2,933 research outputs found

    Internet of Things for Sustainable Mining

    Get PDF
    The sustainable mining Internet of Things deals with the applications of IoT technology to the coupled needs of sustainable recovery of metals and a healthy environment for a thriving planet. In this chapter, the IoT architecture and technology is presented to support development of a digital mining platform emphasizing the exploration of rock–fluid–environment interactions to develop extraction methods with maximum economic benefit, while maintaining and preserving both water quantity and quality, soil, and, ultimately, human health. New perspectives are provided for IoT applications in developing new mineral resources, improved management of tailings, monitoring and mitigating contamination from mining. Moreover, tools to assess the environmental and social impacts of mining including the demands on dwindling freshwater resources. The cutting-edge technologies that could be leveraged to develop the state-of-the-art sustainable mining IoT paradigm are also discussed

    Une plate-forme sans fil pour electrochimique spectroscopie d'impédance

    Get PDF
    Avec l’émergence soutenue de capteurs et de dispositifs électrochimiques innovants, la spectroscopie d'impédance électrochimique est devenue l'un des outils les plus importants pour la caractérisation et la modélisation de la matière ionique et de l'interfaçage des capteurs. La capacité de détecter automatiquement, à l’aide de dispositifs électrochimiques peu couteux, les caractéristiques physiques et chimiques de la matière ionique ouvre une gamme d’application très variée pour la compréhension et l’optimisation des procédés ou interviennent les processus électrochimiques. Cette thèse décrit le développement d’une plate-forme microélectronique miniaturisée, connectée, multiplexée, et à faible coût pour la spectroscopie d'impédance diélectrique (SID) conçue pour les mesures électrochimiques in-situ et adaptée aux architectures de réseau sans fil. La plate-forme développée durant ce travail de maitrise a été testée et validée au sein d’une maille ZigBee et a été en mesure d'interfacer jusqu'à trois capteurs SID en même temps et de relayer l'information à travers le net Zigbee pour l'analyse de données et le stockage. Le système a été construit à partir de composants microélectroniques disponibles commercialement et bénéficie des avantages d'une calibration système on-the-fly qui effectue la calibration du capteur de manière aisée. Dans ce mémoire de maitrise, nous rapportons la modélisation et la caractérisation de senseurs électrochimiques de nitrate; notamment nous décrivons la conception microélectronique, la réponse d'impédance de Nyquist, la sensibilité et la précision de la mesure électrochimique, et les résultats de tests de la plate-forme pour les applications de spectroscopie d'impédance relatives à la détection du nitrate, de la détection de la qualité de l'eau, et des senseurs tactiles.The emergence of the various applications of electrochemical sensors and devices, electrochemical impedance spectroscopy became one of the most important tools for characterizing and modeling of the material and interfacing the sensors. The ability to sense in an automatic manner enables a wide variety of processes to be better understood and optimized cost-effectively. This thesis describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS) designed for in-situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on a ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the Zigbee net for data analysis and storage. The system was built from commercial microelectronics components and benefits from an on-the-fly calibration system that makes sensor calibration easy. The thesis reports characterizing and modeling of two electro-chemical devices (i.e. nitrate sensor and optically-transparent electrically-conductive glasses) and also describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in-situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing

    Advancing Climate Change Research and Hydrocarbon Leak Detection : by Combining Dissolved Carbon Dioxide and Methane Measurements with ADCP Data

    Get PDF
    With the emergence of largescale, comprehensive environmental monitoring projects, there is an increased need to combine state-of-the art technologies to address complicated problems such as ocean acidifi cation and hydrocarbon leak detection

    DEVELOPMENT OF AN AUTOMATED GAS-LEAKAGE MONITORING SYSTEM WITH FEEDBACK AND FEEDFORWARD CONTROL BY UTILIZING IOT

    Get PDF
    Liquefied Petroleum Gas (LPG) is used in many ranges of applications like home and industrial appliances, in vehicles and as a propellant and refrigerator. However, leakage of LPG produces hazardous and toxic impact on human begins and other living creatures. There by, the authors developed a system to monitor the LPG gas leakage and make alert to users of it. In this research, MQ-6 gas sensor is used for sensing the level of gas concentration of a closed volume; and to monitor the consequences of environmental changes an IoT platform has been introduced. Robust control along with cloud based manual control has been applied so that the gas leakage can be prevented in the response of either feedback or feedforward commands individually. It switches on the specified relays to control the level of gas concentration in the time of leakage the excess gas in times of leakage. It rechecks the value again and again if it crosses 300 ppm it will setup a relay-based switching on control mechanism using Thingspeak cloud. The controller used here is Node-MCU v:1.0. This research provides design approach on both software and hardware. Hence an embedded system comprising of Relay switches, Embedded C++, Gas sensor, Temperature & Humidity sensor along with Internet of Things (IoT) is fabricated to meet the objectives of the current research

    Year 2020: A Snapshot of the Last Progress in Flexible Printed Gas Sensors

    Get PDF
    A review of recent advances in flexible printed gas sensors is presented. During the last years, flexible electronics has started to offer new opportunities in terms of sensors features and their possible application fields. The advent of this technology has made sensors low-cost, thin, with a large sensing area, lightweight, wearable, flexible, and transparent. Such new characteristics have led to the development of new gas sensor devices. The paper makes some statistical remarks about the research and market of the sensors and makes a shot of the printing technologies, the flexible organic substrates, the functional materials, and the target gases related to the specific application areas. The conclusion is a short notice on perspectives in the field

    European Arctic Initiatives Compendium

    Get PDF
    Julkaistu versi

    Gas sensing technologies -- status, trends, perspectives and novel applications

    Full text link
    The strong, continuous progresses in gas sensors and electronic noses resulted in improved performance and enabled an increasing range of applications with large impact on modern societies, such as environmental monitoring, food quality control and diagnostics by breath analysis. Here we review this field with special attention to established and emerging approaches as well as the most recent breakthroughs, challenges and perspectives. In particular, we focus on (1) the transduction principles employed in different architectures of gas sensors, analysing their advantages and limitations; (2) the sensing layers including recent trends toward nanostructured, low-dimensional and composite materials; (3) advances in signal processing methodologies, including the recent advent of artificial neural networks. Finally, we conclude with a summary on the latest achievements and trends in terms of applications.Comment: arXiv admin comment: This version has been removed by arXiv administrators as the submitter did not have the rights to agree to the license at the time of submissio

    Visual Twin for Pipeline Leak Detection

    Get PDF
    We describe a visual digital twin system to allow for both operation and training of a data-driven pipeline leak detection system. We show system design in terms of its data inputs and the software system which incorporates this data in real time. This system allows visualization of pipeline data and machine learning-driven leak detection in a pipeline sitting in a subsea context. The intended purpose of the system is to both train operators of the leak detection system in its use and also provide high situational awareness to those tasked with monitoring pipeline deployments. The visual digital twin system uses gaming engine technology to achieve high visual quality. We also construct a novel software system enhancement to incorporate live data streams into the gaming engine environment. This allows real-time driving of gaming engine visualization elements with which we may augment the gaming engine environment. In terms of visualization, we focus on addressing problems of large ranges of multiple scales and providing high situational awareness which minimize operator fatigue and cognitive load. We show how multiple camera views in combination with a convenient user interface can help to address these issues. We demonstrate a digital twin system for leak detection. We show its realtime operation in a gaming engine environment with the ability to instantaneously incorporate outside data sources into the visualizations. We demonstrate using simulated pipeline flow data from sensors such as pressure, temperature, etc. This is visualized in the context of a subsea pipeline on a sea floor. Given the large range of scales, we demonstrate how we can view both the full kilometer scale pipeline and smaller subsections in the context of specific sensor data streams. The overall system demonstrates a novel combination of advanced software systems which incorporates real-time data stream with visualization using a high-fidelity gaming engine. The data used represents a leak detection scenario where both operator training and situational awareness are key desired outcomes

    Towards online ageing detection in transformer oil: a review

    Get PDF
    Transformers play an essential role in power networks, ensuring that generated power gets to consumers at the safest voltage level. However, they are prone to insulation failure from ageing, which has fatal and economic consequences if left undetected or unattended. Traditional detection methods are based on scheduled maintenance practices that often involve taking samples from in situ transformers and analysing them in laboratories using several techniques. This conventional method exposes the engineer performing the test to hazards, requires specialised training, and does not guarantee reliable results because samples can be contaminated during collection and transportation. This paper reviews the transformer oil types and some traditional ageing detection methods, including breakdown voltage (BDV), spectroscopy, dissolved gas analysis, total acid number, interfacial tension, and corresponding regulating standards. In addition, a review of sensors, technologies to improve the reliability of online ageing detection, and related online transformer ageing systems is covered in this work. A non-destructive online ageing detection method for in situ transformer oil is a better alternative to the traditional offline detection method. Moreover, when combined with the Internet of Things (IoT) and artificial intelligence, a prescriptive maintenance solution emerges, offering more advantages and robustness than offline preventive maintenance approaches
    corecore