The first is the susceptibility
of these filters to the curse of dimensionality [46], sometimes referred to as “particle degeneracy”:
in favor of implementation simplicity, in their standard setting, particle filters propagate paths
of samples in such a way that, at each step, they occupy a space with augmenting dimensionality
[110], and so the finite set of samples can only represent the state process to an increasingly
sparse extent. The second problem is the well-known “weight degeneracy” problem [66, 166]: a
sequential decrease in accuracy of the uncertainty representation due to the inevitably increasing
variance of the approximation. Typically, this problem is explained in the context of the
mismatch between the probability distribution from which the samples are taken (proposal or
importance distribution), and the actual distribution that the filter aims to represent (target
distribution). The weight degeneracy originates from the fact that, for any finite number of
proposed samples, only a fraction of them may populate the region of interest, that is, the
region of high probability under the target distribution. Thus, the weights of samples far from
the high-probability region not only become ineffective for producing estimates but also affect
the global accuracy of the target description. The problem becomes exacerbated as sequential
moves of the proposed samples further increase the inaccuracy of the uncertainty representation,
which is reflected in a high variance of the importance weights and, eventually, all but one weight
collapse to insignificant values.

Standard techniques devised to mitigate the degeneracy problem concentrate on constraining
the weight’s variance increase, consisting mainly of

i) resampling, which selects and reproduces the most effective samples,

ii) design of better-suited proposal distributions,

iii) use of information from the observation to determine which particles should survive
resampling (predictive likelihood), e.g., Auxiliary Particle Filter [156], and

iv) methods for particle diversification, e.g., Markov chain Monte Carlo moves [66, 26] and
regularization [145].

Furthermore, in addition to a multitude of existing variations of the sequential importance
sampling algorithm, there are innumerous alternative techniques that have been introduced
to address particle filtering shortcomings, either by transforming the proposal density [136],
applying adaptive methods [34, 118], using accept/reject mechanisms [55, 26], incorporating
intermediate proposals between filtering steps [146, 12], or transforming the particles through
deterministic operations that avoid importance sampling completely, e.g., particle flow filters
[49, 47] and transport-based filters [161].

In this chapter we present a filter that poses estimation of the posterior probability dis-
tribution as an explicit integration over points of a state-space grid, operating directly on a
marginal space, which is akin to the marginal particle filter [110]. Moreover, the proposed
filter proceeds estimation in a way similar to that of usual grid-based methods [11, 4, 178].
Nevertheless, the filtering method presented herein is conceptually hybrid as it makes use of
a grid-based estimation technique set up by propagating Monte Carlo samples that express
the previous posterior distribution. Essentially, the filtering principle is not underpinned by
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importance sampling so that weight degeneracy is avoided. We depart from a Monte Carlo
representation of the prior probability distribution to induce a posterior density discretized at
specific points in the state space. These points are conveniently set at the roots of a Hermite
polynomial, of an adequate order, to enable numerical integration over the posterior space by
the Gauss-Hermite quadrature.

Sequential Bayesian estimation for nonlinear filtering relying on quadrature properties for
numerical integration was explored by [21], which proposed an algorithm that stores a point-
mass representation of the posterior density on a floating rectangular grid. A class of filters
based on the Gauss-Hermite quadrature (GHQ) was introduced in [98] to approximate the
posterior distribution by a single Gaussian density, capturing effects of higher-order moments
by using selected points in a way similar to that of the Unscented Kalman Filter (UKF) [107] and
its variants. In this class of filters, the GHQ is used to evaluate linear regression coefficients that
parameterize a Gaussian to represent the posterior density, which explains its name coined as the
“Gauss-Hermite (Kalman) filter” (GHKF). In addition, a Gaussian mixture was parameterized
to extend the Gauss-Hermite Kalman filter to non-Gaussian processes [97, 98]. The original
GHKF shares similarities with the UKF in the sense that they are based on computations over
chosen state points (sigma-points) to propagate Gaussian densities through nonlinear filtering
steps. This similarity has been explored in [210] by applying the GHKF to provide a suboptimal
proposal density for a standard particle filter, giving rise to the Gauss-Hermite Particle Filter
(GHPF).

A recursive nonlinear filter that relies on explicit numerical integration with respect to Gaus-
sian densities has been proposed in [115]. This filter provides estimates for a diffusion process
with discrete-time observations, and it depends on an iterative centering procedure of the in-
tegration grid for the quadrature to be performed. Another algorithm that performs GHQ
explicitly to tackle estimation of multimodal densities is presented in [171]. This algorithm
minimizes the Kullback-Leibler (KL) divergence to ensure matching between the true posterior
density and a proposal density. With a different perspective, an important filter presented in
[28] solves the Fökker-Planck equation using the Generalized Edgeworth Series (GES) expan-
sion of the evolving densities, and evaluates the Bayes’ rule using the GHQ. Another recent
filter approximates multi-dimensional integrals to perform nonlinear Bayesian estimation [102].
This filter utilizes weighted sparse-grid quadrature points to approximate the integrals in the
estimation algorithm, determining locations and weights of the univariate quadrature points by
the moment matching method.

The nonlinear filter presented in this chapter is unique in the sense that it uses samples to
propagate and construct the posterior density at the GHQ abscissae. The estimation problem
is solved without the use of techniques for distribution matching, without specific procedures
of grid centering or refinement, and without parameterization of densities via statistical linear
regression or sigma-points. In addition, neither it assumes that the process and measurement
noises are Gaussian, nor that densities are unimodal.

The chapter is organized into eight sections. Section 1.2 poses the stochastic filtering prob-
lem and introduces sequential Monte Carlo filters. In Section 1.3 we present the formulation of
a probability mass function that approximates the posterior probability density function (pdf)
of a Markov process. The posterior probability density is approximated at points of interest in
the state space, given a previous posterior density described by a set of samples that represent
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a Monte Carlo empirical measure. In Section 1.5 we describe the Gauss-Hermite quadrature
procedure and explain an established method for obtaining Hermite polynomial roots for any
region of the state space. Section 1.4 derives the sampling method used to close the filtering
recursion. Sections 1.6 and 1.7 assemble the building blocks to construct the hybrid Gauss-
Hermite filter and outline the algorithm. In Section 1.8 we provide two simulation examples
and performance results, and Section 1.9 concludes the chapter.

1.2 Stochastic filtering

1.2.1 Filtering problem

Consider a system whose (hidden) states evolve with time, denoted as t ∈ R+, according
to a stochastic process, {xt}t≥0, xt ∈ X ⊆ Rdx , where dx is the number of elements of xt.
Observables about the system are realized according to another stochastic process, {yt}t≥0,
yt ∈ Y ⊆ Rdy , where dy is the number of elements of yt. Since the description is given in
terms of random processes, it is usual to fix the underlying probability space, (Ω,F ,P), where
Ω is the sample space, F is a σ-algebra on Ω that accounts for the universe of possible events,
and P is a probability measure that assigns probabilities to events. In addition, the descrip-
tion establishes the measurable spaces (X ,Ft(X )) and (Y,Ft(Y)) of the state and observation
processes, respectively, with σ-algebras Ft(X ) , σ{xt|t ≥ 0} and Ft(Y) , σ{yt|t > 0} that
compose the filtrations {Ft(X )}t≥0 and {Ft(Y)}t≥0 of the σ-algebra F . The filtering prob-
lem concerns characterizing the system states by estimates conditioned on observations. In the
optimal filtering formalism, the problem consists in finding the best L2-estimate of some Ft(X )-
measurable function of the state process, ϕ(xt), based on the observations, that is, one wishes
to find an Ft(Y)-measurable quantity ϕ̂t that minimizes ‖ϕ̂t − ϕ(xt)‖2. The formal solution
to this problem is generally given by ϕ̂t = E [ϕ(xt)|Ft(Y)] admitting almost sure equivalence,
where E denotes the expectation with respect to the probability measure P.

In practice, observations are acquired at discrete time instants and so can be thought of as
random sequences {yk}k∈N realized at t = 1∆t, . . . , k∆t. Similarly, as the state process shall be
characterized conditioned on the observations, the states can also be denoted as discrete-time
random sequences {xk}k∈N0 . Under these conditions, it is customary to presume that the sys-
tem evolves according to a discrete-time Markov process, whose observations are conditionally
independent given the states. In this setting, a standard Monte Carlo solution of the filtering
problem is given in terms of N i.i.d. weighted random samples {w(i)

k , x
(i)
k |i = 1, . . . , N}, such

that
N∑
i=1

w
(i)
k ϕ(x

(i)
k )

N→∞−→
ˆ
X
ϕ(xk)p(xk|y1, . . . , yk)dxk a.s., (1.1)

where p(xk|y1, . . . , yk) is the posterior probability density of xk conditioned on the history of
observations. Hereafter the notations x0:k , {x0, . . . , xk} and y1:k , {y1, . . . , yk} shall be used.

1.2.2 Sequential Monte Carlo

In this and all subsequent sections, it is generally assumed that a Markov transition kernel
p(xk|xk−1) and an observation likelihood function p(yk|xk) are explicitly known or can be
approximated to arbitrary accuracy, in the context of a hidden Markov model problem. The
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perfect Monte Carlo solution to the filtering problem implies sampling directly from the target
density π(xk|y1:k) = p(xk|y1, . . . , yk) to produce an equally weighted Monte Carlo distribution
as

π̂(xk|y1:k) =
1

N

N∑
i=1

δ(xk − x
(i)
k ), x

(i)
k ∼ π(xk|y1:k), (1.2)

where δ(xk − x
(i)
k ) denotes a Dirac delta (probability) mass at xk = x

(i)
k . This solution is rarely

accessible because sampling from π(xk|y1:k) is often not possible. Instead, a more versatile
solution relies on importance sampling (IS), where N i.i.d. random samples are taken from
an importance density2 q(xk|y1:k) which is “close” to the target density in some sense, and the
mismatch between q(xk|y1:k) and π(xk|y1:k) is corrected by importance weights as

N∑
i=1

w
(i)
k ϕ(x

(i)
k )

N→∞−→
ˆ
X
ϕ(xk)π(xk|y1:k)dxk

=

ˆ
X

π(xk|y1:k)

q(xk|y1:k)︸ ︷︷ ︸
w̆k(xk|y1:k)

ϕ(xk)q(xk|y1:k)dxk a.s., (1.3)

where w(i)
k = w̆k(x

(i)
k |y1:k)/N . This scheme produces the empirical Monte Carlo distribution

π̂(xk|y1:k) =

N∑
i=1

w
(i)
k δ(xk − x

(i)
k ), x

(i)
k ∼ q(xk|y1:k). (1.4)

In a sequential setting, this solution is more practical than the perfect Monte Carlo method.
However, it requires evaluation of π(xk|y1:k) and sampling from q(xk|y1:k). Often, the evaluation
of π(xk|y1:k) involves an approximation whose errors build up from previous steps [110], and
q(xk|y1:k) must be constructed in the marginal space, i.e.

q(xk|y1:k) =

ˆ
X
q(xk|xk−1, yk)q(xk−1|y1:k−1)dxk−1,

which depends on the complete set of previous samples. Note that evaluating π(xk|y1:k) and
constructing q(xk|y1:k) are bounded by O(N2) operations. In contrast, standard particle filters
establish a simpler framework, while demanding calculations bounded by only O(N) operations.
Particle filters extend sample paths as x

(i)
0:k ≡ (x

(i)
k , x

(i)
0:k−1) by sampling according to

x
(i)
0:k ∼ q(x0:k|y1:k) = q(xk|x0:k−1, yk)q(x0:k−1|y1:k−1),

x
(i)
k ∼ q(xk|x

(i)
0:k−1, yk), (1.5)

and by performing importance sampling in the joint space of paths to estimate

Eq(x0:k|y1:k) [w̆(x0:k|y1:k)ϕ(x0:k)] =

ˆ
Xk+1

π(x0:k|y1:k)

q(x0:k|y1:k)︸ ︷︷ ︸
w̆k(x0:k|y1:k)

ϕ(x0:k)q(x0:k|y1:k)dx0:k. (1.6)

2Also known as proposal density.
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Thus, the new weights are updated as

w̆k(x0:k|y1:k) =
π(x0:k|y1:k)

q(x0:k|y1:k)
=

p(yk|xk)p(xk|xk−1)
p(yk|y1:k−1)

q(xk|x0:k−1, yk)

π(x0:k−1|y1:k−1)

q(x0:k−1|y1:k−1)

=
1

p(yk|y1:k−1)

p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1, yk)
w̆k−1(x0:k−1|y1:k−1)

∝ p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1, yk)
w̆k−1(x0:k−1|y1:k−1), (1.7)

where p(xk|xk−1) is the Markov transition kernel, p(yk|xk) is the observation likelihood function
and

p(yk|y1:k−1) =

ˆ
Xk+1

p(yk|xk)p(xk|xk−1)π(x0:k−1|y1:k−1)dx0:k. (1.8)

The normalizing constant (1.8) is inconvenient but can be eliminated by taking estimates as

Eq(x0:k|y1:k) [w̆k(x0:k|y1:k)ϕ(x0:k)]

Eq(x0:k|y1:k) [w̆k(x0:k|y1:k)]
≈

1
N

∑N
i=1 w̆

(i)
k ϕ(x

(i)
0:k)

1
N

∑N
i=1 w̆

(i)
k

,

=

N∑
i=1

w
(i)
k ϕ(x

(i)
k ), (1.9)

where w̆(i)
k = w̆k(x

(i)
0:k|y1:k) and so w(i)

k = w̆
(i)
k /

∑N
i=1 w̆

(i)
k . Note that (1.5) is what causes the

particle degeneracy, i.e. the extended sample paths inhabit a space with augmenting dimension
as x

(i)
0:k ≡ (x

(i)
k , x

(i)
0:k−1) ∈ (X ,X k) = X k+1, which makes them increasingly prone to the curse of

dimensionality. In contrast, the filter proposed in this chapter constructs empirical measures in
the marginal space akin to (1.2) by completely avoiding sequential importance sampling.

1.3 Grid-based posterior density approximation

Presuming that one possesses a previous set of samples {x(i)
k−1}i∈[1..N ] distributed according to

x
(i)
k−1 ∼ π̂(xk−1|y1:k−1), an empirical approximation to the Chapman-Komogorov equation can

be achieved by

p(xk|y1:k−1) =

ˆ
X
p(xk|xk−1)π(xk−1|y1:k−1)dxk−1,

p̂(xk|y1:k−1) =
1

N

N∑
i=1

p(xk|x
(i)
k−1). (1.10)

Equation (1.10) is a mixture of probability densities given by a sum of transition kernels
p(xk|x

(i)
k−1) (continuous in xk) over all particles {x(i)

k−1}i∈[1..N ]. This expression can also be
understood as a sum of N realizations of local samplers, to give N probability distributions
that jointly approximate a marginal distribution. In order to proceed with a discretized rep-
resentation of π̂(xk|y1:k−1), we note that it is possible to evaluate the mixture of densities at
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abscissas of interest {x̆(a)
k }a∈[1..Mdx ], to produce the probability mass function:

p(xk|y1:k−1) ≈ p̂g(xk|y1:k−1)

=
1

M

Mdx∑
a=1

(
1

N

N∑
i=1

p(xk|x
(i)
k−1)

)
δ(xk − x̆

(a)
k ), (1.11)

where Mdx = M × · · · ×M (dx times) nodes are considered. The discretized density (1.11)
approximates the predicted density at {x̆(a)

k }a∈[1..Mdx ]. It could also be understood in terms of a
kernel-based density estimate, where the kernel is p(xk|xk−1). An adequate discretized density
can either be generated by evaluating (1.11) or by interpolating samples x

(i)
k ∼ p(xk|x

(i)
k−1) at

the points {x̆(a)
k }a∈[1..Mdx ].

It is convenient to set M � N , i.e. the number of points of interest per dimension to
discretize the posterior density should be much smaller than the number of particles. This
property is relevant to get a computationally efficient estimation algorithm, by allowing a
minimization of M to limit the number of mixture evaluations. The method advocated in this
chapter is to evaluate the sums (1.11) by setting {x̆(a)

k }a∈[1..Mdx ] in terms of the roots of Mth-
order Hermite polynomials, envisaging to perform the Gauss-Hermite quadrature according
to the technique that will be explained in Section 1.5. The number of computations can be
effectively reduced by taking into account only the components p(xk|x

(i)
k−1) for which {x(i)

k−1}
fall within the neighborhood of each x̆

(a)
k , or by considering the k nearest neighbors {x(i)

k−1} of
x̆

(a)
k , which can be found in O (logN) using spatial data structures (e.g., kd-trees).
Finally, the induction of the posterior density approximation can be achieved by performing a

pointwise Bayesian update. A straightforward approximation to the Bayes’ rule can be acquired
by evaluating p(yk|xk) at the current observation yk given the points x̆

(a)
k , and proceeding the

multiplication to get

π(xk|y1:k) ≈ π̂g(xk|y1:k)

=

∑Mdx

a=1 p(yk|xk)
(∑N

i=1 p(xk|x
(i)
k−1)

)
δ(xk − x̆

(a)
k )∑Mdx

a′=1 p(yk|x̆
(a′)
k )

(∑N
i=1 p(x̆

(a′)
k |x

(i)
k−1)

) . (1.12)

The posterior probability distribution approximated by (1.12) enables estimates as

Eπ [ϕ(xk)|y1:k] ≈

∑Mdx

a=1 p(yk|x̆
(a)
k )

(∑N
i=1 p(x̆

(a)
k |x

(i)
k−1)

)
ϕ(x̆

(a)
k )∑Mdx

a′=1 p(yk|x̆
(a′)
k )

(∑N
i=1 p(x̆

(a′)
k |x

(i)
k−1)

) . (1.13)

The advantage of this estimation method will become clear later on: the idea is that the proba-
bility masses expressed in the grid consolidate the uncertainty from Monte Carlo samples with
an inherent regularizing characteristic. This is achieved because a grid-based probability mass
function diminishes the effect of outliers in the estimates and smoothes the posterior representa-
tion due to the averaging mechanism (over samples) required to compute the masses’ weights.
In addition, the Monte Carlo scheme works as a complementary feature, being responsible
for propagating the state uncertainty by particles and so capitalizing on a concise and sparse
representation of the distributions involved.
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1.4 Particles redrawing

In the procedure described in Section 1.3, a previous set of samples {x(i)
k−1}i∈[1..N ] is used to

induce a discretized representation of the posterior distribution on a grid. In order to complete
the recursion, the approximated posterior measure should characterize the distribution of a set
of posterior samples {x(i)

k }i∈[1..N ], i.e, x
(i)
k ∼ π̂g(xk|y1:k). To do so one should be able to draw

samples from π̂g(xk|y1:k), which is not straightforward. This section presents some methods
for propagating samples so that they become distributed according to the empirical posterior
distribution, and hence close the recursion for the proposed filter.

1.4.1 Sampling

A particularly useful interpretation of the posterior involves updating the predicted distribution
(1.10) via Bayes’ rule as

π̂(xk|y1:k) =
p(yk|xk)p̂(xk|y1:k−1)

p(yk|y1:k−1)
=
p(yk|xk)N−1

∑N
i=1 p(xk|x

(i)
k−1)

p(yk|y1:k−1)

=

N∑
i=1

w
(i)
π,k

p(yk|xk)p(xk|x
(i)
k−1)

p(yk|x
(i)
k−1)

=

N∑
i=1

w
(i)
π,kp(xk|x

(i)
k−1, yk)

≈
N∑
i=1

ŵ
(i)
π,kN (xk; m

(i)
k ,Σ

(i)
k ), (1.14)

where the Markov transition kernel and the likelihood function are assumed to be well approx-
imated by Gaussian density functions as p(xk|x

(i)
k−1) ≈ N (xk; f(x

(i)
k−1),Q

(i)
k ) and p(yk|xk) ≈

N (yk;h(xk),Rk), respectively, and the statistics of each mixture component are given by [64]

Σ
(i)
k = (Q

(i)−1
k + H

(i)T
R−1
k H

(i)
)−1, (1.15)

m
(i)
k = Σ

(i)
k (Q

(i)−1
k f(x

(i)
k−1) + H

(i)T
R−1
k yk), (1.16)

where f : X → X is the state transition function, H(i) is an observation matrix that approxi-
mates an observation function h : X → Y as a linear operator (e.g., in the EKF or UKF sense),
Q

(i)
k is the process noise covariance matrix, and Rk is the observation noise covariance matrix.

In addition,

w
(i)
π,k ,

p(yk|x
(i)
k−1)

N · p(yk|y1:k−1)

∝ p(yk|x
(i)
k−1) =

ˆ
X
p(yk|xk)p(xk|x

(i)
k−1)dxk,

ŵ
(i)
π,k ≈

N (yk; H
(i)
f(x

(i)
k−1),H

(i)
Q

(i)
k H

(i)T
+ Rk)∑N

j=1N (yk; H
(j)
f(x

(j)
k−1),H

(j)
Q

(j)
k H

(j)T
+ Rk)

. (1.17)

Note that the factor (N · p(yk|y1:k−1))−1 weights all components equally in (1.14) and so does
not appear in (1.17). Matrices and weights indexed by i ∈ [1..N ] denote per-sample (local)
approximations. In this interpretation, sampling from π̂(xk|y1:k) just requires taking samples
from the components p(xk|x

(i)
k−1, yk) in (1.14) with probability w

(i)
π,k. This is actually easy

32



CHAPTER 1. HYBRID GAUSS-HERMITE FILTER

to achieve as shown in Algorithm 1.1. Also, note that, in the step 7 of this algorithm, one
could use the selected component mean to directly represent the new probability mass, i.e.
x

(i)
k ← m

(j)
k . For simple filtering cases, this seems justifiable, however, the mixture component

mean consolidates the local uncertainty in a smoothing statistic that, for fast mixing Markov
chains, would inhibit the complete exploration of the target measure and would lead to the
impoverishment of particles over time. This problem is intimately related to that reported for
Gaussian sum particle filters as the collapsing of mixands [112], and can be seen as a variation of
the sample impoverishment observed in deterministic resampling algorithms for which particles’
regularization [145] is proposed as a solution. By opting for sampling in step 7 of Algorithm 1.1,
the particles’ regularization is systematically achieved.

Various other methods for treating posterior modes separately are readily available for grid-
based filters (e.g., [21, 178]), but are less general than that presented in this section. It is worth
noting that the recursion established for the hybrid Gauss-Hermite filter resembles the Gaussian
particle filter [111] in the sense that it parameterizes an approximation of the posterior density
to perform the redrawing step when necessary.

In some specific cases, a single marginal proposal distribution can be constructed according
to [195], when the posterior distribution can be well approximated as a single Gaussian via
the UKF (or EKF). This is done by applying one instance of the UKF (or EKF) to the whole
population of previous samples. The feasibility of the method proposed in [195] depends on
a number of factors, such as the complexity of the state process, number of relevant modes
in the posterior density, desired computational efficiency, and whether the resulting errors are
reasonable.

Algorithm 1.1: Sampling from the approximate posterior mixture

Input : Previous set of particles {x(i)
k−1}i∈[1..N ], observation yk

1 Compute posterior mixture weights:

ŵ
(i)
π,k =

N (yk; H
(i)
f(x

(i)
k−1),H

(i)
Q

(i)
k H

(i)T
+ Rk)∑N

j=1N (yk; H
(j)
f(x

(j)
k−1),H

(j)
Q

(j)
k H

(j)T
+ Rk)

2 Calculate cumulative sum function of the weights: c(0) := 0, c(n) =
∑n
i=1 ŵ

(i)
π,k for

n ∈ [1..N ]

3 Draw samples from the posterior mixture:
4 for i = 1, . . . , N do
5 Draw a uniformly distributed test variable: u(i) ∼ U([0, 1])

6 Find the inverse of the cumulative sum function: j := c−1(u(i)) such that
u(i) ∈ [c(j − 1), c(j))

7 Sample a new ith particle from the jth component:

x
(i)
k ∼ p̂(xk|x

(j)
k−1, yk) = N (xk; m

(j)
k ,Σ

(j)
k )

8 end

Output: New set of particles {x(i)
k }i∈[1..N ]
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1.4.2 Ensuring convergence

In complex cases, when highly non-Gaussian posterior distributions are present, sampling from
an approximation of π̂(xk|y1:k) may not guarantee that the posterior distribution is being
correctly explored by the samples. Ensuring convergence to a stationary target measure is
usually achieved in Markov chain Monte Carlo (MCMC) methods by introducing an accept-
reject test. This accept-reject test is set to discard moves of the Markov chain that are unlikely
to happen when exploring a stationary target measure, in the context of the Metropolis-Hastings
algorithm. The same principle can be used for sampling from π̂(xk|y1:k), such that one can
propose moves based on the method of Section 1.4.1, i.e., propose a candidate

x
?(i)
k ∼ q(xk|x

(j)
k−1, yk), (1.18)

with probability w(j)
π,k, and accept it with acceptance probability

α(i) = min

(
p(yk|x

?(i)
k )p̂(x

?(i)
k |y1:k−1)

p(yk|x
(j)
k−1)p̂(x

(j)
k−1|y1:k−1)

q(x
(j)
k−1|x

?(i)
k , yk)

q(x
?(i)
k |x(j)

k−1, yk)
, 1

)
. (1.19)

By drawing a uniformly distributed test variable u(i) ∼ U([0, 1]), if u(i) ≤ α(i) then the move is
accepted as x

(i)
k ← x

∗(i)
k , else rejected as x

(i)
k ← x

(j)
k−1.

1.5 Gauss-Hermite quadrature

Gauss-Hermite quadrature is an accurate method for numerical integration, applicable to many
fields of Physics and Engineering. It is specially useful in statistics due to the close relationship
with Gaussian densities, but it is generally difficult to be applied to problems with sparse data.
The Gauss-Hermite quadrature proposes a numerical solution to integrals of the form

ˆ +∞

−∞
ϕ (x) e−x

2

dx ≈
M∑
j=1

w̄jϕ(xj), (1.20)

where the nodes or abscissae {xj}j∈N0 are the roots of an M th-order Hermite polynomial
and {w̄j}j∈N0 are the corresponding quadrature weights. The abscissae are symmetric about
zero, discretizing the function ϕ (x) at points where the integral is expected to be efficiently
approximated by a relatively small number of components. The quadrature weights are acquired
by interpreting the integral as an inner product of orthogonal polynomials with respect to e−x

2

,
thus

w̄j =
〈HM−1, HM−1〉e−x2

HM−1(xj)H ′M−1(xj)
=

2M−1M !
√
π

M2HM−1(xj)2
, (1.21)

where HM is a Hermite polynomial of the order M and H ′M−1 is its derivative with respect to
x. Zeros of Hermite polynomials and their corresponding weights can be found tabulated in
many references (e.g., [189]) up to a certain order and at a certain numerical precision. In order
to obtain zeros of a M th-order Hermite polynomial and their weights, we suggest the recursive
procedure proposed by [157] to avoid the evaluation of factorials in (1.21). The quadrature

34



CHAPTER 1. HYBRID GAUSS-HERMITE FILTER

weights can be calculated by

w̄j =
2

(H̆ ′j)
2
, (1.22)

where {H̆j}j∈N0 is an orthonormal set of polynomials generated by the recurrence

H̆−1 = 0,

H̆0 =
1

π1/4
,

...

H̆j+1 = x

√
2

j + 1
H̆j −

√
j

j + 1
H̆j−1, (1.23)

and the derivative of the normalized polynomials can be achieved by H̆ ′j =
√

2jH̆j−1. The roots
of a polynomial H̆j can obtained by the Newton-Raphson method.

Theoretically, integrating by the Gauss-Hermite quadrature rule provides an exact result
for polynomial integrands of the order up to 2M − 1 [189]. The main difficulty in applying the
GHQ lies in the fact that the function ϕ (x) may require discretization at points irrespective of
the range where the e−x

2

has substantial values. Therefore, in order to obtain accurate results,
a transformation must be made so that the integrand is represented in a convenient range,
covering the region where the integrand is most significant. Another concern is that it is useful
to evaluate the integral for any continuous function, not only integrands of the form ϕ (x) e−x

2

.
Thus one shall consider a systematic procedure, as presented in [124], to apply the GHQ to
integrals of the form ˆ +∞

−∞
ψ (x) dx =

ˆ +∞

−∞
ϕ (z)N (z;µz, σz)dz, (1.24)

In order to get bounded errors in the numerical integration, the ratio of ψ (x) to some
Gaussian curve shall be a moderately smooth function [124]. This is true for many problems
in statistics where, for example, ψ (x) is a product of several likelihood functions, or a product
of likelihood functions and other exponential densities. A transformation on x is proposed so
that the integrand ψ (x) will be discretized in a suitable range for an accurate quadrature.
Thus, the nodes {xj}j∈[1..M ], located at the roots of an Mth-order Hermite polynomial, are
then transferred and scaled into a new set of nodes {za}a∈[1..M ], by the linear transformation
za = µz +

√
2σz ·xj , with weights given by w̄a = w̄j/

√
π. Following this procedure, one obtains

ˆ +∞

−∞
ϕ(z)N (z;µz, σz)dz ≈

M∑
a=1

w̄aϕ(za)

=

M∑
j=1

w̄j√
π
ϕ(µz +

√
2σz · xj)

=

M∑
j=1

w̄j√
π

ψ(µz +
√

2σz · xj)
N (z;µz, σz)

=
√

2σz

M∑
j=1

w̄j · ex
2
jψ(µz +

√
2σz · xj),
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∴
ˆ +∞

−∞
ψ (x) dx ≈ σ̂z

M∑
j=1

w̄j · ex
2
jψ(µz + σ̂z · xj), (1.25)

where σ̂z = σz
√

2. For evaluating the integral (1.24) it is sufficient to know the original abscissae
xj (Hermite polynomial roots) around zero and their corresponding weights w̄j , so that one can
apply a linear transformation to the abscissae of ψ (x) for adjusting the scale and the position
to where the integrand provides suitable values. The abscissae xj and weights w̄j just have
to be calculated once, or be read from a table pre-calculated offline, and integrals of arbitrary
functions can be evaluated by expression (1.25).

1.6 Posterior estimate

The method presented in this section enables calculation of the posterior state mean and the co-
variance matrix. In the Gauss-Hermite quadrature framework, the posterior probability density
(1.12) can be written as

π̂g(xk|y1:k) =

∑Mdx

a=1 w̄a · p(yk|xk)
(∑N

i=1 p(xk|x
(i)
k−1)

)
δ(xk − x̆

(a)
k )∑Mdx

a′=1 w̄a′ · p(yk|x̆
(a′)
k )

(∑N
i=1 p(x̆

(a′)
k |x

(i)
k−1)

)
=

Mdx∑
a=1

ŵ
(a)
πg,k

δ(xk − x̆
(a)
k ), (1.26)

where

ŵ
(a)
πg,k

,
w̄a · p(yk|x̆

(a)
k )

(∑N
i=1 p(x̆

(a)
k |x

(i)
k−1)

)
∑Mdx

a′=1 w̄a′ · p(yk|x̆
(a′)
k )

(∑N
i=1 p(x̆

(a′)
k |x

(i)
k−1)

) , (1.27)

and each node of the multidimensional grid, (i1, . . . , idx) ∈ [0..M − 1]dx , is indexed by a cor-
respondence map a(i1, . . . , idx), a : [0..M − 1]dx → [1..Mdx ], Mdx = M × · · · × M . The
multidimensional quadrature weights {w̄a}a∈[1..Mdx ] are given by

w̄a ∝ w̄i1 . . . w̄idx exp(x2
i1 + · · ·+ x2

idx
), (1.28)

where {xj}j∈[0..M−1] are the one-dimensional abscissas (polynomial roots), and {w̄j}j∈[0..M−1]

are the original quadrature weights. By writing the multidimensional abscissae as x(a) :=

(xi1 , . . . , xidx )T for all (i1, . . . , idx) ∈ [0..M − 1]dx , the transformed abscissae are calculated as

x̆
(a)
k = µz,k + Σ

1/2
z,k · x

(a), a = 1, . . . ,Mdx . (1.29)

The points {x̆(a)
k }a∈[1..Mdx ] must be systematically defined to contain all points of interest of

the posterior π̂(xk|y1:k). The transformation (1.29) is defined in terms of the parameters µz,k

and Σ
1/2
z,k that may be interpreted as parameters of an arbitrary Gaussian density transformed

from exp(−x(a)Tx(a)). However, in terms of the formulation presented herein, these parameters
don’t necessarily have a statistical meaning. One is just interested in scaling and positioning
the abscissae where π̂(xk|y1:k) encloses a high probability region, to enable numerical adequacy
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for computing the moments. The moments of the filtered state can computed by

x̄k = Eπ[xk] =

ˆ
X

xkπ̂g(xk|y1:k)dxk ≈
Mdx∑
a=1

ŵ
(a)
πg,k

x̆
(a)
k , (1.30)

Px,k = Eπ[(xk − x̄k)(xk − x̄k)T ] ≈
Mdx∑
a=1

ŵ
(a)
πg,k

(x̆
(a)
k − x̄k)(x̆

(a)
k − x̄k)T , (1.31)

For notation simplicity, (1.30) and (1.31) are expressed with a single sum over a total of
Mdx grid points for dx dimensions. In multidimensional cases this sum could be split into dx
sums, one per each dimension, accounting for multiple one-dimensional quadrature rules [99]. It
is worth noting that the algorithm complexity is exponential on the number of dimensions and,
hence, it is suitable for low-dimensional nonlinear problems that either require high estimation
accuracy or are difficult to be addressed by either the EKF, UKF, or standard particle filters.
A particle filter with N particles performs computations bounded by O (N) operations per iter-
ation, a standard grid-based filter with N cells has complexity bounded by O(N2) operations3

per iteration [4], whereas the hybrid Gauss-Hermite filter with N particles and M nodes per
dimension, has complexity bounded by O(NMdx) operations per cycle. Therefore, the feasibil-
ity of the filter must be analyzed based on a trade-off between accuracy and complexity, which
is exercised by properly choosing the minimum number of particles N and nodes per dimension
M to solve a given estimation problem to a desired accuracy. For a simple treatment of the
considerations to be taken when performing a multidimensional GHQ, the reader is referred to
[99].

1.7 Grid positioning

Established techniques for grid-based estimators (e.g, [21, 178]) could be used to set the state-
space range covered by the nodes {x̆(a)

k }a∈[1..Mdx ]. In principle, the state-space range covered
by the grid should accommodate the support of the posterior density function (or the sub-
domain where the function evaluations are numerically significant). Also, it is important to
note that, ideally, the spacing between points in the grid should be decided upon the ability
of the grid to represent, in the state space, all the relevant spectral content of the posterior
probability density function. This becomes clear when we observe that an increasingly “peaky”
posterior density (e.g., a Gaussian with very small variance) would require decreasingly small
grid spacings. The rule to be employed should be analogous to the Nyquist criterion for dis-
cretizing time-series signals. That is, along each dimension, the maximum spacing between grid
points should be smaller than a fraction (1/2 in the Nyquist criterion) of the spatial constant4

of the highest-frequency spectral component that is relevant to describe the posterior density,
i.e. the spacing between grid points should be inversely proportional to the posterior density
bandwidth. This criterion, in the quadrature context, is directly related to the result that a
grid with M nodes would produce exact integration for polynomial integrands of the order up
to 2M − 1 [189]. Ultimately, the ideal solution would impose a grid with a total number of
nodes adaptively determined, where the maximum spacing between nodes should be determined

3Each operation assumed on xt ∈ Rdx .
4Analogous of the time constant for time-series signals.
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based on estimated higher-order moments derived from the sample population.
Nevertheless, the filter proposed in this chapter adopts a grid with fixed size and a simple

technique to define the grid range in terms of redrawn samples. The goal is to compute the
parameters for the transformation (1.29) as follows. From the population of redrawn particles
{x(i)
k }i∈[1..N ], one calculates the sample mean x̄S,k and empirical covariance PS,k, and then

computes the transformation parameters µz,k and Σ
1/2
z,k by

x̄S,k = N−1
N∑
i=1

x
(i)
k , PS,k = N−1

N∑
i=1

(x
(i)
k − x̄S,k)(x

(i)
k − x̄S,k)T , (1.32)

µz,k = x̄S,k, Σ
1/2
z,k = ` · P1/2

S,k/‖∆x(a)‖, (1.33)

where ` is a scaling factor5 and ‖∆x(a)‖ is the Euclidean norm of the range covered by the basic
set of (multidimensional) abscissae {x(a)}j∈[1..Mdx ]. In (1.33), P

1/2
S,k is the lower triangular matrix

obtained by the Cholesky decomposition of PS,k. Depending on the symmetry of the expected
posterior distribution, it may be convenient to rotate the grid in order to align the principal axes
of the sample covariance ellipsoid with the edges of the dx-cube grid. This procedure consists
in finding an eigensystem VS,k that diagonalizes PS,k, along with its diagonal eigenvalue matrix
ΛS,k, for calculating an affine-transformed matrix D

1/2
S,k = VS,k ·

√
ΛS,k that substitutes P

1/2
S,k in

the formula (1.33). If desirable, by an additional rotation, it is possible to align the principal
axes of the sample covariance ellipsoid with the diagonals of the grid hypercube.

During the redrawing step, if a single marginal proposal distribution is constructed according
to [195], then finding the positioning and scaling parameters can be directly based on the
moments of the approximating Gaussian density. As in this case the proposal is chosen to
describe the whole population of particles, i.e. applying one instance of EKF/UKF for all
particles, its moments can be used to calculate the parameters of the transformation (1.29)
according to equations (1.33) by substituting (x̄S,k,P

1/2
S,k) with the proposal moments.

It is remarkable that, despite that defining a suitable grid area is essential to render a good
algorithm performance, the numerical integration accuracy is weakly dependent on deviations
of the position and scale of the grid. This is due to the nature of the Gauss-Hermite quadrature,
whose accuracy relies on the orthogonal base of its terms rather than on the precision of points
where the integrand function is evaluated. This property is analogous, and closely related, to
the relatively low sensitivity of a Fourier transform of a smooth signal, to small changes in the
period of analysis. Provided that the grid is not completely misplaced, i.e. on a region that
is not covered by the support of the integrand function, the algorithm’s performance is not
sensible to changes in the position of nodes. The hybrid Gauss-Hermite algorithm is outlined
in Algorithm 1.2. Note that there is no resample step in the proposed algorithm.

1.8 Examples and results

In this section we consider two simulation examples to illustrate the application of the hybrid
Gauss-Hermite filter. The first example is a unidimensional nonlinear process with nonlinear
observation model that is widely studied in the particle filtering literature. The second example

5As rule of thumb, ` = 3 is recommended for smooth posterior distributions.
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Algorithm 1.2: Hybrid Gauss-Hermite filter
1 Initialization:
2 if time k = 0 then
3 Sample x

(i)
0 ∼ π(x0) for i = 1, . . . , N

4 Compute or read the original abscissae {x(a)}j∈[1..Mdx ] and weights {w̄a}a∈[1..Mdx ] for
an Mth-order Gauss-Hermite quadrature

/* By fixing the grid size, the algorithm assumes that the target densities can be
accurately described by polynomials of the order up to 2M − 1 (along each
dimension). However, as touched on before, the ideal solution would require a grid
size adaptively determined, where the maximum spacing between nodes should be
determined based on higher-order moments estimated from the sample population. */

5

6 end

7 Steps:
8 for time k ≥ 1 do
9 Sample new set of particles {x(i)

k }i∈[1..N ] (Algorithm 1.1) as

x
(i)
k ∼ π̂(xk|y1:k) =

N∑
i=1

ŵ
(i)
π,k p̂(xk|x

(i)
k−1, yk)

10 Compute positioning and scaling parameters:

x̄S,k = N−1
N∑
i=1

x
(i)
k , PS,k = N−1

N∑
i=1

(x
(i)
k − x̄S,k)(x

(i)
k − x̄S,k)T ,

µz,k = x̄S,k, Σ
1
2

z,k = ` · P1/2
S,k/‖∆x(a)‖

11 Position and scale the quadrature grid:

x̆
(a)
k = µz,k + Σ

1/2
z,k · x

(a), a = 1, . . . ,Mdx

Output: Approximation of the quadrature-based filtering distribution
12

π̂g(xk|y1:k) =

∑Mdx

a=1 w̄a · p(yk|xk)
(∑N

i=1 p(xk|x
(i)
k−1)

)
δ(xk − x̆

(a)
k )∑Mdx

a′=1 w̄a′ · p(yk|x̆
(a′)
k )

(∑N
i=1 p(x̆

(a′)
k |x

(i)
k−1)

)
13 end
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is a bidimensional case given by a linear state process with a nonlinear observation model giving
rise to a banana-shaped likelihood function. The intent is to illustrate the applicability of the
hybrid GH filter to nonlinear filtering problems for which particle filters are difficult to design.

1.8.1 One-dimensional example

Here we present an example widely used in the nonlinear filtering literature (e.g. [4]), described
by the following set of equations

xk =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8 cos (1.2k) + uk, (1.34)

yk =
x2
k

20
+ vk, (1.35)

where {uk}k∈N0 and {vk}k∈N0 are zero-mean Gaussian random processes with variances Qk and
Rk, respectively. To consider the same example as [4], we use Qk = 10 and Rk = 1. Both the
process simulation and the filtering are based on the same model, and the initialization of the
filters assume that the state at t = 0 and the prior probability distribution are known. The
hybrid Gauss-Hermite filter was designed with a simple procedure for scaling the grid, based
solely on the range covered by the posterior set of samples. The optional accept-reject step was
not used.

One exemplar run for the hybrid Gauss-Hermite filter is presented, illustrating the produced
estimates. In addition, we quantify the performance of the hybrid Gauss-Hermite filter, in terms
of the root mean squared error (RMSE), and compare it with those of a bootstrap (particle)
filter and an UKF over 100 Monte Carlo runs. We set the bootstrap filter with 100 particles and
the hybrid GH filter with 100 particles and 25 nodes. As noted in [4], although the RMSE is not
meaningful for this multimodal problem, it indicates the accuracy of the filtering algorithms.
The exemplar run is shown in Figure 1.1 and the comparison in terms of RMSE between the
hybrid Gauss-Hermite filter, the bootstrap filter and the UKF is presented in Figure 1.2.

The run depicted in Figure 1.1 illustrates that the hybrid Gauss-Hermite filter provides
accurate estimates to a highly nonlinear state process with a bimodal posterior distribution.
The Figure 1.2 shows that the hybrid GH filter is as accurate as standard particle filters for
this problem. Particle filters are known to provide outstanding results for this specific example
[4], and so can be regarded as benchmark. It is important to note that performances of several
variants of particle filters don’t differ much for this problem [4] and, in general, all particle
filters outperform the EKF and UKF, which legitimizes a comparison of the hybrid GH filter
against a basic bootstrap particle filter. The RMSEs and runtimes averaged over all time steps,
for all filters, are presented in Table 1.1. In this table, some accuracy gain can be perceived for
the hybrid GH filter in terms of overall RMSE at the cost of a higher computational effort.

RMSE Runtime (s)
Bootstrap particle filter 3.1360 0.0022
UKF 9.3040 0.0001
Gauss-Hermite filter 2.7418 0.0189

Table 1.1: Average RMSE and runtime for the one-dimensional example
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Figure 1.1: Exemplar run for the one-dimensional example

1.8.2 Two-dimensional example

This example illustrates the application of the hybrid GH filter for a multidimensional problem
that was first proposed in [136]: tracking a single target by a single radar that provides accurate
range measurements and fairly inaccurate angular measurements. In addition to simplicity,
three aspects drove our choice for this example. The first is that it is sensible for the target
tracking community, since it emulates a setting quite typical of real-world applications, that is,
tracking with a radar that gives rise to the well-studied banana-shaped likelihood problem. The
second aspect is that, as discussed in [136], when extrapolated to a multi-target scenario, the
problem would require filters with a precise description of the posterior density in order to allow
two targets closely spaced at high range to be discriminated. This could enable robust fusion
of data from multiple spatially-separated and potentially mobile radars. The third reason is
that the example is proposed with some exaggeration of the angular uncertainty (elevation or
azimuth), posing a challenge for filters that approximate the posterior density by a Gaussian,
e.g. EKF and UKF, and for standard particle filters.

The state is defined as xk = (x1,k, x2,k)T , where (x1,k, x2,k) are the Cartesian coordinates of
the target at the time step t = k∆t. The state equation and the radar measurement equation
are given by the following expressions, respectively

xk = xk−1 + uk, (1.36)

yk =

(√
x2

1,k + x2
2,k, arctan

(
x2,k

x1,k

))T
+ vk. (1.37)

where {uk}k∈N0 and {vk}k∈N0 are zero-mean Gaussian random processes with covariances re-
spectively given by

Qk = σ2
q

(
∆t 0

0 ∆t

)
, Rk =

(
σ2
r 0

0 σ2
θ

)
, (1.38)
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Figure 1.2: Comparison between different filters for the one-dimensional example

and where the amount of process noise is weighted by σ2
q = 1m2/s and the sampling period set

as ∆t = 1 s. The variances of range and elevation are respectively set as σ2
r = 1× 10−3 m2 and

σ2
θ = 1 rad2. This model was used both for simulating the trajectory and for filtering. A single

trajectory was simulated starting from x0 = (100, 0)T .
Specifically for this example, in order to adequately propagate the particles for the hybrid

GH filter, the samples are drawn in the sensor coordinate frame before approximating the
posterior distribution. The same technique has been advocated in [136] to work around the
scaling differences between range and elevation in the posterior density. We recall that the
propagation of samples is required both for positioning the grid and generating the particles for
the next step. In order to sample in the observation coordinate frame the filter uses a procedure
akin to the Unscented Particle Filter (UPF). The UPF described in [195] instantiates one UKF
per particle to construct a proposal density that targets the posterior density. Additionally, for
the Gauss-Hermite filter, we chose to perform estimation in the radar coordinates, by setting
the quadrature grid directly in the transformed space. This choice was based on the fact
that, in Cartesian coordinates, it is very difficult to find an efficient grid configuration due to
the exaggerated difference of accuracy between range and elevation. In the Cartesian state
space, the shape of posterior density results in a scenario where either the grid is adequate for
estimating range or elevation, but not both. Transforming to the radar coordinates is carried
out by the unscented transform. The quadrature grid in the transformed state space and the
corresponding grid expressed in the Cartesian space are illustrated in Figures 1.3a and 1.3b.

We compare the hybrid GH filter with the EKF, UKF, a particle filter with an UKF-
based (sub)optimal proposal6, and a particle filter with an UKF-based optimal proposal that
generate samples directly in the radar coordinates. This latter is called hereafter “transformed
(sub)optimal proposal particle filter (UKF )”, and corresponds to the filter developed in [136].
We consider this filter as a benchmark for this example.

All filters are initialized by setting the initial state estimate based on the first measurement,
6Suboptimal proposal in the sense of minimizing the weights’ variance [64].
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considered as normally distributed with the measurement noise covariance matrix converted to
compose the state covariance. The initialization scheme is the same as that proposed in [136]:
samples are drawn in the polar frame according to the measurement noise and converted to the
Cartesian space. The particle filters are set with 250 particles, and the hybrid GH filter uses
250 particles and 50 nodes per dimension.

One exemplar run for the hybrid Gauss-Hermite filter is shown in Figure 1.4 to illustrate
the produced estimates. The performance is quantified in terms of accuracy (root mean square
error) for all evaluated filters over 200 Monte Carlo runs. A comparison in terms of RMSE
between the hybrid Gauss-Hermite filter and all other filters is presented in Figure 1.5. The
RMSEs and runtimes averaged over all time steps, for all filters, are presented in Table 1.2.

RMSE (Cartesian) RMSE (polar) Runtime (s)
EKF 63.5547 0.7204 0.0001
UKF 53.9047 1.0959 0.0004
Opt. prop. PF (UKF) 86.6687 44.1717 0.0677
Transf. opt. prop. PF 12.8003 2.1737 0.0563
Gauss-Hermite filter 14.0669 0.1396 0.1853

Table 1.2: Average RMSE and runtime for the two-dimensional example

Regarding the exemplar run, the Figure 1.4 shows that the proposed filter provides accurate
estimates for the radar problem, which is clearly difficult to achieve. Figure 1.5 shows that
the hybrid GH filter presents similar performance, in terms of RMSE, as that of a particle
filter that was especially designed for this example [136]. Though the hybrid GH filter presents
some marginal gain in accuracy for estimates expressed in the polar frame, as consolidated in
Table 1.2.

The results demonstrate that the hybrid GH filter is applicable to low-dimensional problems
and can tackle problems generally difficult for standard particle filters and established nonlinear
filters, such as the EKF and UKF. Note that this latter example is very difficult for any grid-
based estimation method, and particularly difficult for the hybrid GH filter because of the
sparse representation by only a few samples that induce the approximated posterior density.
This fact explains the variations in the RMS errors over time since, due to the sparsity, some
parts of the grid do not get enough information from samples. This suggests that increasing
the number of particles could improve the overall performance.

One should consider that it is difficult to motivate the use of the hybrid GH filter for
this degenerate sensor problem based on the root mean square error alone. As explained
before, the merit of this example is rather illustrative and informative on how to apply the
method, and is not intended to be a complete demonstration of the filter effectiveness. It is also
worth noting that for both examples presented in this chapter, the Gauss-Hermite filter shows
performance similar to that of particle filters, delivering some marginal gain in accuracy. This
seems intuitive because the estimation errors are dominated by errors in the sequential Monte
Carlo representation of the target density. Most likely this is due to the inherent sparsity of
the probability masses, whose resulting error is likely to be transferred to the grid description.
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1.9 Conclusions

This chapter was intended to address the effective representation of probability distributions for
highly nonlinear and non-Gaussian processes, as an important challenge identified in Chapter 0.
Specifically, this has been achieved by a novel estimation algorithm that has been derived.
The algorithm is based on a different idea: a hybrid method that combines a particle-based
representation of the prior state uncertainty with an efficient grid-based method to estimate
the posterior probability density. The method makes use of the prior Monte Carlo empirical
measure to induce a probability mass function that approximates the posterior probability
measure. This probability mass function enables accurate numerical integration, by means of
the Gauss-Hermite quadrature, to compute the state estimate and covariance matrix.

As touched on before, the estimation method is not based on the importance sampling
principle and so the hybrid Gauss-Hermite filter avoids the weight degeneracy problem, which
is inherent to particle filters. Additionally, the estimation problem is solved without resorting
to techniques for distribution matching, classical procedures of grid centering and refinement,
and without parameterization of target densities as Gaussians.

The filter was shown to be suitable to tackle the estimation problem for nonlinear and/or
non-Gaussian processes and measurement models, including cases when the posterior densities
are not unimodal. Some factors need to be taken into account when considering the hybrid GH
filter. First, it requires a study on how accuracy could be traded with complexity to deem the
filter feasible for practical use. The second factor, which is also applicable for designing particle
filters, involves filtering settings that must be analyzed on a case-by-case basis to determine how
the problem dimensionality degrades estimation performance. Nevertheless, in general, should
the filter be understood as feasible, the computational effort should not be an obstruction if
because the algorithm is highly parallelizable. A number of techniques for parallel computing
have become very accessible recently, including cloud and multi-core computing, and general-
purpose graphics processing units (GPGPU).
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Figure 1.4: Exemplar run for the two-dimensional example
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2
Stochastic Particle Flow

Among the challenges presented in Chapter 0 for multi-object estimation, one, in particular,
is of crucial importance for real-world applications: that of describing the filtering probability
distributions of high-dimensional nonlinear phenomena while mitigating part of the inaccuracies
that arise from the curse of dimensionality, and irregularities caused by usual Monte Carlo
approximations. To address this challenge, this chapter proposes a fundamental technique that
envisages tackling high-dimensional, highly nonlinear problems, and coping well with scenarios
of multimodality, high state uncertainty, uninformative observations, and low signal-to-noise
ratio.

The context for introducing the technique is established by a series of novel filters for the
probabilistic inference that proposes an alternative way of performing Bayesian updates, called
particle flow filters. These filters provide approximate solutions to nonlinear filtering problems.
They do so by defining a continuum of densities between the prior probability density and the
posterior, i.e. the filtering density. Building on these methods’ successes, we propose a novel
filter. This new filter aims to address the shortcomings of sequential Monte Carlo methods
when applied to important nonlinear high-dimensional filtering problems. The novel filter uses
equally weighted samples, each of which is associated with a local solution of the Fökker-
Planck equation. This hybrid of Monte Carlo and local parametric approximation gives rise
to a global approximation of the filtering density of interest. In this chapter, we show that,
when compared with state-of-the-art methods, the Gaussian-mixture implementation of the
new filtering technique, which we call Stochastic Particle Flow, has utility in the context of
benchmark nonlinear high-dimensional filtering problems.

2.1 Overview

Stochastic filtering in high-dimensional spaces is a challenging estimation task because of two
fundamental issues:

• The curse of dimensionality. In a statistical experiment, as the sample space’s dimension-
ality increases a finite number of realizations can only populate the space to an increas-
ingly sparse extent [149]. This issue makes it challenging to use approximations based on
realizations of the state.

• The infinite number of parameters required to describe a general probability density on
a continuous state space. Such a density, in common with any other real function, can
always be exactly described using a power series with infinitely many terms. In all but a
few cases, where the density is known to have a specific parametric form, using a finite set
of parameters is necessarily an approximation to this complete description. The fidelity of
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such approximations falls rapidly as dimension increases. This issue makes it challenging
to define a parameterization that uses a number of parameters that scales only gently
with dimension.

The development of the vast majority of practical filters focuses on how to accurately represent
generic probability densities. However, in the view of the author, relatively few filters are
systematically developed with the explicit intent of efficiently expressing densities in high-
dimensional spaces. There does appear to be a consensus that the statistical efficiency associated
with expressing high-dimensional filtering densities can be improved by simulating tempering
distributions [79, 62, 147, 56]. Such approaches involve introducing intermediate distributions
such that it is easier to migrate between these intermediate distributions than it is to migrate
directly from the prior to the posterior. The use of such intermediate distributions stabilizes
the sampling procedure and maintain the variance of the Monte Carlo weights at an acceptable
level. Bickel et al. [14] considered, in the context of a bootstrap particle filter, the number
of intermediate distributions needed to use such tempering successfully. They prove that, as
the dimensionality increases, the number of intermediate distributions needed to accurately
represent a high-dimensional density becomes practically infinite. This implies that considering
a continuum, i.e. infinite number, of intermediating distributions [147] might be the basis of a
successful approach. This implication is corroborated by the reported success of Markov chain
Monte Carlo (MCMC) algorithms that populate high-dimensional state spaces efficiently using
approximations of problem-specific continuous-time processes [67, 148, 168, 80]1.

Techniques for continuous-time processes stem from the seminal work by Stratonovich [187],
Kushner [114] and Zakai [211] on filtering theory. The most popular instance of such filters is the
so-called Kalman-Bucy filter [20], the continuous-time counterpart of the Kalman filter. More
general filters directly approximate solutions to the Kushner-Stratonovich equation either by
a finite-dimensional density parameterization [10, 54] or by Monte Carlo methods [38, 36, 39].
Other important finite-order filters that appeal to an unusual formalism of multiple stochastic
integrals [22, 23] are worth mentioning as well.

Continuous-time filtering may be seen by some as an idealized problem of limited practical
utility. However, recent research [198, 160] has shown that continuous-time filtering can offer
key insights into the fundamental principles necessarily associated with successful filtering in
high-dimensions: the effects of local, continuous spatial properties of the observation process
need to be incorporated in the solution. As identified by Bickel et al. [14], the information in the
data gives rise to the notion of the effective dimension of the space. It is this effective dimension,
and not the dimension of the state space itself, that actually affects the statistical efficiency of
inference algorithms. This implies that tempering only addresses part of the problem, remaining
the local observation properties to be incorporated. Recently, based on a principled approach,
Rebeschini & van Handel [160] proposed to decompose the state space into separate blocks. The
global solution to the inference problem is then constructed by combining the local solutions for
each of the blocks. The chapter goes on to demonstrate that, by using the decay of correlations
property2, it is possible to develop particle filters based on local solutions in such a way that

1Note that while practical implementation of these techniques necessarily involves finite time-horizons, the
continuous-time processes are typically designed such that, as time tends to infinity, the distribution of the
samples from the process tends to the distribution of interest. This is in contrast to the use of tempering
distributions, where samples from the posterior are generated after a defined (finite) number of steps between
intermediate distributions.

2A spatial counterpart of the stability property of nonlinear filters, by which a probability mass is strongly
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the approximation error does not depend on the dimension of the state space.
Largely independently, the idea of filtering via a continuum of intermediate distributions

seems to have its appeal reinvigorated as several new methods have been proposed for progres-
sive Bayesian updates, whose continuity is considered in the limit, aiming to gradually introduce
the effect of each observation. Those filters have emerged either in a variational, ensemble-based,
or sequential Monte Carlo framework. In the variational framework, the new methods presented
in [89, 87, 88] pose the filtering problem as a multi-step optimization problem for which the cost
function is an approximated distance between a parameterized density and the actual filtering
density. In the ensemble-based framework, the methods [161, 162, 197] are focused on data
assimilation problems and apply ideas of optimal transport along with continuous-time filtering
to generate multiple independent solutions that are combined to obtain a single solution of an
inference problem. The methods in the sequential Monte Carlo framework explore extensions or
alternatives to particle filters (e.g., [151, 35, 49, 172, 37]), or simply capitalize on techniques for
properly choosing a sequence of bridging importance densities (e.g., [62, 147, 56, 24]), carrying
on the intent to overcome the widely known problem of particle filters called degeneracy or
collapse of weights [4, 46, 183, 65].

Among those methods, one, in particular, has recently attracted interest in an Engineering
context where it has been described as particle flow. The performance that has been reported
is remarkable and the literature is extensive with several variants having been developed over
recent years (see, for example, [49, 51, 50, 48, 47]). The development of particle flow draws on
analogies to problems that arise in Fluid Dynamics and Electromagnetism. These filters flow
probability masses (particles) from a prior probability space to one that is updated according
to a set of measurements without the need to perform a Bayesian update explicitly. All particle
flow algorithms explore the concept of a homotopy between the prior and posterior probability
spaces, implicitly describing a joint measure that couples the prior and posterior probability
measures. This idea is in the heart of the Kantorovich’s optimal transportation problem [199]
that, by evoking deterministic transport maps for very simple cost functions and dynamic
constraints, yields an essential explanation on why original particle flow methods work well
based on deterministic rules to flow the particles.

When the sequential filtering problem involves non-compactly supported densities, solving
it via deterministic (optimal) transport is not straightforward. A solution would require either
a non-trivial approximation of the highly nonlinear Monge-Ampère equation [86] or adapting
classical solutions constructed for measures on bounded sets [142, 40]. In these approaches,
severe technical difficulties may arise and not all the effects on the estimation errors are clearly
known. A continuously evolving, exact, optimal transport map would require a complete de-
scription, at all time instants, of an embedding dynamic field that induces a transference plan
to correctly move particles. If the posterior density could be completely characterized before-
hand then the optimal transport problem could be numerically solved by the multiple-step
augmented-Lagrangian optimization method as proposed by Benamou & Brenier [9]. However,
detailed knowledge of the posterior would imply a direct answer to the filtering problem. As an
alternative, theoretically speaking, a complete description of the optimal field could be achieved
by solving the Monge-Ampère equation for any possible location of particles on the state space.
Notwithstanding, the Monge-Ampère equation admits exact solutions only for few particular

correlated to masses within its neighborhood but has negligible correlation with respect to the remaining areas
of the state space.

52



CHAPTER 2. STOCHASTIC PARTICLE FLOW

cases [86] and would also require a thorough description of the posterior density in advance.
In this scenario, one feasible approach is that advocated by particle flow methods, which take

simplifying assumptions on the embedding dynamic field in order to avoid both an optimization
over a parametric class of transport maps and an explicit solution of the associated elliptic
partial differential equation. However, in our experience, these simplifying assumptions result
in approximated filtering densities providing accurate estimates for the first-order moment but
inconsistent estimates for second and higher-order moments, whose quality is highly dependent
on the problem and algorithm settings (e.g., [91]). In practice, particle flow methods address
this latter issue by either relying on a companion filter [30, 63] or using the sample covariance
matrix with shrinkage and Tikhonov regularization [109] to be able to estimate the second-order
moment.

We conjectured if appealing to stochastic transport could provide a new avenue for solving
the filtering problem. Fortunately, a variational formulation of the Fökker-Planck equation
as a gradient flow, as exposed by Jordan et al. [106], enables the precise interpretation that,
if a transport operation is to be understood as a diffusion, then it minimizes the free energy
functional of the process with respect to the Wasserstein metric over an admissible class of
probability measures. Relying on this formulation, it is straightforward to obtain a transport
rule, optimal in terms of minimizing the free energy functional, as a Langevin stochastic process.
This rule is based simply on the assumptions of stationarity of the filtering distribution (Gibb’s
distribution) and on potential conditions, for which an embedding stationary field is exactly
derived.

In this chapter, we take into consideration the findings presented by Jordan et al. [106],
incorporate the description of statistically efficient processes in high-dimensional spaces as pro-
posed by Girolami & Calderhead [80], and incorporate local properties of the observation process
to formulate a stochastic variant of particle flow3. This new stochastic particle flow (SPF) in-
volves defining a Langevin diffusion such that a posterior measure from a previous step, under
a known stationary potential field, is diffused onto the current posterior measure, satisfying
the Fökker-Planck equation to produce an accurate approximation of the filtered density. This
process involves guiding local solutions of the Fökker-Planck equation in such a way that we
construct a mixture that approximates the posterior. As we will discuss later on, the SPF
method we propose is essentially built as a Gaussian sum filter (SPF-GS), nevertheless, it is
possible to use a similar formulation to define an implementation strategy based on a marginal
particle filter (SPF-MPF). This variant demonstrates the versatility of the SPF to algorithm
settings.

It is worth mentioning that our resulting SPF technique is in the same ethos as the method
recently developed by Bunch & Godsill [24, 25]. However, in contrast to our approach, their
method (i) is based on the homotopy between the prior and posterior spaces, (ii) assumes the
particle flow is an Ornstein-Uhlenbeck process whose scaling parameter determines the rate
of diffusion of samples’ paths, (iii) proposes weights that must be updated iteratively by a
partial differential equation (PDE) describing how the unnormalized log-density evolves with a
pseudo-time variable; (iv) is articulated as a standard (not marginal) particle filter.

The outline of the chapter is as follows. We begin by reviewing the stochastic filtering
problem in a sequential Monte Carlo framework in Section 2.2. We abstract the solution in

3Existing particle flow algorithms (including, perhaps surprisingly, that known as non-zero diffusion particle
flow [52]) propagate particles deterministically.
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terms of a general map that could adopt any valid method to perform the filtering update. In
Section 2.3, we present a brief overview of the original particle flow methods. We discuss their
principles in order to further clarify these methods and motivate the natural step towards the
stochastic particle flow. In Section 2.4 we derive the generic SPF algorithm by describing the
proposed dynamics of probability masses, describing the associated stationary solution to the
Fökker-Planck equation, and constructing the stochastic flow. Algorithmic details are given
and relate to how to compute the diffusion matrix, how to integrate the stochastic flow, and
how to select the simulation time horizon and integration step size. We present the stochastic
particle flow implementation using a Gaussian sum filter (SPF-GS) in Section 2.5. We achieve
this by considering the posterior to be well approximated as a mixture of local solutions to
the flow. Similarly, in Section 2.6 we show the SPF articulated as a marginal particle filter
(SPF-MPF) by setting the importance density as a mixture analogous to that generated by
the SPF-GS. Section 2.7 then illustrates the SPF’s properties by a series of toy problems, and
compares the performance of the SPF and other state-of-the-art methods in the context of three
instructive multi-sensor or multi-target tracking problems: multi-sensor bearing-only tracking,
convoy tracking and inference on a large network of sensors (as in [175]). In the comparisons
for the multi-sensor bearing-only and convoy tracking problems, we included extensions to two
of the most effective (original) particle flows, namely, the Gaussian particle flow (GPF) [53] and
the scaled-drift particle flow (SDPF) [52]. Finally, Section 2.8 concludes.

2.2 Sequential Monte Carlo Filtering

In this section, we report the filtering framework within which the particle flows may be for-
malized. Let {xt ∈ X : t ∈ R+} be a sequence of states generated through time by a known
continuous-time state process, modeled as a Markov process, and let {ytk ∈ Y : tk ∈ R+, k ∈ N}
be a sequence of discrete-time observations of the process generated by an observation model.
In the classical filtering problem, one is required to compute the best estimate of a function of
interest ϕ of the state, given all observations realized up to the time instant tk, i.e.,

ϕ̂k = E [ϕ(xtk)|yt1 , yt2 , . . . , ytk ] . (2.1)

Now consider a set of particles {x(i)
k−1, w

(i)
k−1}i∈[1..N ] constituting samples that can be used to

approximate a filtering probability density p(xk−1|y1:k−1) by means of a Monte Carlo measure
satisfying

N∑
i=1

w
(i)
k−1δ(xk−1 − x

(i)
k−1)

N→∞
−→ p(xk−1|y1:k−1). (2.2)

Given a new observation obtained at instant k, one wishes to find a procedure to transform the
set of particles {x(i)

k−1, w
(i)
k−1}i∈[1..N ] into a new set of particles {x(i)

k , w
(i)
k }i∈[1..N ] that incorpo-

rates the effect of the latest observation to estimate the filtered entity as

ϕ̂k ≈
N∑
i=1

w
(i)
k ϕ(x

(i)
k ). (2.3)

In theory, the filtering problem in the sequential Monte Carlo form can be solved by any
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map T : X × Y → X ′, T ∈ C1(Rdx)× C0(Rdy ), where |X ′| = |X |, that implements

x
(i)
k := T (x

(i)
k−1, yk); i = 1, . . . , N ; (2.4)

w
(i)
k := detJxk−1

[T ]
−1
w

(i)
k−1; (2.5)

where Jxk−1
[.] is the Jacobian matrix with respect to xk−1, and such that

N∑
i=1

w
(i)
k δ(xk − x

(i)
k )

N→∞
−→ p(xk|y1:k). (2.6)

Although most practical filters implement the mapping (2.4) in terms of discrete Bayesian
updates, there should be no objection to the general idea of considering the map T as a
transform continuous in time within tk−1 < t ≤ tk. This idea establishes the basis for the
particle flow filters.

2.3 Particle Flow

This section aims to present a brief overview of the particle flow methods, to discuss their
principles, and to set the background for the introduction of the stochastic particle flow. The
key idea of the particle flow is to transfer a set of probability masses by an operation that
transports the prior probability measure onto the posterior measure. This operation realizes
the measurement update smoothly in order to express a filtering entity, usually an estimate.
The mechanism implied is, therefore, a filtering algorithm that avoids the need to perform a
Bayesian measurement update explicitly.

Given a set of particles {x(i) (λ) ∈ Rdx}i∈[1..N ] dependent on a continuous pseudo-time
variable λ ∈ [0, 1], where dx is the number of dimensions of the state space, and such that
x

(i)
(0) = x

(i)
k−1 and x

(i)
(1) = x

(i)
k , the transformation of the particles is accomplished by solving

through 0 < λ ≤ 1 an ordinary differential equation (ODE) referred to as the flow equation

dx

dλ
= µ (x, λ) , x(i) (0) ∼ p0 (x) . (2.7)

The varieties of particle flow methods rely on how one defines the flow drift µ (x, λ), which in
turn depends on the assumptions made to solve the associated continuity equation

∂p

∂λ
= −∇x · (µ · p) , p (x, 0) = p0 (x) . (2.8)

The operator ∇x ·(.) is the divergence operator and the drift can be understood as a vector field
µ (x, λ) ∈ Rdx that is not uniquely determined for a given probability density p (x, λ). In the
optimal transportation literature, the vector field is usually determined by the constraint that
it minimizes the kinetic energy. In that case, the flow equation (2.7) can be written in terms
of a dynamic potential field as µ (x, λ) =M−1∇xψ (x, λ) [199], whereM is a positive-definite
mass matrix, ∇x is the gradient operator, and ψ (x, λ) is a dynamic potential function that
satisfies the elliptic PDE

∇x ·
(
p (x, λ)M−1∇xψ (x, λ)

)
= −∂λp (x, λ) . (2.9)

55



CHAPTER 2. STOCHASTIC PARTICLE FLOW

An exact solution to equation (2.9) has been derived by Reich [161] considering Gaussian
likelihood functions. In more general settings, if the target posterior density π (x) could be
thoroughly characterized in advance, the numerical solution to this problem could be achieved
by the multiple-step augmented-Lagrangian optimization method as proposed by Benamou
& Brenier [9]. However, availability of a detailed description of the posterior density would
constitute a direct answer to the filtering problem. Similarly, the well-known flow constructed
by Dacorogna & Moser [40], appropriate for mapping measures on bounded open sets, could
be adapted for problems involving non-compactly supported densities as the solution of the
p-Laplacian equation [70]

∇x · (a (x, λ)∇xϑ (x, λ)) = π (x)− p (x, λ) , (2.10)

where p (x, λ) and π (x) are the intermediate and target densities respectively. Function a (x, λ) ≥
0, a (x, λ) ∈ L∞ (L∞-space4), is a Lagrange multiplier that scales the distance of optimal trans-
portation, whereas the term ∇xϑ (x, λ) gives the direction of optimal transportation. As men-
tioned before, these transport-based solutions are not straightforwardly applicable to filtering
problems as they would require anticipating the target probability density, and the solution
by Dacorogna & Moser [40] would require truncation of the involved densities to bound their
support.

Indeed, original particle flows do not follow the classical transport-based methodology but
rather take simplifying assumptions on the dynamic potential field, avoiding the complexity
of solving the elliptic PDEs (2.9) and (2.10). Specifically, the particle flows are derived from
a programmed sequence of a dynamic potential field that roughly solves the equation (2.8).
As examples we refer the reader to the incompressible particle flow [49], the Gaussian or exact
particle flow [53], and the non-zero “diffusion” particle flow [52], which is not actually a diffusion,
but simply takes into account a diffusion term to scale and/or offset the drift term.

In a closely related problem, as an alternative to the solution of elliptical equations or
to original particle flows, it is possible to demonstrate that if the drift solves the continuity
equation (2.8), under a stationary potential field (conservative) related to an invariant, locally5

log-concave density of the form p (x, T ) = π (x) ∝ exp (−ψ (x)), then the flow (2.7) produces the
maximum-a-posteriori (MAP) estimate, x̂MAP , after an appropriate time horizon λ ≥ T (see
Theorem 2.12 in Section 2.9.2). A similar concept is used in optimization algorithms based
on gradient descent. An evident problem with this approach is that, regardless of providing a
MAP estimate, it is unable to capture higher-order aspects of a target posterior density. Thus,
under the assumption of a stationary potential field, a stochastic particle flow seems suitable
to describe a filtering density precisely up to an arbitrary moment order, by following the
dynamics of a diffusion that minimizes the free energy functional (see [106] for details). Such
stochastic flow would propagate a probability density according to the Fökker-Planck equation.
This observation becomes fundamental when we note that, loosely speaking, obtaining a precise
approximation of a stationary potential field requires less effort than obtaining a sequence of
accurate approximations of a dynamic potential field. In this context, approximating a dynamic
potential field forms the basis for the classical transport methodology (e.g., [161]).

4The L∞-space generalizes the Lp-spaces to p = ∞. An Lp-space describes the set of all functions f for
which the norm ‖f‖p =

(´
X |f |

p)1/p converges. The concept is analogous for the L∞-space although its norm
is defined by the essential supremum.

5Log-concave in the vicinity of the density maxima.
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2.4 Stochastic Particle Flow

This section derives the stochastic particle flow based on a stationary solution to the Fokker
Planck equation. We capitalize on the fact that, under certain conditions on the drift and
diffusion terms of a stochastic process, there is a stationary solution that satisfies a variational
principle, minimizing a certain convex free energy functional over an admissible class of proba-
bility densities. The Fokker–Planck equation is shown to follow the direction of steepest descent
of the associated free energy functional [106] at each instant of time, rendering a process where
the entropy is maximized, i.e., a diffusion.

In Section 2.4.1 we set dynamics for the stochastic particle flow. Section 2.4.2 derives the
stationary solution to the Fökker-Planck equation such that the particles follow the Langevin
dynamics. In Section 2.4.3 we show how to specify the Langevin dynamics to solve the specific
problem of interest. In Section 2.4.4 we discuss the interpretation of and possible choices for the
diffusion matrix; in Section 2.4.5 we present the integration methods used to sample from the
Langevin dynamics; in Section 2.4.6 we discuss criteria for choosing the algorithm’s parameters
(the step size and time horizon).

2.4.1 Dynamics of Particles

Assuming that a set of particles {x(i) (λ)}i∈[1..N ] follows a diffusion process {Xλ}λ≥0 when
subject to a Bayesian measurement update, the dynamics of the particles can, in general, be
described by the Îto stochastic differential equation

dXλ = µ(Xλ, λ)dλ+ σ(Xλ, λ)dWλ, X0 = X (0) ; (2.11)

such that the associated probability distribution, p (x, λ), is continuously evolving with respect
to the pseudo-time variable λ ∈ R+, where {Wλ}λ≥0 is a standard Brownian motion, µ(Xλ, λ)

is the drift vector and σ(Xλ, λ) is the diffusion coefficient. It is well known [101, 78] that the
probability density p (x, λ) of an dx-dimensional random state vector x under the dynamics of
(2.11) has a deterministic evolution according to the Fökker-Planck equation

∂

∂λ
p (x, λ) =−

dx∑
i=1

∂

∂xi
[µi (x, λ) p (x, λ)]

+
1

2

dx∑
i=1

dx∑
j=1

∂

∂xi

∂

∂xj
[Dij (x, λ) p (x, λ)] , (2.12)

p (x, 0) = p0 (x) , λ ≥ 0;

where x = [x1, . . . , xdx ]T , µ = [µ1, . . . , µdx ]T , and

Dij (x, λ) =

dx∑
k=1

σik (x, λ)σjk (x, λ) , (2.13)

for an dx-dimensional Wiener process {Wλ}λ≥0. In its usual form, as described in Physics, the
equation reads

∂

∂λ
p = −∇x · [µp] +

1

2
∇x · [D∇xp] . (2.14)
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We assume that the diffusion coefficient σ is locally independent of x, giving rise to a local
diffusion matrix D (λ) = σ (λ)σ (λ) T that is invariant to the divergence operator in the vicinity
of each particle. This means that, at a given time instant, the diffusion term in (2.14) evolves
at a rate proportional to the curvature of a (Riemann) manifold that is approximately constant
in the neighborhood of each particle. This assumption does not affect the generality of the
concepts applied in our derivation for two reasons: it results in a stochastic particle flow that is
missing a simple term, of the form σ (x, λ) · ∂x [σ (x, λ)], that could be incorporated if needed;
in practice, any probability density can be well approximated by a mixture of densities whose
covariances are locally constant with respect to the state [177] (i.e., ∂x [σ (x, λ)] = 0 locally).
Additionally, as evidenced in [80], keeping the diffusion coefficient fixed for each sampling step
does not perturb the target distribution.

2.4.2 Stationary Solution of the Fökker-Planck Equation

A stationary solution to the equation (2.14) should satisfy

∂

∂λ
p (x, λ)

λ→∞
−→ 0. (2.15)

By writing

∇x · S , ∇x · [µ p]−
1

2
∇x · [D∇xp] , (2.16)

the probability current S is identified as

S (x, λ) , µ (x, λ) p (x, λ)− 1

2
D (λ) · ∇xp (x, λ)

= p (x, λ)

[
µ (x, λ)− 1

2
D (λ) · ∇x log p (x, λ)

]
. (2.17)

Since the stationary condition requires

∂

∂λ
p (x, λ) = −∇x · S (x, λ)

λ→∞
−→ 0, (2.18)

the probability current is required to vanish as λ → ∞. The probability current can only
vanish if the drift µ (x, λ) can be expressed as the gradient of a potential function [165], which
induces the terms within brackets in (2.17) to cancel out. We write the drift as the gradient of
a stationary potential function according to

µ (x, λ) = −1

2
D (λ) · ∇xΦ (x) . (2.19)

The potential conditions
∂µi
∂xj

=
∂µj
∂xi

, ∀i 6= j, (2.20)

are necessary and sufficient for the existence of Φ (x) [165]. Provided that the probability
current vanishes as ∇x log p (x, λ)→ −∇xΦ (x), we obtain the stationary solution, pst (x), as

p (x, λ)
λ→∞
−→ pst (x) =

1

Z
e−Φ(x), (2.21)
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where
Z =

ˆ
Rdx

e−Φ(x)dx (2.22)

must be positive and finite. We promptly recognize (2.21) as analogous to the Gibbs distri-
bution. It is verifiable that (see, for example, [105]) the Gibbs distribution minimizes the free
energy functional over all probability densities on Rdx . It can also be shown that the sta-
tionary solution is the first eigenfunction of the Fökker-Planck equation, corresponding to the
eigenvalue zero [165].

2.4.3 The Stochastic Flow

The general stochastic particle flow is derived by setting the stationary solution, pst (x), to be
the target posterior density, π (x) = p (x|y1:k), to give

pst (x) := p (x|y1:k) ,

e−Φ(x)

Z
=
p (yk|x) p (x|y1:k−1)

p (yk|y1:k−1)
,

Φ (x) = − log p (yk|x)− log p (x|y1:k−1) . (2.23)

Given a valid potential function Φ (x) provides the stationary solution, all potential functions
of the form Φ (x) ±K for any constant K ∈ R are also valid. We can therefore choose a valid
potential function in (2.23) such that p (yk|y1:k−1) = Z. By using equation (2.19), we obtain

µ (x, λ) = −1

2
D (λ) · ∇xΦ (x) =

1

2
D (λ) · ∇x log π (x)

=
1

2
D (λ) · [∇x log p (yk|x) +∇x log p (x|y1:k−1)] . (2.24)

Substituting (2.24) into (2.17), it is easy to see that the probability current vanishes as λ →
∞. Additionally, it is important to note that continuous multivariate probability densities
commonly used in parametric statistics (e.g., Gaussian, Student’s t, Mises-Fisher, Pareto of
first kind, Cauchy etc) satisfy the potential conditions (2.20) that suffice for Φ (x) to exist.

Based on equation (2.11) and on the drift obtained from the stationary solution (2.24), the
dynamics of a set of particles {x(i) (λ)}i∈[1..N ] can be described by the stochastic differential
equation

dx = µ (x, λ) dλ+ σ (x, λ) dwλ, x
(i)
0 = x

(i)
k−1;

dx =
1

2
D∇x log π (x) dλ+ D

1/2dwλ; (2.25)

where π (x) is the target (posterior) probability density, {wλ}λ≥0 is the standard Wiener process
(Brownian motion) and D is the diffusion matrix. The stochastic process described by (2.25)
is known in the literature to follow the Langevin dynamics and, except for few special cases,
cannot be exactly simulated. Thus, the most common way to ensure the simulation provides
samples from the correct target distribution, π (x), is to set the discretized dynamics as a
proposal within a Markov chain Monte Carlo framework, which leads to the Metropolis-adjusted
Langevin algorithm (MALA) [168].

By defining the distribution at λ and target distribution as dP = p (x, λ) dx and dPπ = π (x) dx
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respectively, one can articulate the total-variation distance between the probability measures
P (dx) and Pπ (dx) defined on

(
Rdx ,B(Rdx)

)
6 as ‖P − Pπ‖TV. It can be shown that (e.g., [41]),

if the SDE (2.25) is integrated over a sufficiently long (finite) time horizon T ∈ R+, then7

‖P − Pπ‖TV =
1

2

ˆ
Rdx
|p (x, λ)− π (x)| dx ≤ ε (2.26)

for any λ > T , under a desired precision ε. The implication is that the stochastic particle flow
implements the filtering mapping (2.4) with increasing accuracy as λ progresses.

The stochastic particle flow can be interpreted as a continuous-time filtering method in the
classical sense. Under the abstraction of a continuously interpolated observation process, the
method has a direct correspondence to the Kallianpur-Striebel formula and satisfies the Zakai
equation as we demonstrate by the Theorem 2.17 and Corollary 2.19 in Section 2.9.2. Practically
speaking, the major difference between the stochastic particle flow and other Langevin-based
algorithms is the way that the target density is sequentially approximated via local represen-
tations that compose a mixture. This will be discussed later in Section 2.5.

2.4.4 The Diffusion Matrix

As explained by Girolami & Calderhead [80], the space of parameterized probability density
functions is endowed with a natural Riemann geometry, where the diffusion matrix arises as
the inverse of a position-specific metric tensor, G (x (λ)). This metric tensor maps the distances
inscribed in a Riemann manifold to distances in the Euclidean space and, therefore, constitutes
a means to constrain the dynamics of any stochastic process to the geometric structure of the
parametric probability space. Rao [159] showed the tensor G (x (λ)) to be the expected Fisher
information matrix

G (x (λ)) = −Ey|x [Hx [log p (y|x)]] , (2.27)

where Hx [.] is the Hessian matrix with respect to x. In a Bayesian context, Girolami &
Calderhead [80] suggested a metric tensor that includes the prior information as

G (x (λ)) = −Ey|x [Hx [log p (y|x)]]−Hx [log px (x)] , (2.28)

although many possible choices of metric for a specific manifold could be advocated. Because
we are interested in local (curvature) properties of the stochastic particle flow, a sensible choice
for the metric tensor G (x (λ)) is the observed Fisher information matrix incorporating the prior
information. In this case, the diffusion matrix becomes

D = G (x (λ))
−1

= [−Hx [log π (x)]]
−1
x=xλ

, (2.29)

where the Hessian matrix is locally evaluated at x = x
(i)
λ for the ith sample, and the resulting

diffusion matrix is kept constant for each integration step to obtain the subsequent sample. A
problem with this choice is that the expression (2.29) may not be strictly positive definite at
specific points of the state space for some types of probability distributions (e.g., mixtures). In
order to solve that problem, one could appeal to methods for regularizing the diffusion matrix

6B(Rdx ) is the σ-field composed of the Borel sets of Rdx .
7The total variation norm for probability measures have an equivalence to the L1-norm as presented in (2.26).

A simple argument for this equivalence is given in [119], chapter 4, proposition 4.2.
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such as the Tikhonov regularization, the technique to find the nearest (in terms of minimum
Fröbenius norm) positive definite matrix [92], or SoftAbs [13], a technique that implements a
smooth absolute transformation of the eigenvalues to map the negative-Hessian metric into a
positive-definite matrix. Another possibility is adopting an empirical estimate to (2.28).

2.4.5 Integration Method

Among the discretization methods that could be used to integrate the SDE (2.25), we advo-
cate the use of Ozaki’s discretization [152] of the Langevin diffusion. This is more accurate
than methods based on the Euler discretization. Ozaki’s discretization is only possible for tar-
get densities that are continuously differentiable and have a smooth Hessian matrix. These
requirements may be fulfilled by a solution that constitutes a superposition of conveniently
parameterized local approximations to a density.

The algorithm that enables simulation from the SDE (2.25) using Ozaki’s discretization
is generally called Langevin Monte Carlo with Ozaki discretization (LMCO) in the MCMC
community (see [41]). Provided an appropriate time horizon, T , by discretizing the interval
0 ≤ λ ≤ T into L sub-intervals {λ0 = 0, λ1, . . . λl, . . . , λL = T}, the discretized particle flow
equation using Ozaki’s method is given by

x(λl+1) = x(λl) +
(
Idx − e−

∆λ
2 D(λl)

−1
)

D(λl)
2∇x log π (x(λl))

+
[(

Idx − e−∆λD(λl)
−1
)

D(λl)
2
]1/2

wl+1, (2.30)

where {wl : l = 1, . . . , L} is a sequence of independent random vectors distributed according
to wl ∼ N (w; 0dx , Idx). The need to compute the exponential matrices in (2.30) implies an
increment in complexity typically bounded by O(NLd3

x) computations, which may not be jus-
tifiable for some applications. A cheaper alternative is achieved by linearizing (2.25) in the
neighborhood of the current state, assuming D(λ) piecewise constant in pseudo-time, trans-
forming the linearized equation by the Laplace transform, solving it in the Laplace domain,
and transforming it back. The result is

x(λl+1) = x(λl) +
(

1− e− 1
2 ∆λ

)
D(λl)∇x log π (x(λl))

+
(
1− e−∆λ

)1/2
D(λl)

1/2wl+1, (2.31)

where the exponential matrices are avoided but the exponential effect on the integration variable
(time step) is kept. See Section 2.9.3 for the derivation of this latter integration rule.

It is important to note that, upon integrating the SDE (2.25) by a numerical method,
convergence to the invariant distribution is no longer guaranteed for any finite step size. This
is due to the first-order integration error that is introduced. When tackling difficult nonlinear
filtering problems where the integration error becomes significant, a correction can be carried
out by employing a Metropolis acceptance step after each integration step to ensure convergence
to the invariant measure.
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2.4.6 Selection of Time Horizon and Integration Step Size

To successfully implement the stochastic particle flow, it is necessary to select an adequate time
horizon, T , and an integration step size, ∆λ. These parameters need to be chosen such that
stationarity is reached and convergence to the invariant measure is achieved. There are several
routes one could take to solve this problem with each making different assumptions about the
probability measures involved and about the regularity properties of the stationary distribution.
One could also pose related questions in the context of specific implementations. Answering
such questions might, for example, involve selecting the time horizon and integration step size
that minimizes the variance of the samples’ weights.

The view adopted here is that, since computational effort is a fundamental issue for imple-
menting the stochastic particle flow, we should choose these parameters to minimize computa-
tional effort. More specifically, we want to minimize the number of integration steps that need
to be performed to achieve

‖PL̃[∆λ],T − Pπ‖TV ≤ ε (2.32)

for an acceptable precision level ε, where PL̃[∆λ],T (dx) is the approximating probability measure
achieved by sampling from the discretized Langevin stochastic process over L = dT/∆λe steps.

Defining near-optimal choices of these parameters for general target measures, including
mixtures and highly skewed distributions, would require a more thorough study that extrapo-
lates the scope of this work. Instead, in this chapter, we propose two pragmatic approaches to
choosing both the time horizon and integration step size.

Approach 1

Our first approach builds on results concerning the scaling of Langevin-based MCMC algo-
rithms: the interested reader is referred to Roberts & Rosenthal [169] and a recent extension
by Pillai et al. [155] that treat high-dimensional target measures that are not of the product
form. In summary, these analyses show that the number of steps required to sample the target
measure by the Metropolis-Adjusted Langevin algorithm (MALA) grows as L ∼ O(d

1/3
x ). In

addition, these papers work out the optimal step size by maximizing the “speed function” or,
equivalently, producing the optimal average acceptance rate. Although this optimal criterion
is only applicable to algorithms that employ a Metropolis acceptance step, tuning the step
size used in the stochastic particle flow for an “emulated” (hypothetical) acceptance rate of
interest can guide the rate of convergence (even if the accept-reject step is suppressed in prac-
tice). Abusing the methodology presented by Pillai et al. [155] and using Proposition 2.4 from
Roberts et al. [167], let us denote the asymptotic acceptance probability α(`) as a function of
a scaling parameter ` ∈ R, such that the speed function h(`) for high-dimensional MALA can
be approximated as [155]

h (`) = ` · α (`) ≈ ` · Eπ
[
1 ∧ eN(−`3/4,`3/2)

]
= ` ·

[
Ncdf

(
−`3/4√
`3/2

)
+ e−

`3

4 +
((`3/2)1/2)

2

2 Ncdf

(
−
√
`3/2− −`

3/4√
`3/2

)]
= ` · 2Ncdf

(
−
√
`3/8

)
, (2.33)
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where Ncdf(.) is a standard normal cumulative distribution function (cdf). One can observe the
maximum occurs at `opt ≈ 1.3620 and corresponds to the theoretical optimal acceptance rate,
α(`opt) ≈ 0.5741.

Our approach is then based on the notion that, for a conveniently selected acceptance rate,
the step size should scale as ∆λ ∝ ` · d−ξx such that the total number of steps is scaled as
L ∝ dξx, and the exponent ξ depends on whether the Metropolis adjustment is used or not.
Theoretically, if the accept-reject step is not adopted then8 ξ = 1, otherwise the optimal choice
is ξ = 1/3 [155]. To exemplify the use of this approach, to produce an emulated (asymptotic)
acceptance rate of α = 0.80, a stochastic particle flow should be scaled as

` ≈ 2
[
−N−1

cdf (α/2)
]2/3

= 0.8008.

Using the Langevin dynamics considered herein, if dx = 10 and ξ = 1 then ∆λ = 2` · d−ξx ≈
0.1602.

If the accept-reject step is present, a criterion to stop the simulation could be established
online. Various MCMC convergence diagnostic methods are applicable to this task. However,
in our experience with the stochastic particle flow, such approaches to online determination of
convergence may indicate more steps are needed than are actually necessary to obtain good
results, and so give a pessimistic view of the amount of computation required. To set the time
horizon when accept-reject step is not used, we note that T = T0 +Ls ·∆λ, where T0 is the time
required to take the chain to the region of high acceptance probability (“warm-up”) and Ls is
the number of steps to explore the invariant measure. We determine both Ls and T0 either by
presetting reasonable values, or based on the second approach to be explained next.

Approach 2

Our second approach is an extension of the method proposed by Dalalyan [41]. It is useful due
to its ease of application and suitability to “nicely” measurable filtering quantities although,
strictly speaking, the method is only applicable to target densities that are log-concave. The
criteria are presented as follows.

Theorem 2.1. Let Φ : Rdx → R be a measurable convex function satisfying
ˆ
Rdx

exp{−Φ (x)} <∞, (2.34)

Φ (x)− Φ (x̄)−∇xΦ (x̄)
T

(x− x̄) ≥
1

2
m ‖x− x̄‖22 , (2.35)

‖∇xΦ (x)−∇xΦ (x̄)‖2 ≤M ‖x− x̄‖2 , ∀x, x̄ ∈ Rdx , (2.36)

for two existing positive constants m and M . Let x̄ ∈ Rdx be the global minimum of Φ(x). Sup-
pose a discrete-time Langevin Monte Carlo algorithm integrates (2.25), targeting the invariant
density π(x) ∝ exp{−Φ(x)} with measure Pπ(dx), and with the initial density ν (x) = δ(x− xν)

(a probability mass initially located at x = xν). In addition, assume that for some γ ≥ 1 we have
∆λ ≤ (γM)

−1, and K = supx ‖D(x)‖2 where Dλ = D(xλ) is the diffusion matrix. Then, for a
time horizon, T , and step size, ∆λ, the total-variation distance between the target measure Pπ
and the approximated measure PL̃(∆λ),T furnished by the discrete-time Langevin Monte Carlo

8In view of (2.38) and (2.39), T/∆λ ∼ O(dx).
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algorithm satisfies

‖PL̃[∆λ],T − Pπ‖TV

≤ 1

2
exp

{
−1

2
mT +

dx
2

log

(
M

m

)
− log

[
Γu

(
dx
2
,
M‖x̄− xν‖22

2

)]}
+

1

2

− 1

2
exp

{
−dx

2

M3K4γ

48(2γ − 1)

(
1

dx
‖x̄− xν‖22 + 2T

)
∆λ2 − dxM

2K3T

16
∆λ

}
, (2.37)

where Γu(s, x) , Γ(s)−1
´∞
x
ts−1e−tdt is the upper incomplete gamma function.

Corollary 2.2. Let dx ≥ 2, Φ satisfy (2.34), (2.35) and (2.36), and ε ∈ (0, 1/2) be a desired
precision level. Let the time horizon T and the step size ∆λ be defined by

T ≥
2 log (1/ε) + dx log

(
M
m

)
− 2 log

[
Γu

(
dx
2 ,

M‖x̄−xν‖22
2

)]
m

, (2.38)

∆λ ≤
− T

16 +

√(
T
16

)2
+ γ

48(2γ−1)

(
1
dx
‖x̄− xν‖22 + 2T

)
M−1K−2

[
2
dx

log
(

1
1−ε

)]
γ

48(2γ−1)

(
1
dx
‖x̄− xν‖22 + 2T

)
MK

, (2.39)

where γ ≥ 1. Then the resulting probability distribution of a Langevin Monte Carlo algorithm
that integrates (2.25) after L = dT/∆λe steps, satisfies ‖PL̃[∆λ],T − Pπ‖TV ≤ ε.

Theorem 2.1 is thoroughly underpinned by the findings of Dalalyan [43], with specific settings
changed to match the Langevin algorithm proposed in this chapter, and both a more general
bound for the time horizon and a tightened bound for the step size (to reduce computational
effort). We recommend the reader interested in the proof to first refer to [43] and then follow
the missing arguments for its proof in Section 2.9.1.

Corollary 2.2 is a direct criterion for selecting the time horizon and step size, arising from
the right-hand side of the inequality (2.37) being set to be a desired precision level. It is
essential to clarify that some practical issues arise here: in this form, the method holds for log-
concave densities only; the positive constants, m and M , are assumed known a priori; and the
approximation of the filtering density is not taken into account in the error budget. Rigorously
speaking, the method does not apply to more general cases. However, the method has utility as
the basis of an approximate (and pragmatic) mechanism for obtaining the required parameters.
In making this approximation, we explicitly acknowledge that we are assuming that:

1. The target density can be well characterized by a central tendency statistic, x̄c, that
replaces and roughly represents x̄ in all aspects of the analysis.

2. The initial measure is composed of a superposition of N probability masses described by

N−1
N∑
i=1

δ(x− x(i))

or, equivalently, an empirical distribution with mean µν and covariance matrix V, spatially
encompassing all initial samples (from the previous filtering iteration), which is assumed
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to constrain the constants M and m by

M < ‖V‖2/2, (2.40)

(x(i) − x̄c)
T m

2
(x(i) − x̄c) ≥ χ−2

cdf(0.99, dx), ∀x(i) : i = 1, . . . , N, (2.41)

where χ−2
cdf(P, κ) is the inverse of chi-square cdf for probability P and κ degrees of freedom.

3. In accordance with Lemma 4 in [41], the constant M is also constrained by

Φ(x(i))− Φ(x̄c)−∇xΦ(x̄c)
T (x(i) − x̄c) ≤

M

2
‖x− x̄c‖22 , ∀x(i) : i = 1, . . . , N. (2.42)

4. The positive constants M and m can be roughly estimated by

(a) approximating the statistic x̄c of the target density (e.g., obtaining a maximum-a-
posteriori estimate by optimization or an approximated mean by the EKF),

(b) inverting conditions (2.35) and (2.36), and incorporating the constraint (2.42), to
give

M̃ =2 supi∈[1..N ] max

[
‖∇xΦ(x(i))−∇xΦ(x̄c)‖

2

2‖x(i)−x̄c‖
2

, Φ(x(i))−Φ(x̄c)−∇xΦ(x̄c)
T (x(i)−x̄c)

‖x(i)−x̄c‖2
2

]
, (2.43)

m̃ =2 inf
i∈[1..N ]

Φ(x(i))− Φ(x̄c)−∇xΦ(x̄c)
T (x(i) − x̄c)∥∥x(i) − x̄c

∥∥2

2

, (2.44)

where all quantities can be computed from Φ (x) , − log p (yk|x) − log p (x|y1:k−1)

given an approximation to the prior pdf; the resulting values of M̃ and m̃ must also
satisfy (2.40) and (2.41).

Once the positive constants M and m have been estimated, obtaining T and ∆λ follows from
(2.38) and (2.39) respectively. In our experience, for very simple problems, (2.38) may produce
overestimated time horizons and, as a consequence, may cause (2.39) to produce underestimated
step sizes for the stochastic particle flow. This happens because the bound for the time horizon
becomes loose, in view of Lemma 2.7, for initial distributions that are far from the target
distribution. In simple cases, a closer approximation can by achieved by assuming 1-uniform
ergodicity of the Markov chain to give

T ≥ 2 log (1/ε) + dx logR

m̃
, (2.45)

for a finite R ∈ R+, at the cost of having to determine R empirically. Similarly, for simple
cases, expression (2.39) can be replaced with an empirical rule of the form

∆λ ≤ 2

√
m̃

M̃
, (2.46)

which satisfies ∆λ ≤
(
γM̃

)−1

for γ ≤
(

2
√
m̃
)−1

as required by Theorem 2.1 but is not
guaranteed to satisfy Corollary 2.2.
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2.5 Stochastic Particle Flow as a Gaussian Sum Filter

In this section, we use the stochastic particle flow to derive a filter that approximates the
posterior probability density as a Gaussian mixture. We refer to the resulting filter as the
stochastic particle flow Gaussian sum filter (SPF-GS).

2.5.1 The Mixture-Based Approximating Measure

Given a set of samples drawn from an importance distribution, {x(i) ∈ X}i∈[1..N ], if one is
required to solve the filtering problem by a standard Monte Carlo method, then the stochastic
filter adopts the following approximation

ϕ̂ =

ˆ
X
ϕ (x)π (x) dx

≈
ˆ
X
ϕ (x)

N∑
i=1

w(x(i))δ(x− x(i))dx

=

N∑
i=1

w(i)ϕ(x(i)), (2.47)

where w(x(i)) = w(i) are the importance weights. Now suppose that we have access to an
approximating measure P̃π (dx) on (X ,B(X )) with an associated density such that dP̃π = π̃dx.
If the density π̃ involves a mixture of N Gaussians according to

π̃ (x) =

N∑
i=1

w(i)
m N (x;µm(x(i)),Σm(x(i)))

=

N∑
i=1

w(i)
m N (x;µ(i)

m ,Σ(i)
m ), (2.48)

where {w(i)
m , µ

(i)
m ,Σ

(i)
m }i∈[1..N ] are computed based on the samples {x(i)}i∈[1..N ], then the solution

is given by

ϕ̂ =

ˆ
X
ϕ (x)π (x) dx

≈
ˆ
X
ϕ (x)

N∑
i=1

w(i)
m N (x;µ(i)

m ,Σ(i)
m )dx

=

N∑
i=1

w(i)
m

ˆ
X
ϕ (x)N (x;µ(i)

m ,Σ(i)
m )dx

=

N∑
i=1

w(i)
m EN

[
ϕ (x) |µ(i)

m ,Σ(i)
m

]
. (2.49)

In this setting, it is possible to prove that π̃ (x)→ π (x) as N →∞ almost surely if µ(i)
m → x(i)

and Σ
(i)
m → 0, by appealing to convergence proofs for mixture-based estimators (see [2], pages

197–199). Also, it is worth noting that this procedure is quite general in the sense that (2.48)
could be replaced by a mixture of any convenient parametric distribution.
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2.5.2 The Stochastic-Particle-Flow Gaussian Sum Filter

Building upon the results presented in the previous section, SPF-GS uses samples to prop-
agate local Gaussian components, which can together provide an accurate approximation to
the posterior probability density of the form (2.48). More specifically, given a new measure-
ment and a set of samples and moments {x(i)

k−1, µ
(i)
m,k−1,Σ

(i)
m,k−1}i∈[1..N ], the filtering procedure

consists of integrating the SDE (2.25) for each particle x(i) (λ) and propagating its associated
moments (µ

(i)
m (λ) ,Σ

(i)
m (λ)) through the interval 0 < λ ≤ T , which corresponds to the interval

tk−1 < t ≤ tk. The integration process is performed until one achieves the posterior set of
samples and parameters {x(i)

k , µ
(i)
m,k,Σ

(i)
m,k}i∈[1..N ] := {x(i) (T ) , µ

(i)
m (T ) ,Σ

(i)
m (T )}i∈[1..N ], where

x
(i)

(0) = x
(i)
k−1, so that

1

2

ˆ
X

∣∣∣∣∣
N∑
i=1

1

N
N (x;µ(i)

m (T ),Σ(i)
m (T ))− π (x)

∣∣∣∣∣ dx ≤ ε′,

under a desired precision level ε′ as N → ∞. In practice, the integration of the stochastic
particle flow (2.25) over 0 < λ ≤ T involves multiple intermediate sampling steps that evolve
the samples x(i) (λ) to populate the local regions of the state space where the target distribution
will be described. At the same time, the mixture components are propagated to define the local
approximations and thereby the global approximation to the filtering density. A fundamental
aspect of the procedure proposed herein is that, for each filtering step, the intermediate moments
(µ

(i)
m (λ) ,Σ

(i)
m (λ)) are initialized as departing from the corresponding samples obtained from the

previous step, i.e., µ(i)
m (0) := x

(i)
k−1 and Σ

(i)
m (0) := 0dx×dx , and evolved onto the local posterior

moments, µ(i)
m (T ) and Σ

(i)
m (T ). In this setting, each component of the filtering mixture is

associated, via Fökker-Planck equation (Langevin dynamics), with the mapping

1

N
δ(xk−1 − x

(i)
k−1) 7→ 1

N
N (xk;µ

(i)
m,k,Σ

(i)
m,k). (2.50)

It is also important to highlight that we perceive the most informative approximation of
the posterior from the previous iteration as provided by the set of moments from the previous
iteration, {µ(i)

m,k−1,Σ
(i)
m,k−1}i∈[1..N ], and not by the samples. We therefore use the previous

iteration’s mixture to define the invariant target measure but samples from this mixture to
integrate the SDE. In our experience, this setting is beneficial because: it avoids the bias that
would result from propagating a mixture-only approximation from one filtering iteration to the
next; it dismisses the need to explicitly compute mixture weights since the ergodic Markov
chain that carries out (2.50) is known to converge to the invariant measure no matter where it
starts [137].

More specifically, in the Langevin diffusion setting presented in Section 2.4, the mixture
measure forms the basis of approximating the target log-density. Each mixture component
from the previous filtering step enables a local approximation of the prior density as

p̃(i)
(
x′k|y1:k−1

)
=

ˆ
Rdx

pt(x
′
k|xk−1)N (xk−1;µ

(i)
m,k−1,Σ

(i)
m,k−1)dxk−1, (2.51)

where pt
(
x′k|xk−1

)
is the state-process transition kernel, and the resulting prior density is

locally approximated as a Gaussian (e.g., via the Unscented Transform). Thus, provided a

67



CHAPTER 2. STOCHASTIC PARTICLE FLOW

known likelihood function, p (yk|x), one Langevin transition kernel is computed per sample
based on ∇x log π̃(i)(x) = ∇x log p (yk|x) +∇x log p̃(i) (x|y1:k−1).

We propose an approximate method to propagate the moments, µm(λ) and Σm(λ), by lin-
earizing the flow locally, in the neighborhood of a probability mass located at xl. in Section 2.9.4
we provide an argument (which we regard as useful, if not rigorous) to justify why this local
flow approximation should produce acceptable errors on the propagated moments. The pro-
cedure produces a negligible error for a small state displacement given a small increment of
pseudo-time, ∆λ, so that the stochastic particle flow (2.25) can be approximated within the
region ‖x− xl‖ < ζ, for a sufficiently small ζ ∈ R+, as

dx =
1

2
D(λ)∇x log π (x) dλ+ D(λ)

1/2dwλ, λ ∈ (λl, λl + ∆λ], x(λl) = xl;

dx ≈ [C(xl, λ) · x + c(xl, λ)] dλ+ D(λ)
1/2dwλ. (2.52)

As a consequence of integrating the flow, the corresponding component moments are evolved
according to the locally approximated ordinary differential equations (Section 2.9.4)

dµ
(i)
m (λ)

dλ
= C(x

(i)
l )µ(i)

m (λ) + c(x
(i)
l ), (2.53)

dΣ
(i)
m (λ)

dλ
= C(x

(i)
l )Σ(i)

m (λ) + Σ(i)
m (λ)CT (x

(i)
l ) + D(i). (2.54)

For nonlinear Gaussian problems, the locally approximated flow implies that

C (xl, λ) = −1

2
D(λ)P−1

k|k−1

− 1

2
D(λ)Jx [h(xl)]

T
R−1
k Jx [h(xl)] , (2.55)

c (xl, λ) =
1

2
D(λ)P−1

k|k−1f(µm,k−1)

+
1

2
D(λ)Jx [h(xl)]

T
R−1
k Jx [h(xl)] · xl

+
1

2
D(λ)Jx [h(xl)]

T
R−1
k (yk − h(xl)) , (2.56)

where Jx [·] is the Jacobian matrix with respect to the state, f(·) is the state process function,
h(·) is the observation function, and where

Pk|k−1 = E
[
(xk|k−1 − f(µm,k−1))(xk|k−1 − f(µm,k−1))T

]
, (2.57)

Rk = E
[
(yk − h(xk))(yk − h(xk))T

]
, (2.58)

are, respectively, the covariance matrix of the prior probability density and the covariance
matrix of the observation noise.

Notice that the resulting algorithm is somewhat similar to the Kalman-Bucy filter in that it
avoids an explicit discrete-time measurement update. One could also interpret the SPF-GS as
a Monte Carlo and continuous-time version of the original Gaussian sum filter [185, 1], albeit
modified to explore the Riemannian geometric structure of the probability space. However, in
contrast to the Gaussian sum filter (and the particle filter), the structure of the SPF-GS removes
the need to explicitly compute mixture weights: it relies on multiple independent (ergodic)
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Markov chains that start at the samples to produce equally weighted mixture components,
each describing a local version of the underlying geometric structure of the posterior measure.

The SPF-GS has features that are apparently similar to those of the Gaussian sum particle
filter [111], however, in reality, these filters rely on distinct fundamental principles that make
them very different. The principle of the Gaussian sum particle filter is using importance
sampling to estimate the moments of a mixture’s components for approximating a target density.
In contrast, the SPF-GS evolves a mixture through multiple intermediate steps by exploring the
local properties of a stochastic flow in order to translate probability masses from the previous
iteration to a mixture on the posterior probability space. The SPF-GS is also very different
from that proposed by Terejanu et al. [191], which is a Gaussian sum filter analogous to an
extended Kalman-Bucy filter but providing an estimate of the predicted mixture weights based
on an optimization procedure.

The stochastic particle flow Gaussian-sum filter (SPF-GS) is summarized in Algorithm 2.1.
The algorithm is expressed in a quite general form, including an accept-reject step that enforces
theoretical convergence to the invariant target measure. Our empirical experience indicates
that having this step was often not necessary (at least in the cases we have considered). As
has already been touched on, if computational efficiency is a primary goal, the SPF-GS should
avoid the accept-reject step: calculating the acceptance probability requires double9 the number
of computations of the gradients and inverted Hessian matrices. In addition, using this step
requires the explicit evaluation of the kernels and target densities themselves. When the step
is removed, there may be the need to deal with outliers, which can significantly affect the
estimates because all components in the propagated mixture are treated as equally important.
In all numerical examples studied in this chapter, none adopted the Metropolis adjustment. For
the high-dimensional examples, the (occasional) outliers are removed online by an empirical test
to identify the samples that fall outside a credible inference region.

2.6 Stochastic Particle Flow as a Marginal Particle

Filter

In this section, we derive a marginal particle filter whose proposal density is built upon a
Gaussian mixture obtained via the stochastic particle flow. The resulting filter is referred to as
the stochastic-particle-flow marginal particle filter (SPF-MPF).

2.6.1 Marginal Particle Filtering

In the standard setting, particle filters don’t target the marginal filtering distribution p (xk|y1:k),
a characteristic inherited from the first particle filters, which were designed to be relatively sim-
ple to implement. The main problem with the standard particle filters arises because they con-
struct importance densities that target a joint filtering density p (x0:k|y1:k). A typical particle
filter incrementally draws path samples, {x(i)

0:k ∈ X k+1}i∈[1..N ], from a joint importance density
q (x0:k|y1:k), and implicitly incorporates the past of the sampled paths {x(i)

0:k−1 ∈ X k}i∈[1..N ]

when computing (filtered) expectations of interest. Thus, although these algorithms provide
9Because of the need to construct both the forward and backward transition kernels.
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Algorithm 2.1: Stochastic particle flow - Gaussian sum filter
1 Initialization:
2 if time k = 0 then
3 Sample x

(i)
0 ∼ p(x0), ∀i = 1, . . . , N

4 Set w(i)
m,0 := N−1, µ(i)

m,0 := Ep0
[x0], Σ

(i)
m,0 := Ep0

[
(x0 − x̄0)(x0 − x̄0)T

]
, ∀i = 1, . . . , N

5 end

6 Steps:
7 for time k ≥ 1 do
8 Compute the time horizon T and step size ∆λ (Section 2.4.6)
9 Discretize the interval 0 ≤ λ ≤ T into L sub-intervals {λ0 = 0, . . . λl, . . . , λL = T}

10 Set x
(i)
l=0 := x

(i)
k−1, µ

(i)
l=0 := x

(i)
k−1, Σ

(i)
l=0 := 0dx×dx , ∀i = 1, . . . , N

11 for l = 1 to L do
12 for i = 1, . . . , N do
13 Simulate

x
?(i)
l ← x

(i)
l−1 +

1

2

ˆ λl

λl−1

D(x
(i)
l−1)∇x log π̃(x

(i)
l−1)dλ+

ˆ λl

λl−1

D(x
(i)
l−1)

1/2dwλ

14 Compute the acceptance probability α(i) = min

[
1,

π̃(x
?(i)
l )

q(x
?(i)
l |x(i)

l−1)

q(x
(i)
l−1|x

?(i)
l )

π̃(x
(i)
l−1)

]
/* We advocate using the Metropolis adjustment step as practically optional,

i.e., only for difficult problems. For many Engineering problems the
approximation achieved by suppressing the MH step may be enough and will be
more computationally efficient. */

15 Simulate u(i) ∼ U(0, 1)

16 if u(i) ≤ α(i) then
17 Set x

(i)
l ← x

?(i)
l

18 Propagate

µ
(i)
l ← µ

(i)
l−1 +

ˆ λl

λl−1

[
C(x

(i)
l−1)µ

(i)
l−1 + c(x

(i)
l−1)

]
dλ,

Σ
(i)
l ← Σ

(i)
l−1 +

ˆ λl

λl−1

[
C(x

(i)
l−1)Σ

(i)
l−1 + Σ

(i)
l−1CT (x

(i)
l−1) + D(x

(i)
l−1)

]
dλ

19 else
20 Set x

(i)
l ← x

(i)
l−1, µ

(i)
l ← µ

(i)
l−1, Σ

(i)
l ← Σ

(i)
l−1

21 end
22 end
23 end
24 Set x

(i)
k := x

(i)
l=L, µ

(i)
m,k := µ

(i)
l=L, Σ

(i)
m,k := Σ

(i)
l=L, ∀i = 1, . . . , N

Output: Approximation of the filtering density as
25

p̃(xk|y1:k) =

N∑
i=1

1

N
N (xk;µ

(i)
m,k,Σ

(i)
m,k)

26 end
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a simple way to perform measurement update, they perform importance sampling in the joint
space along all time steps, i.e., in X k+1 = X (0)×X (1)×· · ·×X (k). The result is precipitation
of the particle degeneracy phenomenon: the set of paths become increasingly sparse on the joint
space X k+1, leading to a quick increase in the weights’ variance while most paths have van-
ishingly small probability. In high-dimensional applications this problem becomes even more
pronounced, rendering the standard particle filters to be practically infeasible.

With the mindset of improving this shortcoming in particle filters, Klaas et al. [110] pro-
posed the marginal particle filter. The marginal particle filter targets the marginal posterior
distribution p (xk|y1:k), performing importance sampling on the marginal state space, X (k),
to produce samples with commensurate sparsity over time. The samples are drawn from an
importance density of the form

q (xk|y1:k) ∝
ˆ
X
q (xk|xk−1, yk) q (xk−1|y1:k−1) dxk−1, (2.59)

to target the posterior density

p (xk|y1:k) ∝ p (yk|xk)

ˆ
X
pt (xk|xk−1) p (xk−1|y1:k−1) dxk−1, (2.60)

with the importance weights

w (xk) ∝ p (xk|y1:k)

q (xk|y1:k)
. (2.61)

In practical terms, particles and weights from the previous iteration are used to compose
both an approximation of the target density (2.60) and the importance density (2.59), in order
to obtain particles and weights for the current iteration. Even though the marginal particle filter
is more robust than the standard particle filter against degeneracy, and thereby more suitable
to high-dimensional problems in principle, its success is highly dependent on the validity of
sequential representations of the target density. Problems may arise in situations where the
usual approximation

p̃ (xk|y1:k) ∝ p(yk|xk)

N∑
i=1

w
(i)
k−1pt(xk|x

(i)
k−1), (2.62)

is prone to relevant statistical or numerical errors, e.g., when the transition density pt (xk|xk−1)

describes a Markov process with small variance and the observation yk lies relatively far from the
current set of particles {x(i)

k−1,w
(i)
k−1}i∈[1..N ] on the state space (see the linear, univariate example

in Section 2.7). Moreover, owing to the curse of dimensionality, the usual approximation (2.62)
is corrupted by a Monte Carlo error that increases geometrically with the number of state
dimensions. This may cripple the marginal particle filter in very high-dimensional problems.
Because of this limitation, marginal particle filters are likely to perform well only in moderately
high-dimensional problems. We illustrate this limitation of marginal particle filters by numerical
examples in Section 2.7.

As well covered in [110], there exist several possibilities to choose the marginal importance
density (2.59), among which the auxiliary marginal proposal density is particularly interesting
because it emulates an optimal importance density in the sense of minimizing the weights’
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variance. The marginal optimal (auxiliary) proposal density is usually approximated as

q̃ (xk|y1:k) =

N∑
i=1

w
(i)
q,k−1p(xk|x

(i)
k−1, yk), (2.63)

w
(i)
q,k−1 ∝ w

(i)
k−1p(yk|x

(i)
k−1).

It is straightforward to verify that, in the usual setting, the marginal optimal proposal implies
that weights never change:

wk ∝
p̃ (xk|y1:k)

q̃ (xk|y1:k)
∝
p(yk|xk)

∑N
i=1 w

(i)
k−1pt(xk|x

(i)
k−1)∑N

i=1 w
(i)
q,k−1p(xk|x

(i)
k−1, yk)

∝
p(yk|xk)

∑N
i=1 w

(i)
k−1pt(xk|x

(i)
k−1)∑N

i=1 w
(i)
k−1p(yk|x

(i)
k−1) · p(yk|xk)pt(xk|x

(i)
k−1)

p(yk|x
(i)
k−1)

= constant.

This feature is crucial because it endows a particle filter with low variance of weights, which
essentially turns into statistical efficiency. This finding motivates the marginal optimal proposal
density as the foundation for a marginal particle filter based on the stochastic particle flow.
The resulting filter is expected to work well for moderately high-dimensional problems.

2.6.2 Difficulties from a Usual Marginal Importance Density

This section discusses the problems that naturally arise when considering a standard Monte
Carlo setting as (2.47) to build a marginal importance density based on the stochastic par-
ticle flow. If one regards the proposal distribution as the result of a sequence of L Markov
transitions through a discretization of the interval 0 < λ ≤ T onto the sub-intervals {λ0 =

0, . . . λl, . . . , λL = T}, where xk , xL and xk−1 , x0, then the sequence of transitions would
provide the importance density

q (xk|y1:k) =

ˆ
X

ˆ
X
. . .

ˆ
X
q(xL|xL−1, yk)q(xL−1|xL−2, yk) . . .

q(x1|x0, yk)q(x0|y1:k−1)dxL−1dxL−2 . . . dx0· (2.64)

In order to evaluate this importance density over a set of N particles, incorporating the
previous set of samples and importance weights, one would be required to compute

q̃(x
(i)
k |y1:k) =

N∑
j=1

w
(j)
k−1q̃(x

(i)
k |x

(j)
k−1, yk), (2.65)

i = 1, . . . , N.

This implementation depends on the set of conditional kernels q̃(xk|xk−1, yk) = q̃(xL|x0, yk)
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that could be achieved in terms of a recursion of the form

w
(i|j)
1 , q(x

(i)
1 |x

(j)
0 , yk), i, j = 1, . . . , N ;

w
(i|j)
2 , q̃(x

(i)
2 |x

(j)
0 , yk) =

N∑
n=1

w
(n|j)
1 q(x

(i)
2 |x

(n)
1 , x

(j)
0 , yk);

...

w
(i|j)
l , q̃(x

(i)
l |x

(j)
0 , yk) =

N∑
n=1

w
(n|j)
l−1 q(x

(i)
l |x

(n)
l−1, x

(j)
0 , yk);

...

q̃(x
(i)
L |x

(j)
0 , yk) =

N∑
n=1

w
(n|j)
L−1 q(x

(i)
L |x

(n)
L−1, x

(j)
0 , yk); (2.66)

where q(xl|xl−1, x0, yk) are the one-step proposal kernels conditioned on the initial state (prior
samples), which are directly available from the discretized version of (2.25). Computing the
conditional proposal components (2.66) and the marginal proposal (2.65) involves high com-
putational effort, bounded by (L − 1)N3 + N2 ∼ O(LN3) evaluations. In addition, the main
complication of this realization is due to the mixing properties of (2.65), leading to significant
errors built up through the sequence of finite-sample approximations in (2.66) along with the
prohibitively high variance of the resulting importance weights (2.61).

While these problems could be tentatively worked around by a judicious choice of a variance
reduction method, it is worth looking how the implementation difficulties would turn out to
be by evoking a hypothetical “continuity” between sampling steps. It is well known that in the
limit ∆λ→ 0, the proposal density (2.64) defines a path integral. Based on the concept of path
probability density [84] of a Markov process

W∞ [x (λ)] [dx] ∝ e−
´ T
0 [ 1

2 (ẋ−µ(x))TD−1(ẋ−µ(x))+ 1
2∇x·µ(x)]dλ, (2.67)

for samples describing continuous paths, the proposal could be written as a functional integral
[100] of the form

qc (xk|y1:k) ∝
ˆ
e−
´ T
0 [ 1

2 (ẋ−µ(x))TD−1(ẋ−µ(x))+ 1
2∇x·µ(x)]dλ [dx] , (2.68)

where [dx] = dxL−1 . . . dx0 as ∆λ → 0. Solving path integrals in general is a daunting task,
nevertheless, a density of interest could be approximately obtained in terms of a Gaussian
mixture, under the assumption of local Gaussianity of probability paths. Within this framework,
an ensemble of independently selected Gaussian densities can be analytically integrated to
achieve local solutions to (2.68). This fundamental idea is equivalent to what the stochastic
particle flow proposes when the filtering solution is formulated as the mixture (2.48).

2.6.3 The Stochastic-Particle-Flow Marginal Particle Filter

In marginal particle filtering, the best importance density one could achieve is the proposal
density q (xk|y1:k) when computed exactly. This density enables inference of the actual poste-
rior pdf, p (xk|y1:k). Composing the marginal optimal proposal requires computing p(yk|x

(i)
k−1)
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exactly, which is not possible in general. In addition, the same scenarios that produce consid-
erable errors in computing the empirical target, π̃ (xk) = p̃ (xk|y1:k), according to (2.62), will
also affect evaluation of the proposal q̃ (xk|y1:k), computed by (2.63), as illustrated by the first
example in Section 2.7. In these cases, one can benefit from the inherent characteristics of
the stochastic particle flow to construct a proposal density with better regularity properties by
doing

q̃ (xk|y1:k) =

N∑
i=1

w
(i)
k−1p(yk|xk)pt(xk|x

(i)
k−1)

=

N∑
i=1

w
(i)
k−1

pt(xk|x
(i)
k−1)

p̃(i)(xk|y1:k−1)
p(yk|xk)p̃(i)(xk|y1:k−1)

∝
N∑
i=1

w
(i)
k−1

pt(xk|x
(i)
k−1)

p̃(i)(xk|y1:k−1)
w

(i)
m,kN (xk;µ

(i)
m,k,Σ

(i)
m,k),

q̃ (xk|y1:k) =
N∑
i=1

w(i)
q (xk)N (xk;µ

(i)
m,k,Σ

(i)
m,k); (2.69)

where

w̄(i)
q (xk) = w

(i)
k−1w

(i)
m,k

pt(xk|x
(i)
k−1)

p̃(i)(xk|y1:k−1)
, (2.70)

w(i)
q (xk) =

w̄
(i)
q (xk)∑N

i=1 w̄
(i)
q (xk)

; (2.71)

and p̃(i)(xk|y1:k−1) is a per-sample, local prior density. For a known Markov transition density
pt
(
x′k|xk−1

)
, we recall the local prior density as given by

p̃(i)
(
x′k|y1:k−1

)
=

ˆ
X
pt(x

′
k|xk−1)N (xk−1;µ

(i)
m,k−1,Σ

(i)
m,k−1)dxk−1. (2.72)

As in the classical Gaussian-sum setting, the mixture weights {w(i)
m,k}i∈[1..N ] are given by

(see [2], pages 214 and 215)

w
(i)
m,k ∝

1

N

ˆ
X
p (yk|x′k) p̃(i)

(
x′k|y1:k−1

)
dx′k, (2.73)

where the proportionality to N−1 holds because the stochastic particle flow generates equally
weighted mixture components. The mixture weights {w(i)

m,k} generated by this method are only
applicable in the context of the proposal (2.69), and shall be re-evaluated in the same way
whenever a new instance of the marginal proposal is constructed. It is relevant to make clear
the distinction x′k 6= xk in the expressions (2.73) and (2.72), bearing in mind that x′k corresponds
to the state that the flow would reach when considering only the prior density as the target
πprior(x

′) = px(x′) , p(x′|y1:k−1). We note that the involved integrals may not be tractable in
general and may require approximation either by a Gaussian representation of the likelihood,
or adequate quadrature rules (e.g., Gauss-Hermite).

This formulation evokes the stochastic particle flow to promote an accurate approximation to
the marginal optimal proposal density. Given a set of samples and parameters from a previous
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filtering iteration, {x(i)
k−1, w

(i)
k−1, µ

(i)
m,k−1,Σ

(i)
m,k−1}i∈[1..N ], where w

(i)
k−1 are importance weights, the

algorithm integrates the SDE (2.25) for each sample and propagates the associated parameters
through the interval 0 < λ ≤ T . As a result, the procedure acquires posterior samples and
parameters, {x(i)

k , w
(i)
k , µ

(i)
m,k,Σ

(i)
m,k}i∈[1..N ], which are used to evaluate the marginal proposal

(2.69) and enable filtering as by a marginal particle filter. The moments of the mixture’s
components are evolved in accordance with (2.53) and (2.54), and the importance weights are
updated by

wk(xk) ∝
∑N
j=1 w

(j)
k−1p(yk|xk)pt(xk|x

(j)
k−1)∑N

j=1 w
(j)
q (xk)N (xk;µ

(j)
m,k,Σ

(j)
m,k)

. (2.74)

The resulting filter, called stochastic-particle-flow marginal particle filter (SPF-MPF), is
summarized in Algorithm 2.2. It is worth noting that a simpler alternative to (2.69) could be
chosen by considering

q̃ (xk|y1:k) =

N∑
i=1

1

N
N (xk;µ

(i)
m,k,Σ

(i)
m,k), (2.75)

however, in that case, the importance density would not be affected by the same errors as the
empirical target, π̃ (xk) = p̃ (xk|y1:k), as computed by (2.62), because each component in (2.75)
targets a local instance of the posterior density itself. As a result, even though the importance
density could approximate the true posterior density accurately, it would not directly approach
the target density. In situations where the empirical target density cannot represent the true
posterior density as well as a mixture of the form (2.75), the SPF-MPF with such a proposal
would fail because of the mismatch originated from distinctions in the approximation methods.
As a consequence, the importance weights would have infeasibly high variance. The described
issue is equivalent to treat errors in the standard Monte Carlo measure (2.47) as comparable
to errors in the mixture measure (2.49), which is not true except for rare cases. This scenario
is well illustrated by two examples in Section 2.7.

2.7 Examples

In this section, we present some illustrative toy examples and experimental results for three in-
structive applications in the multi-sensor multi-target tracking context: a multi-sensor bearing-
only problem, a convoy tracking problem, and an inference on a large spatial sensor network as
presented by Septier & Peters [175].

In the experimental results for the bearing-only and convoy tracking examples, we compared
the SPF-GS against standard target trackers and extensions of two of the most effective particle
flows, namely, the Gaussian particle flow (GPF) and the scaled-drift particle flow (SDPF). The
GPF was first called exact particle flow in [53] and the SDPF was first called non-zero diffusion
particle flow in [52]. Actually, this latter is a particle flow with the drift scaled by a diffusion
coefficient but the filter itself is not a diffusion.

It is important to mention that, in order to work properly, both the Gaussian particle
flow and the scaled-drift particle flow are implemented with the aid of a companion filter such
that the state covariance matrix can be correctly estimated. Implementation details have been
presented by Choi et al. [30] and Ding & Coates [63], who advocate using the EKF (or UKF) as
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Algorithm 2.2: Stochastic particle flow - marginal particle filter
1 Initialization:
2 if time k = 0 then
3 Sample x

(i)
0 ∼ p(x0) and set w(i)

0 := N−1, ∀i = 1, . . . , N

4 Set w(i)
m,0 := N−1, µ(i)

m,0 := Ep0
[x0], Σ

(i)
m,0 := Ep0

[
(x0 − x̄0)(x0 − x̄0)T

]
, ∀i = 1, . . . , N

5 end

6 Steps:
7 for time k ≥ 1 do
8 Compute the time horizon T and step size ∆λ (Section 2.4.6)
9 Discretize the interval 0 ≤ λ ≤ T into L sub-intervals {λ0 = 0, . . . λl, . . . , λL = T}

10 Set x
(i)
l=0 := x

(i)
k−1, µ

(i)
l=0 := x

(i)
k−1, Σ

(i)
l=0 := 0dx×dx , ∀i = 1, . . . , N

11 for l = 1 to L do
12 for i = 1, . . . , N do
13 Simulate

x
(i)
l ← x

(i)
l−1 +

1

2

ˆ λl

λl−1

D(x
(i)
l−1)∇x log π̃(x

(i)
l−1)dλ+

ˆ λl

λl−1

D(x
(i)
l−1)

1/2dwλ

14 Propagate

µ
(i)
l ← µ

(i)
l−1 +

ˆ λl

λl−1

[
C(x

(i)
l−1)µ

(i)
l−1 + c(x

(i)
l−1)

]
dλ,

Σ
(i)
l ← Σ

(i)
l−1 +

ˆ λl

λl−1

[
C(x

(i)
l−1)Σ

(i)
l−1 + Σ

(i)
l−1CT (x

(i)
l−1) + D(x

(i)
l−1)

]
dλ

15 end
16 end
17 Set x

(i)
k := x

(i)
l=L, µ

(i)
m,k := µ

(i)
l=L, Σ

(i)
m,k := Σ

(i)
l=L, ∀i = 1, . . . , N

18 Compute the normalized proposal weights, ∀i = 1, . . . , N , by

w
(i)
m,k ∝

1

N

ˆ
X
p (yk|x′k) p̃(i)

(
x′k|y1:k−1

)
dx′k,

w(i)
q ∝ w

(i)
k−1w

(i)
m,k

pt(x
(i)
k |x

(i)
k−1)

p̃(i)(x
(i)
k |y1:k−1)

19 Compute the normalized importance weights, ∀i = 1, . . . , N , by

w
(i)
k ∝

∑N
j=1 w

(j)
k−1p(yk|x

(i)
k )pt(x

(i)
k |x

(j)
k−1)∑N

j=1 w
(j)
q N (x

(i)
k ;µ

(j)
m,k,Σ

(j)
m,k)

20 if ESSk < 0.5N then resample: {x(i)
k , N−1} ← {x(i)

k , w
(i)
k }

Output: Approximation of the filtering distribution by the empirical measure
21

p̃(xk|y1:k) =

N∑
i=1

w
(i)
k δ(xk − x

(i)
k )

22 end
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a companion filter to estimate the associated covariance matrices. Another option is to shrink
the empirical covariance and apply Tikhonov regularization [109]. In contrast, the stochastic
particle flow does not require any auxiliary technique to estimate the second order moment,
relying solely on its mixture measure. In the toy examples, a companion filter was not necessary
for the original particle flows since a single filtering cycle has been analyzed. In the multi-sensor
and multi-target examples, we adopted baseline filters, which are the most structurally similar
to the EKF, as companion filters for the particle flows (GPF, SDPF).

In the example of the large spatial sensor network, we compared the SPF-GS, a particle
filter (Sequential Importance Resampling - SIR), a block particle filter (block SIR), and two
of the best sequential MCMC filters [80, 175]: the Sequential manifold Metropolis-Adjusted
Algorithm (SmMALA) and the Sequential manifold Hamiltonian Monte Carlo (SmHMC). The
block particle filter partitions the state space into separate subspaces of smaller dimensions and
run a particle filter on each subspace [160].

2.7.1 Toy Examples

The toy examples are based on Gaussian processes chosen to demonstrate the properties of the
stochastic particle flow, summarized as

• Univariate

– linear,

– quadratic,

– cubic;

• Bivariate

– multimodal, linear,

– nonlinear (banana-shaped pdf).

In all cases, we analyze the filters for a single filtering cycle. Generally, we describe the state
process, the observation process and the initial distribution for these examples as

xk = f(xk−1) + uk, uk ∼ N (uk; 0,Qk), (2.76)

yk = h(xk ) + vk, vk ∼ N (vk; 0,Rk), (2.77)

p0(xk−1) = N (xk−1; x̄k−1,Pk−1). (2.78)

We consider four different types of particle filters based on the marginal importance density

q̃ (xk|y1:k) =

N∑
i=1

w
(i)
k−1q(xk|x

(i)
k−1, yk),

where

• for the marginal bootstrap particle filter (MBPF), the proposal’s components are set as
the Markov transition kernel: q(xk|x

(i)
k−1, yk) = pt(xk|x

(i)
k−1);

• for the marginal EKF-based particle filter (MEPF), the proposal’s components are com-
puted by the EKF: q(xk|x

(i)
k−1, yk) = pEKF(xk|x

(i)
k−1, yk);
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• for the marginal UKF-based particle filter (MUPF), the proposal’s components are com-
puted by the UKF: q(xk|x

(i)
k−1, yk) = pUKF(xk|x

(i)
k−1, yk); and

• for the marginal auxiliary particle filter (MAPF) [110], the importance density is given
by (2.63).

When comparing probability densities furnished by different filters, we include the empirical
marginal target, π̃ (xk) = p̃ (xk|y1:k), evaluated according to (2.62) for samples obtained by the
stochastic particle flow. For all filters, when applicable, we calculate the average of the effective
sample size

ESSk =

(
N∑
i=1

w
(i) 2
k

)−1

(2.79)

over 100 Monte Carlo runs, for 1000 particles. For all marginal proposal densities, we an-
alyze their similarity to the true posterior probability density by averaging their empirical
Jensen-Shannon divergence (JSD) with respect to the true posterior, which is obtained to high
numerical precision. The Jensen-Shannon divergence is defined as

JSD (P ‖ Q) =
1

2
DKL(P ‖ (P +Q) /2)

+
1

2
DKL(Q ‖ (P +Q) /2), (2.80)

where the Kullback–Leibler divergence, DKL(· ‖ ·), is computed using the base-2 logarithm such
that the Jensen-Shannon divergence is bounded as 0 ≤ JSD (P ‖ Q) ≤ 1. The Jensen-Shannon
divergence is symmetric and equals zero when the compared densities are equal. In the bivariate
examples, we also consider the original particle flow methods, the Gaussian particle flow (GPF)
and scaled-drift particle flow (SDPF), for which the Jensen-Shannon divergence with respect
to the true posterior is evaluated based on empirical densities constructed by (bidimensional)
histograms of samples.

Linear, Univariate Model

The simplest example is a linear, univariate model, with parameters set as in the table below.

Parameters for the linear, univariate model

Initial distribution x̄k−1 = 0, Pk−1 = 20

Markov transition pdf f(xk−1) = xk−1, Qk = 5

Likelihood function h(xk) = xk, Rk = 10
Observation yk = 30

Table 2.1: Parameters for the linear univariate model

Although very simple, this example was proposed to demonstrate a scenario where the
empirical marginal target, π̃ (xk) = p̃ (xk|y1:k), is prone to relevant statistical and numerical
errors. This is done by setting a situation where the transition kernel describes a Markov process
with small variance and the observation lies relatively far from the initial distribution. In this
scenario, statistical inefficiency emerges because the observation provides little information in
the space region where probability masses are more densely distributed by the state process. Not
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incidentally, this is also the main source of degeneracy in standard particle filters. Additionally,
there may exist round-off errors when evaluating the empirical marginal target owing to samples
being located relatively far from the posterior mean, several standard deviations apart, in the
tail of each proposal component.

As depicted in Figure 2.1, the importance density proposed by the SPF-MPF (red x’s) is
successful at aiming the empirical marginal target (blue circles), generating a high effective
sample size. However, since the empirical target constitutes a poor approximation to the
true posterior pdf (black line), importance sampling clearly fails and the SPF-MPF leads to
a solution excessively biased. In contrast, the direct filtering density generated by the SPF-
GS approximates the true posterior pdf accurately, generating a satisfactory solution. These
findings are quantified by the Jensen-Shannon divergences averaged over 100 Monte Carlo runs
and presented in Table 2.4. Table 2.4 shows a negligible divergence between the density filtered
by the SPF-GS and the true posterior whereas the divergences computed for the target density
and for the proposal density constructed by the SPF-MPF are significant.
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Stochastic particle flow - Gaussian sum
Stochastic particle flow - Marginal PF
True posterior pdf

Figure 2.1: Densities generated by the SPF for the linear, univariate example

Quadratic, Univariate Model

The quadratic, univariate model was tested with parameters set as shown in the following table.
This model is interesting because nonlinearity of the observation process leads to bimodality of
the filtered density.

Parameters for the quadratic, univariate model

Initial distribution x̄k−1 = 0, Pk−1 = 20

Markov transition pdf f(xk−1) = xk−1, Qk = 20

Likelihood function h(xk) = x2
k/20, Rk = 50

Observation yk = 30

Table 2.2: Parameters for the quadratic univariate model
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Figure 2.2: Sequence of histograms for the quadratic, univariate example

This nonlinear example was set to be favorable for marginal importance sampling such that
it would be possible to compare different marginal particle filters against the SPF-MPF. The
original particle flows, GPF and SDPF, are compared to the SPF-MPF as well. The quantified
performances for this quadratic univariate model are shown in Table 2.4.

Firstly, we compare the sequence of histograms achieved when propagating samples by the
GPF, by the SDPF and by the SPF-GS. As it can be seen in Figure 2.2, for this example, the
stochastic particle flow provides the best distribution of particles to approximate the posterior
density, denoting a higher level of accuracy and regularity of the flow formulated as a diffusion.

Regarding the marginal importance densities illustrated in Figure 2.3, we observe a high
degree of similarity of the SPF-MPF proposal density to the marginal target density. In the
same manner, the filtering density achieved by the SPF-GS accurately approximates the true
posterior density, as evidenced in Table 2.4. In Figure 2.4 we can see in detail the proximity
of the SPF-MPF proposal density to both the marginal target density and the true posterior
density, along with some of the proposal mixture components. The density proposed by the
marginal (optimal) auxiliary particle filter (MAPF) is also very similar to the marginal target,
providing an accurate solution, whereas all other filters propose densities less effective for this
example. These observations are quantitatively captured by the performance data summarized
in Table 2.4.
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Figure 2.3: Comparison of proposal densities for the quadratic, univariate example
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Figure 2.4: Marginal proposal density based on the stochastic particle flow

Cubic, Univariate Model

The cubic, univariate model was tested with parameters set as shown in the following table.

Parameters for the cubic, univariate model

Initial distribution x̄k−1 = 0, Pk−1 = 20

Markov transition pdf f(xk−1) = xk−1, Qk = 20

Likelihood function h(xk) = x3
k/120, Rk = 50

Observation yk = 20

Table 2.3: Parameters for the cubic univariate model
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This nonlinear example was also set to be favorable for marginal importance sampling, i.e.,
avoiding the scenario described in the first toy example where importance sampling fails. By
comparing the resulting histograms achieved when propagating samples by the GPF, by the
SDPF and by the stochastic particle flow, it is remarkable in Figure 2.5 that the stochastic
particle flow provides a fairly superior distribution of particles to approximate the posterior
density. This superiority is incorporated in the importance density proposed by the SPF-MPF
as can be seen in Figure 2.6. The importance density proposed by the marginal auxiliary
particle filter (MAPF) also provides an accurate solution to the filtering problem but it is
slightly less effective than the SPF-MPF. All the other marginal particle filters present less
effective solutions. The comparison of all filters for this example is quantified in Table 2.4.
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Figure 2.5: Resulting histograms of particles for the cubic, univariate example
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Figure 2.6: Comparison of proposal densities for the cubic, univariate example
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Density Linear Quadratic Cubic
JSDavg ESSavg JSDavg ESSavg JSDavg ESSavg

Marginal target 0.1572 - 0.0028 - 0.0001 -
SPF-GS 0.0000 - 0.0013 - 0.0165 -
SPF-MPF 0.1574 100.00% 0.0052 97.12% 0.0071 96.74%
Marginal BPF 0.9876 0.21% 0.2641 1.79% 0.1723 12.60%
Marginal EPF 0.7857 1.90% 0.3097 16.69% 0.1820 28.63%
Marginal UPF 0.7870 2.04% 0.3112 14.46% 0.1674 25.32%
Marginal APF 0.0670 100.00% 0.0153 92.92% 0.0596 72.00%

Table 2.4: Comparison of densities for the univariate examples

Linear, Bimodal, Bivariate Model

This example poses a bimodal model where the modes arise from two different observations with
a joint likelihood explicitly known. In the algorithm for propagating particles, we implemented
a scheme that preselects samples to be filtered for either observation. This is done according
to a set of indexes that are sampled from a binomial distribution B

(
u1, u2; 1, wl,(1), wl,(2)

)
∝

wu1

l,(1)w
u2

l,(2) where u1, u2 ∈ [0, 1], u1 + u2 = 1, such that indexes are uniquely associated to
either event u1 or u2, with probability of either observation, wl,(1) or wl,(2) respectively. The
linear, bimodal, bivariate model was tested with parameters set as shown in Table 2.5. These
parameters were chosen to result in quite distinct local properties of the two modes.

Parameters for the linear, bimodal, bivariate model

Initial distribution x̄k−1 =

(
0
0

)
, Pk−1 =

(
9 0
0 9

)
Markov transition pdf f(xk−1) = xk−1, Qk =

(
16 0
0 16

)
Likelihood function: h(xk) = xk

Mode 1 Rk,(1) =

(
0.8 0
0 0.2

)
, wl,(1) = 0.2

Mode 2 Rk,(2) =

(
4.0 0
0 1.0

)
, wl,(2) = 0.8

Observations yk,(1) =

(
+10
+20

)
, yk,(2) =

(
+10
−20

)
Table 2.5: Parameters for the bimodal bivariate model

For this example, we analyze stochastic particle flow methods, SPF-GS and SPF-MPF,
against original particle flow methods only. We exemplify the sequence of particles’ distributions
acquired by the GPF, by the SDPF and by the stochastic particle flow in Figure 2.7. It becomes
clear that the final distribution generated by the stochastic particle flow is closely similar to the
true posterior density, precisely describing the local moments of the two modes. In opposition,
the GPF generates a distribution that is excessively biased for the most peaky mode whereas
the SDPF generates a distribution that does not describe correctly the covariances of each
mode.

These findings are quantified by the average Jensen-Shannon divergences presented in Ta-
ble 2.8. Table 2.8 shows a small divergence of the density filtered by the SPF-GS with respect to
the true posterior, a small divergence of the SPF-MPF proposal density as well as of the target
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Figure 2.7: Sequence of samples’ distributions for the bimodal, bivariate example

density, whereas the divergences of the original particle flows are fairly big. The SPF-MPF
provides a high effective sample size.

Nonlinear, Unimodal, Bivariate Model

The nonlinear bivariate model was tested in two cases:

Case 1. favorable for marginal particle filters, and

Case 2. unfavorable, i.e., emulating a scenario similar to that presented in the first toy
example where importance sampling fails.

The parameters used for Cases 1 and 2 are presented in Table 2.6 and Table 2.7, respectively.
In either cases the sequence of distributions generated by the original particle flows and

by the stochastic particle flow are as illustrated in Figure 2.8. Once more it becomes evident
that the stochastic particle flow provides a superior distribution of samples to approximate
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Parameters for the nonlinear bivariate model, Case 1

Initial distribution x̄k−1 =

(
0
0

)
, Pk−1 =

(
20 0
0 20

)
Markov transition pdf f(xk−1) = xk−1, Qk =

(
20 0
0 20

)

Likelihood function h(xk) =

 √
xk (1)

2
+ xk (2)

2

atan
(

xk (2) /xk (1)
) ,

Rk =

(
1.00 0

0 0.16

)
Observation yk =

(
20
0◦

)
Table 2.6: Parameters for the nonlinear bivariate model, Case 1

the posterior density, which demonstrates its higher level of accuracy and regularity. Similarly
to results presented for previous examples, the GPF seems to generate substantially biased
distributions whereas the SDPF seems highly prone to regularity problems. These aspects are
well corroborated by the average Jensen-Shannon divergences presented in Table 2.8.

In the comparison we also included other marginal particle filters. For Case 1 (favorable), we
illustrate in Figures 2.9 and 2.10 how the marginal importance densities, projected (marginal-
ized) onto the horizontal and vertical planes, would look like as proposed by the marginal
auxiliary particle filter (MAPF) and by the SPF-MPF. It is clear that in this case both MAPF
and SPF-MPF generate proposal densities quite proximate of the empirical marginal target,
which in turn approximates well the true posterior. Additionally, it is possible to visualize that
the SPF-MPF provides a slightly better proposal density in terms of similarity to the target
density, which is corroborated by a greater average effective sample size as presented in Ta-
ble 2.8. All other marginal particle filters don’t generate effective importance densities in terms
of approximating either the true posterior or the target density.

For Case 2 (unfavorable), importance sampling fails as exemplified by the projections of
the importance density proposed by the MAPF depicted in Figure 2.11. By the same reason
explained before, the importance sampling procedure fails to provide a satisfactory filtering
measure owing to the errors that affect evaluations of both the marginal target density and
the marginal importance density. As a consequence, in this case, any marginal particle filter
generates a poor solution, although the MAPF provides a high effective sample size. The
SPF-MPF generates a remarkably poor solution for Case 2 because it distributes particles
to approximate the true posterior density by design but must constrain the proposal mixture
components to match a very inaccurate empirical target density.

In contrast, in both Cases 1 and 2 the SPF-GS proposes a direct filtering density that accu-
rately approximates the true posterior density. The SPF-GS is demonstrated to be insensitive
to the issues caused by an observation located relatively far from the initial distribution. These
features are quantitatively captured by the performance indexes summarized in Table 2.8.
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Parameters for the nonlinear bivariate model, Case 2

Initial distribution x̄k−1 =

(
0
0

)
, Pk−1 =

(
10 0
0 10

)
Markov transition pdf f(xk−1) = xk−1, Qk =

(
5 0
0 5

)

Likelihood function h(xk) =

 √
xk (1)

2
+ xk (2)

2

atan
(

xk (2) /xk (1)
) ,

Rk =

(
1.00 0

0 0.16

)
Observation yk =

(
20
0◦

)
Table 2.7: Parameters for the nonlinear bivariate model, Case 2

λ = 0.10 T

-25 -20 -15 -10 -5 0 5 10 15 20 25

-25

-20

-15

-10

-05

 00

 05

 10

 15

 20

 25

λ = 1.00 T

-25 -20 -15 -10 -5 0 5 10 15 20 25
-25

-20

-15

-10

-05

 00

 05

 10

 15

 20

 25

Previous and current posterior pdf

Particles - Stochastic particle flow

λ = 0.10 T

-25 -20 -15 -10 -5 0 5 10 15 20 25

-25

-20

-15

-10

-05

 00

 05

 10

 15

 20

 25

λ = 1.00 T

-25 -20 -15 -10 -5 0 5 10 15 20 25
-25

-20

-15

-10

-05

 00

 05

 10

 15

 20

 25

Particles - Gaussian particle flow

Particles - Scaled-drift particle flow

Figure 2.8: Sequence of samples’ distributions for the nonlinear, bivariate example
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Figure 2.9: Horizontal-plane projection of densities for the nonlinear, bivariate example

Density Multimodal, linear Nonlinear - Case 1 Nonlinear - Case 2
JSDavg ESSavg JSDavg ESSavg JSDavg ESSavg

Marginal target 0.0118 - 0.0074 - 0.2444 -
SPF-GS 0.0003 - 0.0133 - 0.0755 -
SPF-MPF 0.0217 93.00% 0.0112 84.01% 0.2746 10.79%
Gaussian particle flow 0.2647 - 0.6563 - 0.5279 -
Scaled-drift particle flow 0.3866 - 0.4962 - 0.5804 -
Marginal BPF - - 0.9969 0.37% 0.9998 0.13%
Marginal EPF - - 0.3131 27.57% 0.5714 8.83%
Marginal UPF - - 0.7753 4.44% 0.8136 2.31%
Marginal APF - - 0.0119 81.32% 0.1467 85.11%

Table 2.8: Comparison of densities for the bivariate examples
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Figure 2.10: Vertical-plane projection of densities for the nonlinear, bivariate example
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Figure 2.11: Failure of marginal importance sampling for the nonlinear, bivariate example
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2.7.2 Multi-Sensor Bearings-Only Tracking

Estimation in clutter of a target’s position and velocity based solely on angular measurements is
a relevant problem that finds direct application in airborne radar and sonar in passive listening
mode. We propose an example where a single target is observed by a circumferential array of
sensors. Each sensor measures the target’s bearing with respect to its own position.

In this example, we compare performances of the following filters:

• multi-sensor EKF that performs a series of centralized measurement updates, considering
each sensor in sequence;

• Information Matrix Fusion filter (IMF-EKF) [7] that fuses distributed estimates (in par-
allel) into a global estimate using the Information Matrix form of the EKF;

• bootstrap particle filter (SIR);

• Gaussian particle flow (GPF);

• scaled-drift particle flow (SDPF); and

• stochastic-particle-flow Gaussian sum (SPF-GS).

As mentioned before, in order to work properly, both the GPF and SDPF are implemented
based on a companion filter that estimates the state covariance matrix. This is in accordance
with implementations suggested by Choi et al. [30] and Ding & Coates [63]. In this example
we used the multi-sensor EKF as companion filter for both the GPF and SDPF. In contrast,
the stochastic particle flow does not require a companion filter.

In all multi-sensor and multi-target tracking examples we shall use the root-mean-square
error (RMSE) and the normalized-estimation error squared (NEES) as performance indexes,
hence, for convenience, we provide their definition as follows. Suppose that the sequence of true
dx-dimensional states (ground truth) of a moving object is known, {xk,truth}k∈[0..K]. Provided
that measurements are generated, {y(r)

k }k∈[1..K],r∈[1..NMC], and estimates (along with state co-
variances) are produced by a filter, {x̂(r)

k , P̂
(r)
k }k∈[1..K],r∈[1..NMC], over NMC Monte Carlo runs,

the RMSE and the NEES are defined respectively as

RMSEk ,

√√√√ 1

NMC

NMC∑
r=1

(x̂
(r)
k − xk,truth)T(x̂

(r)
k − xk,truth), (2.81)

NEESk ,
1

dxNMC

NMC∑
r=1

(x̂
(r)
k − xk,truth)TP̂

(r)−1
k (x̂

(r)
k − xk,truth), (2.82)

The RMSE indicates how accurate the estimates provided by a filter are, in the mean square
sense, and the NEES indicates how consistently (or credibly) a filter can produce estimates,
in the sense that the estimates variability as given by consistent estimators should be small
over many trials. Ideal estimators should produce accurate and consistent estimates, that is,
RMSEk ≈ 0 and NEESk ≈ 1 from above10 for k = 1, . . . ,K.

10It is expected that 1
NMC

∑NMC
r=1 (x̂

(r)
k − xk,truth)TP̂

(r)−1
k (x̂

(r)
k − xk,truth) ↘ tr {Idx} = dx for estimators

increasingly consistent.
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The bootstrap particle filter (SIR), the GPF and SDPF, and the SPF-GS consider all mea-
surements jointly according to a joint likelihood function described in the next section. Per-
formance is analyzed by computing the root-mean-square error (RMSE) of estimates and the
normalized-estimation error squared (NEES) over 100 Monte Carlo runs. All particle-based
filters use 200 samples.

A Multi-Sensor Bearings-Only Model

When tracking in clutter based on multiple measurements, the usual treatment rests on the
probabilistic data association (PDA) [6]. In the PDA model, a set of mk valid measurements
is received at each time step k and assumed to be generated according to the possibilities: (i)
all measurements are false alarms (clutter), (ii) one of the measurements is originated from the
target and the remaining are false alarms. Let θk,i be the association event that the ith mea-
surement is target-originated. The PDA filter computes the association probabilities p(θk,i|y1:k)

conditional on the set of all received measurements up to time instant k, and calculates the
target state posterior density, p(xk|y1:k), by marginalizing the joint density p(xk, θk,1:mk |y1:k)

over all possible associations.
In our example, a single target is tracked by a set of Ns sensors located along a circumference

that encloses the surveillance region, at equally-spaced angular positions. As per the PDA
model, one target is known to exist a priori, detected with probability Pd,j by the jth sensor,
and the number of clutter detections per sensor is Poisson-distributed with mean λc ·V , where λc
is the clutter spatial density and V is the surveillance region’s volume. For any given set of Ns
sensors, the expected likelihood can be easily obtained by extending the procedure established
by Marrs et al. [133] to multiple sensors, to give

p (yk|xk, y1:k−1)

=

Ns∏
j=1

V −mk,j
(λcV )

mk,j e−λcV

mk,j !

[
λc(1− Pd,j) +

mk,j∑
i=1

Pd,jN (yk,i(j);hj(xk),Rk,j)

]
, (2.83)

where mk,j is the total number of validated measurements for the jth sensor, yk,i(j) is the ith
measurement received by the jth sensor, hj(·) and Rk,j are the observation function and the
observation noise variance for the jth sensor, respectively.

On a bidimensional state space, the bearing observations are modeled by

hj(xk) = atan
(

xk (2)− p2,j

xk (1)− p1,j

)
, (2.84)

where pj = (p1,j , p2,j)
T are the position coordinates for the jth sensor. We assume a target

moving according to the nearly-constant velocity model,

xk = Fxk−1 + uk, uk ∼ N (uk; 0dx ,Qk), (2.85)

where xk = (px1
, px2

, vx1
, vx2

)Tk is the state vector composed of position and velocity in Cartesian
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coordinates (x1, x2), and

F =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 , (2.86)

Qk =


∆t3/3 0 ∆t2/2 0

0 ∆t3/3 0 ∆t2/2

∆t2/2 0 ∆t 0

0 ∆t2/2 0 ∆t

σ2
q . (2.87)

The multi-sensor joint likelihood (2.83) is incorporated in the bootstrap (SIR) filter, the GPF
and SDPF, and the SPF-GS by considering their filtering densities to target a posterior density
involving such joint likelihood. Regarding the implementation of particle flows, specifically for
this problem, the GPF and SDPF reinterpret the filtered density empirically as a Gaussian pdf
at the end of each iteration in order to avoid exponential growth of the number of mixture
components over time. This practical aspect does not affect the SPF-GS, whose filtered density
is a mixture composed invariably of N local solutions to the actual posterior pdf, where N is
the number of samples (and mixture components).

Generally speaking, multi-sensor bearings-only tracking is a difficult problem to solve when
the observation noise has high variance, the probability of detection is relatively low and the
probability of having clutter in the surveillance region is not negligible. In this scenario, the
difficulty stems from the fact that the joint multi-sensor likelihood (2.83) is a product of mix-
tures composed of several nonlinear and non-informative likelihood terms: when nonlinearity
is pronounced by a high-variance observation noise, the resulting posterior density may not be
well expressed by simple parametric densities. In addition, this difficulty is modulated by the
amount of information available: the fewer the number of sensors the more difficult to solve
the problem. Another aspect that poses additional concern is the system’s observability. It is
highly dependent on the relative position of a sensor with respect to the target’s trajectory, i.e.,
trajectories radially aligned with a sensor’s position provide less information on the target’s
velocity.

Results

A challenging scenario was set for comparing the filters in order to exacerbate differences in their
performances to a noticeable level. In this very difficult scenario, state process noise is assumed
with variance scaled by σ2

q = 25 (m/s)2/s, observation noise variance is Rk = 25deg2, Pd = 0.50

and λc×V = 1.00 false alarm/sensor/scan, for identical sensors. Even though estimation errors
generated for such a scenario might not be feasible as an Engineering solution, it is certainly of
practical interest to examine how the estimates’ errors scale to such extreme scenarios, which
might happen in real applications. This problem is particularly interesting because the smaller
the number of sensors the more difficult to achieve reasonable estimates since, in this case, the
low signal-to-noise ratio would deteriorate the inference. For this example, the SPF-GS has
been set with time horizon T = 10 s and integration step size ∆λ = 1 s.

The resulting track of an exemplary run is shown in Figure 2.12. The track initiation is
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based on an overdetermined triangulation of measurements for the first two steps. No gating
has been performed, i.e., no preprocessing to discard measurements that fall outside a high-
confidence region of each sensor. Figure 2.12 depicts a successful tracking of the target despite
the difficult scenario.
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Figure 2.12: Illustration of bearing-only multi-sensor tracking

The resulting root-mean-square error (RMSE), normalized-estimation error squared (NEES),
and average computation time (per time step) of all filters for different numbers of sensors are
shown in Figures 2.13, 2.14 and 2.15 respectively. The following important aspects can be
observed from Figure 2.13:

• Somewhat counterintuitively, the multi-sensor serial EKF provides better estimates than
that of Information Matrix Fusion EKF (IMF-EKF), both in terms of precision (RMSE)
and “consistency” (or credibility11 as indicated by NEES).

• The scaled-drift particle flow (SDPF) shows remarkably poor performance.

• The bootstrap particle filter (SIR) provides mediocre performance, eventually becoming
better than the IMF-EKF as the number of sensors increases.

11As presented in [122], the normalized-estimation error squared (NEES) is the simplest metric that indicates
an estimator’s credibility.
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• Accuracies shown by the Gaussian particle flow (GPF) and the serial EKF are commen-
surate and similar to that of the stochastic particle flow (SPF-GS) when the number of
sensors is high.

• As expected, the overall estimation accuracy is improved as the number of sensors is
increased.

• The SPF-GS provides the most accurate estimates in difficult scenarios, i.e., when the
number of sensors is small.

• Estimation by the SPF-GS is more consistent (or credible), which is denoted by a NEES
closer to one (log10 NEES→ 0) from above.

It is worth commenting on the results comparing GPF and SPF-GS. Specifically for this prob-
lem, when the number of sensors is sufficiently high, the GPF provides estimates as accurate
as those of SPF-GS at a slightly lower computational cost. It is also remarkable the successful
synergy between the GPF and its companion filter, a multi-sensor serial EKF that provides the
covariance estimates. However, it is difficult to justify the calculated NEES for original particle
flows since their first and second moment estimates are underpinned by distinct filtering meth-
ods. On the other hand, the stochastic particle flow (SPF-GS) provides fairly accurate state
estimates and securely constitutes the most credible estimator among all evaluated filters.
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Figure 2.13: RMSE for the multi-sensor bearing-only tracking example
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Figure 2.14: NEES for the multi-sensor bearing-only tracking example
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Figure 2.15: Average computation time for the multi-sensor bearing-only tracking example

2.7.3 Convoy Tracking

Tracking multiple objects in clutter is as challenging as important for real applications. In
the multi-target tracking standard methods, the most common treatment assumes the targets’
states to be independent so that the joint probability density is the product of their marginal
densities. While this assumption is fairly reasonable for applications where objects are far
apart most of the time, the same cannot be stated for cases where objects are in proximity for
a considerable part of time. These latter cases elicit tracking all targets jointly in the hope
of implicitly capturing dependencies between targets. When targets are tracked jointly the
problem’s dimensionality scales with the number of targets.
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To illustrate this situation, we propose an example of a convoy of vehicles that are forced
into mutual proximity when trafficking on a road. The vehicles have explicit interactions as each
driver aims driving at the maximum allowed speed unless there is another vehicle immediately
in front at a slower speed. This scenario requires care for a safe distance. The intent of the
tracker is then to provide the best estimate of each vehicle on a convoy, given a set of non-
identified measurements corrupted by noise and possible false alarms (clutter) reported by a
position sensor.

We compare performances of the following filters:

• Joint Probabilistic Data Association (JPDA) filter [6];

• Global Nearest Neighbor Data Association (GNN) filter;

• JPDA with a Gaussian mixture per target (JPDA-GM), applying mixture reduction [153];

• Coupled Probabilistic Data Association (CPDA) filter [16];

• multi-target bootstrap particle filter (joint SIR) based on the description by Blom &
Bloem [15];

• Gaussian particle flow (GPF);

• scaled-drift particle flow (SDPF); and

• stochastic-particle-flow Gaussian sum (SPF-GS).

The GPF and the SDPF rely on a companion filter to estimate state covariance matrices
correctly, according to implementation guidelines by Choi et al. [30] and Ding & Coates [63].
In this example, we used the CPDA [16] as companion filter for the original particle flows (GPF,
SDPF). In contrast, the SPF-GS does not require a companion filter.

The CPDA, the joint bootstrap particle filter (SIR), the GPF and SDPF, and the SPF-
GS consider all targets’ states jointly, as a single high-dimensional state. In contrast, the
classical multi-target filters track targets separately, where each target’s state is described by
the nearly-constant velocity model. Performance is analyzed by computing the root-mean-
square error (RMSE) of estimates and the normalized-estimation error squared (NEES) over
100 Monte Carlo runs. The particle filter (SIR), the original particle flows and the stochastic
particle flow use 200 samples.

The Intelligent Driver Model

The Intelligent Driver Model (IDM) [193] is a model12 used in Traffic Engineering to simulate
phenomena such as congestion and to analyze the traffic behavior as a response to changes in
the transport system. Because the interaction between vehicles is explicitly taken into account
by the IDM, tracking based on it involves consideration of the joint state of multiple targets.
Even though the IDM establishes an empirical description of traffic for multiple vehicles, it
has not been previously used in the context of multi-target tracking. We propose a stochastic

12In its simplest form, the IDM is focused on the interaction of vehicles moving along a single-carriageway
road. More complex variants exist to model overtaking, for example, and consider factors such as the politeness
of the driver.
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version of the IDM and discretize it in order to make it compatible with multi-target trackers
formulated on the joint state space.

The IDM describes the dynamics of vehicles in traffic, in terms of positions and velocities,
incorporating the interaction between each vehicle and the vehicle directly in front. Provided
a vehicle indexed as α with length lα, the dynamics of its position xα and velocity vα are given
by the following (continuous-time) stochastic differential equations:

dxα = vαdt, (2.88)

dvα = a

[
1−

(
vα
v0

)δ]
︸ ︷︷ ︸

v̇free road
α

dt− a

[
s̄

sα

]2

︸ ︷︷ ︸
v̇interaction
α

dt+ dwt, (2.89)

where {wt}t≥0 is a Wiener process, sα = xα−1 − xα − lα is the net distance between vehicles,
the approaching rate is given by ∆vα = vα−1 − vα, and s̄ = s̄ (vα,∆vα) is the expected distance
defined as

s̄ (vα,∆vα) = s0 + vαTh +
vα∆vα

2
√
a · b

. (2.90)

The model dynamics is such that when a vehicle is travelling on a free road it will predom-
inantly accelerate according to v̇free road

α up to the maximum allowed speed v0, whereas when
it approaches another vehicle immediately in front, the decrement in acceleration according
to v̇interaction

α becomes relevant to maintain a safe-time headway Th and to avoid approaching
closer than the minimum safe distance s0. The IDM parameters are summarized in the following
table.

Parameter Description
a nominal maximum acceleration
b comfortable braking deceleration
δ acceleration exponent (driver dynamics)
v0 free-road desired velocity
s0 minimum allowed distance between vehicles
Th safe-time headway
α− 1 index of the vehicle direcly in front

Table 2.9: Parameters of the Intelligent Driver Model (IDM)

In order to use the stochastic IDM as the state process for a multi-target tracker, its
continuous-time equations are discretized by a first-order approximation (Markov random field).
This assumes that the state’s derivative with respect to time is linear in time between two sub-
sequent measurements but the interactions between non-adjacent vehicles are negligible when
compared to the interactions between adjacent vehicles. The discretized version of the stochastic
IDM is presented in Section 2.9.5.

The Multi-Target Likelihood Function

The joint multi-target filters extend the joint probabilistic data association (JPDA) [6] frame-
work for situations where the targets’ states are not mutually independent conditioned on
the past observations. This formulation has been first proposed as the JPDA Coupled filter
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(JPDAC) [6] and further generalized by Blom & Bloem [16, 15] who consider the measurement-
to-target associations implicitly.

In the JPDA model, a set of Nm valid measurements is received at each time step k and
assumed to be generated according to the possibilities: (i) each of the measurements may be
originated from each target, considering all possible associations, (ii) a measurement not origi-
nated from any target is due to a false alarm (clutter). These possibilities are exhaustive such
that a measurement can have only one source, and at most one of the validated measurements
can originate from a target.

Let φk,i ∈ {0, 1, . . . , Nm} be an association event that maps each target i ∈ {1, . . . , Nt} to
the measurement indexed as φk,i, where φk,i = 0 means that no measurement is associated to the
ith target. The Coupled JPDA filter computes the joint association probabilities p(φk,1:Nt |y1:k)

conditional on the set of all received measurements up to time instant k, and calculates the joint
state posterior density, p(xk,1:Nt |y1:k), by marginalizing p(xk,1:Nt , φk,1:Nt |y1:k) over all possible
joint associations.

In the JPDA framework, Nt targets are known to exist a priori, detected with probability
Pd by a single sensor; the number of clutter detections is Poisson-distributed with mean λc · V ,
where λc is the clutter spatial density and V is the surveillance region’s volume; the location
of each clutter detection is independently distributed according to a spatial density ηc(y); and
the likelihood function of the jth measurement being originated from the ith detected target
is p(yk,j |xk,i). Denoting the joint multi-target state as xk,1:Nt and the joint observation as
yk,1:Nm , the joint likelihood can be either obtained as in [15] or by a formulation equivalent to
the Coupled JPDA as

p(yk,1:Nm |xk,1:Nt) =

[∏Nm
j=1 ηc(yk,j)

]
Nt!

×
Nt∑

Nd=0

(λcV )
Nm−Nd e−λcV

(Nm −Nd)!
PNdd (1− Pd)Nt−Nd

∑
φk,1:Nt |Nd

Nt∏
i=1

p(yk,φk,i |xk,i)
ηc(yk,φk,i)

. (2.91)

The joint state vector xk,1:Nt = (p1, . . . , pNt , v1, . . . , vNt)
T
k is composed of position and velocity

of all vehicles in the convoy, and the joint observation yk,1:Nm = (y1, . . . , yNm)Tk contains
position measurements of all targets and possible false alarms obtained at a given time instant
k.

The joint bootstrap particle filter, the GPF and SDPF, and the SPF-GS consider their fil-
tering densities to target a joint posterior density incorporating the joint multi-target likelihood
function (2.91). Regarding the implementation of original particle flows, the GPF and SDPF
reinterpret the filtered density empirically as a Gaussian pdf at the end of each iteration in order
to avoid exponential growth of the number of mixture components over time. In contrast, this
practical aspect does not affect the stochastic particle flow, whose filtered density is a mixture
composed of a fixed number of local solutions to the actual posterior pdf.

Results

We simulated the trajectories of vehicles on a ring road by integrating the continuous-time
stochastic IDM over 60 seconds with the parameters presented as follows. The convoy was set
to start from rest with the vehicles initially positioned apart, led by a truck so that the queue of
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cars is slowed down and forced into mutual proximity. The minimum allowed distance between
vehicles was set to be exaggeratedly small (s0 = 0.5m) to induce the model to control the
distance between cars mainly based on the safe-time headway Th. In this case, the safe-time
headway indirectly determines the desired distance between vehicles, which is denoted as target
distance in the table below. At the final steady state, the net speed of the convoy is dominated
by the free-road speed of the truck, which motivates the safe-time headway being computed
based on v0,truck.

Parameter car truck

a 0.5m/s2 0.4m/s2

b 1.5m/s2 1.2m/s2

δ 4 4
v0 15m/s 10m/s
s0 0.5m 0.5m
Th

{target distance (m)}
v0,truck

-
lα 5m 20m

Table 2.10: Parameters used for the IDM example

The joint state process covariance matrix is assumed as scaled by σ2
q = 0.0625 (m/s)2

/s, each
position observation has variance σ2

r = 4m2, Pd = 0.80, and λc × V = 0.01 false alarm/scan,
and the surveillance region’s “volume” V , is, in fact, the length covered by a confidence region
(≈ 99.73%) that contains all the vehicles. Proposing a method to effectively initiate tracks
was out of the example’s scope, thus track initiation was considered to be ideal, i.e., the initial
position and velocity of the targets are known with initial uncertainty scaled by the observation
noise. The stochastic particle flow has been set with time horizon T = 15 s and integration step
size ∆λ = 1 s.

Figure 2.20 shows two frames of an exemplary run, demonstrating the situation where a
queue of cars is slowed down by a truck, forcing them into proximity. The non-filled rectangles
depicted in Figure 2.20 denote the position estimates provided by the filter applied for that
run. Interactions between vehicles in the convoy, due to proximity, can be well perceived by
position estimates of the exemplary run as shown in Figure 2.19.

The resulting root-mean-square error (RMSE), normalized-estimation error squared (NEES),
and average computation time (per time step) of all filters, for different numbers of vehicles,
and target distance between vehicles d = 10m, are shown in Figures 2.16, 2.17 and 2.18 respec-
tively. RMSE and NEES were computed over 100 Monte Carlo runs, with the particle-based
filters using 200 samples. The following important aspects can be noted from Figure 2.16:

• In general, trackers that estimate on the joint 2Nt-dimensional state space clearly out-
perform the classical multi-target trackers (JPDA, GNN, and JPDA-GM), both in terms
of precision (RMSE) and credibility (NEES).

• Among the classical multi-target trackers, the Global Nearest Neighbor (GNN) association
filter is the one that provides the most accurate estimates. This can be explained by an
increasingly detrimental effect of the association uncertainty on estimation, which is more
prominent in the JPDA and less prominent on the GNN filter.
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• Estimation errors committed by the multi-target particle filter (joint SIR) grow exponen-
tially with the number of state-space dimensions (2Nt), as expected, due to the curse of
dimensionality.

• The Coupled PDA (CPDA) and the SPF-GS present commensurate root-mean-square
errors, suggesting that most of their accuracy gain originates from tracking on the joint
2Nt-dimensional state space and accounting for inherent dependencies between targets.

• The original particle flows (GPF, SDPF) show significant values of NEES. Most likely this
is because the evaluated implementation of these filters cannot provide reliable estimates
for state covariance matrices and depend on a dissimilar companion filter to work around
it, which affects consistency of their estimates.

• The SPF-GS provides overall higher estimation accuracy (RMSE) and consistency (NEES),
with low sensitivity to increasing the problem’s number of dimensions.

Based on the results for this example, two important remarks are worth making. Firstly, the
results show a notable performance improvement with adoption of filtering on the joint 2Nt-
dimensional state space: about 30-fold improvement in estimation precision (RMSE) and nearly
10-fold in credibility (NEES). The fact that the Coupled PDA performs as well as the SPF-
GS suggests that modeling inherent dependencies between targets and filtering on the joint
space provide most of the performance gain. Secondly, the example not only illustrates well
the curse of dimensionality for the multi-target particle filter (joint SIR) but also corroborates
the success of principled choices made in the SPF’s formulation in order to avoid degeneracy
in high-dimensional problems. This latter observation becomes clear when we realize that the
performance indexes for the stochastic particle flow scale gently with the number of dimensions.

Additionally, it is also worth noting that the original particle flows provide relatively accurate
estimates, scaling well with the number of dimensions. For the evaluated implementation, both
particle flow filters (GPF, SDPF) rely on covariance matrices estimated by the CPDA as a
companion filter. Due to this fact, calculated NEES for these filters is not reliable since their
first and second-moment estimates are underpinned by distinct filtering methods. This does
not disqualify the original particle filters per se since observed characteristics are probably due
to the implementation settings. Under these circumstances, actual consistency (credibility) of
their estimates cannot be quantified and, ultimately, evokes the question about the extent to
which the success of the adopted implementation is due to the companion filter.
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Figure 2.16: RMSE for the convoy tracking example
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Figure 2.17: NEES for the convoy tracking example
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Figure 2.18: Average computation time for the convoy tracking example
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Figure 2.19: Position estimates for an exemplary run of the convoy tracking
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Convoy tracking, Joint SPF-GS, step k = 15

Convoy tracking, Joint SPF-GS, step k = 45

Figure 2.20: Illustration of convoy tracking on a ring road
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2.7.4 Inference on Large Spatial Sensor Networks

In this section, we consider the problem proposed by Septier & Peters [175], posed to address
inference of physical quantities of complex phenomena from a collection of noisy measurements
obtained by a large network of spatially distributed sensors. According to Septier & Peters [175],
a large number of applications could adopt such sensor networks to make inferences related to
complex phenomena. Applications include environmental monitoring, weather forecasting etc.
In this framework, a fusion center would regularly receive observations from sensors set up as a
grid, which monitor a time-varying physical phenomenon presenting spatially diverse attributes
such as pressure, temperature, concentrations of substance, radiation levels, seismic activity
etc. Upon fusing the observations, the solution to the problem consists of estimating the
phenomenon state at the current time instant at each of the sensor’s positions. The problem
becomes particularly challenging as the number of sensors in the grid increases, since solving
the problem then demands efficient algorithms for inference in high-dimensions.

The physical phenomenon is modeled as a time-varying spatially-dependent continuous pro-
cess defined over a two-dimensional space which is observed sequentially in time by a 2D spatial
grid of dx = Ns sensors, where dx is the state dimension. At time instant k, each sensor in-
dependently produces a noisy measurement of an attribute of interest about the phenomenon
at its specific location, giving yk,j |xk ∼ p(y(j)

k |xk), ∀j = 1, . . . , Ns. Based on the historic set of
observations Y1:k := {Yk′ : k′ = 1, . . . , k}, where Yk := {yk,j : j = 1, . . . , Ns}, one is required
to estimate, at time k, the state of the physical phenomenon xk ∈ Rdx across the locations of
all sensors in the grid. The state process that models the time-varying physical phenomenon is
considered to follow a transition multivariate Generalized Hyperbolic (GH) density as

pt (xk|xk−1) ∝
Kc1−dx/2

[√
(c2 +Q(xk, xk−1))(c3 + γTΣ−1γ)

]
(√

(c2 +Q(xk, xk−1))(c3 + γTΣ−1γ)
)dx/2−c1 · e(xk−αxk−1)Σ−1γ (2.92)

where Q(xk, xk−1) = (xk − αxk−1)TΣ−1(xk − αxk−1), α ∈ R is the location constant, and
Kc1 [·] denotes the modified Bessel function of the second kind, of order c1. The parameters c1,
c2, and c3 are scalar values that determine the shape of the distribution, Σ ∈ Rdx×dx is the
dispersion matrix, and the vector γ ∈ Rdx is the skewness parameter. The choice of transition
density in 2.92 can account for heavy-tailed and asymmetric data [175], which is beneficial
when modeling physical process with extremal behavior. In special cases, the transition density
becomes the normal, normal inverse Gaussian, skewed-t, and other densities. To generate the
prior distribution at the first time step, we take px(x0) = pt(x0|x−1 = 0).

The dispersion matrix is positive definite and is defined such that the degree of spatial
correlation across sites of a physical phenomenon is given in terms of the separation between
locations as

[Σ]ij = α0 exp
[
−β−1‖Si − Sj‖22

]
+ α1δij , (2.93)

where ‖·‖2 is the L2-norm, δij the Kronecker symbol, α0, α1 ∈ R, and Sm ∈ R2 are the physical
locations of the sensors for m = 1, . . . , Ns.

For this example, we compare the performance of following filters:

• the Sequential Importance Resampling filter (SIR);
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• the block SIR filter, which partitions the state space into separate subspaces of smaller
dimensions (blocks of 4 sensors each) and run a particle filter on each subspace [160];

• the Sequential manifold Metropolis-Adjusted Algorithm (SmMALA) filter [80, 175];

• the Sequential manifold Hamiltonian Monte Carlo (SmHMC) filter [80, 175];

• the Stochastic Particle Flow, Gaussian sum (SPF-GS).

These filters are compared for two cases:

• a Gaussian state process and a Gaussian likelihood;

• a Skewed-t state process and Poisson-distributed observations.

Note that SmMALA and SmHMC are chosen because we perceive they constitute two of the best
sequential MCMC filters that exist. It is essential to justify why we have not included annealed
importance sampling (AIS) [147] and SMC samplers [56] in our comparisons. Although these
techniques are built on fast mixing Markov chains, their filtering procedures operate on the
joint space along the complete path of samples. This makes them highly prone to the curse of
dimensionality for long-time horizons. A careful explanation of this issue can be found in [110]
(and Section 2.6.1) but the key point is that as dimension increases, it becomes increasingly
important to avoid consideration of the path. SMC samplers could be adapted to filter in
the marginal space (at the cost of up to O(N3) evaluations) but this would require an ad-
hoc approximation to the target pdf. Developing the approximations that would be needed to
enable SMC samplers to be applied to the problem we consider is not the focus of the chapter.
We have compared performance of SPF-GS with state-of-the-art techniques (SmMALA and
SmHMC) that consider the marginal distribution as well as techniques (SIR and block SIR)
that we perceive to be good examples of the class of algorithms, which also includes AIS and
SMC samplers, that consider the joint space of the complete sample path and can be applied,
without modifications, to the problem we are focused on solving.

These filters are compared for two cases:

• Gaussian state process and Gaussian likelihood;

• Skewed-t state process and Poisson-distributed observations.

The implementations of SmMALA and SmHMC used are exactly as made available by Septier
& Peters [175]. These algorithms make use of a refinement step of the state [175] at the current
time, performed with a random partitioning of size 4, by using the empirical approximation of
the previous posterior distribution as proposal distribution.

Results

Gaussian State Process and Gaussian Likelihood

We first consider a trivial special case of the GH family as the transition density, namely
the multivariate normal distribution. In this setting, each sensor measures the attribute of a
physical process with some Gaussian noise. The resulting model is given by

pt(xk|xk−1) = N (xk; αxk−1,Σ),

p(yk|xk) = N (yk; xk, R), (2.94)
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where R = σ2
yIdx , and the following model parameters are used: α = 0.9, σ2

y = 2, and with
the dispersion matrix constructed using α0 = 3, α1 = 0.01, β = 20. When performing the
comparison between the filters, we use as a reference the estimates provided by the Kalman
filter (which is optimal in this special case). For the SmMALA and SmHMC, the proposed
metric tensor is given by G (xk) = R−1 + Σ−1.

The methodology presented in [175] for performance evaluation was reproduced. Instead of
presenting the baseline (provided by the Kalman filter) performance explicitly, the accuracy of
each filter is evaluated with respect to the baseline performance, i.e. we observe the difference
between the log mean square error for each filter against the log mean square error for the
Kalman filter. The relative log mean square error, log normalized-estimation error squared
(NEES) and average computation time (per time step) of all filters, for different numbers of
sensors in the grid, are shown in Figures 2.21, 2.22, 2.23 respectively. The mean square error of
the estimates were computed over 100 Monte Carlo runs, with the particle-based filters using
200 samples. The step size adopted for the sequential MCMC filters is ∆λ = 0.5 and the
number of steps obtained as L = L0 + N , where L0 = 0.2N is the number of steps for the
burn-in phase, whereas for the SPF-GS we applied the empirical rules for time horizon and step
step size as presented in subsection 2.4.6. From Figures 2.21, 2.22, 2.23, we can note that for
this example:

• The performances of all sequential MCMC filters are in accordance with the results shown
in [175].

• The SPF-GS outperforms all other filters in terms of mean square error and normalized-
estimation error squared.

• The SPF-GS demands the highest computational effort when the number of sensors is
small, and its computing time scales better than that of SmMALA and worse than that
of SmHMC for higher dimensions.

The results suggest that SPF-GS is the most accurate among the compared methods. It is
unambiguous that the consistency of the estimates produced by the SPF-GS is better than that
by all other filters: the NEES for SPF-GS is very close to one (from above) for all evaluated
dimensions. It may be well possible that better results could be achieved for the sequential
MCMC filters by carefully choosing the step size and number of steps. This would slightly
change the performance indexes. However, we strongly believe that such changes would not
be enough to modify the conclusions. Additional tests with the SPF-GS demonstrate the
computational cost can be directly traded with estimation accuracy. By allowing more steps,
via the criteria of Section 2.4.6, SPF-GS is very close to optimal as depicted in Figure 2.21.
On the other hand, if one fixes the step size to ∆λ = 0.5 and number of steps to L = 20, the
results are as presented in Figures 2.21 and 2.23, where it becomes clear the computational cost
alleviation at the expense of slightly degrading mean square error.

Skewed-t State Process with Poisson-Distributed Observations

A high-dimensional non-linear and non-Gaussian state-space model is now studied. The tran-
sition kernel is proposed to be a multivariate GH skewed-t density described by (2.92) with
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Figure 2.21: Relative MSE for the linear, Gaussian sensor network example
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Figure 2.22: NEES for the linear, Gaussian sensor network example
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Figure 2.23: Average runtime for the linear, Gaussian sensor network example

0 50 100 150 200 250 300 350 400

Dimension dx

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L
o
g
R
el
a
ti
v
e
M
S
E

Relative MSE versus dimension

SIR

Block SIR

SmMALA

SmHMC

SPF-GS

Figure 2.24: Relative MSE for the linear, Gaussian example (SPF-GS with ∆λ = 0.5, L = 20)
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Figure 2.25: Runtime for the linear, Gaussian example (SPF-GS with ∆λ = 0.5, L = 20)

c1 = −ν/2, c2 = ν and c3 = 0. The likelihood function is assumed to be a Poisson distribution,
highly non-linear on the state xk, given by

p(yk|xk) =

dx∏
j=1

λj(xj,k)yj,k

yj,k!
e−λj(xj,k), λj(xj,k) = m1e

m2xj,k , (2.95)

such that xk = (x1,k, . . . , xdx,k)T and yk = (y1,k, . . . , ydx,k)T . The model parameters are fixed
as m1 = 1, m2 = 1/3, α = 0.9, ν = 7, γ = 0.31dx×1 with the dispersion matrix constructed
using α0 = 3, α1 = 0.01 and β = 20. The implied prior density is not log concave, and thus
the tensor metric that defines the diffusion coefficient for the sequential MCMC algorithms is
modified according to

G(xk) = Λ(xk) + Σ̃−1, (2.96)

where

Λ(xk) = m1m
2
2


em2x1,k 0

. . .

0 em2xdx,k

 , (2.97)

Σ̃ =
ν

ν − 2
Σ +

ν²
(2ν − 8)(1/2− 1)2

γγT, ν > 4. (2.98)

For this problem, the local linearization of the stochastic particle flow around a probability
mass xl, analogous to (2.55) and (2.56), is given by

1

2
D∇x log π̃(x) ≈ C(xl) · x + c(xl),

C(xl) =
1

2
D
(
−V(xl)

−1 − P−1
k|k−1

)
, (2.99)

c(xl) =
1

2
D
(
m2yk − v(xl) + V(xl)

−1xl + P−1
k|k−1αµm,k−1

)
, (2.100)
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where V(xl)
−1 = Λ(xl), v(xl) = m1m2e

m2xl , and

Pk|k−1 = E
[
(xk|k−1 − αµm,k−1)(xk|k−1 − αµm,k−1)T

]
. (2.101)

Once again, we follow the methodology presented in [175] for performance evaluation. The
log root-mean-square error, log normalized-estimation error squared (NEES) and average com-
putation time (per time step) of all filters, for different numbers of sensors in the grid, are
shown in Figures 2.26, 2.27, and 2.28 respectively. The mean square error of the estimates
were computed over 100 Monte Carlo runs, with the particle-based filters using 200 samples.
The step size adopted for the sequential MCMC filters is ∆λ = 0.5 and the number of steps
computed as L = L0 + N , where L0 = 0.2N is the number of steps for the burn-in phase,
whereas for the SPF-GS we applied the empirical rules for time horizon and step-step size as
presented in Subsection 2.4.6. In Figure 2.29 we illustrate the posterior means and variances
of the state across the sensors grid (dx = 400) at different time steps, for all evaluated filters.
From Figures 2.26, 2.27, and 2.28, we can note that

• The performances of all sequential MCMC filters are in accordance with the results shown
in [175].

• The SPF-GS presents performance commensurate to that of the SmHMC filter in terms
of root-mean-square error, outperforming all other filters.

• The SPF-GS outperforms all other filters in terms normalized-estimation error squared.

• The SPF-GS demands a computational effort higher than that of SmMALA when the
number of sensors is small but its computing time scales better than that of SmMALA
and similarly to that of SmHMC for higher dimensions.

For this example, the results indicate that the SPF-GS is as accurate as the SmHMC filter in
general, and that SPF-GS is the most accurate method in high dimensional problems. Once
again, it is clear that the consistency (credibility) of estimates by the SPF-GS is higher than that
by all other filters: the NEES is very close to one (from above) for all evaluated dimensions. It is
worth noting that, to keep the computational cost for the SPF-GS competitive, the total number
of steps was limited. This did result in some loss of accuracy but the implication is perhaps
that improved performance is possible if sufficient computational resources are available. The
associated trade-off is sufficiently complex to form a hard obstacle against systematic solutions.
However, the techniques presented in Section 2.4.6 proved sufficient to generate the results
presented here.

2.8 Conclusions

This chapter focused on a crucial issue of multi-object estimators touched on in Chapter 0:
describing the filtering probability distributions of high-dimensional nonlinear phenomena to
an adequate level of accuracy despite the curse of dimensionality and irregularities caused by
usual Monte Carlo approximations.

The chapter builds on concepts such as continuous-time filtering and sequential Monte Carlo
methods, being intensely studied by the research community. It provides a description of
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Figure 2.26: RMSE for the nonlinear, non-Gaussian sensor network example
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Figure 2.27: NEES for the nonlinear, non-Gaussian sensor network example
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Figure 2.28: Average runtime for the nonlinear, non-Gaussian sensor network example
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Figure 2.29: Posterior statistics for the nonlinear, non-Gaussian sensor example (dx = 400)
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these concepts that aims to draw out some key insights from the theoretical research into
sequential Monte Carlo filtering while also responding to the significant empirical challenges
encountered when applying existing and emerging tools to difficult real-world problems. More
specifically, the chapter is part of a growing body of research which aims to apply concepts
from the sequential Monte Carlo community to problems involving high-dimensional spaces.
This broader body of research and this chapter, in particular, is motivated by the increasing
demand for more statistically efficient methods to solve difficult inference problems exemplified
by those involving large numbers of dimensions and relevant to a vast range of applications.

Also, the chapter capitalizes on some important findings that have been reported recently
[198, 160, 175] regarding how the local properties of sequential Monte Carlo filtering measures
impact algorithms’ abilities to solve high-dimensional problems. We exploit the observation
made by Rebeschini & van Handel [160], that, by using the decay of correlations property, it is
possible to develop particle filters based on local solutions whose approximation error becomes
less sensitive to augmenting the number of state dimensions.

Within this context, we proposed a novel filter which aims to address the well-known short-
comings of sequential Monte Carlo methods when applied to nonlinear high-dimensional filtering
problems. The novel method uses a Monte Carlo procedure to generate a sequence of equally-
weighted samples that each guide a local solution of the Fökker-Planck equation. Using these
local approximations, a mixture is produced that approximates the filtering density. The result
is a statistically-sound general-purpose class of algorithms. In the context of a simple, though
not trivial, high-dimensional inference problem and in comparison with state-of-the-art algo-
rithms, the proposed approach has been shown to offer significant improvement in statistical
consistency with a commensurate computational expense.

In its most computationally efficient form, SPF-GS, the proposed filter has a complexity
bounded by only O

(
NLd3

x

)
evaluations13 and it has the appealing property that its operations

per sample (and the associated mixture component) can be parallelized. When articulated as a
marginal particle filter, SPF-MPF, the complexity is bounded by NLd3

x +N +N2 ∼ O(NLd3
x)

evaluations. That said, our investigations indicate that further consideration is required in
order to explore fully the potential of the stochastic particle flow. Future work will focus on the
computational cost of the algorithms and on guaranteeing certain properties of the diffusion
matrix, (e.g., ensuring the matrix is positive definite and not singular). It should be possible,
at least in the context of some statistical models, to reduce the computational complexity by
exploiting or imposing sparsity in the diffusion matrix. Girolami & Calderhead [80] suggest
that the use of guiding Hamiltonians [67] could provide a way of reducing such computational
cost but it is currently unclear how such a solution would be adopted in the context of the
stochastic particle flow. Another potentially promising future direction would be adopting
the same approach as the well-known Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
and thereby work around the need to explicitly evaluate the Hessian matrix at all simulation
steps. We also strongly believe that it would be possible for future work to result in further
improvements on the bounds used to compute the step size and number of simulation steps.
Such advances will likely improve the computational efficiency of the algorithm and are the
subject of ongoing development.

13It is important to remark that the stochastic particle flow is much more computationally complex than the
original particle flows, which are generally bounded by O (N) computations both in theory and practice.
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2.9 Proofs and Derivations

2.9.1 Bounds for the Time Horizon and Step Size

General Assumptions

Let Φ : Rdx → R be a measurable convex function, satisfying
ˆ
Rdx

exp{−Φ (x)} <∞, (2.102)

Φ (x)− Φ (x̄)−∇xΦ (x̄)
T

(x− x̄) ≥
1

2
m ‖x− x̄‖22 , (2.103)

‖∇xΦ (x)−∇xΦ (x̄)‖2 ≤M ‖x− x̄‖2 , ∀x, x̄ ∈ Rdx , (2.104)

for two existing positive constants m and M . Let x̄ ∈ Rdx be the global minimum of Φ (x). We
define the log-concave target density for a Langevin algorithm as π(x) = e−Φ(x)

(´
Rdx e

−Φ(x)dx
)−1

.

Lemma 2.3. Suppose a probability measure PL,T produced by the exact integration, up to time
horizon T , of the Langevin diffusion SDE

dLλ = −1

2
Dλ∇Φ(Lλ)dλ+ D

1/2
λ dWλ, λ ≥ 0, L0 = 0, (2.105)

departing from the initial density ν(x) and targeting the invariant density π(x) ∝ exp{−Φ(x)}
with measure Pπ(dx). Process {Wλ}λ≥0 is the standard Wiener process and Dλ is the diffusion
matrix. Under assumptions (2.102), (2.103), and (2.104),

‖PL,T − Pπ‖TV ≤ e−
1
2TmEPπ

[
ν2/π2

]1/2
, T ≥ 0. (2.106)

Proof. By denoting the Markov transition kernel as Pt(x, ·), an argument similar to that given
by Dalalyan [41], invoking the Cauchy-Schwarz inequality and the spectral gap bound for the
transition operator, gives

‖PL,T − Pπ‖TV = sup
A∈B(Rdx )

∣∣∣∣ˆ
Rdx

Pt(x, A)ν(x)dx− Pπ(A)

∣∣∣∣
= sup
A∈B(Rdx )

∣∣∣∣ˆ
Rdx

(Pt(x, A)− Pπ(A)) ν(x)dx

∣∣∣∣
= sup
A∈B(Rdx )

∣∣∣∣ˆ
Rdx

(Pt(x, A)− Pπ(A))
ν(x)

π(x)
π(x)dx

∣∣∣∣
≤ sup
A∈B(Rdx )

ˆ
Rdx
|Pt(x, A)− Pπ(A)|

∣∣∣∣ν(x)

π(x)

∣∣∣∣π(x)dx

≤ sup
A∈B(Rdx )

[ˆ
Rdx
|Pt(x, A)− Pπ(A)|2 π(x)dx

] 1
2
(ˆ

Rdx
|ν(x)/π(x)|2 π(x)dx

) 1
2

(Dalalyan, 2014) ≤ 1

2
e−

1
2mTEPπ

[
ν2/π2

]1/2
, (2.107)

where B(Rdx) is the σ-algebra composed of the Borel sets of Rdx .
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Lemma 2.4. Under conditions (2.102), (2.103) and (2.104), and assumptions of Lemma 2.3,
given the initial probability density ν(x) = N (x; µν , σ

2
νIdx), for σ2

ν < 2M−1, then

‖PL,T − Pπ‖TV

≤ 1

2
exp

{
−1

2
mT +

dx
4

log

(
1

mσ2
ν(2−Mσ2

ν)

)
+

M

2(2−Mσ2
ν)
‖x̄− µν‖22

}
. (2.108)

Proof. According to Lemma 4 in [41], if (2.104) holds then

Φ (x)− Φ (x̄)−∇xΦ (x̄)
T

(x− x̄) ≤
M

2
‖x− x̄‖22 . (2.109)

Thus,

π (x) ≥ e−M2 ‖x−x̄‖22−Φ(x̄)

(ˆ
Rdx

e−
m
2 ‖x−x̄‖22−Φ(x̄)dx

)−1

= e−
M
2 ‖x−x̄‖22−Φ(x̄)+Φ(x̄)

(ˆ
Rdx

e−
m
2 ‖x−x̄‖22dx

)−1

,

π (x) ≥
(
2πm−1

)−dx/2
e−

M
2 ‖x−x̄‖22 . (2.110)

We use (2.110), σ−2
ν > M/2, and define W = 2σ−2

ν to compute

EPπ
[
ν2/π2

]
=

ˆ
Rdx

(ν
π

)2

π(x)dx =

ˆ
Rdx

ν2

π
dx

≤
ˆ
Rdx

[(
2πσ2

ν

)−dx/2
e−

σ−2
ν
2 ‖x−µν‖

2
2

]2

(2πm−1)
−dx/2 e−

M
2 ‖x−x̄‖22

dx

=
(
2πσ2

ν

)−dx (
2πm−1

)dx/2 ˆ
Rdx

e−σ
−2
ν ‖x−µν‖

2
2

e−
M
2 ‖x−x̄‖22

dx

=
(
2π · 2W−1

)−dx (
2πm−1

)dx/2 ˆ
Rdx

e−
W
2 ‖x−µν‖

2
2+M

2 ‖x−x̄‖22dx

=

(
2πm−1

)dx/2
(2π · 2W−1)

dx
e

1
2 (W−M)−1WM‖x̄−µν‖22

ˆ
Rdx

e−
(W−M)

2 ‖x−(W−M)−1(Wµν−M x̄)‖22dx

=

(
2πm−1

)dx/2
(2π · 2W−1)

dx
e

1
2 (M−1−W−1)

−1‖x̄−µν‖22
(
2π(W −M)−1

)dx/2
=

(
W 2

4m(W −M)

)dx/2
e

1
2 (M−1−W−1)

−1‖x̄−µν‖22

=

(
σ−4
ν

m(2σ−2
ν −M)

)dx/2
e

1
2 (M−1− 1

2σ
2
ν)
−1‖x̄−µν‖22

=

(
1

mσ2
ν(2−Mσ2

ν)

)dx/2
eM(2−Mσ2

ν)
−1‖x̄−µν‖22

∴ EPπ
[
ν2/π2

]1/2 ≤ exp

{
dx
4

log

(
1

mσ2
ν(2−Mσ2

ν)

)
+

M

2(2−Mσ2
ν)
‖x̄− µν‖22

}
. (2.111)

The result is complete by incorporating (2.111) into the result (2.107).
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Lemma 2.5. For dν(x) ∼ δ(x− xν)dx, the functional derivative

dν

dPπ
=

1´
Ω(xν)

π(x′)dx′
(2.112)

is analogous to the Radon-Nikodym, where dPπ(x) = π(x)dx and the integral is taken over the
region

Ω(xν) =
{

x′ ∈ Rdx : ‖x′ − x̄‖2 ≥ ‖xν − x̄‖2
}
.

Proof. The Dirac-delta measure is singular, i.e. not absolutely continuous with respect to
the Lebesgue measure, and hence its Radon-Nikodym derivative may not be formally defined in
general. However, by abusing notation one can obtain a functional expression for the enunciated
derivative. Observe the definition of the Radon-Nikodym derivative as

dPπ
dν

= f =⇒ Pπ(D) =

ˆ
D
f dν, (2.113)

for any measurable domain D ⊆ Rdx . Given ν(xν) = δ(xν − x) ≡ δ(x− xν) = ν(x) and setting
f(x) :=

´
Ω(x)

π(x′)dx′, we write

Pπ(x) =

ˆ
Rdx

f(xν) dν(xν) =

ˆ
Rdx

f(xν) δ(xν − x)dxν = f(x) =

ˆ
Ω(x)

π(x′)dx′, (2.114)

where dPπ
dx = π(x) accordingly, and f(xν) =

´
Ω(xν)

π(x′)dx′. Notice that f(x) plays the role of a
cumulative distribution function that is integrated over the “tail” of π(x′), in the region defined
by Ω(x). Thus, applying definition (2.113), we get

dPπ
dν

:= f(xν) =

ˆ
Ω(xν)

π(x′)dx′,

∴
dν

dPπ
=

1´
Ω(xν)

π(x′)dx′
. (2.115)

Remark 2.6. Notice that if π(x′) = (2πP−1)−
dx
2 e−

P
2 ‖x

′−x̄‖22 , for some P ∈ R+, we can compute
the resulting integral in Lemma 2.5 using the spherical symmetry of the Gaussian function to

116



CHAPTER 2. STOCHASTIC PARTICLE FLOW

give
ˆ

Ω(xν)

π(x′)dx′ = (2πP−1)−
dx
2

ˆ
Ω(xν)

e−
P
2 ‖x

′−x̄‖22dx′

= (2π)−
dx
2

ˆ
{‖u‖2≥

√
P‖xν−x̄‖2}

e−
1
2‖u‖

2
2du

= (2π)−
dx
2

ˆ ∞
rν

ˆ
Sdx−1(r)

e−
1
2 r

2

dA dr

= (2π)−
dx
2

ˆ ∞
rν

e−
1
2 r

2

Adx−1(r) dr

= (2π)−
dx
2 Adx−1(1)

ˆ ∞
rν

e−
1
2 r

2

rdx−1 dr

= (2π)−
dx
2

2π
dx
2

Γ
(
dx
2

) ˆ ∞
rν

e−
1
2 r

2

rdx−1 dr

= (2π)−
dx
2

2π
dx
2

Γ
(
dx
2

)2
dx
2 −1

ˆ ∞
r2
ν/2

e−t · t
dx
2 −1 dt

=
1

Γ
(
dx
2

) ˆ ∞
r2
ν/2

t
dx
2 −1e−t dt

= Γu

(
dx
2
,
r2
ν

2

)
= Γu

(
dx
2
,
P‖xν − x̄‖22

2

)
,

where du = dA dr for a volume element du ∈ Rdx , area element dA ∈ Rdx−1 and radius
element dr ∈ R+. In addition, Sdx−1(r) denotes the (dx − 1)-sphere of radius r, with a total
surface area of Adx−1(r), and the recursion Adx−1(r) = Adx−1(1)rdx−1 has been applied with
Adx−1(1) = 2π

dx
2 /Γ(dx/2). The lower integration extreme is taken as rν :=

√
P‖xν − x̄‖2, and

Γu (s, x) = Γ(s)−1
´∞
x
ts−1e−tdt is the upper incomplete gamma function. Also, we recall that´

Ω(xν)
π(x′)dx′ = 1−

´
Rdx\Ω(xν)

π(x′)dx′.

Lemma 2.7. Under conditions (2.102), (2.103) and (2.104), and assumptions of Lemma 2.3,
given a initial probability mass located at x = xν , i.e. ν(x) = δ(x− xν) (Dirac delta), then

‖PL,T − Pπ‖TV ≤
1

2
exp

{
−1

2
mT +

dx
2

log

(
M

m

)
− log

[
Γu

(
dx
2
,
M‖x̄− xν‖22

2

)]}
. (2.116)

Proof. Considering ν(x) = δ(x − xν) on the definition of total variation distance, we use
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Lemma 2.5 and Remark 2.6. The procedure follows as

‖PL,T − Pπ‖TV = sup
A∈B(Rdx )

∣∣∣∣ˆ
Rdx

Pt(x, A)dν(x)− Pπ(A)

∣∣∣∣
= sup
A∈B(Rdx )

∣∣∣∣ˆ
Rdx

(Pt(x, A)− Pπ(A)) dν(x)

∣∣∣∣
= sup
A∈B(Rdx )

∣∣∣∣ˆ
Rdx

(Pt(x, A)− Pπ(A))
dν

dPπ
dPπ(x)

∣∣∣∣
= sup
A∈B(Rdx )

∣∣∣∣∣
ˆ
Rdx

(Pt(x, A)− Pπ(A))
1´

Ω(xν)
π(x′)dx′

dPπ(x)

∣∣∣∣∣
≤ 1´

Ω(xν)
π(x′)dx′

· sup
A∈B(Rdx )

ˆ
Rdx
|Pt(x,A)− Pπ(A)|π(x)dx

≤ 1´
Ω(xν)

π(x′)dx′
· sup
A∈B(Rdx )

[ˆ
Rdx
|Pt(x, A)− Pπ(A)|2 π(x)dx

] 1
2

≤
(
2πm−1

)dx/2
´

Ω(xν)
e−

M
2 ‖x′−x̄‖22dx′

sup
A∈B(Rdx )

[ˆ
Rdx
|Pt(x, A)− Pπ(A)|2 π(x)dx

] 1
2

=

(
2πm−1

)dx/2 (
2πM−1

)−dx/2
´

Ω(xν)
N (x′; x̄,M−1Idx)dx′

sup
A∈B(Rdx )

[ˆ
Rdx
|Pt(x, A)− Pπ(A)|2 π(x)dx

] 1
2

=

(
Mm−1

)dx/2
Γu

(
dx
2 ,

M‖x̄−xν‖22
2

) sup
A∈B(Rdx )

[ˆ
Rdx
|Pt(x, A)− Pπ(A)|2 π(x)dx

] 1
2

(Dalalyan, 2014) ≤
(
M

m

)dx/2
· Γu

(
dx
2
,
M‖xν − x̄‖22

2

)−1

· 1

2
e−

1
2mT

=
1

2
exp

{
−1

2
mT +

dx
2

log

(
M

m

)
− log

[
Γu

(
dx
2
,
M‖x̄− xν‖22

2

)]}
. (2.117)

Lemma 2.8. Suppose a probability measure PL̃[∆λ],T produced by numerical integration with
step size ∆λ, up to time horizon T = L∆λ, of the Langevin diffusion SDE according to

dL̃λ = −1

2

L−1∑
l=0

Dl∆λ∇Φ̃(L̃l∆λ)1[l∆λ,(l+1)∆λ)dλ

+

L−1∑
l=0

D
1/2
l∆λdWλ, 0 ≤ λ ≤ L∆λ, L̃0 = 0. (2.118)

The resulting Markov chain is assumed to depart from the initial density ν(x0) = N (x0; µν , σ
2
νIdx)

and targets the invariant density π(x) ∝ exp{−Φ(x)} with measure Pπ(dx). The process
{Wλ}λ≥0 is the standard Wiener process and the diffusion matrix Dλ = D(xλ) is bounded
by K = supx ‖D(x)‖2. Under assumptions (2.102), (2.103), and (2.104), then

‖PL,T − PL̃[∆λ],T ‖TV ≤
1

2

− 1

2
exp

{
−dx

2

M3K4γ

48(2γ − 1)

(
σ2
ν +

1

dx
‖x̄− µν‖22 + 2T

)
∆λ2 − dxM

2K3T

16
∆λ

}
, (2.119)
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for T ≥ 0 and where PL,T is the probability measure produced by the exact integration of the
Langevin diffusion SDE.

Proof. We take a different approach as that proposed by Dalalyan [41] for this proof. Instead of
bounding the total variance distance ‖PL,T − PL̃[∆λ],T ‖TV by the Pinsker inequality, we treat
it directly. First, identify that

‖PL,T − PL̃[∆λ],T ‖TV =
1

2

ˆ
Rdx

∣∣∣dPL,T − dPL̃[∆λ],T

∣∣∣
=

1

2

ˆ
Rdx

∣∣∣∣1− dPL̃[∆λ],T

dPL,T

∣∣∣∣ dPL,T
=

1

2

ˆ
Rdx

∣∣∣∣∣1− ν(x0)dP L̃t (x0, x)

ν(x0)dPLt (x0, x)

∣∣∣∣∣ dPL,T
=

1

2

ˆ
Rdx

∣∣∣∣∣1− dP L̃t (x0, x)

dPLt (x0, x)

∣∣∣∣∣ dPL,T (x)

=
1

2

ˆ
Rdx

EP
L
t

[∣∣∣∣∣1− dP L̃t (x0, x)

dPLt (x0, x)

∣∣∣∣∣ |x0

]
dν(x0), (2.120)

where PL,T (dx) =
´
Rdx P

L
t (x0, dx)ν(x0)dx0, and P L̃t (x0, ·) and PLt (x0, ·) are the Markov tran-

sition kernels for the discrete-time and continuous-time Langevin dynamics respectively. By
applying Girsanov’s theorem to change the measure from PL,T to PL̃[∆λ],T , one obtains (see
step 3 of the proof of Proposition 2 in [42])

dP L̃t
dPLt

(x)

= exp

{´ T
0

1
2

(
−
∑L−1
l=0 Dl∆λ∇Φ̃(xl∆λ)1[l∆λ,(l+1)∆λ) + Dλ∇Φ(xλ)

)T
D−1
λ

(
dLλ + 1

2Dλ∇Φ(Lλ)dλ
)}

× exp

−1

2

ˆ T

0

∥∥∥∥∥−1

2

L−1∑
l=0

Dl∆λ∇Φ̃(xl∆λ)1[l∆λ,(l+1)∆λ) +
1

2
Dλ∇Φ(xλ)

∥∥∥∥∥
2

2

dλ

 . (2.121)

Thus, since E [ez] ≥ eE[z] by Jensen’s inequality, Dλ = D(xλ) ≤ K, and ∇Φ(x) is Lipschitz-
continuous with constant M (2.104), we obtain

EP
L
t

[
dP L̃t
dPLt

(x)|x0

]

≥ exp

{
−EP

L
t

[
1

2

L−1∑
l=0

ˆ (l+1)∆λ

l∆λ

∥∥∥∥1

2
Dλ∇Φ(xλ)− 1

2
Dl∆λ∇Φ̃(xl∆λ)

∥∥∥∥2

2

dλ|x0

]}

= exp

{
−1

2

L−1∑
l=0

ˆ (l+1)∆λ

l∆λ

EP
L
t

[∥∥∥∥1

2
Dλ∇Φ(xλ)− 1

2
Dl∆λ∇Φ̃(xl∆λ)

∥∥∥∥2

2

|x0

]
dλ

}

≥ exp

{
−K

2

8

L−1∑
l=0

ˆ (l+1)∆λ

l∆λ

EP
L
t

[∥∥∥∇Φ(xλ)−∇Φ̃(xl∆λ)
∥∥∥2

2
|x0

]
dλ

}

≥ exp

{
−K

2M2

8

L−1∑
l=0

ˆ (l+1)∆λ

l∆λ

EP
L
t

[
‖xλ − xl∆λ‖22 |x0

]
dλ

}
. (2.122)
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For each step xλ − xl∆λ = − 1
2Dl∆λ∇Φ(xl∆λ)(λ− l∆λ) + D

1/2
l∆λ(Wλ −Wl∆λ), hence

EP
L
t

[
dP L̃t
dPLt

(x)|x0

]

≥ exp

{
−K

2M2

8

L−1∑
l=0

ˆ (l+1)∆λ

l∆λ

EP
L
t

[∥∥∥∥1

2
D(xl∆λ)∇Φ(xl∆λ)

∥∥∥∥2

2

(λ− l∆λ)2|x0

]
dλ

}

× exp

{
−K

2M2

8

L−1∑
l=0

ˆ (l+1)∆λ

l∆λ

EP
L
t

[∥∥∥D(xl∆λ)1/2(Wλ −Wl∆λ)
∥∥∥2

2
|x0

]
dλ

}

≥ exp

{
−K

2M2

8

L−1∑
l=0

ˆ (l+1)∆λ

l∆λ

K2

4
EP
L
t
[
‖∇Φ(xl∆λ)‖22|x0

]
(λ− l∆λ)2dλ

}

× exp

{
−K

2M2

8

L−1∑
l=0

ˆ (l+1)∆λ

l∆λ

K(λ− l∆λ)dxdλ

}

= exp

{
−M

2K4∆λ3

96

L−1∑
l=0

EP
L
t
[
‖∇Φ(xl∆λ)‖22|x0

]
− dxM

2K3L∆λ2

16

}
. (2.123)

Now we invoke a result from Corollary 4 in [41], that gives

∆λ

L−1∑
l=0

E
[
‖∇Φ(xl∆λ)‖22

]
≤ Mγ

2γ − 1
E
[
‖x0 − x̄‖22

]
+

2γMTdx
2γ − 1

, (2.124)

for some γ > 1, ∆λ ≤ (γM)−1 and L > 1. Substituting L∆λ = T and incorporating (2.124):

EP
L
t

[
dP L̃t
dPLt

(x)|x0

]

≥ exp

{
−M

2K4∆λ2

48

γ

2γ − 1

(
M

2
EP
L
t
[
‖x0 − x̄‖22|x0

]
+ dxMT

)
− dxM

2K3T∆λ

16

}
= exp

{
−M

2K4∆λ2

48

γ

2γ − 1

(
M

2
‖x0 − x̄‖22 + dxMT

)
− dxM

2K3T∆λ

16

}
. (2.125)

Since

0 ≤ EP
L
t

[
dP L̃t
dPLt

(x)|x0

]
≤ 1,

and applying expression (2.125) in (2.120), we have

‖PL,T − PL̃[∆λ],T ‖TV

=
1

2

ˆ
Rdx

∣∣∣∣∣1− dP L̃t (x0, x)

dPLt (x0, x)

∣∣∣∣∣ dPL,T (x)

=
1

2

ˆ
Rdx

dPL,T (x)− 1

2

ˆ
Rdx

EP
L
t

[
dP L̃t (x0, x)

dPLt (x0, x)
|x0

]
dν(x0)

≤ 1

2
− 1

2

ˆ
Rdx

e−
M2K4∆λ2

48
γ

2γ−1 (M2 ‖x0−x̄‖22+dxMT)− dxM
2K3T∆λ
16 ν(x0)dx0. (2.126)

Finally, using the substitutions A1 = M3K4

96
γ

2γ−1 , A2 = dxM
3TK4

48
γ

2γ−1 , B = dxM
2K3T
16 ,
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E [e−z] ≥ e−E[z] by Jensen’s inequality, and ν(x0) = N (x0; µν , σ
2
νIdx), we get

‖PL,T − PL̃[∆λ],T ‖TV ≤
1

2
− 1

2
e−A2∆λ2−B∆λ

ˆ
Rdx

e−A1∆λ2‖x0−x̄‖22ν(x0)dx0

≤ 1

2
− 1

2
e−A2∆λ2−B∆λe−A1∆λ2

´
Rdx ‖x0−x̄‖22ν(x0)dx0

=
1

2
− 1

2
e−A2∆λ2−B∆λ−A1∆λ2(dxσ2

ν+‖x̄−µν‖22)

=
1

2
− 1

2
e−(A1(dxσ2

ν+‖x̄−µν‖22)+A2)∆λ2−B∆λ

=
1

2
− 1

2
e−

dx
2

M3K4γ
48(2γ−1) (σ

2
ν+ 1

dx
‖x̄−µν‖22+2T)∆λ2− dxM

2K3T
16 ∆λ. (2.127)

Lemma 2.9. Under the same assumptions as of Lemma 2.8, except for a initial density ν(x0) =

δ(x0 − xν) (Dirac delta), i.e. a probability mass initially located at x0 = xν , then

‖PL,T − PL̃[∆λ],T ‖TV ≤
1

2

− 1

2
exp

{
−dx

2

M3K4γ

48(2γ − 1)

(
1

dx
‖x̄− xν‖22 + 2T

)
∆λ2 − dxM

2K3T

16
∆λ

}
, T ≥ 0; (2.128)

Proof. The proof follows straightforwardly by substituting ν(x0) = δ(x0 − xν) into (2.126).

Theorem 2.10. Let a convex function Φ satisfy the general assumptions (2.102), (2.103) and
(2.104). Suppose a discrete-time Langevin Monte Carlo algorithm integrates (2.25), targeting
the invariant density π(x) ∝ exp{−Φ(x)} with measure Pπ(dx). In addition, assume that for
some γ ≥ 1 we have ∆λ ≤ (γM)

−1, and K = supx ‖D(x)‖2 where Dλ = D(xλ) is the diffusion
matrix. Then, for a time horizon, T , and step size, ∆λ, the total-variation distance between
the target measure Pπ and the approximated measure PL̃(∆λ),T furnished by a discrete-time
Langevin Monte Carlo algorithm with initial density ν (x) = N (x;µν , σ

2
νIdx), for σ2

ν < 2M−1,
satisfies

‖PL̃[∆λ],T −Pπ‖TV ≤
1

2
exp

{
−1

2
mT +

dx
4

log

(
1

mσ2
ν(2−Mσ2

ν)

)
+

M

2(2−Mσ2
ν)
‖x̄− µν‖22

}
+

1

2
− 1

2
exp

{
−dx

2

M3K4γ

48(2γ − 1)

(
σ2
ν +

1

dx
‖x̄− µν‖22 + 2T

)
∆λ2 − dxM

2K3T

16
∆λ

}
. (2.129)

Proof. The proof follows from the triangle inequality

‖PL̃[∆λ],T − Pπ‖TV ≤ ‖PL,T − Pπ‖TV + ‖PL,T − PL̃[∆λ],T ‖TV, (2.130)

on which we substitute the results of Lemmas 2.4 and 2.8 to give the final result (2.129).
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Corollary 2.11. Let dx ≥ 2, Φ satisfy (2.102), (2.103) and (2.104), and ε ∈ (0, 1/2) be a
desired precision level. Let the time horizon, T , and the step size, ∆λ, be defined by

T ≥
2 log (1/ε) + dx

2 log
(

1
mσ2

ν(2−Mσ2
ν)

)
+ M

(2−Mσ2
ν)‖x̄− µν‖

2
2

m
, (2.131)

∆λ ≤
− T

16 +
√

( T16 )
2
+ γ

48(2γ−1) (σ2
ν+ 1

dx
‖x̄−µν‖22+2T)M−1K−2[ 2

dx
log( 1

1−ε )]
γ

48(2γ−1) (σ2
ν+ 1

dx
‖x̄−µν‖22+2T)MK

, (2.132)

where γ ≥ 1. Then the resulting probability distribution of a Langevin Monte Carlo algorithm
that integrates (2.25) after L = dT/∆λe steps, satisfies ‖PL̃[∆λ],T − Pπ‖TV ≤ ε.

Proof. Bound each term on the right-hand side of (2.130) by half of the required precision ε,
i.e.

‖PL,T − Pπ‖TV ≤ ε/2, ‖PL,T − PL̃[∆λ],T ‖TV ≤ ε/2.

For the first term:

1

2
exp

{
−1

2
mT +

dx
4

log

(
1

mσ2
ν(2−Mσ2

ν)

)
+

M

2(2−Mσ2
ν)
‖x̄− µν‖22

}
≤ ε

2
,

− 1

2
mT +

dx
4

log

(
1

mσ2
ν(2−Mσ2

ν)

)
+

M

2(2−Mσ2
ν)
‖x̄− µν‖22 ≤ log ε,

1

2
mT ≥ − log ε+

dx
4

log

(
1

mσ2
ν(2−Mσ2

ν)

)
+

M

2(2−Mσ2
ν)
‖x̄− µν‖22,

T ≥
2 log (1/ε) + dx

2 log
(

1
mσ2

ν(2−Mσ2
ν)

)
+ M

(2−Mσ2
ν)‖x̄− µν‖

2
2

m
. (2.133)

And for the second term:

1

2
− 1

2
exp

{
−

a (>0)︷ ︸︸ ︷
dx
2

M3K4γ

48(2γ − 1)

(
σ2
ν +

1

dx
‖x̄− µν‖22 + 2T

)
∆λ2 −

b (>0)︷ ︸︸ ︷
dxM

2K3T

16
∆λ

}
≤ ε

2
,

exp
{
−a∆λ2 − b∆λ

}
≥ 1− ε,

− a∆λ2 − b∆λ ≥ log (1− ε) ,

a∆λ2 + b∆λ ≤ − log (1− ε) ,

a∆λ2 + b∆λ+ c ≤ 0, c = log (1− ε) = − log

(
1

1− ε

)
,

0 < ∆λ ≤ −b+
√
b2 − 4ac

2a
,

∆λ ≤
−dxM

2K3T
16 +

√(
dxM2K3T

16

)2

+ 4dx2
M3K4γ

48(2γ−1)

(
σ2
ν + 1

dx
‖x̄− µν‖22 + 2T

)
log
(

1
1−ε

)
2dx2

M3K4γ
48(2γ−1)

(
σ2
ν + 1

dx
‖x̄− µν‖22 + 2T

) ,

∆λ ≤
− T

16 +
√

( T16 )
2
+ γ

48(2γ−1) (σ2
ν+ 1

dx
‖x̄−µν‖22+2T)M−1K−2[ 2

dx
log( 1

1−ε )]
γ

48(2γ−1) (σ2
ν+ 1

dx
‖x̄−µν‖22+2T)MK

. (2.134)
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Proof of Theorem 2.1

Proof of Theorem 2.1. We follow the same procedure established for proving Theorem 2.10,
substituting the results of Lemmas 2.7 and 2.9 into (2.130) to give

‖PL̃[∆λ],T − Pπ‖TV ≤
1

2
exp

{
−1

2
mT +

dx
2

log

(
M

m

)
− log

[
Γu

(
dx
2
,
M‖x̄− xν‖22

2

)]}
+

1

2
− 1

2
exp

{
−dx

2

M3K4γ

48(2γ − 1)

(
1

dx
‖x̄− xν‖22 + 2T

)
∆λ2 − dxM

2K3T

16
∆λ

}
. (2.135)

Proof of Corollary 2.2

Proof of Corollary 2.2. We follow the same procedure established for proving Corollary 2.11,
bounding each term on the right-hand side of (2.130) in view of (2.135) to obtain

T ≥
2 log (1/ε) + dx log

(
M
m

)
− 2 log

[
Γu

(
dx
2 ,

M‖x̄−xν‖22
2

)]
m

, (2.136)

∆λ ≤
− T

16 +

√(
T
16

)2
+ γ

48(2γ−1)

(
1
dx
‖x̄− xν‖22 + 2T

)
M−1K−2

[
2
dx

log
(

1
1−ε

)]
γ

48(2γ−1)

(
1
dx
‖x̄− xν‖22 + 2T

)
MK

. (2.137)

2.9.2 On the Filtering Properties of the Stochastic Particle Flow

Theorem 2.12. Define x ∈ Rdx to describe an dx-dimensional vector state. Let the vector
field µ : Rdx → Rdx , µ (x) ∈ C1(Rdx), be a conservative field, i.e. there exists a scalar potential
function ψ : Rdx → R, ψ (x) ∈ C2(Rdx), such that

µ (x) = −∇xψ (x) . (2.138)

Let p (x, λ) be the density of an ensemble of particles and, without loss of generality, can be
assumed to be a continuous probability density function on Rdx that depends on the pseudo-time
variable λ ∈ R, λ ≥ 0. Set π (x) ∝ e−ψ(x) to be an invariant, locally log-concave probability
density to which the density p (x, λ) is expected to converge weakly at a stationary state in a
finite time horizon λ ≥ T , T ∈ R+, i.e.

Ep [ϕ (x)]→ Eπ [ϕ (x)] , λ→ T ; (2.139)

for all bounded, continuous functions ϕ, and where Ep [.] is the expectation with respect to the
probability density p (x, λ). If the probability density p (x, λ) satisfies the continuity equation
(Liouville’s equation)

∂p

∂λ
= −∇x · (p µ) , λ ≥ 0; (2.140)

with the initial condition
p (x, λ) = p0 (x) , λ = 0; (2.141)
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then any probability mass (particle) xm (0) ∼ p0 (x), when evolved according to the associated
state equation

dxm(λ) = µ (xm(λ)) dλ, λ ≥ 0; (2.142)

converges to
xm (T ) = argmax [π (x)] , λ ≥ T, (2.143)

at a stable equilibrium.

Proof. The general solution of the continuity equation without sources (2.140) assumes the form
(see for example [116])

p (x, λ) = p0 (xm(x, λ))

∣∣∣∣∂xm
∂x

∣∣∣∣
= p0 (xm(x, λ)) |Jx [xm(x, λ)]| , (2.144)

where xm(x, λ) is an arbitrary element of mass that is regarded as a function of the pseudo-
time λ and of the state x that it can possibly reach. The matrix Jx [xm(x, λ)] is the Jacobian
matrix of xm(x, λ) with respect to x. Conceptually, at the stationary state xm (xT , T ) = xT the
continuity equation (2.140) reads

∂p

∂λ
= 0, λ ≥ T. (2.145)

Using the general solution (2.144) to verify the stationary condition (2.145), we conclude
that

p0 (xm(xT , T )) |Jx [xm(xT , T )]|

must be constant with respect to the pseudo-time, thus

dxm(λ)

dλ
= µ (xm(λ)) = 0, λ ≥ T. (2.146)

Following the assumption of conservative field, µ (xT ) = −∇xψ (xT ) = 0 implies that the
stationary state xT is an equilibrium point, i.e. an extreme of the potential function ψ. In
addition, since the potential function is assumed to be related to the stationary distribution as
ψ (x) ∝ − log π (x), the stationary state xT is an extreme of the stationary density.

A valid Lyapunov function of the flow is V (x) = ψ (x), which is positive semi-definite
(ψ (x) ≥ 0) in the neighborhood of the equilibrium point due to the local log-concavity of the
invariant density π (x). Analyzing the (Lie) time derivative of the Lyapunov function in the
neighborhood of the equilibrium point, ‖x− xT ‖ < ε for a sufficiently small ε ∈ R+, we have

dV (x)

dλ
= ∇xV (x)

T · dx

dλ
= ∇xV (x)

T · µ (x) ,

V̇ (x) = ∇xψ (x)
T · (−∇xψ (x)) ,

V̇ (x) = −‖∇xψ (x)‖2 ≤ 0, ‖x− xT ‖ < ε; (2.147)

from which we conclude that xT is a point of (uniformly) stable equilibrium. Therefore, under
the established hypotheses, any arbitrary probability mass xm (λ) evolved according to (2.142)
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converges to

xm (T ) = argmin [ψ (x)] = argmin [− log π (x)] ,

xm (T ) = argmax [π (x)] , λ ≥ T ;

at a stable equilibrium.

Lemma 2.13. Let {Xλ : t ≤ λ ≤ T} be a diffusion process in Rdx (hence a Markov process),
solution of

dXλ = µf (Xλ, λ) dλ+ Df (λ)
1/2
dWλ, (2.148)

Xλ=t = xt, t ≤ λ ≤ T ;

where {Wλ : t ≤ λ ≤ T} is a standard Wiener process in Rdx under the probability measure P,
µf : Rdx × [t, T ]→ Rdx is the drift and Df : [t, T ]→ Rdx×dx is a diffusion coefficient invariant
over the space at any time instant. There exists an equivalent process

{
X̄τ ,Vτ : t ≤ τ ≤ T

}
,

which is probabilistically the same as the original process, called reverse process on the interval
[t, T ] (see [140]), that provides the solution of the stochastic system

dX̄τ = µr
(
X̄τ , τ

)
dτ + Dr (τ)

1/2
dW̄τ , X̄τ (t) = x̄t; (2.149)

dVτ = vr
(
X̄τ , τ

)
Vτdτ, Vτ (t) = 1; (2.150)

for a standard Wiener process
{

W̄τ : t ≤ τ ≤ T
}
in Rdx under the measure P, with the reverse

drift and diffusion coefficients given, respectively, by

µr
(
X̄τ , τ

)
= −µf

(
X̄τ , T + t− λ

)
, (2.151)

Dr (τ) = Df (T + t− λ) . (2.152)

Proof. The Markov process {Xλ}λ∈[t,T ], as an existing solution to the SDE (2.148), has an
associated probability density p (xλ, λ) that must satisfy the Kolmogorov forward equation
(Fökker-Planck equation):

∂

∂λ
p = −∇x · (µfp) +

1

2
∇x · (Df∇xp) , λ ≥ t,

p (xλ=t, t) = pt (xt) , xλ ∈ Rdx .

The Fökker-Planck equation can be written in the non-divergence form as

∂

∂λ
p = µ̂T∇xp+

1

2
∇x · (Df∇xp) + v̂ · p, (2.153)

where

µ̂ (xλ) = −µf (xλ) ,

v̂ (xλ) = −∇x · µf (xλ) .
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We introduce the reverse time variable τ = T + t− λ, so that

p (xT+t−λ, T + t− λ) ≡ p̂ (x̄τ , τ) ,

and hence −∂λp = ∂τ p̂. Thus, rewriting (2.153) with respect to p̂ (x̄τ , τ) for τ ≤ T , x̄τ ∈ Rdx ,
and performing the substitutions

µr (x̄τ , τ) = −µf (xT+t−λ, T + t− λ) ,

Dr (τ) = Df (T + t− λ) ,

we obtain

∂

∂λ
p = −µTf∇xp+

1

2
∇x · (Df∇xp) + (−∇x · µf ) · p,

− ∂

∂τ
p̂ = µTr ∇x̄p̂+

1

2
∇x̄ · (Dr∇x̄p̂)− (−∇x̄ · µr) · p̂,

− ∂

∂τ
p̂ = µTr ∇x̄p̂+

1

2
∇x̄ · (Dr∇x̄p̂)− vr · p̂, τ ≤ T, (2.154)

p̂ (x̄τ=T , T ) = p̂T (x̄T ) = pt (xt) , x̄τ ∈ Rdx ;

where
vr (x̄τ , τ) = −∇x̄µr (x̄τ , τ) . (2.155)

Solving (2.154) corresponds to the Cauchy problem in reverse time τ ≤ T , which is equivalent
to solve the stochastic system stated by (2.149) and (2.150). Therefore, because the solution
to the SDE (2.148) is assumed to exist and corresponds to the solution of (2.154) for τ ≤ T ,
then there exists the equivalent reverse process

{
X̄τ ,Vτ

}
τ∈[t,T ]

that solves the stochastic system
(2.149) and (2.150).

Remark 2.14. Despite its name, inherited from [140], it is worth stressing that
{

X̄τ ,Vτ
}
is the

solution of a stochastic system forward in time on the interval [t, T ], which may be properly
understood as a smoothing process.

Remark 2.15. It is clear that the solution of (2.150) at τ = T is

VT ≡ Vτ (T ) = e−
´ T
t
vr(x̄τ ,τ)dτ ,

which evokes the solution of (2.154) by the Feynman-Kac formula

p̂ (x, τ) = EP
[
e−
´ T
τ
vr(x̄τ′ ,τ

′)dτ ′ p̂T (x̄T ) |x̄τ = x
]
. (2.156)

A more general form of the Lemma 2.13 can be found in [140].

Lemma 2.16. The reverse process
{

X̄τ ,Vτ : t ≤ τ ≤ T
}
described by (2.149) and (2.150), has

an associated smooth probability density p̂ (x̄τ , τ) that satisfies, for the initial value problem, the
Kolmogorov forward equation

∂

∂τ
p̂ = −∇x̄ · (µrp̂) +

1

2
∇x̄ · (Dr∇x̄p̂)− vr · p̂, t ≤ τ ≤ T, (2.157)

p̂ (x̄τ=t, τ = t) = p̂t (x̄t) , x̄τ ∈ Rdx .
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Proof. We consider a continuous function of the process
{

X̄τ ,Vτ
}
τ∈[t,T ]

, declared as ϕ : Rdx ×
R→ X ′, which is assumed to be ϕ(X̄τ ,Vτ ) ∈ C2(Rdx ,R), bounded and integrable on the product
space Rdx × R. Applying Îto’s lemma to ϕ and substituting (2.149) and (2.150) one obtains

dϕ = (∇X̄τϕ)T dX̄τ +
1

2
dX̄T

τ HX̄τ [ϕ] dX̄τ + ∂VτϕdVτ

= (∇X̄τϕ)T ·
(
µrdτ +Dr

1/2dW̄τ

)
+

1

2
tr
{

DrHX̄τ [ϕ]
}
dτ + ∂Vτϕ · (vrVτdτ) ,

=

[
(∇X̄τϕ)Tµr +

1

2
tr
{

DrHX̄τ [ϕ]
}

+ ∂Vτϕ · vrVτ
]
dτ + (∇X̄τϕ)TDr

1/2dW̄τ . (2.158)

Consider the expected (average) rate of change of the projections of ϕ defined by:

〈ϕ̇V〉 (τ) ,

〈
d

dτ

ˆ VT
1

ϕ(X̄τ ,Vτ )dVτ

〉

=

〈ˆ VT
1

∂τϕ(X̄τ ,Vτ )dVτ

〉

≡
ˆ
Rdx

ˆ υT

1

ϕ (x̄τ , υτ ) · ∂τ p̂ dυτdx̄τ . (2.159)

Substituting (2.158) into (2.159), we have

〈ϕ̇V〉 (τ) =

〈ˆ VT
1

∂τϕ(X̄τ ,Vτ )dVτ

〉

=

〈ˆ VT
1

[
(∇X̄τϕ)Tµr +

1

2
tr
{

DrHX̄τ [ϕ]
}

+ ∂Vτϕ · vrVτ
]
dVτ

〉

=

ˆ υT

1

ˆ
Rdx

[
(∇x̄τϕ)Tµr +

1

2
tr {DrHx̄τ [ϕ]}

]
p̂ dx̄τdυτ

+

ˆ
Rdx

ˆ υT

1

[∂υτϕ · vr υτ ] p̂ dυτdx̄τ . (2.160)

Integrating (2.160) by parts and offsetting the integration constant to cancel out the surface
terms, we have

〈ϕ̇V〉 (τ) =

ˆ υT

1

ˆ
Rdx

ϕ ·
[
−∇x̄τ · (µrp̂) +

1

2
∇x̄τ · (Dr∇x̄τ p̂)

]
dx̄τdυτ

+

ˆ
Rdx

ˆ υT

1

ϕ · [−vr∂υτ (υτ p̂)] dυτdx̄τ

=

ˆ
Rdx

ˆ υT

1

ϕ ·
[
−∇x̄τ · (µrp̂) +

1

2
∇x̄τ · (Dr∇x̄τ p̂)

]
dυτdx̄τ

+

ˆ
Rdx

ˆ υT

1

ϕ · [−vrp̂] dυτdx̄τ

=

ˆ
Rdx

ˆ υT

1

ϕ ·
[
−∇x̄τ · (µrp̂) +

1

2
∇x̄τ · (Dr∇x̄τ p̂)− vrp̂

]
dυτdx̄τ . (2.161)

The proof of the lemma is complete by comparing (2.161) to the definition (2.159) and noting
that their integrands must be equal.
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Theorem 2.17. Let (Ω,F ,P) to be a complete probability space and let {Fλ}λ≥0, λ ∈ [0, T ],
be an increasing family of sub σ-fields of F . Let {Xλ : 0 < λ ≤ T} be an Fλ-adapted process,
considered to be the signal process with state equation

dXλ = µf (Xλ) dλ+ Df (λ)
1/2
dWλ, (2.162)

Xλ=0 = x0, 0 ≤ λ ≤ T ;

for a Wiener process {Wλ}λ∈[0,T ] under the probability measure P. Assume p(xλ, λ) defined on
(Ω,F) to be the probability density of the measure P, which

(a) is the probabilistic representation of the process {Xλ}λ∈[0,T ],

(b) is absolutely continuous with respect to the Lebesgue measure,
(c) approaches a stationary measure as p(xλ)

λ→T−→ π (xλ) ∝ e−Φ(xλ), for a sufficiently long
horizon T .

Let
{

X̄τ ,Vτ : λ < τ ≤ T
}
be the reverse process of {Xλ}λ∈[0,T ], as established in Lemma 2.13

by the stochastic system (2.149) and (2.150), so that the reverse drift and diffusion coefficients
are, respectively,

µr (x̄τ ) = −1

2
Dr (λ)∇x̄ log π (x̄τ ) ,

Dr (τ) = [−Hx̄ [log π (x̄τ )]]
−1
.

Assume p̂(x̄τ , τ) to be the probability density on (Ω,F) describing the reverse process
{

X̄τ ,Vτ
}
τ∈[λ,T ]

,
under the same measure P, which must satisfy the Kolmogorov forward equation (provided a
known initial condition) according to Lemma 2.16:

∂

∂τ
p̂ = −∇x̄ · (µrp̂) +

1

2
∇x̄ · (Dr∇x̄p̂)− vr · p̂, λ ≤ τ ≤ T, (2.163)

p̂ (x̄τ=λ, τ = λ) = p̂λ (x̄τ=λ) = π (xT ) , x̄τ ∈ Rdx ;

If the stationary density is set to be

π (x) :=
p (yk|x) p (x|y1:k−1)

Z1
=
p (yk|x) px (x)

Z1
, (2.164)

where the prior density px (x) and the likelihood p (yk|x) are integrable functions with respect
to x, Z1 = p (yk|y1:k−1) is a normalization constant, and the discrete-time observation process{

yk ∈ Rdy : k ∈ N
}
is described as

yk = h (xk) + R
1/2ξk, ξk ∼ N (ξk; 0dy , Idy ); (2.165)

then the probability density corresponding to the signal process (2.162) is equivalent to the
following filtering entity

p(x, λ|Fλ) =
EP
[
eh(xT )TR−1yk− 1

2h(xT )TR−1h(xT )|x
]
p (x|y1:k−1)

Z
. (2.166)
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In addition, expression (2.166) can be interpreted as analogous to the well known result [19]

p(x, λ|Fλ) =
EP
[
e
´ T
0
hT (xλ)TR−1

T dyλ− 1
2

´ T
0
hT (xλ)TR−1

T hT (xλ)dλ|x
]

Z
p (x|y1:k−1) , (2.167)

for a discrete-time observation process whose analog continuous-time (interpolated) version has
the observation function hT (.) and covariance matrix RT .

Proof. By definition of the stochastic system described by (2.149) and (2.150), and Lemma
2.16, the reverse process

{
X̄τ ,Vτ

}
is known to satisfy the Kolmogorov forward equation (2.163)

in reverse time λ ≤ τ ≤ T , for which the stationary density π is an initial condition (initial
value problem). Using the reverse time variable τ = T − λ, so that p (xλ, λ) ≡ p̂ (x̄T−τ , T − τ)

and ∂λp = −∂τ p̂, and applying the relations (2.151), (2.152) and (2.155) from Lemma 2.13, we
rewrite the equation (2.163) for 0 ≤ λ ≤ T as

∂

∂τ
p̂ = −∇x̄ · (µrp̂) +

1

2
∇x̄ · (Dr∇x̄p̂)− vr · p̂, λ ≤ τ ≤ T,

∂

∂τ
p̂ = − (∇x̄ · µr) p̂− µTr ∇x̄p̂+

1

2
∇x̄ · (Dr∇x̄p̂) + (∇x̄ · µr) p̂,

∂

∂τ
p̂ = −µTr ∇x̄p̂+

1

2
∇x̄ · (Dr∇x̄p̂) ,

− ∂

∂λ
p = +µTf∇xp+

1

2
∇x · (Df∇xp) , 0 ≤ λ ≤ T, (2.168)

p (xλ, T ) = π (xT ) , xλ ∈ Rdx .

Now we have a Kolmogorov backward equation in p (xλ, λ) with a terminal value problem for the
forward process {Xλ}λ∈[0,T ]. Hence, we can apply the Feynman-Kac formula for the terminal
condition p(x, T ) = π (x), with xT = xλ=T , to give

p(x, λ) , EP [π (xT ) |xλ = x]

=
EP [p (yk|xT ) p (xT |y1:k−1) |xλ = x]

Z1

=
EP
[
e−

1
2 (yk−h(xT ))TR−1(yk−h(xT ))px (xT ) |x

]
Z1 (2πR)

dy/2

=
EP
[
eh(xT )TR−1yk− 1

2h(xT )TR−1h(xT )px (xT ) |x
]

Z1 (2πR)
dy/2

e+ 1
2 yTk R−1yk

=
EP
[
eh(xT )TR−1yk− 1

2h(xT )TR−1h(xT )px (xT ) |Fλ, x
]

Z
. (2.169)

Let us reinterpret the discrete-time observation process as a continuous-time process for
which we only obtain a realization at λ = T , by linearly interpolating it along the interval
0 < λ ≤ T to write

dyλ =
1

T
h (xλ) dλ+

(
R

T

)1/2

ξkdλ
1/2,

dyQλ = hT (xλ) dλ+ R
1/2
T dξ̄Pλ , 0 < λ ≤ T. (2.170)

where
{
ξ̄λ
}
is an interpolated Wiener process, under the probability measure P, that produces
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the observation noise
´ T

0
R

1/2
T dξ̄λ ≡ R1/2ξk at λ = T . The probability measure P is induced in

the space of paths jointly described by the state process and observation noise ({Xλ}, {Ξ̄λ}).
The interpolation is established such that yλ=T = yk is the realization of the observation process
under the probability measure Q, which is induced in the space of paths jointly described by the
state and observation processes ({Xλ}, {Yλ}). By applying the Girsanov’s theorem, we know
that the Radon-Nykodym derivative to change the measure from P to Q assumes the form (see
[211] for example)

dQ
dP

∣∣∣∣
FT

= e
´ T
0
hT (xλ)TR−1

T dyλ− 1
2

´ T
0
hT (xλ)TR−1

T hT (xλ)dλ

∝ eh(xT )TR−1yk− 1
2h(xT )TR−1h(xT ). (2.171)

Rewriting (2.169) in terms of (2.171) and manipulating it further, we obtain

p(x, λ) ∝ EP
[
eh(xT )TR−1yk− 1

2h(xT )TR−1h(xT )px (xT ) |Fλ, x
]

≡ EP
[
dQ
dP

(T ) · px (xT ) |Fλ, x
]

= EP
[
dQ
dP

(T ) · EQ [px (xλ) |FT , x] |Fλ, x
]

= EP
[
dQ
dP

(T ) |Fλ, x
]
· EQ [px (xλ) |FT , x]

≡ EP
[
eh(xT )TR−1yk− 1

2h(xT )TR−1h(xT )|Fλ, x
]
px (x) , (2.172)

where we take into account the smoothing property for conditional expectations as

p(x, λ) ∝ EP
[
dQ
dP

(T ) · px (xT ) |Fλ, xλ = x

]
= EQ [px (xT ) |Fλ, x]

= EQ
[
EQ [px (xλ) |FT , x] |Fλ, x

]
= EP

[
dQ
dP

(T ) · EQ [px (xλ) |FT , x] |Fλ, x
]
,

the Fλ-measurability of EQ [px (xλ) |FT , xλ = x], and

EQ [px (xλ) |FT , xλ = x] =

ˆ
px (x) dQ

= px (x) = p (x|y1:k−1) .

As a result, the expression (2.172) can be written in the normalized form (2.166), proving
the theorem statement. The proof is complete by inserting the continuous-time (interpolated)
version of (2.171) into (2.172) to verify the analogy with (2.167).

Remark 2.18. A result more general than the one presented by Theorem 2.17, in terms of
McKean-Vlasov diffusions, can be found in [39].
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Corollary 2.19. The signal process with state equation (2.162), under the hypotheses of The-
orem 2.17, filters its associated (unnormalized) probability density in accordance with the Zakai
equation

dpu = L [pu] dλ+ pu · hT (xλ)
T

R−1
T dyλ, 0 < λ ≤ T ; (2.173)

where L [.] = −∇x·(µ·)+1/2∇x·(D∇x(·)) is the forward Kolmogorov operator, and {yλ : 0 < λ ≤ T}
is the continuous, linearly interpolated observation process defined by (2.170) for which the re-
alization is only taken at λ = T .

Proof. Define

dζλ = hT (xλ)
T

R−1
T dyλ −

1

2
hT (xλ)

T
R−1
T hT (xλ) dλ

=
1

2
hT (xλ)

T
R−1
T hT (xλ) dλ+ hT (xλ)

T
R
−1/2
T dξ̄λ, (2.174)

and recognize the unnormalized probability density to be the numerator of (2.167):

pu = EP
[
eζT |x

]
px (x) . (2.175)

Applying Îto’s Lemma to pu we get

dpu = ∂λpudλ+ ∂ζpudζλ

+
1

2

[
hT (xλ)

T
R
−1/2
T

] [
R
−1/2
T hT (xλ)

]
∂2
ζζpudλ

= ∂λpudλ+ ∂ζpudζλ

+
1

2
hT (xλ)

T
R−1
T hT (xλ) ∂2

ζζpudλ. (2.176)

Because

∂ζpu = ∂2
ζζpu = pu,

∂λpu = EP
[
e−
´ T
0
dζλ |x

]
∂λpx (x) = L [pu] ;

the expression (2.176) becomes the Zakai equation as

dpu = L [pu] dλ

+ pu ·
[

1

2
hT (xλ)

T
R−1
T hT (xλ) dλ+ hT (xλ)

T
R
−1/2
T dξ̄λ

]
+ pu ·

1

2
hT (xλ)

T
R−1
T hT (xλ) dλ

= L [pu] dλ

+ pu ·
[
hT (xλ)

T
R−1
T hT (xλ) dλ+ hT (xλ)

T
R
−1/2
T dξ̄λ

]
= L [pu] dλ+ pu · hT (xλ)

T
R−1
T

[
hT (xλ) dλ+ R

1/2
T dξ̄λ

]
= L [pu] dλ+ pu · hT (xλ)

T
R−1
T dyλ.
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2.9.3 Derivation of the integration rule

The method used in this section to derive the discrete-time integration rule is fully justified in
Appendix A. We intend to approximate the integration of the following equation with respect
to λ:

dx =
1

2
D (λ) · ∇x log π (x) dλ+ D (λ)

1/2
dwλ. (2.177)

Linearizing equation (2.177) w.r.t. x around the current state xn−1, we have

dx = A · x dλ+ B dλ+ D
1/2dwλ, (2.178)

where

A(xn−1) = 1/2D(xn−1) · Hx [log π (x)]xn−1
,

B(xn−1) = a(xn−1)−A · xn−1, (2.179)

a(xn−1) = 1/2D(xn−1) · ∇x log π (x)|xn−1
.

If we apply the definition D(λn−1) = −Hx [log π (x)]
−1
xn−1

, where Hx [·] is the Hessian w.r.t. x,
we have

A = −1

2
Idx , (2.180)

where Idx is the identity matrix with dimension dx × dx. Based on the Laplace transform, we
can obtain the solution for a homogeneous version of the equation (2.178) in discrete time by

x (λ) = L−1
{

(s · Idx −A)−1x(λn−1)
}

=

ˆ λ

λn−1

(s · Idx −A)−1es·Idx ·τx(λn−1)ds

= eA·(λ−λn−1)x(λn−1),

xn = eA·∆λxn−1. (2.181)

By a similar procedure, and considering the definition of a Wiener integral for the stochastic
term, we can obtain the solution of the complete inhomogeneous equation (2.178) as

x(λn) = eA·∆λx(λn−1) +

ˆ λn

λn−1

e−A·(τ−∆λ)B dτ

+

√ˆ λn

λn−1

e−A·(τ−∆λ)D(λn−1)e−AT ·(τ−∆λ)dτ · wn,

xn = eA·∆λxn−1 + A−1
[
eA·∆λ − Idx

]
[a−A · xn−1]

+

√ˆ ∆λ

0

eA·νD(λn−1)eAT ·νdν · wn

= xn−1 + A−1
[
eA·∆λ − Idx

]
a(λn−1)

+

√ˆ ∆λ

0

eA·νD(λn−1)eAT ·νdν · wn, (2.182)
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where wn ∼ N (w; 0dx , Idx). Substituting (2.180) into (2.182), we have

xn = xn−1 +

[
−1

2
Idx
]−1 [

e−
1
2 Idx ·∆λ − Idx

]
a(xn−1)

+

√ˆ ∆λ

0

e−
1
2 Idx ·νD(λn−1)e−

1
2 ITdx ·νdν · wn. (2.183)

By noticing that
e−

1
2 Idx∆λ = e−

1
2 ∆λIdx , (2.184)

the equation (2.183) can be simplified as

xn = xn−1 − 2
(
e−

∆λ
2 − 1

)
a(xn−1)

+

√ˆ ∆λ

0

e−ν/2e−ν/2dν ·D(λn−1)
1/2 · wn

= xn−1 + 2
(

1− e−∆λ
2

)
a(xn−1)

+

√ˆ ∆λ

0

e−νdν ·D(λn−1)
1/2 · wn,

xn = xn−1 +
(

1− e−∆λ
2

)
D(λn−1) · ∇x log π(xn−1)

+
(
1− e−∆λ

)1/2
D(λn−1)

1/2 · wn. (2.185)

2.9.4 Justification for the local flow linearization

When approximating the stochastic particle flow (2.25) as locally linear in the neighborhood
of a probability mass located at xl, we expect to produce a negligible error in the propagated
moments. Given a small increment of pseudo-time ∆λ > 0, the SDE is approximated within
the region ‖x− xl‖ < ζ, for a sufficiently small ζ ∈ R+, as

dx =
1

2
D(λ)∇x log π (x) dλ+ D(λ)

1/2dwλ, λ ∈ (λl, λl + ∆λ], x(λl) = xl; (2.186)

dx ≈ [C(xl, λ) · x + c(xl, λ)] dλ+ D(λ)
1/2dwλ. (2.187)

In this section we provide a non-rigorous argument to explain why this local flow approx-
imation produces admissible errors on the propagated moments without major concern. We
will look at the expected error with respect to the intermediate marginal measures that follow
from the Langevin dynamics for λ ≥ λl as

q(x|yk) =

ˆ
X
pt(x|xl)p(xl|yk)dxl = Ep(l) [pt(x|xl)]

= Ep(l)

N
x; xl +

ˆ λl+∆λ

λl

µ(xl, λ)dλ,

(ˆ λl+∆λ

λl

D(λ)
1/2dwλ

)2
 ,

where µ(x, λ) = 1
2D(λ)∇x log π (x).

In the following analysis we will assume that the state is one-dimensional, i.e. x ∈ R,
just to present a short argument that can be easily extended to the multidimensional case. If
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one follows a procedure that (i) applies Îto’s lemma to a continuous, measurable and nicely
behaved function M (x), (ii) substitutes in the exact stochastic differential (2.186), (iii) takes
expectation of the resulting equation, (iv) differentiates it with respect to λ, and then (v)
integrates its right-hand side by parts, one obtains the so-called moment equation:

d

dλ
Eq [M (x)] = Eq

[
∂M (x)

∂x
µ (x, λ) +

1

2
D(λ)

∂2M (x)

∂x2

]
. (2.188)

Note that when applied to M (x) = x and M (x) = (x − µm)2, for the linear approximation
µ̃(x, λ) = C(λ) · x + c(λ), the referred equation gives the ODEs of the approximated mean and
variance respectively

d

dλ
Ẽq [x] = C(λ) · Ẽq [x] + c(λ),

d

dλ
Ẽq
[
(x− µm)2

]
= 2C(λ) · Ẽq

[
(x− µm)2

]
+ D(λ).

Denote the deviation δE [x] = Eq [x]−Ẽq [x], where Eq [x] = µm is the exact mean propagated
by the process (2.186) and Ẽq [x] = µ̃m is the approximated mean propagated by the locally
linearized process (2.187). First we note that the reverse triangle inequality allows us to state

lim
∆λ→0

∣∣∣∣‖δE [x(λ+ ∆λ)]‖ − ‖δE [x(λ)]‖
∆λ

∣∣∣∣ ≤ lim
∆λ→0

‖δE [x(λ+ ∆λ)]− δE [x(λ)]‖
∆λ

,∣∣∣∣ lim
∆λ→0

‖δE [x(λ+ ∆λ)]‖ − ‖δE [x(λ)]‖
∆λ

∣∣∣∣ ≤ lim
∆λ→0

∥∥∥∥δE [x(λ+ ∆λ)]− δE [x(λ)]

∆λ

∥∥∥∥ ,
∴

∣∣∣∣ ddλ ‖δE [x(λ)]‖
∣∣∣∣ ≤ ∥∥∥∥ ddλδE [x(λ)]

∥∥∥∥ , (2.189)

where |·| is the absolute value, ‖·‖ the Euclidean norm, and all limits are assumed to exist. We
use inequality (2.189) and the moment equation (2.188) to work out∣∣∣∣ ddλ ∥∥∥Eq [x]− Ẽq [x]

∥∥∥∣∣∣∣ ≤ ∥∥∥∥ ddλEq [x]− d

dλ
Ẽq [x]

∥∥∥∥ ,∣∣∣∣ ddλ ‖µm − µ̃m‖
∣∣∣∣ ≤ ‖Eq [µ(x, λ)]− Eq [µ̃(x, λ)]‖ , (moment equation for M (x) = x)∣∣∣∣ ddλ ‖µm − µ̃m‖
∣∣∣∣ ≤ ‖Eq [µ(x, λ)− µ̃(x, λ)]‖ ≤ Eq [‖µ(x, λ)− µ̃(x, λ)‖] ,∣∣∣∣ ddλ ‖µm − µ̃m‖
∣∣∣∣ ≤ Eq [‖µ(x, λ)− (C(xl, λ) · x + c(xl, λ))‖] ≤ K0Eq

[∥∥(x− xl)
2
∥∥] ,

d

dλ
‖µm − µ̃m‖ ≤ K1ζ

2

‖µm − µ̃m‖ ≤ K1ζ
2∆λ, for λ ∈ (λl, λl + ∆λ], x(λl) = xl, K0,K1 ∈ R+, (2.190)

where the modulus is dismissed because ‖µm − µ̃m‖ increases monotonically with ∆λ. Similarly
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for the error on the second moment∣∣∣∣ ddλ‖Σm − Σ̃m‖
∣∣∣∣ =

∥∥∥∥ ddλEq [(x− µm)2
]
− d

dλ
Ẽq
[
(x− µm)2

]∥∥∥∥ ,∣∣∣∣ ddλ‖Σm − Σ̃m‖
∣∣∣∣ ≤ ‖Eq [2(x− µm)µ(x, λ) + D(λ)]− Eq [2(x− µm)µ̃(x, λ) + D(λ)]‖ ,∣∣∣∣ ddλ‖Σm − Σ̃m‖
∣∣∣∣ ≤ ‖2Eq [(x− µm)(µ(x, λ)− µ̃(x, λ))]‖ ≤ 2Eq [‖(x− µm)(µ(x, λ)− µ̃(x, λ))‖] ,∣∣∣∣ ddλ‖Σm − Σ̃m‖
∣∣∣∣ ≤ 2K ′0Eq

[∥∥(x− µm)(x− xl)
2
∥∥] = 2K ′0Eq

[∥∥(xl − µm)(x− xl)
2 + (x− xl)

3
∥∥] ,∣∣∣∣ ddλ‖Σm − Σ̃m‖

∣∣∣∣ ≤ 2K ′0Eq
[(
‖xl − µm‖ ·

∥∥(x− xl)
2
∥∥+

∥∥(x− xl)
3
∥∥)] , (triangle, Cauchy-Schwarz)∣∣∣∣ ddλ‖Σm − Σ̃m‖

∣∣∣∣ ≤ K ′1aζ2 +K ′1bζ
3,

d

dλ
‖Σm − Σ̃m‖ ≤ K ′1ζ2,

‖Σm − Σ̃m‖ ≤ K ′1ζ2∆λ, for λ ∈ (λl, λl + ∆λ], K ′0,K
′
1a,K

′
1b,K

′
1 ∈ R+, (2.191)

where the modulus is suppressed because ‖Σm − Σ̃m‖ increases monotonically with ∆λ.
It is very important to mention that the collection of factors K0, K1, K

′
0, K

′
1a, K

′
1b, K

′
1,

can be different for each possible interval (λl, λl + ∆λ]. Rigorously speaking those coefficients
can depend on pseudo-time λ because

K0, K
′
0 ∝

1

2

∥∥∥∥ ∂2

∂x2
µ(x, λ)

∥∥∥∥
x=xl

.

However, in accordance with the methodology of the stochastic particle flow, we select these
factors so that inequalities (2.190) and (2.191) hold for a specific interval within which the dif-
fusion coefficient is kept fixed as D(λl) ≡ D(x(λl)) = D(xl). Given that the diffusion coefficient
is piecewise constant in λ, the referred factors are also piecewise constant in λ and directly
dependent on the diffusion coefficient. If the target density is Gaussian, then K0, K

′
0 = 0

and the error committed due to the local linearization is null. For a fixed diffusion coefficient,
K0, K

′
0 > 0 if and only if the target log-density has third or higher-order non-zero derivatives

at xl.
Integrating (2.186) by the Euler-Maruyama scheme would produce Eq [‖x̃l+1 − xl+1‖] ≤

K∆λ1/2 and, therefore, it would be reasonable to expect ‖µm−µ̃m‖ ≤ K2∆λ2 and ‖Σm−Σ̃m‖ ≤
K ′2∆λ2 for some K2,K

′
2 ∈ R+. In the multivariate case, by applying the method used in this

section, the curious reader should learn that the bounds are multiplied by the dimension dx, to
give ‖µm − µ̃m‖2 ≤ K1ζ

2∆λ · dx and ‖Σm − Σ̃m‖2 ≤ K ′1ζ2∆λ · dx.

2.9.5 Discrete-time stochastic IDM

This section presents the resulting discrete-time approximation of the stochastic Intelligent
Driver model. The method used for deriving the discrete-time IDM is explained later on in
Appendix A. Define the state equation for the discrete-time IDM to be

xk = A · xk−1 + B + wk, (2.192)
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where the state vector is represented for α vehicles by

xk =



p1

p2

...

pα−1

pα

v1

v2

...

vα−1

vα


k

. (2.193)

The variables pi and vi are the position and velocity of the ith vehicle respectively. The
state-transition matrix can be written as

A =


A1,1 A1,2 . . . A1,2α

A2,1 A2,2

...
...

. . .

A2α,1 . . . A2α,2α


k−1

. (2.194)

For i, j ∈ N, the diagonal elements of the state-transition matrix are given by

Ai,i =

1, i ∈ [1, α];

1 + ∂v̇i−α
∂vi−α

·∆t, i ∈ (α+ 1, 2α];
(2.195)

and the off-diagonal elements given by

Ai,j =



∆t, i ∈ [1, α], j = i+ α;

∂v̇i−α
∂pα

·∆t, i = α+ 1, j = α;

∂v̇i−α
∂pi−α−1

·∆t, i ∈ (α+ 1, 2α], j = i− 1− α;

∂v̇i−α
∂vα

·∆t, i = α+ 1, j = 2α;

∂v̇i−α
∂vi−α−1

·∆t, i ∈ (α+ 1, 2α], j = i− 1;

0, otherwise;

(2.196)
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where

∂v̇n
∂pn−1

= +2a

(
s (vn,∆vn)

2

s3
n

)
, (2.197)

∂v̇n
∂pn

= −2a

(
s (vn,∆vn)

2

s3
n

)
, (2.198)

∂v̇n
∂vn−1

= +2a

(
s (vn,∆vn)

s2
n

)(
vn

2
√
a · b

)
, (2.199)

∂v̇n
∂vn

= −a
(
δ

v0

)(
vn
v0

)δ−1

− 2a

(
s (vn,∆vn)

s2
n

)(
Th +

2vn − vn−1

2
√
a · b

)
. (2.200)

The model takes into account the fact that, on a ring road, the last vehicle in the convoy
can be regarded the one potentially in front of the vehicle leading the queue, assuming that
the first vehicle can complete the circuit faster and approach the last one from behind. This is
represented by the terms ∂pα v̇1 ·∆t and ∂vα v̇1 ·∆t that appear in (2.196) when i = α+1, which
shall be calculated respectively according to expressions analogous to (2.197) and (2.199). The
constant term is defined as

B =


B1

B2

...

B2α


k−1

, (2.201)

where

Bi =


0, i ∈ [1, α];

〈v̇i〉 − ∂v̇i
∂pi−1

· pi−1 − ∂v̇i
∂pi
· pi

− ∂v̇i
∂vi−1

· vi−1 − ∂v̇i
∂vi
· vi, i ∈ [α+ 1, 2α];

(2.202)

and

〈v̇i〉 = a

[
1−

(
vi
v0

)δ
−
(
s (vi,∆vi)

si

)2
]
. (2.203)

The covariance matrix Qk = E
[
wkwT

k

]
is defined as

Qk =


Q1,1 Q1,2 . . . Q1,2α

Q2,1 Q2,2

...
...

. . .

Q2α,1 . . . Q2α,2α


k

, (2.204)

with diagonal elements

Qi,i = σ2
q ×


Q

(1)
i,i , i ∈ [1, α];

Q
(2)
i,i , i = α+ 1;

Q
(3)
i,i , i ∈ (α+ 1, 2α];

(2.205)
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where

Q
(1)
i,i =

∆t3

3
+ ∆t,

Q
(2)
i,i =

(
∂v̇i−α
∂pα

+
∂v̇i−α
∂pi−α

+
∂v̇i−α
∂vα

+
∂v̇i−α
∂vi−α

)
· ∆t3

3

+
∂v̇i−α
∂vi−α

·∆t2 + ∆t,

Q
(3)
i,i =

(
∂v̇i−α
∂pi−α−1

+
∂v̇i−α
∂pi−α

+
∂v̇i−α
∂vi−α−1

+
∂v̇i−α
∂vi−α

)
· ∆t3

3

+
∂v̇i−α
∂vi−α

·∆t2 + ∆t; (2.206)

and off-diagonal elements

Qj,i = Qi,j = σ2
q ×



Q
(4)
i,j , i ∈ [1, α], j = i+ α;

Q
(5)
i,j , i = α+ 1, j = α;

Q
(6)
i,j , i ∈ (α+ 1, 2α], j = i− 1− α;

Q
(7)
i,j , i = α+ 1, j = 2α;

Q
(8)
i,j , i ∈ (α+ 1, 2α], j = i− 1;

0, otherwise;

(2.207)

where

Q
(4)
i,j =

∂v̇i
∂vi
· ∆t3

3
+

(
∂v̇i
∂pi

+ 1

)
· ∆t2

2
,

Q
(5)
i,j =

∂v̇i−α
∂vα

· ∆t3

3
+
∂v̇i−α
∂pα

· ∆t2

2
,

Q
(6)
i,j =

∂v̇i−α
∂vi−α−1

· ∆t3

3
+
∂v̇i−α
∂pi−α−1

· ∆t2

2
,

Q
(7)
i,j =

∂v̇i−α
∂vα

· ∆t2

3
,

Q
(8)
i,j =

∂v̇i−α
∂vi−α−1

· ∆t2

3
. (2.208)
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3
Multi-target Tracking of

Dependent Targets

As discussed in Chapter 0, a typical assumption of multi-target trackers considers that target
states are mutually independent conditioned on the observations. Although this assumption
simplifies the multi-target state estimation, since in that case the uncertainty of each target
state can be fully represented independently of the others, it results in relevant inaccuracies
when tracked objects get into proximity and stay in this condition for a considerable duration
of time. Estimating the correlations between objects in mutual proximity can be achieved by
filters that estimate the object states jointly (as a single multi-target state), along with their
covariances, but often constitute a computationally feasible solution only for a small number of
targets. The challenge of representing target states and their mutual dependencies in a concise,
accurate, and scalable way is treated in this chapter.

In this context, we develop a scalable multi-target tracking framework that considers de-
pendency between target states due to association uncertainty and enables track management.
Our method builds on a target tracker previously developed to efficiently maintain target de-
pendency structures, incorporating mechanisms for initiating new tracks via birth process and
by inferring existence probabilities to cater for track confirmation and deletion. The method
can also be seen as an extension of the Joint Integrated Probabilistic Data Association (JIPDA)
to include target state dependencies and birth processes. The proposed framework does not
maintain a joint probability distribution over all the target states, which is infeasible except
when the number of targets is small, but rather relies on target dependency trees on which
discrete probability distributions of adjacent targets are calculated. These dependency trees
constitute probabilistic graphical models, where each node represents a target-related discrete
random variable and the edges represent the probabilistic relations between nodes. Each node
variable can take different values, one for each mixture component of the corresponding target
state, with probabilities given by a discrete marginal distribution, and each edge is described by
a conditional probability distribution relating two nodes. These probabilistic trees are predicted
and updated at each time step such that the information lost in the approximation is minimal.
For computing the marginal association probabilities, an exact, very efficient algorithm known
as Efficient Hypothesis Management (EHM) is adopted in its most general form, which enables
computations for pairs of dependent targets. A numerical experiment shows that the proposed
filter reduces the incidence of track swapping and substantially improves tracking capability
when information sensible for association disambiguation are occasionally available.
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3.1 Overview

Multi-target tracking can be regarded as the subdomain of Signal Processing dedicated to es-
timating states of several objects from a sequence of observations corrupted by noise, under
detection uncertainty and the possibility of false alarms. Pioneer methods for multi-target
tracking have resorted to multivariate Bayesian statistics for describing targets’ states and have
proposed enumeration-based probabilistic models of the measurement-to-target association un-
certainty to enable custody of tracked objects in their estimates. No wonder these descriptions
result in a combinatorial association problem with exponential complexity on the number of tar-
gets (and of measurements). Established representatives of such methods include the celebrated
Multi-Hypothesis Tracking (MHT) [163] and Joint Probabilistic Data Association (JPDA) [73].
These filters have become traditional due to their easy incorporation of well-known filtering
techniques (e.g., Kalman measurement update), accurate approximations of posterior multi-
target state densities and an intuitive formalism.

On the other hand, a different family of filters approaches multi-target Bayesian inference
in a different way, where data association is avoided by means of a permutational joint state
description while promoting a succinct mathematical formulation. In this formulation, a col-
lection of target states is considered as a random set-valued state and the collection of sensor
measurements is treated as a random set-valued observation. Often, the cost of avoiding the
measurement-to-target association is having estimates that do not keep track identities explic-
itly. Celebrated representatives of this class are the Probabilistic Hypothesis Density (PHD)
filter [126], and the Multi-target Multi-Bernoulli filter [131]. Recent advances worth mention-
ing include the Labeled Multi-Bernoulli filter (Labeled MeMBer) [164] and the Distinguishable
and Independent Stochastic Populations (DISP) filter [58]. The Labeled Multi-Bernoulli fil-
ter generalizes random finite sets to incorporate object labels so that target identities can be
estimated, however, this approach reintroduces the combinatorial complexity when producing
estimates. The DISP filter relies on the classical formalism of stochastic population processes
[143], along with a measure-theoretical description for treating uncertainties about populations
in different levels of abstraction. The DISP incurs in a computational complexity similar to
that of the MHT.

In the traditional target tracking formulation, filters maintain a marginal distribution on
each target state and approximate the joint distribution as a product of the marginals, i.e., they
assume that the targets are independent. While this constitutes a good approximation for many
practical cases, it becomes coarse when targets get close to one another for several time steps.
One possible solution to consider dependencies between targets is estimating a complete joint
distribution over the states of all targets, such as in the coupled JPDA approaches [7, 16, 15],
however, this solution is only feasible for a few targets owing to the high computational effort
involved in updating high-dimensional probability distributions. In contrast, we propose that
the multi-target joint distribution be represented via a set of disjoint trees over the set of targets,
and so is approximated by using the pairwise distributions of adjacent targets in the same tree.
The target trees are constructed and updated such that they preserve the maximum available
information, in the same ethos as that of Chow-Liu trees [31]. In our proposed algorithm, the
computational requirements should grow subexponentially on the number of targets.

In this chapter, we adopt the traditional approach akin to the Joint Integrated Probabilistic

146



CHAPTER 3. MULTI-TARGET TRACKING OF DEPENDENT TARGETS

Data Association (JIPDA) [144], but introducing a dependency structure between target states
and relying on a highly efficient algorithm for computing marginal association probabilities
(EHM) [135, 95]. Our method is an extension of the filter proposed in [94], incorporating mech-
anisms for initiating new tracks via birth process, inferring existence probabilities to cater for
track confirmation and deletion, and generalizing the procedure for constructing and updating
target trees. The reasons for adopting the traditional multi-target tracking formulation are
simple: i) filters based on random finite sets and stochastic populations do not offer a clear way
to describe dependency between targets to this day, ii) the complexity of the JIPDA framework
when solved via the EHM is scalable to a moderately high number of targets, iii) probabilistic
Bayesian structures are well established and can be directly incorporated in the traditional
formulation (see, for example, [207, 208, 117]).

Based on these facts, our approach focuses on the problem of tracking multiple targets
from measurements where the correspondence of measurements to targets is unknown and the
targets may depend on one another. The intent is developing a new filter to reduce track
swapping, i.e. when target identities and their associated tracks get swapped. This situation
is particularly prominent when targets move into mutual proximity, which renders the filter
unable to distinguish them, and then they move apart such that the filter may be induced to
estimate the wrong modes of the multi-target distribution. With exception of the MHT and
its variations, traditional filters are compelled to make a “hard decision” when close targets
get apart, which can go wrong with substantial probability, and once this decision has gone
wrong these filters cannot revise their estimates later on when disambiguating information
might become available. In the literature, this problem is referred to as track coalescence,
and most filters proposed to tackle it also arrive at a dilemma where a hard decision must be
made, usually in the form of an optimization problem, e.g., producing a maximum-a-posteriori
estimate [16] or maximizing information [190, 117]. The point we wish to make is that upon
maintaining target dependency, the decision is softer in the sense that a wrong estimate does
not permanently affect future estimates. This is expected because the dependency structure
keeps “memory” of the association ambiguities, which enables the filter to revise its estimates
later on. In this view, the tracker proposed herein defers a deal of its decision ability to future
steps when disambiguating information becomes available.

The chapter is organized as follows. In Section 3.2 we state the multi-target tracking prob-
lem, present usual assumptions, and extend the assumptions to formalize our filter. In Section
3.3 we derive the prediction step, and in Section 3.4 we derive the measurement update step in a
general context. Details on the computation of posterior marginal association probabilities are
discussed in Section 3.5, including a detailed description of EHM and presenting the inference
equations for EHM 3. Section 3.6 is dedicated to explaining how target trees are constructed
and updated, according to new association hypotheses. Section 3.7 describes the mixture re-
duction method used in our filter and the criteria for track management. Section 3.8 presents
a numerical experiment that shows the capabilities of our method. Section 3.9 concludes.

3.2 Problem statement and assumptions

As it is customary in stochastic filtering problems, let us fix an underlying probability space
(Ω,F(X ),P) on which random experiments will be defined, where Ω is the sample space, F(X )
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is a σ-algebra on some (state) space X , characterizing a collection of probabilistic events, and
P is a probability measure that associates probabilities to events. It is generally assumed that
each target follows a state process {xt}t≥0, xt ∈ X ⊆ Rdx , from which realizations can be
evaluated at subsequent discrete-time steps t ∈ {t0, t1, . . . , tk, . . . |k ∈ N0}, and so we denote
xk := xtk hereafter. Likewise, an observation process, {yt}t≥0, yt ∈ Y ⊆ Rdy , is defined
to describe measurements about target states, from which discrete-time outcomes, yk := ytk ,
are provided by at least one sensor. The description also establishes the measurable spaces
of the state and observation processes respectively, (X ,Ft(X )) and (Y,Ft(Y)), with σ-fields
Ft(X ) , σ{xt|t ≥ 0} and Ft(Y) , σ{yt|t > 0} that compose the filtrations {Ft(X )}t≥0 and
{Ft(Y)}t≥0 of the σ-algebra F . From now on, when talking about the state and observation
processes, we refer to their discrete-time versions, {xk}k∈N0

and {yk}k∈N.
In this chapter we index objects by finite sets of distinct natural numbers as

In := {i1, . . . , in|i1, . . . , in ∈ N, i1 6= · · · 6= in}

for n elements, and any such index set will be of the same form. In multiple target tracking,
a number n of targets may possibly be in the scene. By indexing all targets in the scene by
In,k := {i1, . . . , in}, each target state is described as x

(i)
k such that i ∈ In,k. The set of all

targets in the scene at time step k will be denoted as x
(1:n)
k = x

In,k
k := {x(i)

k |i ∈ In,k}. In favor
of simplicity, throughout this chapter the notation x

(1:n)
k is used interchangeably with x

In,k
k to

represent the finite set containing all objects x
(i)
k indexed by In,k. Though we acknowledge that

an index set In,k might contain natural numbers (identifiers) not necessarily in the interval [1..n],
in which case x

(1:n)
k would be an abuse of notation. Similarly, a number m of measurements

about targets are collected, indexed by Im,k := {j1, . . . , jm}, and so each measurement can
be identified as y

(j)
k such that j ∈ Im,k. The complete set of measurements is denoted as

Yk , y
(1:m)
k := {y(j)

k |j ∈ Im,k} and we write the history of observations up to time step k

as Y1:k := {Y1, . . . ,Yk}. Multi-object state and observation spaces can be denoted as the
Cartesian products Xn =

∏
i∈In,k X and Ȳm =

∏
j∈Im,k Ȳ respectively, where Ȳ , Y ∪ Yfa

and, in this context, the observation process is assumed to admit false alarms y
(j)
k,fa ∈ Yfa as

realizations and missed detections may be present (m ≤ n).
The ultimate goal of any multiple-target tracker is to infer estimates about target states

conditioned on the information provided by the observation history, that is

Pk[ϕ] = E
[
ϕ(x

(1:n)
k )|Fk(Ȳm)

]
≡
ˆ
Xn

ϕ(x
(1:n)
k )Pk(dx

(1:n)
k ,Y1:k), (3.1)

for a test function ϕ : Xn → X ′, measurable in Fk(Xn) = σ{x(1:n)
t |0 < t ≤ tk}, where

Pk(·,Y1:k) is a posterior multi-target probability measure, and x
(1:n)
k should be understood in

terms of the joint event X
(1:n)
k =

⋂n
i=1 X

(i)
k in the measurable space (Xn,Fk(Xn)). In practical

terms, computing estimates as in (3.1) involves expressing the posterior multi-target measure
explicitly, which constitutes the main scope of almost all multiple target trackers. In order
to express the multi-target posterior measure, trackers require further assumptions, which are
typically given as follows.

Assumption 3.1. Each target moves independently of one another, with motion modeled by a
single-target Markov transition density pt(x

(i)
k |x

(i)
k−1). Each target state is assumed to follow a
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state equation of the form

x
(i)
k = f(x

(i)
k−1) + g(ξk), i ∈ In,k−1, (3.2)

where f : X → X is the state transition function, and g : X → X is a function of the state noise
process {ξk}k∈N0

, ξk ∈ X , with independent realizations over time steps.

Assumption 3.2. Measurements generated from targets are independent on one another, with
single-target likelihood function `j(xk) = p`(y

(j)
k |xk). Each target state is assumed to produce at

most one measurement, obtained according to an observation equation of the form

y
(i)
k = h(x

(i)
k ) + υk, i ∈ In,k, (3.3)

where h : X → Y is the observation function, and {υk}k∈N0
, υk ∈ Y, is the observation

noise process, whose realizations are independent over distinct measurement outcomes, and
independent of the state noise process {ξk}k∈N0

.

Assumption 3.3. Each sensor detects each target with state x
(i)
k with probability pd(x

(i)
k ).

Hence, there may be misdetections with probability qd(x
(i)
k ) = 1− pd(x(i)

k ).

Assumption 3.4. False alarms (clutter) may affect the observation process, being indepen-
dent of the target-originated measurements. The number of false alarms is assumed Poisson-
distributed, i.e., mfa ∼ Pois(m|λfa), where λfa is expected number of false alarms per time
frame, and the position of each false alarm is assumed uniformly distributed in a surveillance
region occupying a volume V , i.e. yfa ∼ U(∂V ) where ∂V is the boundary (surface) of the
surveillance region. We define the expected volumetric density of false alarms per time frame
according to λV,fa = λfa/V . At each time step k, the complete set of measurements is then given
by

y
Im,k
k = y

In,k
k ∪ y

Imfa,k

fa

and sensors cannot distinguish target-generated measurements from false alarms.

In the Joint Probabilistic Data Association (JPDA) framework, estimating the joint pos-
terior distribution Pk is structured by the additional assumption that target’s states are in-
dependent conditioned on the observation information. Denoting p a probability density of
Pk with respect to the Lebesgue measure, the posterior multi-target density under the JPDA
framework would be of the product form, p(x(1:n)

k |Y1:k) =
∏n
i=1 p(x

(i)
k |Y1:k), where p(x(i)

k |Y1:k)

are the marginal probability densities of each target state. This form simplifies the multi-target
density representation since it can be completely described by the individual target marginal
densities. However, this simplicity comes at a cost: loss of ability to explain dependency between
targets that may probabilistically share the same measurement in the observation path.

The uncertainty of whether a measurement may have originated from each of two (or more)
targets arises when they are in sufficient proximity such that the measurement is likely to have
come from either of them. In addition, such uncertainty is exacerbated if targets remain in
mutual proximity for several time steps and, in that case, assuming target state independence
would discard sensible information. With the intent of partially avoiding this information
loss, Horridge & Maskell [94] proposed a filter where target dependency is maintained via a
probabilistic graph structure, in the form of a tree, that expresses pairwise relations across
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targets. In this context, the filter proposed by Horridge & Maskell [94] makes two additional
assumptions as follows.

Assumption 3.5. The marginal probability densities of each target state assume a mixture
form according to

p(x
(i)
k |Y1:k) =

∑
c
(i)
k ∈Γ

(i)
k

p(x
(i)
k |c

(i)
k ,Y1:k)p(c

(i)
k |Y1:k), (3.4)

where c(i)k is a discrete random variable taking values in a discrete countable set

Γ
(i)
k = {γ(i)

1 , γ
(i)
2 , . . . , γ

(i)
nγ,k(i)},

with posterior probabilities expressed as p(c(i)k |Y1:k) = Pr{c(i)k |Y1:k}, and where nγ,k(i) = |Γ(i)
k |

is the event set cardinality for the component c(i)k . The target states are assumed independent
conditioned on the set of component variables c(1:n)

k = {c(1)
k , . . . , c

(n)
k }, i.e.

p(x
(1:n)
k |c(1:n)

k ,Y1:k) =

n∏
i=1

p(x
(i)
k |c

(1:n)
k ,Y1:k),

but the components themselves may be dependent on each other over all targets.

Assumption 3.6. The target dependency structure is described by a probabilistic tree, GT =

(VT , ET ), where VT = In,k is the set of vertices and ET = {(u, v)|u, v ∈ VT , u 6= v} is a set of
vertice pairs that explains edges in the tree. In this tree, each node represents a target i, proba-
bilistically described by a (discrete) random variable, c(i)k , and the edges represent probabilistic
dependency between two targets. Adjacent nodes in the tree are related by discrete conditional
distributions of the form p(c

(i)
k |c

pa(i)
k ,Y1:k), where pa(i) stands for the parent of node i. In

addition,
i ⊥⊥ an(i) \ pa(i) |pa(i), i ∈ In,k, (3.5)

where an(i) stands for the set of all ancestors of node i, which means that p(c(i)k |c
an(i)
k ,Y1:k) =

p(c
(i)
k |c

pa(i)
k ,Y1:k). The dependency structure over all targets can be expressed by the joint dis-

tribution:

p(c
(1:n)
k |Y1:k) =

n∏
i=1

p(c
(i)
k |c

pa(i)
k ,Y1:k). (3.6)

We will increment those assumptions to: (i) model the uncertainty of target existence, (ii)
maintain a set of unconfirmed tracks, (iii) model the possibility that new targets may appear
in the scene. These assumptions will be used to develop a mechanism for track management,
involving initiating, confirming, and deleting tracks. As a consequence, conditional probability
densities of target states in Assumption 3.5 will also be conditioned on the target existence.
This is particularly useful for deciding whether a track (on a hypothetical target) should be
confirmed or discarded, based on its evaluated probability of existence.

Assumption 3.7. Targets can exist or not, in a probabilistic sense, according to a binary
existence random variable ek ∈ {0, 1} at time step k. The existence process, {ek}k∈N, is assumed
to follow a first-order Markov process. Let E(i)

k , {e(i)
k = 1} be the event that target i exists, and

Ē
(i)
k , {e(i)

k = 0} the complementary event. The posterior existence probability of each target
is described by p(E(i)

k |Y1:k). The Markov transition kernel of the existence process, denoted by

150



CHAPTER 3. MULTI-TARGET TRACKING OF DEPENDENT TARGETS

p(e
(i)
k |e

(i)
k−1), models possibilities that an existing target at time step k − 1 may die (disappear)

or survive until the next time step. The probability of survival is denoted as ps = p(E
(i)
k |E

(i)
k−1).

Marginal probability densities of each target state will be conditioned on target existence and
read as

p(x
(i)
k |E

(i)
k ,Y1:k) =

∑
c
(i)
k ∈Γ

(i)
k

p(x
(i)
k |c

(i)
k , E

(i)
k ,Y1:k)p(c

(i)
k |Y1:k). (3.7)

Assumption 3.8. Targets that have never been detected, or have been detected but show prob-
ability of existence within the interval p(E(i)

k |Y1:k) ∈ (τdel, τconf), where τdel is a lower threshold
for track deletion and τconf is an upper threshold for track confirmation, take part in set of
nu,k unconfirmed targets, indexed by Iu,k = {iu1 , . . . , iunu,k}. For simplicity, each unconfirmed
target has a single state component, distributed according to p(x(i)

k |E
(i)
k ,Y1:k). While keeping

track of unconfirmed targets, if p(E(i)
k |Y1:k) > τconf for a target i ∈ Iu,k, then the corresponding

track is confirmed, removed from the unconfirmed set, and incorporated in a set of nc,k con-
firmed targets, indexed by Ic,k = {ic1, . . . , icnc,k}. After each filtering cycle, if any confirmed or
unconfirmed target has p(E(i)

k |Y1:k) < τdel, then its track is deleted.

Assumption 3.9. New targets may appear independently of the existing targets at time step
k, being indexed by Ib,k = {ib1, . . . , ibnb,k}. The number nb = nb,k of new appearing targets is
assumed to be Poisson-distributed according to nb ∼ Pois(n|λb) where λb = λV,bV is expected
number of new targets per time frame, and λV,b is the expected volumetric density of new
targets per time frame. Each new target i ∈ Ib,k is assumed to be spatially distributed according
to pbirth(x

(i)
k ). Each new target has existence probability given by pb , λb.

The filter that results from Assumptions 3.1–3.9 requires a solution for the data association
problem. Later on we will explain how uncertainty of measurement-to-target associations will
be taken into account, but for now it suffices to say that the posterior (marginal) association
probabilities will be exactly computed by an algorithm reminiscent of Pearl’s algorithm [154]
in a Bayesian network1, called Efficient Hypothesis Management (EHM) [135, 95, 94]. We will
adopt the third variation of EHM as in [94], which handles multiple state (mixture) components
per target. The resulting filter will be referred to as JPDA-EHM3 hereafter.

3.3 Prediction step

The prediction step for the JPDA-EHM3 is supported by Assumptions 3.1, 3.5, 3.7, 3.8 and 3.9.
As per Assumptions 3.8 and 3.9, the problem is partitioned into the sets of confirmed targets,
indexed by Ic,k−1 = {ic1, . . . , icnc,k−1

}, unconfirmed targets indexed by Iu,k−1 = {iu1 , . . . , iunu,k−1
},

and newborn targets indexed by Ib,k = {ib1, . . . , ibnb,k}. Given that Ic,k|k−1 := Ic,k−1, note that

1Which can also be seen as belief propagation.
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for confirmed targets:

p(x
(i)
k |E

(i)
k ,Y1:k−1)

=

ˆ
X
pt(x

(i)
k |x

(i)
k−1)

 ∑
c
(i)
k−1∈Γ

(i)
k−1

p(x
(i)
k−1|c

(i)
k−1, E

(i)
k ,Y1:k−1)p(c

(i)
k−1|Y1:k−1)

 dx
(i)
k−1,

≡
∑

c
(i)
k−1∈Γ

(i)
k−1

p(x
(i)
k |c

(i)
k−1, E

(i)
k ,Y1:k−1)p(c

(i)
k−1|Y1:k−1), i ∈ Ic,k|k−1, (3.8)

p(E
(i)
k |Y1:k−1) =

∑
e
(i)
k ∈{0,1}

p(E
(i)
k |e

(i)
k−1)p(e

(i)
k−1|Y1:k−1)

= p(E
(i)
k |E

(i)
k−1)p(E

(i)
k−1|Y1:k−1)

= ps · p(E(i)
k−1|Y1:k−1), i ∈ Ic,k|k−1, (3.9)

where

p(x
(i)
k |c

(i)
k−1, E

(i)
k ,Y1:k−1) = p(x

(i)
k |c

(i)
k−1, E

(i)
k−1,Y1:k−1),

p(x
(i)
k |E

(i)
k ,Y1:k−1) = p(x

(i)
k |E

(i)
k , E

(i)
k−1,Y1:k−1),

because confirmed targets that existed at time step k − 1 are predicted as continuing to exist
at time step k with probability p(E

(i)
k |Y1:k−1). Now, for unconfirmed targets in Iu,k|k−1 :=

Iu,k−1 ∪ Ib,k, observe that

p(x
(i)
k |E

(i)
k ,Y1:k−1) ≡ p(x(i)

k |E
(i)
k , e

(i)
k−1,Y1:k−1)

=

ˆ
X
pt(x

(i)
k |x

(i)
k−1)p(x

(i)
k−1|E

(i)
k , e

(i)
k−1,Y1:k−1)dx

(i)
k−1

=

p(x
(i)
k |E

(i)
k , E

(i)
k−1,Y1:k−1) = p(x

(i)
k |E

(i)
k−1,Y1:k−1), e

(i)
k−1 = 1, i ∈ Iu,k−1,

p(x
(i)
k |E

(i)
k , Ē

(i)
k−1,Y1:k−1) = pbirth(x

(i)
k ), e

(i)
k−1 = 0, i ∈ Ib,k,

(3.10)

p(E
(i)
k |Y1:k−1) =

ps · p(E
(i)
k−1|Y1:k−1), e

(i)
k−1 = 1, i ∈ Iu,k−1,

pb, e
(i)
k−1 = 0, i ∈ Ib,k,

(3.11)

where pb is the probability that a new target i will appear in the scene with probability density
given by pbirth(x

(i)
k ). Note that possibly existing targets at time step k−1 are predicted as contin-

uing to exist with probability p(E(i)
k |Y1:k−1). In addition, in (3.9) and (3.11), p(E(i)

k |Ē
(i)
k−1) = 0

for possibly existing targets at time step k−1, and p(Ē(i)
k−1|Y1:k−1) = 1 for targets born at time

step k.

3.4 Measurement update step

The measurement update step for the JPDA-EHM3 relies on the Assumptions 3.2–3.9, and
will be performed over the entire set of targets, indexed by In,k = Iu,k ∪ Ic,k. Note that
the method described in this section is applicable to both confirmed and unconfirmed targets,
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because unconfirmed target densities could be interpreted as mixtures with a single component.
For simplicity of notation, we write n = nck + nuk and m = mk in this section. Let {a(i)

k }k∈N
be the association process, described by a discrete random variable that associates a target in
In = {i1, . . . , in} to a single measurement in Im,0 := Im ∪ {0}, i.e. a

(i)
k : In → Im ∪ {0},

where a(i)
k = 0 denotes the event in which the ith target generates no measurement. Because

each target generates at most one measurement per Assumption 3.2, the nonzero values of
a

(1:n)
k = {a(1)

k , . . . , a
(n)
k } must be distinct. In this context we define the set of all possible joint

associations over exactly |S| targets, for some subset S ⊆ In, such that nonzero elements are
distinct, as

AS,k , {aSk |a
(`)
k ∈ Im,0,∀` ∈ S, a

(i)
k 6= a

(j)
k 6= 0 =⇒ i 6= j}. (3.12)

Clearly, the joint posterior multi-target density can be described as the mixture

p(x
(1:n)
k |E(1:n)

k ,Y1:k)

=
∑
c
(1:n)
k

∑
a

(1:n)
k

n∏
i=1

p(x
(i)
k |c

(i)
k−1, a

(i)
k , E

(i)
k ,Y1:k)p(c

(1:n)
k−1 , a

(1:n)
k |E(1:n)

k ,Y1:k), (3.13)

where p(x(i)
k |c

(i)
k−1, a

(i)
k , E

(i)
k ,Y1:k) is a single-target posterior density in the usual sense (e.g., via

Kalman filter) and where only joint associations permitted by Assumption 3.2 are considered
in the joint event space, that is,

p(c
(1:n)
k−1 , a

(1:n)
k |E(1:n)

k ,Y1:k) := p(c
(1:n)
k−1 , a

(1:n)
k |a(1:n)

k ∈ AIn,k, E
(1:n)
k ,Y1:k). (3.14)

By applying Bayes’ rule one can write

p(c
(1:n)
k−1 , a

(1:n)
k , E

(1:n)
k |Y1:k)

=
p(y

(1:m)
k |c(1:n)

k−1 , a
(1:n)
k , E

(1:n)
k ,m) · p(a(1:n)

k , E
(1:n)
k ,m|Y1:k−1) · p(c(1:n)

k−1 |Y1:k−1)

p(y
(1:m)
k |Y1:k−1)

. (3.15)

Let a binary random variable d(i)
k ∈ {0, 1} describe the ith target detection, whereD(i)

k , {d(i)
k =

1} is the detection event and D̄(i)
k , {d(i)

k = 0} its complementary event, set the total number
of detections as md :=

∑n
i=1 d

(i)
k , and let Id,k := {i ∈ In,k|d(i)

k = 1} and Id̄,k = In,k \Id,k be the
index sets of detected targets and undetected targets, respectively, in a given joint association
event a(1:n)

k . Also, denote the joint detection as d(1:n)
k = {d(1)

k , . . . , d
(n)
k } and consider random

permutations over the set of measurement indexes as σm : Im → Im, each equally probable
with p(σm|m) = 1/m!. As observed in [95], statistics on a joint event (a

(1:n)
k ,m) can be inferred

from a joint event (d
(1:n)
k , σm) according to

p(a
(1:n)
k ,m|Y1:k−1) = (m−md)! · p(d(1:n)

k , σm|Y1:k−1), (3.16)

that is, knowing the prior probability of a joint detection configuration with a specific measure-
ment permutation allows calculating the prior probability of joint association with a certain
number of measurements. The term (m−md)! accounts for all ways of ordering non-detections
in a

(1:n)
k since permuting missed detections produces the same effect in the prior association

distribution. The joint prior association probability p(a(1:n)
k , E

(1:n)
k ,m|Y1:k−1) must be handled
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carefully since in joint events where a(i)
k = 0, the associations must also account for the fact

that i may not exist, i.e., a missed detection can happen either if a target does exist or not.
Denote the event that detected targets exist as EId,kk = {E(i)

k ,∀i ∈ In,k|d(i)
k = 1}, and clearly

(d
(1:n)
k , E

Id,k
k ) ≡ d(1:n)

k (a detected target always exists), then we can write

p(a
(1:n)
k , E

(1:n)
k ,m|Y1:k−1) = (m−md)! · p(d(1:n)

k , E
(1:n)
k , σm, |Y1:k−1)

= (m−md)! · p(σm|m) · p(m|d(1:n)
k ) · p(d(1:n)

k , E
(1:n)
k |Y1:k−1)

= (m−md)! · p(σm|m) · p(m|d(1:n)
k ) · αId̄,kp(d(1:n)

k , E
Id,k
k |Y1:k−1),

= (m−md)! · p(σm|m) · p(m|d(1:n)
k ) · αId̄,kp(d(1:n)

k |Y1:k−1), (3.17)

where the prior probability of joint detections equals

p(d
(1:n)
k |Y1:k−1)

≡ p(d(1:n)
k , E

Id,k
k |Y1:k−1) =

n∏
i=1

p(D̄
(i)
k |Y1:k−1)1−d(i)

k p(D
(i)
k , E

(i)
k |Y1:k−1)d

(i)
k

=

n∏
i=1

∑
e
(i)
k

p(D̄
(i)
k |e

(i)
k ,Y1:k−1)p(e

(i)
k |Y1:k−1)


1−d(i)

k
p(D(i)

k |E
(i)
k ,Y1:k−1)p(E

(i)
k |Y1:k−1)


d

(i)
k

=
∏n
i=1

(
1− p(D(i)

k |E
(i)
k ,Y1:k−1)p(E

(i)
k |Y1:k−1)

)1−d(i)
k
(
p(D

(i)
k |E

(i)
k ,Y1:k−1)p(E

(i)
k |Y1:k−1)

)d(i)
k

, (3.18)

and where the following factor is introduced

αId̄,k ,
∏
i∈Id̄,k

p(D̄
(i)
k , E

(i)
k |Y1:k−1)

p(D̄
(i)
k |Y1:k−1)

= p(E
Id̄,k
k |d(1:n)

k , E
Id,k
k ,Y1:k−1)

≡ p(E(1:n)
k |d(1:n)

k ) ≡ p(E(1:n)
k |a(1:n)

k ). (3.19)

Observe that, indeed,

p(d
(1:n)
k , E

(1:n)
k |Y1:k−1) = αId̄,kp(d

(1:n)
k , E

Id,k
k |Y1:k−1) ≡ p(E(1:n)

k |d(1:n)
k )p(d

(1:n)
k |Y1:k−1), (3.20)

and so

p(a
(1:n)
k , E

(1:n)
k ,m|Y1:k−1)

= αId̄,kp(a
(1:n)
k , E

Id,k
k ,m|Y1:k−1) ≡ p(E(1:n)

k |a(1:n)
k )p(a

(1:n)
k ,m|Y1:k−1). (3.21)
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The following expressions are applicable in (3.18):

p(Ē
(i)
k |Y1:k−1) = 1− p(E(i)

k |Y1:k−1), (3.22)

p(D
(i)
k |E

(i)
k ,Y1:k−1) ,

ˆ
X
pd(x

(i)
k )p(x

(i)
k |E

(i)
k ,Y1:k−1)dx

(i)
k , (3.23)

p(D̄
(i)
k |E

(i)
k ,Y1:k−1) = 1− p(D(i)

k |E
(i)
k ,Y1:k−1), (3.24)

p(D̄
(i)
k |Ē

(i)
k ,Y1:k−1) = 1, (3.25)

p(D
(i)
k |Ē

(i)
k ,Y1:k−1) = 1− p(D̄(i)

k |Ē
(i)
k ,Y1:k−1) = 0. (3.26)

Ultimately, computing marginal association probabilities in the JPDA framework shall be based
on

p(c
(1:n)
k−1 , a

(1:n)
k , E

Id,k
k |Y1:k) ≡ p(c(1:n)

k−1 , a
(1:n)
k |Y1:k)

=
p(y

(1:m)
k |c(1:n)

k−1 , a
(1:n)
k , E

Id,k
k ,m) · p(a(1:n)

k , E
Id,k
k ,m|Y1:k−1) · p(c(1:n)

k−1 |Y1:k−1)

p(y
(1:m)
k |Y1:k−1)

, (3.27)

so that

p(c
(1:n)
k−1 , a

(1:n)
k , E

(1:n)
k |Y1:k) = p(E

(1:n)
k |a(1:n)

k )p(c
(1:n)
k−1 , a

(1:n)
k |Y1:k)

≡ αId̄,kp(c(1:n)
k−1 , a

(1:n)
k , E

Id,k
k |Y1:k). (3.28)

The approach formulated in [95] can be generalized to give

p(y
(1:m)
k |c(1:n)

k−1 , a
(1:n)
k ,m) ≡ p(y(1:m)

k |c(1:n)
k−1 , a

(1:n)
k , E

Id,k
k ,m)

=

ˆ
Xn

p(y
(1:m)
k |c(1:n)

k−1 , a
(1:n)
k , E

Id,k
k , x

(1:n)
k ,m)p(x

(1:n)
k |c(1:n)

k−1 , a
(1:n)
k , E

Id,k
k ,Y1:k−1)dx

(1:n)
k

= 1AIn,k(a
(1:n)
k )

m−md∏
j=1

U(∂V ) ·
n∏
i=1

ˆ
X
`
a

(i)
k

(x
(i)
k )p(x

(i)
k |c

(i)
k−1, E

(i)
k ,Y1:k−1)dx

(i)
k

= 1AIn,k(a
(1:n)
k )V −(m−md) ·

n∏
i=1

ˆ
X
`
a

(i)
k

(x
(i)
k )p(x

(i)
k |c

(i)
k−1, E

(i)
k ,Y1:k−1)dx

(i)
k , (3.29)

where

1AIn,k(a
(1:n)
k ) =

1, a
(1:n)
k ∈ AIn,k,

0, otherwise,

is the indicator function, and we note that each of the m −md measurements corresponding
to non-detections are false alarms spatially distributed according to U(∂V ) = V −1. As a
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consequence of (3.17), (3.18) and (3.21):

p(a
(1:n)
k , E

Id,k
k ,m|Y1:k−1) ≡ p(a(1:n)

k ,m|Y1:k−1)

= (m−md)! · p(d(1:n)
k , E

Id,k
k , σm|Y1:k−1)

= (m−md)! · p(σm|m) · p(m|d(1:n)
k ) · p(d(1:n)

k , E
Id,k
k |Y1:k−1)

= (m−md)! ·
1

m!
· Pois(m−md|λfa) · p(d(1:n)

k |Y1:k−1)

=
e−λfa(λV,faV )m−md

m!

n∏
i=1

(
1− p(D(i)

k |E
(i)
k ,Y1:k−1)p(E

(i)
k |Y1:k−1)

)1−d(i)
k

×
(
p(D

(i)
k |E

(i)
k ,Y1:k−1)p(E

(i)
k |Y1:k−1)

)d(i)
k

, (3.30)

where a detection can only happen if a target exists, and a missed detection can happen either
due to the target non-existence or due to a sensor misdetection. Substituting (3.29) and (3.30)
in (3.27) we obtain

p(c
(1:n)
k−1 , a

(1:n)
k , E

Id,k
k |Y1:k)

=
e−λfaλm−nV,fa

m!p(y
(1:m)
k |Y1:k−1)

1AIn,k(a
(1:n)
k ) · p(c(1:n)

k−1 |Y1:k−1)

n∏
i=1

ψ(a
(i)
k , E

(i)
k |c

(i)
k−1), (3.31)

where

ψ(a
(i)
k , E

(i)
k |c

(i)
k−1)

=

λV,fa
(

1− p(E(i)
k |Y1:k−1)

´
X pd(x

(i)
k )p(x

(i)
k |E

(i)
k ,Y1:k−1)dx

(i)
k

)
, a

(i)
k = 0,

p(E
(i)
k |Y1:k−1)

´
X pd(x

(i)
k )`

a
(i)
k

(x
(i)
k )p(x

(i)
k |c

(i)
k−1, E

(i)
k ,Y1:k−1)dx

(i)
k , a

(i)
k 6= 0,

(3.32)

and where we use the notation `
a

(i)
k

(x
(i)
k ) = p`(y

a
(i)
k

k |x
(i)
k ) for the likelihood function. Using (3.6)

from Assumption 3.6 in (3.31):

p(c
(1:n)
k−1 , a

(1:n)
k , E

Id,k
k |Y1:k) ∝ 1AIn,k(a

(1:n)
k ) ·

n∏
i=1

p(c
(i)
k−1|c

pa(i)
k−1 ,Y1:k−1)

n∏
j=1

ψ(a
(j)
k , E

(j)
k |c

(j)
k−1)

∝
n∏
i=1

1Ăi,k(a
(i),an(i)
k )ψ(a

(i)
k , E

(i)
k |c

(i)
k−1)p(c

(i)
k−1|c

pa(i)
k−1 ,Y1:k−1), (3.33)

where we define a succinct notation of the indicator function, on a per target basis, as

1Ăi,k(a
(i),an(i)
k ) , 1Aan(i)∪{i},k(a

(i),an(i)
k ), (3.34)

with a
(i),an(i)
k := {a(i)

k } ∪ {a
an(i)
k }. The indicator function in (3.33) guarantees the validity of

associations including the ith target and the set of all its ancestors an(i). The measurement-
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update problem is solved by finding the pairwise associating marginals

p(c
(i),pa(i)
k−1 , a

(i),pa(i)
k |E(i),pa(i)

k ,Y1:k) =
p(c

(i)
k−1, c

pa(i)
k−1 , a

(i)
k , a

pa(i)
k , E

(i)
k , E

pa(i)
k |Y1:k)

p(E
(i)
k , E

pa(i)
k |Y1:k)

= p(E
(i),pa(i)
k |a(i),pa(i)

k )
p(c

(i),pa(i)
k−1 , a

(i),pa(i)
k |Y1:k)

p(E
(i),pa(i)
k |Y1:k)

= αId̄,k∩{i,pa(i)} p(c
(i),pa(i)
k−1 , a

(i),pa(i)
k |Y1:k)

p(E
(i),pa(i)
k |Y1:k)

. (3.35)

which requires application of a sum-product algorithm to (3.33) analogous to belief propagation,
and considering the factor

αId̄,k∩{i,pa(i)} =
∏

`∈Id̄,k∩{i,pa(i)}

p(D̄
(`)
k , E

(`)
k |Y1:k−1)

p(D̄
(`)
k |Y1:k−1)

. (3.36)

As we will explain later on, a näive implementation of the sum-product algorithm is problematic
because it involves complexity exponential in the number of targets. Instead, we shall resort to
an exact algorithm called EHM, sub-exponential in number of targets, as proposed in [95, 94].
The pairwise associating marginals (3.35) enable representation of pairwise posterior densities
according to

p(x
(i),pa(i)
k |E(i),pa(i)

k ,Y1:k)

=
∑
c
(i),pa(i)
k−1

∑
a

(i),pa(i)
k−1

p(c
(i),pa(i)
k−1 , a

(i),pa(i)
k |E(i),pa(i)

k ,Y1:k)
∏
`∈{i,pa(i)} p(x

(`)
k |c

(`)
k−1, a

(`)
k , E

(`)
k ,Y1:k), (3.37)

from which marginal densities for each target state can be obtained as

p(x
(i)
k |E

(i)
k ,Y1:k) =

ˆ
X
p(x

(i),pa(i)
k |E(i),pa(i)

k ,Y1:k)dx
pa(i)
k . (3.38)

The posterior existence probability is computed by

p(E
(i)
k |Y1:k) =

∑
a

(i)
k

p(a
(i)
k , E

(i)
k |Y1:k) =

∑
a

(i)
k

p(E
(i)
k |a

(i)
k )p(a

(i)
k |Y1:k)

=
∑
a

(i)
k

αId̄,k∩{i}p(a
(i)
k , E

Id,k∩{i}
k |Y1:k) = α(i)p(a

(i)
k = 0|Y1:k) +

∑
a

(i)
k 6=0

α∅p(a
(i)
k |Y1:k)

=
p(D̄

(i)
k , E

(i)
k |Y1:k−1)

p(D̄
(i)
k |Y1:k−1)

p(a
(i)
k = 0|Y1:k) +

∑
a

(i)
k 6=0

p(a
(i)
k , E

(i)
k |Y1:k)

=
(1− p(D(i)

k |E
(i)
k ,Y1:k−1))p(E

(i)
k |Y1:k−1)

1− p(D(i)
k |E

(i)
k ,Y1:k−1)p(E

(i)
k |Y1:k−1)

p(a
(i)
k = 0|Y1:k) +

∑
a

(i)
k 6=0

p(a
(i)
k |Y1:k), (3.39)

where p(a(i)
k |Y1:k) ≡ p(a(i)

k , E
(i)
k |Y1:k) for any a(i)

k 6= 0 and
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p(a
(i)
k |Y1:k) =

∑
c
(1:n)
k−1

∑
a

(1:n)
k \a(i)

k |a
(1:n)
k ∈AIn,k

p(c
(1:n)
k−1 , a

(1:n)
k , E

Id,k
k |Y1:k). (3.40)

The formulation derived in this section is akin to the Joint Integrated Probabilistic Data Asso-
ciation (JIPDA) filter [144], but incorporating dependent mixture components across targets.
Our derivation is similar to the procedure proposed in [29], but introducing the factor αId̄,k in
the joint space.

3.5 Computing marginal probability of component as-

sociations

In this section, we shall assume that all targets take part in single target tree, GT , in view of
Assumption 3.6, since different trees would imply independent groups of targets that could be
treated separately, i.e., one tree per cluster of dependent targets. The following notation is used
to describe the dependency structure in GT :

i represents the node i ∈ In = {i1, . . . , in} in GT , corresponding to the ith target,

pa(i) is the parent of a node i,

ch(i) is the set of all children of node i,

an(i) is the set of all ancestors of node i,

de(i) is the set of all descendants of node i,

sb(i) is the set of all siblings of node i, that is, sb(i) , ch(pa(i)) \ {i},

de(i) is the set of all nodes that are not i or any of its descendants, that is, de(i) ,

In \ ({i} ∪ de(i)),

cs(i) is the set of cousins of node i, composed of all non-descendants nodes that are not
ancestors of i, i.e. cs(i) , de(i) \ an(i).

As touched on before, the ultimate goal of the JPDA-EHM3 tracker is estimating marginal pos-
terior densities of target states, either considering pairwise dependencies as in (3.37) or express-
ing single-target marginal densities as in (3.38). Computing these densities require marginal
association probabilities p(c(i),pa(i)

k−1 , a
(i),pa(i)
k |E(i),pa(i)

k ,Y1:k) for target-pair state densities, or
p(c

(i)
k−1, a

(i)
k |E

(i)
k ,Y1:k) for single-target state densities. For simplicity of notation we omit the

conditioning on E
(i)
k in this section. Note that a näive computation of marginal association
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probabilities would involve marginalizing (3.33) directly as

p(c
(i)
k−1, a

(i)
k |Y1:k)

∝
∑
a

de(i)
k

∑
c
de(i)
k

p(c
de(i)
k−1 , a

de(i)
k |Y1:k) · 1Ăi,k(a

(i),an(i)
k )ψ(a

(i)
k |c

(i)
k−1)p(c

(i)
k−1|c

pa(i)
k−1 ,Y1:k−1)

×

∑
a

de(i)
k

∑
c
de(i)
k

p(c
de(i)
k−1 , a

de(i)
k |c(i)k−1,Y1:k)

 , (3.41)

where

p(c
de(i)
k−1 , a

de(i)
k |Y1:k) ∝

∏
`∈de(i)

1Ă`,k(a
(`),an(`)
k )ψ(a

(`)
k |c

(`)
k−1)p(c

(`)
k−1|c

pa(`)
k−1 ,Y1:k−1), (3.42)

p(c
de(i)
k−1 , a

de(i)
k |c(i)k−1,Y1:k) ∝

∏
`∈de(i)

1Ă`,k(a
(`),an(`)
k )ψ(a

(`)
k |c

(`)
k−1)p(c

(`)
k−1|c

pa(`)
k−1 ,Y1:k−1). (3.43)

Although (3.41) could be rearranged to be computed recursively via Pearl’s algorithm [154], it
is evident that the computational effort would grow exponentially in the number of targets. We
work around this computational problem by adopting the algorithm called Efficient Hypothesis
Management (EHM 3).

3.5.1 The EHM network

The fundamental idea of the Efficient Hypothesis Management algorithm is to simplify the struc-
ture of association hypotheses by eliminating redundancies. Hence, the EHM applies an efficient
inference algorithm (Pearl’s algorithm) over the association structure to compute marginal as-
sociation probabilities. We illustrate the concept by forming the association hypotheses for the
example given in Table 3.1, which gives the tree of hypotheses depicted in Figure 3.1. In this
tree of hypotheses, nodes represent targets and each edge represents a measurement assignment
to the child node target. The reader should not confuse the tree of hypotheses with the target
tree stated in Assumption 3.6: the tree of hypotheses used herein is just a graphic way of illus-
trating how enumeration of association events would be geometrically complex in the classical
approach.

Target Measurements to associate
T1 M0, M1, M2, M3
T2 M0, M2, M3
T3 M0, M3, M4
T4 M0, M4

Table 3.1: Association example

Redundancies arise in the hypotheses enumeration structure when many substructures (joint
association events of target subsets) are repeated to account for the same remaining associa-
tion possibilities provided associations already made. This can be observed in Figure 3.1 as,
departing from the third level in the tree, at which point hypotheses for the targets T1-T3
have already been made, there are 15 identical subtrees that consider either a no-measurement
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Figure 3.1: Tree of association hypotheses

hypothesis, M0, or measurement M4 to be associated with target T4.
In order to eliminate the association redundancies, the EHM creates a new structure: a

probabilistic (acyclic) graph that synthesizes groups of valid associations. In this new structure,
given a group of association nodes created for the ith target, the EHM algorithm enumerates
valid and unambiguous groups of associations that are possible for the n− i remaining targets.
The resulting structure is a network that, during its construction, merges hypotheses that share
the same subset of possible association events for targets yet to be analyzed. This constrasts
with the standard JPDA approach that enumerates all valid associations of the (i+ 1)th target
for each of the joint hypotheses (association paths) generated for targets up to i. The clas-
sical enumeration process (Figure 3.1) renders exponential grow of the number of hypotheses
as a function of the number of targets (and measurements), whereas the EHM net captures
associations in a much less complex structure.

The computational saving becomes clear when we note that calculating marginal association
probabilities is nothing more than a sequence of operations over the association nodes. Ulti-
mately, the complexity for computing the marginal probabilities is dependent on the number
of nodes (#P-complete), which in turn depends on the number of targets and measurements.
Figure 3.3 illustrates the EHM network constructed based on the possible associations of Table
3.1, considering the target tree of Figure 3.2. The target tree is built such that each node shares
at least one (nonnull) measurement assignment with each of its children (e.g., T3 and T2 share
M3, and T3 and T4 share M4), and distinct branches do not share any assignments. For the
hypothesis tree of Figure 3.1 the total number of nodes is 80, whereas for the net of Figure 3.3
the number of nodes is 11, which illustrates the computational savings obtained by the EHM
approach.
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Figure 3.2: Target tree for the association example
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Figure 3.3: EHM net for the association example

Let us describe the construction of the EHM network as follows. As per Assumption 3.6,
all targets, indexed by In = {1, . . . , n}, are arranged in a target tree structure GT = (VT , ET )

where VT = In is the set of vertices and ET = {(u, v)|u, v ∈ VT , u 6= v} is a set of vertice
pairs that describes the edges (e.g., Figure 3.2). All valid measurements are indexed by Im,0 =

{0}∪{1, 2, . . . ,m}, and recall the single association operator a(i)
k : In → Im,0, which makes the

correspondence of each target i ∈ In to a single measurement j = a
(i)
k ∈ Im,0, where a

(i)
k = 0

means that the ith target generates no measurement. The EHM network will constitute another
graph2, GE = (VE , EE), whose nodes (vertices) in VE store information of which measurements
have been assigned to the targets up to the node under consideration, and whose edges in EE

2We use the subscripts T and E when denoting the graphs, with T standing for target tree and E standing
for EHM.
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store measurements that identify hypotheses made in each parent-child relationship.
We define the set of validated measurements for a given target i as

Mi , {yk|yk ∈ Vk,i(τval)}, (3.44)

where Vk,i is the validation region for the ith target, defined by

Vk,i(τval) ,
⋃
c
(i)
k−1

V
k,c

(i)
k−1

(τval), (3.45)

V
k,c

(i)
k−1

(τval) ,{yk|(yk − ŷ
(i)
k|ck−1

)TS
(i)−1
k|ck−1

(yk − ŷ
(i)
k|ck−1

) ≤ τval}, (3.46)

where yk − ŷ
(i)
k|ck−1

is the innovation vector and S
(i)
k|ck−1

is the innovation covariance for the

target state component c(i)k−1, and τval = χ−2
cdf(pg, dy) is the validation threshold, computed

based on the chi-square inverse cumulative distribution function for a confidence level (gating
probability) pg and dy degrees of freedom.

The EHM network is constructed on top of the target tree topology3. It starts from the
root target in GT and each target i ∈ VT is processed in turn. The processing sequence
follows the target tree structure, exploring each tree level across all descendents of previously
processed targets, over all possible branches. For a target i under consideration, the set of all
measurements possible to be assigned to targets yet to be evaluated in a branch of GT , including
the current target, is defined as

M{i}∪de(i) ,
⋃

`∈{i}∪de(i)

M`. (3.47)

As it is customary in probabilistic graphical models, conditional independence enables inference
in an efficient way. In the EHM context, a target tree is built such that for any two targets
v, w ∈ GT , v 6= w, with a common ancestor u ∈ an(v) ∩ an(w):

v ⊥⊥ w |u,

∴M{v}∪de(v) ∩M{w}∪de(w) = ∅, (3.48)

that is, separate branches in the target tree have mutually exclusive possible assignments. For
each target i ∈ GT , a subset of corresponding nodes Ni , {N (i)

` |` ∈ N} ∈ GE will be created.
Each node N (i) in the EHM network will pertain to one such node subset corresponding to the
ith target. We define the direct assignment of a measurement j ∈ Im,0 to a node N (i) ∈ Ni,
as an attribution a :Mi ∪ {0} → Ni that maps a measurement j to a node N (i) according to
a(j) := N (i), representing the association hypothesis of j being originated from the target i to
which N (i) corresponds. The definition of the set of measurements directly assigned to a given
node N (i) is

Ma[N (i)] , {j ∈ Im,0|a(j) = N (i)}. (3.49)

In addition, it is convenient to write the set of measurements directly assigned to a node N (i)

3Note the topological similarity between the target tree of Figure 3.2 and the EHM net of Figure 3.3.
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or to any of its ancestors in GE as

Ma[an(N (i)) ∪N (i)] =

 ⋃
N∈an(N(i))

Ma[N ]

 ∪Ma[N (i)], (3.50)

where an (N) denotes the set of ancestors of a node N ∈ VE . Each node N (i) of the EHM
network will be uniquely identified by a set composed of its corresponding target i, along with
the set of all measurements directly assigned to the node or to any of its ancestors:

N (i) , {i,Ma[an(N (i)) ∪N (i)]}. (3.51)

The edges of the EHM network represent the parent-child relationship between nodes from
different node subsets. Each edge, hereafter denoted as EE [N

(u)
r , N

(v)
s ], for any two different

targets u, v ∈ VT where v ∈ ch(u) (in GT ), is identified by the set of measurements that have
been directly assigned to a child node, N (v)

s , with index s ∈ {1, . . . , |Nv|}, under the parenthood
of N (u)

r , with index r ∈ {1, . . . , |Nu|}, i.e.,

EE [N (u)
r , N (v)

s ] , {Ma[N (v)
s ]|N (v)

s ∈ ch(N (u)
r )}, (3.52)

where ch (N) denotes the set of children of node N . The children of a given node N (u) will be
a subset of nodes corresponding to the next target to be processed, v ∈ ch(u) (in GT ), that is,
ch(N (u)) ⊆ Nv (in GE), where Nv = {N (v)

` |` ∈ N}. This is because once the previous node
subset Nu is complete, the current node subset, Nv, shall cover hypotheses for the target v given
the associations already made for all targets down to target u in a branch of GT . Given a node
N (v), the available measurements possible to be assigned to its descendents, corresponding to
the remaining targets in the branch, can be described by the set

Mavail
de(v)[N

(v)] =Mde(v)\
(
Ma[an(N (v)) ∪N (v)]\{0}

)
. (3.53)

In order to construct the node subset Nv under parenthood of nodes previously constructed,
each node inNu is considered in turn as a potential parent node. For each nodeN (u) ∈ Nu, every
possible candidate measurement jc ∈Mv that can be assigned to the target being processed, v,
is considered. For each tentative pair (N (u), jc)|jc ∈ Mv, the available measurements possible
to be assigned to the remaining targets in the branch, excluding the measurements already
assigned to the node N (u) or to its ancestors, is described by the set

Mavail
de(u)[N

(u), jc] =Mde(u)\
(
Ma[an(N (u)) ∪N (u)] ∪ {jc}\{0}

)
. (3.54)

Notice that the dummy measurement, jc = 0, always remains as a possibility for any of the
upcoming associations: this is why it is never excluded from the set of available measurements
in (3.53) or (3.54). The candidate measurements to establish associations are taken from the set
of validated measurements for the target under analysis, i.e.,Mv. Each candidate measurement
that is associated to the target v is then removed from the current set of candidates, and is
directly assigned to a certain node in Nv (under the parenthood of a node in Nu).

The set Nu is complete when all candidate measurements for target u have been assigned
to nodes N (u) ∈ Nu. Provided a target v ∈ ch(u) (in GT ), in order to start a new node subset,
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assuming Nv = ∅ initially, a new node is created as N (v)
1 := {v,Ma[an(N

(u)
1 ) ∪N (u)

1 ] ∪ {jc,1}},
including the first candidate target, jc,1 ∈ Mv, and identified as a child of the first node
N

(u)
1 ∈ Nu . As a consequence, the parent-child relationship between N (u)

1 and N (v)
1 is identified

by the measurement jc,1, which is directly assigned to N (v)
1 under parenthood of N (u)

1 , and so
EE [N

(u)
1 , N

(v)
1 ] := {jc,1}. For creating new nodes in Nv, each potential parent node N (u)

r ∈ Nu,
where r ∈ {1, . . . , |Nu|}, is verified in turn, based on which all nodes already included in Nv
are analyzed. If any existing node, N (v)

s ∈ Nv, where s ∈ {1, . . . , |Nv|}, has the same set of
remaining available measurements as that of the candidate measurement jc under parenthood
of N (u)

r , i.e. Mavail
de(v)[N

(v)
s ] =Mavail

de(u)[N
(u)
r , jc], then the parent-child relationship between N (u)

r

and N (v)
s is acknowledged and its identification incorporates the candidate measurement. This

is done by updating the sets that identify N (v)
s and EE [N

(u)
r , N

(v)
s ] to include {jc}, and no new

node is added. Otherwise, if none of the existing nodes in Nv has the same set of remaining
available targets as that of the candidate measurement jc under parenthood of N (u)

r , then a
new child node is created as N (v)

s := {v,Ma[an(N
(u)
r ) ∪N (u)

r ] ∪ {jc}}, with s = |Nv|+ 1, such
that the parent-child relationship between N (u)

r and N (v)
s is identified as the direct assignment

a(jc) := N
(v)
s is made and EE [N

(u)
r , N

(v)
s ] := {jc}. The network is complete when all targets in

all levels of the target tree have been processed and no available measurements for association
remain.

3.5.2 Inference via EHM

For simplicity of exposition, we first describe a case where each target state has a single com-
ponent, and then we extend it to the case where each target state is described by multiple
components. EHM eases computation of marginal association probabilities, p(a(i)

k |Y1:k), over
the set of valid joint association events, a(1:n)

k ∈ AIn,k, encoded in the EHM network. The
computation of marginal association probabilities is formulated as a recursive sequence of op-
erations over the EHM net nodes. The formulation follows the exposition in [95]. Denoting the
event AS := {aSk ∈ AS,k|S ⊆ In}, the intent is to calculate a marginalization of the form

p(a
(i)
k = j|Y1:k) =

∑
a

(1:n)
k \a(i)

k |a
(i)
k =j

p(a
(1:n)
k |A(1:n),Y1:k), (3.55)

p(a
(i)
k = j|Y1:k) ∝

∑
a

(i)
k =j

1AIn,k(a
(1:n)
k )

n∏
`=1

ψ`(a
(`)
k ), (3.56)

where

ψ`(j) =

λV,fa(1− pd), j = 0,

pd
´
X `j(x

(`)
k )p(x

(`)
k |Y1:k−1)dx

(`)
k , j 6= 0,

(3.57)

and where we assumed pd(xk) = pd. Because the EHM net encodes A(1:n)
= {a(1:n)

k ∈ AIn,k},
(3.56) can be computed based on factors over the net GE . Note that a(i),an(i),de(i),cs(i)

k ≡ a(1:n)
k
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and (3.55) can be factored as

p(a
(i)
k |Y1:k) ∝

∑
a

(1:n)
k \a(i)

k

p(a
(i),an(i),de(i),cs(i)
k |A(1:n),Y1:k)

=
∑
a

an(i)
k

∑
a

(1:n)
k \a(i),an(i)

k

p(a
de(i)
k |a(i),an(i)

k , A
(1:n)

,Y1:k)p(a
(i)
k |a

an(i)
k , A

(1:n)
,Y1:k)p(a

an(i),cs(i)
k |A(1:n)

,Y1:k)

=
∑
a

an(i)
k

∑
a

de(i)
k

p(a
de(i)
k |a(i),an(i)

k , A
(1:n)

,Y1:k)


× p(a(i)

k |a
an(i)
k , A

(1:n)
,Y1:k)

∑
a

cs(i)
k

p(a
an(i),cs(i)
k |A(1:n)

,Y1:k)

 . (3.58)

For v, w ∈ ch(u), v ⊥⊥ w |u, and so∑
a

de(i)
k

p(a
de(i)
k |a(i),an(i)

k , A
(1:n)

,Y1:k) =
∑
a

de(i)
k

p(a
ch(i),de(ch(i))
k |a(i),an(i)

k , A
(1:n)

,Y1:k)

=
∑
a

de(i)
k

∏
`∈ch(i)

p(a
(`),de(`)
k |aan(`)

k , A
(1:n)

,Y1:k)

=
∏

`∈ch(i)

∑
a

(`),de(`)
k

p(a
(`),de(`)
k |aan(`)

k , A
(1:n)

,Y1:k),

since the marginal on a subtree over descendents of i is the product of marginals on its mutually
exclusive branches (one branch per child of i). By defining

w̆B(i, a
an(i)
k ) ,

∑
a

(i),de(i)
k

p(a
(i),de(i)
k |aan(i)

k , A
(1:n)

,Y1:k)

=
∑

a
(i),de(i)
k

∏
`∈{i}∪de(i)

1Ă`,k(a
(`),an(`)
k )ψ`(a

(`)
k ), (3.59)

w̆F (i, a
an(i)
k ) ,

∑
a

cs(i)
k

p(a
an(i),cs(i)
k |A(1:n)

,Y1:k)

=
∑
a

cs(i)
k

∏
`∈an(i)∪cs(i)

1Ă`,k(a
(`),an(`)
k )ψ`(a

(`)
k ), (3.60)

then

p(a
(i)
k |Y1:k) =

∑
a

an(i)
k

 ∏
`∈ch(i)

w̆B(`, a
an(`)
k )

 · 1Ăi,k(a
(i),an(i)
k )ψi(a

(i)
k ) · w̆F (i, a

an(i)
k ). (3.61)

Rewritting (3.61) in terms of factors distributed over the EHM network is possible because
each node N (i) ∈ GE possesses information on associations made for the corresponding target
i ∈ GT and its ancestors. This is clear from the event equivalence: {j ∈ N (i)} ≡ {j ∈ a(i),an(i)

k }.
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Therefore, the factorization in (3.61) can be written as [95]

p(a
(i)
k = j|Y1:k) ∝

∑
N

(i)∈Ni

p(a
(i)
k = j,N (i)|Y1:k) ,

∑
N

(i)∈Ni

π(j,N (i)), (3.62)

where π(j,N) is the joint likelihood of all paths over the net passing through node N and
satisfying the assignment a(j) = N , i.e. j ∈ N . For each association j := a

(i)
k , the likelihood

π(j,N (i)) is a quantity calculated over nodes N (i) ∈ Ni such that N (i) 3 j. In view of (3.61),
π(j,N (i)) can be written as

π(j,N (i)) = ψde(i)(j,N
(i)) · ψi(j) · ψde(i)(j,N

(i)) (3.63)

=
∏

N
(c)∈Nch(i)

wB(N (c))
1EE [N(i),N(c)]

(j) · ψi(j) · 1EE [N(i),Nch(i)](j)wF (N (i)), (3.64)

where we use the notationNS =
⋃
`∈S N` for any subset S ⊆ In. In (3.64), observe the indicator

function 1EE [N(i),N(c)](j) as an exponent of the product terms so that only backward factors
under assignment of j take effect, and we use the indicator function 1EE [N(i),Nch(i)](j), where
EE [N (i), N ch(i)] :=

⋃
N

(c)∈Nch(i)
EE [N (i), N (c)], to account for a forward factor only if N (i) has

parenthood under the assignment of j to one of its children. The following factor definitions
were made:

ψde(i)(j,N
(i)) :=

∏
N

(c)∈Nch(i)

wB(N (c))
1EE [N(i),N(c)]

(j)
, (3.65)

ψde(i)(j,N
(i)) :=1EE [N(i),Nch(i)](j)wF (N (i)), (3.66)

where wB(·) are backward weights accounting for the probabilistic effect of all descendents
of a node (containing measurement j), ψi(·) is the single association likelihood for target i,
and wF (·) are forward weights accounting for the effect from non-descendants of a node. The
backward and forward weights accumulate probabilistic effect on a node N (i) from other nodes
in GE , and can be calculated recursively by the forward-backward algorithm as

wB(N (i)) =
∑

j∈Mch(i)

ψi(j) ·
∏

N
(c)∈Nch(i)

wB(N (c))
1EE [N(i),N(c)]

(j)
, (3.67)

wF (N (i)) =
∑
N

(p)∈Npa(i)

∑
j∈Mch(p)\{i}

ψp(j)
(∏

N
(s)∈Nch(p)\{i}

wB(N (s))
1EE [N(p),N(s)]

(j)
)
wF (N (p)), (3.68)

where MS =
⋃
`∈SM` for any subset S ⊆ In, and it is clear the correspondence of (3.67) to

(3.59), and (3.68) to (3.60). The forward weight of the net root and the backward weight of
the deepest leaves are initialized as wF ({·, ∅}) = wB({∅, ·}) := 1. This scheme provides exact
solution for inference problems in trees and other acyclic graphs (e.g., polytrees) such as the
EHM network.

The EHM algorithm was originally proposed in a simpler form [135] where a simple list of
targets is considered, but featuring heuristic target ordering with the intent to minimize the
number of nodes. A second version of the algorithm (EHM 2) was proposed in [95], incorporating
the target tree structure and clustering of independent groups of targets, each giving rise to
a different EHM net. The EHM 2 is akin to the algorithm presented in this section, where
each group of targets does not share measurements with other groups and its target tree is
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based on the rule that each parent target shares at least one validated measurement with each
of its children. The third variation, EHM 3, was proposed in [94] to incorporate inference of
marginal associations for multiple components in target state mixtures, where each component
can possibly depend on components of other targets.

3.5.3 Marginal association probabilities with EHM 3

Generalizing the procedure to derive the EHM 3 used in this chapter requires a factorization
very similar to (3.61) applied to p(c

(1:n)
k−1 , a

(1:n)
k , E

Id,k
k |,Y1:k), including marginalizations over

mixture components. The intermediate expressions are tedious and can be found in [95, 94],
however we believe the argument provided in the previous section should be enough to induce
the reader to derive the result. For simplifying the notation we will omit conditioning on the
joint existence event, EId,kk , by recalling the event equivalence (a

(1:n)
k , E

Id,k
k ) ≡ a

(1:n)
k , and we

denote ψ(a
(i)
k |c

(i)
k−1) := ψ(a

(i)
k , E

(i)
k |c

(i)
k−1) according to (3.32). Generalizing the result of (3.62),

(3.67), and (3.68) for the EHM 3, conditioned on target existence, we obtain

p(c
(i)
k−1, a

(i)
k |Y1:k)

=
∑
a

an(i)
k

∑
a

(1:n)
k \a(i),an(i)

k

∑
c
(1:n)
k−1 \c

(i)
k−1

p(c
de(i)
k−1 , a

de(i)
k |c(i)k−1, a

(i),an(i)
k , A

(1:n)
,Y1:k)

× p(c(i)k−1, a
(i)
k |a

an(i)
k , A

(1:n)
,Y1:k)p(c

an(i),cs(i)
k−1 , a

an(i),cs(i)
k |A(1:n)

,Y1:k),

p(c
(i)
k−1, a

(i)
k |Y1:k) ∝

∑
N

(i)∈Ni

π(c
(i)
k−1, a

(i)
k , N

(i)
), (3.69)

where

π(c
(i)
k−1, a

(i)
k , N

(i)
) =

 ∏
N

(c)∈Nch(i)

wB(N
(c)
, c

(i)
k−1)

1EE [N(i),N(c)]
(a

(i)
k )

 · ψ(a
(i)
k |c

(i)
k−1)

×
∑

c
pa(i)
k−1 ∈Γ

pa(i)
k−1

1EE [N(i),Nch(i)](a
(i)
k ) p(c

(i)
k−1|c

pa(i)
k−1 ,Y1:k−1)wF (N

(i)
, c

pa(i)
k−1 ). (3.70)
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The backward and forward weights are computed as

wB(N
(i)
, c

pa(i)
k−1 ) =

∑
j∈Mch(i)

∑
c
(i)
k−1∈Γ

(i)
k−1

ψ(j|c(i)k−1)p(c
(i)
k−1|c

pa(i)
k−1 ,Y1:k−1)

×
∏

N
(c)∈Nch(i)

wB(N
(c)
, c

(i)
k−1)

1EE [N(i),N(c)]
(j)
, (3.71)

wF (N
(i)
, c

pa(i)
k−1 ) =

∑
N

(p)∈Npa(i)

∑
j∈Mch(p)\{i}

ψ(j|c(p)k−1)

×

 ∏
N

(s)∈Nch(p)\{i}

wB(N
(s)
, c

(p)
k−1)

1EE [N(p),N(s)]
(j)


×

∑
c
pa(p)
k−1 ∈Γ

pa(p)
k−1

p(c
(p)
k−1|c

pa(p)
k−1 ,Y1:k−1)wF (N

(p)
, c

pa(p)
k−1 ). (3.72)

Finally, the pairwise marginal association probabilities can be derived as

p(c
(i),pa(i)
k−1 , a

(i),pa(i)
k |Y1:k)

=
∑

a
an(pa(i))
k

∑
a

(1:n)
k \a(i),pa(i),an(pa(i))

k

∑
c
(1:n)
k−1 \c

(i),pa(i)
k−1

p(c
de(i)
k−1 , a

de(i)
k |c(i),pa(i)

k−1 , a
(i),pa(i),an(pa(i))
k , A

(1:n)
,Y1:k)

× p(c(i),pa(i)
k−1 , a

(i),pa(i)
k |aan(pa(i))

k , A
(1:n)

,Y1:k)

× p(can(pa(i)),cs(i),cs(pa(i))
k−1 , a

an(pa(i)),cs(i),cs(pa(i))
k |A(1:n)

,Y1:k),

∴ p(c
(i),pa(i)
k−1 , a

(i),pa(i)
k |Y1:k) ∝

∑
N

pa(i)∈Npa(i)

π(c
(i),pa(i)
k−1 , a

(i),pa(i)
k , N

pa(i)
), (3.73)

where

π(c
(i),pa(i)
k−1 , a

(i),pa(i)
k , N

pa(i)
) = ∏

N
(c)∈Nch(i)

wB(N
(c)
, c

(i)
k−1)

1EE [N(i),N(c)]
(a

(i)
k )

ψ(a
(i)
k |c

(i)
k−1)p(c

(i)
k−1|c

pa(i)
k−1 ,Y1:k−1)ψ(a

pa(i)
k |cpa(i)

k−1 )

×
∑

c
pa(pa(i))
k−1 ∈Γ

pa(pa(i))
k−1

p(c
pa(i)
k−1 |c

pa(pa(i))
k−1 ,Y1:k−1)wF (N

pa(i)
, c

pa(pa(i))
k−1 )

×

 ∏
N

(s)∈Nsb(i)

wB(N
(s)
, c

pa(i)
k−1 )

1EE [Npa(i),N(s)]
(a

pa(i)
k )

 , (3.74)
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where we omitted conditioning on target existence for simplifying the exposition. Finally,
following (3.35):

p(c
(i)
k−1, a

(i)
k |E

(i)
k ,Y1:k) = p(E

(i)
k |a

(i)
k )

p(c
(i)
k−1, a

(i)
k |Y1:k)

p(E
(i)
k |Y1:k)

, (3.75)

p(c
(i),pa(i)
k−1 , a

(i),pa(i)
k |E(i),pa(i)

k ,Y1:k) = p(E
(i),pa(i)
k |a(i),pa(i)

k )
p(c

(i),pa(i)
k−1 , a

(i),pa(i)
k |Y1:k)

p(E
(i),pa(i)
k |Y1:k)

, (3.76)

where p(E(i)
k |a

(i)
k ) = αId̄,k∩{i} and p(E(i),pa(i)

k |a(i),pa(i)
k ) = αId̄,k∩{i,pa(i)}.

3.6 Construction and update of target trees

As per Assumption 3.6, targets take part in one or more independent target trees, which are
built based on independent groups of targets. In this section we explain the construction and
prediction of each target tree. If no target tree exists at a previous time step, new target trees are
built using the EHM 2 subroutine to construct trees, initializing a single-valued state component
c
(i)
k per node. Otherwise, provided a set of previous target trees GIg,k−1

T,k−1 = {(V(g)
T,k−1, E

(g)
T,k−1)|g ∈

Ig,k−1}, where Ig,k−1 indexes all independent target clusters at time step k − 1, and a set of
predicted targets indexed by In,k|k−1 = Ic,k|k−1 ∪ Iu,k|k−1, before applying the EHM 3, a set
of predicted target trees GIg,kT,k|k−1 = {(V(g)

T,k|k−1, E
(g)
T,k|k−1)|g ∈ Ig,k} is constructed, identified by

the index set Ig,k of target clusters at time step k. Each predicted tree incorporates all targets
that may share possible associations, i.e., there must be one predicted tree per target cluster.
Target trees are updated after the marginal association probabilities have been computed and
inference on new target components have been accomplished.

3.6.1 Initial target trees

During initial filtering steps or periods when no targets remain in the scene, no target tree exists.
In those cases, as soon as new measurements are validated for any of the unconfirmed targets,
one or more target trees must be built. The procedure is reminiscent of the EHM 2 method for
building trees [95]. Targets that share a subset of measurements as possible associations are
grouped together in clusters as

C(g)
k|k−1 , {i ∈ I(g)

n,k|k−1 ⊆ In,k|k−1|Mi ∩Mj 6= ∅,∀i, j ∈ I
(g)
n,k|k−1, i 6= j}, g ∈ N. (3.77)

Each initial target cluster, C(g)
k|k−1 ⊆ Iu,k|k−1, for some g ∈ N, will give origin to a target tree

G
(g)
T,k|k−1 = (V(g)

T,k|k−1, E
(g)
T,k|k−1), being processed in turn. Firstly, a target arbitrarily chosen,

i1 ∈ C(g)
k|k−1, is added with no parents and no children (pa(i1) = ch(i1) := ∅) in a newly initialized

tree, G(g)
T,k|k−1, and its set of accumulated assignments is defined as Mi1,ch(i1) ,Mi1 . Then,

another target i2 ∈ C(g)
k|k−1\{i1} is verified, and its set of possible assignments,Mi2 , is compared

to accumulated assignments of the node already added, Mi1,ch(i1). If Mi2 ∩ Mi1,ch(i1) 6=
∅, then i2 is added to the tree as the parent of i1, by setting pa(i2) := ∅, ch(i2) := {i1},
Mi2,ch(i2) := Mi2 ∪ Mi1,ch(i1), and updating the parent of i1 as pa(i1) := {i2}. Else, if
Mi2 ∩ Mi1,ch(i1) = ∅, then i2 is simply added with pa(i2) := ∅ and no relation with i1 is
established. Next, other targets i ∈ C(g)

k|k−1 \ {i1, i2} are considered in turn, where the set of
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possible assignments,Mi, is compared to accumulated assignments of all other nodes that have
no parent. Before starting the comparisons, node i is added by setting pa(i) := ∅, ch(i) := ∅
and Mi,ch(i) := Mi. Hence, verifying each ` ∈ V(g)

T,k|k−1 \ {i} such that pa(`) = ∅ in turn,
if Mi ∩ M`,ch(`) 6= ∅, then i is updated as the parent of ` by making ch(i) ← ch(i) ∪ {`},
Mi,ch(i) ←Mi,ch(i) ∪M`,ch(`), pa(`) := {i}. IfMi ∩M`,ch(`) = ∅ for all ` ∈ V(g)

T,k|k−1 \ {i} with
pa(`) = ∅, then no relation is made. In this procedure the tree is constructed bottom-up, and
different branches are guaranteed to have mutually exclusive assignments.

For convenience of calculations, we represent the target tree such that a conditional (discrete)
distribution p(c(i)k−1|c

pa(i)
k−1 ,Y1:k−1) (Assumption 3.6) is maintained for each edge and a marginal

(discrete) distribution p(c
(i)
k−1|Y1:k−1) is maintained for each node. Each node in the initial

target tree is represented by a discrete random variable c(i)k−1 that has only one possible value
because unconfirmed targets keep only one state component (Assumption 3.8). Therefore, an
initial target tree is set with p(c(i)k−1) = 1 and p(c(i)k−1|c

pa(i)
k−1 ) = 1 for all i ∈ Iu,k|k−1, meaning that

p(c
(i)
k−1|c

pa(i)
k−1 ) = p(c

(i)
k−1) = 1 if i is the root, and p(c(i)k−1|c

pa(i)
k−1 ) = p(c

(i)
k−1, c

pa(i)
k−1 )/p(c

pa(i)
k−1 ) = (1)

otherwise, where (1) should be understood as the matrix form of a conditional probability table.

3.6.2 Predicted target trees

When the filter is already maintaining target trees, predicted target trees must be built to
account for dependencies that may have appeared at the current time step. The term predicted
target tree is proper as the tree is used as input to compute marginal association probabilities
and differs from the posterior target tree that incorporates posterior component probabilities.
The method is presented for a single predicted tree because targets from distinct previous trees4

that share possible assignments are grouped together, along with their trees5, into a single
cluster, and each cluster is treated separately to originate one predicted tree. For clarity of
exposition, we describe the method referring to one previous (posterior) tree, but the procedure
is exactly the same in case more than one previous tree become dependent and take part in the
same cluster. Given a target tree GT,k−1 = (VT,k−1, ET,k−1) from time step k − 1, and a set
of predicted targets indexed by In,k|k−1 = Ic,k|k−1 ∪ Iu,k|k−1, a new target tree, GT,k|k−1 =

(VT,k|k−1, ET,k|k−1), will be built before applying the EHM 3. The following guidelines are used
to build a predicted tree:

• A predicted target tree must keep probabilistic information from previous posterior trees.

• Information from previous trees is considered only for confirmed targets.

• New dependencies among targets of a previous tree, and between targets of the previous
tree and other targets are considered through new shared assignments.

• A predicted target tree is a Chow-Liu tree [31], which minimizes the overall loss of infor-
mation that would follow representing pairs of targets as independent.

• A predicted target tree is constrained to obey the EHM rule, that is, distinct branches
have mutually exclusive possible assignments.

4Note that a target not pertaining to any previous tree is a single-node tree in itself.
5Two distinct target trees are merged in a single cluster if elements of both trees start sharing possible

assignments.
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We define the set of predicted targets of a previous tree as IT,k|k−1 , In,k|k−1 ∩ VT,k−1,
the set of predicted targets not in the previous tree as IT̄ ,k|k−1 , In,k|k−1 \ IT,k|k−1, the
set of confirmed targets of the previous tree as IT (c),k|k−1 , Ic,k|k−1 ∩ VT,k−1, and the set
of possible assignments for target i shared only with targets in the previous tree as Mi,T ,⋃
`∈VT,k−1

M` ∩Mi. We also declare a symmetric matrix of possible relations between distinct
targets in the predicted tree as Rk : In,k|k−1 × In,k|k−1 → {0, 1}, where Rk(i, j) = 1 means
that a pair (i, j) ∈ In,k|k−1 × In,k|k−1 is probabilistically related, and Rk(i, j) = 0 if (i, j) are
not dependent or if i = j. Following the guidelines, the relation matrix is a logical composition
of three relation matrices as Rk = RT (c),k|k−1 ∨ RT (a),k ∨ RT−T̄ ,k, where RT (c),k|k−1 accounts
for probabilistic relations between confirmed targets inherited from the previous tree, RT (a),k

accounts for relations among targets of the previous tree due to new shared assignments, and
RT−T̄ ,k accounts for relations between targets of the previous tree and other targets (not in
the previous tree). The algorithm for updating the target tree then follows 6 steps:

1. Construction of relation matrices RT (c),k|k−1, RT (a),k, RT−T̄ ,k, to obtain Rk.

2. Calculation of joint factors, p(c(i),(j)k−1 |Y1:k−1) ≡ p(c(i),(j)k−1 |Y1:k−1), for every possibly related
pair (i, j) as Rk(i, j) = 1, by marginalizating out components on previous tree(s) or
initializing new appearing targets.

3. Prediction of marginal association distributions p(c(i)k−1, a
(i)
k |E

(i)
k ,Y1:k−1) and pairwise

joint association distributions p(c(i)k−1, a
(i)
k , c

(j)
k−1, a

(j)
k |E

(i),(j)
k ,Y1:k−1) for every possibly re-

lated pair (i, j) as Rk(i, j) = 1.

4. Computation of information loss that would follow representing the joint state distribution
of two targets, p(x(i)

k , x
(j)
k |E

(i),(j)
k ,Y1:k−1), as if they are independent, for every possibly

related pair (i, j) as Rk(i, j) = 1. The information gain of each pair (i, j), arranged in
a matrix Dk : In,k|k−1 × In,k|k−1 → R, is evaluated as the Kullback–Leibler divergence
between the pairwise joint state distribution and the product of marginal single-target
distributions for targets i and j.

5. Construction of the predicted target tree GT,k|k−1 by the Chow-Liu method [31], based
on the information gain matrix Dk, under the EHM constraint.

6. Selection of marginal factors, p(c(i)k−1|Y1:k−1), and recalculation of conditional factors,
p(c

(i)
k−1|c

pa(i)
k−1 ,Y1:k−1), for the predicted tree based on the joint factors calculated in Step

2.

Step 1

The relation matrix RT (c),k|k−1 describes the probabilistic relations between confirmed targets
inherited from a previous tree, and is constituted as

RT (c),k|k−1(i, j) = RT (c),k|k−1(j, i) ,

1, i ∈ ch(j) or j ∈ ch(i) and i, j ∈ IT (c),k|k−1,

0, otherwise.
(3.78)

This matrix can be built by sweeping a previous tree from each leaf to the root, and setting
RT (c),k|k−1(pa(i), i) = 1 every time i,pa(i) ∈ IT (c),k|k−1. If more than one previous tree are
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in the cluster under analysis, one such matrix R(`)

T (c),k|k−1
is obtained per previous tree G(`)

T,k−1

and the final matrix is composed as R
T (c),k|k−1

=
∨
`R

(`)

T (c),k|k−1
.

The relation matrix RT (a),k describes relations among targets of a previous tree due to new
shared assignments and is composed as

RT (a),k(i, j) = RT (a),k(j, i) ,

1, Mi ∩Mj 6= ∅ and i, j ∈ IT,k|k−1,

0, otherwise.
(3.79)

Again, if more than one previous tree are in the cluster under analysis, one such matrix R(`)

T (a),k

is obtained per previous tree G(`)
T,k−1 and the final matrix is composed as R

T (a),k
=
∨
`R

(`)

T (a),k
.

The relation matrix RT−T̄ ,k accounts for relations between targets of a previous tree and other
targets not in the same tree, and is constituted as

RT−T̄ ,k(i, j) = RT−T̄ ,k(j, i) ,

1, Mi ∩Mj 6= ∅ and i ∈ IT ,k|k−1, j ∈ IT̄ ,k|k−1,

0, otherwise.
(3.80)

In fact, given a target i ∈ IT ,k|k−1, a composite matrix RT (a),T−T̄ ,k(i, j) , RT (a),k(i, j) ∨
RT−T̄ ,k(i, j) can be constructed at once by verifying the assignments for a target j ∈ IT̄ ,k|k−1

that are shared only with targets of the previous tree: ifMi∩Mj,T 6= ∅ thenRT (a),T−T̄ ,k(i, j) =

RT (a),T−T̄ ,k(j, i) = 1. The same reasoning regarding multiple previous trees applies for this
matrix, where one such matrix R(`)

T (a),T−T̄ ,k per previous tree G(`)
T,k−1 can be built and the final

matrix is composed as R
T (a),T−T̄ ,k =

∨
`R

(`)

T (a),T−T̄ ,k. The complete relation matrix is given
by Rk = RT (c),k|k−1 ∨RT (a),T−T̄ ,k.

Step 2

For every possibly related pair (i, j) ∈ In,k|k−1 × In,k|k−1, as marked by Rk(i, j) = 1, joint
factors p(c(i),(j)k−1 |Y1:k−1) must be calculated by marginalizing out components on previous tree(s)
or initializing new appearing targets. These joint factors are required by Step 3 to compute
predicted marginal association distributions, and by Step 5 to attribute probability factors to
the predicted tree. For any two targets in a previous tree, i, j ∈ GT,k−1, we can define a path
of nodes between them as

P]i,j[ , {` ∈ VT,k−1|` ∈ de(i) ∩ an(j) or ` ∈ an(i) ∩ de(j)}. (3.81)

Thus, the joint probability distribution on the extremal nodes of path P]i,j[ is given by

p(c
(i),(j)
k−1 |Y1:k−1) ∝

∑
c
P]i,j[
k−1

∏
`∈P]i,j[

p(c
(`)
k−1|c

pa(`)
k−1 ,Y1:k−1), i, j ∈ VT,k−1. (3.82)

If at least one of the targets i or j does not pertain to the previous tree GT,k−1, then

p(c
(i),(j)
k−1 |Y1:k−1) ∝ p(c(i)k−1|Y1:k−1)p(c

(j)
k−1|Y1:k−1), i or j /∈ VT,k−1, (3.83)

where each marginal factor p(c(i)k−1|Y1:k−1) is retrieved from the structure of a previous tree,
a previously isolated node (single-node “tree”), or a newborn target (not in a tree). These
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marginal factors are stored with the structure of previous trees, and can be identified as

p(c
(i)
k−1|Y1:k−1)

=


∑
c
VTs,k−1
k−1 \c(i)k−1

∏
`∈VTs,k−1

p(c
(`)
k−1|c

pa(`)
k−1 ,Y1:k−1), i ∈ VTs,k−1 (any previous tree s),

1, i /∈ VTs,k−1 (none of trees).

(3.84)

If both i, j /∈ VTs,k−1 (none of previous trees), then p(c(i),(j)k−1 |Y1:k−1) := (1), where (1) should be
understood as the matrix form of a joint probability table. If more than one previous tree are
in the cluster under analysis, the same rules apply, where (3.82) is used if two targets pertain
to the same previous tree, and (3.83) is used otherwise. Each previously “isolated target”,
not pertaining to any previous tree, is characterized as a single-node tree with component
probability distribution p(c(i)k−1|Y1:k−1).

Step 3

For every possibly related pair (i, j), marginal association distributions p(c(i)k−1, a
(i)
k |E

(i)
k ,Y1:k−1)

and pairwise joint association distributions p(c(i),(j)k−1 , a
(i),(j)
k |E(i),(j)

k ,Y1:k−1) must be computed.
These association distributions are required by Step 4 to compute the estimated gain of infor-
mation. The predicted marginal association distributions are computed based on the factors
obtained in Step 2 as

p(c
(i)
k−1, a

(i)
k |E

(i)
k ,Y1:k−1) ∝ αId̄,k∩{i}

p(c
(i)
k−1|Y1:k−1)ψ(a

(i)
k , E

(i)
k |c

(i)
k−1)

p(E
(i)
k |Y1:k−1)

, (3.85)

p(c
(i),(j)
k−1 , a

(i),(j)
k |E(i),(j)

k ,Y1:k−1) ∝ αId̄,k∩{i,j}

×
p(c

(i),(j)
k−1 |Y1:k−1)ψ(a

(i)
k , E

(i)
k |c

(i)
k−1)ψ(a

(j)
k , E

(j)
k |c

(j)
k−1)

p(E
(i)
k |Y1:k−1)p(E

(j)
k |Y1:k−1)

, (3.86)

for all targets i, j ∈ In,k|k−1 involved in possibly related pairs (i, j) marked by Rk(i, j) = 1.

Step 4

For every possibly related pair of targets (i, j), marked by Rk(i, j) = 1, the loss of information
that would follow representing the pairwise joint state distribution, p(x(i),(j)

k |E(i),(j)
k ,Y1:k−1), as

if targets are independent, must be evaluated. The information gain by representing each pair
(i, j) as dependent is arranged in a matrix Dk : In,k|k−1 ×In,k|k−1 → R, where each element is
defined as

Dk(i, j) = Dk(j, i)

,

DKL(p(x
(i),(j)
k |E(i),(j)

k ,Y1:k−1)||q(x(i),(j)
k |E(i),(j)

k ,Y1:k−1)), Rk(i, j) = 1,

0, otherwise,
(3.87)
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where DKL(P||Q) is the Kullback–Leibler divergence of distribution P with respect to distri-
bution Q, and

p(x
(i),(j)
k |E(i),(j)

k ,Y1:k−1) =
∑
a

(i),(j)
k

∑
c
(i),(j)
k−1

p(c
(i),(j)
k−1 , a

(i),(j)
k |E(i),(j)

k ,Y1:k−1)

× p(x(i)
k |a

(i)
k , c

(i)
k−1, E

(i)
k ,Y1:k−1)p(x

(j)
k |a

(j)
k , c

(j)
k−1, E

(j)
k ,Y1:k−1), (3.88)

q(x
(i),(j)
k |E(i),(j)

k ,Y1:k−1) =
∑
a

(i),(j)
k

∑
c
(i),(j)
k−1

p(c
(i)
k−1, a

(i)
k |E

(i)
k ,Y1:k−1)p(c

(j)
k−1, a

(j)
k |E

(j)
k ,Y1:k−1)

× p(x(i)
k |a

(i)
k , c

(i)
k−1, E

(i)
k ,Y1:k−1)p(x

(j)
k |a

(j)
k , c

(j)
k−1, E

(j)
k ,Y1:k−1). (3.89)

Note that the Kullback–Leibler divergence is a measure of the amount of information lost when
q (independent targets) is used to approximate p (dependent targets) in (3.87). Thus, the most
informative tree maximizes Dk over the connected nodes (minimizes the information loss). Since
p and q are mixtures possibly involving many terms, an approximated calculation of the KL-
divergence must be used in favor of computational efficiency. We advocate the method proposed
in [81] to compute KL-divergences between mixtures by means of the bound

DKL

(
M∑
`=1

α`f`(x)

∥∥∥∥∥
M∑
`=1

β`g`(x)

)
≤

M∑
`=1

α`DKL(f`(x)||g`(x)) +

M∑
`=1

α` log
α`
β`
. (3.90)

In our case f`(x
(i),(j)
k ) = g`(x

(i),(j)
k ) = p(x

(i)
k |a

(i)
k , c

(i)
k−1, E

(i)
k ,Y1:k−1)p(x

(j)
k |a

(j)
k , c

(j)
k−1, E

(j)
k ,Y1:k−1),

which results DKL(f`||g`) = 0. Therefore, we approximate (3.87) as

DKL(p(x
(i),(j)
k |E(i),(j)

k ,Y1:k−1)||q(x(i),(j)
k |E(i),(j)

k ,Y1:k−1))

≈
∑
a

(i),(j)
k

∑
c
(i),(j)
k−1

p(c
(i),(j)
k−1 , a

(i),(j)
k |E(i),(j)

k ,Y1:k−1)

× log

(
p(c

(i),(j)
k−1 , a

(i),(j)
k |E(i),(j)

k ,Y1:k−1)

p(c
(i)
k−1, a

(i)
k |E

(i)
k ,Y1:k−1)p(c

(j)
k−1, a

(j)
k |E

(j)
k ,Y1:k−1)

)
, (3.91)

which is very fast to compute.

Step 5

Based on the information gain matrix, Dk, the predicted target tree GT,k|k−1 is built by the
Chow-Liu algorithm [31], except that choices of connections between nodes are constrained
by the EHM structure, that is, targets in distinct branches have mutually exclusive sets of
possible assignments. The relation matrix Rk indicates which targets in the new tree could be
connected. The following steps are taken to build the Chow-Liu tree:

1. The root is started at the root of (one of) the previous tree(s), rt = rtT,k−1, with pa(rt) :=

∅. Let Cr,k , {s ∈ In,k|k−1|Rk(r, s) = 1} be the set of all targets that can be connected to
a target r. A target i1 ∈ Crt,k satisfying i1 = argmax`∈Crt,kDk(rt, `) such thatMi1∩Mrt 6=
∅ is chosen as the first child, i.e., ch(rt) := {i1}, pa(i1) := {rt}, ch(i1) := ∅, and the current
set of nodes is updated as VT,k|k−1 = {rt, i1}.

2. Next, each node already added in the tree is verified in turn. For each node r ∈
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VT,k|k−1, the potential children Cr,k \ ch(r) are verified. If a target s satisfying s =

argmax`∈Cr,k\ch(r)Dk(r, `) such thatMs ∩Mr 6= ∅ andMs ∩Mch(r) = ∅ is found, then it
is kept as a tentative child of r, i.e. p̆a(s) = {r} (p̆a denoting “potential parent”). Once
all nodes in VT,k|k−1 were iterated and each has a tentative child, the child that would
give the maximum information gain, that is, s = argmaxr∈VT,k|k−1,`∈Cr,k\ch(r)Dk(r, `), is
added as ch(p̆a(s)) ← ch(p̆a(s)) ∪ {s}, pa(s) := p̆a(s), ch(s) := ∅, and the current set of
nodes is updated as VT,k|k−1 ← VT,k|k−1 ∪ {s}.

3. When all targets in the cluster have been used in the new tree6, that is, VT,k|k−1 =

In,k|k−1, the tree is complete.

Step 6

The marginal factors p(c(i)k−1|Y1:k−1) are selected (from previous trees) for i ∈ GT,k|k−1, and
the conditional factors p(c(i)k−1|c

pa(i)
k−1 ,Y1:k−1) are recalculated for the predicted tree based on the

joint factors computed in Step 2. The conditional component distributions are evaluated by

p(c
(i)
k−1|c

pa(i)
k−1 ,Y1:k−1) =

p(c
(i),pa(i)
k−1 |Y1:k−1)

p(c
pa(i)
k−1 |Y1:k−1)

, s.t. i,pa(i) ∈ GT,k|k−1. (3.92)

The selected and recomputed factors, p(c(i)k−1|Y1:k−1) and p(c(i)k−1|c
pa(i)
k−1 ,Y1:k−1), are attributed

to the predicted tree.

3.6.3 Update of target trees

Based on posterior association probabilities computed via EHM 3, p(c(i)k−1, a
(i)
k |E

(i)
k ,Y1:k) and

p(c
(i),pa(i)
k−1 , a

(i),pa(i)
k |E(i),pa(i)

k ,Y1:k), factors on the predicted target trees must be expressed in
terms of posterior component distributions, p(c(i)k |Y1:k) and p(c(i)k |c

pa(i)
k ,Y1:k). Observe that

c
(i)
k , (c

(i)
k−1, a

(i)
k )|E(i)

k , (3.93)

that is, conditioned on target existence, the composition of each previous component c(i)k−1 ∈
Γ

(i)
k−1 of the ith target with every possible assignment a(i)

k ∈Mi∪{0} gives origin to a posterior
component c(i)k ∈ Γ

(i)
k = Γ

(i)
k−1 ×Mi ∪ {0}. Thus,

p(c
(i)
k |Y1:k) ≡ p(c(i)k−1, a

(i)
k |E

(i)
k ,Y1:k), (3.94)

p(c
(i)
k |c

pa(i)
k ,Y1:k) =

p(c
(i),pa(i)
k |Y1:k)

p(c
pa(i)
k |Y1:k)

≡
p(c

(i),pa(i)
k−1 , a

(i),pa(i)
k |E(i),pa(i)

k ,Y1:k)

p(c
pa(i)
k−1 , a

pa(i)
k |Epa(i)

k ,Y1:k)
. (3.95)

3.7 Mixture reduction and track management

3.7.1 Mixture reduction

As is the case of any multi-target filter with target state densities based on mixtures, the JPDA-
EHM3 requires some mechanism to limit growth of the component number. Since for every

6Recall that the description was made for a single cluster to simplify exposition. If more than one target
cluster exist, then one target tree G(g)

T,k per cluster g ∈ N must be constructed.
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mixture component several association hypotheses are possible, the number of components per
target grows exponentially in time if more than one measurement is validated per component.
The usual approach to keep a reasonable number of components is proposed in [153], consisting
of merging components in the mixture that are similar in some sense, while presetting a desired
number of components for each filtering cycle. We advocate merging components that have
been created with the same measurement association, i.e.,

p(x
(i)
k |E

(i)
k ,Y1:k) =

∑
a

(i)
k ∈Mi∪{0}

∑
c
(i)
k−1∈Γ

(i)
k−1

p(x
(i)
k |c

(i)
k−1, a

(i)
k , E

(i)
k ,Y1:k)p(c

(i)
k−1, a

(i)
k |E

(i)
k ,Y1:k)

=
∑

a
(i)
k ∈Mi∪{0}

p(x
(i)
k |a

(i)
k , E

(i)
k ,Y1:k)p(a

(i)
k |E

(i)
k ,Y1:k)

≡
∑

c
(i)
k ∈Γ

(i)
k

p(x
(i)
k |c

(i)
k , E

(i)
k ,Y1:k)p(c

(i)
k |Y1:k), (3.96)

such that c(i)k ≡ a
(i)
k |E

(i)
k and so Γ

(i)
k ≡Mi ∪ {0}. Assuming Gaussian components

p(x
(i)
k |c

(i)
k−1, a

(i)
k , E

(i)
k ,Y1:k) = N (x

(i)
k |µc(i)k−1,a

(i)
k

,Σ
c
(i)
k−1,a

(i)
k

), (3.97)

p(c
(i)
k−1, a

(i)
k |E

(i)
k ,Y1:k) = w

c
(i)
k−1,a

(i)
k

, (3.98)

the mixture reduction obtains p(c(i)k |Y1:k) = w
c
(i)
k

and p(x(i)
k |c

(i)
k , E

(i)
k ,Y1:k) = N (x

(i)
k |µc(i)k ,Σc(i)k )

as

w
c
(i)
k

=
∑

c
(i)
k−1∈Γ

(i)
k−1

w
c
(i)
k−1,a

(i)
k

, (3.99)

µ
c
(i)
k

=
1

w
c
(i)
k

∑
c
(i)
k−1∈Γ

(i)
k−1

w
c
(i)
k−1,a

(i)
k

µ
c
(i)
k−1,a

(i)
k

, (3.100)

Σ
c
(i)
k

=
1

w
c
(i)
k

∑
c
(i)
k−1∈Γ

(i)
k−1

w
c
(i)
k−1,a

(i)
k

Σ
c
(i)
k−1,a

(i)
k

+
1

w
c
(i)
k

∑
c
(i)
k−1∈Γ

(i)
k−1

(
µ
c
(i)
k−1,a

(i)
k

− µ
c
(i)
k

)(
µ
c
(i)
k−1,a

(i)
k

− µ
c
(i)
k

)T
. (3.101)

Thus, all information from previous components is consolidated in the new components on a
per association basis. The advantage of this scheme is maintaining only one component for the
null hypothesis, a(i)

k = 0, which is usually uninformative, and making the total number of com-
ponents minimally sufficient to explain all association hypotheses (conditioned on existence).
In this setting, the number of mixture components does not grow exponentially with time, but
is rather determined by association possibilities and so scales with the scenario complexity.

Once the mixture reduction is applied, the posterior target tree must be updated to account
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for the modification in the number of components. The posterior target tree is updated as

p(c
(i)
k |Y1:k) ≡ p(a(i)

k |E
(i)
k ,Y1:k)

=
∑

c
(i)
k−1∈Γ

(i)
k−1

p(c
(i)
k−1, a

(i)
k |E

(i)
k ,Y1:k) = w

c
(i)
k

, (3.102)

p(c
(i)
k |c

pa(i)
k ,Y1:k) ≡ p(a(i)

k |a
pa(i)
k , E

(i),pa(i)
k ,Y1:k)

=
p(a

(i),pa(i)
k |E(i),pa(i)

k ,Y1:k)

p(a
pa(i)
k |Epa(i)

k ,Y1:k)

=

∑
c
(i)
k−1∈Γ

(i)
k−1

∑
c
pa(i)
k−1 ∈Γ

pa(i)
k−1

p(c
(i),pa(i)
k−1 , a

(i),pa(i)
k |E(i),pa(i)

k ,Y1:k)∑
c
pa(i)
k−1 ∈Γ

pa(i)
k−1

p(c
pa(i)
k−1 , a

pa(i)
k |Epa(i)

k ,Y1:k)

=

∑
c
(i)
k−1∈Γ

(i)
k−1

∑
c
pa(i)
k−1 ∈Γ

pa(i)
k−1

p(c
(i),pa(i)
k−1 , a

(i),pa(i)
k |E(i),pa(i)

k ,Y1:k)

w
c
pa(i)
k

. (3.103)

3.7.2 Track management

The track management is performed based on Assumption 3.8. The JPDA-EHM3 provides a
framework for keeping nu,k unconfirmed targets, indexed by Iu,k, which remain unconfirmed if
their posterior probability of existence is within the interval p(E(i)

k |Y1:k) ∈ (τdel, τconf), where
τdel is a lower threshold for track deletion and τconf is an upper threshold for track confirmation.
At the end of each filtering cycle, if an unconfirmed target is estimated with p(E(i)

k |Y1:k) > τconf ,
then the corresponding track is confirmed, removed from the unconfirmed set, and incorporated
in a set of nc,k confirmed targets, indexed by Ic,k. In addition, if any confirmed or unconfirmed
target has p(E(i)

k |Y1:k) < τdel, then its track is deleted. The practitioner does not have to worry
about reflecting any changes in the posterior target tree while performing track management
because in the next filtering cycle the algorithm for generating the predicted target tree will
automatically incorporate changes about targets that have been confirmed or deleted.

3.8 Numerical experiment

A scenario has been devised to illustrate the JPDA-EHM3 capabilities. A number of targets,
unknown a priori, appear in the scene. At first, pairs of targets are set to move into mutual
proximity and stay in this condition for a couple of time steps. Then, the targets get separated
while moving into mutual proximity with other targets constituting new pairs. The new pairs
stay close for another couple of time steps and the scenario is ended by separating all targets.
The ground truth for such scenario can be seen in Figure 3.4.

The surveillance region covers the rectangular area [−2000,+2000]×[−1500,+1500] (m×m),
on which two sensors, S1 and S2, collect observations possibly affected by false alarms and
corrupted by noise. Both sensors are assumed with a single resolution cell covering the entire
surveillance region, with the same measurement accuracy. Sensor S1 collects only position
measurements in the Cartesian space at a high rate, one scan per second, and sensor S2 collects
(Cartesian) position measurements along with observations of radar cross sections, but at a
fairly slow rate, one scan per 70 seconds. The scenario cover T = 160 s, and so sensor S1
provides 160 collections of position measurements (starting at t = 1 s) and sensor S2 provides
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only two collections of measurements (at t = 71 s and t = 141 s) including target position
and cross-section. The scenario is complicated as one or more observations provided by sensor
S2 may miss the radar cross-section measurement. This example has been designed to force
association ambiguity, via pairwise target proximity, and provide incomplete information7 for
enabling the analyzed filters to solve the ambiguities. The intent is to show that, in these type of
scenarios involving association ambiguity and partial observability, maintaining the dependency
between targets is crucial.

Each target is described by its state vector x = (px, py, vx, vy, α)T , where p = (px, py)T is
a pair that specifies a position in Cartesian coordinates, v = (vx, vy)T is the pair specifying
velocity in the same coordinates, and α is the target radar cross-section (m2). At each time
instant k, the state is written as xk = x(tk). For filtering purposes, each target is assumed to
move with nearly-constant velocity and its radar cross-section is assumed to evolve as a random-
walk process, with transition matrix and state process covariance matrix given respectively by

F =

 I2 I2∆t 02×1

02×2 I2 02×1

01×2 01×2 1

 , Q =

 I2σ2
δv∆t

3/3 I2σ2
δv∆t

2/2 02×1

I2σ2
δv∆t

2/2 I2σ2
δv∆t 02×1

01×2 01×2 σ2
δα∆t

 , (3.104)

where I2 is the 2× 2 identity matrix, 0d1×d2
is a d1 × d2 zero matrix, ∆t = 1 s is the sampling

period, and the standard deviation of velocity increments and radar cross-section increments
are given respectively by σδv = 2m/s/s

1
2 and σδα = 0.001m2/s

1
2 . Sensors S1 and S2 collect

measurements of position in the Cartesian space (and radar cross-section for S2), corrupted
by a Gaussian-distributed noise, characterized by the output matrices and measurement noise
covariance matrices as

HS1 =
(

I2 02×3

)
, (3.105)

RS1 = Rp =

(
σ2
p,x 0

0 σ2
p,y

)
, (3.106)

HS2 =

(
I2 02×2 0

01×2 01×2 1

)
, (3.107)

RS2 =

(
Rp 02×2

01×2 Rα

)
=

(
Rp 02×2

01×2 σ2
α

)
, (3.108)

where σp,x = 10m and σp,y = 30m are the standard deviations of the measured positions in
coordinates x and y respectively, and σα = 1m2 is the standard deviation of the measured radar
cross-section. Each target can be detected with probability pd = 0.90 and measurements are
gated with gate-size probability of pg = 0.95. False alarms are generated in Poisson-distributed
numbers, with expected rate of λfa = 10 false alarms per second, and the position of each false
alarm is sampled uniformly in the surveillance region with “volume” (area) V = 4000×3000m2.
The expected volumetric density of false alarms per time frame is given by λfa,V = λfa/V .

Each target remains in the scene up to the next time step with probability ps = 0.99.
Newborn targets are dynamically modeled as appearing with rate λb,k|k−1 = m̄k−1/T where
m̄k−1 is the total number of measurements that have not been gated for any of the existing

7Radar cross-section provided only twice, and possibly missing for some targets.
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targets at step k − 1, and T = 160 s. The spatial birth distribution of each newborn target,
indexed as j ∈ Im̄,k−1, is given by

pbirth,k|k−1(x
(j)
k |y

Im,k−1

k−1 ) = N (x
(j)
k |µ

(j)
b,k|k−1,Σ

(j)
b,k|k−1), j ∈ Im̄,k−1, (3.109)

with probability of existence started as p(E(j)
k |y

(1:m)
k−1 ) := p

(j)
b,k|k−1 = λb,k|k−1. The mean vector

and covariance matrix of each newborn target is given by

µ
(j)
b,k|k−1 =

 y
(j)
p,k−1

02×1

y
(j)
α,k−1

 , Σ
(j)
b,k|k−1 =

 Rp 01×2 02×1

02×1 I2v2
max/4 02×1

01×2 01×2 Rα

 , (3.110)

where y
(j)
p,k−1 and y

(j)
α,k−1 are the measured position and radar cross-section in the observation

y
(j)
k−1 ∈ y

Im̄,k−1

k−1 , Rp and Rα are submatrices of the observation noise covariance matrix corre-
sponding to position and radar cross-section respectively, and vmax is the maximum (possible)
velocity magnitude in the scenario, set as vmax := D/T , where D =

√
40002 + 30002 (m) is the

diagonal of the surveillance rectangle. For track management purposes, the lower threshold for
track deletion is set as τdel = 0.10 and the upper threshold for track confirmation τconf = 0.95.

We compare the performance of the JPDA-EHM3 with

• a Cardinalized Probability Hypothesis Density (CPHD) filter [129, 203],

• a JIPDA whose associations are resolved by the Global Nearest Neighbor data association
algorithm, designated as JIPDA-GNN,

• a JIPDA whose marginal association probabilities are computed by the EHM1, designated
as JIPDA-EHM1,

• a JIPDA implemented with one Gaussian mixture per target whose marginal association
probabilities are computed by the EHM1 [135], designated as JIPDA-GM-EHM1.

More sophisticated filters such as the Generalized Labeled Multi-Bernoulli filter [164] and DISP
[58] have not been included in the comparison because we believe these filters are more com-
parable to the MHT in terms of required computational resources and performance. The same
techniques used for incorporating newborn targets, mixture reduction and track management
developed for the JPDA-EHM3 are used for the JIPDA-GNN, JIPDA-EHM1 and JIPDA-GM-
EHM1. Note that the JIPDA filter is seen to be equivalent to the multi-Bernoulli filter, a fact
that has been studied in the literature [202, 206, 188]. In this sense, our implementation of
the JIPDA-GM-EHM1 is very similar to the marginal multi-Bernoulli filter with Poisson birth
process presented in [206]. The use of EHM1 for the JIPDA can be justified as the run times
based on the classical approach (hypotheses enumeration) for computing marginal association
probabilities are prohibitively large. In preliminary tests of our numerical experiment, the
JIPDA and JIPDA-GM based on the classical approach performed ten times slower.

The birth process for the CPHD filter has an intensity function modeled by a Gaussian
mixture with 10 components, located around the initial position of each target to enable the
filter to infer intensity components that explain all targets within the first 15 time steps.
For k ≤ 15, the birth components for the CPHD filter contain the correct cross-section in-
formation corresponding to the region where each target is expected. For k > 15, these
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birth components have radar cross sections sampled from the uniform distribution U([5, 1000])

(m2). Thus, the birth components are set as µ(i)
b,k|k−1

:= (p̃
(i)
x , p̃

(i)
y , 0, 0, α̃

(i)
b )T and Σ

(i)
b,k|k−1

:=

diag(9σ2
p,x, 9σ

2
p,y, v

2
max/4, v

2
max/4, σ

2
α,b), where p̃

(i)
x ∼ N (·|p(i)

x (0), σ2
p,x), p̃(i)

y ∼ N (·|p(i)
y (0), σ2

p,y),
α̃

(i)
b ∼ N (·|α(i)(0), σ2

α) and σα,b := σα for k ≤ 15, and α̃
(i)
b ∼ U([5, 1000]) and σα,b :=

(1000 − 5)/2 otherwise. The maximum number of Gaussian components maintained for the
CPHD intensity is 40, with pruning threshold 10−5 and merging radius of 4m. The cardinality
distribution estimated by the CPHD is truncated at nmax = 20.

In the numerical experiment, 200 Monte Carlo (MC) runs are performed, each with an
independently sampled set of target-generated measurements, and independently generated
clutter. For all filters, performance is evaluated in terms of:

• mean Optimal Subpattern Assignment (OSPA) metric [174] for cut-off cOSPA = 200 and
norm order pOSPA = 2 (including radar cross-section),

• average number of confirmed targets,

• average number of track swaps, and

• computation time (per time step).

3.8.1 Results

Figure 3.4 shows the confirmed tracks generated by the JPDA-EHM3 for an exemplary run.
In this run, we observe that once pairs of targets get into mutual proximity, around time step
k = 35, they become dependent by sharing measurements that are possible to have originated
from either target in each pair. As they become dependent, a tree of targets describing their
dependency is properly constructed and propagated forward as illustrated in Figure 3.5. These
pairwise dependencies are also clear from Figure 3.4 as estimates of either target in each pair,
whose uncertainty is represented by consolidated covariance ellipses8, make evident the asso-
ciation ambiguity, causing the consolidated covariances to occupy a wide shared uncertainty
area. Once a pairwise dependency is identified by the algorithm, it is maintained over the
subsequent steps, deferring the decision to solve the association ambiguity to future steps. A
partially observed set of measurements containing radar cross sections, from sensor S2, helps
to solve the association ambiguity at time step k = 71, while still keeping the dependency
structure. This dependency structure is carried over to step k = 105 when other dependen-
cies are identified because new pairs of targets become dependent. At this point, the resulting
dependency structure involves all targets, by a transition of pairwise dependencies across all
targets. The resulting dependency across all confirmed targets can be seen in Figure 3.6. At
time step k = 141, additional ambiguities are solved by new measurements from sensor S2,
and then the confirmed tracks follow the separated targets without swaps to the end. Note in
Figures 3.5 and 3.6 that the previous target trees are from the previous filtering step and may
contain unconfirmed targets that may have been deleted via track management. In addition,
newborn unconfirmed targets may appear in the predicted trees. In Figures 3.5 and 3.6 labels
of unconfirmed targets are grayed out.

8The consolidated covariance matrices are obtained by combining the covariances of all mixture components
of each target state marginal distribution.
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Figure 3.4: Exemplary run: confirmed tracks estimated by JPDA-EHM3.

The performance indexes comparing the JPDA-EHM3, CPHD, JIPDA-GNN, JIPDA-EHM1,
and JIPDA-GM-EHM1 can be seen in Figures 3.7–3.10. In terms of confirmed tracks, from Fig-
ure 3.7 we can see that all filters perform satisfactorily, except for the JIPDA-GNN, proving
the effectiveness of the approach proposed in this chapter to incorporate target birth and track
management for confirming targets with high probability of existence. The JIPDA-GNN solves
the associations by the global nearest neighbor method, which renders some tracks with a low
probability of existence when the wrong association is forced by the association ambiguities.

Regarding track swaps, Figure 3.8 highlights the clear superiority of JPDA-EHM3 owing
to its explicit estimation of dependencies between targets, which allows the algorithm to defer
hard decisions to future steps when sensible information becomes available. The number of
track swaps for the JPDA-EHM3 slightly increases right after close targets start separating
because the algorithm is not able to estimate the correct association yet. When information
from sensor S2 arrives, partially observed radar cross-section enables disambiguation, such that
the JPDA-EHM3 is able to reform its estimates based on the maintained dependency structure.
The same does not happen for the JIPDA-GNN, JIPDA-EHM1, and JIPDA-GM-EHM1, which
cannot revise their estimates once they are produced. Note that track swaps happen all the
time for the CPHD since this filter is not designed to keep track identities.

The track swaps are not identically zero for the JPDA-EHM3 because its ability on revising
its estimates depend on the disambiguating information, which may not be available at the
critical moment or should be provided for a greater number of time steps to sustain evidence
enough for the required inference changes. One can also observe that the JIPDA-GM-EHM1
is slightly better than the JIPDA-EHM1 due to the several mixture components per target in
the former, which cater for multiple hypotheses over time. The JIPDA-EHM1 and JIPDA-GM-
EHM1 are much better than the JIPDA-GNN in terms of track swaps because the later takes
a greedy approach to solve association ambiguities.

As a partial consequence of the performances observed for the track swaps, the mean OSPA
metric presented for the JPDA-EHM3 is much better than those presented for the JIPDA-GNN,
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Figure 3.5: Previous and predicted target trees at time step k = 70

JIPDA-EHM1, and JIPDA-GM-EHM1, as can be seen in Figure 3.9. This happens because
the OSPA metric was computed taking into account the radar cross-section, which introduces
in the index the importance of keeping the correct disambiguating feature (and not swapping).
On the other hand, the CPHD shows the ability to recover a low mean OSPA metric when
close targets get separated. This is because when filtering the intensity function the CPHD
filter discards nonsensical components, introduces new components (from the birth process),
and carries over significant components to describe the whole target configuration in the scene.
In just a few time steps after the target separation, the CPHD is able to use information from
sensor S2 to correct its intensity function and outputs the intensity peaks that best explains
the scene no matter the identities.

In terms of computational effort, we see from Figure 3.10 that the JPDA-EHM3 is more
computationally complex than the other filters owing to the cost of maintaining (and restruc-
turing) the dependencies between targets. The differences in runtime become more prominent
when multiple targets take part on the dependency structure, but one should note that this
complexity would not be prohibitive for most practical scenarios where pairwise dependencies
are much more likely than multiple dependencies. Also, it is worth noting that the filters
JIPDA-EHM1 and JIPDA-GM-EHM1 rely on a very computational efficient algorithm, EHM1,
which potentiates computational efficiency of these filters. If compared to the classical JIPDA
or JIPDA-GM, the JPDA-EHM3 would comparatively offset its own complexity by efficient
computation of marginal association probabilities. The CPHD shows run times comparable to
that of the JIPDA-GM-EHM1 since in this scenario the number of measurements and number
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Figure 3.6: Previous and predicted target trees at time step k = 140

of cardinality terms are moderately low, and most of the CPHD effort is applied to manage the
intensity mixture components. As expected, the JIPDA-GNN is the fastest filter. The overall
averaged run time per time step are 0.4436 s for the JPDA-EHM3, 0.1624 s for the CPHD,
0.0555 s for the JIPDA-GNN, 0.1211 s for the JIPDA-EHM1, and 0.1575 s for the JIPDA-GM-
EHM1.

3.9 Conclusions

In this chapter, the challenge of representing target states and their mutual dependencies in
a concise, accurate, and scalable way has been addressed. To that end, the hypothesis of
independence between targets has been removed, and new hypotheses to structure the target
dependencies have been adopted.

Under these assumptions, we have derived a new scalable multi-target tracking framework
that considers dependency between target states and enables track management by inferring
existence probabilities. The proposed algorithm models target dependency by probabilistic trees
on which joint probability distributions of adjacent targets are calculated. Hence the method
avoids maintaining a joint probability distribution over all the target states, which is infeasible
except when the number of targets is small and enables a scalable algorithm for scenarios with
a moderately high number of targets. For computing the marginal association probabilities,
EHM 3 has been adopted allowing calculations for pairs of dependent targets.
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Figure 3.7: Average number of confirmed tracks

The numerical experiment presented made it clear that the proposed filter reduces the
incidence of track swapping and substantially improves tracking capability when information
sensible for association disambiguation are occasionally available. This is a direct consequence of
the feature that allows the filter to maintain information of previous association ambiguities even
when estimates have been accomplished, which means that representing target dependencies
allows indirect inference where measurements for one target may provide information on others.
This feature seems particularly useful in situations where one of two dependent targets becomes
occluded, such that the information on the detected target allows to estimate the state of the
occluded one.

The case made supports our argument that keeping target dependencies is clearly beneficial
for scenarios of frequent association ambiguities, and that describing target dependencies by
Bayesian probabilistic structures is accurate and more computationally feasible than maintain-
ing the complete joint multi-target distribution.
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4
Discrete-Gamma Cardinalized

Probability Hypothesis Density

In this chapter, our focus is on addressing the challenge of reducing computational complexity
in multi-object estimation. In particular, this challenge is a fundamental problem in the multi-
target tracking community, and it arises due to an increasing necessity of tracking enormous
numbers of objects (hundredths to thousands) in applications that are very computationally
demanding. To that end, in particular, we propose a filter based on a very effective simplification
of a celebrated algorithm: the Cardinalized Probability Hypothesis Density (CPHD) filter.

The CPHD filter has become one of the most acclaimed algorithms for multi-target Bayesian
filtering due to its ability to accurately estimate the number of objects and the object states in
tracking scenarios affected by clutter. The CPHD filter generalizes the Probabilistic Hypothe-
sis Density (PHD) filter by jointly propagating the first-order multi-target moment (intensity
function) along with the entire probability distribution on the number of targets (cardinality
distribution). In general, the CPHD recursion is computationally intractable, however, success-
ful approximations have been devised with reported computational complexity dominated by
O(m3) operations per filtering iteration, where m is the number of measurements. Room for
improvement was originally acknowledged by Mahler [130], who conceived the idea of approxi-
mating the cardinality distribution by two-parameter distributions. In this chapter, we further
explore this idea to provide an efficient approximation of the CPHD where the cardinality dis-
tribution is modeled as a discretized Gamma distribution. Experiments show that the resulting
filter is less computationally complex than the standard implementation of the CPHD filter but
shows similar cardinality accuracy and variance.

4.1 Overview

Multi-target tracking is concerned with estimating the states of several objects of interest
from a sequence of observations corrupted by noise, in the presence of missed detections and
false alarms. The classical literature on multi-target tracking relies on the use of multivariate
Bayesian statistics for estimating the target states while, at the same time, resorting to combi-
natorial analysis for capturing the very complex problem of associating objects to sequences of
measurements. Celebrated methods, such as the Multi-Hypothesis Tracking (MHT) [163] and
Joint Probabilistic Data Association (JPDA) [73] have become traditional due to three factors.
First, their ability to incorporate established filtering techniques (e.g., Kalman measurement
update). Second, their ability to provide accurate (and so useful) approximations of posterior
multi-target densities. Third, the computational power available in modern digital computers
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becoming sufficient to allow such methods to run in real-time.
The Probability Hypothesis Density (PHD) filter [126] has set the cornerstone for a com-

pletely new way of interpreting multi-target Bayesian inference: a view where data association
is avoided by making a judicious choice related to the targets’ state description while promot-
ing a neat and elegant mathematical formulation. In this formulation, a collection of target
states is considered as a random set-valued state and the collection of sensor measurements is
treated as a random set-valued observation. While intimately related to the theory of stochastic
population processes [143], the multi-target Bayesian framework proposed by Ronald Mahler
has been rather stated in terms of random finite sets (RFS) on which operations are given in
the context of finite-set statistics (FISST) [128, 131]. In this context, the PHD recursion [126]
was developed as a first-moment approximation to the multi-target Bayesian filtering problem,
where the algorithm propagates the posterior intensity function of the set of targets’ states in
time.

In their influential analysis of the PHD filter, Erdinc, Willett, and Bar-Shalom [68] pointed
out that its most prominent limitation resides in that the filter is first-order on the num-
ber of targets (cardinality). Since the number of targets in the PHD filter is assumed to be
Poisson-distributed, the cardinality mean equals the variance. This gives rise to very unstable
cardinality estimates when considering scenarios involving a large number of missed detections
or false alarms. In order to address this concern, Mahler derived the Cardinalized PHD (CPHD)
filter [127, 129] which propagates the first-order multi-target moment (intensity function) along
with the entire cardinality distribution. However, in general, practical implementations of the
CPHD filter (e.g., [203]) are deemed to demand O(m3) operations per filtering iteration, where
m is the number of measurements. Mahler acknowledged there was room for computational
improvement via additional approximation. With this potential in mind, he conceived the idea
of approximating the cardinality distribution by two-parameter distributions and devised a
cardinalized filter, the “binomial filter”, whose number of targets is assumed to be distributed
according to a binomial distribution [130]. Recent new developments in the same ethos have
been proposed, such as that by Schlangen et al. [173] that assumes the cardinality distribution
to be a Panjer distribution and establishes a recursion where both the first moment and a
second-order entity, a regional variance, are propagated in the filtering procedure.

PHD filters that are second-order in target number have a clear advantage relative to the
CPHD filter: they approximate a special case of the CPHD filter by reproducing, for a family
of discrete probability distributions, the essential strategy of the Kalman filter, i.e., estimating
sufficient statistics rather than the complete distribution. Mahler’s binomial filter has particular
merit in this context since the binomial distribution is the most basic discrete distribution
that can describe underdispersed count phenomena, i.e., such that the variance can be smaller
than the mean. Ther importance of this latter aspect becomes clear when we notice that, in
most practical cases, cardinality estimates should be underdispersed because with a fairly high
probability of detection and a moderate number of false alarms, the set of measurements is
highly informative about the target number. Unfortunately, the binomial filter suffers from a
fundamental drawback: the number of trials of a binomial distribution is strongly constrained
by the filtering scenario, and the filter derived in [130] loses its validity when the predicted
number of trials is smaller than the number of measurements.

This chapter proposes a new filter that is second-order in target number, where the targets’
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state is assumed to follow an independent and identically distributed cluster process with the
cardinality distribution modeled as a discretized Gamma distribution. Although apparently
complicated, a discretized Gamma distribution allows simple calculations for approximating
the first- and second-order moments of the posterior cardinality distribution, and efficiently
addresses tracking scenarios with underdispersed target count while avoiding the restrictions
imposed by the binomial filter. This latter feature is important because, when provided an i.i.d.
cluster process with overdispersed cardinality model, the filter would most probably suffer from
the same instability as that found in the PHD filter.

The chapter is organized as follows. Section 4.2 establishes some mathematical preliminaries
and Section 4.3 briefly presents the CPHD recursion. Section 4.4 provides an analysis of the
binomial filter. Section 4.5 proposes the Discrete-Gamma CPHD recursion. Section 4.6 presents
a comparison of the proposed algorithm, the PHD filter, and the CPHD filter in the context
of an illustrative simulated scenario. Section 4.7 concludes, and the Section 4.8 presents proofs
associated with the derivation of the DG-CPHD algorithm.

4.2 Mathematical Preliminaries

In this section, we briefly present the mathematical concepts required to understand the chapter:
multi-target statistics, point processes, probability generating functionals, and the intensity
function of a state set density. We shall use the same description and notation originally
proposed by Mahler [126, 129], though we note that an elegant description reminiscent of the
seminal work by Moyal [143] has been increasingly adopted in recent literature [44, 45, 59, 57,
18, 173], which appear to the authors to have benefited from the measure-theoretic formalism.
Our choice to adopt Mahler’s description is just a matter of convenience when referring to
expressions derived in [129], which may prevent the reader from having to translate between
two equivalent formalisms.

4.2.1 Multi-target Statistics and Point Processes

Let xi ∈ X ⊆ Rdx be a dx-dimensional vector describing the state of a single target identified by
i. We assume a scenario with a random number n ∈ N of targets, and the collection of targets
has no intrinsic ordering such that the joint state of this collection is represented by the finite
set x1:n = {x1, x2, . . . , xn} where x1, . . . , xn are state vectors of all targets. By allowing such
set of targets to be random in number of elements and state vectors, then the resulting set is
a random finite set (RFS). Let Ξ be a random finite set and X := {x1, . . . , xn} its realization,
the multi-target probability density can then be described as

pΞ (X) = pN (n) px1:n|N ({x1, . . . , xn}|n) (4.1)

where pN (n) is the cardinality distribution, and px1:n|N ({x1, . . . , xn}|n) is the joint probability
density of the point set x1:n. In addition, the random finite set Ξ can be formally understood
as a point process that pertains to the composite space X =

⋃∞
n=0 Xn, i.e., Ξ ∈ X , with

probability density pΞ. Particularly, if the point process Ξ is Poisson with mean µ, then
pΞ(X) = e−µ

∏n
i=1 µp(xi), whereas for an i.i.d. cluster process the point-process density assumes

the form pΞ (X) = pN (n) · n!
∏n
i=1 p(xi), where p(xi) is the spatial probability density of each
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target i ∈ {1, . . . , n} and the term n! accounts for all possible orderings of the finite set of
states x1:n. We can verify that pΞ (X) is a probability density by identifying the value of its set
integral over all possible realizations as

ˆ
pΞ (X) δX ,

∞∑
n=0

1

n!

ˆ
Xn

pN (n) px1:n|N ({x1, . . . , xn}|n) d(x1, . . . , xn)

=

∞∑
n=0

pN (n)

ˆ
Xn

[
n∏
i=1

p(xi)

]
d(x1, . . . , xn) = 1. (4.2)

In a similar way, let yj ∈ Y ⊆ Rdy be a dy-dimensional vector describing the jth measure-
ment collected by one (or more) sensor(s). We also assume that there is a random number
m ∈ N of measurements, possibly originated from targets or false alarms and without specific
order, that can be described by a random finite set Ψ with finite point set y1:m = {y1, . . . , ym}
and where y1, . . . , ym are all observation vectors. For any realization of Ψ, say Y, multi-target
likelihood functions can be defined as a generalization of single-target likelihoods with prop-
erties analogous to those described for the multi-target density, i.e., likelihoods of the type
pΨ|Ξ(Y|X) are possible.

4.2.2 Probability Generating Functions and Functionals

Given a probability mass function pN (n) = Pr {N = n} of a discrete non-negative random
variable N , its probability generating function (p.g.f. or PGF) is defined as

GN (ζ) ,
∞∑
n=0

pN (n)ζn ≡ E
[
ζN
]
, (4.3)

which converges absolutely for ζ ∈ C such that1 |ζ| ≤ 1. From (4.3) one can recognize that
pN (n) = G

(n)
N (0)/n! and GN (1) = 1. Similarly, an analogous concept can be applied to a

point-process random variable (random finite set), Ξ, via the probability generating functional
(p.g.fl. or PGFL)

GΞ[h] =

ˆ
hXpΞ (X) δX ≡ E

[
hΞ
]

=

∞∑
n=0

pN (n)

ˆ
Xn

[
n∏
i=1

h(xi)p(xi)

]
d(x1, . . . , xn), (4.4)

where h : X → [0, 1] is a test function analogous to ζ for the PGF, where hX = 1 if X = ∅ and
hX =

∏n
i=1 h(xi) if X = {x1, . . . , xn}.

4.2.3 Functional Differentiation and the Intensity Function

The functional derivative of a probability generating functional with respect to x ∈ X can be
defined as

δGΞ

δx
[h] , lim

ε↘0

GΞ[h+ εδx]−GΞ[h]

ε
, (4.5)

1Other values of ζ may lead to convergence, though |ζ| ≤ 1 is a sufficient condition.
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where δx = δ(x′ − x) is the Dirac delta function concentrated at x and the differentiation is
assumed linear and continuous for a fixed h. It is worth noting that definition (4.5) is heuristic
because the Dirac delta is not a valid test function in view of 4.4. A rigorous definition of the
functional derivative can be found in [125]. When differentiating with respect to a random set
realization X := {x1, . . . , xn}, one obtains

δGΞ

δX
[h] ,

δnGΞ

δx1 . . . δxn
[h],

δGΞ

δ∅
[h] , GΞ[h]. (4.6)

As detailed in [131], functional derivatives obey rules analogous to those of elementary calculus,
including the rule for a linear functional, the product rule, and the chain rule. The first moment
of the random finite set Ξ (point process) is what is generally called the “intensity function”,
or the probability hypothesis density (PHD) [126]. The first moment can be derived from the
first derivative of the probability generating functional as

DΞ(x) =
δGΞ

δx
[1], (4.7)

or equivalently from a set expectation according to

DΞ(x) =

ˆ
δX(x)pΞ(X)δX = E [δΞ(x)] , (4.8)

where δX(x) ,
∑

x̂∈X δ(x− x̂). The intensity function DΞ(x) can be interpreted as a density of
objects at x, i.e., E [|Ξ ∩ S|] =

´
S DΞ(x)dx gives the expected number of objects in the region

S ⊆ X .

4.3 The Cardinalized PHD Filter

In this section, we present the CPHD filter in its original form. The CPHD recursion was
proposed by Mahler in [127, 129] to address the instability of the PHD filter when estimating the
target number. The CPHD recursion propagates the first-order multi-target moment (intensity
function) along with the entire cardinality distribution. The CPHD recursion is derived based
on the following assumptions:

Assumption 4.1. Each target moves independently of one another, with motion modeled by a
single-target Markov transition density pt,k|k−1(x|x′), which we abbreviate as pt(x|x′).

Assumption 4.2. Existing targets may disappear between two time steps with probability 1−
ps,k|k−1(x), where ps,k|k−1(x) is the probability that a target with state x will survive between
time steps k − 1 and k, hereafter abbreviated as ps(x).

Assumption 4.3. New targets can appear in the scene independently of the existing targets,
according to a Poisson point process. New targets are realized at time step k with joint density
bk|k−1(X). The intensity function of the corresponding random finite set is denoted as Db(x),
and its cardinality distribution is denoted as pb(n) whose p.g.f. is Gb(x).

Assumption 4.4. Measurements generated from targets are independent of one another, with
single-target likelihood function `k,y(x) = p`,k(y|x), hereafter abbreviated as `y(x).
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Assumption 4.5. The sensor detects a single target with state x at the time step k with
probability pd,k(x), abbreviated as pd(x) and the probability of not detecting the target is denoted
as qd(x) = 1− pd(x).

Assumption 4.6. False alarms may affect the observation, and are assumed to be characterized
by a Poisson random finite set (or point process) and independent of the actual measurements.
At the time step k, the sensor obtains a number of false alarms whose spatial distribution is
individually given by the probability density ck(y) and whose cardinality distribution is given
by pc,k(m), abbreviated as c(y) and pc(m) respectively, and where the average number of false
alarms is denoted by λ = Epc [m]. The p.g.f. of pc(m) is denoted as Gc(x).

Assumption 4.7. Both the prior and posterior multi-target random finite sets are i.i.d. cluster
processes.

4.3.1 CPHD Prediction Step

At a given time instant k − 1, one has in possession estimates of the intensity Dk−1(x|Y1:k−1),
the expected number of targets N̂k−1, and the cardinality distribution pk−1(n|Y1:k−1), condi-
tioned on all measurements received to date, Y1:k−1 = {Y1, . . . ,Yk−1}, where Yk−1 is the RFS
realization containing all observations received at time instant k−1. In this section, we suppress
the conditioning on Y1:k−1 to express the intensity function and cardinality distribution in the
concise forms Dk−1(x) and pk−1(n), respectively.

We write ςk−1(x) := N̂−1
k−1Dk−1(x), abbreviated as ς(x) in this section, and recall the defi-

nition of inner product between functions as 〈f, g〉 ,
´
X f(x′)g(x′)dx′. The prior p.g.f. corre-

sponding to the prior cardinality distribution is given by

Gk|k−1(x) = Gb(x) ·Gk−1(〈1− ps, ς〉+ 〈ps, ς〉x), (4.9)

where Gk−1(x) is the p.g.f. of the cardinality distribution at time step k− 1, and the equality2

is valid under Assumption 4.7. Expression (4.9) follows from the assumption that the birth
process is independent of the prior process of targets that survived, which in turn is written
for a Bernoulli survival transition by using the Watson-Galton recursion [205]. The CPHD
prediction step obtains the prior intensity function, prior expected number of targets, and prior
cardinality distribution according to

Dk|k−1(x) = Db(x) +

ˆ
X
ps(x

′) · pt(x|x′)Dk−1(x′)dx′, (4.10)

N̂k|k−1 = N̂b,k + N̂s,k, (4.11)

pk|k−1(n) =

n∑
i=0

pb(n− i)
1

i!
G

(i)
k−1(〈1− ps, ς〉)〈ps, ς〉i, (4.12)

where N̂b,k = 〈1, Db〉 is the expected number of newborn targets, and N̂s,k = 〈ps, Dk−1〉 is the
expected number of targets that have survived from time step k − 1.

2In practice this is an approximation.
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4.3.2 CPHD Measurement Update

In this section, we assume that measurements are collected from a single sensor at time instant k,
as a realization Yk of the observation RFS Ψk, with a finite point set yk,1:mk = {yk,1, . . . , yk,mk}
of collected measurements. Based on the prior intensity function Dk|k−1(x|Y1:k−1), the prior
expected number of targets N̂k|k−1, and the prior cardinality distribution pk|k−1(n|Y1:k−1),
the realization Yk is used to produce the posterior intensity function Dk(x|Y1:k), the posterior
expected number of targets N̂k, and the posterior cardinality distribution pk(n|Y1:k).

We denote the intensity functions as Dk|k−1(x) and Dk(x), and the cardinality distributions
as pk|k−1(n) and pk(n). In addition, we set ςk|k−1(x) := N̂−1

k|k−1Dk|k−1(x), abbreviated as ς(x)

in this section. The p.g.f. of the posterior cardinality distribution is approximately given by

Gk|k(x) =

∑mk
j=0 x

jG
(mk−j)
c (0)G(j)(x〈qd, ς〉)σj(Yk)∑mk

i=0 G
(mk−i)
c (0)G(i) ( 〈qd, ς〉)σi(Yk)

, (4.13)

where mk = |Yk|, G(x) = Gk|k−1(x), and for a set Y with m = |Y|,

σi(Y) , σm,i

(
〈pd`y1 , ς〉
c(y1)

, . . . ,
〈pd`ym , ς〉
c(ym)

)
, (4.14)

where σm,i(x1, . . . , xm) is the elementary homogeneous symmetric function of degree i in x1, . . . , xm.
By defining

Υk[Y] =

∑|Y|
j=0G

(|Y|−j)
c (0)G(j+1)(〈qd, ς〉)σj(Y )∑mk

i=0 G
(mk −i)
c (0)G(i) (〈qd, ς〉)σi(Yk)

, (4.15)

the CPHD measurement-update step can be described as

Dk(x) =
qd(x)

G(1)(1)
Υk [Yk]Dk|k−1(x) +

pd(x)

G(1)(1)

∑
y∈Yk

`y(x)

c(y)
Υk [Yk \ {y}]Dk|k−1(x), (4.16)

N̂k = G
(1)
k (1) ≈ arg max

n
pk(n), (4.17)

pk(n) =

∑mk
j=0G

(mk−j)
c (0) 〈qd,ς〉

n−j

(n−j)! ·G
(j)(n−j)(0)σj(Yk)∑mk

i=0G
(mk−i)
c (0)G(i)(〈qd, ς〉)σi(Yk)

, (4.18)

where G(j)(e) = De
xG

(j), where De
x is Euler’s notation for differentiation.

4.4 The Binomial Filter

The binomial filter [130] was proposed as one further step towards simplification of the CPHD
filter. The strategy employed was to mimic, for a hypothesized discrete distribution, the proce-
dure of a Kalman filter for the cardinality random variable, i.e., estimating sufficient statistics.
Mahler proposed that the cardinality should be distributed according to a binomial distribution,

pN (n) =

(
ν

n

)
ωn(1− ω)ν−n,

194



CHAPTER 4. DISCRETE-GAMMA CARDINALIZED PROBABILITY HYPOTHESIS DENSITY

which models the probability of n successes out of ν trials each with probability ω. For the
purpose of counting objects in a scene, the binomial distribution has two virtues: (i) under-
dispersion, i.e., the variance is smaller than or equal to the mean, and (ii) simplicity, with an
analytic probability generating function Gbin(ζ) = (1− ω + ωζ)

ν . As touched on before, the
first virtue is very important for the vast majority of practical applications since in scenarios of
a fairly high probability of detection and a moderate number of false alarms, a set of measure-
ments is highly informative about target number. Under these conditions, for a sufficiently high
number of targets, it is very unlikely that the cardinality variance will be perceived as greater
than the expected target number. To verify the underdispersed characteristic of the binomial
distribution, one just needs to note that, for 0 ≤ ω ≤ 1, var (N) = νω(1 − ω) ≤ νω = E [N ]

because 1− ω ≤ 1.
On the other hand, the binomial filter has a fundamental problem: for a given number of

measurements mk received at time step k, the filter requires that νk|k−1 ≥ mk. This is actually
an essential assumption associated with Theorem 2 in [130], which makes it possible to state
the measurement-update step. Ultimately, this assumption poses a limitation in the number
of newly appearing targets that the binomial filter can cope with. Supposing that N̂k|k−1

targets have been predicted in the scene and no false alarms or missed detections took place,
then the maximum number of new targets that the binomial filter could account for would be3

ν̂k|k−1 − N̂k|k−1 ≈ var(Nk|k−1)/ω̂k|k−1. The problem arises because when predicting νk|k−1

and ωk|k−1 no information on the actual number of new targets is available, and the problem
tends to be exacerbated when high number of false alarms may be realized, i.e., most probably
ν̂k|k−1 ≥ mk would not hold.

4.5 The Discrete-Gamma CPHD Filter

In this section, we propose a new approximation to the CPHD in the same ethos of the binomial
filter. Such approximation is based on a new cardinality model, obtained by discretizing the
Gamma distribution for describing count data. This cardinality model and its properties are
explained in Sections 4.5.1 and 4.5.2. In Section 4.5.3 we present the prediction step of the
proposed filter, and in Section 4.5.4 we present its measurement-update step. Section 4.5.5
is dedicated to an implementation of the Discrete-Gamma CPHD filter based on Gaussian
mixtures.

4.5.1 The Discrete Gamma Distribution

In order to derive the new filter, we assume that the prior and posterior cardinality distributions
can be accurately approximated as a discretized form of the Gamma distribution, called discrete

3Typically ω̂k|k−1 is of the same order of magnitude as var(Nk|k−1).
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Gamma (dGamma) hereafter, with probability mass function given by

dGamma(n|α, β) =
Gamma(n|α, β)∑∞
u=0 Gamma(u|α, β)

, n ∈ N0,

dGamma(n|α, β) =
Γ(α)−1βαnα−1e−βn

Γ(α)−1βα
∑∞
u=0 u

α−1e−βu

=
nα−1e−βn∑∞
u=0 u

α−1e−βu
. (4.19)

where Gamma(x|α, β) denotes the continuous Gamma probability density at x ∈ R+ with
a shape parameter, α > 0, and a rate parameter, β > 0. Note that (4.19) is built by
multiplying the continuous Gamma probability density by a Dirac comb with unit period,
X(x) =

∑
n∈Z δ(x − n), while accounting for a normalization factor, i.e., dGamma(n|α, β) =

N−1Gamma(x|α, β)X(x), where the normalizing constant is calculated by4

N =

ˆ
R
Gamma(x|α, β)X(x)dx

=
∑
u∈N0

ˆ
R+

Gamma(x|α, β)δ(x− u)dx

=
∑
u∈N0

Gamma(u|α, β). (4.20)

The utility of such probability mass function will become evident later on when we present the
filter equations that follow from it. For now it suffices to mention its benign characteristics,
involving a simple cardinality model that does not suffer from the shortcoming shown for the
binomial filter, and being suitable for inference of count phenomena. Specifically, the discrete
Gamma distribution can be either underdispersed and overdispersed. The discrete Gamma
distribution has the probability generating function

GdGamma(ζ) =

∞∑
n=0

dGamma(n|α, β) · ζn

=

∑∞
n=0 n

α−1(e−βζ)n∑∞
u=0 u

α−1e−βu

=
Li1−α(e−βζ)

Li1−α(e−β )
, (4.21)

where Lis(z) ,
∑∞
k=1 k

−szk, for |z| < 1, is the function known as the polylogarithm of order
s ∈ C and argument z ∈ C. The polylogarithm function has great importance in number theory,
representing a number of transcendental functions (e.g., Riemann zeta function). Interesting
particular cases involve Li1(z) = − log(1− z), and

Li−`(z) =
1

(1− z)`+1

∑̀
i=0

A(`, i)z`−i, ` ∈ Z+, (4.22)

4Recall that the support of the Gamma probability density is R+.
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where A(`, i) is an Eulerian number5, and note that (4.22) can be computed by evaluating
a finite number of terms. However, in practice, as ` increases, computing A(`, i) becomes
computationally expensive and increasingly prone to round-off errors. Resorting to the known
identity Li−`(z) = (z · ∂z)` [z/(1− z)] could also be an alternative, but the numerical evaluation
of these rational expressions increasingly suffers from cancellation errors as ` becomes large. In
those cases, truncating the polylogarithm’s definition directly may give a better answer [209].

Before closing this section it is worth remarking that other discrete distributions for count
data were investigated. At a first glance, some of them appeared as suitable candidates for
our endeavor, including the well known generalized Poisson distribution [32] and, more gener-
ally, the class of Lagrangian distributions [33], the Conway-Maxwell-Poisson distribution [176],
and other forms of Gamma-count distributions [27]. In our investigation, we have verified the
feasibility of such distributions, observing different disadvantages in each one them: the La-
grangian distributions propose very complex forms of probability generating functions (based
on the series expansions of a Lagrangian transformation), the Conway-Maxwell-Poisson distri-
bution requires approximations for the moments that are only valid for specific conditions on
the parameters, and the Gamma-count distribution in [27] results in a probability generating
function involving infinitely many evaluations of the incomplete Gamma function. Eventually,
we found more favorable characteristics in our approach.

4.5.2 Moments of the Discrete Gamma Distribution

From (4.21), it is not clear whether closed-form solutions exist for the discrete Gamma factorial
moments. We will rely on a procedure closely related to that shown in [3] in the context of
inducing the Euler-Mclaurin summation formula. First observe that

∞∑
n=0

nα−1e−βn , lim
m→∞

m∑
n=0

nα−1e−βn

converges for β > 1 according to the ratio criterion. Then, we shall assume β > 1 from now
on. The analysis requires the distribution maximum, xm = arg maxxGamma(x|α, β), xm 6= 0,
given by

d

dx

(
βαxα−1e−βx

Γ(α)

)
xm

=
βαxα−1

m e−βx

Γ(α)

[
(α− 1)x−1

m − β
]

= 0,

xm = (α− 1)β−1. (4.23)

The first two moments of dGamma(n|α, β) are evaluated by

µN = G
(1)
dGamma(1) =

Li−α(e−β)

Li1−α(e−β)
, (4.24)

σ2
N = G

(2)
dGamma(1)− µ2

N + µN . (4.25)

In order to evaluate these moments, one must approximate ratios of polylogarithms when
computing G

(1)
dGamma(1) and G

(2)
dGamma(1), whose exact values are not easily calculable. We

shall not prove that G(1)
dGamma(1) ≈ αβ−1 and G(2)

dGamma(1) ≈ α(α+ 1)β−2−αβ−1 to first order

5The Eulerian number A(`, i) is the number of permutations of the numbers 1 to ` in which i elements are
greater than the previous element.
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x

y
=

f
(x
)

A∆,n =
f(n+ 1)− f(n)

2

(xm, f(xm))

f(x) = xα−1e−βx

f(n) = nα−1e−βn

Figure 4.1: Differences between summation and integral of xα−1e−βx

precision, but rather provide an intuitive argument that hopefully will convince the reader that
higher order terms may be neglected. Set f(x) := xα−1e−βx and refer to Figure 4.1 to observe
that

dn<xm :=

bxmc−1∑
n=0

f(n)−
ˆ bxmc

0

f(x)dx < 0,

dn>xm :=

∞∑
n=bxmc

f(n)−
ˆ ∞
bxmc

f(x)dx > 0,

where bxc is the greatest integer less than or equal to x. Let us compute dn<xm and dn>xm by
a first order approximation where the difference f(n) − f(x), integrated within each interval
x ∈ In = (n, n + 1), is approximated by the area of a triangle (Figure 4.1), A∆,n, with base
∆xn = 1 and height ∆fn = |f(n+ 1)− f(n)|, to result

dn<xm ≈ −
1

2

bxme∑
n= 1

(f(n)− f(n− 1)) = −f(bxme)
2

,

dn>xm ≈ +
1

2

∞∑
n=bxme

(f(n)− f(n+ 1)) = +
f(bxme)

2
,

since f(0) = limx→∞ f(x) = 0, and where bxe is the closest integer to x. Therefore, we can
approximate the total difference to first order as

dn = dn<xm + dn>xm ≈
f(bxme)− f(bxme)

2
= 0,

198



CHAPTER 4. DISCRETE-GAMMA CARDINALIZED PROBABILITY HYPOTHESIS DENSITY

which allows us to get

Li1−α(e−β) =

∞∑
n=0

nα−1e−βn =

ˆ ∞
0

xα−1e−βxdx+ dn

≈ β−αΓ(α). (4.26)

If one is interested in a higher-order approximation of dn, the areas shown in Figure 4.1
should rather be approximated by integrals, within each interval In, of a higher-order fit-
ting polynomial. As a direct consequence of (4.26) and based on the property Γ(α + `) =

(α+ `− 1)Γ(α+ `− 1), ` ∈ N, one can easily verify the validity of the approximations:

µN =
Li−α(e−β)

Li1−α(e−β)
≈ β−(α+1)Γ(α+ 1)

β−αΓ(α)
= αβ−1, (4.27)

σ2
N =

Li−α−1(e−β)− Li−α(e−β)

Li1−α(e−β)
− µ2

N + µN

≈ β−(α+2)Γ(α+ 2)− β−(α+1)Γ(α+ 1)

β−αΓ(α)
− µ2

N + µN

=
β−αΓ(α)

[
α(α+ 1)β−2 − αβ−1

]
β−αΓ(α)

− µ2
N + µN

= αβ−2. (4.28)

4.5.3 Discrete-Gamma CPHD Prediction

The same assumptions used to formulate the CPHD filter, established Section 4.3, shall be
applied to derive the Discrete-Gamma CPHD recursion. In addition to Assumptions 4.1 to 4.7,
the following premise is also considered:

Assumption 4.8. The prior and posterior multi-target random finite sets are assumed with
multi-object discrete-Gamma probability densities of the form

pΞ (X) = dGamma (n) · n!

n∏
i=1

p(xi), (4.29)

where p(xi) is the spatial probability density of each object.

The probability generating functional of (4.29) can be obtained as

GΞ [h] = EΞ

[
e
∑n
i=0 log h(xi)

]
=

∞∑
n=0

pN (n)

ˆ
Xn

e
∑n
i=0 log h(xi)

[
n∏
i=1

p(xi)

]
dx1:n

=

∞∑
n=0

dGamma (n)

ˆ
Xn

[
n∏
i=1

h(xi)p(xi)

]
dx1:n

=

∞∑
n=0

nα−1
[
e−β
´
X h (x) ς (x) dx

]n
Li−α+1(e−β)

=
Li−α+1(e−β〈h, ς〉)

Li−α+1(e−β)
, (4.30)
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for β ∈ R, β > 1, and where ς(xi) := p(xi).
Now, based on previous knowledge of Dk−1, αk−1 and βk−1, i.e., the posterior intensity

function and cardinality parameters from the previous filtering iteration, the prediction step
shall obtain the predicted intensity, Dk|k−1, and predicted cardinality parameters, αk|k−1 and
βk|k−1, which are functions of the prior cardinality mean, µN,k|k−1, and of the prior cardinal-
ity variance, σ2

N,k|k−1. The following proposition establishes how the predicted intensity and
cardinality parameters are achieved. Proofs are presented in the Section 4.8.

Proposition 4.1. Provided the posterior intensity function at time instant k − 1, Dk−1, and
the parameters of a posterior discrete-Gamma cardinality distribution at time instant k − 1,
αk−1 (shape) and βk−1 (rate), then, under Assumptions 4.1–4.3 and 4.8, the predicted intensity
function, Dk|k−1, and the predicted cardinality parameters, αk|k−1 and βk|k−1, are given by

Dk|k−1(x) = Db(x) +

ˆ
X
ps(x

′) · pt(x|x′)Dk−1(x′)dx′, (4.31)

αk|k−1 ≈
µ2
N,k|k−1

σ2
N,k|k−1

, βk|k−1 ≈
µN,k|k−1

σ2
N,k|k−1

, (4.32)

where

µN,k|k−1 = N̂k|k−1 = N̂b,k +

N̂s,k︷ ︸︸ ︷
αk−1β

−1
k−1〈ps, ς〉, (4.33)

σ2
N,k|k−1 ≈ µN,k|k−1 + 〈ps, ς〉2αk−1β

−1
k−1(β−1

k−1 − 1), (4.34)

given the expected number of newborn targets, N̂b,k = 〈1, Db〉, and the expected number of
survived targets, N̂s,k = 〈ps, Dk−1〉 = αk−1β

−1
k−1〈ps, ς〉.

Note that (4.31) and (4.33) are essentially the same expressions as those found in the stan-
dard CPHD prediction. Also, similarly to the CPHD algorithm, the predictions of the intensity
function and of the cardinality distribution are uncoupled. The main difference is in the way the
predicted cardinality distribution is approximated, which for the DG-CPHD filter is modeled
in terms of the discrete Gamma cardinality parameters αk|k−1 and βk|k−1.

4.5.4 Discrete-Gamma CPHD Measurement Update

For the correction procedure, by knowing the prior intensity function, Dk|k−1, and the prior
cardinality parameters, αk|k−1 and βk|k−1, the measurement update step incorporates the set
of all measurements taken at time instant k (realization Yk) to calculate the posterior intensity
function, Dk, and posterior cardinality parameters, αk and βk, which are functions of the
posterior cardinality mean, µN,k, and of the posterior cardinality variance, σ2

N,k. The following
proposition declares how the posterior intensity and cardinality parameters shall be calculated.
Proofs are presented in the Section 4.8.

Proposition 4.2. Suppose that the prior intensity function at time instant k, Dk|k−1, and
the parameters of a prior discrete-Gamma cardinality distribution, αk|k−1 (shape) and βk|k−1

(rate), are known. Given a set of mk collected measurements that define a realization Yk of
the observation random finite set Ψk, then, under Assumptions 4.4–4.8, the posterior intensity
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function, Dk, and the posterior cardinality parameters, αk and βk, are given by

Dk(x) ≈ qd(x)

αk|k−1β
−1
k|k−1

Θk [Yk]Dk|k−1(x)

+
pd(x)

αk|k−1β
−1
k|k−1

∑
y∈Yk

`y(x)

λc(y)
Θk [Yk \ {y}]Dk|k−1(x), (4.35)

αk ≈
µ2
N,k

σ2
N,k

, βk ≈
µN,k

σ2
N,k

, (4.36)

where
µN,k = θ1,0 + θ0,1 · 〈qd, ς〉, (4.37)

σ2
N,k = θ2,0 − θ1,0 + 2θ1,1 · 〈qd, ς〉+ θ0,2 · 〈qd, ς〉2 − µ2

N,k + µN,k, (4.38)

and where the following definitions apply:

Θk [Y] ,

∑|Y|
j=0 Ĝ

(j+1)(〈qd, ς〉)σ̄j(Y )∑mk
i=0 Ĝ

(i) (〈qd, ς〉)σ̄i(Yk)
, (4.39)

θu,v ,

∑mk
j=0 j

uĜ(j+v)(〈qd, ς〉)σ̄j(Yk)∑mk
i=0 Ĝ(i) (〈qd, ς〉)σ̄i(Yk)

, (4.40)

σ̄i(Y) , σm=|Y|,i

(
〈pd`y1

, ς〉
λc(y1)

, . . . ,
〈pd`ym , ς〉
λc(ym)

)
, (4.41)

Ĝ(`)(x) =
d`

dx`
Li−α+1(e−βx), (4.42)

for α = αk|k−1, β = βk|k−1 and ` ≥ 1. The function σm,i(x1, . . . , xm) is the elementary
homogeneous symmetric function of degree i in x1, . . . , xm.

Similarly to the standard CPHD filter, the posterior number of targets in the DG-CPHD
recursion shall be estimated in the maximum-a-posteriori sense, i.e.,

N̂k ≈ arg max
n

pk(n) = arg max
n

(
pk(bnmc), pk(dnme)

)
, nm =

(αk − 1)

βk
. (4.43)

Note that (4.35) and (4.37) are analogous to those found in the standard CPHD correction
step. In addition, as is the case of the CPHD recursion, the measurement updates of the
intensity function and of the cardinality distribution are coupled. For the measurement update
step, the main difference between the DG-CPHD and CPHD filters is in the way the cardinality
distribution is approximated, which for the DG-CPHD filter is in terms of the discrete Gamma
cardinality parameters αk and βk. It is important to mention that computing (4.42) is not a
complex operation because, typically, Li−α+1(e−βx) can be calculated to double floating-point
precision with only few hundreds terms, and the pre-evaluated terms (nα−1e−βnxn)n∈N that
compose Li−α+1(e−βx) can be iteratively updated by element-wise vector multiplications (or
sums of logarithms) in order to evaluate the sequence (Li

(`)
−α+1(e−βx))`∈N. To see this just
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observe that

Li
(1)
−α+1(e−βx) = x−1

∞∑
n=0

nα−1e−βnxn · n,

Li
(2)
−α+1(e−βx) = x−2

∞∑
n=0

nα−1e−βnxn · n(n− 1), (4.44)

...

Li
(`)
−α+1(e−βx) = x−`

∞∑
n=0

nα−1e−βnxn · n . . . (n− `+ 1),

whose terms can be iteratively computed as

D1
x(nα−1e−βnxn)n := x−1D0

x(nα−1e−βnxn)n ◦ (n− 0)n,

D2
x(nα−1e−βnxn)n := x−1D1

x(nα−1e−βnxn)n ◦ (n− 1)n,

... (4.45)

where the terms within parentheses represent sequences as (·)n∈N, the symbol ◦ is the Hadamard
product and D`

x is Euler’s notation for differentiation.

4.5.5 Implementation of the DG-CPHD Filter via Gaussian Mix-
tures

As follows, the recursion established by Propositions 4.1 and 4.2 will be presented in closed
form by modeling the intensity functions as Gaussian mixtures. Without loss of generality in
terms of applicability of the proposed filter, but in favor of illustration simplicity, we derive a
solution for linear Gaussian models. In this context, the single-target state transition kernel
and observation model are assumed linear and Gaussian as

pt(x|x′) = N (x; Fx′,Q), (4.46)

`y(x) , p`(y|x ) = N (y; Hx ,R). (4.47)

Additionally we assume that the probabilities of survival and detection, ps and pd respectively,
are independent of the state. The state point process (RFS) at a previous time instant k − 1,
and the target birth point process (RFS) at the time instant k are characterized by the following
intensity models:

Dk−1(x) =

Ik−1∑
i=1

w
(i)
k−1N (x; m

(i)
k−1,P

(i)
k−1), (4.48)

Db,k (x) =

Ib,k∑
i=1

w
(i)
b,kN (x; m

(i)
b,k,P

(i)
b,k), (4.49)

where {w(i)
k−1,m

(i)
k−1,P

(i)
k−1 : i = 1, . . . , Ik−1} is the set of weights, means and covariances that

describe the state intensity function, and {w(i)
b,k,m

(i)
b,k,P

(i)
b,k : i = 1, . . . , Ib,k} is the set of weights,

means and covariances that describe the target birth intensity function. We shall not prove the
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Gaussian-mixture DG-CPHD recursion formally, but rather refer the reader to [203] and just
point out that, in essence, their proof is valid for the DG-CPHD recursion, except for a few
different details.

Gaussian-Mixture DG-CPHD Prediction

The following equations form the prediction step for the Gaussian-mixture DG-CPHD recursion.

Dk|k−1(x) = Db,k(x) +Ds,k|k−1(x) :=

Ik|k−1∑
i=1

w
(i)
k|k−1N (x; m

(i)
k|k−1,P

(i)
k|k−1), (4.50)

αk|k−1 ≈
µ2
N,k|k−1

σ2
N,k|k−1

, βk|k−1 ≈
µN,k|k−1

σ2
N,k|k−1

, (4.51)

µN,k|k−1 ≈
Ib,k∑
i=1

w
(i)
b,k + psαk−1β

−1
k−1, (4.52)

σ2
N,k|k−1 ≈ µN,k|k−1 + p2

sαk−1β
−1
k−1

(
β−1
k−1 − 1

)
, (4.53)

where Ik|k−1 = Ib,k + Ik−1, and


w

(i)
k|k−1,

m
(i)
k|k−1,

P
(i)
k|k−1

 :=




w

(i)
b,k,

m
(i)
b,k,

P
(i)
b,k

 , i ∈ [1..Ib,k];


psw

(i)
k−1,

Fm
(i)
k−1,

FP
(i)
k−1FT + Q

 , i ∈]Ib,k..Ik|k−1].

(4.54)

Gaussian-Mixture DG-CPHD Measurement Update

The equations in this section lay out the correction step for the Gaussian-mixture DG-CPHD
recursion.

Dk(x) = Du,k(x) +Dd,k(x)

=

Ik|k−1∑
i=1

w
(i)
u,kN (x; m

(i)
u,k,P

(i)
u,k) +

mkIk|k−1∑
i=1

w
(i)
d,kN (x; m

(i)
d,k,P

(i)
d,k)

:=

Ik∑
`=1

w
(`)
k N (x; m

(`)
k ,P

(`)
k ), (4.55)

αk ≈
µ2
N,k

σ2
N,k

, βk ≈
µN,k

σ2
N,k

, (4.56)

µN,k = θ1,0 + θ0,1 · (1− pd), (4.57)

σ2
N,k = θ2,0 − θ1,0 + 2θ1,1 · (1− pd) + θ0,2 · (1− pd)2 − µ2

N,k + µN,k, (4.58)
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where Du,k is modeled as a Gaussian mixture describing the intensity of a random finite set
composed of missed detections and Dd,k is modeled as a Gaussian mixture describing the
intensity of a random finite set composed of detected targets. For mk collected measurements,
Ik = Ik|k−1 + mkIk|k−1, where Ik|k−1 components correspond to the missed detections and
mkIk|k−1 components correspond to the update of each prior component by each measurement.
The missed detection components are evaluated for i = 1, . . . , Ik|k−1 as

w
(i)
u,k =

(1− pd)Θk [Yk]

αk|k−1β
−1
k|k−1

w
(i)
k|k−1, (4.59)

m
(i)
u,k = m

(i)
k|k−1, (4.60)

P
(i)
u,k = P

(i)
k|k−1. (4.61)

For each measurement y ∈ Yk, for all i ∈ [1..Ik|k−1], the detected components are given by

w
(i)
d,k(y) =

Θk [Yk \ {y}] pd ˆ̀(i)
k,y

αk|k−1β
−1
k|k−1λc(y)

w
(i)
k|k−1, (4.62)

m
(i)
d,k(y) = m

(i)
k|k−1 + K

(i)
k (y −Hm

(i)
k|k−1), (4.63)

P
(i)
d,k(z) = (Idx −K

(i)
k H)P

(i)
k|k−1, (4.64)

ˆ̀(i)
k,y = N (y; Hm

(i)
k|k−1,S

(i)
k|k−1),

K
(i)
k = P

(i)
k|k−1HTS

(i)−1
k|k−1,

S
(i)
k|k−1 = HP

(i)
k|k−1HT + R.

Thus, the posterior components in (4.55) are set as


w

(j·Ik|k−1+i)

k ,

m
(j·Ik|k−1+i)

k ,

P
(j·Ik|k−1+i)

k

 :=




w

(i)
u,k,

m
(i)
u,k,

P
(i)
u,k

 ,
i ∈ [1..Ik|k−1],

j = 0;
w

(i)
d,k(yj),

m
(i)
d,k(yj),

P
(i)
d,k(yj)

 ,
i ∈ [1..Ik|k−1],

j ∈ [1..mk].

(4.65)

The Gaussian-Mixture DG-CPHD filter is presented in Algorithm 4.2. Theoretically, the
filter requires a geometrically increasing number of Gaussian components as time progresses in
a similar way as the Gaussian-Mixture PHD filter. Hence, practical implementations require
techniques to keep the total number of components at a maximum, such as pruning and merging
components as described in [201]. In this procedure, components with negligible weights are
pruned and components that are close together are merged. Tracks are extracted as per the
extraction algorithm presented in [201].

4.5.6 Algorithm complexity and implementation details

In the context of the original CPHD filter, the attempt of propagating a nowhere vanishing
cardinality distribution, pN (n), would be intractable since this would involve estimating an
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infinite number of terms, for n ∈ N0. However, as touched on in [129], it is generally safe to
assume that, in practical problems, cardinality distributions are short or moderate tailed, which
allows them to be truncated at some number n = nmax ≥ ν. This corresponds to say that their
probability generating functions are polynomials of degrees not exceeding ν. Therefore, when
talking about complexity of the CPHD filter, the usual argument observes that, by assuming
the prior cardinality p.g.f. to be a polynomial of degree not exceeding ν, i.e., degGk|k−1(x) ≤ ν,
then degGk(x) ≤ ν, and in the next filtering step degGk+1|k(x) ≤ ν+degGb,k+1(x) [129]. The
conclusion of this argument is that increasing the possible number of targets in the scene will
not directly affect the computational requirements for cardinality.

According to the analysis provided in [129] and [203], most of the CPHD computational
effort is due to m + 1 evaluations of sets of elementary symmetric functions, each computed
with effort O(m2), which would render a complexity bounded by O(m3) operations, for m
measurements. This complexity can be reduced to O(m2 log2m) for a procedure mentioned
in [203]. Nevertheless, such analysis emphasizes that evaluations of elementary symmetric
functions will dominate the complexity for a high number of measurements, and so disregards
about (nmaxm−m2/2 +nmax−m)(m+ 1) ∼ O(nmaxm

2) calculations6 for nmax > m, involving
multiple-term multiplications7 that are necessary to compute Υk[Yk], Υk[Yk \ {y}] and pk(n),
according to equations (4.15) and (4.18) presented in Section 4.3.2.

Not less important, although not usually taken into account, is observing that as the number
of targets increases, nmax must be set accordingly to properly describe probability masses that
become increasingly important towards higher values of n, while maintaining accuracy of the
cardinality representation. How much nmax should increase depends on how much information
measurements provide about the number of targets, which ultimately depends on the signal-to-
noise ratio.

Proposition 4.3. Considering a constant probability of detection pd(x) = pd, Poisson-distributed
false alarms at rate λ, and setting ε := Pr{0 < n ≤ nmax} ∈ (0, 1), it follows that

nmax ≥
2µN,k
ε

1 +

√
(1− ε)− ε

(
σN,k
µN,k

)2


≥ K · µN,k|k−1, (4.66)

for K ≥ 1 and where 0 < σ2
N,k ≤ µN,knmax − µ2

N,k is assumed.

The point we wish to make is that K ·µN,k|k−1 > m is not rare (e.g., high number of targets
and low number of false alarms) and, in that case, the CPHD algorithm complexity should be
bounded by approximately m3 + nmaxm

2 − m2/2 ∼ O(nmaxm
2) operations since nmax > m.

The proof of Proposition 4.3 is presented in the Section 4.8. In general, as λ → 0 the CPHD
algorithm complexity is rather dominated by the cardinality parameterization and by the birth
model, and becomes increasingly complex as the number of target-generated measurements
increases. This fact corroborates Mahler’s perception that further approximation of the CPHD
filter may enable a computational gain [130].

In the DG-CPHD algorithm context, the computational complexity is alleviated by the fact
that, apart from the O(m3) operations for the elementary symmetric functions, only about

6Or (nmaxm/2 + nmax + 1)(nmax + 1) ∼ O(n2
maxm) for nmax < m.

7Exponentiating sums of logarithms and multiplying by one elementary symmetric function.
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n̄max(m + 3) ∼ O(n̄maxm) operations are required for evaluating derivatives of the prior car-
dinality p.g.f.. In this context, n̄max is the number of terms used to approximate each infinite
sum in (4.44), and about 6m + m(m − 1) operations are needed for the terms that sum up
to give Θk[Yk], Θk[Yk \ {y}] and θu,v, according to equations (4.39) and (4.40) in Section
4.5.4. The overall complexity of the DG-CPHD algorithm is then bounded by approximately
m3 + n̄maxm + m2 ∼ O(m3) operations, where n̄max must be set to meet an adequate accu-
racy for evaluating the prior cardinality p.g.fl. but has loose relationship with the number of
measurements. The scheme to compute Li

(`)
−α+1(e−βx) for ` ∈ [0..m + 2], with approximately

n̄max(m+ 3) operations, evaluates n̄max log-terms of Li
(0)
−α+1(e−βx), and then applies an itera-

tive procedure over m+ 2 steps, each calculating n̄max log-increments to update the log-terms
in view of (4.45). This procedure is made explicit in Algorithm 4.1.

Algorithm 4.1: Normalized Derivatives of Polylogarithms
Input : α, β, ζ, ε (machine precision), m

1 lζ := log ζ, lz := −β + lζ

2 Compute bounds for number of terms
3 n̄min := 1, n̄0 := N̂k|k−1

4 /* Find n̄max that corresponds to the smallest representable term nα−1e−βn by Newton’s
method */

5 for i = 1, . . . , Niter do
6 n̄i ← n̄i−1 − (α−1) log n̄i−1−βn̄i−1−log ε

2((α−1)/n̄i−1−β)

7 end
8 n̄max := n̄i

9 (n)n = (n)n∈[n̄min..n̄max] := (n̄min, n̄min + 1, . . . , n̄max)
10 (nlz)n := (n)n · lz
11 (log n)n := log(n)n
12 ((α− 1) log n)n := (α− 1) · (log n)n
13 (ϑ(n))n := ((α− 1) log n)n + (nlz)n
14 ϑmax := max(ϑ(n))n

15 Evaluate polynomials
16 L(0) :=

∑nmax
n=1 exp((ϑ(n))n − ϑmax)

17 lζ,1 := lζ
18 (log(n1))n := (log n)n
19 for ` = 1, . . . ,m+ 2 do
20 L(`) :=

∑nmax
n=1 exp((ϑ(n))n − ϑmax + (log(n`))n − lζ,`)

21 (log(n`+1))n ← (log(n`))n + (log(n− `))n
22 lζ,`+1 ← lζ,` + lζ
23 end

Output: Approximations of higher-order derivatives
24

(Li(`)1−α(e−βζ))`∈[0..m+2] ∝
(L(`))`∈[0..m+2]

max
∣∣(L(`))`∈[0..m+2]

∣∣
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Algorithm 4.2: Gaussian-Mixture DG-CPHD Filter

Input : {w(i)
k−1,m

(i)
k−1,P

(i)
k−1}i∈[1..Ik−1], αk−1, βk−1, Yk = {y1, . . . , ymk}

1 Prediction Step
2 /* Prediction of newborn target intensity */
3 for i = 1, . . . , Ib,k do
4 w

(i)
k|k−1

:= w
(i)
b,k, m

(i)
k|k−1

:= m
(i)
b,k, P

(i)
k|k−1

:= P
(i)
b,k

5 end

6 /* Prediction of surviving target intensity */
7 Ik|k−1 := Ib,k + Ik−1

8 for i = Ib,k + 1, . . . , Ik|k−1 do
9 w

(i)
k|k−1

:= psw
(i)
k−1, m

(i)
k|k−1

:= Fm
(i)
k−1, P

(i)
k|k−1

:= FP
(i)
k−1FT + Q

10 end

11 /* Prediction of cardinality parameters */
12 µN,k|k−1

:=
∑Ib,k
i=1 w

(i)
b,k + psαk−1β

−1
k−1, σ

2
N,k|k−1

:= µN,k|k−1 + p2
sαk−1β

−1
k−1(β−1

k−1 − 1)

13 αk|k−1 :=
⌊
µ2
N,k|k−1/σ

2
N,k|k−1

⌉
, βk|k−1 := µN,k|k−1/σ

2
N,k|k−1

14 Measurement Update Step
15 /* Pre-computations for updated components */
16 for i = 1, . . . , Ik|k−1 do
17 ȳ

(i)
k|k−1

:= Hm
(i)
k|k−1, S

(i)
k|k−1

:= HP
(i)
k|k−1HT + R,

18 K
(i)
k := P

(i)
k|k−1HTS

(i)−1
k|k−1, P

(i)
k := (Idx −K

(i)
k H)P

(i)
k|k−1

19 end
20 {ˆ̀(i)k,y} , {N (y; ȳ

(i)
k|k−1,S

(i)
k|k−1)}i∈[1..Ik|k−1],y∈Yk

21 Obtain {σ̄j(Y)}|Y|j=1 (4.41), for Y = Yk,Yk \ {y1}, . . .Yk \ {ymk}, and
〈qd`yj , ς〉 = α−1

k|k−1βk|k−1qd
∑Ik|k−1

i=1 w
(i)
k|k−1

ˆ̀(i)
k,yj

22 Compute (Li(`)1−αk|k−1
(e−βk|k−1qd))`∈[0..mk+2] (Algorithm 4.1)

23 Evaluate θ0,1 ≡ Θk [Yk], θ0,2, θ1,0, θ2,0, θ1,1 (4.40)

24 /* Update of missed-detection intensity */
25 for i = 1, . . . , Ik|k−1 do
26 w

(i)
k := qd α

−1
k|k−1βk|k−1Θk [Yk]w

(i)
k|k−1, m

(i)
k

:= m
(i)
k|k−1, P

(i)
k

:= P
(i)
k|k−1

27 end

28 /* Update of detected target intensity */
29 Ik := (1 +mk)Ik|k−1

30 for j = 1, . . . ,mk do
31 Evaluate Θk [Yk \ {yj}] (4.39)
32 for i = 1, . . . , Ik|k−1 do

33 w
(j·Ik|k−1+i)

k :=
Θk[Yk\{yj}]pd ˆ̀(i)

k,yj
w

(i)

k|k−1

α
k|k−1

β−1
k|k−1

γc(yj)
,

34 m
(j·Ik|k−1+i)

k
:= m

(i)
k|k−1 + K

(i)
k (yj −Hm

(i)
k|k−1), P

(j·Ik|k−1+i)

k
:= P

(i)
k

35 end
36 end

37 /* Update of cardinality parameters */
38 µN,k := θ1,0 + θ0,1 · qd, σ2

N,k
:= θ2,0 − θ1,0 + 2θ1,1 · qd + θ0,2 · q2

d − µ2
N,k + µN,k

39 αk :=
⌊
µ2
N,k/σ

2
N,k

⌉
, βk := µN,k/σ

2
N,k

Output: {w(i)
k ,m

(i)
k ,P

(i)
k }i∈[1..Ik], αk, βk
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4.6 Numerical experiment

In this section, we present experimental results for a simple example, very similar to the ex-
amples presented in [203], but modulating difficulty by varying either the number of targets
that appear, the average number of false alarms per frame, or the probability of detection.
The intent is to show differences of performance and computational effort of the PHD, CPHD,
and DG-CPHD filters in difficult situations, where we hope to demonstrate benefits of the
approximations introduced by the DG-CPHD filter.

The example consists of a two-dimensional scenario where a number of targets, unknown a
priori, may appear and are observed in the region [−1000,+1000]×[−1000,+1000] (m×m), with
the possibility of false alarms. Each target is described by its state vector x = (px, py, vx, vy)T ,
where p = (px, py)T is a pair that specifies a position in Cartesian coordinates and v = (vx, vy)T

is the pair specifying velocity in the same coordinates. At each time instant k, the state is
written as xk = x(tk). Each target is assumed to move with nearly-constant velocity, with
transition matrix and state process covariance matrix given respectively by

F =

(
I2 I2∆t

02 I2

)
, Q =

(
I2∆t3/3 I2∆t2/2

I2∆t2/2 I2∆t

)
σ2
q ,

where I2 and 02 are the identity and zero matrices with dimensions 2×2, respectively, ∆t = 1 s is
the sampling period, and the standard deviation of velocity increments is given by σq = 5m/s

3
2 .

Each target remains in the scene up to the next time step with probability ps = 0.99. A
single sensor collects position measurements in the Cartesian space, corrupted by a Gaussian-
distributed noise, characterized by the output matrix and measurement noise covariance matrix,
respectively,

H =
(

I2 02

)
, R = I2σ2

r ,

where σr = 10m is the standard deviation of the measured positions. False alarms can be
generated according to a Poisson point-process with intensity Dc(y) = λ · c(y), where λ is the
average number of false alarms per scan, and c(y) is the spatial distribution of clutter, assumed
uniform in the surveillance region with “volume” (area) V = 20002 m2.

Each instance of the example is simulated for T = 100 s. Denote Nt as the total number of
targets that appear and will remain till the end of a simulated instance, at t = 100 s. In all cases,
targets appear in batches at positions uniformly sampled in the area [−800,+800]×[−800,+800]

(m×m), and with random velocities uniformly sampled in the ranges [−10,+10]× [−10,+10]

(m/s×m/s). The batches of target appearances are set as follows:

• 0.25Nt targets are already in the scene at t = 0 and will remain up to t = 100 s with
exception of 5 targets that are set to disappear at t = 80 s,

• 0.25Nt targets along with 2 other targets appear at t = 20 s and are set to remain to the
end,

• 0.25Nt of targets along with another target appear at t = 40 s and are set to remain,

• 0.25Nt of targets along with 2 other targets appear at t = 60 s and are set to remain,

• from Nt + 5 targets in the scene, 5 targets disappear at t = 80 s and the remaining Nt
stay up to t = 100 s.
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The birth random finite set is assumed as a Poisson point-process with approximate intensity
Db(x) =

∑4
i=1 w

(i)
b N (x; m

(i)
b ,P

(i)
b ), where

m
(1)
b = (−500,−500, 0, 0)T ,

m
(2)
b = (−500,+500, 0, 0)T ,

m
(3)
b = (+500,−500, 0, 0)T ,

m
(4)
b = (+500,+500, 0, 0)T ,

and
w

(i)
b =

Nt + 5

4T/∆t
(target/frame),

P
(i)
b =

(
5002I2 02

02 102I2

)
, i = 1, . . . , 4.

For each filter, at each time step, pruning is performed based on a weight threshold of
τprn = 10−5 and merging with threshold of τmrg = 4m, and the number of maintained Gaussian
components is limited at Jmax = 100 (see [201] for details on the pruning and merging proce-
dure). Measurements are gated with gate-size probability of pgate = 0.999. For the CPHD and
DG-CPHD filters, the estimated (posterior) number of targets is obtained in the maximum-
a-posteriori sense. The cardinality distribution of the CPHD is estimated to a maximum of
nmax = 2 × Nt terms. This maximum number of cardinality terms has been chosen to keep
the CPHD filter computational effort competitive in relation to the other filters for difficult
scenarios.

We examine the DG-CPHD filter in comparison with the PHD and CPHD filters for three
different cases as follows.

Case 1: Fixed probability of detection, pd = 0.98, and fixed number of false alarms per scan,
λ = 50, all filters are tested for different numbers of targets that appear and remain
in the scene, Nt ∈ {10, 20, 30, 40, 50}.

Case 2: For fixed number of targets that appear and remain in the scene, Nt = 20, and
fixed number of false alarms per scan, λ = 50, all filters are tested for different
probabilities of detection, pd ∈ {0.98, 0.90, 0.80, 0.70, 0.60}.

Case 3: For fixed number of targets that appear and remain in the scene, Nt = 20 , and
fixed probability of detection, pd = 0.80, all filters are tested for different numbers
of false alarms per frame, λ ∈ {10, 30, 50, 100, 200}.

For each case, 200 Monte Carlo (MC) runs are performed, each with an independently sampled
set of trajectories (ground truth), independently generated clutter, and independently generated
(target-originated) measurements for each trial. For all filters, performance is evaluated in terms
of:

• mean Optimal Subpattern Assignment (OSPA) metric [174] for cut-off cOSPA = 100 and
norm order pOSPA = 1,

• root-mean-square error (RMSE) of the estimated number of targets,

• estimated cardinality variance, and
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• computation time (per time step).

All indexes are averaged over time steps and consolidated for all values of the varying param-
eters. In our comparisons, we use implementations of the PHD and CPHD filters in Matlab
language retrieved from Ba-Tuong Vo’s webpage8, and the DG-CPHD filter code was also
written in Matlab with the same structure. Note that the CPHD algorithm implementation
available in Ba-Tuong Vo’s web page (according to [203]) could be made more efficient and
robust by computing all combinatorial coefficients just once and by normalizing them to avoid
arithmetic overflow in extreme scenarios (e.g., λ = 250 false alarms per frame).

4.6.1 Results

Case 1

Figure 4.2 shows the tracks generated by the CPHD and DG-CPHD filters for an exemplar run
of the first case, in a subcase where pd = 0.98, λ = 50 and Nt = 50. For the same subcase,
Figures 4.3 and 4.4 present, respectively, the mean OSPA, and cardinality mean and standard
deviation over time for the PHD, CPHD, and DG-CPHD filters, where we can perceive the
advantage of estimating the cardinality distribution.

The consolidated performance indexes for Case 1, averaged over all time steps for each
Nt ∈ {10, 20, 30, 40, 50}, can be found in Figures 4.5, 4.6, 4.7, and 4.8. In these figures it
becomes clear that, in this case, the performance of the DG-CPHD filter is very similar to that
of the CPHD filter, but at a smaller computational cost, with practically the same computation
times as that of the PHD filter. In terms of average mean OSPA metric the DG-CPHD filter
shows a performance slightly better than that of the CPHD filter. For all filters, the average
mean OSPA metric decreases for Nt < 40 and then increases at a small rate for Nt ≥ 40. It is
interesting to note that the average cardinality RMSE and variance of all filters seem to increase
subexponentially (at a small rate) with the possible number of targets in the scene.

Case 2

For Case 2, in a subcase where pd = 0.60, λ = 50 and Nt = 20, Figures 4.9 and 4.10 show,
respectively, the mean OSPA, and cardinality mean and standard deviation over time for the
PHD, CPHD and DG-CPHD filters. This is a difficult scenario, where it is clear the superiority
of the CPHD and DG-CPHD filters in terms of the mean OSPA and cardinality statistics.

The consolidated performance indexes in Case 2, for each pd ∈ {0.98, 0.90, 0.80, 0.70, 0.60},
averaged over time, can be found in Figures 4.11, 4.12, 4.13, and 4.14. In this case, the
performance of the DG-CPHD filter is very similar to that of the CPHD filter in terms of
average mean OSPA and cardinality variance, but slightly worse in terms of average cardinality
RMSE. However, the computational cost of the DG-CPHD filter is much smaller than that of
the CPHD filter, being rather comparable to that of the PHD filter. As expected, the error
indexes and cardinality variance decrease as the probability of detection increases, for all filters.

8http://ba-tuong.vo-au.com/codes.html.
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Case 3

For Case 3, in a very challenging subcase where pd = 0.80, λ = 200 and Nt = 20, Figures 4.15
and 4.16 depict, respectively, the mean OSPA, and cardinality mean and standard deviation
over time for the PHD, CPHD and DG-CPHD filters. Although the scenario is difficult for any
filter, it is evident that the CPHD and DG-CPHD filters perform better than the PHD filter,
being able to identify and track a greater number of targets on average. The CPHD filter is the
best filter in this case, identifying more targets on average than the DG-CPHD filter. This is
due to the cardinality bias introduced by the approximations adopted for the DG-CPHD filter.

Figures 4.17, 4.19, and 4.20 present the consolidated performance indexes for Case 3, aver-
aged over time for each λ ∈ {10, 30, 50, 100, 200}. From the figures it remains no doubt that
the performance of the DG-CPHD filter is very close to that of the CPHD filter for λ ≤ 100,
but less responsive to identify targets when the number of false alarms is sufficiently high. The
cardinality RMSE of the DG-CPHD filter is greater than that of the CPHD filter, which is a
direct consequence of the approximations introduced for evaluating the DG-CPHD cardinality
moments. There is no doubt that the DG-CPHD filter requires less computational effort than
the standard CPHD filter implementation, presenting computation times that are comparable
to the PHD filter for this case. However, as can be readily seen in Figure 4.20, as λ increases
the complexity of both the CPHD and DG-CPHD filters are dominated by the total number of
measurements, i.e., the computation times increase subexponentially (O(m3)) with the number
of false alarms. It is also worth noting that the average cardinality RMSE of all filters seem to
increase subexponentially with the number of false alarms per frame.

4.7 Conclusions

All in all, this chapter addresses the fundamental problem of reducing computational com-
plexity in multi-object estimation, which figures as one of the most important concerns of this
dissertation. Specifically, the problem is dealt with by proposing a filter based on a very ef-
fective simplification of CPHD filter. The new filter is second-order in target number, where
the targets’ state is assumed to follow an independent and identically distributed cluster pro-
cess with the cardinality distribution modeled as a discretized Gamma distribution. Our work
capitalizes on Ronald Mahler’s perception that one more step towards simplification of the
CPHD algorithm implementation might be interesting. The strategy employed was to mimic,
based on a discrete-Gamma distribution, the procedure of a Kalman filter for the cardinality
random variable, i.e., estimating sufficient statistics. As demonstrated by the numerical exam-
ples, the discrete Gamma distribution allows simple calculations for approximating the first-
and second-order moments of the posterior cardinality distribution, and efficiently addresses
tracking scenarios with underdispersed and slightly overdispersed target counts, without the
restrictions required by the binomial filter.

The results also demonstrate that the DG-CPHD filter is more computationally efficient
than the CPHD filter implementation proposed in [203], especially for scenarios where a high
number of CPHD cardinality terms, nmax, is necessary, i.e., in situations where the number
of target-generated measurements is significantly increased as many targets appear in a scene.
The experimental results support our argument that the computational effort is dominated by
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O(nmaxm
2) in this case, where nmax > m when the CPHD filter is more computationally com-

plex than the DG-CPHD filter. In contrast, the DG-CPHD filter must rely on a finite number
of terms, n̄max, to approximate derivatives of the prior cardinality p.g.f., Ĝ(`)

k|k−1(〈qd, ς〉), and
as the results show, n̄max is much less sensitive to the number of target-generated measure-
ments. To conclude, both our complexity analysis and the experimental results suggest that
the DG-CPHD algorithm has computational complexity somewhere between that of the PHD
filter and that of the CPHD filter but cardinality accuracy and variance similar to that of the
CPHD filter in its standard setting [203].

We conjecture that the procedure proposed in this chapter could be extended to other
cardinality distributions of interest and might be the basis for future work.

4.8 Proofs

4.8.1 Proof of Proposition 4.1

Proof of Proposition 4.1. Consider the p.g.fl. of the prior state RFS,

Gk|k−1 [h] =

ˆ
hXpΞk|k−1

(X|Y1:k−1) δX

=

ˆ
hX

{ˆ
pΞ|Ξk−1

(X|X′) pΞk−1
(X′|Y1:k−1) δX′

}
δX

=

ˆ
Gt[h|X′]pΞk−1

(X′|Y1:k−1) δX′,

where Gt[h|X′] is the p.g.fl. of the multi-target transition kernel. Because targets are assumed
to move independently (Assumption 4.1) and new targets are born independently (Assump-
tion 4.3), we know that Gt[h|X′] = Gb[h] ·

∏n
i=1Gt[h|x′i] where Gt[h|x′] = qs(x

′) + ps(x
′)pt,h(x′)

(using Assumption 4.2), with pt,h(x′) ,
´
X h(x)pt(x|x′)dx, and pt(·|x′) is the single-target tran-

sition kernel. Since the birth RFS is assumed to be a Poisson point process (Assumption 3 )
with mean µb = Nb and intensity Db(x) = µbb(x):

Gk|k−1 [h] = Gb[h]

ˆ
(qs + pspt,h)X′pΞk−1

(X′|Y1:k−1) δX′

= eµbbh−µbGk−1[qs + pspt,h],

where bh ,
´
X h(x)b(x)dx. By Assumption 4.8, both the posterior and prior state random finite

sets follow multi-object discrete-Gamma i.i.d. cluster processes, i.e., their p.g.fl. take the form
of (4.30). Obtaining the first functional derivative of the prior p.g.fl.:

δ

δx
Gk|k−1[h] =

δ

δx

(
eµbbh−µbGk−1[qs + pspt,h]

)
= eµbbh−µbGk−1[qs + pspt,h]µb

δbh
δx

+ eµbbh−µbG
(1)
k−1[qs + pspt,h]

δ〈qs + pspt,h, ςk−1〉
δx

= eµbbh−µbGk−1[qs + pspt,h]µbb(x)

+ eµbbh−µbG
(1)
k−1[qs + pspt,h]〈pspt(x|·), ςk−1〉. (4.67)
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where 〈f, ςk−1〉 =
´
X ′ f(x′)ς(x′)dx′ and Dk−1(x) = αk−1β

−1
k−1ςk−1(x). Set f(x′) := qs + pspt,h

and recall that

Gk−1[f ] =
Li−αk−1+1(e−βk−1〈f, ςk−1〉)

Li−αk−1+1(e−βk−1)
,

G
(1)
k−1[f ] =

〈f, ςk−1〉−1Li−αk−1
(e−βk−1〈f, ςk−1〉)

Li−αk−1+1(e−βk−1)
.

For f = 1, 〈1, ςk−1〉 = 1, hence

Gk−1[1] =
Li−αk−1+1(e−βk−1)

Li−αk−1+1(e−βk−1)
= 1,

G
(1)
k−1[1] =

Li−αk−1
(e−βk−1)

Li−αk−1+1(e−βk−1)
≈ αk−1β

−1
k−1.

By noticing that bh=1 =
´
X b(x)dx = 1 and pt,h=1 =

´
X pt(x|x

′)dx = 1, then the prior intensity
function, Dk|k−1(x) = δ

δxGk|k−1[1], can be obtained from (4.67) as

Dk|k−1(x) = eµb1−µbGk−1[1]µbb(x)

+ eµb1−µbG
(1)
k−1[1]〈pspt(x|·), ςk−1〉

≈ 1 · µbb(x) + 1 · αk−1β
−1
k−1〈pspt(x|·), ςk−1〉,

Dk|k−1(x) = Db(x) +

ˆ
X ′
ps(x

′)pt(x|x′)Dk−1(x′)dx′.

Since the previous posterior and prior state random finite sets are i.i.d. cluster pro-
cesses, then the probability generating functions of their cardinality distributions are given
by Gk−1(z) = Gk−1[z] and Gk|k−1(z) = Gk|k−1[z], for |z| ≤ 1. Take the first two derivatives of
Gk|k−1(z),

G
(1)
k|k−1(z) = eµbz−µbGk−1[qs + psz]µb

+ eµbz−µbG
(1)
k−1[qs + psz]〈ps, ςk−1〉, (4.68)

G
(2)
k|k−1(z) = eµbz−µbGk−1[qs + psz]µ

2
b

+ 2eµbz−µbG
(1)
k−1[qs + psz]µb〈ps, ςk−1〉

+ eµbz−µbG
(2)
k−1[qs + psz]〈ps, ςk−1〉2, (4.69)

where

G
(2)
k−1[qs + psz] =

〈qs + psz, ςk−1〉−2Li−αk−1−1(e−βk−1〈qs + psz, ςk−1〉)
Li1−αk−1

(e−βk−1)

−
〈qs + psz, ςk−1〉−1Li−αk−1

(e−βk−1〈qs + psz, ςk−1〉)
Li1−αk−1

(e−βk−1)
. (4.70)

Evaluate (4.68) and (4.69) at z = 1, and notice that G(2)
k−1[1] ≈ αk−1(αk−1 +1)β−2

k−1−αk−1β
−1
k−1
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to compose the first two cardinality moments:

µN,k|k−1 = G
(1)
k|k−1(1) ≈ µb︸︷︷︸

Nb

+αk−1β
−1
k−1〈ps, ςk−1〉︸ ︷︷ ︸
Ns

,

σ2
N,k|k−1 = G

(2)
k|k−1(1)− µ2

N,k|k−1 + µN,k|k−1

≈ µ2
b + 2µbαk−1β

−1
k−1〈ps, ςk−1〉

+
[
αk−1(αk−1 + 1)β−2

k−1 − αk−1β
−1
k−1

]
〈ps, ςk−1〉2

−
[
µb + αk−1β

−1
k−1〈ps, ςk−1〉

]2
+ µN,k|k−1

= µN,k|k−1 + αk−1β
−1
k−1

(
β−1
k−1 − 1

)
〈ps, ςk−1〉2.

The prior state RFS is assumed to follow a multi-object discrete-Gamma process with µN,k|k−1 :=

αk|k−1β
−1
k|k−1 and σ2

N,k|k−1
:= αk|k−1β

−2
k|k−1, for αk|k−1 ∈ N, therefore

αk|k−1 ≈
µ2
N,k|k−1

σ2
N,k|k−1

, βk|k−1 ≈
µN,k|k−1

σ2
N,k|k−1

.

4.8.2 Proof of Proposition 4.2

Proof of Proposition 4.2. From [129] we invoke the expression for the p.g.fl. of a CPHD poste-
rior process, which is generally valid for Assumptions 4.4–4.7 and i.i.d. cluster processes, and
reads

Gk [h] =

δF [0,h]
δYk

δF [0,1]
δYk

=

∑m
j=0G

(m−j)
c (0) ·G(j)

k|k−1(〈hqd, ςk|k−1〉)σj(Yk, h)∑m
i=0G

(m−i)
c (0) ·G(i)

k|k−1(〈 qd, ςk|k−1〉)σi(Yk, 1)
,

where m = |Yk|, Gk|k−1(·) is the p.g.f. of the prior cardinality distribution,

σi(Yk, h) = σm,i

( 〈hpd`y1 , ςk|k−1〉
c(y1)

, . . . ,
〈hpd`ym , ςk|k−1〉

c(ym)

)

is the elementary symmetric function of degree i in 〈hpd`y1
,ςk|k−1〉

c(y1) , . . . ,
〈hpd`ym ,ςk|k−1〉

c(ym) , and

F [g, h] =

ˆ ˆ
hXgYpΨ (Yk|X) pΞ,k|k−1 (X|Y1:k−1) δXδY

is the joint p.g.fl. on the state and observation random finite sets. First, we invoke another
result from [129], the posterior intensity function estimated by the CPHD filter according to:

Dk(x) ≈ qd(x)

G
(1)
k|k−1(1)

Υk [Yk]Dk|k−1(x) +
pd(x)

G
(1)
k|k−1(1)

∑
y∈Yk

`y(x)

c(y)
Υk [Yk \ {y}]Dk|k−1(x),
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with

Υk[Y] =

∑|Y|
j=0G

(|Y|−j)
c (0)G

(j+1)
k|k−1(〈qd, ςk|k−1〉)σj(Y , 1)∑m

i=0 G
(m−i)
c (0)G

(i)
k|k−1 (〈qd, ςk|k−1〉)σi(Yk, 1)

, (4.71)

whose proof follows from evaluating Dk(x) = δ
δxGk[1] (see [129]). In the DG-CPHD filter

context, we use Assumptions 4.5 (clutter RFS follows a Poisson point process) and 4.8 to further
simplify (4.71). The p.g.fl. of the clutter process is given by Gc[g] = exp

(
λ
´
Z g(y)c(y)dy − λ

)
.

Set G(i)
c (z) := eλz−λ and notice that G(`)

c (0) = λ`e−λ to obtain

Υk[Y] =
λ|Y|

∑|Y|
j=0 λ

−jG
(j+1)
k|k−1(〈qd, ςk|k−1〉)σj(Y , 1)

λm
∑m
i=0 λ

−iG
(i)
k|k−1 (〈qd, ςk|k−1〉)σi(Yk, 1)

=
λ|Y|

∑|Y|
j=0G

(j+1)
k|k−1(〈qd, ςk|k−1〉)σ̄j(Y )

λm
∑m
i=0 G

(i)
k|k−1 (〈qd, ςk|k−1〉)σ̄i(Yk)

, λ|Y|−mΘk[Y], (4.72)

where
σ̄i(Y) , σm=|Y|,i

(
〈pd`y1

, ς〉
λc(y1)

, . . . ,
〈pd`ym , ς〉
λc(ym)

)
. (4.73)

From (4.72), (4.73), and observing that Υk[Yk] = Θk[Yk] and Υk [Yk \ {y}] = λ−1Θk[Yk \{y}],
the posterior intensity for the DG-CPHD recursion, according to (4.35), follows straightfor-
wardly.

As follows, we use Assumption 4.8 to derive the posterior cardinality parameters. Under
this assumption, the posterior state RFS follows an i.i.d. cluster process and so the posterior
cardinality p.g.f. is given by Gk(z) = Gk[z], which results

Gk(z) =

∑m
j=0 λ

−jG
(j)
k|k−1(z〈qd, ςk|k−1〉)σj(Yk, z)∑m

i=0 λ
−iG

(i)
k|k−1( 〈qd, ςk|k−1〉)σi(Yk, 1)

=

∑m
j=0 z

jG
(j)
k|k−1(z〈qd, ςk|k−1〉)σ̄i(Yk)∑m

i=0 G
(i)
k|k−1( 〈qd, ςk|k−1〉)σ̄j(Yk)

. (4.74)

We compute the first two derivatives of Gk(z) as

G
(1)
k (z) =

∑m
j=0 j · zj−1G

(j)
k|k−1(z〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

+

∑m
j=0 z

jG
(j+1)
k|k−1(z〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

〈qd, ςk|k−1〉, (4.75)
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G
(2)
k (z) =

∑m
j=0 j(j − 1) · zj−2G

(j)
k|k−1(z〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

+ 2

∑m
j=0 j · zj−1G

(j+1)
k|k−1(z〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

〈qd, ςk|k−1〉

+

∑m
j=0 z

jG
(j+2)
k|k−1(z〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

〈qd, ςk|k−1〉2. (4.76)

Evaluate (4.75) and (4.76) at z = 1 to obtain

G
(1)
k (1) =

∑m
j=0 j ·G

(j)
k|k−1(〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

+

∑m
j=0G

(j+1)
k|k−1(〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

〈qd, ςk|k−1〉,

G
(2)
k (1) =

∑m
j=0 j

2G
(j)
k|k−1(〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

−
∑m
j=0 j G

(j)
k|k−1(〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

+ 2

∑m
j=0 j G

(j+1)
k|k−1(〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

〈qd, ςk|k−1〉

+

∑m
j=0G

(j+2)
k|k−1(y〈qd, ςk|k−1〉)σ̄j(Yk)∑m

i=0G
(i)
k|k−1(〈qd, ςk|k−1〉)σ̄i(Yk)

〈qd, ςk|k−1〉2.

By defining

θu,v ,

∑mk
j=0 j

uG
(j+v)
k|k−1(〈qd, ςk|k−1〉)σ̄j(Yk)∑mk

i=0 G
(i)
k|k−1 (〈qd, ςk|k−1〉)σ̄i(Yk)

,

one has

G
(1)
k (1) = θ1,0 + θ0,1 · 〈qd, ςk|k−1〉,

G
(2)
k (1) = θ2,0 − θ1,0 + 2θ1,1 · 〈qd, ςk|k−1〉+ θ0,2 · 〈qd, ςk|k−1〉2,

from which the posterior cardinality moments are obtained as given in (4.37) and (4.38). The
posterior state RFS is assumed to follow a multi-object discrete-Gamma process with cardinality
characterized by µN,k := αkβ

−1
k and σ2

N,k := αkβ
−2
k , for αk ∈ N, therefore (4.36) holds. Since
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the prior cardinality distribution is also assumed to be a discrete-Gamma distribution, we write

G
(`)
k|k−1(z) =

d`

dz`

(
Li−αk|k−1+1(e−βk|k−1z)

Li−αk|k−1+1(e−βk|k−1 )

)

G
(`)
k|k−1(z) =

d`

dz`

(
Li−αk|k−1+1(e−βk|k−1z)

)
Li−αk|k−1+1(e−βk|k−1)

,

,
Ĝ

(`)
k|k−1(z)

Ĝ
(0)
k|k−1(1)

.

The proof is complete by noting that, in all terms of (4.75) and (4.76), 1/Ĝ
(0)
k|k−1(1) appears

both in the numerator and denominator and can be cancelled out to leave only terms depending
on Ĝ(`)

k|k−1(z).

4.8.3 Proof of Proposition 4.3

Lemma 4.4. Let f : [0,∞) → [0,∞) be a nonnegative increasing function, such that 0 <∑L
`=0 f(`) < ∞ for L ∈ Z+. If there is a nonnegative function g : [0,∞) → [0,∞) satisfying

g(`) = O(f(`)) such that f(`)∑L
`=0 f(`)

≥ g(`)∑L
`=0 g(`)

for ` ≥ L0, L0 ∈ R+, then

∑L
`=0 ` · f(`)∑L
`=0 f(`)

≥
∑L
`=0 ` · g(`)∑L
`=0 g(`)

, (4.77)

for L ≥ L0 + L0−bL0c
2 .

Proof. Write wf,` := f(`)/
∑L
`=0 f(`) and wg,` := g(`)/

∑L
`=0 g(`). Note that

∑L
`=0 wf,` =∑L

`=0 wg,` = 1 and so

0 ≤
L∑

`=dL0e

(wf,` − wg,`) =

bL0c∑
`=0

(wg,` − wf,`) < 1,

L∑
`=dL0e

L0(wf,` − wg,`) =

bL0c∑
`=0

L0(wg,` − wf,`),

L∑
`=dL0e

`(wf,` − wg,`) ≥
bL0c∑
`=0

`(wg,` − wf,`). (4.78)

Therefore
∑L
`=0 ` · wf,` ≥

∑L
`=0 ` · wg,`, which corresponds to (4.77). The condition L ≥

L0 + (L0 − bL0c)/2 must be met to ensure 2(L− L0)M ≥ (L0 − bL0c)M , where

M =
(wf,L − wg,L)− (wf,bL0c − wg,bL0c)

L− bL0c
,

so that 2(wf,2 − wg,2) ≥ 1(wg,1 − wf,1) in the particular case when bL0c = 1 and L = 2.

Proof of Proposition 4.3. We resort to a special type of Chebyshev’s inequality that is appro-
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priate for bounding the probabilities of non-symmetric intervals, [72], viz.

ε = Pr{0 < n < nmax} ≥ 4
µN,knmax − (µ2

N,k + σ2
N,k)

n2
max

. (4.79)

where 0 < σ2
N,k ≤ µN,knmax − µ2

N,k. Rearranging terms and solving the inequality for nmax

corresponding to the upper root:

nmax ≥
2µN,k
ε

1 +

√
(1− ε)− ε

(
σN,k
µN,k

)2
 . (4.80)

As follows, we bound µN,k as per the moment update equation [203]:

µN,k =

∑
n≥0 n ·

∑min(m,n)
j=0 G

(m−j)
c (0)njqn−jd σj(Y) · pk|k−1(n)∑

n≥0

∑min(m,n)
j=0 G

(m−j)
c (0)njqn−jd σj(Y) · pk|k−1(n)

=

∑
n≥0 n ·

∑m
j=0 1m≤nλ

m−je−λnjqn−jd σj(Y) · pk|k−1(n)∑
n≥0

∑m
j=0 1m≤nλ

m−je−λnjqn−jd σj(Y) · pk|k−1(n)

≥

∑m
j=0 j · EN,k|k−1

[
1m≤nλ

−jnjqn−jd

]
σj(Y)∑m

j=0 EN,k|k−1

[
1m≤nλ−jn

jqn−jd

]
σj(Y)

≥
∑m
j=0 j · 1m≤n?λ−jµ

j

N,k|k−1q
µN,k|k−1−j
d σj(Y)∑m

j=0 1m≤n?λ−jµ
j

N,k|k−1q
µN,k|k−1−j
d σj(Y)

, (4.81)

where nj , n(n− 1) . . . (n− j + 1) is the Pochhammer’s symbol and

n? , min

(
µN,k|k−1, arg max

j
σj(Y)

)
.

Per Jensen’s inequality

EN,k|k−1 [1m≤nϕj(n)] ≥ EN,k|k−1 [1m≤n?ϕj(n)]

≥ 1m≤n?ϕj(µN,k|k−1),

where ϕj(n) := λ−jnjqn−jd is convex in n, and Lemma 4.4 is applied in (4.81) with f(j) =

EN,k|k−1 [1m≤n?ϕj(n)]σj(Y) and g(j) = 1m≤n?ϕj(µN,k|k−1)σj(Y) for j ∈ [0, n?]. The bound
given by (4.81) is tight and constitutes a close approximation of µN,k. This bound can be
simplified by applying Lemma 4.4 once more as ϕj(µN,k|k−1)σj(Y) is a nonnegative increasing
function in the interval j ∈ [0, n?] to give

∑n?

j=0 j · ϕj(µN,k|k−1)σj(Y)∑n?

j=0 ϕj(µN,k|k−1)σj(Y)
'

∑µN,k|k−1

j=0 j · infj
[
ϕj(µN,k|k−1)σj(Y)

]∑µN,k|k−1

j=0 infj
[
ϕj(µN,k|k−1)σj(Y)

]
=

∑µN,k|k−1

j=0 j∑µN,k|k−1

j=0 1
=
µN,k|k−1

2
. (4.82)

Substituting this bound in (4.80) we conclude that there exists a K ≥ 1 such that nmax ≥
K · µN,k|k−1 .

218



CHAPTER 4. DISCRETE-GAMMA CARDINALIZED PROBABILITY HYPOTHESIS DENSITY

Remark 4.5. Note that for a certain x ∈ R+ such that

m∏
j=1

(
1−
〈pd`yj , ςk|k−1〉

c(yj)

)
= (1− x)m =

m∑
j=0

(
m

j

)
xj

jmax ≈ arg maxj σj(Y) can be computed as

d

dj

[(
m

j

)
xj
]

=

[
d

dj

(
m

j

)]
xj +

(
m

j

)
xj log x = 0,

−
(
m

j

)( j∑
`=1

`−1 −
m−j∑
`=1

`−1

)
+

(
m

j

)
log x = 0,

j∑
`=2

`−1 −
m−j∑
`=2

`−1 = log x,

log j − log(m− j) ≈ log x,

jmax ≈ m
x

1 + x
,

where

d

dj

(
m

j

)
= m!

−Dj(j!) · (m− j)!− (j!)Dj((m− j)!)
[j!(m− j)!]2

= −
(
m

j

)j!(−γ +
∑j
`=1 `

−1
)

(m− j)!

j!(m− j)!
−
(
m

j

)−j!(m− j)!(−γ +
∑m−j
`=1 `−1

)
j!(m− j)!

= −
(
m

j

)( j∑
`=1

`−1 −
m−j∑
`=1

`−1

)
,

and γ is the Euler–Mascheroni constant.
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Figure 4.2: Exemplar run: tracks estimated by CPHD and DG-CPHD filters
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Figure 4.3: MOSPA metric over time (pd = 0.98, λ = 50, Nt = 50)
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Figure 4.4: Cardinality statistics over time (pd = 0.98, λ = 50, Nt = 50)
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Figure 4.5: Average cardinality RMSE versus number of targets
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Figure 4.6: Average cardinality variance versus number of targets
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Figure 4.7: Average mean OSPA versus number of targets
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Figure 4.8: Average computation times versus number of targets
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Figure 4.9: MOSPA metric over time (pd = 0.60, λ = 50, Nt = 20)

227



CHAPTER 4. DISCRETE-GAMMA CARDINALIZED PROBABILITY HYPOTHESIS DENSITY

0 10 20 30 40 50 60 70 80 90 100

 

0

5

10

15

20

25

30

C
a

rd
in

a
lit

y

PHD

True

Mean

Mean with st. dev.

0 10 20 30 40 50 60 70 80 90 100

 

0

5

10

15

20

25

30

C
a

rd
in

a
lit

y

CPHD

True

Mean

Mean with st. dev.

0 10 20 30 40 50 60 70 80 90 100

Time [s]

0

10

20

30

C
a

rd
in

a
lit

y

Discrete-Gamma CPHD

True

Mean

Mean with st. dev.

Figure 4.10: Cardinality statistics over time (pd = 0.60, λ = 50, Nt = 20)
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Figure 4.11: Average cardinality RMSE versus probability of detection
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Figure 4.12: Average cardinality variance versus probability of detection
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Figure 4.13: Average mean OSPA versus probability of detection
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Figure 4.14: Average computation times versus probability of detection
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Figure 4.15: MOSPA metric over time (pd = 0.80, λ = 200, Nt = 20)
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Figure 4.16: Cardinality statistics over time (pd = 0.80, λ = 200, Nt = 20)
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Figure 4.17: Average cardinality RMSE versus number of false alarms
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Figure 4.18: Average cardinality variance versus number of false alarms
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Figure 4.19: Average mean OSPA versus number of false alarms
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Figure 4.20: Average computation times versus number of false alarms
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5
Measurement-to-measurement

Association for Space

Surveillance

In Chapter 0, we identified a critical challenge to multi-object estimation and data fusion: re-
solving data association ambiguity and representing uncertainty accurately in situations where
the state observability is low. Since observability is a characteristic mostly related to the
observation settings (sensor coordinate frame, observation period etc), in such situations, mea-
surements may be well accurate and yet offer insufficient information for the state estimation to
be accomplished. This is especially true in Space Surveillance applications, where short-periodic
observation of geostationary satellites (and debris) by electro-optical instruments provide ac-
curate angular measurements but offers little information about objects’ orbits. This problem
is very important as its solution may facilitate cataloging space debris for supporting analyses
of new satellite launching, and maintaining safe operations. However, it poses many difficulties
to standard methods because the association ambiguities are enormous, hundreds of objects
are observed in short-term campaigns, and purely heuristic strategies (e.g., nearest neighbor)
are prone to discard most of the redundant information from multiple observation sessions. In
this chapter, we treat this challenge by proposing a comprehensive solution for resolving the
association ambiguities and representing the uncertainty to an adequate level of accuracy. This
is achieved in an extremely difficult scenario where the sensor is not able to provide angle rates,
ranges, or range rates, and only provides angles.

As touched on, angles-only orbit determination of nearly geosynchronous and geostationary
objects based on short-arc observations is challenging both because of their low observability and
measurement uncertainty commensurate with the observed arc length. In general, the scenario
requires multiple observation sessions, several hours apart, to deliver enough observability and
reduced susceptibility of orbit determination to measurement noise. Ultimately, this obliges
that observations from different sessions be correctly associated under the presence of other
objects. In this chapter, we propose a new framework to effectively associate observations from
multiple sessions for uncorrelated tracks. The proposed framework is based on a new initial
orbit determination method that enables a reasonable description of nearly-geosynchronous and
geostationary orbits and their uncertainties, and a procedure for statistical comparison between
estimated orbits in a space comprising orbital elements and measurements. The comparison
generates likelihood values that quantify the similarity of observations across sessions. The
new initial orbit determination algorithm is based on Escobal’s method along with estimates of
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orbital elements by a new unperturbed two-body angular motion model. The resulting method
is demonstrated to be computationally feasible and satisfactory in terms of performance, as
evaluated by the application to a short campaign of simulated observations.

5.1 Overview

Angles-only orbit determination based on electro-optical observations constitutes a fundamental
task in the context of space situational awareness (SSA), with particular importance of sup-
porting a space surveillance and tracking (SST) framework to track and keep custody of active
and decommissioned spacecraft, and debris. One major difficulty of SST activities is related to
determining orbits of small objects in deep space, at nearly geostationary altitudes. This diffi-
culty becomes even more prominent for uncorrelated track (UCT) orbits, i.e., when dealing with
observations that cannot be associated with known objects. Usually, for deep space resident
space objects (RSOs), surveillance data are only collected for a very small fraction of their orbit
revolution, i.e., sequences of measurements cover very short arcs spanning over only a few min-
utes of observation per object, which results in very low observability. This scenario induces the
orbit determination problem to include a range of infeasible solutions and hence demands more
than one observation session to allow accurate determination of high orbits. The consequence
is a need for identification of which measurements obtained in two or more sessions pertain to
the same object. Ultimately, the problem turns into a challenge for quasi-geostationary objects
since tens to hundreds of them may appear in each session. Additionally, the problem is further
complicated by the stochastic nature of measurements, whose noise standard deviation is of a
magnitude similar to the observed arc lengths, and because of numerous closely-spaced objects
that exacerbate a typically large observation-to-observation associations problem.

The literature on methods for orbit determination and tracking based on short-arc angles-
only observations is relatively recent. Most algorithms depend on a crucial feature: the ability
to model the initial orbit uncertainty based on a locus of all possible orbits that could explain
a set of measurements, called admissible region (AR). Originally proposed by Milani [139],
the admissible region is established in the phase space of range versus range rate to satisfy
the vis-viva equation for a given set of observed angles and angle rates. Recent methods
use a constrained admissible region (CAR) to model the probability density function of an
object state [60] and then start tracking the object. Provided two or more sets of observations,
identifying which separate sets of data belong to the same physical object is posed as the so-
called correlation problem. Notably, this problem was addressed in the context of identifying
lost asteroids by Milani [138], who proposed that the orbit determination problem should be
solved in two stages: 1) correlating different sets of observations, and then 2) determining the
orbit to full precision. The complete procedure is called linkage in the literature, but this
chapter will concentrate only on the first stage.

Most state-of-the-art linkage methods rely on the admissible region and are due to Tommei,
Milani & Rossi [192], Farnocchia et al. [71], Gronchi, Dimare & Milani [85]. For ease of
reading, we shall briefly recall the main features of these algorithms, directing the reader to the
cited papers for the full mathematical treatment. Direct linkage methods propose a matching
between pairs of observed arcs by: (i) propagating a grid of solutions (swarm trajectories) that
outlines the admissible region [139, 192, 71] forward in time, (ii) analytical surface intersection
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[134], (iii) boundary-value-based optimization [179], and (iv) direct Bayesian updates to the
admissible region [74, 75]. These methods focus on how to match instances of sparsely located
observations, rather than addressing the combinatorial complexity that arises in the multiple
observation-to-observation association problem.

On the other hand, another class of methods appeals to multi-object Bayesian estimation
techniques in the same ethos as those that comprise multiple-target tracking algorithms. These
solutions start “tracklets” on sequences of measurements, with initially large estimated uncer-
tainties modeled by the constrained admissible region, and filter them by multiple-hypothesis
estimators. This family of solutions is well represented by the method called Constrained Ad-
missible Region, Multiple Hypothesis Filter (CAR-MHF) [60, 61] and similar techniques [77,
96]. The multiple hypothesis filter (MHF) that is used is a bank of Unscented Kalman filters
(UKFs) whose estimates are weighted based on the time history’s statistical agreement with
incoming data. Recently, new solutions have been proposed via adoption of more sophisticated
filters under the same usual framework: Singh et al. [180] propose a solution based on the well
known Multiple Hypothesis Tracker (MHT), Stauch et al. [186] adopt a Multiple-Hypothesis
Joint Probabilistic Data Association (MH-JPDA) filter in place of the MHF, and Jones et al.
[104] tackle the estimation problem by a Generalized Labeled Multi-Bernoulli (GLMB) filter.

This chapter approaches the problem from a slightly different perspective: our focus is on
how to accomplish the observation-to-observation associations, working around the computa-
tional complexity required by multiple-hypothesis filtering. Our approach aims to provide a
feed for a full-precision orbit determination method. Aligned with this perspective, we propose
a system that avoids tracking in the first instance where, presumably, a solution in real-time
is not a requirement but computational efficiency is. The proposed framework results from
the combination of two fundamental techniques. The first one is a novel initial orbit deter-
mination (IOD) method that enables a reasonable description of nearly-geosynchronous and
geostationary orbits and their uncertainties, by deliberately avoiding out-of-context solutions
and taking into account measurement stochasticity. The second technique is a procedure for
statistical comparison between estimated orbits, in a space comprising orbital elements and
measurements, to generate likelihood values that quantify the similarity of observations across
sessions by means of uncertainty propagation in the orbital elements space. The proposed IOD
method requires a supplementary orbital motion model that simplifies computations of angu-
lar orbital elements and aids the uncertainty evaluation. This two-body unperturbed motion
model is formulated in terms of spherical-trigonometric relations and, although simple, it al-
lows computationally inexpensive and accurate enough predictions to associate observations.
A performance evaluation of the whole framework is applied to a short campaign of simulated
observations, demonstrating its computational feasibility and practical value, and suggesting
avenues for new applications.

The outline of the chapter is as follows. The two-body unperturbed motion model is pre-
sented in Section 5.2 along with its modeling assumptions and characteristics. In Section 5.3, we
present assumptions, discuss and derive the proposed IOD method for obtaining parameters for
each observed arc. Formulation of uncertainty associated with the initially determined orbits is
established in Section 5.4. In Section 5.5 we discuss and define the likelihood function between
pairs of observed arcs and the method for determining associations across observations. In
Section 5.6 we illustrate the properties of the proposed technique for a simulated campaign of
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observations comprising several nights, and finally, in Section 5.7 we expose concluding remarks
and expected future work.

5.2 Angular motion model

In this section, we present the angular motion model on which the IOD method is partially
based. The model assumes that an object moves according to an unperturbed orbit under
the sole influence of Earth’s gravitational force, which consists of an idealized mathematical
approximation of the actual motion. In this regime, the motion describes a Keplerian orbit
that can be parameterized in many different ways, each consisting of a set of six parame-
ters (e.g., a Keplerian orbit can be uniquely described in Cartesian coordinates by the vector
(x, y, z, ẋ, ẏ, ż)T).

Another orbit parameterization often used in astronomy and celestial mechanics is composed
of the classical orbital elements, (a, e, i,Ω, ω, ν)T, also known as Keplerian orbital elements,
defined in Table 5.1 and partially illustrated in Figure 5.1. Commonly, as an alternative to the
classical orbital elements, one can replace the true anomaly, ν, by the so-called mean anomaly,
M , which describes the angular position that a fictitious object would have in a uniform circular
motion with the same orbital period as that of the actual object in its elliptical orbit. In general,
the mean and the true anomaly are not in phase, except at the orbit periapsis (the nearest point
with respect to the Earth center) and at the apoapsis (the farthest point with respect to the
Earth center). A similarly important way of describing celestial object positions is based on two
angles, the right ascension and declination, which situate a body in the celestial sphere with
respect to a reference direction and to the celestial equator at a given reference epoch. The
right ascension, α, is the angle from the reference direction to the longitudinal position of the
object in the celestial sphere, whereas the declination, δ, is the angle from the celestial equator
to the latitudinal position of the object. Usually, the reference direction is set as the direction
of the vernal equinox at a given reference epoch (e.g., 1st January 2000, at noon, is used to
define the celestial frame known as J2000.0). The vernal equinox direction (in longitude) is
defined by the event in which the plane of Earth’s equator passes through the center of the
Sun’s disk during the northern hemisphere winter (normally on the 20th March).

In our model, we describe the Keplerian orbits by a corresponding angular motion inscribed
in the celestial sphere as depicted in Figure 5.2. The motion is characterized by the argument
of latitude, defined as u(t) := ω+ ν(t) on the orbital plane with respect to the ascending node,
where ω is the argument of perigee and ν is the true anomaly. The orbital plane has inclination
i with respect to the celestial equator.

In Figure 5.2, a spherical arc covered by u(t) forms a spherical right triangle1 with arcs
α(t)−Ω and δ(t), where α and δ are respectively the geocentric right ascension and declination
of the object, and Ω is the right ascension of the ascending node. The angle between arcs α
and δ is a right angle, i.e., ∠(α, δ) = π/2. We define ζ := ∠(u, δ) and invoke both the spherical

1Note that u(t) is inscribed in the celestial sphere in Figure 5.2, but its actual arc length, in the Keplerian
orbit, can only be recovered if the radial position is known.
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Parameter Symbol Description
Semi-major
axis

a Half the length of the major axis, a reference segment that is
used to mathematically describe conic sections (curves). If the
conic section is an ellipse, the semi-major axis is the sum of
the periapsis and apoapsis distances divided by two. When the
conic section is a circle, the semi-major axis is the radius of the
circle.

Eccentricity e Scalar parameter that quantifies how much a conic section
deviates from being circular. When the conic section is a
circle, e = 0, whereas when the conic section is an ellipse
e ∈ (0, 1). The eccentricity of a parabola is e = 1 and that of a
hyperbola is e > 1.

Inclination i Angle between the plane where the orbit is inscribed and the
celestial equator (the plane defined by the Earth’s equator at a
reference epoch).

Right
ascension of
the ascending
node

Ω Angle between a reference direction (usually the vernal
equinox at a given reference epoch) and the point where the
celestial object crosses the celestial equator while ascending in
its orbit. This crossing point is the so-called ascending node.

Argument of
perigee

ω Angle between the ascending node and the nearest point of
orbit with respect to the Earth center (periapsis or perigee).

True anomaly ν Angle between the orbit perigee and the actual position of the
object.

Mean
anomaly
(alternative)

M Angle between the orbit perigee and the position that a
fictitious object would have if it moved in a circular orbit, at
constant angular velocity, with the same orbital period as that
of the actual object in its elliptical orbit. It is an alternative
parameter that replaces the true anomaly in the classical
elements set.

Table 5.1: Classical orbital elements

Longitude of ascending node

Argument of periapsis

True anomaly

Inclination

Ascending node

Reference
direction

Celestial body

Plane of reference

Orbit

Ω
ω

ν

i

☊

♈

Credit: Wikipedia (https://en.wikipedia.org/wiki/Orbital_elements)

Figure 5.1: Orbital elements
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Figure 5.2: Angular motion model diagram

law of sines and law of cosines to write

sin u

sin π
2

=
sin(α− Ω)

sin ζ
=

sin δ

sin i
, (5.1)

cos i = − cos
π

2
cos ζ + sin

π

2
sin ζ cos δ, (5.2)

cos u = cos(α− Ω) cos δ + sin(α− Ω) sin δ cos
π

2
. (5.3)

From (5.1), sin ζ = sin(α− Ω)/ sin u, which can be substituted in (5.2) to get

cos δ =
sin u

sin(α− Ω)
cos i. (5.4)

Additionally, from (5.3),
cos δ =

cos u

cos(α− Ω)
. (5.5)

Equating (5.4) and (5.5), one gets

cos u

cos(α− Ω)
=

sin u

sin(α− Ω)
cos i,

tan(α− Ω) = tan ucos i. (5.6)

Observing that sin δ = sin u· sin i from (5.1), and based on (5.6), the angular motion model
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can be found to be described by

u(t) = ω + ν(t), (5.7)

ν(t) = M(t) + 2

∞∑
k=1

1

k

(
+∞∑
`=−∞

β|k+`|J`(−ke)

)
sin kM(t), (5.8)

M(t) = M0 + n · (t− t0), (5.9)

α(t) = Ω + arctan [tan u(t) · cos i] , (5.10)

δ(t) = + arcsin [sin u(t) · sin i] , (5.11)

λ(t) = λGHA + α(t)− ωE · (t− t0), (5.12)

φ(t) = + arctan
[
tan δ(t)/(1− e2

E)1/2
]
, (5.13)

where e is the orbit eccentricity, M is the mean anomaly, M0 is the mean anomaly at epoch
t0, n is the mean angular motion (angular velocity), λGHA is the Greenwich hour angle, ωE is
Earth’s rotation velocity, eE is Earth’s first eccentricity, and λ and φ are respectively geodetic
longitude and latitude of the ground track. Equation (5.8) is known in the literature as the
equation of the center ([8], Chapter 5), where J`(·) is a Bessel function of first kind, of order
`, and β = (1 −

√
1− e2)e−1. The coefficients of the series

∑+∞
`=−∞ β|k+`|J`(−ke) in (5.8)

can be developed in terms of powers of e [181, 8]. These series can be presented in truncated
form and, in general, for nearly-geosynchronous orbits, eccentricities are small enough to justify
approximations based on the first terms according to

ν(t) = M(t) + 2e sinM(t) +
5

4
e2 sin 2M(t) +O(e3). (5.14)

Where applicable in this chapter, provided a true anomaly, computing the mean anomaly
requires solving Kepler’s equation, which can be accomplished by the extended Newton method
proposed by Markley [132] or by the efficient procedure proposed by Fukushima [76]. Equation
(5.9) follows from the unperturbed motion assumption, which entails a uniform mean motion,
whereas equations (5.10) and (5.11) are exactly derived from spherical-trigonometric relations
(5.1), (5.2) and (5.3). The assumptions of the unperturbed motion disregard the contributions
of Earth’s non-spherical terms and luni-solar gravitational perturbations in the orbit. Notice
that, provided the motion in the orbital plane is known and the assumptions hold (i.e., that
only Earth’s spherical terms are relevant), the proposed model is exact. Another important
feature is that equations (5.7)–(5.11) are independent of range, which enables direct relations
for angles-only orbit determination.

While it may seem that difficult problems would motivate the use of more accurate models,
we advocate simplicity here on the grounds that, under severely low observability conditions,
the extra parameters of a more sophisticated model would be difficult and time-consuming to
estimate and would not offer significant utility (in the specific context of initial orbit determi-
nation).
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5.3 Initial orbit determination

We now discuss and present the initial orbit determination method we propose for solving the
observation-to-observation association problem. Before proceeding, we remind the reader of the
fundamental goal of IOD: to obtain a reasonable first-order estimate of orbital elements. With
that in mind, one should suspect that simplicity is also a driver for the IOD algorithm.

Classical and semi-analytical angles-only IOD methods, such as those proposed by Gauss,
Laplace [194], Escobal (double range-iteration) [69], and Gooding [82], assume that the orbit
must be keplerian and observations are deterministic. Apart from these assumptions, the re-
ferred IOD methods are quite general in the sense that they don’t make any further assumptions
about the orbit, which is a great feature to have if no prior information is available. Never-
theless, it just so happens that the counterpart of such a generality is a wide range of possible
solutions, induced both by conditions of observability and measurement noise, most of which
are infeasible. Classical methods are peculiarly sensitive to the observation geometry and qual-
ity. What we advocate is the other way around: we appeal to prior knowledge about objects
and take into account stochasticity of observations so that most of the inappropriate solutions
are deliberately discarded. While we acknowledge the consequent loss of generality our aim is
to provide a good solution to the specific problem at hand.

The posed problem involves determining orbits for a subset of the population of objects
residing in the so-called geostationary/geosynchronous belt. As will hopefully become clear,
discarding out-of-context solutions is an essential feature of our IOD algorithm. Another cor-
nerstone of the method is treating determined orbits as stochastic curves, whose initial random-
ness is solely due to measurement noise, in the exact sense of functional data analysis [158], and
whose propagated uncertainty will account for the major contributions of Earth’s non-spherical
(and, optionally, luni-solar attraction) perturbations. Hence, under these principles, one notes
that simplicity of the underlying model becomes logical since, in practical terms, the evolving
uncertainties would be very likely to model the second-order effects on orbit predictions. From
this perspective, the effects due to secular perturbations and periodic terms affecting the orbit
are then captured by a process noise to explain effects not originally incorporated in the angular
motion model (5.7)–(5.11).

5.3.1 Core of the IOD algorithm

This section describes the IOD process by referring to Figure 5.3. The core of our IOD algorithm
takes as input a set of angles observed at three different time instants Y1:3 := {(αt,k, δt,k), tk :

k = 1, 2, 3}, where (αt,k, δt,k) are the topocentric right ascension and declination coordinates,
and processes them to produce a first estimate of orbital elements Θ̃0 = (a, e, i,Ω, ω,M)T .
In the vector of orbital elements, a is the semi-major axis, e is the eccentricity, Ω is the right
ascension of the ascending node, ω is the argument of perigee, andM is the mean anomaly. The
main procedure is underpinned by three techniques: (i) Roy’s procedure [170] for simultaneous
estimation of slant range and conversion of observed angles from the topocentric to geocentric
frame, (ii) Escobal’s formulation for estimating orbital parameters in a double range-iteration
scheme [69], (iii) the angular motion model as presented in Section 5.2.
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Figure 5.3: Reference diagram for the IOD problem

Roy’s procedure

Archie Roy devised a method for conversion of observed angles in the topocentric coordinate
frame, (αt, δt), based on the observation site position vector q, to obtain angles in the geocentric
frame, (α, δ), along with the associated slant range ρ (see [170], pages 66-67). Roy’s procedure
is based on the series of equations

tan(α− αt) =
(q/ρ) cosφ · sin(αt − λLST)

cos δt + (q/ρ) cosφ · cos(αt − λLST)
, (5.15)

tan ε =
tanφ · cos

(
αt−α

2

)
cos
(
αt+α

2 − λLST
) , (5.16)

tan(δt − δ) =
(q/ρ) sinφ · sin(δt − ε)

sin ε+ (q/ρ) cosφ · sin(δt − ε)
, (5.17)

ρ =
√
r2 + q2 − 2r(r̂ · q), (5.18)

where r̂ = (cosα·cos δ, sinα·cos δ, sin δ)T , ε is an auxiliary variable, and λLST is the local sidereal
time. Given an accurate estimate for the geocentric radius, r, the parameters (α, δ, ρ) can be
obtained with very few iterations of equations (5.15)–(5.18). We remark that for computing the
(J2000.0) mean sidereal time, required by Roy’s procedure, we use the fairly accurate methods
by the U.S. Naval Observatory Vector Astrometry Software, C Edition, version 3.1 (NOVAS
C3.1)2, incorporating Earth’s precession and nutation, and historical data of celestial polar
deviations.

Escobal’s formulation

The second technique on which the IOD procedure relies is Escobal’s formulation in a double
range-iteration scheme. Actually, our IOD algorithm does not follow Escobal’s method, i.e.,
it does not iterate a pair of geocentric radii from distinct points in the observed arc, but
rather makes computations based on his formulation. The crucial part relates to what is

2Available at http://aa.usno.navy.mil/software/novas/novas_info.php.
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called Gibb’s problem, i.e., given three known positions {rk : k = 1, 2, 3} on three equations
p := a(1 − e2) = rk(1 + e cos ν), determine the three orbital parameters (a, e, ν). These three
equations can be combined to produce the symmetric formula

p =
sin ∆ν32 − sin ∆ν31 + sin ∆ν21

r−1
1 sin ∆ν32 − r−1

2 sin ∆ν31 + r−1
3 sin ∆ν21

, (5.19)

where the terms ∆νij = νi− νj , i 6= j, can be computed from estimates of {rk : k = 1, 2, 3} via
relations

cos ∆νij =
ri · rj
rirj

, (5.20)

sin ∆νij =
‖ri × rj‖2

rirj
, (i, j) = (3, 2), (3, 1), (2, 1). (5.21)

Escobal’s formulation identifies a well defined way to estimate the semi-latus rectum as

p =


+c1r1 + c3r3 − r2

+c1 + c3 − 1
, ∆ν31 > π;

−c′2r2 + c′3r3 + r1

−c′2 + c′3 + 1
, ∆ν31 ≤ π;

(5.22)

where

c1 =
r2

r1

sin ∆ν32

sin ∆ν31
, c3 =

r2

r3

sin ∆ν21

sin ∆ν31
, (5.23)

c′2 =
r1

r2

sin ∆ν31

sin ∆ν32
, c′3 =

r1

r3

sin ∆ν21

sin ∆ν32
. (5.24)

From estimate (5.22), well defined values can be found for

e cos νk =
p

rk
− 1, k = 1, 2, 3. (5.25)

In addition

e sin ν2 =

− cos ∆ν21·e cos ν2+e cos ν1

sin ∆ν21
, ∆ν31 6= π;

+ cos ∆ν32·e cos ν2−e cos ν3

sin ∆ν32
, ∆ν31 = π;

(5.26)

from which it is possible to compute

e =
√

(e sin ν2)2 + (e cos ν2)2, (5.27)

a =
p

1− e2
, (5.28)

n =
√
µ/a3, (5.29)

ν2 = arctan

[
e sin ν2

e cos ν2

]
. (5.30)

The middle eccentric anomaly, middle mean anomaly, and first extremal mean anomaly are
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evaluated according to the well known expressions [194]

E2 = 2 arctan

[√
1− e√
1 + e

tan
(ν2

2

)]
, (5.31)

M2 = E2 − e · sinE2, (5.32)

M1 = M2 − n(t2 − t1). (5.33)

The orbit mean anomaly is set as M := M1. Note that the mean anomaly, M , is referred to the
first extremal, at epoch t1. This is such that the observation start establishes a time reference
for predictions.

Estimates from the angular motion model

The motion model presented in Section 5.2 enables computation of the remaining orbital el-
ements. Computing the right ascension of the ascending node requires care since the whole
procedure is sensitive to its value. Combining relations (5.1) and (5.2), one obtains

tan i =
sin i

cos i
=

sin ζ · sin δ
sin(α−Ω)

sin ζ · cos δ
=

tan δ

sin(α− Ω)
. (5.34)

By making tan i1 = tan i2 = tan i3, we write

tan δ1
sin(α1 − Ω)

=
tan δ2

sin(α2 − Ω)
=

tan δ3
sin(α3 − Ω)

, (5.35)

which for any of the pairs (i, j) = (1, 2), (1, 3), (2, 3), results

tan Ωij =
tan δi · cosαj − tan δj · cosαi
tan δi · sinαj − tan δj · sinαi

. (5.36)

For computing right ascension of the ascending node, we set a first estimate Ω0 := Ω13 and
then iterate it using the Newton-Raphson method to minimize the cost function

f= [tan δ1 sin(α2 − Ω)− tan δ2 sin(α1 − Ω)]
2

+ [tan δ1 sin(α3 − Ω)− tan δ3 sin(α1 − Ω)]
2

+ [tan δ2 sin(α3 − Ω)− tan δ3 sin(α2 − Ω)]
2
. (5.37)

Only a few iterations Ωn+1 ← Ωn− ({(Ωn)/{′(Ωn)) are needed for convergence. Notice that
when f= 0, the relations given by (5.35) hold. The resulting Ω must be identified in the correct
quadrant: for instance, if δ2 > 0 and α2 − Ω > π, then Ω← Ω + π because for 0 < i2 < π/2 a
positive declination necessarily means α2−Ω should be either in the first (δ3−δ1 > 0) or second
(δ3 − δ1 < 0) quadrants. Orbit inclinations can be evaluated directly from equation (5.34):

ik = arctan

[
tan δk

sin(αk − Ω)

]
, k = 1, 2, 3. (5.38)

We set the orbit inclination angle to be the one computed for the middle point, i.e., i := i2.
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The mean argument of latitude can be calculated as follows

uk =


arcsin

[
sin δk
sin ik

]
, |sin ik| ≥ |sin δk| ;

arctan
[

tan δk sec(αk−Ω)
sin ik

]
, otherwise.

(5.39)

Clearly, if u3 − u1 < 0, then the mean argument of latitude was identified in the wrong
quadrant, i.e., uk ← π − uk. Finally, the argument of perigee is calculated by

ω := ω2 = u2 − ν2. (5.40)

Outline of the main IOD procedure

The main IOD routine is briefly outlined as follows

1. Set semi-major axis a and mean angular motion n as for geostationary/geosynchronous
objects.

2. Compute first estimates for slant-ranges {ρk : k = 1, 2, 3} using Roy’s procedure (Sec-
tion 5.3.1) for a geostationary radius.

3. Update of geocentric position vectors by

rk = qk + ρkρ̂k, k = 1, 2, 3. (5.41)

4. Using Escobal’s formulation (Section 5.3.1), compute

(a) semi-latus rectum p,

(b) eccentricity e,

(c) the update of semi-major axis a and mean motion n,

(d) middle true anomaly ν2.

5. Compute middle eccentric anomaly E2, middle mean anomaly M2, and first extremal
mean anomaly M1 (Section 5.3.1).

6. Transform observed angles from topocentric to geocentric frame to give {(αk, δk) : k =

1, 2, 3} and update slant-ranges {ρk : k = 1, 2, 3} by using Roy’s procedure.

7. Using equations derived from the angular motion model (Section 5.3.1), estimate

(a) right ascension of the ascending node Ω,

(b) orbit inclination i,

(c) middle argument of latitude u2,

(d) argument of perigee ω.

8. Based on Θ̃0 = (a, e, i,Ω, ω,M)T , compute estimates of topocentric angles {(α̂t,k, δ̂t,k) :

k = 1, 2, 3} and verify the squared deviation

ε2 =

3∑
k=1

∥∥∥(α̂t,k, δ̂t,k)− (αt,k, δt,k)
∥∥∥2

2
. (5.42)
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If ε is greater than a prescribed value, re-process from Step 3 with the new values of a,
n, and {ρk : k = 1, 2, 3}; else output Θ̃0.

Single-measurement case

In some cases, a single measurement is provided for an observed object. In those cases, we make
further assumptions to fix parameters for tentatively describing an orbit, although it might not
be very close to the actual motion. We rely on the fact that, in general, a single measurement
is obtained for objects that are very close to geostationary, since during observation no relative
motion between the object and Earth’s rotational phase has been perceived. The semi-major
axis a and mean angular motion n are fixed as of geostationary/geosynchronous objects. Then
estimates of slant-range and geocentric angles (ρ1, α1, δ1) are computed using Roy’s procedure
for a geostationary radius. Eccentricity is fixed at e = 0 and inclination is set at the absolute
value of geocentric declination i = |δ1|. These assumptions imply that the orbit is circular and
so the argument of perigee could be set to any reference value: we set ω := 0. If δ1 ≥ 0, then
u should be in one of the first two quadrants, thus u = ω + ν = M and Ω must be chosen
as pairs. One trivial possibility is α1 − Ω = M = π/2 for δ1 ≥ 0 and α1 − Ω = M = 3π/2

otherwise. Notice that, for δ1 ≥ 0, i = δ1, Ω = α1 − π
2 , M = π

2 , and so equations (5.10) and
(5.11) of the model are valid

α1 − Ω = arctan [tan(ω +M) · cos i] ,

π

2
= arctan

[
tan

π

2
· cos i

]
,

δ1 = arcsin [sin (ω +M) · sin i] ,

δ1 = arcsin
[
sin

π

2
· sin i

]
,

where equalities hold since tan π
2 → +∞ and sin π

2 = 1. These are also valid for δ1 < 0, with
i = −δ1, Ω = α1 − 3π

2 , and M = 3π
2 .

5.4 Treatment of initial orbit uncertainty

An adequate treatment of uncertainty associated with the orbital elements is crucial, both
because one would like to explain a range of possible orbits in a sensible way and because a
stochastic description is explicitly required for predictions that propagate uncertainty. The
admissible region [139] is perhaps the most comprehensive way of modeling uncertainty, as
it encompasses the whole universe of possible solutions. However, for the purpose of associ-
ating objects in the geostationary and geosynchronous context, we are only interested in the
uncertainty within that context.

Let the “complete” uncertainty of orbital elements to be described by a probability density
function p(Θ). One could think of the uncertainty we want to model as a conditional one,
i.e., p(Θ|a ∈ Ageo), where Ageo is the set of possible semi-major axes of objects in the GEO
belt. The prior information (a ∈ Ageo) rules out out-of-context possibilities in the statistical
description. Indeed, this conditional model is appropriate for comparison between tentative
objects since the same prior information affects them all equivalently. However, it may not
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provide suitable predictions in absolute terms, i.e., it may not quantify the “actual” uncertainty
related to an object’s orbit.

Another perspective on our treatment of uncertainty is in the sense of functional data
analysis (FDA) [158]. This becomes evident when one notices that Keplerian orbits delineate
smooth curves, for which stochastic realization can be presumed to be due to measurement
noise. The essence of this view entails that what really matters is how certain we are about the
orbit in which one object might be, rather than about its actual position. In this representation,
an observed arc can be modeled by a stochastic parametric process in the observational space,
i.e., a process describing random parametric curves that might have generated a sequence of
observations.

Suppose that all measurements have been translated to the geocentric coordinate frame using
Roy’s procedure for an assumed radial position. Let γ(t) := (α(t), δ(t)) be a single parametric
curve that could delineate a deterministic arc had the exact values of right ascension and
declination been known without noise. We write the stochastic parametric process {γ(t)}t≥t0 ,
defining a family of random, smooth parametric curves. Functional data analysis operates on
a space L2, usually, the Hilbert space, of square Lebesgue-integrable functions corresponding
to realizations γ1(t), γ2(t), . . . , γN (t) of the functional process. Although {γ(t)}t≥t0 is actually
defined by both processes {α(t)}t≥t0 and {δ(t)}t≥t0 , we abstract it as a single function of t that
jointly explains the behavior of α and δ. Alternatively, this could be done explicitly by setting

the process as the arc length γ(t) =
´ t
t0

√
1− (dδ/dα)

2
α̇dt for instance.

Each of the realizations could be seen as an infinite-dimensional vector

γi(t) ≡ (γi(t0), . . . , γi(t1), . . . , γi(t))
T , t0 < t1 < · · · < t, t ∈ R+,

i.e., there may be infinite many values of t (and γi) within each interval [t0, t1], [t1, t2], etc. When
these realizations are defined on a finite and discretized interval I = {tk : k = 0, 1, . . . ,K},
they are nothing but multi-dimensional vectors γi(tK) ≡ (γi(t0), γi(t1), . . . , γi(tK))T , K ∈
N. Statistics can be formally taken for the functional process {γ(t)}t≥t0 to obtain a mean
parametric curve µα,δ(t) = E [γ(t)] and a functional covariance Σα,δ(t, s) = Cov [γ(t), γ(s)]. In
the interval I these statistics correspond to the usual multi-dimensional statistics.

We recall the assumption that randomness of the functional process arises purely due to the
measurement uncertainty, herein modeled by the Gaussian noise

vk ∼ N

((
0

0

)
,

(
σ2
α,m 0

0 σ2
δ,m

))
. (5.43)

In addition, because noise on each observed pair (αk, δk) is assumed independent of other
observations in a sequence of measurements, the functional covariance should have null off-
diagonal terms, i.e.,

Σα,δ(tk, tk) := σ2
α,δ(tk), Σα,δ(tk, tl) = 0, k 6= l. (5.44)

Clearly, the functional variances σ2
α,δ(tk) correspond to the effect of measurement noise variances
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on each time sample from the family of random curves, i.e.,

σ2
α,δ(tk) := σ2

γ,m(tk)

=

(
∂γ

∂α
(tk)

)2

σ2
α,m +

(
∂γ

∂δ
(tk)

)2

σ2
δ,m. (5.45)

Had γ been analytically described beforehand, an explicit representation of functional statis-
tics would be possible by expansion in series of orthogonal functions that form an orthonormal
basis in L2(I), the so-called polynomial chaos expansions. However, γ is implicitly defined
in terms of unknown functions (α(t), δ(t)), and certainly, there are not enough realizations of
curves to enable empirical computation of a mean curve and functional covariance. Despite
these difficulties, if {γ(t)}t≥t0 is assumed normal in the functional space, one can write

µα,δ(t) = inf
γ∈L2([t0,t])

K∑
k=0

‖γ(tk)− (αk, δk)‖22 , (5.46)

σα,δ(t) =

σ(t) : Pr

 Ks2

q
(K)
c/2

< σ2(t) <
Ks2

q
(K)
1−c/2

 = 1− c

 , (5.47)

s2 =
1

K

K∑
k=0

‖(αk, δk)− µα,δ(tk)‖22 , (5.48)

where q
(K)
p is the p-th quantile of the chi-square distribution with K degrees of freedom,

and 1 − c is the confidence level. Smoothing and fitting techniques are prevalent in FDA,
and provide a way of implementing (5.46) and (5.47). We pick a simple hypothetical curve
γh(t) := (δh(α(t),β), α(t)), where β = (β0, β1, . . . , βL)T are the coefficients, and fit it to the data
{(αk, δk) : k = 0, 1, . . . ,K} to result µα,δ(t) = (δh(α(t), β̄), α(t)). Notice that a straight line
δh(α(t),β) = β0 +β1α(t) is a suitable hypothesis since at ranges around r = 42, 164.137 km arcs
show a curvature too small to be perceived within a length covering only ∆α ≈ 0.5◦: the typical
deviation from a circular orbit would be around ∆r ≈ 3.8 · 10−5r ≈ 1.6 km. Then, we compute
confidence bounds on the fitted coefficients β̄, defining a (L+ 1)-cuboid [β̄−∆β, β̄+ ∆β], for
a confidence level 1− c = 99.73%, i.e., ∆βl ≈ 3σβl for l = 0, . . . , L. Using a QR decomposition
of the Jacobian matrix

J = [Jkl] = Q ·R,

Jkl =
∂δh(αk,β)

∂βl
, k = 0, . . . ,K, l = 0, . . . , L;

the coefficient bounds are given by3

B = (RTR)−1(K − 1)−1
K∑
k=0

(K + 1)−1(δh(αk,β)− δk)2,

∆β = −P−1
t (1− c/2,K − L) (B

1/2
00 , . . . ,B

1/2
LL )T , (5.49)

where P−1
t (ξ, κ) is the Student-T inverse cumulative distribution function for level ξ and κ

3Similar to the method provided by MATLAB for confidence intervals of fitting coefficients.
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Figure 5.4: Statistical representation of the functional curves

degrees of freedom. The Student-T distribution is suitable when computing confidence in-
tervals for estimates based on a small number of samples (measurements) and the population
(co)variance is unknown. From the confidence hypercuboid [β̄−∆β, β̄+∆β], we select the pair
of vertices in a diagonal producing the most dissimilar extremal curves. These vertices define
bounds of the region [µα,δ(t)−3σα,δ(t), µα,δ(t)+3σα,δ(t)], valid for t ∈ I. For instance, suppose
vertices Va = (β̄0−∆β0, β̄1 + ∆β1) and Vb = (β̄0 + ∆β0, β̄1−∆β1) produce the most dissimilar
extremal parametric curves, then Va gives the coefficients to delineate µα,δ(t) − 3σα,δ(t) and
Vb the coefficients for µα,δ(t) + 3σα,δ(t). Dissimilarity between extremal parametric curves is
evaluated in terms of direction, i.e., two curves γ1 and γ2 are similar if their inner product
〈γ1, γ2〉 = 1 and are increasingly dissimilar as 〈γ1, γ2〉 → 0.

Ultimately, the functional uncertainty is expressed by three curves in the observational
space, µα,δ(t), µα,δ(t)−3σα,δ(t) and µα,δ(t)+3σα,δ(t). Figure 5.4 illustrates this representation.
However, it is necessary to translate the functional uncertainty into that of orbital elements.
The Unscented Transform (UT) could be applied here, but we advocate a simpler approach:
supposing the covariance matrix of orbital elements to be diagonal, only three representative
curves are necessary, as opposed to the simplest UT scheme (simplex) that demands dΘ +1 = 7

sigma-points, where dΘ is the dimension of the orbital elements vector. In order to convert to
orbital elements we apply the core IOD algorithm to each of the three curves, from which we
compute the mean and a diagonal covariance matrix for the orbital elements. Let T : R2 7→ R6

be the IOD map such that Θ0 := T (γ), indicating the set of operations on three points (two
extremal, one middle point) of the curve γ to generate the orbital elements Θ0. Then the mean
and covariance matrix for the orbital elements are taken as

Θ̄0 = T (µα,δ), (5.50)

ΣΘ ≈
diag {∆Θ−3σ ◦∆Θ−3σ + ∆Θ+3σ ◦∆Θ+3σ}

18
, (5.51)
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where ◦ is the Hadamard product and

∆Θ−3σ = T (µα,δ − 3σα,δ)− Θ̄0, (5.52)

∆Θ+3σ = T (µα,δ + 3σα,δ)− Θ̄0. (5.53)

For single-measurement objects such as those mentioned in Section 5.3.1, one must make
assumptions on statistical deviations that cannot be determined via parametric curves. Typical
electro-optical telescopes provide topocentric angles, (αt, δt), with measurement noise specified
with σα,m = σδ,m = 0.001◦. Thus, mean and extremal estimates of slant-range and geocentric
angles, (ρ, α, δ), can be computed using Roy’s procedure for a presumed geostationary radius,
based on three cases: (αt, δt), (αt−3σα,m, δt−3σδ,m), and (αt+3σα,m, δt+3σδ,m). These cases
produce the sets of parameters respectively: (ρ̄, ᾱ, δ̄), (ρ̄, ᾱ− 3σα−, δ̄− 3σδ−), (ρ̄, ᾱ+ 3σα+, δ̄+

3σδ+). Let T ′ : R3 7→ R4 be another IOD map that implements the routine established in
Section 5.3.1 such that (i,Ω, ω,M)T := T ′(ρ, α, δ) for single-measurement objects. For each of
the cases, and further supposing4 σa− = σa+ = 10−8 km and σe− = σe+ = 10−12, one obtains:

Θ̄0 = (ā, ē, ī, Ω̄, ω̄, M̄)T , (5.54)

∆Θ−3σ = 3(σa−, σe−, σi−, σΩ−, σω−, σM−)T , (5.55)

∆Θ+3σ = 3(σa+, σe+, σi+, σΩ+, σω+, σM+)T , (5.56)

where ā = ageo, ē = 0, and

(ī, Ω̄, ω̄, M̄)T = T ′(ρ̄, ᾱ, δ̄), (5.57)

3(σi−, σΩ−, σω−, σM−)T = +T ′(ρ̄, ᾱ, δ̄)− T ′(ρ̄, ᾱ− 3σα−, δ̄ − 3σδ−), (5.58)

3(σi+, σΩ+, σω+, σM+)T = −T ′(ρ̄, ᾱ, δ̄) + T ′(ρ̄, ᾱ+ 3σα+, δ̄ + 3σδ+). (5.59)

Given parameters obtained in (5.54), (5.55), and (5.56), one can directly apply (5.51).

5.5 Association of observations

The association problem is solved in a probabilistic sense, based on a special likelihood function
designed to compare pairs of observation series collected in different sessions. The analysis
applies to a campaign of observations comprising a finite number of sessions, from which the
observed objects are processed altogether as a single batch. As previously explained, our focus
is on solving associations for any such campaign, rather than trying to track each object in
real time. In this setting, any sequence of measurements, usually covering no more than two
minutes each, is treated as a “tentative object” for which our system determines a state vector
and its corresponding covariance matrix. Evaluating the association likelihood between pairs
of objects then results in a table where all tentative objects are identified both in rows and
columns, and cells intersecting any row and column contain a likelihood value of associating
the corresponding objects.

The likelihood function is modeled in the ethos of the Probabilistic Data Association (PDA)
[6], but with several peculiarities to be presented shortly. One major particularity is that the sta-

4This value assumes that uncertainty in the semi-major axis is solely due to the IOD algorithm, i.e., we do
not consider whether or not the orbit is indeed in the GEO belt.
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tistical comparison operates on a mixed space composed of orbital elements and measurements,
i.e., the space of y ∈ R5, y = (a, e, i, α, δ)T . At a first glance, operating on a 5-dimensional
space might not seem advantageous because of the well-known curse of dimensionality. Nonethe-
less, this is exactly why the method evidences merit: sparsity of statistical events in such space
enables a better matching of actually correlated objects while making erroneous associations
much less probable. Clearly, had we merely considered the observational space much more as-
sociation ambiguity would have been manifest, as a crude proximity of observations in the same
field of view would greatly increase the number of association hypotheses. It is also important
to mention that the state variables y = (a, e, i, α, δ)T were carefully chosen to work around
ambiguity in the orbital phase parameters, namely right ascension of the ascending node Ω, ar-
gument of perigee ω and mean anomaly M . Indeed (Ω, ω,M) define the orbital phase well, but
their inherent trigonometric ambiguity implies that infinitely many combinations of (Ω, ω,M)

could represent each pair (α, δ), making statistical comparisons unnecessarily dubious. This is
especially true for nearly circular orbits that produce a rather uncertain value of ω.

Another special setting of the likelihood takes into account a two-way connection for each
pair of objects, i.e., it entails that one object state must be propagated forward in time to be
compared to that of another object, which in turn is propagated backward to “confirm” the
association. This becomes logical as one should perceive the unnormalized likelihood table to
be necessarily symmetric since the association event should be naturally commutative (Pr(A→
B) ≡ Pr(B → A)). The trivial way to ensure a symmetric unnormalized table while considering
prediction uncertainties for both objects in a pair, is by having both directions forward and
backward in time, considered in the numerical evaluation. This scheme also plays in favor
of robustness, as some sort of smoothing feature is implicitly incorporated in the likelihood
function due to the backward confirmation.

5.5.1 Likelihood function

Herein, for the sake of brevity in the formulation, though without loss of generality, we drop
conditioning on the prior information (a ∈ Ageo) as identified in Section 5.4. Suppose that
there are N tentative objects observed in a campaign. We write the random vector

Θi(ti) = (ai, ei, ii,Ωi, ωi,Mi)ti , i ∈ {1, 2, . . . , N},

to represent orbital elements of a tentative object i, originally observed at the reference epoch
ti, the time of the first measurement of the corresponding sequence. We model the pairwise
association event as the correspondence map

a(i) : {1, 2, . . . , N} 7→ {0, 1, 2, . . . , N} \ {i}, (5.60)

i.e., for each tentative object i identified in I = {1, . . . , N} there may be a correspondence
a(i) to another tentative object indexed in A(I) = {0, 1, . . . , N} \ {i}, excluding the original
object itself, where a(i) = 0 establishes a null hypothesis meaning that object i may correspond
to none of the remaining objects. We also define the prior probability that a tentative object
can be observed more than once P iO. False alarms (clutter) are expected due to objects that
occupy the surveillance region but are not members of the set of objects that are eligible to
be associated. The number of false alarms is Poisson-distributed with mean λcV , and their
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positions are assumed to be uniformly distributed in the surveillance region with volume V .
For evaluating the association likelihood, the ith object state Θi must be statistically com-

pared to the a(i)th object state Θa(i) at appropriate epochs. One propagates the ith object
state forward in time as Θi(ti) → Θi(ta(i)), where ta(i) is the reference epoch for a possibly
associated object a(i) in order to perform the comparison Θi(ta(i)) ∼ Θa(i)(ta(i)). Similarly,
one propagates the a(i)th object state backward in time as Θa(i)(ta(i))→ Θa(i)(ti) to perform
the comparison Θa(i)(ti) ∼ Θi(ti). The statistical comparisons are evaluated in the space of
y ∈ R5,y = (a, e, i, α, δ)T , i.e., the likelihood function of each single association event can be
written as

p(a(i)|y1:N ) ,


P iO
2

(
Lf (yi,ya(i)) + Lb(ya(i),yi)

)
, a(i) ∈ A(I) \ {0};

λc(1− P iO), a(i) = 0;
(5.61)

where the forward and backward terms are defined respectively as

Lf (yi,ya(i)) , EΘi(ta(i))

[
p(ya(i)|Θi(ta(i)))

]
, (5.62)

Lb(ya(i),yi) , EΘa(i)(ti)

[
p(yi |Θa(i)(ti))

]
. (5.63)

In the discussion above, we have assumed ti < ta(i) to designate forward and backward
terms, as if tentative objects are processed in ascending order of (reference) time. If another
order is used the same equations apply, but the qualifiers “forward” and “backward” might be
improper. The expectations in (5.62) and (5.63) are given by

EΘi(ta(i))

[
p(ya(i)|Θi(ta(i)))

]
=

ˆ
R6

p(ya(i)|Θi(ta(i)))p(Θi(ta(i)))dΘi(ta(i)), (5.64)

EΘa(i)(ti)

[
p(yi |Θa(i)(ti))

]
=

ˆ
R6

p(yi |Θa(i)(ti))p(Θa(i)(ti))dΘa(i)(ti), (5.65)

where

p(ya(i)|Θi(ta(i))) = N (ya(i); h[Θ̄i(ta(i))],Σya(i)
), (5.66)

p(yi |Θa(i)(ti)) = N (yi ; h[Θ̄a(i)(ti)],Σyi ).

Function h : R6 → R5 is a pseudo-observation function that translates vectors from the
orbital elements space to the mixed space according to the model presented in Section 5.2, for
ν ≈M :

h[Θ] =


a

e

i

Ω + arctan [tan(ω +M) · cos i]

+ arcsin [sin (ω +M) · sin i]

 . (5.67)

The corresponding pseudo-observation equation is defined by

yi = h[Θ̄i] + Σ
1/2
yi vy, vy ∼ N (05; I5), (5.68)
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with covariance matrix

Σyi = H(Θ̄i)ΣΘiH(Θ̄i)
T , (5.69)

H(Θ̄i) = JΘ[h](Θ̄i),

JΘ[h] = [Jkl] =

[
∂hk
∂Θl

]
, k = 1, . . . , 5; l = 1, . . . , 6.

5.5.2 Forward and backward predictions

Propagation forward in time, Θi(ti)→ Θi(ta(i)), and backward, Θa(i)(ta(i))→ Θa(i)(ti), result
in predicted probability densities p(Θi(ta(i))) and p(Θa(i)(ti)) respectively, which are obtained
via Chapman-Kolmogorov equation:

p(Θi(ta(i))) =

ˆ
R6

p(Θi(ta(i))|Θi(ti))p(Θi(ti))dΘi(ti), (5.70)

p(Θa(i)(ti)) =

ˆ
R6

p(Θa(i)(ti)|Θa(i)(ta(i)))p(Θa(i)(ta(i)))dΘa(i)(ta(i)). (5.71)

The probability densities p(Θi(ti)) and p(Θa(i)(ta(i))) are defined as

p(Θj(tj)) = N (Θj(tj); Θ̄j(tj),ΣΘj ), j = i, a(i), (5.72)

and the moments of orbital elements Θ̄j(tj) and ΣΘj are determined according to the method
presented in Section 5.4, as per equations (5.50) and (5.51). The densities p(Θi(ta(i))|Θi(ti))

and p(Θa(i)(ti)|Θa(i)(ta(i))) describe the Markov processes with transition kernels

p(Θi(ta(i))|Θi(ti)) = N (Θi(ta(i)); FfΘ̄i(ti) + Gf ,Qf ), (5.73)

p(Θa(i)(ti)|Θa(i)(ta(i))) = N (Θa(i)(ti); FbΘ̄a(i)(ta(i)) + Gb,Qb), (5.74)

where linearized transition matrices Ff and Fb are defined for the forward and backward pro-
cesses respectively, and both processes have the same offset vector G = Gf = Gb and the
same process noise covariance Q = Qf = Qb. As discussed previously, the transition models
are intended to delineate an unperturbed motion in which dominant non-secular and short-
periodic effects are captured as uncertainty, i.e., the process noise partially compensates for
modeling simplification and errors. The Markov processes are described by the discrete-time
linear state-space models

Θ(tk+1) = Ff,kΘ(tk) + Gf,k + Q
1/2
k w, (5.75)

Θ(tk−1) = Fb,kΘ(tk) + Gb,k + Q
1/2
k w, (5.76)

w ∼ N (06, I6), (5.77)

where

Ff,k =


1 0 . . . 0

0 1
...

. . .

+f61T 1

 , Gf,k =


0

0
...

g6T

 , (5.78)
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Fb,k =


1 0 . . . 0

0 1
...

. . .

−f61T 1

 , Gb,k = Gf,k, (5.79)

for f61 = − 3nk
2ak

, g6 = 5
2nk and T = ∆t. The process noise covariance matrix is given by

Q =



σ2
δaT 0 . . . 0 σ2

δaf61
T 2

2

0 σ2
δeT 0

... σ2
δiT

σ2
δΩT

...

0 σ2
δωT 0

σ2
δaf61

T 2

2 0 . . . 0 σ2
δMT + σ2

δaf
2
61
T 3

3


. (5.80)

According to [200] (pages 187-191), for ek ≈ 0 and small inclination (ik ≤ 15◦), the following
approximations are valid

σδa ≈
3

2
ψ̄2 ak(1− 3 cos2 ik)ek (cos(Mk + σδM )− cosMk) , (5.81)

σδe ≈
3

4
ψ̄2 (1− e2

k)(1− 3 cos2 ik) (sinMk + 3ek sin 2Mk) , (5.82)

σδi ≈
3

2
ψ̄2 (1− e2

k)−1/2 sin ik cos ik sin(2ωk + 2Mk), (5.83)

σδΩ ≈
3

2
ψ̄2 (1− e2

k)−1/2 (−1 + cos(2ωk + 2Mk)) cos ik, (5.84)

σδω ≈
3

4
ψ̄2 (5 cos2 ik − 1), (5.85)

σδM ≈
3

2
ψ̄2

(
1− 3

2
sin2 ik (1− cos(2ωk + 2Mk))

)
, (5.86)

for parameters in canonical units, where ψ̄2 = nkr
2
EJ2/a

2
k, rE is the Earth’s equatorial radius,

and J2 is the second-order zero-degree zonal harmonic of the Earth’s gravitational field. The
discrete-time model expressed by equations (5.75)–(5.86) is obtained by the method presented in
Appendix A. Equations (5.81)–(5.86) refer to the evolving uncertainty that models the averaged
orbit perturbations due to the major components of Earth’s non-spherical terms, accounting
for the time-varying effects of Earth’s oblateness. In this chapter, the luni-solar attraction
effects are not considered in (5.81)–(5.86). For reference, let us consider a stabilized orbit,
disconsidering an offset of about +2 km in the semi-major axis due to J2, which is slighly
compensated by an offset of about−1 km due to the luni-solar attraction [120]. In this condition,
the averaged magnitude of Earth’s non-spherical perturbations in the orbital elements, for a
geostationary object, are of order5 δa ∼ 10−8 m, δe ∼ 10−4, δi ∼ 10−6 rad, δΩ ∼ 10−4 rad,
δω ∼ 10−4 rad, δM ∼ 10−4 rad per day, and the averaged magnitude of luni-solar attraction
perturbations are of order6 δa ∼ 10−12 m, δe ∼ 10−5, δi ∼ 10−5 rad, δΩ ∼ 10−5 rad, δω ∼

5The perturbation due to Earth’s non-spherical gravitational field in the semi-major axis produces an offset
of about +2 km due to J2, a negligible secular term per day, and a libration of amplitude δa ∼ 20m induced by
tesseral terms (J22).

6The perturbation due to the luni-solar attraction in the semi-major axis produces an average offset of about
−1 km, a negligible secular term per day, and a short-periodic libration of amplitude δa ∼ 1 km depending on
the dihedral angles between the sun/moon and the satellite and on the lunar phase.
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10−5 rad, δM ∼ 10−5 rad per day [120].
Notice that, under the Gaussianity assumptions, it is possible to demonstrate that the

forward (5.62) and backward (5.63) components of the association likelihood can be evaluated
as

Lf/b(yu,yv) = N (yu; ȳv,Pyuyv ), (5.87)

where, for u, v ∈ {i, a(i)} and F ∈ {Ff ,Fb}:

Θ̄uv := Θ̄u(tv) = FΘ̄u(tu) + G, (5.88)

ȳu = h[Θ̄uv], (5.89)

Pyuyv = H(Θ̄uv)(FΣΘuFT + Q)H(Θ̄uv)
T + Σyv . (5.90)

5.5.3 Outline of the association algorithm

The association algorithm is now briefly outlined.

Input data

Campaign of observations providing multiple-session batches.

Step 0

The data is structured in clusters, where each cluster collects objects from the same observation
session. This is done to divide the problem and promote computational efficiency since only
tentative objects from different clusters are compared.

Step 1

The IOD algorithm is applied to parametric curves of every single tentative object i (Sections 5.3
and 5.4), generating a database for all objects containing:

• orbital elements of the mean parametric curve Θ̄i,

• covariance matrix representing uncertainty of orbital elements ΣΘi .

Step 2

For each tentative object, orbital parameters are used to propagate forward its orbit correspond-
ing to the mean curve and its uncertainty (Section 5.5.2). Orbits are propagated to match the
epoch of first measurement for each tentative object from different clusters.

Step 3

For each tentative object, the orbital parameters are used to propagate backward the orbit
corresponding to the mean curve and its uncertainty (Section 5.5.2).
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Step 4

Gating is used to identify pairs of tentative objects that give rise to a significant likelihood of
being associated. To make the association algorithm computationally efficient, the likelihood
function is only evaluated if a propagated object u falls within the validation (elliptical) region
Vv (ϑ, u) around object v, and propagated object v falls in validation region Vu (ϑ, v) of object
u, where

Vv (ϑ, u) =
{

(yv − h[Θ̄uv])P
−1
yuyv (yv − h[Θ̄uv]) ≤ ϑ

}
, (5.91)

and ϑ is a gate threshold corresponding to a certain level of confidence 1−c = 99.73%, for κ = 5

degrees of freedom (dimension of y), according to the chi-square inverse cumulative distribution
function ϑ := χ−2

cdf(1− c, κ).

Step 5

The pairwise association likelihood function is evaluated (Section 5.5.1) to produce an un-
normalized likelihood table, whose rows and columns are identified with all tentative objects.
Each cell of the table intersecting a row and a column contains the likelihood function value of
associating the corresponding tentative objects.

Step 6

The likelihood table is normalized7 per tentative object (each row), which corresponds to assume
that all possibilities have been considered: either the object is not associated to any of the
remaining objects, or may have been associated to each of them. Normalized values of likelihood
are then tested against a “likelihood threshold” to determine if each pairwise association is either
true or false.

5.6 Results for simulated observations

We tested the proposed framework for a campaign of 7 nights, each containing 2 measurement
sessions, with 354 observation sequences collected from 59 objects, of which only 34 have been
observed more than once. The data has been provided by Airbus Safran Launchers, and is
based on simulated data for actual objects using two-line elements (TLEs) propagated by the
Simplified General Perturbations 4 (SGP4) model [93]. The measurements in azimuth and
elevation (and topocentric right ascension and declination), incorporating noise and missed
detections, have been generated as from a single telescope using a function validated and used
in the Airbus Safran Launchers Space Surveillance System. The prior probability of an object
being observed more than once was set as PO = 1.5% and the clutter density rate was estimated
to be λc ≈ 2 · 1011 (false alarms/unit of V ), in a surveillance hypervolume V defined in the
space of y = (a, e, i, α, δ)T . The tentative objects use a non-standard identification scheme, in
the format N{nn}-M{mm}-O{ooo} where “N” stands for a night identified by a two-digit
number {nn}, “M” stands for measurement session identified by number {mm}, and “O” stands
for object identified by {ooo}. This identification has no correspondence to those from available

7Note that once the likelihood table is normalized, including the null hypothesis (no association), it becomes
asymmetric.
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Figure 5.5: Example of orbits for parametric curves

catalogs. We remark that each observed instance of an object is given a different identification
code.

The initial orbit determination of parametric curves, for all tentative objects, is successfully
achieved with a single iteration, resulting in mean square errors (5.42) of order 10−5. Figure
5.5 shows an example of orbits determined for the mean and extremal parametric curves of the
tentative object N11-M01-O135, along with measurements of other tentative objects that are
registered along one day of prediction.

Figure 5.6 exemplifies forward and backward predictions applied to tentative objects for
performing the statistical comparison. Black squares mark data for a first tentative object,
whose estimated orbital elements and uncertainty are used to predict trajectories of a mean
parametric curve (red line) and its extremal curves (yellow and purple lines). Data for a second
object is marked by blue circles. Predicted positions, along parametric curves of the first object,
are identified by x’s at the epoch when the second object was observed. Parametric curves are
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Assoc. Object 1 Object 2 Likelihood
1 N20-M02-O343 N24-M02-O347 100.0000%
2 N11-M02-O334 N21-M01-O343 100.0000%
3 N19-M01-O500 N19-M02-O501 99.9998%
4 N24-M01-O462 N24-M02-O463 99.9941%
5 N24-M01-O548 N24-M02-O549 99.9722%

Table 5.2: Top-five pairwise associations in terms of likelihood values.

depicted over four hours around the predictions to illustrate their behavior. In Figure 5.6 one
can notice a close correspondence of the information contained in stochastic predictions with
the likelihood of association. High likelihood values are obtained for these examples meaning
that the corresponding associations are very likely. In the example of Figure 5.6a, the difference
of observation epochs between the first and second objects is ∆t = +04.05 h, whereas in the
example of Figure 5.6b it is ∆t = −70.50 h, i.e., backwards in time. The second example
was selected to show a situation where a single measurement has been provided for the first
and second objects, when effectiveness of the algorithm is kept even for orbits that are lowly
observable.

In Table 5.2, we show the top-five pairwise associations8 based on their likelihood values.
When verifying performance of threshold-based binary classifier systems the so-called “re-

ceiver operating characteristics” (ROC) curve is very useful to select possibly optimal thresholds
of a decision model. The technique is very commonly applied to evaluate classifiers in machine
learning applications. The association problem was modeled as a decision problem to discrimi-
nate if two observed objects are in fact the same: if the likelihood of their association is greater
than a given threshold then they are declared as associated, else they are declared as non-
associated. A true positive is achieved when the system declares two objects as associated and
they are indeed the same object. Similarly, a true negative is achieved when the system declares
two objects as non-associated and they are not the same object in fact. Defining TP as the
number of true positives determined by the system, FP the number of false positives, TN the
number of true negatives, and FN the number of false negatives, the true-positive rate and
false-positive rate of association are defined as

TPR :=
TP

# of actual positives
=

TP

TP + FN
, (5.92)

FPR :=
FP

# of actual negatives
=

FP

TN + FP
. (5.93)

The ROC curve is generated by plotting the true-positive rate TPR (aka sensitivity, recall
or probability of detection) of a classification problem against the false-positive rate FPR (aka
fall-out, probability of false alarm or 1-specificity) at various threshold settings. Clearly, a
perfect classifier would produce TPR = 100% and FPR = 0%, and random guesses should
produce 〈TPR〉 = 〈FPR〉 for a large number of trials. Figure 5.7 shows the ROC curve of
pairwise associations generated by the proposed association algorithm, for several likelihood
thresholds. For the analyzed campaign, there exist 124,962 possible pairwise associations, of
which 3,170 are positive. For zero threshold it is possible to notice that the association method

8Notice that in Table 5.2 all associations are correct, i.e., objects 1 and 2 are actually the same, but their
identification codes are different because they were observed in different sessions.
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Figure 5.6: Examples of forward and backward predictions
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approximates very well an ideal system, which would have produced a single point at the upper
left corner of the graph (TPR = 100%, FPR = 0%). As the threshold increases, a number of
true positives is discarded at the benefit of also discarding false positives. At some threshold,
around 40%, the false-positive association rate is reduced to a very negligible value while the
true-positive rate is yet significant enough, despite a big deal of missed associations, to enable
correct associations of most objects. This can be objectivelly perceived in Figures 5.8 and 5.9,
where we grouped objects for several threshold settings, in the following categories

1. perfectly associated: objects for which all occurrences were correctly detected, no associ-
ation was missed and no false association was determined;

2. almost perfectly associated: objects for which almost all occurrences were correctly de-
tected, with some possibly missed associations but without any false association;

3. imperfectly associated: objects for which some correct associations have been detected,
but both missed and false associations may have occurred;

4. objects with only one correct association.

The graph in Figure 5.8 categorizes all 59 objects, meaning that, from objects only observed
once, those with no declared association take part in the “perfectly associated” category. In
addition, from objects only observed once, those with mistakenly declared association (false
positives) integrate the “imperfectly associated” category. From a practical standpoint, a sat-
isfactory solution should provide one or more correct associations for most objects, possibly
admitting some missing associations. In this sense, as evidenced in Figure 5.8, the solution
is practically satisfactory for likelihood thresholds bigger than 40%, as 48–57 out of 59 ob-
jects (∼ 81.3–96.6%) have perfect or almost perfect associations. Besides, most objects have
more than one correct association. In Figure 5.9, one can verify that, when only considering
objects observed more than once, the number of objects with strictly perfect associations is
very small, however, the number of objects with almost perfect associations is relatively higher
since, in absolute terms, it is exactly the same number in both graphs of Figures 5.8 and 5.9. In
that case, 23–32 objects out of 34 (∼ 67.6–94.1%) have almost perfect associations, and thus,
become candidate inputs to a full-precision orbit determination method. It should be noted
that, although imperfect associations are undesirable, they are still useful if only one correct
association is required by the full-precision orbit determination method. This becomes clear
by recalling the high probability of correct (pairwise) association the algorithm provides, as
represented by the relatively high true-positive rate reported in the ROC curve.

Preliminary tests with state-of-the-art IOD methods (Gauss, Laplace, Gooding) were per-
formed and suggest that, specifically for the problem posed in this chapter, our proposed IOD
method is more convenient, enabling plausible values of association likelihoods. Unfortunately,
we were not able to make standard IOD methods to work properly on the complete set of
observations, which prevented us to elaborate a fair comparison in our numerical experiments.
We believe this difficulty is related to the fact that standard methods, being quite general,
struggle with sets of observations covering very short arcs (that demand specific assumptions).
In contrast, the IOD algorithm we developed has been demonstrated to deal well with such
cases.

The complete step of IOD runs, for all 354 tentative objects, takes only about 11 seconds,
i.e., around 0.031 seconds per object. The likelihood evaluations take 0.0004 seconds per pair
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Figure 5.7: ROC curve of the association algorithm

of objects. In the worst case, by removing the gating step and evaluating every possible pair of
objects, the whole process takes around 61 seconds. These computation times refer to programs
written in Matlab 2016a, running on a personal computer featuring a CPU Intel Core i7-4700HQ
running at 2.40 GHz (8 cores), with 2 Mb of cache memory, 8 Gb of RAM, under a Linux 64-bit
operating system.

5.7 Conclusions and future work

The issue of resolving data association ambiguity and representing uncertainty accurately when
the state observability is low, as identified in Chapter 0, has been addressed in this chapter.
A solution to this critical issue has been successfully proposed in the form of a framework of
integrated algorithms for resolving the association ambiguities and representing the uncertainty
to an adequate level of accuracy. Specifically, this has been achieved for a difficult Space
Surveillance scenario where the sensor is not able to provide angle rates, ranges, or range rates
for nearly-geostationary or geosynchronous objects orbiting the Earth.

The solution involves a novel system to perform observation-to-observation associations for
objects in the geostationary belt, with low observability due to short arc lengths covered by each
observation. The proposed framework is based on a new initial orbit determination method,
derived to enable a reasonable description of nearly-geosynchronous and geostationary orbits
and their uncertainties, and a procedure for statistical comparison between estimated orbits in
a mixed space comprising orbital elements and measurements. Any two objects observed in dif-
ferent epochs can then be compared to generate likelihood values that quantify their similarity.
The method partially works around the computational complexity implied in standard multiple-
hypothesis filtering and focuses on producing lists of associated objects before a full-precision
orbit determination algorithm can be applied.

The proposed IOD algorithm has been demonstrated to provide reasonably good estimates
in the context of angles-only, very short-arc orbit determination. It is also worth mentioning
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that the IOD algorithm could be altered to either incorporate a model of synchronous elements
[184], or update slant-ranges by solving the Lambert problem.

We note that the modeled likelihood function makes a bold assumption: non-observed
objects are regarded as non-existent. Although this is a common aspect in PDA formulation
[6], one could benefit from negative information when objects are not observed where one would
predict them to be. This could be incorporated by considering the probability of existence, for
instance. While the proposed system avoids explicit tracking, one could think of the problem
as directly estimating objects in the orbital elements’ space, which could be implemented in
terms of intensity filters (or Probability Hypothesis Density filters) [126], capturing features of
the objects in the elements’ space and avoiding explicit comparison between objects.

Regarding computational aspects, we remark that theoretically speaking, the problem is
bounded by exponential complexity on the number of objects, in the worst case. However,
in practice, the problem manifests itself significantly sparse when statistical comparisons are
performed in a suitable space. When this sparsity is manifested in an augmented space, which
both resolves ambiguities and inflates the sample space volume, clever strategies such as gating
and pre-ordering of the set of tentative objects turn the problem sub-exponential in time. In
practice, the tools we propose are not computationally expensive, taking only 1–2 minutes to
completely process a campaign with 354 tentative objects. However, it could be made more
scalable by preliminary matching of orbital elements that vary slowly with the orbit phase,
under a pre-ordered geometric structure in the space of events. These geometric structures are
called “kd-trees” and allow searches bounded by O(logN) computations on average.

As a last remark, we highlight the relevance and moderate novelty of the method used for
describing and estimating the initial orbit uncertainties. While functional data analysis is well
established, it is rare to see it adopted in practical engineering applications, despite its almost
perfect adherence to problems such as that posed in this chapter. We believe this should be
explored as a promising avenue for dealing with uncertainty in orbit determination when one
is generally interested in estimating an orbit as a whole curve rather than inferring its local
properties.

In conclusion, we hope that the tools proposed herein offer a feasible solution for the
observation-to-observation association problem in the orbit determination context. The case
made suggests that judiciously chosen assumptions and algorithm settings may lead to out-
standing results, at the cost, by design, of possibly detrimental effects to generality. As future
work, we plan to enhance our system such that it can associate real measurements of nearly-
geostationary (“GEO”) objects as observed by several telescopes, and modify our algorithms to
successfully process real measurements from Low Earth Orbit (LEO) objects.
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6
Concluding Remarks

6.1 Conclusions

This dissertation has presented a series of novel methods for solving the multi-object esti-
mation problem using non-standard settings. When dealing with challenging scenarios, the
proposed filters tackle fundamental problems of nonlinearity and non-Gaussianity of processes,
high state dimensionality, high numbers of targets, statistical dependence between target states,
and degenerate cases of low signal-to-noise ratio, high uncertainty, lowly observable states or
uninformative observations. The proposed algorithms constitute stochastic filters, each of which
is formulated to address specific aspects of the challenges at hand while offering tools to achieve
compromises in conflicting goals of the studied problems.

The first algorithm, the Gauss-Hermite filter, is based on a hybrid method that combines a
particle-based representation of the prior state uncertainty with an efficient grid-based method
to estimate the posterior probability density. The method makes use of the prior Monte Carlo
empirical measure to induce a probability mass function that approximates the posterior prob-
ability measure. This probability mass function enables accurate numerical integration, by
means of the Gauss-Hermite quadrature, to compute the state estimate and covariance matrix.
The filter was shown to be suitable to tackle the estimation problem for nonlinear and/or non-
Gaussian processes and measurement models, including cases when the posterior densities are
not unimodal. In terms of complexity, the filter requires a careful study to determine whether
the added complexity will revert to performance benefit to justify its use.

The second method, the Stochastic Particle Flow, constitutes a filtering framework that
addresses well-known shortcomings of sequential Monte Carlo methods when applied to nonlin-
ear high-dimensional filtering problems. This novel method uses a Monte Carlo procedure to
generate a sequence of equally-weighted samples that each guide a local solution of the Fökker-
Planck equation. Using these local approximations, a mixture is produced that approximates
the filtering density. The result is a statistically-sound general-purpose class of algorithms. In
the context of a simple, though not trivial, high-dimensional inference problem and in compari-
son with state-of-the-art algorithms, the proposed approach has been shown to offer significant
improvement in statistical consistency with commensurate computational expense.

The third method presented, the JPDA-EHM3, consists of a scalable multi-target track-
ing scheme that considers dependence between target states and enables track management by
inferring existence probabilities. The proposed algorithm models target dependence by prob-
abilistic trees on which joint probability distributions of adjacent targets are calculated. The
method avoids maintaining a joint probability distribution over all the target states, which is
infeasible except when the number of targets is small, and enables a scalable algorithm for
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scenarios with moderately high number of targets. The numerical experiment presented made
it clear that the proposed filter reduces incidence of track swapping and substantially improves
tracking capability when information sensible for association disambiguation are occasionally
available.

The fourth method, the Discrete-Gamma CPHD, involves a new filter that is second-order
in target number, where the targets’ state is assumed to follow an independent and identically
distributed cluster process with the cardinality distribution modeled as a discretized Gamma
distribution. The strategy employed was to mimic, based on a discrete-Gamma distribution,
the procedure of a Kalman filter for the cardinality random variable, i.e., estimating sufficient
statistics. As demonstrated by the numerical examples, the discrete Gamma distribution allows
simple calculations for approximating the first- and second-order moments of the posterior
cardinality distribution, and efficiently addresses tracking scenarios with underdispersed and
slightly overdispersed target counts, without the restrictions required by the binomial filter. The
results also demonstrate that the DG-CPHD is more computationally efficient than the standard
CPHD implementation, especially for scenarios where a large number of CPHD cardinality
terms is necessary, i.e., in situations where the number of target-generated measurements is
significantly increased as many targets appear in a scene.

Finally, a novel system has been devised to perform observation-to-observation associations
for objects in the geostationary belt, with low observability due to short arc lengths covered by
each observation. The framework is based on a new initial orbit determination method, derived
to enable a reasonable description of nearly-geosynchronous and geostationary orbits and their
uncertainties, and a procedure for statistical comparison between estimated orbits in a mixed
space comprising orbital elements and measurements. Any two objects observed in different
epochs can then be compared to generate likelihood values that quantify their similarity. The
method partially works around the computational complexity implied in standard multiple-
hypothesis filtering, and focuses on producing lists of associated objects before a full-precision
orbit determination algorithm can be applied.

The proposed techniques, when analyzed from an empirical perspective, appear to constitute
evidence to support the primary hypothesis of this dissertation. That is, exploring extreme
and challenging cases, where the fundamental shortcomings of filtering methods are exposed,
highlights mathematical principles and root causes of practical problems that can be analyzed to
unveil important system characteristics and to provide insights for the design of new methods.

6.2 Future work

The analyses and techniques proposed in this dissertation can be regarded as a starting point
for several avenues yet to be explored.

In particular, representing filtered probability distributions to higher accuracy could be
further explored in different senses. One possible direction could exploit the hybrid filtering
framework established by the Gauss-Hermite filter, as proposed in Chapter 1, to combine se-
quential Monte Carlo methods with highly efficient grid-based methods, by resorting to effective
techniques for approximating high-dimensional integrals (e.g., [113]), adopting sparse grids (e.g.,
Smolyak grid [182]), and scaling and positioning grids adaptively based on spectral properties
of the distributions involved. Another direction could capitalize on recent ideas of partitioning
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the state variables, under the Monte Carlo representation of probability measures, so that the
dependence between the estimation error and dimensionality is mitigated [160].

In the same ethos of that employed by the Stochastic Particle Flow technique developed in
Chapter 2, there is a vast realm in the continuum mechanics, optimal transport, and differential
geometry literature that could be investigated to give rise to new methodologies for Bayesian
estimation. Some instances of this line of research can be found in the works by Fred Daum
[49, 47], Reich [161, 162], Moselhy [141], but the field is still in early development. Progress
in this direction is of great theoretical value, especially for promoting a better understanding
of geometrical and algebraic structures involved in the space of probability distributions, and
a thorough characterization of operations and transformations acting on these structures that
arise in filtering. To illustrate this point, we point out the extremely important but underex-
plored connections between Lie algebras and filtering [90], and between differential geometry
and filtering [17]. There is also a great practical value in these new methodologies since, as
evidenced in Chapter 2, filtering algorithms with better regularity properties are required in
order to provide consistent estimates for increasingly complex phenomena.

Another avenue that can potentially follow from this dissertation is concerned with concise
representations of multi-object interactions. By simply replacing the structure used to represent
dependencies between targets in the JPDA-EHM3 tracker developed in Chapter 3, other filters
could be derived. For instance, instead of using a discrete probability distribution of components
(representing the identities of components in a mixture density), written as a dependency
graph, a Gaussian graphical model could be used, where each node is a Gaussian mixture and
the dependencies are modeled as conditional Gaussian densities, such that the model can be
updated by Gaussian belief propagation. This description enables a more direct interpretation
of the covariances between different targets, and the dependence graphical model would have a
clear correspondence to the multi-target probability density.

Also, the complexity of multi-sensor multi-target tracking algorithms must be addressed
in future research. This trend arises as a response to an increasing necessity of maintaining
custody of enormous numbers of objects (hundredths to thousands) in applications that are
very computationally demanding such as, for example, reliably keeping track of decommissioned
(artificial) satellites and debris, or tracking aircraft in highly congested airspaces. The method
used to derive the DG-CPHD filter in Chapter 4 opens up possibilities of new cardinality models
for approximating the CPHD and decreasing the complexity of CPHD-based filters. This is very
much in the same direction as that of some filters proposed recently (e.g., [173]). The reasoning
for reducing complexity also applies to methods that might follow from the measurement-to-
measurement technique proposed in Chapter 5, where new effective ways of associating objects
can be derived by modifying some of the assumptions used in this dissertation.

Last, in the context of Chapter 5, there is a potential for a novel class of estimators and
smoothers to be developed by resorting to functional and/or pseudo-spectral descriptions of
trajectories (e.g., [103]), where mathematical concepts from traditional functional analysis and
tools from functional data analysis can be readily borrowed.
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A
Discretization of Linear

State-space Models

This appendix gives a brief account, in the perspective of the author, of an established method to
discretize linear state space models. This method is well documented in the Control Engineering
literature (e.g., in [150]), however, with few exceptions [123, 121, 204, 5], it is not thoroughly
discussed in the multi-target tracking literature and it appears to be the case that the community
would benefit from the content provided herein. The appendix provides a simple derivation of
the procedure to discretize a continuous-time linear state-space model. The intent is clarifying
how discrete-time models widely used in multi-target and multi-sensor tracking can be obtained
from continuous-time models, by resorting to transformations in the Laplace domain and other
techniques for solving stochastic differential equations.

Discretization

The problem we want to address is transforming a continuous-time linear model, given its state
differential equation, into a discrete-time linear model given by a difference equation. Suppose
the following continuous-time (linear time-invariant) state-space model

dx (t)

dt
= Ax (t) + Bu (t) + Gw (t) , t ≥ 0, (A.1)

where x is an dx × 1 state vector, A is the dx × dx state-transition matrix, u is an du × 1

input vector, B is an dx × du input matrix, and G ·w is a perturbation term. In this appendix
both B and G are assumed time-invariant for brevity of exposition. The intent is to acquire an
equivalent difference equation to model a discrete-time model according to

x(kT ) = Adx((k − 1)T ) + Bdu(kT ) + Gdw(kT ), (A.2)

xk = Adxk−1 + Bduk + Gdwk, k ∈ N0,

where T is the sampling period. Many mathematical tools are available to perform this dis-
cretization (e.g., Z-transform), but we resort to a simple technique. Let us obtain the solution
for the homogeneous differential equation

dx (t)

dt
= A · x (t) , t ≥ 0. (A.3)
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Applying the Laplace transform to equation (A.3) with x(0−) as the state at t = 0−, we get

L{ẋ (t)}(s) = L{A · x (t)}(s),

s ·X(s)− x(0−) = A ·X(s),

X(s) = (s · Idx −A)−1x(0−), (A.4)

where X(s) = L{x (t)}(s) is the Laplace transform of the state vector, s ∈ C is the frequency
variable, and Idx is the dx-dimensional identity matrix. By applying the inverse Laplace trans-
form to (A.4) and using the property Idxeρ ≡ eρIdx for any scalar ρ ∈ R, it is possible to obtain
the state vector as

x (t) = L−1
{

(s · Idx −A)−1x(0−)
}

(t) = L−1
{

(s · Idx −A)−1Idxx(0−)
}

(t)

=

ˆ ∞
0

(s · Idx −A)−1Idxx(0−)es·tds =

ˆ ∞
0

(s · Idx −A)−1esIdx ·tx(0−)ds

=

[ˆ ∞
0

(rIdx)−1e(rIdx+A)·tdr

]
x(0−) =

[ˆ ∞
0

(rIdx)−1erIdx ·tdr

]
eA·tx(0−)

=

[ˆ ∞
0

r−1er·tdr

]
IdxeA·tx(0−) = L−1

{
r−1
}

(t) IdxeA·tx(0−) = H (t) eA·tx(0−),

∴ x (t) = eA·tx(0−), t ≥ 0, (A.5)

with the variable substitution rIdx = sIdx −A, r ∈ C, and where the inverse Laplace transform
of 1/r results in the Heaviside unit-step function L−1 {1/r} (t) = H(t). In (A.5), by choosing a
specific instant t = k · T , we have

x(kT ) = eA·kTx(0−) = e+A·T−A·T eA·kTx(0−) = eA·T

x((k−1)T )︷ ︸︸ ︷
eA·(k−1)Tx(0−)

= eA·Tx((k − 1)T ),

xk = eA·Txk−1, (A.6)

where the correspondence Ad ≡ eA·T becomes evident. Now consider the inhomogeneous dif-
ferential equation

dx (t)

dt
= Ax (t) + Bu (t) , t ≥ 0. (A.7)

This equation could be solved by the Laplace transform method as well, but a simpler procedure
provides the answer promptly. We premultiply equation (A.7) by e−A·t, rearrange and integrate
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it for t ≥ 0, to get

e−A·tẋ (t) = e−A·tAx (t) + e−A·tBu (t) ,

e−A·tẋ (t)− e−A·tAx (t) = e−A·tBu (t) ,

e−A·tẋ (t) +
d

dt

(
e−A·t) x (t) = e−A·tBu (t) ,

d

dt

(
e−A·tx (t)

)
= e−A·tBu (t) ,

ˆ t

0

d

dτ

(
e−A·τx (τ)

)
dτ =

ˆ t

0

e−A·τBu (τ) dτ,

e−A·tx (t)− e−A·0x(0−) =

ˆ t

0

e−A·τBu (τ) dτ,

e−A·tx (t) = x(0−) +

ˆ t

0

e−A·τB · u (τ) dτ,

x (t) = eA·tx(0−) + eA·t
ˆ t

0

e−A·τBu (τ) dτ. (A.8)

If we evaluate (A.8) at t = k ·T , an induction similar to that in (A.6) can be used to produce

x(kT ) = eA·kTx(0−) + eA·kT
ˆ kT

0

e−A·τBu (τ) dτ

= eA·kTx(0−) + eA·kT
ˆ (k−1)T

0

e−A·τBu (τ) dτ + eA·kT
ˆ kT

(k−1)T

e−A·τBu (τ) dτ

= eA·T

[
eA·(k−1)Tx(0−) + eA·(k−1)T

ˆ (k−1)T

0

e−A·τBu (τ) dτ

]
︸ ︷︷ ︸

x((k−1)T )

+eA·kT
ˆ kT

(k−1)T

e−A·τBu (τ) dτ,

∴ x(kT ) = eA·Tx ((k − 1)T ) +

Bdu(kT )︷ ︸︸ ︷
eA·kT

ˆ kT

(k−1)T

e−A·τBu (τ) dτ, (A.9)

xk = Adxk−1 + Bduk.

The second term in the right-hand side of (A.9) can be recognized as the discrete-time equivalent
of the input term, Bdu (kT ). It is very common to assume that the input signal is piecewise
constant (zero-order hold approximation), i.e., u (t) := uk for t ∈ [(k − 1)T, kT ], to calculate
the integral in (A.9) as

Bdu (kT ) ≡ eA·kT
ˆ kT

(k−1)T

e−A·τBu (τ) dτ

=

ˆ kT

(k−1)T

e−A·(τ−kT )Bukdτ =

ˆ T

0

eA·ηBukdη

= A−1

[ˆ T

0

A · eA·ηdη

]
Buk = A−1

[ˆ T

0

d

dη

(
eA·η) dη]Buk

= A−1
[
eA·η]η=T

η=0
· Buk = A−1(eA·T − Idx)Buk, (A.10)
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where the variable substitution η = −τ + kT was made.
Now we shall extend the procedure for a stochastic state process {x(t)}t≥0, that is, a state

model that evolves according to a stochastic differential equation similar to equation (A.7),
given by

dx(t) = Ax(t)dt+ Gdβt,

dx (t)

dt
= Ax (t) + Gwt, (A.11)

where {βt}t≥0 is a multidimensional Brownian motion process with covariance matrix specified
as E[dβtdβ

T
t ] = Qdt, and {wt}t>0 is a multidimensional Gaussian process such that the following

correspondence holds [101]
wtdt ∼ dβt. (A.12)

From now on
´
T
dβt shall be interpreted as a Wiener integral over a time interval with

length T , and (A.11) must be recognized as an abuse of notation since the Gaussian process is
not integrable with probability one [101]. If we proceed the discretization exactly as in (A.8)
and (A.9), but considering G · wt in place of B · u(t), we get

x(kT ) = eA·Tx ((k − 1)T ) + eA·kT
ˆ kT

(k−1)T

e−A·τGwτdτ

= eA·Tx ((k − 1)T ) +

ˆ kT

(k−1)T

e−A·(τ−kT )Gwτdτ. (A.13)

Equation (A.13) is simply the result of substituting B · u(t) by G ·wt in equation (A.9). Here a
problem arises: the second term in the right-hand side of (A.13) is stochastic (non-deterministic)
because {wt}t≥0 is a random process, hence the integral must be defined in the mean square
sense, as a stochastic integral either in the Îto or Stratonovich formalism (see [101] for details).
Expressing the stochastic term requires obtaining its statistical moments. In order to compute
the statistical moments of the stochastic integral in (A.13) we invoke the following properties
of the Brownian motion process.

Theorem A.1 (Theorem 4.1 in [101]). Suppose a Brownian motion process {βt}t≥0 with vari-
ance E

[
dβ2

t

]
= σ2dt. Let two random functions f(t) and g(t) satisfy:

i) f(t) and g(t) are independent of {βtj − βti : (k − 1)T ≤ ti ≤ t ≤ tj ≤ kT} for all
t ∈ [(k − 1)T, kT ] and any k ∈ N0,

ii)
´
T
E
[
|f(t)|2

]
dt,
´
T
E
[
|g(t)|2

]
dt <∞.

Then

E
[ˆ

T

f(t)dβt

]
= E

[ˆ
T

g(t)dβt

]
= 0, (A.14)

E
[ˆ

T

f(t)dβt ·
ˆ
T

g (t) dβt

]
= σ2

ˆ
T

E [f (t) g (t)] dt. (A.15)

The proof of Theorem 4.1 in [101] can be found in Chapter 4, Section 3, pages 97 to 102. As
identified in (A.12), wtdt ∼ dβt, thus the mean of

´ kT
(k−1)T

e−A·(τ−kT )Gwτdτ can be calculated
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by

E

[ˆ kT

(k−1)T

e−A·(τ−kT )Gwτdτ

]
= E

[ˆ kT

(k−1)T

e−A·(τ−kT )G dβτ

]
= 0, (A.16)

and its covariance matrix can be calculated by

Qd = E

(ˆ kT

(k−1)T

e−A·(τ−kT )Gwτdτ

)
·

(ˆ kT

(k−1)T

e−A·(τ ′−kT)Gwτ ′dτ
′

)T


= E

(ˆ kT

(k−1)T

e−A·(τ−kT )G dβτ

)
·

(ˆ kT

(k−1)T

e−A·(τ ′−kT)G dβτ ′

)T


=

ˆ kT

(k−1)T

E

[ˆ kT

(k−1)T

e−A·(τ−kT )G
(
dβτdβ

T
τ ′
)

GTe−AT·(τ ′−kT)

]

=

ˆ kT

(k−1)T

E
[
e−A·(τ−kT )G ·Q ·GTe−AT·(τ−kT )

]
dτ

=

ˆ kT

(k−1)T

e−A·(τ−kT )GQGTe−AT·(τ−kT )dτ

=

ˆ T

0

eA·νGQGTeAT·νdν, (A.17)

where we made the variable substitution ν = −τ + kT .

Summary

The following equivalences of parameters between the continuous and discrete-time domains
are identified:

Ad = eA·T , Bd = A−1(eA·T − Idx)B, Qd =

ˆ T

0

eA·νGQGTeAT·νdν. (A.18)

Approximations

In a number of practical cases, computing the discrete-time parameters via (A.18) cannot be
performed exactly. The most common approximation is of first order according to

Ad ≈ (Idx + A · T ), Bd ≈ B · T, Qd ≈
ˆ T

0

(Idx +A · ν)GQGT(Idx +A · ν)Tdν. (A.19)

However, often, the approximated integral in (A.19) may result in a coarse approximation, which
evokes the need for alternative methods to compute Qd. A well known technique is based
on Van Loan’s method [196] for evaluating integrals involving the matrix exponential. This
method proposes computing the exponential of a block triangular matrix and then combining
the resulting submatrices to evaluate the integral at hand. To apply Van Loan’s method for
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evaluating Qd, one must calculate (or approximate)(
U2(T ) V2(T )

0 U3(T )

)
= exp

{(
−AT GQGT

0 A

)
T

}
, (A.20)

and then use V2(T ) and U3(T ) to give

Qd = UT
3 (T ) ·V2(T ). (A.21)

Other alternatives involve computing Qd by solving an associated Lyapunov equation for the
continuous-time model [204, 5], or partioning the problem into structured subproblems and
then solving them either analytically or using a system of Lyapunov and Sylvester equations
[204].

Example A.2. Nearly-constant velocity model. Consider the continuous-time nearly-constant
velocity model as

ẋ = Ax + Gwt, (A.22)(
ṗ

v̇

)
= A

(
p

v

)
+ G

(
0

wδv

)
,

where the state process equation in terms of the Gaussian (white) process {wt}t>0 is an abuse of
notation (no physical meaning) and should be understood as an Îto’s SDE, dx = Axdt+ Gdβt,
for a Brownian motion {βt}t>0. In (A.22), p is the position, v the velocity, and

A =

(
0 1

0 0

)
, G =

(
0 0

0 1

)
, Q =

(
0 0

0 σ2
δv

)
, (A.23)

where σ2
δv = E[w2

δv] in view of a Gaussian (white) process with E
[
wtw

T
s

]
= Q(t)δ(t − s). The

usual approximate discretization can be expressed by

Ad = eA·T ≈ (Idx + A · T ) =

(
1 0

0 1

)
+

(
0 1

0 0

)
T =

(
1 T

0 1

)
, (A.24)

and

Qd =

ˆ T

0

eA·νGQGTeAT·νdν ≈
ˆ T

0

(Idx +A · ν)GQGT(Idx +A · ν)Tdν,

=

ˆ T

0

(
1 ν

0 1

)(
0 0

0 1

)(
0 0

0 σ2
δv

)(
0 0

0 1

)(
1 0

ν 1

)
dν

=

ˆ T

0

(
σ2
δvν

2 σ2
δvν

σ2
δvν σ2

δv

)
dν =

[(
σ2
δv
ν3
/3 σ2

δv
ν2
/2

σ2
δv
ν2
/2 σ2

δvν

)]ν=T

ν=0

=

(
T 3
/3 T 2

/2

T 2
/2 T

)
σ2
δv,

(A.25)

which is reminiscent of the usual discretized form of a nearly-constant velocity model.

276



APPENDIX A. DISCRETIZATION OF LINEAR STATE-SPACE MODELS

Example A.3. Orbital model. Consider Lagrange’s planetary equations as follows:

ȧ =
2

na

∂R

∂`
, (A.26)

ė =
1− e2

na2e

(
∂R

∂`
− (1− e2)−

1
2
∂R

∂ω

)
, (A.27)

i̇ =
1

na2(1− e2)
1
2

(
cot i

∂R

∂ω
− csc i

∂R

∂Ω

)
, (A.28)

Ω̇ =
csc i

na2(1− e2)
1
2

∂R

∂i
, (A.29)

ω̇ =
(1− e2)

1
2

na2e

∂R

∂e
− cot i

na2(1− e2)
1
2

∂R

∂i
, (A.30)

˙̀ = n− 2

na

∂R

∂a
− 1− e2

na2e

∂R

∂e
, (A.31)

where

a: semi-major axis,

e: (first) eccentricity,

i: inclination,

Ω: right ascension of the ascending node,

ω: argument of perigee,

`: perturbed mean anomaly,

n: mean motion,

R: disturbing (potential) force function.

We write (A.26)–(A.31) in terms of the state vector x = (a, e, i,Ω, ω, `)T (orbital elements),
where the unperturbed motion is modeled by a deterministic state (vector) function, f : Rdx →
Rdx , dx = 6, and the perturbation is modeled as a stochastic term, i.e.,

dx = f(x)dt+ Q
1
2 dwt, t ≥ 0, (A.32)

where {wt}t≥0, wt ∈ Rdx , is a standard multivariate Wiener process. The state function is
given by

f(x) =



f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f6(x)


=



0

0

0

0

0

n


≡



0

0

0

0

0

µ
1
2 a−

3
2


, (A.33)

where µ is Earth’s gravitational constant, and the mean motion is identified as n = µ
1
2 a−

3
2 .

The continuous-time covariance matrix Q depends on the perturbation vector that accounts for
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the motion uncertainty as

g(x)dt =



σδa(t)

σδe(t)

σδi(t)

σδΩ(t)

σδω(t)

σδ`(t)


dt ,



2
na

∂R
∂`

1−e2
na2e

(
∂R
∂` − (1− e2)−

1
2
∂R
∂ω

)
1

na2(1−e2)
1
2

(
cot i∂R∂ω − csc i∂R∂Ω

)
(1−e2)

1
2

na2e
∂R
∂e −

cot i

na2(1−e2)
1
2

∂R
∂i

(1−e2)
1
2

na2e
∂R
∂e −

cot i

na2(1−e2)
1
2

∂R
∂i

− 2
na

∂R
∂a −

1−e2
na2e

∂R
∂e


dt ∼ Q

1
2 dwt. (A.34)

Linearizing the continuous-time state function in the neighborhood of xk = x(tk) we have

f(x) ≈ Ax + B =



1 . . . 0

0 1

1
... 1

...

1

− 3nk
2ak

. . . 0 1





a

e

i

Ω

ω

`


+



0

...

5
2nk


, t ≥ tk, (A.35)

as a consequence of

f6(x) = f6(a) ≈ f6(ak) +
∂

∂a
f6(ak)(a− ak) = µ

1
2 a
− 3

2

k +
∂

∂a
(µ

1
2 a−

3
2 )|a=ak(a− ak)

= µ
1
2 a
− 3

2

k − 3

2
µ

1
2 a
− 3

2−1

k (a− ak) = µ
1
2 a
− 3

2

k +
3

2
µ

1
2 a
− 3

2

k − 3

2
µ

1
2 a
− 3

2−1

k · a

=
5

2
µ

1
2 a
− 3

2

k − 3

2
µ

1
2 a
− 3

2−1

k · a

=
5

2
nk −

3

2

nk
ak
· a.
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Applying (A.19), we obtain

Ad ≈ (Inx + A · T ) =



1 . . . 0

0 1
... 1

...

1

1

− 3nk
2ak

T . . . 0 1


, Bd ≈ B · T =



0

...

5
2nkT


, (A.36)

Qd ≈
ˆ T

0

(Inx +A · ν)GQGT(Inx +A · ν)Tdν

=



σ2
δaT 0 . . . 0 σ2

δa

(
− 3nk

2ak

)
T 2

2

0 σ2
δeT 0

... σ2
δiT

σ2
δΩT

...

0 σ2
δωT 0

σ2
δa

(
− 3nk

2ak

)
T 2

2 0 . . . 0 σ2
δ`T + σ2

δa

(
3nk
2ak

)2
T 3

3


. (A.37)

This appendix presented the derivation of a traditional procedure to discretize continuous-
time, stochastic linear state space models. The discrete-time model derived in Examples A.2 and
A.3 are of practical utility in this dissertation. The discrete-time model obtained in Example
A.2 is used in numerical examples of Chapters 2–4 and the discrete-time model obtained in
Example A.3 is used in the numerical example of the Chapter 5.
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