9 research outputs found

    Understanding Android Obfuscation Techniques: A Large-Scale Investigation in the Wild

    Get PDF
    In this paper, we seek to better understand Android obfuscation and depict a holistic view of the usage of obfuscation through a large-scale investigation in the wild. In particular, we focus on four popular obfuscation approaches: identifier renaming, string encryption, Java reflection, and packing. To obtain the meaningful statistical results, we designed efficient and lightweight detection models for each obfuscation technique and applied them to our massive APK datasets (collected from Google Play, multiple third-party markets, and malware databases). We have learned several interesting facts from the result. For example, malware authors use string encryption more frequently, and more apps on third-party markets than Google Play are packed. We are also interested in the explanation of each finding. Therefore we carry out in-depth code analysis on some Android apps after sampling. We believe our study will help developers select the most suitable obfuscation approach, and in the meantime help researchers improve code analysis systems in the right direction

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Resilient and Scalable Android Malware Fingerprinting and Detection

    Get PDF
    Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual analysis of such a large volume of malware is daunting and time-consuming. The diversity of targeted systems in terms of architecture and platforms compounds the challenges of Android malware detection and malware in general. This highlights the need to design and implement new scalable and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a malware fingerprinting framework to cover accurate Android malware detection and family attribution. In this context, we emphasize the following: (i) the scalability over a large malware corpus; (ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms and architectures. In the context of bulk and offline detection on the laboratory/vendor level: First, we propose an approximate fingerprinting technique for Android packaging that captures the underlying static structure of the Android apps. We also propose a malware clustering framework on top of this fingerprinting technique to perform unsupervised malware detection and grouping by building and partitioning a similarity network of malicious apps. Second, we propose an approximate fingerprinting technique for Android malware's behavior reports generated using dynamic analyses leveraging natural language processing techniques. Based on this fingerprinting technique, we propose a portable malware detection and family threat attribution framework employing supervised machine learning techniques. Third, we design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis techniques to generate relevant, actionable, and granular intelligence that can be used to identify the threat effects induced by malicious Internet activity associated to Android malicious apps. In the context of the single app and online detection on the mobile device level, we further propose the following: Fourth, we design a portable and effective Android malware detection system that is suitable for deployment on mobile and resource constrained devices, using machine learning classification on raw method call sequences. Fifth, we elaborate a framework for Android malware detection that is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. We also evaluate the portability of the proposed techniques and methods beyond Android platform malware, as follows: Sixth, we leverage the previously elaborated techniques to build a framework for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction with advanced deep learning techniques

    Using honeypots to trace back amplification DDoS attacks

    Get PDF
    In today’s interconnected world, Denial-of-Service attacks can cause great harm by simply rendering a target system or service inaccessible. Amongst the most powerful and widespread DoS attacks are amplification attacks, in which thousands of vulnerable servers are tricked into reflecting and amplifying attack traffic. However, as these attacks inherently rely on IP spoofing, the true attack source is hidden. Consequently, going after the offenders behind these attacks has so far been deemed impractical. This thesis presents a line of work that enables practical attack traceback supported by honeypot reflectors. To this end, we investigate the tradeoffs between applicability, required a priori knowledge, and traceback granularity in three settings. First, we show how spoofed attack packets and non-spoofed scan packets can be linked using honeypot-induced fingerprints, which allows attributing attacks launched from the same infrastructures as scans. Second, we present a classifier-based approach to trace back attacks launched from booter services after collecting ground-truth data through self-attacks. Third, we propose to use BGP poisoning to locate the attacking network without prior knowledge and even when attack and scan infrastructures are disjoint. Finally, as all of our approaches rely on honeypot reflectors, we introduce an automated end-to-end pipeline to systematically find amplification vulnerabilities and synthesize corresponding honeypots.In der heutigen vernetzten Welt können Denial-of-Service-Angriffe große Schäden verursachen, einfach indem sie ihr Zielsystem unerreichbar machen. Zu den stärksten und verbreitetsten DoS-Angriffen zählen Amplification-Angriffe, bei denen tausende verwundbarer Server missbraucht werden, um Angriffsverkehr zu reflektieren und zu verstärken. Da solche Angriffe jedoch zwingend gefälschte IP-Absenderadressen nutzen, ist die wahre Angriffsquelle verdeckt. Damit gilt die Verfolgung der Täter bislang als unpraktikabel. Diese Dissertation präsentiert eine Reihe von Arbeiten, die praktikable Angriffsrückverfolgung durch den Einsatz von Honeypots ermöglicht. Dazu untersuchen wir das Spannungsfeld zwischen Anwendbarkeit, benötigtem Vorwissen, und Rückverfolgungsgranularität in drei Szenarien. Zuerst zeigen wir, wie gefälschte Angriffs- und ungefälschte Scan-Datenpakete miteinander verknüpft werden können. Dies ermöglicht uns die Rückverfolgung von Angriffen, die ebenfalls von Scan-Infrastrukturen aus durchgeführt wurden. Zweitens präsentieren wir einen Klassifikator-basierten Ansatz um Angriffe durch Booter-Services mittels vorher durch Selbstangriffe gesammelter Daten zurückzuverfolgen. Drittens zeigen wir auf, wie BGP Poisoning genutzt werden kann, um ohne weiteres Vorwissen das angreifende Netzwerk zu ermitteln. Schließlich präsentieren wir einen automatisierten Prozess, um systematisch Schwachstellen zu finden und entsprechende Honeypots zu synthetisieren

    On the Use of Migration to Stop Illicit Channels

    Get PDF
    Side and covert channels (referred to collectively as illicit channels) are an insidious affliction of high security systems brought about by the unwanted and unregulated sharing of state amongst processes. Illicit channels can be effectively broken through isolation, which limits the degree by which processes can interact. The drawback of using isolation as a general mitigation against illicit channels is that it can be very wasteful when employed naively. In particular, permanently isolating every tenant of a public cloud service to its own separate machine would completely undermine the economics of cloud computing, as it would remove the advantages of consolidation. On closer inspection, it transpires that only a subset of a tenant's activities are sufficiently security sensitive to merit strong isolation. Moreover, it is not generally necessary to maintain isolation indefinitely, nor is it given that isolation must always be procured at the machine level. This work builds on these observations by exploring a fine-grained and hierarchical model of isolation, where fractions of a machine can be isolated dynamically using migration. Using different units of isolation allows a system to isolate processes from each other with a minimum of over-allocated resources, and having a dynamic and reconfigurable model enables isolation to be procured on-demand. The model is then realised as an implemented framework that allows the fine-grained provisioning of units of computation, managing migrations at the core, virtual CPU, process group, process/container and virtual machine level. Use of this framework is demonstrated in detecting and mitigating a machine-wide covert channel, and in implementing a multi-level moving target defence. Finally, this work describes the extension of post-copy live migration mechanisms to allow temporary virtual machine migration. This adds the ability to isolate a virtual machine on a short term basis, which subsequently allows migrations to happen at a higher frequency and with fewer redundant memory transfers, and also creates the opportunity of time-sharing a particular physical machine's features amongst a set of tenants' virtual machines

    Modellierung ortsabhängiger Zugriffskontrolle für mobile Geschäftsprozesse

    Get PDF
    Der Einsatz mobiler Computer wie Smartphones für die Abarbeitung mobiler Geschäftsprozesse bringt neben großen Vorteilen auch spezifische Sicherheitsherausforderungen mit sich. Als ein Lösungsansatz hierfür wird "ortsabhängige Zugriffskontrolle" verfolgt. Die Grundidee dabei ist es, den aktuellen Aufenthaltsort des Nutzers für die Zugriffskontrollentscheidung auszuwerten. Zur Modellierung solcher Ortseinschränkungen wird eine auf UML-Aktivitätsdiagrammen aufbauende Notation eingeführt
    corecore