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Chapter 8
Internet of Things for Sustainable Mining

Abstract The sustainable mining Internet of Things deals with the applications
of IoT technology to the coupled needs of sustainable recovery of metals and a
healthy environment for a thriving planet. In this chapter, the IoT architecture and
technology is presented to supportdevelopment of a digital mining platform empha-
sizing the exploration of rock–fluid–environment interactions to develop extraction
methods with maximum economic benefit, while maintaining and preserving both
water quantity and quality, soil, and, ultimately, human health. New perspectives
are provided for IoT applications in developing new mineral resources, improved
management of tailings, monitoring and mitigating contamination from mining.
Moreover, tools to assess the environmental and social impacts of mining including
the demands on dwindling freshwater resources. The cutting-edge technologies that
could be leveraged to develop the state-of-the-art sustainable mining IoT paradigm
are also discussed.

8.1 Introduction

The mining is the process of acquiring minerals from mines. In addition to the
resource development, it has many economic, social, and environmental aspects.
Recently, considerable progress has been made towards attaining sustainable mining
practices and improving environmental quality [10, 13, 39, 41, 48]. Moreover, sig-
nificant technical developments have also improved the mining practices. However,
there are substantial efforts required to make mining sustainable [2, 32, 60].

8.1.1 Sustainable Mining

Apparently, it seems that there is no compatibility between the mining operations
and sustainability and both seems contradictory due to the limited nature of mining
resources. Since the sustainability is related to capability of maintaining a certain
level of resources for current and future needs, the sustainable development in
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mining is difficult to achieve if the rate of the minerals extrication process continues
to increase the replenishment rate of the geological processes [59]. The advances
in mining practices (e.g., sensing, monitoring, and communications technology
development) are needed in the areas of explorations, mining, and metal processing
to improve productivity, safety, and health [29]. In 2002, the International Council
on Mining and Metals (ICMM) Council espoused the Toronto Declaration for the
Global Sustainable Development Initiative (MMSD) that underscores the value of
technology tools and systems for the sustainable development (SD) initiative [51]. It
also highlighted the importanceof the best-practices and verificationprotocols, best-
practice protocols, and reportingfor SD. The importanceof the integrated mines and
material management throughoutthe minerals value chain was also emphasized.

The mining practices conducted keeping in view the environmental and socio-
economic factors and the sustainable development goals (SGDs) are considered
sustainable [10]. The exploration and developmentof novel technologies also makes
mining sustainable. The three vital factors of the sustainable mining are:

• Analysis of currentand future demands in mining
• Development of integrated approaches for decision making and adoption of

practices based on SGDs and community involvement
• Advancements in metal recycling and reclamation methods

8.1.2 IoT for Sustainable Mining

Mine monitoring techniques seek to establish a proper environment to avoid
accidents, destruction of equipment, loss of ore reserves, and closure of the mine
with greatest effectiveness. Accidents happen because of roof fall and side fall that
often take toll of human lives [56]. Proper mine monitoringminimizes these loses,
maximizes response to other management practices, and optimizes mining. Mining
managementwithoutreal-time monitoringcan also significantly reduce the potential
for profitability. Proper mine monitoringusing IoT will help to reduce the potential
for runoff, run-on, deep percolation, nitrogen and other chemical leaching to the
ground and surface water resources, and reduce soil erosion and mine contaminant
movement into surface and groundwater [14].

Among existing techniques, Internet of Things in Mine Monitoring (IMM) is
a growing technology in mining operations [9, 11, 19, 20, 53, 57, 62]. However,
there is a significant lack of data and procedure development in terms of funda-
mental understanding and quantification of mine minerals. Current mine sensing
technologies are not best suited to provide IMM systems with almost real-time
minerals data to facilitate fast decision making. Thus, accurate monitoring cannot
be applied at the right place of a mine at the right time. Failure to consider the
monitoring in active working face, goaf, and sealed off areas in mining decisions
results in mining accidents. Accordingly, human lives are wasted and the potential
for chemical leaching from the mine is increased.
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Timely information of temporal and spatial mining patterns can significantly
aid mining producers in better managing their mine operations to achieve higher
production efficiency. Real-time knowledge of spatial contaminant distribution
can also further advance our understanding of variable soil water and minerals
distribution as well as mine dynamics. Accordingly, more effective IMM strategies
can be developed to enhance productivity and reduce leaching. This improvement,
conservatively, can result in significant dollar savings. Challenges in communication
between within-field sensors and decision making systems, however, prohibit these
research results to be successfully transformed into wide-spread mining practices.
In general, sensors can be buried at different depths and wired to a data logger above
the surface, which can be used for manual data collection or wireless data transfer.
Manual data collection is labor-intensive and requires significant amount of travel
time. More importantly, by the time when the data are incorporated into decision
making, it is late to achieve proper mining actions. Thus, mining companies,
especially those with large-scale mining operations, are looking for more effective,
within-field, faster, and more robust data harvesting technologies.

On the other hand, existing wireless communication solutions are disruptive to
mine operations. A tower and temporarily installed sensors need to be deployed
before explorationand must be retrieved duringconstructionsdue to the interference
of the sensors and towers with the mine operations, adding to the maintenance, labor,
and time costs. Moreover, high costs prohibit sensors to be deployed in multiple
locations in a mine. Accordingly, mine variability cannot be captured by existing
techniques. As a result, the spatial and temporal variability of the field and mine
conditions cannot be accounted for within mine monitoringdecisions. This project
will address real-time and variable information acquisition challenges to enable
autonomous mine monitoring solutions guided by in situ sensor information. It
enables autonomous decision making for mining operation, minimize or eliminate
the human error associated such decisions, and enhance operation efficiency. The
sustainable mining IoT is envisaged as to provide key infrastructureand technology
advancements for the next-generation integrated mine monitoring (IMM) practices,
in which mining systems are tightly coupled with properundergroundmine minerals
monitoring. These systems have the potential to provide significant advancements
for mine monitoring in unmanaged or poorly managed systems, where mining
decisions are not based on quantitative sensor indicators. To this end, novel wireless
underground communicationtechniques in IoT can be employed.

• Real-time Mining Sensory Data: Communication challenges prohibit real-time
information gathering from highly variable mines (both spatial and temporal
variability) with multiple sensors. The recent wireless underground communica-
tion techniques provide tools to gather real-time mineral information. However,
real-time information has not yet been collected from practical mine fields. The
sustainable mining IoT can be utilized for real-time data collection.

• AutonomousMine Monitoring: The theoretical/scientific understandingof real-
time and/or autonomous mine monitoring has not been well established for
mining efficiency improvement. This is partly due to lack of technological
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advances that enable such data collection and autonomy on a mine scale. Even
when the data collection from the mines that have spatial and temporal variability
is accomplished, a scientifically- and research-based practical tool for integration
of all these data and information into central location for decision making for
IMM does not exist. There is need to develop such a tool to integrate real-time
mine disaster monitoring and early warning system coupled with environment
data to allow effective and fast decisions for proper IMM practices.

• Field-based Mining Prescription: Mine monitoring practices heavily rely on
the field properties, mineral type, mine type, climate, and more importantly,
their interactions. Consequently, it is not possible to develop one-size-fits-
all solutions. Instead, deep understanding of advanced mine monitoring tools
for different fields is required so that mine monitoring prescriptions tailored
to these properties can be developed and applied in various field conditions.
These insights necessitate the development of a proof-of-concept sustainable
mining IoT architecture for autonomousmine monitoringthat enables extensive
experimentationof next-generation mine monitoring practices in different types
of fields.

• Sustainable Mine System Operation: The real-time mine disaster monitoringand
early warning systems have the potential to transform mining practices to help
realize more efficient and sustainable mining solutions. Within this broader con-
text, it is also importantto devise sustainable system solutions for underground
sensing systems. To this end, it is desirable to improve system efficiency in terms
of communicationreliability and energy consumption.With the long-termvision
towards developing fully automated mine monitoring solutions, the mining IoT
paradigm supports development of autonomoussystem that enables autonomyin
mine monitoringwith a capability to evaluate technology in practical conditions
to devise autonomousmine monitoringsolutions that advance mining practices.
The sustainable mining IoT can be realized throughadvanced sensing, communi-
cation solutions, and informationsystems. An overview of sustainability mining
IoT components is presented in Fig. 8.1.

8.2 Sustainable Mining Things

The mining methods are classified into four types depending on the type of the
ore deposits(depth and inclination ), depth, strength, and thickness of the rocks,
roof/floor type. These are shown below:

• Surface mining for shallow deposits
• Underground mining to access deeper deposits
• In situ mining and augering to dissolve minerals in place
• Placer mining for shifting and placement of mineral
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Fig. 8.1 Overview of
sustainability mining IoT

The sustainable mining IoT things are presented in the following:

• Metals, mineral deposits, ores, rocks
• Mining-influencedgroundwater and surface water
• Mineland, subsidence, land use, and reclamation
• Tailings, acid rock drainage
• Solid wastes, effluents, waste rock, and soil
• Hazardous materials
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8.3 Research Challenges in Sustainable Mining IoT

In this section, various research challenges to enable technological drivers in
sustainable mining IoT are discussed.

The development of novel sensors and sensing techniques is vital for sustainable
mining IoT [24]. This includes analytical sensors to detect chemical and mineralogi-
cal propertiesof ores and rocks with portable, mobile, fixed static settings [8, 21, 23].
For geophysical sensing, the aircraft and drones technology holds promise for
seismic sensing [52] of surface features at shallow depths and hyperspectral sensing
for detailed 3D analysis and to produce the geo-hydrological, chemical, and
environmental models needed for ore deposits [18, 34]. The alternatives to seismic
sensing are electromagnetic (EM) sensing and ground penetrating radar (GPR)
[1, 12, 16, 58]. The ore-grade analyzing systems can be utilized for mineral quality
and quantity assessment in both surface and down-hole configurations [49]. The
sustainable mining IoT has the potential to integrate different type of sensors such
as location sensors, gas, obstacle-detection, and water quality sensors. Models and
simulations are also needed for to get better insights into mineralogy, geological and
hydrological processes in mines, and rock and soil properties [26, 31]. Moreover,
the sensing data integrated would be beneficial for sustainable mining IoT decision
supportsystems. These innovations in sustainable mining IoT will lead to reduction
in lead times and improve the efficiency of recovery process.

The availability of variety of sensing and detection method is useful to get better
perspective and resolution in different applications of sustainable mining IoT [24].
Real-time data processing and visualization techniques can be used to display the
mine data for different type of mining applications. Moreover, channel models are
needed for the mine based communicationschannels for in-mineand mine to surface
communications [38, 45]. Robotics can be utilized to automate mining operations
such as nonexplosive rock fragmentation, drilling, transport, and mapping. The
need of the total resource recover in mines without impacting the environment
cannot be overemphasized [43, 46, 65]. The advancements are needed in fine and
ultra-fine minerals and particles recovery such as techniques to separates solids
and liquids [54]. In this regard, developments of novel in situ methods to access
deposits where ore permeability is low including casing, fracturing, rubblization
techniques for in situ leaching and boreholes mining, and drilling [27]. The reduced
cost of biomining approach where bio-agents are used to extract mineral will reduce
waste and environmental impacts. In this regard, integration of innovations in bio-
medical, chemical, and physical sciences integration with mining practices will aid
to attain sustainable development goals. The fracture process in mining consists
of blasting, rock fracturing, drilling, excavation, comminution.Currently, hydraulic
fracture process is applied to petroleum and geothermal mining. It has many
negative effects on air and water pollution. It has higher probability of oil spills with
harmful impact on vegetation and soil. The sustainable mining IoT is envisioned to
bring technology in cutting and fragmentation, where computer-aided cutting and
blasting can inform the optimal fragment size with accurate procession. It can also



8.4 Sustainable Mining IoT Technologies and Monitoring Systems 249

reduce the dust by reducing the processing time and thrust and improved timing
and tailoring of explosives. Moreover, for sustainable mining, the development of
efficient water treatment is necessary for mining-influencedwater (MIW) [50]. The
mining process will benefit from developments in dewatering [33], dissolution of
minerals [40], flotation [64], grinding and classification and other developments in
chemical reagents [47], electrochemistry [61], thermodynamicand kinetic data [28],
and microbiological agents [55].

The proper monitoring of mining pollutants is important to ensure that nearby
water bodies are not impacted from it [63]. For environmental monitoring appli-
cations, sondes are used to sense conductivity, TDS, pH, salinity, and other
parameters [3]. The development of strata control procedures is important for
effective slope monitoring where excavation and rock properties (rock mass and
intactness) is observed for stability and safety [22]. The improvements in technology
for difficult-to-minedeposits (e.g., thin coal seams) in longwall and continuouscoal
mining approaches are needed [15]. The existing directional drilling technology of
petroleum and geothermal drilling can be applied. Moreover, in geochemical and
geophysical explorationsystems, there is need for portable and down-hole analytical
equipment to characterize cross bore hole and to get improved insights into soil
particles mobility. Use of drones in aerial geophysics will improve shallow seismic
methods and better representation of hyperspectral data [35, 42].

For mining operations, the industry can benefit from research in advanced
imaging methods with capability to propagate through surface vegetation and
cover. The increased resolution and coverage is needed for magnetic, radiometric,
gravitational, and spectral methods. For mineral processing, potential research
avenues are to make advances in flotationsystems, blasting alongside crushing, find-
ing alternatives to electromechanical energy and phosphogypsum production, and
modeling, and autonomous control. Similarly, innovations in hydro-metallurgical
and bio-technological techniques will advance metal extraction.

8.4 Sustainable Mining IoT Technologies
and Monitoring Systems

The exploration(mineral identification),drilling, comminution(breaking to separate
ore and waste), resource gathering, production,processing (crushing and grinding),
closure, and land reclamation are importantsteps in the life cycle of the mine [17,
25, 36]. Therefore, the development of new technologies in these areas to reduce the
environmental impact and waste will be beneficial for sustainable development. Due
to hazardous and complicated conditions of mines, continuousmonitoringof mines
and early warning systems is vital to ensure safety, to avoid health-related issues in
miners. These disastrous events in mines include fire, explosion, water surge, and
roof fall [4]. An architecture of sustainable mining IoT is shown in Fig. 8.2.
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Fig. 8.2 The architecture of sustainable mining IoT

The sustainable mining IoT technologies and monitoring system collect data
using different types of sensors and transmit this information to the database and
cloud by using wireless communications. In this section, the technologies and
monitoringsystems for sustainable mining IoT are discussed.

8.4.1 Mine Monitoring for Health and Safety

The sustainable mining IoT is useful to monitor the safety conditions in mines,
where technology is used to detect obstacles and obstructions to avoid hazards such
as fall, berm, and equipment. The robust and reliable technology can also be used
to assess health conditions in mining atmosphere to sense and identify the miners
mix-mode exposure to the oxidation, dust, diesels, and cutting pollutants. By using
wireless communications, this information is then used for real-time alert system.
Moreover, the lack of proper mine ventilation is another importanthealth concern
in mines. The presence of sufficient amount of oxygen is necessary to support
breathing. Sustainability IoT based mine ventilation systems are used to monitor
air quality, cooling and control the air movement throughdirection and blocking.

8.4.2 Environmental Monitoring

The environmental monitoring in sustainable mining IoT is vital to protect the
environment. For acid rock drainage, the acid-generating materials are identified to
lessen and remove accumulation in pit floors and walls and to prevent encapsulation
of wastes and passivation. Accordingly, the acidic wastewater and pit water can be
treated by removal of metals and nitrate and novel techniques of dewatering and
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consolidating slimes can be developed. Through sensing and improved predictive
modeling the cyanide can be destroyed in situ. The new technology is needed to aid
evapotranspiration,impede infiltration, and fine particle emission.

8.4.3 Earth Crust Monitoring

The integrated mine monitoring system can be used to monitor the Earth’s crust,
where different type of subsurface sensors are used detect seismic activity and other
underground conditions. The ground motion, displacement, and other disturbances
can also be measured. The seismometers and vibration sensors are examples
of some of the sensors used in earth crust monitoring. Because of the mining
stress and deformations, the equilibrium of mine strata is disturbed. It depends
on the mining technique used, rock mass and other proprieties, and depth of the
strata. Accordingly, it results in falling rocks in mines. Therefore, the sustainable
mining IoT can be used to ass stains, load, stress, and deformation by using
extensometers, electromagnetic and mechanical methods including linear variable
differential transformer (LVDT), strain sensors, micro-electro-mechanical systems
(MEMS), resistance sensors, stress sensors, and vibration sensors.

In the opencast mining, a large amount of overburden is removed. With contin-
uous accumulation of waste, the dump level can increase and becomes susceptible
to failure. Similarly, in open-pit mines, the sheer slants can fail and cause damage
to mine equipment and machinery. Therefore, a slant strength monitoring system
in sustainable IoT can be used to monitor the firmness of the dam and sheer
slants using geo-sensors which can monitor different parameters (e.g., roof load
and convergence, pillar pressure and seismic activity resulting from blasting and
fracturing).

8.4.4 Transportation Management

The sustainable monitoring system can be used to monitor the different aspects
of the transportation in the mining such as mineral measurements and vehicle
loading, route management, and illegal vehicle activity to detect unauthorized
access. This informationcan be viewed in real-time using wireless communications.
The examples of sensors used in these systems are inductive loop, IR, and ultrasonic
sensors, and acoustic arrays.

Moreover, mining machinery is often used under high load conditions. The
machinery monitoringin mines is done using the sensors installed on the machinery
for the purpose of health, load, location, and fuel assessment. The sustainable
mining IoT enables predictionand early warnings of machinery faults using sensors
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such as thermocouples, accelerometers, acoustic sensors, and tachometers The sus-
tainable mining IoT has the great potential to benefit in real-time decision making,
production management, and projections on resources. Through this paradigm the
mining machinery (e.g., dumpers and shovels) can be minimized which leads to
profit maximization.

8.4.5 Gas Detection

The gas emissions in mines are caused by either burning or from the crust of
the earth due to seismic event, displacement, and rock fracturing. Miners come
into contact with these various types of inflammable and toxic gases in mines
such as nitrogen, carbon monoxide, sulfur dioxide, methane, carbon dioxide, and
hydrogen sulfide. The sustainable IoT gas monitoring systems are used to mitigate
and monitorgases using different types of sensors and chromatograph.Accordingly,
real-time warning and alarm systems are developed. To monitor methane, the
catalytic ball sensors are used to accurately sense different levels of methane.
However, the different factors such as exposure to high concentration of gases,
silicones, and hydrogen sulfide negatively affects the performanceof the sensor. The
local methane detector (LMD) works operates by using IR sensing. Accordingly,
improved techniques for collection of methane drainage and dilution.

A summary of site monitoring and characterization techniques for gas is given
below:

• Biosensors
• Colorimetric test kits
• Detector tubes
• Fiber optic chemical sensors (FOCS)
• Fourier Transform Infrared Spectroscopy (FTIR)
• Gas Chromatography (GC)
• Gas Chromatography/Mass Spectrometry (GC/MS)
• Graphite Furnace Atomic Absorption Spectrometry (GFAA)
• Gross counters
• Immunoassay test kits. Three categories of field analytical methods use biolog-

ical systems to measure target analytes: Immunoassays, immunosensors, and
enzyme-based assays that do not require the binding of an antibody to a target
analyte as antigen

• Inductively Coupled Plasma Spectrophotometry (ICP)
• Liquid Chromatography (LC)
• Membrane Interface Probes
• Mercury vapor analyzers
• Surface Acoustic Wave Sensors (SAWS)
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8.4.6 Goaf Fill Monitoring

The goaf is cave formed due to mineral extraction in the undergroundmines such as
in coal and classified into working (active) and sealed (closed). The subsidence is
caused by the goaf formations. Therefore, the stowing is used to pack the different
material (soil, sand, and rocks) in order to fill goaf. The monitoringof the strata in
goaf is importantto assess the stability and strength of the structure and to reduce
subsidence. The gas accumulation in goaf carries the risk of explosion. Therefore,
goafs are also monitoredusing gas sensors.

8.4.7 Mine Fire Monitoring

One major concern in mines is fire hazard. The mine fire causality is attributed to
friction, explosions, and combustion. The coal mines are more prone to mine fires
as compared to the mineral mines because of being innate oxidized. In coal mines,
fire proliferation process is very rapid. Therefore, accurate and robust fire warning
systems are needed. The sustainability mining IoT enables fire detection, control
and warning systems through sensing of temperature, and gas. The IR sensors are
used for the purpose of temperature at various locations in the mines. The ratios
of concentration of oxygen and carbon monoxide at various places in mine needs
continuous sensing. Accordingly, alarm is generated based on the threshold values.
The 3D temperature maps are also helpful in mine monitoring.

8.4.8 Conveyor Belt Monitoring

A conveyor belt is used in many mines for long haul mineral and coal transport.
The conveyor belt monitoring includes broken ball and idle bearings, broken cage,
and failure detection on the belt. A fiber optic cable alongside the belt which detects
these failures by using pulse transmission and Rayleigh back-scatter. Accordingly,
the sustainable mining IoT enables smart conveyor belt control, sensing, and
communicationssystems.

8.4.9 Water Monitoring

The groundwater is significantly impacted by the mining activities. The groundwater
incursions happens because of the cracks and geological faults in structuresand high
water pressure and the temperature. The water properties monitoring is important
due to many factors to prevent the water related hazards and to prevent deterioration
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of water quality. The groundwater has high resistivity (reciprocal of conductivity).
Hence, resistivity based geophysical sensing methods are employed to water sensing
in sustainable mining IoT.

8.4.10 Miners Tracking

By using miner tracking, the fall hazards can be detected and trapped miners can
also be located in case of accidents. The localization methods are used to locate
miners in mines. The wireless and wires localization approaches are utilized by
using general communicationequipmentsuch as routers. Accordingly, the 3D maps
can be produced showing mine workers location.

8.5 Paradigm-Shift Technologies for Sustainable Mining IoT

Many novel paradigm-shift technologies are emerging in mining.

• Autonomous mining. In this fully robotic based mining process, the robotics
systems are used for undergroundmining. In fully automatedand manless mines,
the robots can operate drills in mines (remote connected drilling) and ore carriers
(self-driving ore trucks). The autonomousmining systems can be used in harsh,
remote, and inaccessible areas (e.g., space and sea floor). Moreover, the robots
can work alongside humans as assistants and carry out the mine monitoring and
producing mine images.

• Waste utilization. It includes use of mine waste in construction industry and
building material (such as tiles, bricks, cement, and pozzolana).

• Biomining. In biomining, the biological agents (e.g., bacteria, virus, and other
microbes) are employed in the metals, minerals, and coal extractionprocess from
the ores and rocks. This has become possible because of the recent advancements
in the genetic manipulations of microorganisms. These techniques are more
energy efficient and produce less pollution.

• Advanced rock fragmentation analyses. Development of new methods to find
distribution of fragment size and uniformity index.

• Soil reclamation. It includes rapid development of different types of soils in mine
wastes throughdifferent methods including vegetation.

8.6 3D Underground Mine Modeling

The underground mine safety threat include falling rocks, suffocation, and explo-
sions. The 3D underground mine models help to improve the safety of miners
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and provide easy navigation. These are also utilized to characterize and assess
resources, in geochemical mine engineering, groundwater modeling, and geother-
mal resources, stochastic coupled dynamical systems, and reservoirs. The reliable
3D scans and models can be produced by using different methods such as by
using photogrammetry solutions and laser scanner. Modeling and visualization
approaches also use virtual reality for training, and in design of engineering systems,
and to model fluid flow.

• Photogrammetry systems use high resolution photographs of the mine sites to
generate 3D models by using advanced commercial cameras.

• Laser scanners use time of travel of the laser waves (IR pulses) to produce high
quality images by using point cloud model at different position and orientation.
Laser scanners produce accurate maps and are capable of operating at long-range
distances.

8.7 Use of Time-Domain Reflectometry in Mining

The time-domain refractometer is an emerging technology to ascertain ground
movements in surface mines, tailings, and undergroundmines related subsidence. It
is also used for subsidence and slant monitoring.It operates by sending EM pulses in
transmission line (coaxial cables) and then detecting the reflections resulting from
faults. The time of travel of the pulses is used to calculate distance based on the
speed of the wave propagation. By using the TDR approach, ground movements
can be detected throughmagnitude and rate of able deformation.

A time-domainreflectometry system with transmissioncable is shown in Fig. 8.3.
It consists of a pulse generator, oscilloscope, and a sampler. The reflected wave (also
shown in Fig. 8.3) is used to determine the properties of the understudymaterial.

8.7.1 Treatment Technologies for Mining-Influenced Water

The mining-influenced water (MIW) is defined as any water whose chemical
composition has been affected by mining or mineral processing and includes
acid rock drainage (ARD), neutral and alkaline waters, mineral processing waters,
and residual waters. MIW can contain metals, metalloids, and other constituents
in concentrations above regulatory standards. The steps involved in mine water
treatment process are shown in Fig. 8.4. Some major MIW treatment technologies
are shown in Table 8.1.
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Fig. 8.3 Typical TDR system and waveform of a TDR penetrometer showing travel time
determinedusing the dual-tangent-linemethod and a constant time offset [7]

Fig. 8.4 The mine water treatmentprocess. [44]
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Table 8.1 The MIW treatmenttechnologies

Technology Description Elements treated Limitations
Electrocoa-
gulation

The electrolysis MIW with
cathodes and anodes

Arsenic, copper, lead, zinc, total
suspended solids, heavy metals,
phosphates

High energy
consumption

Bioreactors The contaminants
transformationusing
microorganisms

Selenium, cadmium, copper,
nickel, lead, zinc, arsenic,
chromium

Large footprint

Aquafix pH levels raise Aluminum, copper, iron,
manganese, zinc

Iron hydroxides
clogging and
granular lime
accumulation

Nanofiltration
membrane
technology

Semi-permeable membrane
based filtration

Metals, sulfate Low tolerance
levels of
membrane

Photoreduction Ultraviolet light the
electron-hole pair
generation using ultraviolet
light (wavelength of 380
nanometers)

Selenium Sophisticated
equipment

Successi ve
alkalinity
producing
system

The combined organic
substrate and ALD system

Acidity, aluminum, copper, iron,
manganese, zinc

Complicated
design

Reverse
osmosis

Pressure driven separation Metals, sulfate Requirements of
high operating
pressure

Permeable
reactive
barriers
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8.8 Applications of Nanotechnology in Mining

Nanotechnology is a developing field through which unique systems, devices, and
materials are created in dimensions of nanometers (1–100 nm). Recently many
advancements have been made in the field of biotechnology in mining. Novel
nanoscale materials (e.g., dendrimers, nano-tubes, ferritin, metalloporphyrinogens,
and silica) are being developed for contaminant adsorption and destruction con-
taminants through in situ or ex-situ techniques in groundwater remediation. The
nano-materials are classified into three different types: (1) nano zero-valent iron
(nZVI), (2) bi-metallic nanoscale particles (BNP), and (3) emulsified zero-valent
iron (EZVI). There is need to improve the performance and efficiency of these
nanoscale materials. The activated carbon (AC) is also being used for in situ reme-
diation of soil and groundwater by using emplacement of AC-based amendments.
Moreover, various types of sensors are also being developed using this technology.
Furthermore, researchers are working to get insights into the fate and transport of
various nanoscale materials in environment, to assess their persistence and toxic
impact on different biological systems.

8.9 Mining Site Uncluttering and Restoration

The sustainability miningIoT has a great potential in cleanup and restorationof min-
ing sites by providing characterizationtools for this purpose. The characterizationof
physical and chemical properties of the mine wastes is a complex process. However,
by using sensing tools for contamination sensing, the health and environmental
impact can mitigated along with selection of proper techniques for restoration and
prospective future use of forsaken mine lands.

The mines which are located close to the water sources can release main pollutant
of surface water also called abandoned mine drainage (AMD) to lower mines
under treatment, hence, causing recontamination, wastage of efforts and resources,
restoration delay. Therefore, the proper selection of mine treatment approach is
important. The sustainability IoT can benefit from this process of mine cleanup
and restoration through its connected, decision support based holistic approach.
Accordingly, the watershed contaminationcaused by these deserted mine lands can
be avoided by proper cleanup.

The approaches for mine cleanup and restoration are discussed in the following
section. The importantmining waste treatment technologies are also discussed.

• Electrokinetics—The electrokinetic remediation (ER) is operated by desorption
and elimination of polar organics and metals by applying electrical current
electrodes in ground. It is an in situ remediation technology that works in soils,
marine dredging, sludge, and mud having low value of permeability. It can treat
a wide range of concentrations from few ppm to high ppm. The applications of
the electrokinetic method of remediation are shown in Fig. 8.5.
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Fig. 8.5 Application of the electrokinetic method of remediation [5]

• Excavation and Disposal. The excavation and disposal process involves removing
contaminations by using heavy machinery in tailings, soil, and sediment. This
process is generally tailored to the specific site based in the site condition. After
the excavation, the targeted treatment techniques are applied to the remaining
material. The excavated material is either buried on site in a suitable depository
or it is transportedoff-site for reuse in recycling.

• The process of re-vegetation involves the re-planting and reclaiming the soil of
the mines in cleanup and restorationprocess.

• Soil Amendments. This process involves making amendment to soil by adding
nutrients to support re-planting. It revitalizes and enables sustainable plant life
development. Different factors are considered such as impact on subsurface,
likelihood of leaching to surface waters, and the potential impact on animal and
plant life.

• Covering. In covering approach the solid mining wastes are covered to reduce
environmental impacts of the waste. It also prevents erosion, harmful dust
emissions to the environment, and water contaminant leaking to the surface
water.

• Subaqueous Disposal. In this process the contaminatedmaterial is removed from
the surface and placed in subsurface environment to prevent exposure. It also
reduces waste oxidation, acid generation, and release of metals.

• Biosolids. In this approach the nutrient rich biosolids and other organic matter
materials are utilized for stabilization, reclamation, and re-vegetation of mine
wastes.
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• Chemical Stabilization. This ex-situ and in situ treatment approach uses phos-
phate (phosphoric acid) to reduce the transport of heavy metals. It is considered
as the permanentfix to the mine waste.

• Biological Treatment. The biological treatment uses a biological layer to filter
metals from the mining-influencedwater (MIW).

• Passivation Technologies. In this process the acid-generating materials are
passivated by removing contact of sulfide with water and oxygen. This can be
achieved by eliminating one of the water, sulfide minerals oxygen, and bacteria.

• It uses plants restoration in tailings, mining solid wastes (MSW), and mining-
impacted waters (MIW) and acts as a hydraulic control for drainage.

• Reuse and Reprocessing. After the application of the treatmenttechnologies, the
contaminantsare removed. Afterwards, the reuse and reprocessing technologies
turnthe leftover mine waste into environmentsafe useful products.

8.10 Sensing in Sustainable Mining IoT

The sustainable mining IoT can be used to sense surface and groundwater in
mines and geo-technical behavior of tailings as they transitionfrom mineral slurries
to soils. Remote sensing including unmanned aerial systems (UAS) and satellite
imagery can be used to analyze, assess, monitor, and identify mining activities,
water properties, soil contamination, and active geological faults. The sensing
technologies for sustainable mining IoT are discussed in this section.

8.10.1 Ore Bodies Sensing

In this section, different approaches for ore bodies sensing are discussed.

8.10.1.1 Underground Gravity Sensing and Rock Mapping

Gravity measurements is a process to locate locating deposits of ore bodies and
dense metallic minerals in Earth’s crust. Accordingly, the mapping of different ore
bodies, types of rocks, and their geological structures is carried out. It can be used
to produce density layers at different depths. The gravity and density distribution is
impacted by changes in rock strain and stress, relocation due to slides, and water
infiltration. A special instrumentcalled the gravimeter is used for gravity sensing.
There are two types of the gravity meters: (1) absolute, and (2) relative gravity meter.
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Fig. 8.6 The sensitivity range of various types of magnetometers. [6]

8.10.1.2 Magnetic Sensing

The steel materials, mineral ore deposits, and sedimentary rocks impact the
magnetic field of the earth. A magnetic sensing is done to sense and map these
changes in the magnetic field of the earth. Many different features of the ores can
be mapped (e.g., location, size, and shape). Magnetometers, a very high precision
instrument, are used to conduct the magnetic sensing by measuring the magnetic
field. The magnetometers use an electric coil as antenna by employing proton rich
fluids. When the current is applied, it generates a magnetic field, which causes the
polarization of protons. Accordingly, the magnetic flux density is measured. There
are two types of magnetometers used for sensing: (1) vector magnetometers, and
(2) scalar magnetometers (quantummagnetometers). Magnetic sensing can be done
using magnetometers mounted on aircraft. However, the aerial magnetic sensing is
challenging due to the height and terrain issues. To overcome this challenge, the
backpack mounted Overhauser quantum gradiometer can be used. The sensitivity
range of various types of magnetometers is shown in Fig. 8.6.
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8.10.1.3 Ground Penetrating Radar Subsurface Sensing

In mining operations the ground penetrating radar (GPR) is widely used sens-
ing/imaging method used to identify underground objects and structures (fractures,
joints, and faults) by using radarpulses. GPR operates by transmittingthe EM waves
to the earth by using one antenna as transmitter and other antenna as a receiver to
receive the reflected signal. The bedrock depth in the subsurface environment is
obtained using GPR which is then subsequently used for analysis purpose (e.g.,
planning, texture, and density estimation). Other applications include explorations
of minerals, mass stability, grading of deposits, and marking of ore zones.

• Tunneling and Underground Mines. The GPR provide solutions to many of the
geological issues (rock mass stability examination, exploitation of mineralogy
zones for potash and salt) by providing deep insights into the subsurface
environment.

• Placer and Mineral Exploration. The GPS is commonly used in exploration of
the iron-rich minerals, diamond and gold fluvial deposits (gold and diamonds)
and beach deposits (e.g., titanium) and iron-rich heavy minerals. It is also used
to detect and track fault zones, mineral veins, and in nickel exploration.

• Structural Integrity Sensing. The GPR can sense the integrity of the structures to
detect cracks and other issues for development and planning purpose.

8.10.1.4 Seismic Sensing

In seismic sensing approach, the shock waves are transmitted through the Earth.
The propagation speed of these waves is impacted by the density and other
properties of the rocks. These variations in the speed of the wave are used to
identify different underground materials. Generally, the transverse, exchange, and
longitudinal waves are employed. Different seismic sensing approaches include
side-scan sonar, wireless, flip-flop source, and slip sweep.

8.10.1.5 Tomographic Sensing

The tomography is used to measure and visualize the three-dimensional(3D) Earth’s
reflectivity and velocity distribution, by using multiple transmitters and receivers.
Different types of the tomographic sensing are discussed below:

• In transmission tomography, the propagation measurements are done in different
type of wireless channels (e.g., surface to borehole, surface to surface, and
borehole to borehole). The borehole tomography is used for exploration and
identification of underground geological structures and soil profile. A setup for
the field experiment is shown in the Fig. 8.7.



8.10 Sensing in Sustainable Mining IoT 263

Fig. 8.7 Setup of the field experiment. (a) Schematic of the experimental field setup. (b) Sample
of the surroundingmedia. (c) Subsurface system of the borehole radar [30]
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• The reflection tomography is based on the reflection seismology.
• In diffraction tomography, the Fermat’s principle is used for analysis instead of

Snell’ s law.

8.10.2 Mine Water Sensing

The groundwater sensing in mining operations is vital to assess the quality and to
detect variations in chemical properties of the water both in underground and at
point of emission. It is required to ensure compliance with regulatory standards.
The water mine sensing can also be used to control the flow and emissions of mine-
influenced water (MIW) in and aroundmining sites.

8.10.3 Remote Sensing

8.10.3.1 Hyperspectral Sensing

Hyperspectral sensing is a remote sensing approach, also known as imaging
spectroscopy, and is used to detect and identify minerals. It operates by sensing
absorption characteristics which are affected by presence of chemical bonds in a
gas, solid, and liquid. A spectrometer is used to distinguish and measure different
spectral components. Accordingly, a map or cube representation of the ground
surface mineralogy is developed. The accurate hyperspectral sensing depends on
the type, resolution, quality, signal-to-noise ratio (SNR) and its wavelength of
spectrometer, and the absorption properties of the minerals understudy.

8.10.3.2 Thematic Sensing and Mapping

The Landsat Thematic Mapper is a high resolution multi-spectral mineral scanner
with support for spectrum separation. With an opto-mechanical sensor, it provides
30 m resolution with capability to operate in 7 different bands.

8.10.4 Multi-Spectral Scanner

The multi-spectral scanner (MSS) transmits the S-band radio frequency spectrum
used for control of the satellite, and so is not affected by the Thematic Mapper’s
communicationdifficulties.
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8.10.5 Mine Water Contamination Sensors

The pathogens that are found in mine-influencedwater and toxic substances present
a major sustainability challenge. The detection of these disease-causing substances
can be done using chemical and biological sensors. These sensors can be deployed in
underwater and underground environments. These sensors operate by using organic
transistors and fictionalized gate electrode, where molecularly imprinted polymer
(MIP) enables detection of bio-chemical compounds. It can be integrated with
sustainability IoT paradigm using wireless communications.

8.10.6 Sensor Technologies for Gas Leaks in Mines

Gas sensors are used to sense gas pressure in mines and play a major role to detect
gas leaks in mines. These sensors are characterized based on different parameters
which are explained in the following:

• Dynamic Range. Quantity range from low to high concentrations
• Sensitivity. A measure to detect small variations
• Limit of Detection (LOD). Sensing ability to detect lowest quantity (concentra-

tion)
• Resolution. A measure to detect smallest variation
• Selecti vity. Capacity to different gases
• Response time. Time required from absent to particular quantity
• Linearity. Graphical representationin calibrated values in straight line
• Stability. Time durationto operate for longer time periods

In sustainable mining IoT, gas sensors enable real-time actuation in mines. Many
types of sensor technologies for gas leak sensing are discussed in the following.

8.10.6.1 Pellistor Sensor

The combustible gases need a certain temperature for ignition but in catalytic
combustion due to certain chemicals the combustion can happen well below the
certain temperature. A pellistor is sensor used to sense combustible gases. It has
two types: catalytic and thermal conductivity (TC).

• The catalytic sensor is based on glass-covered wire coil catalyst coated wire.
When the coil is heated its temperature increases with heat generated from gas
burning. Accordingly, the variation in resistance is measured.

• Thermal conductivity sensors are used for sensing based on the thermal con-
ductivity variations of various gases in mines such as hydrogen, helium, and
methane, 0%–100% volume.
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8.10.6.2 Infrared Gas Sensor

The infrared gas sensing method uses infrared light for combustible hydrocarbon
gas. The component of the sensor includes optical IR transmitter, receiver, and a
wave length filter. The molecules absorb and emit energy IR waves depending on
their properties. The absorbing molecules vibrate more as compared to reflected
molecules.

8.10.6.3 Electrochemical Sensors

The electrochemical sensors consist of fuel cells and contain a cathode, an anode,
and electrolyte. These are used to detect toxic gases and oxygen. A current is
generated due to chemical reaction when the target gas is detected in fuel cell. The
produced currentrepresents the volume of the gas and is used for sensing.

8.10.6.4 Semiconductor Sensor

These semiconductor sensors are used for sensing of combustible hydrocarbon gas
(CHC) gases. These are manufactured using silicon substrate. The gas being sensed
leads to variations in conductivity of the substrate when heated. These sensors have
low current leakage and capacitance.

8.10.6.5 Laser Sensor

Different types of the laser sensors are explained in the following:

• Tunable Diode Laser Absorption Spectroscopy. It has two components, (1)
tunable diode lasers and (2) laser absorption spectrometer. TDLAS is used to
measure gas concentration in methane and water vapor. These receivers sense
the wavelength unabsorbed by concentration.

• Differential Sensor (LiDAR). It is based on backscattering wave strength from
the concentrationand operates in IR, UV, visible wavelengths.

8.10.6.6 Other Gas Sensors

• Fiber Optic Gas Sensor. The fiber optics sensors work on the principle of
measuring the wavelength by the absorption of the target analyte.

• Mass Sensor. The Flame Ionization Detector (FID) is used to sense hydrocarbon
gas concentrationand operates on mass sensing instead of concentrationsensing.

• PhotoionizationDetector. It works by sensing the organic volatile componentsin
UV spectrum by using mobile ion spectrometer technique.
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• An array of micro-electro-mechanical sensors (MEMS) on silicon substrate is
used to sense different gases.

• Hydrogen Sensor. This works by detection of the resonant frequency due to
molecular adsorption.

8.10.7 Autonomous Sensing of Groundwater Quality in Mines

A mining site contains multitude wells which requires the autonomous sensing
systems. Therefore, sensing of the quality of the groundwater is of critical impor-
tance during mining operations. These sensors system in sustainable mining IoT
improves the efficiency of mining operations by data collection and real-time
decision making systems. The cloud technology is also useful in mine sensing
and automation. Overall, the sustainability mining IoT has the strong potential for
beneficial improvements in all areas of mining including machinery monitoring,
mine sensing, exploration and mining technology advancement, environmental
monitoring,and cleanup and restoration.

8.11 Global Sustainability Efforts

The following organizations are supportingthe sustainable mining efforts [37]:

• The American Society of Mining and Reclamation
• The Australasian Institute of Mining and Metallurgy
• The Canadian Institute of Mining, Metallurgy and Petroleum
• The European Federation of Geologists
• The Iberoamerican Association of Mining Education
• The Institute of Geologists of Ireland
• The Peruvian Institute of Mining Engineers
• The Society for Mining, Metallurgy, Resource and Environmental Technology
• The Society of Mining Professors
• The South African Institute of Mining and Metallurgy
• The Spanish Association of Mining Engineers

8.12 Wireless Communications in Sustainable Mining IoT

The importance of the wireless communications in sustainable mining IoT cannot
be overemphasized. It provides connectivity among different sensing and moni-
toring components of the IoT paradigm and enables real-time decision making
by integration of different components of the system. The over-the-air (OTA)
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wireless communications discussed in Chap. 1 have limited application in some
type of mining activities such as underground due to the higher path loss of
radio wave propagation in wireless underground communication channel. The
higher attenuation as compared to OTA is caused by the complex permittivity of
the geological strata, and other multi path components forming from the uneven
structureof the mines which block the line of sight (LoS) path. Therefore, empirical
channel modeling and impulse response analysis are needed for detailed insights
into the physics of radio wave propagation in mines.
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