
On the Verification of Computation and

Data Retrievability

Christian Janson

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Information Security Group

School of Mathematics and Information Security

Royal Holloway, University of London

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77298454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

These doctoral studies were conducted under the supervision of Professor Carlos Cid.

The work presented in this thesis is the result of original research carried out by myself,

in collaboration with others, whilst enrolled in the Department of Information Security

as a candidate for the degree of Doctor of Philosophy. This work has not been submitted

for any other degree or award in any other university or educational establishment.

Christian Janson

July, 2016

2

Acknowledgements

First and foremost, I am very grateful to my PhD supervisor Carlos Cid for his super-

vision and advice guiding me through the process of completing this thesis. Thank you

for letting me work on exciting research areas even though they were not completely

in your area of expertise, and for your support of my attendance of many exciting and

useful events.

I also wish to express my gratitude to my adviser Kenny Paterson for helpful discussions

about cryptography in general as well as assisting me with career related advice. I wish

to thank the former director of the ISG, Keith Martin, for all the opportunities and

financial support to attend conferences, as well as many exciting squash and badminton

matches. I thank Martin R. Albrecht for many helpful discussions and suggesting the

Information Security Group to start a PhD in the first place which was certainly a

great choice. I also wish to thank Michael Hortmann for introducing me to the exciting

world of cryptography during my math studies.

I am thankful to have collaborated with James Alderman, Frederik Armknecht, Carlos

Cid, Jason Crampton, Sarah Louise Renwick and Christian A. Reuter.

I am indebted to all PhD students and members of staff of the ISG for providing me

with such a pleasant environment as well as friends I have met outside the academic

scope. In particular, I wish to thank Alex, Alexandre, Andrew, Bertfried, Christian,

Dale, Dean, Ela, George, Greg, Gordon, Guillermo, Johanna, Jovares, Martin, Muza-

mil, Mwawi, Rob, Sam, Thalia, Thyla and Victor.

I deeply thank Eugenio, Konstantinos, Matteo and Pavlo for many memories that will

always be part of my life. Especially the many matches of squash at Kingswood and

badminton at the sports centre provided me with many hours of happiness and mem-

orable stories.

A special thank you goes out to Team Llama a.k.a Dan, James, Naomi and Rachel.

Many thanks for all the outings in and around London, the many escape rooms we

successfully escaped, coffee, sometimes tea, teaching me proper (northern) English as

well as discussing cryptographic problems. Especially, I thank James for being an in-

credible co-author.

To my friends at home I would like to thank Matthias, Mischa, Thilo and Thommy for

the many adventures we have experienced and the ones ahead of us.

3

Many thanks to my family. Especially, I thank my aunt Silvia for her endless support,

love, and help when it was needed the most. I also wish to thank my late parents,

Elisabeth and Joachim, for their love and sacrifices made to provide me with a good

education.

Last, but certainly not least, I thank Wiebke for all her love, patience and encourage-

ment over this period of time. Thank you for supporting me going abroad and pursuing

this path. All of this would have not been possible without you and the real adventure

has just started.

Christian Janson

4

Abstract

The cloud model offers many useful services such as storage and computing solutions

that enrich our daily lives. However, there is a restriction in using the cloud’s optimal

potential since the client relies on trusting the cloud completely. This blind faith can

easily be exploited by the cloud by lying about computational results or deleting data;

making verification of results a desirable property to obtain a level of assurance while

relaxing the trust assumption.

Publicly verifiable computation (PVC) enables a computationally-limited client to out-

source computations to an untrusted server and to verify correctness of the returned

results. Servers providing such a service may be rewarded per computation, providing

an incentive to cheat by returning malformed results rather than devoting time and

resources to compute a valid result. In this thesis, we extend a previous approach using

attribute-based encryption (ABE) to enable a broader system model for PVC such that

servers may compute multiple functions and if found cheating, are revoked from the

system. We show that different types of ABE accommodate different system models

and ultimately show that dual-policy ABE unifies all ABE based PVC models into

a hybrid model which can flexibly switch between the models at the cost of a single

setup.

Proofs of retrievability (PoR) enable a client to outsource data to an untrusted server

and allow the client to request a proof that the data stored can be retrieved, which the

client can verify. We construct a somewhat practical scheme that enables the client to

request proofs of retrievability of multiple different-sized files with a single request. This

is achieved by using homomorphic properties to aggregate a proof into a small value.

Furthermore, using combinatorial and statistical tools we derive strategies obtaining an

assurance whether the server retains enough information to deliver the original data.

5

Contents

1 Introduction 14

1.1 Motivation . 14

1.2 Organisation of Thesis . 16

2 Background Material 18

2.1 Preliminaries . 18

2.1.1 Notation . 18

2.1.2 Provable Security . 20

2.2 Encryption Schemes . 21

2.2.1 Symmetric Encryption Schemes 21

2.2.2 Public-key Encryption Schemes 25

2.3 Attribute-based Encryption . 26

2.3.1 Key-policy Attribute-based Encryption 26

2.3.2 Revocable Key-policy Attribute-based Encryption 28

2.3.3 Ciphertext-policy Attribute-based Encryption 32

2.3.4 Dual-policy Attribute-based Encryption 36

2.3.5 Instantiation of Attribute-based Encryption Schemes 38

2.3.5.1 Linear Secret Sharing Schemes 38

2.3.5.2 Bilinear Maps and Hardness Assumptions 39

2.3.5.3 Terminology for Binary Trees 40

2.4 Searchable Encryption . 40

2.5 Digital Signatures . 43

2.6 One-way Functions . 44

2.7 Verifiable Outsourced Computation . 45

2.7.1 Non-interactive Verifiable Outsourced Computation 46

2.7.2 Publicly Verifiable Outsourced Computation 50

2.7.3 Construction of Publicly Verifiable Computation Schemes 55

2.8 Proofs of Retrievability . 57

3 Revocation in Publicly Verifiable Outsourced Computation 64

3.1 Introduction . 64

3.2 Revocable Publicly Verifiable Outsourced Computation 67

3.2.1 Key Distribution Centre . 68

6

CONTENTS

3.2.2 Standard Model . 69

3.2.3 Manager Model . 69

3.2.4 Formal Definition . 71

3.3 Security Models . 73

3.3.1 Ideal Security Properties . 74

3.3.1.1 Public Verifiability . 74

3.3.1.2 Revocation . 77

3.3.1.3 Vindictive Server . 79

3.3.1.4 Vindictive Manager . 82

3.3.2 Restricted Security Properties . 84

3.3.2.1 Selective Public Verifiability 85

3.3.2.2 Selective, Semi-static Revocation 86

3.3.2.3 Selective Vindictive Manager 89

3.4 Construction . 91

3.4.1 Technical Details . 92

3.4.1.1 Handling Multiple Servers 92

3.4.1.2 Handling Multiple Functions 93

3.4.2 Instantiation Details . 94

3.5 Proofs of Security . 101

3.5.1 Selective Public Verifiability . 101

3.5.2 Selective, Semi-static Revocation 107

3.5.3 Vindictive Servers . 111

3.5.4 Selective Vindictive Manager . 113

3.6 Conclusion . 119

4 Publicly Verifiable Delegable Computation 121

4.1 Introduction . 121

4.2 Publicly Verifiable Delegable Computation 124

4.2.1 Formal Definition . 125

4.2.2 Possible Applications of VDC . 127

4.3 Security Model . 128

4.3.1 Public Verifiability . 128

4.4 Construction . 129

4.4.1 Overview . 129

4.4.2 Instantiation Details . 131

4.5 Proof of Security . 135

4.6 Conclusion . 140

5 Hybrid Publicly Verifiable Outsourced Computation 141

5.1 Introduction . 141

5.2 Hybrid Publicly Verifiable Outsourced Computation 143

7

CONTENTS

5.2.1 Informal Overview . 145

5.2.2 Formal Definition . 145

5.2.3 Modes of Computation . 147

5.2.3.1 RPVC . 148

5.2.3.2 VDC . 148

5.2.3.3 RPVC-AC . 149

5.3 Security Models . 153

5.3.1 Selective Public Verifiability . 153

5.3.2 Selective, Semi-static Revocation 154

5.3.3 Selective Authorised Computation 156

5.4 Revocable Dual-policy Attribute-based Encryption 157

5.4.1 Formal Definition . 158

5.4.2 Security Model . 160

5.4.3 Construction of a rkDP-ABE scheme 160

5.4.4 Security Proof . 165

5.5 Construction . 175

5.6 Proofs of Security . 182

5.6.1 Selective Public Verifiability . 182

5.6.2 Selective, Semi-static Revocation 189

5.6.3 Selective Authorised Computation 193

5.7 Conclusion . 196

6 Extended Functionality in Verifiable Searchable Encryption 197

6.1 Introduction . 197

6.2 Extended Verifiable Searchable Encryption 199

6.2.1 Informal Overview . 199

6.2.2 Formal Definition . 200

6.3 Security Models . 204

6.3.1 Public Verifiability . 204

6.3.2 Selective Index Privacy . 205

6.3.3 Selective Query Privacy . 206

6.4 Construction . 207

6.4.1 Overview . 207

6.4.2 Data Encoding . 208

6.4.3 Formal Details . 211

6.4.4 Instantiation Details . 212

6.5 Proofs of Security . 219

6.5.1 Public Verifiability . 219

6.5.2 Index Privacy . 223

6.5.3 Query Privacy . 226

6.6 Conclusion . 229

8

CONTENTS

7 Cloud Storage Proofs of Retrievability 231

7.1 Introduction . 231

7.2 Cloud Storage Proofs of Retrievability 234

7.2.1 Storage Container . 236

7.2.2 Formal Definition of CSPoR . 236

7.3 Security Model . 239

7.4 Construction . 241

7.5 Practicability of CSPoR . 245

7.5.1 Strategies for CSPoRP . 246

7.5.2 Audit Strategies for CSPoRP . 246

7.5.2.1 Workload Partition . 246

7.5.2.2 Statistical Hypothesis Testing 253

7.5.2.3 Certificates . 255

7.5.2.4 Scheduled CSPoR . 255

7.5.3 Handling Erasure Detection Using CSPoR 255

7.5.3.1 Immediate Download 256

7.5.3.2 Reduced CSPoR . 256

7.5.4 Communication Model . 257

7.5.5 Dynamic Updates . 259

7.6 Evaluation . 259

7.7 Conclusion . 265

8 Conclusion 266

Bibliography 267

9

List of Figures

2.1 The IND-CPA experiment ExpIND-CPA
A

[
SE , 1λ

]
. 23

2.2 The IND-CCA experiment ExpIND-CCA
A

[
SE , 1λ

]
. 24

2.3 The IND-sHRSS experiment ExpIND-sHRSS
A

[
KP-ABE , 1λ,U

]
. 31

2.4 The IND-CPA experiment ExpIND-CPA
A

[
CP-ABE , 1λ,U

]
. 34

2.5 The selective IND-CPA experiment ExpsIND-CPA
A

[
CP-ABE , 1λ,U

]
. . . 35

2.6 The selective IND-CPA experiment ExpsIND-CPA
A

[
DP-ABE , 1λ,U

]
. . . 37

2.7 The signature experiment ExpEUF-CMA
A

[
SIG, 1λ

]
. 44

2.8 The inverting experiment ExpInvert
A

[
g, 1λ

]
. 45

2.9 Basic operation of a verifiable outsourced computation scheme 46

2.10 The verifiability experiment ExpVerif
A

[
VC, 1λ, F

]
. 48

2.11 Basic operation of a publicly verifiable outsourced computation scheme . 51

2.12 The public verifiability experiment ExpPubVerif
A

[
PVC, 1λ, F

]
. 52

2.13 The multi-function verifiability experiment ExpMultiVerif
A

[
MFVC, 1λ

]
. 54

3.1 Operation of the standard model of a RPVC scheme 69

3.2 Operation of the manager model of a RPVC scheme 70

3.3 The ideal public verifiability experiment ExpPubVerif
A

[
RPVC, 1λ,F

]
. . 75

3.4 The public verifiability experiment with polynomial sized set of input

values ExpmPubVerif
A

[
RPVC, 1λ,F

]
. 76

3.5 The ideal revocation experiment ExpRevoc
A

[
RPVC, 1λ,F

]
. 79

3.6 The ideal vindictive server experiment ExpVindS
A

[
RPVC, 1λ,F

]
. 81

3.7 The ideal vindictive manager experiment ExpVindM
A

[
RPVC, 1λ,F

]
. . . 83

3.8 The selective public verifiability experiment ExpsPubVerif
A

[
RPVC, 1λ,F

]
86

3.9 The selective, semi-static revocation experiment

ExpsssRevoc
A

[
RPVC, 1λ,F , qt

]
. 87

3.10 The selective vindictive manager experiment ExpsVindM
A

[
RPVC, 1λ,F

]
90

4.1 Operation of a VDC scheme . 125

4.2 The public verifiability experiment ExpPubVerif
A

[
VDC, 1λ,F

]
. 129

5.1 Example poset L = 2{F,G,H} for RPVC with access control 151

5.2 The selective public verifiability experiment ExpsPubVerif
A

[
HPVC, 1λ,F

]
153

5.3 The selective, semi-static revocation experiment

ExpsssRevoc
A

[
HPVC, 1λ,F , qt

]
. 155

10

LIST OF FIGURES

5.4 The selective authorised computation experiment

ExpsAuthComp
A

[
HPVC, 1λ,F

]
. 157

5.5 The IND-sHRSS experiment ExpIND-sHRSS
A

[
RKDPABE , 1λ,U

]
. . . . 161

6.1 Operation of an EVSE scheme . 203

6.2 The public verifiability experiment ExpPubVerif
A

[
EVSE , 1λ

]
. 204

6.3 The selective index privacy experiment ExpsIndPriv
A

[
EVSE , 1λ

]
. 205

6.4 The selective query privacy experiment ExpsQueryPriv
A

[
EVSE , 1λ

]
. . . 207

7.1 Model of a CSPoR scheme with a detailed representation of a generic

storage container . 239

7.2 Illustration of the strategy reduced CSPoR 257

7.3 Payload P from C to S for different number of audits for outsourced

data of size 7.5 GiB . 261

7.4 Single audit size for different number of audits for outsourced data of

size 7.5 GiB . 261

7.5 Payload P from S to C for different number of audits for outsourced

data of size 7.5 GiB . 262

7.6 Required time T for a full CSPoRP execution for different number of

audits for outsourced data of size 7.5 GiB 262

7.7 Payload P from C to S for different number of audits for outsourced

data of size 65 TiB . 263

7.8 Single audit size for different number of audits for outsourced data of

size 65 TiB . 264

7.9 Payload P from S to C for different number of audits for outsourced

data of size 65 TiB . 264

7.10 Required time T for a full CSPoRP execution for different number of

audits for outsourced data of size 65 TiB 265

11

List of Tables

2.1 Mapping between PVC and KP-ABE parameters 57

3.1 Overview of entity population in various VC models 71

5.1 Parameter definitions for different modes of computation 148

6.1 Comparison of functionalities in searchable encryption schemes 218

7.1 An example of four randomised CSPoRP procedures each consisting of

three audits using the same parameters 251

7.2 All parameters for a CSPoRP execution with 480 files with a total size

of 7.5 GiB . 260

7.3 All parameters for a CSPoRP execution with 480 files with a total size

of 65 TiB . 263

12

Publications

The work in this thesis originates from the five papers listed below.

1. James Alderman, Christian Janson, Carlos Cid, and Jason Crampton. Revocation

in Publicly Verifiable Outsourced Computation. In D. Lin, M. Yung and J. Zhou,

editors, Information Security and Cryptology - 10th International Conference,

Inscrypt 2014, Beijing, China, December 13-15, 2014, Revised Selected Papers,

volume 8957 of Lecture Notes in Computer Science, pages 51–71. Springer, 2014.

2. James Alderman, Christian Janson, Carlos Cid, and Jason Crampton. Access

Control in Publicly Verifiable Outsourced Computation. In Proceedings of the

10th ACM Symposium on Information, Computer and Communications Security,

ASIACCS 2015, pages 657–662, New York, NY, USA, 2015. ACM.

3. James Alderman, Christian Janson, Keith M. Martin, and Sarah Louise Renwick.

Extended Functionality in Verifiable Searchable Encryption. In E. Pasalic and L.

R. Knudsen, editors, Cryptography and Information Security in the Balkans - Sec-

ond International Conference, BalkanCryptSec 2015, Koper, Slovenia, September

3-4, 2015, Revised Selected Papers, volume 9540 of Lecture Notes in Computer

Science, pages 187–205. Springer, 2015.

4. James Alderman, Christian Janson, Carlos Cid, and Jason Crampton. Hybrid

Publicly Verifiable Computation. In K. Sako, editor, Topics in Cryptology -

CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference 2016, San

Francisco, CA, USA, February 29 - March 4, 2016, Proceedings, volume 9610 of

Lecture Notes in Computer Science, pages 147–163. Springer, 2016.

5. Christian Janson, Christian A. Reuter, Frederik Armknecht, and Carlos Cid.

Cloud Storage Proofs of Retrievability. 2016. In Submission.

All authors contributed equally to the above publications.

13

Chapter 1

Introduction

Contents

1.1 Motivation . 14

1.2 Organisation of Thesis . 16

This chapter provides an overview of this thesis. We provide motivation for

the undertaken research and present the structure of this thesis.

1.1 Motivation

Cloud service providers are continuously gaining importance over the last few years.

They offer various services in numerous application domains such as storage, computing

services and key management services. The huge success of the cloud model is based

on offering various benefits such as flexible scalability, accessibility and easy manage-

ability to companies and individuals to employ cloud services in a cost effective manner.

The combination of Software-as-a-Service and the increasing use of mobile devices being

employed as general computing devices give rise to a considerable difference in compu-

tational power between cloud service providers (or servers) and clients. Thus, there is

a tremendous desire for clients to outsource the evaluation of complex functions to an

external server. Servers providing such a service may be rewarded per computation,

and as such have an incentive to cheat by returning malformed computational results

rather than devoting their precious resources and time to compute a correct result.

Thus, this enables servers to offer computational services to more costumers within the

same time frame and potentially increase their rewards.

For example, nowadays it is natural that a company may operate a “bring your own

device” policy, enabling employees to use personal smartphones and tablets for work.

Due to resource limitations, it may not be possible for these devices to perform complex

computations locally. Instead, a computation is outsourced over some network to

a more powerful server (possibly outside the company, offering Software-as-a-Service,

and hence untrusted) and the result of the computation is returned to the client device.

In formal terms, this means given a function F to be computed by a server S, the client

sends her personal input x to the server S that should return the computational result

14

1.1 Motivation

F (x) to the client. However, there may be an incentive for the server to cheat and thus

return an invalid result y to the client that does not correspond to the actual compu-

tational result F (x). The reason for such a behaviour may be that the server is simply

too busy or may not wish to devote any resources on performing computations, and

thus wishes to convince the client to accept a malformed result. Therefore, the client

has a natural desire to obtain some assurance that the returned result is indeed correct.

This problem, known as verifiable outsourced computation (VC), has attracted a lot

of attention in the research community recently. VC schemes provide a solution of

the above problem and enable a client to outsource computations to a powerful server

while providing her with the possibility of verifying the correctness of the computa-

tional result. The underlying efficiency requirement for VC schemes simply expects

that outsourcing and verifying of the computation take less time than computing the

function from scratch. Usually, VC schemes use an amortised notion of complexity for

the client, i.e. the client may perform an expensive pre-processing phase, but after this

stage, she is required to run very efficiently.

Further activities in this area lead to the notion of publicly verifiable outsourced com-

putation (PVC). This notion follows the same principles as above but enables after

the pre-processing any client to delegate and verify computations since these actions

simply rely on the public information of the system. PVC has the same efficiency re-

quirement as VC. PVC also uses an amortised notion of efficiency that requires a single

client to invest in the expensive pre-processing while enabling many other clients to

benefit from her initial effort, and thus amortises this expensive step over the number

of clients within the system. Therefore, PVC can be seen as a more practical scheme

accommodating multiple clients outsourcing function evaluations to a server but not

necessarily on joint inputs.

Those VC and PVC solutions can be seen as a contribution towards ensuring that an

untrusted server has returned a correct result or otherwise can be detected cheating.

Yet another popular application domain within the cloud model is the storage domain.

Here, cloud service providers offer a scalable and very cost effective storage solution

compared to, from an organisational point of view, building an own data storage centre,

or from an individual client’s perspective, owning several hard drives. Thus it is very

tempting to use this storage service. However, an enormous drawback is that cloud

service providers do not provide provable storage guarantees about the outsourced data.

A solution towards achieving provable storage guarantees is the notion of proofs of

retrievability (PoR). Here the guarantees are formulated in terms of a verifiable state-

ment whether or not the client’s outsourced data is authentic and retrievable. The first

15

1.2 Organisation of Thesis

property expresses that the client wants to be able to verify that the received data is

correct whereas the latter property reflects the need to assure that no data loss has

occurred on the cloud storage provider’s side.

In this thesis, we propose solutions to enhance current PVC and PoR notions in terms

of practicability and functionality.

1.2 Organisation of Thesis

Chapter 2. This chapter contains the preliminaries and will establish the notational

conventions that will be used throughout this thesis. All the necessary primitives and

notions of security can be found in this chapter.

Our contributions are then presented in the remaining chapters.

Chapter 3. In this chapter we consider the setting of publicly verifiable outsourced

computation (PVC) for which it has been shown that key-policy attribute-based en-

cryption can be used. We propose extensions and improvements to the current PVC

proposal in order to accommodate a more practical framework and enable a server to

compute multiple functions rather than only being certified to compute a single func-

tion. This is achieved by a simple encoding trick and further the chapter provides a

method to revoke misbehaving servers from future evaluations within the system.

Chapter 4. This chapter considers the problem in which an untrusted server holds a

data set in such a way that any client can ask the server to compute a function on any

input portion of the data set. We provide a solution to this problem by introducing

a scheme called verifiable delegable computation (VDC) and argue that this system

model is a reversed system architecture compared to our proposal in Chapter 3. We

give a provably secure construction based on ciphertext-policy attribute-based encryp-

tion and discuss relevant security models. Furthermore, we observe that this notion

has some natural applications to verifiable queries on remote databases and verifiable

parallel processing using the MapReduce framework.

Chapter 5. In this chapter we use the already introduced system models from the

previous chapters and define an umbrella scheme called hybrid PVC. This scheme only

requires a single setup stage in order to provide a flexible outsourced computation

solution. Furthermore, we briefly introduce another mode of publicly verifiable com-

putation that extends the proposal from Chapter 3 enabling us to enforce graph-based

access control policies over the delegators, servers and verifiers. We give a provably

secure construction based on dual-policy attribute-based encryption showing that all

16

1.2 Organisation of Thesis

introduced system models are captured within this general framework and discuss rel-

evant security models for the different modes.

Chapter 6. This chapter investigates the application of PVC techniques developed in

this thesis to the realm of verifiable searchable encryption (VSE). We introduce a VSE

scheme based upon ciphertext-policy attribute-based encryption that permits a user

to verify that search results are correct and complete. Our scheme also permits verifi-

able computational queries over keywords and specific data values, that go beyond the

standard keyword matching queries to allow functions such as averaging or counting

operations.

Chapter 7. In this chapter we turn our attention to the setting of providing prov-

able data storage guarantees, i.e. verifying whether a server still retains the client’s

outsourced data. A possible concept achieving such guarantees is known as proofs of

retrievability (PoR). We propose extensions and improvements to the current PoR pro-

posals in order to accommodate a more practical framework checking whether multiple

files are retained simultaneously. Thus, we overcome limitations of previous schemes

which were only able to check a single file at a time. We discuss different strategies a

client can use in order to obtain a verifiable statement about the retrievability of all

her outsourced data from a server, and also evaluate the performance of our proposed

scheme.

17

Chapter 2

Background Material

Contents

2.1 Preliminaries . 18

2.2 Encryption Schemes . 21

2.3 Attribute-based Encryption 26

2.4 Searchable Encryption . 40

2.5 Digital Signatures . 43

2.6 One-way Functions . 44

2.7 Verifiable Outsourced Computation 45

2.8 Proofs of Retrievability . 57

This chapter introduces the necessary notation and discusses in detail vari-

ous cryptographic primitives and security notions that will be used through-

out this thesis.

2.1 Preliminaries

2.1.1 Notation

Let us fix all necessary notations that are used in the remainder of this thesis. The set of

integers is denoted by Z, the set of all non-zero integers is denoted by Z? = Z\{0} and

we denote the set of natural numbers in the natural way as being the set of non-negative

integers N = {n ∈ Z|n > 0}. We denote the set of consecutive integers {i, . . . , j} by

[i, j], the set {1, . . . , n} will be written as [n] for n ≥ 1, and ∅ denotes the empty set.

If X is a set, we denote the power set of X by 2X which is the set of all subsets, and

|X| denotes its size. A partially ordered set (poset) is a set L equipped with a reflexive,

anti-symmetric and transitive binary relation 6. In other words, for all x, y, z ∈ L it

holds that x 6 x (reflexivity); if x 6 y and y 6 x then x = y (anti-symmetry); and if

x 6 y and y 6 z then x 6 z (transitivity). We may write x < y if x 6 y and x 6= y,

and write y > x if x 6 y. We say that x covers y, written y l x, if y < x and no z

exists in L such that y < z < x. The Hasse Diagram of a poset (L,6) is the directed

acyclic graph H = (L,l) where vertices are labelled by the elements of L and an edge

connects vertex v to w if and only if w l v.

18

2.1 Preliminaries

If A is a deterministic algorithm, we use the notation y ← A(x1, . . . , xn) to denote the

action of running A on the given inputs x1 to xn and assigning the result y. Similarly, if

A is a randomised (probabilistic) algorithm, we simply write y
$← A(·) to denote A out-

putting the variable y. This notion can also be seen as sampling an output y from the

range of possible outputs of A according to an underlying distribution defined by the

input arguments. Equivalently, one may consider the algorithm A taking an additional

input r of random coins which determine the outcome of randomised choices during

the execution of the algorithm. Thus, more formally we would write y ← A(·; r) since

the explicit choice of r renders the algorithm A deterministic. Finally, if B denotes a

set, we write y
$← B to express sampling a value y uniformly at random from the set

B. The set of all finite binary strings is denoted by {0, 1}∗. For any two binary strings

a and b, we denote their concatenation by a‖b and a⊕ b denotes their bitwise XOR.

When considering cryptographic schemes in this thesis, we denote the message space

by M, the key space by K, the security parameter by λ ∈ N and its respective unary

representation as 1λ. The key space consists of all bit strings of length λ and it can be

increased to asymptotically increase the strength of the cryptographic primitive. We

denote by ε the empty string or an empty list, ⊥ /∈ M denotes a distinguished failure

symbol outputted by an algorithm, and we abbreviate probabilistic polynomial-time

by PPT. Let F be a function then we denote the domain of the function by Dom(F)

and the range by Ran(F). A function f from the natural numbers to the non-negative

real numbers is said to be negligible on its input if for every positive polynomial p there

exists an N such that for all integers n > N it holds that f(n) < 1
p(n) . We denote an

arbitrary negligible function by negl.

A Boolean function F : {0, 1}n → {0, 1} takes a string of n bits as input and outputs

a single bit result. We use the notation 1 and true, and similarly 0 and false, to

denote the outcome of this function. We denote by ∨ the binary OR operator, and

by ∧ the binary AND operator. If a Boolean function F evaluates to true on a set

of input strings I, we say that the set I is a satisfying set. Furthermore, it is possible

to describe F in terms of satisfying sets. In case this representation is used, we refer

to F as an access structure. A Boolean function is said to be monotonic if for all

sets S ⊂ T ⊆ [n], it holds that F (S) ≤ F (T). In other words, increasing the size of

the set can only increase the value of F , or alternatively, replacing a 0 with a 1 in

the input can only increase the value of F . Finally, we denote by Fn the family of

n-ary monotone functions closed under complement. In more detail, if F ∈ Fn then

the complement function F = F ⊕ 1 also belongs to Fn. In case n is clear from the

context, we abbreviate Fn as F . A more formal treatment of Boolean functions and

their properties can be found in [44, 59].

19

2.1 Preliminaries

2.1.2 Provable Security

A central task in cryptography is to analyse whether a particular cryptographic scheme

is “secure”. However, this simple question is hard to answer. In the “dark ages” of

cryptography, security of a cryptographic scheme was assumed until someone broke the

scheme. At this point, one tried either to fix the scheme to make it “secure” again or

discarded it if the security issue could not be fixed. In the age of modern cryptography,

such an approach is not acceptable and thus we require rigorous techniques to analyse

and assess the security of a cryptographic scheme and protocol. Such techniques fall

into the realm of provable security which refers to a well-studied paradigm in modern

cryptography. On a high-level, the goal is to formalise a security property and prove

that the property holds – relative to definitions and assumptions – which corresponds

to an assurance that the scheme is secure. The approach uses ideas and techniques

from theoretical computer science as well as mathematics.

In order to formalise a proof of security, we require two necessary ingredients. The first

ingredient is to formalise precise security definitions. These specify concrete security

properties that cryptographic schemes are intended to achieve. A security definition

is normally expressed as an experiment (or game) presented in pseudo-code and is

designed to reflect potential security threats against the scheme as well as a realis-

tic system execution. The experiment is run by a computationally unbounded entity

known as the challenger C and played by a computationally bounded adversary A with

respect to a cryptographic scheme. The adversary is usually modelled as a PPT algo-

rithm which is called at relevant points during the execution of the experiment by the

challenger. Furthermore, A may maintain a state throughout the experiment which

reflects the adversary being called several times at different points during the execution

of the system. Security of a cryptographic scheme is usually defined in terms of the

adversary’s maximal winning probability against the formalised experiment.1 Thus, we

define a scheme to be secure if a class of adversaries have at most a negligible winning

probability (in terms of the security parameter) of winning against the formalised se-

curity definition. Otherwise, we say a scheme is insecure.

The second fundamental ingredient is the reduction proof technique which enables one

to prove that a cryptographic scheme is computationally secure. As mentioned above, a

security proof is conditional in the sense that we require to assume that some mathemat-

ical problem is hard. That is, security can rely on the assumption that the underlying

primitive, on which the scheme is built, is secure. The reduction proof technique then

enables one to prove that a cryptographic scheme is secure under this assumption. In

1Note that this sometimes varies depending on the underlying experiment. For example, IND-CPA
security is defined in terms of the maximal winning probability minus the probability of a random
guess.

20

2.2 Encryption Schemes

more detail, the technique boils down to present an explicit reduction that transforms

any efficient algorithm A that succeeds in winning against the security notion of the

scheme (“breaking”) into an efficient algorithm B that solves the underlying problem

that was initially assumed to be hard. A very good and detailed explanation of the

required steps for a proof by reduction can be found in [100, 130].

Throughout this thesis, we will construct concrete cryptographic schemes and provide

different security definitions that we model the scheme to be secure against. To prove

the security of the scheme we make intensive use of the above introduced reduction

technique.

2.2 Encryption Schemes

Encryption is mainly a technique in order to preserve the confidentiality of messages

exchanged between a sender and a receiver. The primitive we consider here is called an

encryption scheme. Such a scheme specifies a key-generation algorithm which produces

key material that the parties need to share. Furthermore, it specifies an encryption

algorithm, which provides the sender with an instruction how to process the plaintext

using the key to produce a ciphertext that is transmitted to the receiver. An encryption

scheme also specifies a decryption algorithm, which provides the receiver with instruc-

tions how to retrieve the original message from the transmitted ciphertext using the key

while possibly performing some verification as well. In this section, we begin to review

the definitions of symmetric encryption schemes and public-key encryption schemes.

2.2.1 Symmetric Encryption Schemes

A symmetric encryption scheme relies on a secret key k held by both entities, namely

the sender and receiver of a ciphertext. Note that we do not address here how both

entities came into joint possession of this key k, and thus assume that the key has

been shared in some way. More formally a symmetric encryption scheme is described

as follows.

Definition 2.1. A symmetric encryption (SE) scheme consists of the following three

algorithms.

• k $← KeyGen(1λ) : this randomised algorithm takes as input the security parameter

λ and randomly selects a symmetric key k from the key space K;

• ct $← Encrypt(m, k) : this randomised algorithm takes as input the symmetric key

k and a message m from the message space M. It outputs a ciphertext ct;

• m ← Decrypt(ct, k) : this deterministic algorithm takes as input the symmetric

key k and the ciphertext ct. It outputs the underlying message m encrypted in

the ciphertext ct.

21

2.2 Encryption Schemes

Note that we could extend the decryption algorithm to output a failure symbol ⊥ in

case it is presented with an invalid ciphertext.

Correctness of a symmetric encryption scheme requires that for all security parameters

and all messages, the decryption of an honestly generated ciphertext under a correctly

generated key will return the correct message. This is captured more formally as

follows.

Definition 2.2. A symmetric encryption scheme is correct if for every security pa-

rameter λ, every key k outputted by KeyGen(1λ), and every message m ∈ M, it holds

that Decrypt(Encrypt(m, k), k) = m.

There are many notions of security for symmetric encryption schemes and the relation

amongst them is discussed in [26]. The choice of security property of a symmetric en-

cryption scheme depends on the context in which the scheme is used as well as on what

information an adversary may observe in practice. In the following we present two

main notions of security for a symmetric encryption scheme, namely indistinguishabil-

ity against chosen-plaintext attacks and indistinguishability against chosen-ciphertext

attacks.

Indistinguishability against Chosen-plaintext Attacks

The most commonly discussed security notion, and the one that we use mainly through-

out this thesis, is indistinguishability against chosen-plaintext attacks (IND-CPA).

This notion basically models that an adversary that is not in possession of the secret

key running in polynomial-time chooses two messages of the same length and has the

ability to request any encryptions of other arbitrary messages via accessing an encryp-

tion oracle. Then one of the two messages is encrypted, and the ciphertext is returned

to the adversary. The scheme is considered secure if the adversary is not able to dis-

tinguish which one of the two messages of its choice was encrypted. Informally, the

encryption scheme should hide all information about the underlying plaintext such that

a ciphertext does not reveal anything about which message was encrypted.

The IND-CPA notion for a symmetric encryption scheme is formally defined in Fig-

ure 2.1. The game begins with the challenger running the KeyGen algorithm to generate

a challenge key k and sampling a bit b uniformly at random. Next the adversary is

called with the security parameter as input, and it is given access to a “left-or-right”

(LoR) encryption oracle OLoR. The oracle inputs a pair of messages and first checks

whether the messages are of equal length. In case this check is positive then it chooses

one of the messages according to the sampled bit b and outputs the encryption of mb

under the challenge key k which is then given to the adversary. That is, if b = 0 then

the adversary receives an encryption of the “left” plaintext, and if b = 1 it receives an

22

2.2 Encryption Schemes

encryption of the “right” plaintext. Eventually, the adversary returns a bit b′ and the

game outputs 1 indicating that b′ corresponds to the bit b chosen by the challenger, oth-

erwise it returns 0. This also encompasses the adversary’s access to a simple encryption

oracle, since the adversary can simply query OLoR(m,m, k, b) to obtain Encrypt(m, k).

ExpIND-CPA
A

[
SE , 1λ

]
1 : k←$ KeyGen(1λ)

2 : b←$ {0, 1}
3 : b′←$ AOLoR(·,·,k,b)(1λ)

4 : if b′ = b then

5 : return 1

6 : else return 0

OLoR(m0,m1, k, b)

1 : if (|m0| 6= |m1|) then

2 : return ⊥
3 : else

4 : return Encrypt(mb, k)

Figure 2.1: The IND-CPA experiment ExpIND-CPA
A

[
SE , 1λ

]
Note that we can provide the adversary with a little more power by letting it choose a

whole sequence of pairs of equal-length messages. This approach is similar and has the

advantage of modelling attackers that can adaptively choose plaintexts to be encrypted

even after observing previous ciphertexts.

We define the advantage of an adversary to be the difference between the probability of

the adversary guessing the bit b correctly which indicates which message was encrypted

and the probability of a random guess.

Definition 2.3. The advantage of a PPT adversary in the IND-CPA game for a

symmetric encryption scheme SE is defined as:

AdvIND-CPA
A,SE (1λ) = Pr

[
ExpIND-CPA

A

[
SE , 1λ

]
→ 1

]
− 1

2
.

We say that the symmetric encryption scheme SE is IND-CPA secure if for all PPT

adversaries A, it holds that

AdvIND-CPA
A,SE (1λ) ≤ negl(λ).

Indistinguishability against Chosen-ciphertext Attacks

Similarly to the above notion, one can consider the security notion of indistinguishabil-

ity against chosen-ciphertext attacks (IND-CCA) for a symmetric encryption scheme

as formally defined in Figure 2.2. In the IND-CCA notion the adversary is not only

able to obtain arbitrary encryptions of her choice, but also may request decryptions of

23

2.2 Encryption Schemes

ciphertexts of her choice. The adversary’s access to the decryption oracle is unlimited

except for the adversary is not allowed to request a decryption of the challenge cipher-

text as this would lead to a trivial win and thus is an illegitimate query.

In more detail, the IND-CCA game proceeds similar to the IND-CPA game presented

in Figure 2.1 with the difference that the challenger additionally maintains a set S of

ciphertexts that is initially empty. The “left-or-right” (LoR) encryption oracle OLoR is

modified in such a way that it additionally adds generated ciphertexts to the set S if the

input messages are of equal length and distinct. Furthermore, the adversary is given

access to a decryption oracle ODecrypt to which it can submit ciphertexts to recover

respective plaintexts as long as the submitted ciphertext does not correspond to the

challenge ciphertext in order to avoid a trivial win. More precisely, in case the queried

ciphertext corresponds to a previously generated output from the LoR encryption oracle

OLoR then the decryption oracle ODecrypt outputs an error symbol ⊥. Obviously, given

the decryption of the ciphertext, it would be possible to determine the value of b based

on which message is returned.

ExpIND-CCA
A

[
SE , 1λ

]
1 : k←$ KeyGen(1λ)

2 : b←$ {0, 1}
3 : S ← ∅
4 : b′←$ AOLoR(·,·,k,b)ODecrypt(·,k)(1λ)

5 : if b′ = b then

6 : return 1

7 : else return 0

OLoR(m0,m1, k, b)

1 : if (|m0| 6= |m1|) then

2 : return ⊥
3 : else

4 : ct←$ Encrypt(mb, k)

5 : S ← S ∪ ct
6 : return ct

ODecrypt(ct, k)

1 : if (ct ∈ S) then

2 : return ⊥
3 : else

4 : return Decrypt(ct, k)

Figure 2.2: The IND-CCA experiment ExpIND-CCA
A

[
SE , 1λ

]

Definition 2.4. The advantage of a PPT adversary in the IND-CCA game for a

symmetric encryption scheme SE is defined as:

AdvIND-CCA
A,SE (1λ) = Pr

[
ExpIND-CCA

A

[
SE , 1λ

]
→ 1

]
− 1

2
.

We say that the symmetric encryption scheme SE is IND-CCA secure if for all PPT

24

2.2 Encryption Schemes

adversaries A, it holds that

AdvIND-CCA
A,SE (1λ) ≤ negl(λ).

2.2.2 Public-key Encryption Schemes

A public-key encryption scheme (PKE), or asymmetric encryption scheme, eases the

above problem of agreeing on a common secret key. Instead, each entity is now equipped

with two keys, namely a public key and a private key. An encryptor may use an entity’s

A public key to encrypt a message and send it to A. The entity A is now able to use

her private key to decrypt messages initially encrypted under A’s public key. Note that

the encryptor is not required to know the decryption key. In this setting, the public

key may be transmitted or published in the clear such that there is no need to initialise

secure channels before transmitting a message. The main difference between public-key

encryption and symmetric encryption is that the latter assumes complete secrecy of all

cryptographic keys, whereas the former requires secrecy only for the private key.

More formally a public-key encryption scheme is described as follows.

Definition 2.5. A public-key encryption scheme consists of the following three algo-

rithms.

• (pk, sk)
$← KeyGen(1λ) : this randomised algorithm takes as input the security

parameter λ and outputs a key pair (pk, sk). We refer to the first of these keys

as the public key and to the second as the private key (or secret key);

• ct $← Encrypt(m, pk) : this randomised algorithm takes as input the public key pk

and a message m from some message space M. It outputs a ciphertext ct;

• m← Decrypt(ct, sk) : this deterministic algorithm takes as input the private key

sk and the ciphertext ct. It outputs the message m encrypted in the ciphertext

ct.

As in the previous section, we could extend the decryption algorithm to output a failure

symbol ⊥ in case it is presented with an invalid ciphertext.

Correctness of a public-key encryption scheme requires that for all security parameters

and all messages, the decryption of an honestly generated ciphertext under an honestly

generated key pair will return the correct message. This is captured more formally as

follows.

Definition 2.6. A public-key encryption scheme is correct if there exists a negligible

function negl such that for every security parameter λ, every key pair (pk, sk) outputted

by KeyGen(1λ), and every message m ∈ M it holds that

Pr[Decrypt(Encrypt(m, pk), sk) 6= m] = negl(λ).

25

2.3 Attribute-based Encryption

The main disadvantage of public-key encryption schemes is that they are significantly

slower than symmetric encryption schemes. However, it is not easy to detail an exact

comparison between both schemes since the relative efficiency depends on the concrete

scheme under consideration as well as their implementation details. In fact, to over-

come this problem, a symmetric encryption scheme is used in the public key setting

to enhance the efficiency for the public-key encryption of long messages. Such an en-

cryption scheme is called hybrid encryption and basically a message is encrypted using

the symmetric key (called data encapsulation mechanism) while the symmetric key

itself is encrypted under the public-key encryption scheme (called key encapsulation

mechanism). In other words, the public-key encryption scheme is only used in order

to encrypt a short symmetric key, whilst the more efficient symmetric key is used to

encrypt the larger message.

In the context of public-key encryption schemes it is also possible to define security in

terms of indistinguishability against chosen-plaintext attacks (IND-CPA) and indis-

tinguishability against chosen-ciphertext attacks (IND-CCA). It is straightforward to

obtain those security notions by adapting the syntax from the public-key encryption

scheme (cf. Definition 2.5) into Figures 2.1 and 2.2.

2.3 Attribute-based Encryption

Attribute-based Encryption (ABE) is a public-key, functional encryption primitive that

allows decryption of a ciphertext if and only if some policy formula is satisfied. This

means that the encrypted data and the decrypting entity satisfy certain properties

formulated in terms of attribute sets. As such, ABE is also well-suited for the crypto-

graphic enforcement of attribute-based access control policies [93]. In general, we define

a universe U of attributes which represent labels that may describe entities or data.

We then form a set of attributes A ⊆ U and a policy (or access structure) A ⊆ 2U \ {∅}
and decryption is successful if and only if A ∈ A.

There exist several variants of ABE which we introduce in the course of this section.

These different notions mainly differ in the connection between attribute sets and access

structures to ciphertexts and decryption keys.

2.3.1 Key-policy Attribute-based Encryption

In key-policy attribute-based encryption (KP-ABE)[89], the decryption key is associated

with a policy and each ciphertext is associated with a set of attributes. In more detail,

each secret decryption key is associated with an access structure, that is some family

of satisfying attribute sets A = {A1, . . . , An}, while each ciphertext is generated using

the system-wide public parameters and is associated with a single subset of attributes

26

2.3 Attribute-based Encryption

A. Decryption succeeds if the decryption key associated with the access structure A
includes the attribute set under which the ciphertext was generated, i.e. if Ai = A for

some i ∈ [n]. In most schemes the access structure is considered to be monotonic.

This means that A′ ∈ A whenever there exists A ⊂ A′ such that A ∈ A. A notable

non-monotonic scheme was presented by Ostrovsky et al. [112].

Definition 2.7. A key-policy attribute-based encryption (KP-ABE) scheme consists

of the following four algorithms:

• (pp,mk)
$← Setup(1λ,U) : this randomised algorithm takes as input the security

parameter λ and attribute universe U and generates public parameters pp and a

master secret key mk;

• ctA $← Encrypt(m,A, pp) : this randomised algorithm takes as input a message m,

an attribute set A and public parameters pp, and outputs a ciphertext ctA;

• skA $← KeyGen(A,mk, pp) : this randomised algorithm takes as input an access

structure A, the master secret key mk and public parameters pp. It generates a

secret decryption key skA for this access structure;

• pt ← Decrypt(ctA, skA, pp) : this algorithm takes as input the ciphertext ctA as-

sociated with an attribute set A, a secret decryption key skA generated under an

access structure A and the public parameters pp. The algorithm outputs a plain-

text pt which corresponds to m if and only if the attribute set satisfies the access

structure, A ∈ A, or else corresponds to ⊥ indicating that decryption failed.

Note that we refer to the access policies used in KP-ABE as objective policies.

Definition 2.8. A KP-ABE scheme is correct if for all messages m ∈ M, access

structures A ⊆ 2U \ {∅} and attribute sets A ⊆ U where A ∈ A, it holds that

Pr[(pp,mk)
$← Setup(1λ,U),

ctA
$← Encrypt(m,A, pp),

skA
$← KeyGen(A,mk, pp),

pt← Decrypt(ctA, skA, pp)]

= 1− negl(λ).

In general security for ABE schemes can be classified into the categories full (or adap-

tive) and selective security. The full security notion is the ideal notion we wish to

achieve. However, the selective security notion has usually been easier to formalise

and to achieve. The notions mainly differ in whether the adversary receives the public

parameters before or after outputting its challenge input choice. The selective notion

enables the client (or user2) to partition the system into queries that it must be able to

2We will use the terms client and user interchangeably throughout this thesis.

27

2.3 Attribute-based Encryption

answer and to queries it will not answer as some queries may be restricted in order to

avoid a trivial win for the adversary. Therefore, the challenger is able to embed secrets

for a reductive proof.

However, we do not provide the standard security properties for KP-ABE here as we

will be interested to use an extended version of KP-ABE supporting revocation which

we recap in Section 2.3.2. Note that it is easy to obtain the standard security proper-

ties for KP-ABE by “swapping” the access policy and attribute set in the IND-CPA

and sIND-CPA security notions for ciphertext-policy attribute-based encryption (CP-

ABE) as defined in Figure 2.4 and Figure 2.5.

2.3.2 Revocable Key-policy Attribute-based Encryption

The mechanism of revocation plays a central role in cryptography. In the setting of

attribute-based encryption, users may hold keys for the same functionality, i.e. being

provided with keys which grant certain access to objects. The revocation mechanism

disables the given functionality for a certain user or group of users. For example, if an

employee leaves the company and thus the internal system, it is necessary to revoke

the employee from the system in order to stop her from further accessing data. In the

framework of attribute-based encryption, either target specific attributes (to disable

certain policies within the system) or specific users (to accommodate changing user

populations) can be revoked. Throughout this thesis (e.g. in Chapters 3 and 5), we

focus on the latter case as we aim to prevent cheating servers from participating in the

system model at all.

Revocable ABE schemes can support two different modes [17]:

• Direct revocation allows users to specify a revocation list at the point of encryp-

tion. This means that periodic re-keying is not required but the encryptors must

have knowledge of, or be able to choose, the current revocation list.

• Indirect revocation requires ciphertexts to be associated with a time period (as

an additional attribute) and for a key authority to issue key update material

at each time period which enables non-revoked users to update their key to be

functional during that time period. A revoked user will not be able to use the

update material and thus their key will not succeed at decrypting ciphertexts

associated with the current time period attribute. With indirect revocation, users

only need to know the current time attribute during encryption, but increased

communication costs are incurred due to the dissemination of the key update

material.

In this thesis, we will make use of the indirectly revocable KP-ABE scheme given by At-

trapadung and Imai [17], itself a more formal definition of that given by

28

2.3 Attribute-based Encryption

Boldyreva et al. [35].

An indirectly revocable KP-ABE scheme defines the universe of attributes to be U =

Uattr ∪UID ∪Utime. In more detail, Uattr is the normal attribute universe for describing

ciphertexts and forming access policies, Utime comprises attributes for time periods,

and UID contains attributes encoding entity identities. More formally, an indirectly

revocable KP-ABE scheme is presented in the following definition.

Definition 2.9. An indirectly revocable key-policy attribute-based encryption scheme

consists of the following algorithms:

• (pp,mk)
$← Setup(1λ,U) : this randomised algorithm takes as input the security

parameter λ and the universe of attributes U and outputs public parameters pp

and master secret key mk;

• ctA,t $← Encrypt(m,A, t, pp) : this randomised encryption algorithm inputs a mes-

sage m, an attribute set A ⊂ Uattr, the current time period t ∈ Utime and the

public parameters pp. It outputs a ciphertext ct that is valid for time t;

• skid,A $← KeyGen(id,A,mk, pp) : this randomised key generation algorithm takes

as input an identity id ∈ UID for a user, an access structure A encoding a policy,

as well as the master secret key mk and public parameters pp. It outputs a

decryption key skid,A for the user id;

• ukR,t $← KeyUpdate(R, t,mk, pp) : this randomised algorithm takes a revocation

list R ⊆ UID containing the identities of revoked entities, the current time period t,

as well as the master secret key mk and public parameters pp. It outputs updated

key material ukR,t;

• pt ← Decrypt(ctA,t, skid,A, ukR,t, pp) : this decryption algorithm takes as input a

ciphertext ct, a decryption key skid,A, an update key ukR,t and the public param-

eters pp. The algorithm outputs a plaintext pt which corresponds to the correct

message m if and only if the attributes associated with ct satisfy A and the value

of t in the update key matches that specified during the encryption of ct, or outputs

⊥ if the decryption failed.

Correctness of a revocable KP-ABE scheme is defined as follows:

Definition 2.10. A revocable KP-ABE scheme is correct if for all m ∈ M, all id ∈
UID, all R ⊆ UID, all A ⊆ 2Uattr \ {∅}, all A ⊂ Uattr and all t ∈ Utime, if A ∈ A and

29

2.3 Attribute-based Encryption

id /∈ R, it holds that

Pr[(pp,mk)
$← Setup(1λ,U),

ctA,t
$← Encrypt(m,A, t, pp),

skid,A
$← KeyGen(id,A,mk, pp),

ukR,t
$← KeyUpdate(R, t,mk, pp),

m← Decrypt(ctA,t, skid,A, ukR,t, pp)]

= 1− negl(λ).

The schemes [17, 35] use the Complete-subtree method to arrange users as the leaves of

a binary tree such that the required key-update material can be reduced from the naive

method of O(n − r), where n is the number of users and r is the number of revoked

users, to O(r log(n2)). This approach works as follows for a revocation list R. For a leaf

node l ∈ UID, let Path(l) be the set of nodes on the path between the root node and l

inclusively. Then, for each l ∈ R, mark all nodes in Path(l). Define Cover(R) to be the

set of all unmarked children of marked nodes, and generate update keys for these nodes.

Note that the time parameter in the above algorithms could be a literal clock value

where all entities have access to some synchronised clock or network clock. In this

case, re-keying must occur at every time period regardless of whether a revocation

has occurred in the prior period. Alternatively, the time parameter could simply be a

counter that is updated when a revocation takes place and the KeyUpdate algorithm is

performed.

Attrapadung and Imai [17] defined several security notions for revocable KP-ABE

schemes. In this thesis, the security property we consider for a revocable KP-ABE

scheme is indistinguishability against selective-target with semi-static query attack (IND-

sHRSS) which is formally defined in Figure 2.3.

This is a selective notion of security where the adversary must declare at the beginning

of the game the set of attributes (t?, A?) to be challenged upon. The challenger runs

Setup and provides the adversary with the resulting public parameters. The adversary

must choose a target revocation set R which is the set of entities that should be revoked

at time t?. The nature of the semi-static notion requires that this revocation list is

chosen before the adversary is given access to the KeyGen and KeyUpdate oracles as

specified in Figure 2.3.

In order to prevent trivial wins, for a key generation query, the adversary may not

query for any key skid,A where the target attribute set A? satisfies A and the identity

is not revoked at time t?. If the adversary would be allowed to query for this, it would

hold a secret decryption key and would receive key update material (as the identity

30

2.3 Attribute-based Encryption

ExpIND-sHRSS
A

[
KP-ABE , 1λ,U

]
1 : (t?, A?)←$ A(1λ,U)

2 : (pp,mk)←$ Setup(1λ,U)

3 : R←$ A(pp)

4 : (m0,m1)←$ AOKeyGen(·,·,mk,pp),OKeyUpdate(·,·,mk,pp)(R, pp)

5 : if (|m0| 6= |m1|) then return 0

6 : b←$ {0, 1}
7 : ct?←$ Encrypt(mb, t

?, A?, pp)

8 : b′ ← AOKeyGen(·,·,mk,pp),OKeyUpdate(·,·,mk,pp)(ct?, R, pp)

9 : if b′ = b then

10 : return 1

11 : else return 0

OKeyGen(id,A,mk, pp)

1 : if (A? ∈ A) and (id /∈ R) then

2 : return ⊥
3 : else KeyGen(id,A,mk, pp)
4 : return skid,A

OKeyUpdate(R, t,mk, pp)

1 : if (t = t?) and (R 6⊆ R) then

2 : return ⊥
3 : else KeyUpdate(R, t,mk, pp)

4 : return ukR,t

Figure 2.3: The IND-sHRSS experiment ExpIND-sHRSS
A

[
KP-ABE , 1λ,U

]

is not revoked) for the challenge time period and thus could successfully decrypt the

challenge ciphertext.

Similarly, for a key update request, the adversary is prevented from learning an update

key ukR,t? for the challenge time period t? for a less restrictive revocation list R than

the challenge list R. Otherwise, the adversary could obtain an update key which could

be combined with a queried secret key to form a functional decryption key for a server

that the adversary claimed would be revoked.

As in a standard IND-CPA notion, the adversary outputs two messages and the chal-

lenger chooses one of them at random to encrypt and passes the resulting ciphertext

to the adversary. The adversary is again provided with access to the oracles and even-

31

2.3 Attribute-based Encryption

tually guesses which message was encrypted. The advantage of the adversary is given

in the following definition.

Definition 2.11. The advantage of a PPT adversary in the IND-sHRSS game for a

revocable KP-ABE construction KP-ABE is defined as:

AdvIND-sHRSS
A,KP-ABE (1λ) = Pr

[
ExpIND-sHRSS

A

[
KP-ABE , 1λ,U

]
→ 1

]
− 1

2
.

We say that the indirectly revocable KP-ABE scheme is secure in the sense of indis-

tinguishability against selective-target with semi-static query attack (IND-sHRSS) if

for all PPT adversaries A, it holds that

AdvIND-sHRSS
A,KP-ABE (1λ) ≤ negl(λ).

We note that it is also possible to define a stronger, full notion of security whereby the

adversary may receive the public parameters and may query the oracles before selecting

the set of challenge attributes under the restriction that no such query would lead to a

trivial win. To the best of our knowledge, current known primitives supporting indirect

revocation in the KP-ABE setting only achieve the selective security notion as described

above.

2.3.3 Ciphertext-policy Attribute-based Encryption

Ciphertext-policy attribute-based encryption (CP-ABE) [31] “behaves” conversely to

KP-ABE. Here a ciphertext is associated with a policy while the set of attributes is

assigned to the secret decryption key. More concretely, each ciphertext is associated

with an access structure, i.e. some family of attribute sets A = {A1, . . . , An}. Each

private key is computed using the system-wide public parameters and is associated

with a single subset of attributes A. Decryption succeeds if the ciphertext includes the

attribute set under which the decryption key was generated.

Definition 2.12. A ciphertext-policy attribute-based encryption (CP-ABE) scheme

consists of the following four algorithms:

• (pp,mk)
$← Setup(1λ,U) : this randomised algorithm takes as input the security

parameter λ and attribute universe U and generates public parameters pp and a

master secret key mk;

• ctA $← Encrypt(m,A, pp) : this randomised algorithm takes as input a message m,

an access structure A and public parameters pp, and outputs a ciphertext ctA;

• skA $← KeyGen(A,mk, pp) : this randomised algorithm takes as input an attribute

set A, the master secret key mk and public parameters pp. It generates a secret

decryption key skA for this attribute set;

32

2.3 Attribute-based Encryption

• pt ← Decrypt(ctA, skA, pp) : this algorithm takes as input the ciphertext ctA gen-

erated under an access structure A, a secret decryption key skA generated under

an attribute set A and the public parameters pp. The algorithm outputs a plain-

text pt which corresponds to m if and only if the attribute set satisfies the access

structure, A ∈ A, or else corresponds to ⊥ indicating that decryption failed.

Note that we refer to the access policies used in CP-ABE as subjective policies as the

access structure describes objects for which the key may be used to access.

Definition 2.13. A CP-ABE scheme is correct if for all messages m ∈ M, access

structures A ⊆ 2U \ {∅} and attribute sets A ⊆ U where A ∈ A, it holds that

Pr[(pp,mk)
$← Setup(1λ,U),

ctA
$← Encrypt(m,A, pp),

skA
$← KeyGen(A,mk, pp),

pt← Decrypt(ctA, skA, pp)]

= 1− negl(λ).

The security goals of a CP-ABE scheme are similar to those of symmetric and public-

key encryption schemes, namely the adversary should not be able to distinguish which

of the two messages was encrypted.

Note that different CP-ABE keys provide access to different classes of documents and

ciphertexts are not necessarily generated for a particular user but rather a class of

users. Therefore, it is important to consider in ABE schemes that users may not col-

lude with each other in order to decrypt a ciphertext which no one of them could

have decrypted alone. For example in the CP-ABE setting, consider two users as-

signed with the following attributes sets {Professor, Psychology} and {Student,
Computer Science} respectively, and the ciphertext was encrypted under the policy

(Professor ∧ Computer Science). Both users now should not be able to combine

their attributes Professor and Computer Science in order to decrypt the ciphertext

as neither of them satisfy the policy. To model collusion between clients into the se-

curity notion we provide the adversary with an additional KeyGen oracle such that it

can request multiple decryption keys for different attribute sets. We require that all

queried attribute sets do not satisfy the adversary’s challenge policy because then the

adversary could trivially win against the security game as it would hold a valid key and

could decrypt the challenge ciphertext itself.

Full IND-CPA Notion

The first security property we consider here is the full notion of indistinguishability

against chosen-plaintext attacks (IND-CPA) for a CP-ABE scheme represented in

33

2.3 Attribute-based Encryption

ExpIND-CPA
A

[
CP-ABE , 1λ,U

]
1 : A? ← {∅}
2 : Q← ε

3 : (pp,mk)←$ Setup(1λ,U)

4 : (m0,m1,A?)←$ AOKeyGen(·,mk,pp)(pp)

5 : if (|m0| 6= |m1|) then return 0

6 : for all A ∈ Q do

7 : if A ∈ A? then return 0

8 : b←$ {0, 1}
9 : ct?←$ Encrypt(mb,A?, pp)

10 : b′←$ AOKeyGen(·,mk,pp)(ct?, pp)

11 : if b′ = b then

12 : return 1

13 : else return 0

OKeyGen(A,mk, pp)

1 : if A /∈ A? then

2 : Q← Q ∪A
3 : return KeyGen(A,mk, pp)

4 : else

5 : return ⊥

Figure 2.4: The IND-CPA experiment ExpIND-CPA
A

[
CP-ABE , 1λ,U

]

Figure 2.4. The game begins with the challenger initialising the challenge access struc-

ture A? and a list Q of queried attribute sets which is initially set to be empty. The

challenger then runs Setup and provides the adversary with the generated public pa-

rameters. The adversary now is equipped with access to a KeyGen oracle which returns

to the adversary a valid secret decryption key for its choice of attribute set A but only

if the attribute set does not satisfy the access structure A. Otherwise, if the attribute

set satisfies the access structure then the oracle returns ⊥ in order to avoid allowing the

adversary a trivial win. After a polynomial number of queries the adversary chooses

the challenge access structure A? and also returns two messages of equal length. Note

that in case the adversary returns messages of unequal length the game is aborted

immediately and A loses. The adversary also loses the game if the outputted access

structure A? is satisfied by any attribute set previously queried to the KeyGen oracle

OKeyGen and therefore appears in Q as the adversary has not found a valid attack target.

The challenger chooses a bit b uniformly at random and uses this to determine which

message will be encrypted under the challenge access structure A?. The adversary is

provided with the created ciphertext and is again allowed to access the KeyGen oracle

OKeyGen as before. Eventually, the adversary outputs a guess b′ of b to determine which

message was encrypted. If the guess was correct the adversary wins and the game

outputs 1, and 0 otherwise.

Definition 2.14. The advantage of a PPT adversary in the IND-CPA game for a

34

2.3 Attribute-based Encryption

CP-ABE construction CP-ABE is defined as:

AdvIND-CPA
A,CP-ABE(1

λ) = Pr
[
ExpIND-CPA

A

[
CP-ABE , 1λ,U

]
→ 1

]
− 1

2
.

We say that the scheme CP-ABE is IND-CPA secure if for all PPT adversaries A, it

holds that

AdvIND-CPA
A,CP-ABE(1

λ) ≤ negl(λ).

Selective IND-CPA Notion

ExpsIND-CPA
A

[
CP-ABE , 1λ,U

]
1 : A? ← A(1λ,U)

2 : (pp,mk)←$ Setup(1λ,U)

3 : (m0,m1)←$ AOKeyGen(·,mk,pp)(pp)

4 : if (|m0| 6= |m1|) then return 0

5 : b←$ {0, 1}
6 : ct?←$ Encrypt(mb,A?, pp)

7 : b′←$ AOKeyGen(·,mk,pp)(ct?, pp)

8 : if b′ = b then

9 : return 1

10 : else return 0

OKeyGen(A,mk, pp)

1 : if A /∈ A? then

2 : return KeyGen(A,mk, pp)

3 : else

4 : return ⊥

Figure 2.5: The selective IND-CPA experiment ExpsIND-CPA
A

[
CP-ABE , 1λ,U

]
We also consider the selective IND-CPA notion (sIND-CPA) represented in Fig-

ure 2.5. The selective notion is similar to the full notion while the main difference

is that the game starts with the adversary selecting an access structure A?. Otherwise

the game proceeds similarly to the full version.

Definition 2.15. The advantage of a PPT adversary in the selective IND-CPA game

for a CP-ABE construction CP-ABE is defined as:

AdvsIND-CPA
A,CP-ABE(1

λ) = Pr
[
ExpsIND-CPA

A

[
CP-ABE , 1λ,U

]
→ 1

]
− 1

2
.

We say that the scheme CP-ABE is sIND-CPA secure if for all PPT adversaries A,

it holds that

AdvsIND-CPA
A,CP-ABE(1

λ) ≤ negl(λ).

35

2.3 Attribute-based Encryption

2.3.4 Dual-policy Attribute-based Encryption

Dual-policy attribute-based encryption was introduced by Attrapadung and Imai [19].

This scheme combines both approaches of KP-ABE (enforcing objective policies) and

CP-ABE (enforcing subjective policies) such that both the ciphertext and the decryp-

tion key comprise an attribute set and an access structure. In more detail, the cipher-

text is associated with a subjective policy specifying which entities may decrypt it and

an objective attribute set describing the data, while the decryption key is associated

with an objective policy and a subjective attribute set. Finally, decryption is successful

if and only if both attribute sets satisfy their access policy, respectively.

Definition 2.16. A dual-policy attribute-based encryption (DP-ABE) scheme consists

of the following four algorithms:

• (pp,mk)
$← Setup(1λ,U) : this randomised algorithm takes as input the security

parameter λ and attribute universe U and generates public parameters pp and a

master secret key mk which is kept private by the client;

• ctω,S $← Encrypt(m, (ω,S), pp) : this randomised algorithm takes as input a mes-

sage m, an objective attribute set ω, a subjective access policy S and the public

parameters pp. It outputs a ciphertext ctω,S;

• skO,ψ $← KeyGen((O, ψ),mk, pp) : this randomised algorithm takes as input an

objective access policy O, a subjective attribute set ψ, the master secret key mk

and the public parameters pp. It generates a secret decryption key skO,ψ;

• pt← Decrypt(ctω,S, skO,ψ, pp) : this algorithm takes as input the ciphertext ctω,S,

the decryption key skO,ψ and the public parameters pp. The algorithm outputs

a plaintext pt which corresponds to the correct message m if and only if the

set of objective attributes ω satisfies the objective access policy O and the set of

subjective attributes ψ satisfies the subjective access policy S, i.e. ω ∈ O and

ψ ∈ S. Otherwise, pt corresponds to ⊥ indicating that decryption failed.

Note we assume that the policies and attributes are implicit from the relevant keys and

ciphertexts. Otherwise, these can be given as additional arguments to the decryption

algorithm.

Definition 2.17. A DP-ABE scheme is correct if for all messages m ∈ M, for all

access structures O, S ⊆ 2U \ {∅} and for all attribute sets ω, ψ ⊆ U where ω ∈ O and

36

2.3 Attribute-based Encryption

ψ ∈ S, it holds that

Pr[(pp,mk)
$← Setup(1λ,U),

ctω,S
$← Encrypt(m, (ω,S), pp),

skO,ψ
$← KeyGen((O, ψ),mk, pp),

pt← Decrypt(ctω,S, skO,ψ, pp)]

= 1− negl(λ).

Selective IND-CPA Notion

Security for DP-ABE is defined similarly to the security notion of CP-ABE. The selec-

tive security notion is defined in Figure 2.6. As before, it is easy to define an adaptive

notion of security by providing the adversary with the public parameters before se-

lecting the challenge input. Note that the respective notions of sIND-CPA for both

KP-ABE and CP-ABE can be obtained by ignoring the relevant attribute sets and

access structures in the formalisation below.

ExpsIND-CPA
A

[
DP-ABE , 1λ,U

]
1 : (ω?,S?)← A(1λ,U)

2 : (pp,mk)←$ Setup(1λ,U)

3 : (m0,m1,A?)←$ AOKeyGen((·,·),mk,pp)(pp)

4 : if (|m0| 6= |m1|) then return 0

5 : b←$ {0, 1}
6 : ct?←$ Encrypt(mb, (ω

?,S?), pp)

7 : b′←$ AOKeyGen((·,·),mk,pp)(ct?, pp)

8 : if b′ = b then

9 : return 1

10 : else return 0

OKeyGen((O, ψ),mk, pp)

1 : if (ω? /∈ O) or (ψ /∈ S?) then

2 : return KeyGen((O, ψ),mk, pp)

3 : else

4 : return ⊥

Figure 2.6: The selective IND-CPA experiment ExpsIND-CPA
A

[
DP-ABE , 1λ,U

]

Definition 2.18. The advantage of a PPT adversary in the selective IND-CPA game

for a DP-ABE construction DP-ABE is defined as:

AdvsIND-CPA
A,DP-ABE(1

λ) = Pr
[
ExpsIND-CPA

A

[
DP-ABE , 1λ,U

]
→ 1

]
− 1

2
.

We say that the scheme DP-ABE is sIND-CPA secure if for all PPT adversaries A,

37

2.3 Attribute-based Encryption

it holds that

AdvsIND-CPA
A,DP-ABE(1

λ) ≤ negl(λ).

2.3.5 Instantiation of Attribute-based Encryption Schemes

In the instantiation of many ABE schemes a secret value is chosen uniformly at ran-

dom during either the key generation or the encryption and use a linear secret sharing

scheme to divide the secret over a set of attributes or clauses in a policy. Those schemes

then use Lagrange Interpolation to reconstruct the secret if and only if a satisfying set of

attributes is provided to the decryption procedure. Additionally, many ABE schemes

are built using bilinear maps which give rise to hardness assumptions based on the

Diffie-Hellman problem in bilinear groups.

In this section, we provide tools used in instantiating an ABE scheme as we introduce

a new ABE scheme in Section 5.4.

2.3.5.1 Linear Secret Sharing Schemes

Secret sharing is a basic and fundamental cryptographic tool that enables a secret s

to be shared amongst a set of entities in such a way that all authorised sets of enti-

ties can combine their individual share in order to reconstruct the secret value s. For

example, any k out of the n entities may form an authorised set and thus are able to

reconstruct the secret value. Any set of entities that does not form an authorised set

cannot learn more than their individual shares and thus cannot reconstruct the secret

s. A secret sharing scheme is linear if the reconstruction operation is a linear func-

tion of the shares and note that almost all known secret sharing schemes are linear [24].

We provide a definition of an access structure which is a collection of satisfying sets of

a Boolean formula. Beimel [24] provides an equivalent generic formulation as follows.

Definition 2.19. Let P = {P1, P2, . . . , Pn} be a set of parties (or attributes). A

collection A ⊆ 2P is monotone if for all B,C we have that if B ∈ A and B ⊆ C then

C ∈ A. An access structure (respectively, monotonic access structure) is a collection

(respectively, monotone collection) A ⊆ 2P\{∅}. The sets in A are called the authorised

sets and the sets not in A are called unauthorised sets.

A linear secret sharing scheme can be defined as follows [142].

Definition 2.20. Let P be a set of parties. Let M be a matrix of size l × k. Let

π : {1, . . . , l} → P be a function that maps a row to a party for labelling. A secret

sharing scheme Π for access structure A over a set of parties P is a linear secret-sharing

scheme (LSSS) in Zp and is represented by (M,π) if it consists of two polynomial-time

algorithms:

38

2.3 Attribute-based Encryption

• Mv
$← Share(s, (M,π)): this randomised algorithm takes as input s ∈ Zp which

is to be shared and the LSSS (M,π). It randomly chooses y2, . . . , yk ∈ Zp and

sets v = (s, y2, . . . , yk). It outputs Mv as a vector of l shares. The share λπ(i) :=

Mi · v belongs to party π(i), where we denote Mi as the ith row in M .

• {(i, µi)}i∈I ← Recon(S, {λπ(i)}π(i)∈S , (M,π)): this algorithm takes as input an

authorised set S ∈ A, the set of shares for this set {λπ(i)}π(i)∈S and the LSSS

(M,π). Let I = {i : π(i) ∈ S}. It outputs reconstruction constants {(i, µi)}i∈I
such that the secret can be linearly reconstructed as s =

∑
i∈I µi · λπ(i).

Note that the set {(µi)}i∈I can be found in polynomial-time in the size of M [24, 142].

In Section 5.4, we will require the following important fact [142]:

Proposition 2.21. Let (M,π) be a LSSS for access structure A over a set of parties

P, where M is a matrix of size l × k. For any authorised set S ∈ A, the target vector

(1, 0, . . . , 0) is in the span of I = {i : π(i) ∈ S}. For all unauthorised sets S /∈ A, the

target vector is not in the span of I, and there exists a polynomial time algorithm that

outputs a vector w = (w1, . . . , wk) ∈ Zkp such that w1 = −1 and for all i ∈ I it holds

that Mi · w = 0.

In Section 5.4, we make use of Lagrange interpolation as the reconstruction algorithm

for LSSSs. The reconstruction procedure can be defined following Attrapadung and

Imai [17] in the following way.

Definition 2.22. For i ∈ Z and S ⊆ Z, the Lagrange basis polynomial is defined as

∆i,S(z) =
∏
j∈S,j 6=i

z−j
i−j . Let f(z) ∈ Z[z] be a dth degree polynomial. If |S| = d + 1,

from a set of d+ 1 points {(i, f(i))}i∈S, one can reconstruct f(z) as

f(z) =
∑
i∈S

f(i) ·∆i,S(z).

In Section 5.4, we especially use the interpolation for a first degree polynomial. In

particular, let f(z) be a first degree polynomial, one can obtain f(0) from two points

(i1, f(i1)), (i2, f(i2)) where i1 6= i2 by computing

f(0) = f(i1)
i2

i2 − i1
+ f(i2)

i1
i1 − i2

.

2.3.5.2 Bilinear Maps and Hardness Assumptions

Most ABE schemes are instantiated over groups with efficiently computable bilinear

maps. Thus, we review the notions of bilinear maps and the hardness assumption on

which we base the security of our revocable DP-ABE scheme in Section 5.4. We follow

the formalisation in [17, 18].

39

2.4 Searchable Encryption

Definition 2.23. Let G and GT be multiplicative groups of order p, and let g be a

generator of G. A bilinear map is a map e : G×G→ GT such that:

1. e is bilinear: for all u, v ∈ G and a, b ∈ Z we have e(ua, vb) = e(u, v)ab

2. e is non-degenerate: e(g, g) 6= 1

We say that G is a bilinear group if the group action in G can be computed efficiently

and there exists GT for which e : G×G→ GT is efficiently computable.

Definition 2.24. Let G be a bilinear group of prime order p. The decisional q-bilinear

Diffie-Hellman exponent problem (q-BDHE) in G is stated as follows. Given a vector(
g, h, ga, g(a2), . . . , g(aq), g(aq+2), . . . , g(a2q), Z

)
∈ G2q+1 ×GT

as input, determine whether Z = e(g, h)a
q+1

. We write gi to denote ga
i ∈ G. Let

yg,a,q = (g1, . . . , gq, gq+2, . . . , g2q). An algorithm A that outputs b ∈ {0, 1} has advan-

tage ε in solving the decisional q-BDHE problem in G if

|Pr[A
(
g, h,yg,a,q, e(gq+1, h)

)
→ 0]− Pr[A(g, h,yg,a,q, Z)→ 0]| ≥ ε,

where the probability is over the random choices of generators and groups g, h ∈ G,

a ∈ Zp, Z ∈ GT , and the randomness of A. We refer to the distribution on the left as

PBDHE and the one on the right as RBDHE. The decisional q-BDHE assumption holds

in G if no polynomial-time A has a non-negligible advantage in solving the problem.

2.3.5.3 Terminology for Binary Trees

A binary tree is a directed, rooted tree in which each node has at most two children

such that there exists a unique path from the root to each node. Let L = {1, . . . , n} be

the set of leaves of a complete binary tree. Let X be the set of node names via some

systematic naming order. For a leaf i ∈ L, let Path(i) ⊂ X be the set of nodes on the

path from node i to the root (including i and the root). For R ⊆ L, let Cover(R) ⊂ X
be defined as follows. First mark all the nodes in Path(i) if i ∈ R. Then Cover(R) is

the set of all unmarked children of marked nodes. It can be shown to be the minimal

set that contains no node in Path(i) if i ∈ R but contains at least one node in Path(i)

if i /∈ R.

2.4 Searchable Encryption

Searchable encryption (SE) is a cryptographic primitive that enables a client to search

over encrypted data that has been outsourced to an untrusted server. The untrusted

server receives a query to perform a search over the encrypted data on behalf of the

40

2.4 Searchable Encryption

client without learning information about the underlying plaintexts. The standard en-

tity population considered in SE consists of a data owner and a remote server. Here

the data owner is responsible to initialise the system and prepares her database to be

stored at the remote server. Depending on the motivation, sometimes the scheme also

accommodates a group of users (representing a multi-user SE scheme) that get autho-

rised by the data owner in order to form search queries over the data too.

The seminal paper by Song et al. [132] introduced a cryptographic solution to the

problem of searching on encrypted data. Goh [77] introduced a SE construction that

associates an index to each document in a collection which enables a server to search

each of the indexes for keywords. An index can be seen as a data structure that enables

a querier with a trapdoor for a word w to test whether the index contains w. The index

does not reveal any content about the documents without a valid trapdoor which can

only be generated by the data owner holding a secret key.

We review the definition of a (single-client, index-based) searchable symmetric encryp-

tion scheme following Curtmola et al. [57]. The model includes a user that wishes to

store an encrypted document collection D = (D1, . . . , Dn) on a server, while preserving

the ability to search through them. A document collection D is a subset of the set of

all possible documents 2∆ where ∆ represents a dictionary of d words. More formally

a SSE scheme can be defined as follows.

Definition 2.25. A searchable symmetric encryption (SSE) scheme consists of the

following four algorithms:

• k $← KeyGen(1λ) : this randomised algorithm is run by the user to initialise the

system. It takes a security parameter λ as input, and returns a secret key k such

that the length of k is polynomially bounded in λ;

• I ← BuildIndex(D, k) : this (possibly randomised) algorithm is run by the user to

generate indexes. It takes a secret key k and a document collection D as inputs,

and returns an index I;

• Tw ← Trapdoor(w, k) : this algorithm is run by the user to generate a trapdoor

for a given word. It takes a secret key k and a word w as input, and returns a

trapdoor Tw;

• D(w)← Search(Tw, I) : this algorithm is run by the server in order to search for

the documents in D that contain the word w. It takes an index I for a collection

D and a trapdoor Tw for word w as inputs, and returns the set of identifiers of

documents containing w denoted by D(w).

Definition 2.26. A searchable symmetric encryption (SSE) scheme is correct if for ev-

ery security parameter λ, every key k outputted by KeyGen(1λ), every word w ∈ D ⊆ 2∆,

41

2.4 Searchable Encryption

and every index I outputted by BuildIndex(D, k), it holds that Search(Trapdoor(w, k), I) =

D(w).

Security for searchable encryption is typically characterised as the requirement that

nothing is leaked beyond the outcome of the search. However, it is not straightforward

to achieve this notion of security. Curtmola et al. [57] point out that the above notion

can be achieved in its generality using the work of Goldreich and Ostrovsky on oblivious

RAM [78]. Most SE schemes leak additionally to the search outcome also the search

pattern as for example in [77, 132]. More accurately SE schemes try to formalise secu-

rity in terms of nothing is leaked beyond the outcome of the search, the search pattern

and the access pattern. The first notion of security in SE was introduced by Goh [77]

who proposed the notion of indistinguishability against chosen-keyword attacks (IND1-

CKA). This notion ensures that an adversary is not able to deduce any information

about the document’s content from its index. In other words this means for example

that given two encrypted documents of equal size and an index, then an adversary is not

able to decide which document is encoded in the index. Chang and Mitzenmacher [49]

introduced a stronger simulation-based IND-CKA notion that is a stronger notion com-

pared to IND1-CKA in the sense that this formalises that an adversary cannot even

distinguish indexes from two documents of unequal sizes. Additionally to this, Goh

introduced the IND2-CKA security notion that protects documents of unequal size like

Chang and Mitzenmacher [49].

Curtmola et al. [57] revisited the existing security definitions and provided a discus-

sion about previous security definitions not being adequate for SSE. They pointed out

that the security of indexes and the security of trapdoors are inherently linked. They

introduce two new adversarial models, a non-adaptive IND-CKA1 and an adaptive

IND-CKA2 notion of security, which are widely used as the standard security defini-

tions for SSE. Those security notions include security for the trapdoors and guarantee

that the trapdoors do not leak any information about the keywords other than what

can be inferred from the search and access pattern anyway.

Boneh et al. [36] discuss security in the public-key setting. In this setting, the security

definition guarantees that no information about the keywords is leaked unless the re-

spective trapdoors are available. Also other security definitions were introduced in the

literature for SE and a detailed overview can be found in [38].

The schemes in [36, 57, 77, 99, 101, 105, 115, 139] make use of an index in order to enable

the server to execute a search query over the encrypted data (documents). The work

by Chai and Gong [48] introduced a verification mechanism into the setting of SSE,

and thus enables a user to verify returned search results from a single keyword equality

query. Liu et al. [107] extend the model of Boneh et al. [36] to support verification of

42

2.5 Digital Signatures

search results from a single keyword equality query, where the indexes are created using

a public key. Sun et al. [135] and Wang et al. [141] detail VSE schemes with enhanced

functionality, i.e. verifiable multi-keyword ranked search and verifiable fuzzy keyword

search, respectively. Gajek [71] introduced a dynamic SSE scheme using a novel crypto-

graphic tool called constrained functional encryption. Recently, Zhang et al. [147] show

that file injection attacks on the query of single-keyword and conjunctive SE schemes

can reveal the client’s queries in their entirety.

2.5 Digital Signatures

Digital signatures provide a proof of message integrity and authenticate data’s origin

(since keys can be associated to particular users). We require a message to be signed

using a private signing key owned by a particular entity, and in order to verify that the

signature was actually generated using the given signing key a public verification key

is used. If the verification process is successful then this shows that the contents of the

message have not changed since the signature was computed. We will use this primitive

(e.g. in Chapter 3) to provide a means of validating that the result of a computation

was computed by the claimed server and that it has not been maliciously altered. We

follow here the formalisation from [100].

Definition 2.27. A digital signature scheme SIG comprises the following three

polynomial-time algorithms:

• (sk, vk)
$← Sig.KeyGen(1λ): this randomised algorithm takes as input the security

parameter λ and generates a signing key sk and a verification key vk;

• γ $← Sig.Sign(m, sk): this randomised algorithm takes as input a message m to

be signed and the signing key sk, and outputs a signature γ of m;

• δ ← Sig.Verify(m, γ, vk): this algorithm takes as input a message m and corre-

sponding signature γ to be verified as well as the verification key vk, and outputs a

decision δ which corresponds to accept if γ is a valid signature on m and reject

otherwise.

Definition 2.28. A digital signature scheme is correct if for every security parameter

λ, every key pair (sk, vk) outputted by KeyGen(1λ), and every message m ∈M it holds

Sig.Verify(m,Sig.Sign(m, sk), vk) = accept except possibly with negligible probability.

We define a signature scheme to be existentially unforgeable under an adaptive chosen

message attack (EUF-CMA) if an adversary, given polynomially many signatures on

messages of its choice, cannot create a message m? with a valid signature where m?

was not one of the messages the adversary was allowed to obtain a signature for. More

formally, this is captured in Figure 2.7.

43

2.6 One-way Functions

ExpEUF-CMA
A

[
SIG, 1λ

]
1 : Q← ∅
2 : (sk, vk)← Sig.KeyGen(1λ)

3 : (m?, γ?)← AOSig.Sign(·,sk)(vk)

4 : if accept← Sig.Verify(m?, γ?, vk) and m? /∈ Q then

5 : return 1

6 : else return 0

OSig.Sign(m, sk)

1 : Q← Q ∪m
2 : return Sig.Sign(m, sk)

Figure 2.7: The signature experiment ExpEUF-CMA
A

[
SIG, 1λ

]
Definition 2.29. The advantage of an adversary A running in PPT is defined as:

AdvEUF-CMA
A,SIG (1λ) = Pr

[
ExpEUF-CMA

A
[
SIG, 1λ

]
→ 1

]
.

A digital signature scheme SIG is existentially unforgeable under an adaptive chosen-

message attack (EUF-CMA), or just secure, if for all PPT adversaries A,

AdvEUF-CMA
A,SIG (1λ) ≤ negl(λ).

2.6 One-way Functions

A one-way function g is characterised by having the properties of being easy to compute,

but hard to invert. The first condition is given by the requirement that g is computable

in polynomial time. The second condition is formalised by requiring that it is infeasible

for any probabilistic polynomial-time algorithm to invert g (that is, to find a pre-

image of a given value y) except with negligible probability. This requirement will

be captured in the inverting experiment formally represented in Figure 2.8 where we

consider the experiment for any algorithm A, any value λ for the security parameter,

and the function g : {0, 1}∗ → {0, 1}∗. Note that it suffices for A to find any value of

w′ for which g(w′) = z = g(w) in the experiment.

The following definition specifies what it means for a function g to be one-way [100].

Definition 2.30. A function g : {0, 1}∗ → {0, 1}∗ is one-way if the following two

conditions hold.

• (Easy to compute.) There exists a polynomial-time algorithm Mg computing g;

i.e. Mg(w) = g(w) for all w.

44

2.7 Verifiable Outsourced Computation

ExpInvert
A

[
g, 1λ

]
1 : w ← {0, 1}λ
2 : z = g(w)

3 : w′ ← A(1λ, z)

4 : if g(w′) = z then

5 : return 1

6 : else return 0

Figure 2.8: The inverting experiment ExpInvert
A

[
g, 1λ

]

• (Hard to invert.) For every PPT algorithm A, there exists a negligible function

negl such that

Pr
[
ExpInvert

A

[
g, 1λ

]
→ 1

]
≤ negl(λ).

2.7 Verifiable Outsourced Computation

Verifiable outsourced computation (VC) may be seen as a protocol between two

polynomial-time parties, namely a client C and a server S. A successful execution

of the protocol outputs a provably correct statement about the returned computa-

tional result F (x) by the server on an input x provided by the client. The motivation

for such protocols is based on the overwhelming success of resource constrained devices

that need to perform computationally intensive tasks and as such outsource the task

to a more powerful server which is likely to be untrusted. In many settings, the client

wishes to (or even must) ensure the correctness of the computational result to ensure

that no accidental or malicious errors have been introduced. A malicious server may

try to convince the client to accept a malformed result while not being detected, in

order to affect the client’s future behaviour or the server tries to spare computational

resources by simply returning a random result.

Some solutions have focused on an audit-based approach [25, 110] in which the client

either requires to recalculate some portions of the computations or employs multiple

servers to verify correctness. However, such an approach may be infeasible for the client

given that she is resource-constrained. On the other hand, employing multiple servers

is likely to increase the client’s cost tremendously, in addition to require assurance

that the servers do not collude. Other solutions may require specific secure computing

environments such as relying on trusted platform modules [95] being employed by a

45

2.7 Verifiable Outsourced Computation

server or the client may receive a piece of secure hardware [50] that provides support

with the expensive computation. However, such solutions raise trust issues as the client

does not trust the hardware as well as increases the involved costs of employing them.

Interactive proofs [20, 81, 83, 138] also provide a solution to VC as well as the more

efficient notion of probabilistic checkable proofs (PCP) [13, 28] in which the client

verifies the proof by only checking a small number of random locations. Yet another

solution can be obtained using Micali’s computational sound proofs [108].

2.7.1 Non-interactive Verifiable Outsourced Computation

The concept of non-interactive verifiable outsourced computation was introduced by

Gennaro et al. [72]. In more detail, a VC scheme consists of the following three phases.

Pre-processing. The pre-processing is a one-time stage in which the client computes

some public and private information associated with the function F she wishes

to outsource. The client sends the public part to the server. This phase can take

roughly the time comparable to computing the function from scratch, but it is

performed only once, and its cost is amortised over all future executions.

Input preparation The client wishes the server to compute a function F on her

input x to receive the result F (x). Therefore, the client prepares some public and

private information associated with her input x and sends the public part to the

server.

Output computation and verification. Once the server has received the public in-

formation of F and x, it computes an encoded result which allegedly encodes the

computational result F (x) and returns it to the client. From this encoded value

the client can compute the value F (x) and verify its correctness.

SC

ekF

σF,x

θF (x)

Verify

Figure 2.9: Basic operation of a verifiable outsourced computation scheme

The operation of a verifiable computation scheme is illustrated in Figure 2.9.

Note that this is a minimally interactive (non-interactive) protocol. This requires that

there is only one round of interaction between the client and the server each time a

computation is performed and thus rules out approaches based on repeated probabilis-

tic challenge-response protocols. The crucial efficiency requirement considered in VC

46

2.7 Verifiable Outsourced Computation

is that input preparation and output verification must take less time for the client than

computing the function from scratch (ideally linear time). Also, the output computa-

tion should take roughly the same amount as computing F itself.

Definition 2.31. A non-interactive verifiable outsourced computation (VC) scheme

consists of the following four algorithms3:

• (ekF , skF)
$← KeyGen(1λ, F) : this randomised algorithm takes as input the secu-

rity parameter λ and the function F to be computed. It outputs a public evaluation

key ekF which the server will use to evaluate F and a secret key skF which is

kept private by the client;

• (σF,x, vkF,x)
$← ProbGen(x, skF) : this randomised algorithm takes as input an

input value x and the secret key skF to prepare a public encoded input σF,x and

a verification key vkF,x which is kept private by the client;

• θF (x)
$← Compute(σF,x, ekF) : this randomised algorithm takes as input σF,x and

the evaluation key ekF for F to compute an encoded version θF (x) of the function’s

output y = F (x);

• y ← Verify(θF (x), vkF,x, skF) : this algorithm takes as input the encoded output

θF (x), the verification key vkF,x and secret key skF . It outputs a result y which

either corresponds to F (x) if θF (x) is valid (i.e. θF (x) is a correct encoding of the

output), or else corresponds to ⊥ if the result is incorrect.

Note that the function F used in the key generation algorithm is a function from the

family of admissible functions F for the VC scheme. Different VC schemes are able to

evaluate different families of functions F , e.g. Boolean circuits and arithmetic circuits.

A verifiable computation scheme should be both correct and secure. A VC scheme is

correct if the problem-generation algorithm produces values that allow an honest server

to compute results that will verify successfully and correspond to the evaluation of F

on those inputs. More formally this is captured as follows.

Definition 2.32. A verifiable computation scheme for a family of functions F is

correct if for any choice of function F ∈ F , every key pair (ekF , skF) outputted by

KeyGen(1λ, F) and for all input values x ∈ Dom(F), if (σF,x, vkF,x)←$ ProbGen(x, skF)

and θF (x)←$ Compute(σF,x, ekF) then y = F (x)← Verify(θF (x), vkF,x, skF).

The main security notion considered in VC is the notion of verifiability. We say that a

VC scheme is secure in the sense of verifiability if a malicious adversary cannot convince

the verification algorithm to accept an incorrect output and we formally define this

3We change the notation relative to the literature and accommodate ours which we use throughout
this thesis.

47

2.7 Verifiable Outsourced Computation

notion in Figure 2.10. In more detail, the game starts with the challenger running the

KeyGen algorithm to generate a key pair for a function F in the family of admissible

functions F . The adversary is provided with the public evaluation key ekF and access

to the ProbGen oracle OProbGen and returns an input x for which the challenger honestly

prepares an encoded input σF,x and verification key. This step is necessary to ensure

that the challenger possesses a valid verification key corresponding to the computation.

The adversary wins the game if it is able to produce an encoded output which is

accepted by the verification algorithm Verify but in fact does not correspond to the

correct result of F (x).

ExpVerif
A

[
VC, 1λ, F

]
1 : (ekF , skF)←$ KeyGen(1λ, F)

2 : x←$ AOProbGen(·,skF)(ekF)

3 : (σF,x, vkF,x)←$ ProbGen(x, skF)

4 : θF (x)←$ AOProbGen(·,skF)(σF,x, ekF)

5 : y ← Verify(θF (x), vkF,x, skF)

6 : if (y 6=⊥) and (y 6= F (x)) then

7 : return 1

8 : else return 0

OProbGen(z, skF)

1 : (σF,z, vkF,z)←$ ProbGen(z, skF)

2 : return σF,z

Figure 2.10: The verifiability experiment ExpVerif
A

[
VC, 1λ, F

]

Definition 2.33. The advantage of a PPT adversary in the Verif game for a verifi-

able computation scheme VC is defined as:

AdvVerif
A,VC (1λ, F) = Pr

[
ExpVerif

A

[
VC, 1λ, F

]
→ 1

]
.

We say that the verifiable computation scheme VC is secure for a function F if for all

PPT adversaries A, it holds that

AdvVerif
A,VC (1λ, F) ≤ negl(λ).

Gennaro et al. [72] also consider the notions of input and output privacy. The former

notion models that an adversary is not able to distinguish from the encoded input σF,x

which input value x was encoded. Output privacy assures that θF (x) does not reveal

the actual output value F (x).

A trivial solution to the problem of verifiable outsourced computation is to redundantly

outsource the same computation to multiple servers and compare the returned results.

48

2.7 Verifiable Outsourced Computation

Then the majority of same results is assumed to be correct. Canetti et al. [43] follow

the above scenario but show in contrast that a client can efficiently verify the compu-

tation as long as at least one server is honest. Most VC schemes [10, 22, 23, 30] try to

improve on this solution to remove the redundancy, improve collusion resilience and to

use only a single server per computation. Gennaro et al. [72] proposed a construction

based on Yao’s garbled circuit [144] construction which provides a “one-time” verifiable

computation scheme allowing a client to outsource the evaluation of a function on a

single input. However, this approach is insecure in case the circuit is reused and thus

the cost of the pre-processing phase cannot be amortised as the cost of generating a

new garbled circuit is approximately equal to the cost of evaluating the function itself.

In order to overcome this problem, the authors propose using a fully homomorphic en-

cryption scheme (FHE) [74] to re-randomise the garbled circuit for multiple evaluations

on different inputs, but existing FHE scheme are expensive [42, 74, 131] and therefore

are currently impractical. Some works have considered approaches to accommodate

multiple clients who wish to send their respective inputs to the server that performs

the computation over the jointly formed inputs. In such a scenario the notions such

as input privacy become more important. Choi et al. [52] extended the garbled circuit

approach [72] using a proxy oblivious transfer primitive [111] to achieve input privacy

in a non-interactive multi-client VC scheme. Pham et al. [121] approach the problem of

verifiable outsourced computation differently and provide a game-theoretical treatment

in which they employ a weaker notion of security and develop optimal contracts for

outsourcing computations via an appropriate use of rewards, punishments and auditing

rate.

There is an issue with the verifiability in the above VC scheme [72] (which is also an

inherent issue in other VC schemes [52] and delegation schemes [54, 81]) where the

verifiability of the scheme holds only under the restriction that the cheating server

does not learn whether the verifier accepted or rejected previous computations. This

problem is denoted as the rejection problem. In more detail, as soon as the server

learns that the client has rejected a computation then the server is able to deviate

from the protocol and generate improper computational results such that by learning

the decisions of the client as feedback, it can learn some information about secret

verification keys that would enable future forgeries and therefore verifiability can no

longer be claimed. Goldwasser et al. [82] overcome the rejection problem by using a

designated verifier CS proof system and Fiore et al. [69] strengthen the VC scheme

from [72] to avoid the rejection problem by providing the adversary with access to a

verification oracle.

49

2.7 Verifiable Outsourced Computation

2.7.2 Publicly Verifiable Outsourced Computation

Parno et al. [118] introduced the notion of publicly verifiable outsourced computation

(PVC) which enriches the functionality of VC with two new properties, namely public

delegation and public verification. A large part of this thesis deals with extending the

notion of PVC.

The PVC framework [118] is motivated in the setting of a scientific lab where the head

of the research team specifies the function to be evaluated over the gathered data whilst

the members of the research team decide on the specific inputs for each instance and

verify the result. The advantage of being able to publicly verify also enables patients

or other entities to ensure that the computational result is derived correctly.

The notion of PVC extends the prior notion of VC and includes multiple clients into

the system model. In more detail, a single client C1 performs the KeyGen algorithm to

obtain an evaluation key ekF which is given to the server, and publishing information

pkF are made available to any other client enabling them to encode inputs they wish to

be evaluated by the server for the specific function F . This means that only one client

needs to perform the expensive pre-processing phase. Each time the client prepares an

encoded input using the ProbGen algorithm it may publish her verification key vkF,x

enabling any other client to verify the computational output. Thus, outsourcing and

verifying computations rely only on public information. Hence, the KeyGen algorithm

needs to be only performed once per function rather than once per function and client.

Definition 2.34. A publicly verifiable outsourced computation (PVC) scheme consists

of the following four algorithms:

• (ekF , pkF)
$← KeyGen(1λ, F) : this randomised algorithm takes as input the secu-

rity parameter λ and the function F to be computed. It outputs a public evaluation

key ekF which the server will use to evaluate F and a public key pkF which will

be used for input delegation;

• (σF,x, vkF,x)
$← ProbGen(x, pkF) : this randomised algorithm takes as input an

input value x and the public key pkF . It prepares an encoded input σF,x and a

verification key vkF,x which is used for verification;

• θF (x)
$← Compute(σF,x, ekF) : this randomised algorithm takes as input the en-

coded input σF,x and the evaluation key ekF for F to compute an encoded version

θF (x) of the function’s output y = F (x);

• y ← Verify(θF (x), vkF,x) : this public algorithm takes as input the encoded output

θF (x) and the verification key vkF,x. It outputs a result y which either corresponds

to F (x) if θF (x) is valid, or else corresponds to ⊥ if the result is incorrect.

50

2.7 Verifiable Outsourced Computation

SC1 C2

Public

ekF

σF,x1

θF (x1)

σF,x2

θF (x2)

pkF , vkF,x1 vkF,x2

Verify Verify

Figure 2.11: Basic operation of a publicly verifiable outsourced computation scheme

The operation of a PVC scheme is illustrated in Figure 2.11. Note that in both the

definitions of VC and PVC the client is responsible to perform the KeyGen algorithm

for a single function F which may be expensive (roughly the cost of executing the

function F itself). However, the client is assumed to only possess limited resources and

is generally interested to compute multiple functions which makes the definitions to

some extent restrictive. The main changes in the definition of PVC relative to VC are

that KeyGen generates a secret key skF which in PVC will be made public and thus

enables any entity to outsource a computation of F , and that the verification key vkF,x

generated in ProbGen is published to allow any entity to verify a computational result.

The correctness of a PVC scheme follows similarly to the one of a VC scheme. A PVC

scheme is correct if an honest run of the protocol will verify successfully and correspond

to the evaluation of F on those inputs. More formally this is captured as follows.

Definition 2.35. A publicly verifiable outsourced computation scheme for a family of

functions F is correct if for any choice of function F ∈ F , every key pair (ekF , pkF)

outputted by KeyGen(1λ, F) and for all input values x ∈ Dom(F), if

(σF,x, vkF,x)←$ ProbGen(x, pkF) and θF (x)←$ Compute(σF,x, ekF) then y = F (x) ←
Verify(θF (x), vkF,x).

The security notion of public verifiability for a PVC scheme is defined in Figure 2.12.

Compared to Figure 2.10 which describes the notion of verifiability for a VC scheme, the

public verifiable setting does not require a ProbGen oracle as outsourcing computations

is solely based on public parameters and hence can be run by the adversary itself. The

adversary wins the game if it is able to produce an encoded output in such a way that

it is accepted by the verifier but in fact does not correspond to the correct result of

F (x).

Definition 2.36. The advantage of a PPT adversary in the PubVerif game for a

51

2.7 Verifiable Outsourced Computation

ExpPubVerif
A

[
PVC, 1λ, F

]
1 : (ekF , pkF)←$ KeyGen(1λ, F)

2 : x←$ A(ekF , pkF)

3 : (σF,x, vkF,x)←$ ProbGen(x, pkF)

4 : θF (x)←$ A(σF,x, vkF,x, ekF , pkF)

5 : y ← Verify(θF (x), vkF,x)

6 : if (y 6=⊥) and (y 6= F (x)) then

7 : return 1

8 : else return 0

Figure 2.12: The public verifiability experiment ExpPubVerif
A

[
PVC, 1λ, F

]

publicly verifiable computation scheme PVC is defined as:

AdvPubVerif
A,PVC (1λ, F) = Pr

[
ExpPubVerif

A

[
PVC, 1λ, F

]
→ 1

]
.

We say that the public verifiable computation scheme PVC is secure for a function F

if for all PPT adversaries A, it holds that

AdvPubVerif
A,PVC (1λ, F) ≤ negl(λ).

The presented notion of public verification allows a stronger notion of security since any

entity, including the server, is able to perform verification. Since this enables the server

to tell whether a result will be accepted or rejected by the client, it makes the rejection

problem in the context of PVC invalid. From a more technical point of view this is the

case as verification only depends on the public parameters and some instance specific

randomness generated by the client and not any long-term secret. Thus, obtaining the

result from a previous verification step on one instance does not provide any advantage

in breaking the verifiability on a different instance.

Some prior work [33, 81, 82] already introduced the property of public delegation

but are mostly in the random oracle model or rely on non-standard assumptions.

Parno et al. [118] have been the first who considered public verifiability. Since then the

concept has been widely used to publicly verify specific operations [68] and construct

an almost practical scheme [117].

In Section 2.7.3, we provide a detailed discussion on the basic principles of how to

construct a PVC scheme based on key-policy attribute-based encryption following

52

2.7 Verifiable Outsourced Computation

Parno et al. [118].

Multi-function Verifiable Outsourced Computation

Parno et al. [118] introduced the notion of multi-function verifiable outsourced com-

putation (MFVC) which extents the original definition of VC [72] to efficiently enable

servers to evaluate multiple functions on a single input. In other words, a client encodes

a single input x independently from any functions, and then can request evaluations of

multiple functions upon it. This notion is useful in case the client’s data remains static

and she wishes to use it multiple times.

In more detail, compared to [72] where the function to be evaluated is embedded

in the system’s parameters, MFVC separates the generation of system parameters

and function parameters into different algorithms to allow the evaluation of multiple

functions on the same input instance.

Definition 2.37. A multi-function verifiable outsourced computation (MFVC) scheme

consists of the following five algorithms:

• (pp,mk)
$← Setup(1λ) : this randomised algorithm takes as input the security

parameter λ. It produces the public parameters pp and secret parameters mk that

do not depend on any function to be evaluated;

• (ekF , skF)
$← KeyGen(F,mk, pp) : this randomised algorithm takes as input the

function F to be computed, the secret parameters mk and the public parameters

pp. It outputs an evaluation key ekF which the server will use to evaluate F and

a secret key skF used for verification which will be kept private by the client;

• (σx, vkx)
$← ProbGen(x,mk, pp) : this randomised algorithm takes as input an

input value x, the secret parameters mk and the public parameters pp, which are

all independent of the function F . It produces an encoded input σx and a secret

verification key vkx which will be kept private by the user;

• θF (x)
$← Compute(σx, ekF , pp) : this randomised algorithm takes as input the en-

coded input σx, the evaluation key ekF and the public parameters pp. It computes

an encoded version θF (x) of the function’s output y = F (x);

• y ← Verify(θF (x), vkx, skF) : this public algorithm takes as input the encoded

output θF (x), the input specific verification key vkx and function specific secret

key skF . It outputs a result y which either corresponds to F (x) if θF (x) is valid,

or else corresponds to ⊥ if the result is incorrect.

A MFVC scheme is correct if an honest run of the protocol will verify successfully and

correspond to the evaluation of F on those inputs. More formally this is captured as

follows.

53

2.7 Verifiable Outsourced Computation

Definition 2.38. A multi-function verifiable outsourced computation scheme for a

family of functions F is correct if for the generated parameters (pp,mk) outputted by

Setup(1λ), for any choice of function F ∈ F , every key pair (ekF , skF) outputted by

KeyGen(F,mk, pp) and for all input values x ∈ Dom(F), if

(σx, vkx)←$ ProbGen(x,mk, pp) and θF (x)←$ Compute(σx, ekF , pp) then y = F (x) ←
Verify(θF (x), vkx, skF).

The security notion we consider for a MFVC scheme is multi-function verifiability which

we formally define in Figure 2.13. It proceeds similar to the security of a VC scheme as

represented in Figure 2.10. The main difference is that the adversary has additionally

access to a KeyGen oracle representing its capability to request keys for any arbitrary

functions it wishes to evaluate. The adversary wins the game if it is able to produce

an encoded output which is accepted by the verifier but in fact does not correspond to

the correct result of F (x).

ExpMultiVerif
A

[
MFVC, 1λ

]
1 : (pp,mk)←$ Setup(1λ)

2 : (x, F)←$ AOKeyGen(·,mk,pp),OProbGen(·,mk,pp)(pp)

3 : (σx, vkx)←$ ProbGen(x,mk, pp)

4 : θF (x)←$ AOKeyGen(·,mk,pp),OProbGen(·,mk,pp)(pp)

5 : y ← Verify(θF (x), vkx, skF)

6 : if (y 6=⊥) and (y 6= F (x)) then

7 : return 1

8 : else return 0

OKeyGen(F,mk, pp)

1 : (ekF , skF)←$ KeyGen(F,mk, pp)

2 : return ekF

OProbGen(z,mk, pp)

1 : (σz, vkz)←$ ProbGen(z,mk, pp)

2 : return σz

Figure 2.13: The multi-function verifiability experiment ExpMultiVerif
A

[
MFVC, 1λ

]

Definition 2.39. The advantage of a PPT adversary in the MultiVerif game for a

multi-function verifiable computation scheme MFVC is defined as:

AdvMultiVerif
A,MFVC (1λ) = Pr

[
ExpMultiVerif

A

[
MFVC, 1λ

]
→ 1

]
.

We say that the multi-function verifiable computation scheme MFVC is secure for a

function F if for all PPT adversaries A, it holds that

AdvMultiVerif
A,MFVC (1λ) ≤ negl(λ).

Parno et al. [118] provide a construction for MFVC based on KP-ABE with outsourcing

as introduced by Green et al. [90]. However, the given construction is publicly delegable

54

2.7 Verifiable Outsourced Computation

but not publicly verifiable. This ‘drawback’ comes from the fact that in [90], giving out

skF enables the server directly to cheat about the evaluated function, i.e. the server

claims an output computed with F was the result of applying G. Parno et al. left it as

an open problem to overcome this issue to construct a publicly verifiable multi-function

VC scheme.

2.7.3 Construction of Publicly Verifiable Computation Schemes

Parno et al. [118] provide a PVC construction using key-policy attribute-based encryp-

tion (KP-ABE)[89] for outsourcing the family of monotone Boolean functions.4 In this

section we present the basic principles of their PVC construction as those principles

will be used throughout this thesis as a building block for our extended PVC proposals.

Parno et al. use the idea that the KP-ABE decryption functionality provides a proof

that a monotone Boolean function is satisfied (i.e. outputs 1) on a given input. We

recall from Section 2.3.1 that in KP-ABE, the decryption keys are associated with

access structures while ciphertexts are associated with attribute sets. Decryption is

successful if and only if the attribute set in the ciphertext satisfies the access structure

in the decryption key. This idea can be lifted into the setting of PVC by encoding the

function to be outsourced as an access structure and issue the server with a respective

decryption key. Input data can be encoded in terms of attribute sets and the encryp-

tion of messages result into ciphertexts which are associated with those attribute sets.

In order to outsource a computation F (x), Parno et al. select a random message m0

from the underlying message space of the KP-ABE scheme and encrypt it under the

attribute representation Ax that encodes the input x. A server is issued an evaluation

key to perform the computation in form of a KP-ABE decryption key for the access

structure encoding the function F . The server succeeds in decrypting the ciphertext

and recovering the message m0 if and only if F (x) = 1, which indicates that the access

structure is satisfied by the attribute set. In case that F (x) = 0 then this indicates

that the access structure is not satisfied by the attribute set and the adversary cannot

do better at finding the message m0 than a random guess.5 In other words, if the

client receives the same message that she initially encrypted, she is fully convinced

that decryption was successful and F (x) = 1. However, if the client receives no answer

or ⊥ from the server then this could be the case because the server was truly unable

to decrypt and F (x) = 0, or because F (x) = 1 and the server intentionally refuses to

decrypt. Thus, this proposal can be seen as a protocol with a one-sided error.

4If input privacy is required then a predicate encryption scheme could be used in place of the
KP-ABE scheme.

5Note that in order for an ABE scheme to be secure, it is required that the message space is large
enough such that the server is not able to randomly guess and return the correct message with a
significant probability.

55

2.7 Verifiable Outsourced Computation

To overcome the problem with the one-sided error, Parno et al. suggest to initialise

a second (independent) KP-ABE scheme and then following the same principles as

above and encrypting a different random message m1 under the same attribute set Ax

corresponding to x using the parameters of the second system. The server is now issued

an evaluation key in the form of a KP-ABE decryption key for the access structure

encoding the complement function F (x) = F (x)⊕1, which always outputs the opposite

result to F (x). Thus, exactly one of F (x) or F (x) evaluates to 1 and therefore exactly

one decryption was successful and the respective message is returned.6 The client is

able to observe which message was returned and therefore knows under which KP-ABE

scheme the message was encrypted which enables the client to determine whether F (x)

or F (x) was satisfied and thus learns whether F (x) = 1 or 0 respectively. A well-formed

and valid response from a server comprises the outputs (d0, d1) from both decryption

procedures and therefore is of the following form:

(d0, d1) =

(m0,⊥), if F (x) = 1;

(⊥,m1) if F (x) = 0.
(2.1)

Since KP-ABE is a public-key encryption primitive, this construction can be seen as

the “public-key” version of the initial proposal by Gennaro et al. [72]. Furthermore,

this construction enables any entity to create ciphertexts and hence the construction

achieves public delegability. On the other hand the construction can achieve public ver-

ifiability by employing a one-way function g, e.g. a pre-image resistant hash function.

In more detail, the client publishes a verification key for the outsourced computation

comprising the results of applying the one-way function to each randomly chosen mes-

sage m0 and m1. The server outputs a computational result (corresponding to exactly

one message) and on receipt of such, any entity can apply g to the returned message

and compare the result with the values in the verification key to verify correctness. We

want to stress that even a malicious server does not gain any advantage from know-

ing the verification key since it cannot invert the one-way function g to recover either

message. In Table 2.1, we provide an overview about the particular mapping between

abstract PVC parameters and KP-ABE parameters used in the construction.

As mentioned above, we need a particular encoding procedure that defines input data

for outsourced computations as attribute sets. However, Parno et al. did not specify

any details about the encoding procedure they may use in their scheme. Therefore, we

want to provide details about the particular procedure we use throughout this thesis

which also applies to the Parno et al. construction. In more detail, we define a universe

U of n attributes and associate V ⊆ U with a binary n-tuple where the i-th entry is

1 if and only if the ith attribute is in V . We call this tuple the characteristic tuple of

6Goldwasser et al. [80] call such a slightly modified ABE scheme two-outcome attribute-based en-
cryption scheme.

56

2.8 Proofs of Retrievability

Abstract PVC parameter Parameter in KP-ABE instantiation

ekF skAF
pkF Master public key pp
σF,x Encryption of m using pp and Ax
θF (x) m or ⊥
vkF,x g(m)

Table 2.1: Mapping between PVC and KP-ABE parameters

V . Thus, there is a natural one-to-one correspondence between n-tuples and attribute

sets and we write Ax to denote the attribute set corresponding to the input data x.

An alternative way to view this is to let U = {A1, A2, . . . , An}. Then, a bit string v of

length n is the characteristic tuple of the set V ⊆ U if V = {Ai : vi = 1}. A function

F : {0, 1}n → {0, 1} is monotonic if x 6 y implies F (x) 6 F (y), where x = (x1, . . . , xn)

is less than or equal to y = (y1, . . . , yn) if and only if xi 6 yi for all i. For a monotonic

function F : {0, 1}n → {0, 1} the set AF = {x ∈ {0, 1}n : F (x) = 1} defines a mono-

tonic access structure.

Throughout the remainder of this thesis, we mainly refer to monotonic Boolean func-

tions. This is mainly due to the majority of the ABE literature considering monotonic

access structures. However, a notable non-monotonic KP-ABE scheme was given by

Ostrovsky et al. [112] which accommodates general Boolean functions and hence would

enable us to outsource the NC1 class of functions. The use of such a scheme in our

construction as well as in the one of Parno et al. should be straightforward since we

use the KP-ABE scheme as a black-box. However, we would need to slightly adjust

our encoding procedure for the input data since 0 values in the bit strings can affect

the outcome of the computation. In more detail, we define the universe of attributes

U to consist of 2n attributes {A0
i , A

1
i }ni=1. Then, a bit string v of length n is the char-

acteristic tuple of the set V ⊆ U if V = {Aji : vi = j}. By applying De-Morgan’s

laws to a non-monotonic Boolean function it is possible to move any negations within

the function such that they only apply to the input variables. Hence a non-monotonic

Boolean function can be satisfied by choosing the 0 or 1 attribute appropriately in the

input attribute set.

2.8 Proofs of Retrievability

Proofs of retrievability (PoR) may be seen as a protocol between a polynomial-time

client and a polynomial-time server. A successful execution of the PoR protocol results

in a concise proof produced by a server that the user’s outsourced file F can be re-

trieved, that is, the server retains and reliably transmits file data sufficient for the user

to recover the original file F in its entirety. The motivation for a PoR scheme is the

overwhelming success of the cloud model which offers various benefits such as flexible

57

2.8 Proofs of Retrievability

scalability and accessibility of different cloud services in a cost effective manner where

in case of a PoR the client makes use of the cloud’s storage instance (e.g. Amazon

S3, Windows Azure) to which the client initially outsources her data. In this settings,

the client wishes to assure the correctness of the outsourced data to ensure that no

accidental or malicious errors have been introduced into the data. A malicious server

may try to change, tamper or delete the data whilst not being detected in order to

spare storage resources.

A simple solution to the above problem may be to download the whole file every time

the client wishes to check the data. However, this approach stands in contrast to the

goals of outsourcing the data in the first place and thus the client would lose all ini-

tial outsourcing benefits, as well as being very bandwidth intensive. The challenging

problem is to enable verification of the file F without explicit knowledge of the full file.

This problem was first described by Blum et al. [34] who explored the task of efficiently

checking the correctness of a memory-management program. Another solution [103]

may require a trusted security provider controlling the integrity-protection of files in

untrusted cloud storage providers. A PoR can loosely be seen as a proof of knowledge

(PoK) [27] conducted between a prover and verifier on a file F . The essential design

goal in a PoK is to preserve the secrecy of some short secret. However, in PoR, the

design is different as the verifier already learned the value F as the file was initially

outsourced by the verifier. Thus, the main challenge is to prove knowledge of F with

computational and communication costs substantially smaller than |F |. PoR are also

akin to other proof systems such as proofs of computational ability [146] and proofs of

work [96].

Proofs of retrievability were introduced by Juels and Kaliski [98]. Informally, PoR can

be seen as a cryptographic proof showing that the outsourced file is retained and fully

intact stored at a cloud service provider. In other words, a PoR aims to provide a

mechanism of proving that the file is intact and the client can fully recover it. More

formally this is captured in the following definition.

Definition 2.40. A proofs of retrievability (PoR) scheme consists of the following

procedures:

• (pk, sk)
$← Setup(1λ): this randomised algorithm generates a public-private key

pair (pk, sk) and takes as input the security parameter λ;

• (F , τ)
$← Store(sk, F): this randomised file storing algorithm takes as input a

secret key sk and a file F ∈ {0, 1}∗. The file gets processed and the algorithm

outputs F which will be stored on the server as well as a file tag τ . The tag τ

contains additional information (e.g. metadata) about F ;

• δ $← [Verify(pk, sk, τ)
 Prove(pk,F , τ)]: the randomised proving and verifying

58

2.8 Proofs of Retrievability

algorithms define a protocol for proving file retrievability. The prover algorithm

takes as input the public key pk as well as the file tag τ and the processed file

F . The verifier algorithm takes the secret key sk, public key pk and the file tag

τ . Algorithm Verify outputs at the end of the protocol execution a binary value

δ which corresponds to accept if the verification succeeds, indicating the file is

being stored and retrievable on the server, and reject otherwise.

Note that the above definition is adapted from Shacham and Waters [126] rather than

the original one by Juels and Kaliski [98]. For simplicity, let us denote the challenge-

response procedure [Verify(pk, sk, τ)
 Prove(pk,F , τ)] as PoRP.

A proof of retrievability scheme should be both correct and secure. A PoR scheme is

correct if the processed file F outputted by the store procedure will be accepted by

the verification algorithm when interacting with a valid prover. More formally this is

captured as follows.

Definition 2.41. A PoR scheme is correct if there exists a negligible function negl

such that for every security parameter λ, every key pair (pk, sk) generated by Setup,

for all files F ∈ {0, 1}∗, and for all (F , τ) generated by Store, it holds that

Pr[(Verify(pk, sk, τ)
 Prove(pk,F , τ)) 9 accept] = negl(λ).

Security of a PoR scheme is defined in the usual terms of an experiment in which the

adversary plays the role of the prover P. Intuitively, a PoR scheme is secure if any

cheating prover that convinces the verification algorithm that it stores a file F is indeed

storing the file. In other words, we wish to guarantee that, whenever a malicious prover

is in a position of successfully passing a PoRP instance, it must know the entire file

content. As in a PoK, we need to formalise knowledge via the existence of an efficient

extractor E that can recover the original file F given access to the malicious prover. We

first formalise the notion of an extractor and then formally define the relevant security

notion called extractability following the formalisation in [126].

An extractor algorithm E(pk, sk, τ,P ′) takes as input the generated key pair, the file

tag τ as well as a description of the machine implementing the prover’s role in the PoR

scheme and its output is the file F . The extractor is given (non black-box) access to P ′
and in particular can rewind it. Furthermore, we require that the algorithm is efficient,

i.e. E ’s running time needs to be polynomial in the security parameter.

Consider the following extractability game ExpExtract
A,ε

[
POR, 1λ

]
between a malicious

adversary A, an extractor E , and a challenger C.

1. The challenger initialises the system by running Setup to generate the public and

private key pair for all entities. The public key is provided to A.

59

2.8 Proofs of Retrievability

2. The adversary A is now able to interact with the challenger that takes the role of

an honest client. A is allowed to request executions to a Store oracle by providing,

for each query, some file F . The challenger runs (F , τ)
$← Store(sk, F) and returns

both outputs to the adversary.

3. Likewise, A can request executions of the PoRP scheme for any file on which it

previously made a Store query by specifying the corresponding tag τ . In the pro-

cedure, the challenger will play the role of the honest verifier V and the adversary

the role of the corrupted prover, i.e. V(τ, pk, sk)
 A. In the end of the execution

the adversary is provided with the output of the verifier. Furthermore, the Store

oracle queries and executions of PoRP can be interleaved arbitrarily.

4. The adversary outputs a challenge tag τ ′ returned from some Store query and the

description a prover P ′.

5. Run the extractor algorithm F ′ ← E(pk, sk, τ ′,P ′) inputting the challenge tag τ ′

and description P ′ where E gets black-box rewinding access to P ′, and attempts

to extract the file content as F ′.

6. If Pr[(V(τ, pk, sk)
 P ′)→ accept] ≥ ε and F ′ 6= F then output 1, else 0.

Note that we say a malicious prover P ′ is ε-admissible if the probability that it con-

vincingly answers verification challenges is at least ε, i.e. if Pr[(V(τ, pk, sk)
 P ′) →
accept] ≥ ε. Here the probability is over the coins of the verifier and prover.

Definition 2.42. We say that a PoR scheme, POR, is ε-extractable (or secure) if

there exists an efficient extraction algorithm E such that, for all PPT adversaries A it

holds that Pr
[
ExpExtract

A,ε
[
POR, 1λ

]
→ 1

]
is negligible in the security parameter.

Juels and Kaliski [98] present a PoR scheme which relies on so-called sentinels. In their

model, a file consists of blocks and a sentinel itself is an indistinguishable block which

will be hidden among regular file blocks in order to detect data modification by the

server. In more detail, the client challenges the server by specifying the positions of a

collection of sentinels and requests the server to return the associated sentinel values.

In case the server has deleted or modified a substantial portion of the file F , then

with high probability it will have also suppressed a number of sentinels. Thus, it is

unlikely that the server will respond correctly to the verifier. In order to also protect

against corruption of a small portion of F , Juels and Kaliski [98] propose to employ

erasure-correcting codes (ECC). In other words, the usage of erasure-correcting codes

can amplify errors in the stored file and thus it is more likely for the client to recover

the file even if erasures were introduced. We discuss the necessity and importance as

well as present a formal definition of ECC later in this section. A similar approach

of using erasure-correcting codes was proposed in an early PoR-like protocol of Lillib-

ridge et al. [106]. However, their main goal is slightly different compared to PoR as they

60

2.8 Proofs of Retrievability

wish to achieve an assurance of the availability of an outsourced file that is distributed

over a set of servers in a peer relationship. The Juels-Kaliski proposal only supports

a bounded number of PoRP executions after which the server has learnt all embedded

sentinels and thus requires the client to re-perform the initialisation procedure in case

she wishes to further check the file via a PoR. The authors also propose a public PoR

scheme using a Merkle-tree construction so that it can be verified by any external party

without requiring a secret key.

Another notable PoR construction was proposed by Shacham and Waters [126]. They

propose two PoR schemes, namely a private-key based and a public-key based scheme.

The former scheme builds on pseudorandom functions and is secure in the standard

model whilst the latter uses BLS signatures and is secure in the random oracle model.

Both schemes, however, uses homomorphic authenticators to yield compact proofs.

More details about the private-key scheme can be found in Chapter 7.

Following the initial PoR scheme, works have been developed that propose improve-

ments compared to [98]. For example, Bowers et al. [40] construct a PoR scheme which

tolerates a Byzantine attacker model. Dodis et al. [62] introduce the notion of PoR

codes which combines concepts in PoR and hardness amplification. Paterson et al. [119]

treat PoR schemes in the model of unconditional security where an adversary has un-

bounded computational power and they show that retrievability can be modelled as

erasure-correction in a certain mode. Armknecht et al. [11] proposed the notion of an

outsourced PoR scheme which enables a client to task an external auditor to perform

and verify PoR procedures on her behalf. The above approaches, however, are lim-

ited in the sense of being only able to handle static files. In contrast to the above

approaches, some proposals deal with the construction of dynamic schemes support-

ing efficient updates. Cash et al. [47] achieve dynamic updates using oblivious RAM

whereas Shi et al. [128] improve the performance by relying on a Merkle hash tree.

Stefanov et al. [134] consider updates where a trusted “portal” performs operations on

the client’s behalf. Recently, Guan et al. [92] explore the usage of indistinguishability

obfuscation for building a PoR scheme that offers public verification while the encryp-

tion process is based on symmetric key primitives. Other contributions [123, 127, 145]

deal with public verifiable PoR schemes.

Concurrently to the work of Juels and Kaliski [98], Ateniese et al. [15] proposed a close

variant of PoR called proofs of data possession (PDP). The main difference between

PoR and PDP is the notion of security they achieve. More precisely, a PoR provides

stronger security guarantees than PDP as a PoR assures that the server maintains full

knowledge of the client’s data whereas a PDP only assures that most of the data is

retained. Dynamic PDP solutions where proposed in [16] where the problem of dynamic

writes/updates was considered and [63] uses authenticated dictionaries based on rank

61

2.8 Proofs of Retrievability

information. In [58], Curtmola et al. propose a multi-replica PDP which enables a client

to efficiently verify that a file is replicated at least across k replicas by the cloud. Some

work appeared exploring the direction to extend works into the multi-server setting.

Bowers et al. [39] introduce a system called HAIL which enables a set of servers to

prove to a client that a stored file is intact and retrievable against a mobile adversary

that can progressively corrupt the full set of storage providers. In [41], Bowers et al.

present a scheme that enables the client to verify if her data is redundantly stored at

multiple servers by measuring the time it takes the server to respond to a read request

for a set of data blocks. Gritti et al. [91] introduce a third party enabling the client to

efficiently check the integrity of the data.

Erasure-correcting codes

Erasure-correcting codes (ECC) play a crucial role in the functionality of a PoR scheme.

As mentioned above, the use of erasure-correcting codes were introduced as a mecha-

nism to handle corruption of a small number of file blocks. ECC enable to boost the

detection probability and ensure that the server must possess sufficiently many blocks

to pass a PoRP procedure. Typically, this procedure consists of checking the authen-

ticity of λ random processed file blocks, where λ is the security parameter.

In basic terms, ECC is a process that adds redundant data to the original data in such

a way that a receiver may recover the processed data even when a number of errors

were introduced, either during the transmission of the file, or on storage. As a concrete

example, let us suppose a client wishes to outsource a file consisting of n blocks which

are erasure coded into m = n/ρ blocks for some ECC rate 0 < ρ ≤ 1, such that knowl-

edge of any n of m blocks suffice to recover the original file blocks. In other words, to

recover the file we require a reception efficiency of 1, i.e. we need to check as many file

blocks as the original file consists of. Thus, this means that the server needs to delete

more than (1−ρ) percent of the file blocks in order to incur actual data loss. However,

if the server deletes that many blocks, it will fail the above PoRP with overwhelming

probability and the adversary will be detected cheating with a probability of at least

(1− (1−ρ)λ). In more detail, the PoR scheme provides a probabilistic assurance about

the authenticity and retrievability of the data and thus about the outcome of the PoR

scheme itself.

We close this chapter with the formal definition of an erasure-correcting code following

the standard literature [94].

Definition 2.43. Let Σ denote a finite alphabet. An (m,n, d)Σ erasure-correcting code

is defined to be a pair of algorithms encode : Σn → Σm, and decode : Σm−d+1 → Σn,

such that as long as the number of erasures is bounded by d − 1, then decode can

always recover the original data. A code is maximum distance separable (MDS), if

62

2.8 Proofs of Retrievability

n+ d = m+ 1.

63

Chapter 3

Revocation in Publicly Verifiable Out-
sourced Computation

Contents

3.1 Introduction . 64

3.2 Revocable Publicly Verifiable Outsourced Computation . . 67

3.3 Security Models . 73

3.4 Construction . 91

3.5 Proofs of Security . 101

3.6 Conclusion . 119

This chapter deals with the setting of publicly verifiable outsourced com-

putation (PVC) for which has been shown that key-policy attribute-based

encryption can be used. We propose extensions and improvements to the

current PVC proposal in order to accommodate a more practical framework.

For this mode of computation, we introduce a distinguished entity that pro-

vides support to minimise the client’s computational burden regarding the

expensive pre-processing. We also investigate a simple mechanism to en-

able a server to compute multiple functions, and provide a method to revoke

misbehaving servers from future evaluations within the system. The results

of this chapter appear in [4].

3.1 Introduction

The cloud model has led to many benefits in various application domains such as stor-

ing and computing. Nowadays, it is also increasingly common for mobile devices being

used as general computing devices. Since users produce a vast amount of data there is

a natural desire to process and evaluate the data. However, since the mobile devices

cannot handle this task sufficiently well there is a need to outsource the evaluation of

the data to the cloud. Upon receiving a computational result from the cloud, the user

wishes to obtain some assurance about the validity of the result.

This problem known as verifiable outsourced computation (VC) has recently attracted

a lot of attention in the community and we summarised the concept in detail in Sec-

64

3.1 Introduction

tion 2.7. Verifiable computation enables a computationally-limited client to outsource

a computation to a computational powerful server and efficiently verify whether the

returned result was evaluated correctly. Publicly verifiable computation [118], on the

other hand, aims to provide a more practical scenario for VC. In PVC only one client

needs to perform the expensive one-time pre-processing stage and is able to publish

parameters (for a specific function F) in such a way that any other entity can use those

parameters themselves in order to delegate the evaluation of F on their own input and

also to verify results. Thus, PVC can be seen as a multi-client system but the system

does not currently support multiple servers or multiple functions.

We believe that both requirements might be important to make current PVC schemes

“more practical”. In more detail, it may be desirable for a client to be able to choose

from a set of available servers per computation within the system. Certain different

individual computation requests may require different computational resources such as

a certain amount of processor cores or a given amount of RAM. Such specific require-

ments may only be fulfilled by a small number of servers within the system and clients

are flexible to choose the server depending on their needs related on the complexity

of the computation. A client may also require that certain computations can only be

evaluated on servers that are located within a specific geographical location. The mo-

tivation may be to minimise latency or the specific computation may be of sensitive

nature and thus may not leave the country of origin and therefore the client may be

even willing to pay a higher reward for using such a specific server. Having registered

multiple servers offering a computation service to clients within a PVC system, it seems

conceivable that the servers may compete against each other to reduce costs or may

bid on computations depending on their available resources. Thus, such behaviour may

be of particular interest for the client since this may reduce the involved cost of the

system and rewards dramatically.

In current PVC schemes the system is only initialised to evaluate a single function. In

case a client wishes to compute a new function, she is required to initialise a new inde-

pendent PVC system. This requires the client to invest a lot of her own resources each

time she needs to compute a new function. Since this is not acceptable in a practical

environment, we aim to enhance the system to accommodate handling multiple func-

tions in a publicly verifiable way to spare those resources for other tasks. Since PVC

can be seen as a multi-client system, it is also conceivable that many clients are largely

interested in outsourcing the same set of functions, albeit on different, client-specific

input data. Currently, it is likely that within a group of clients (e.g. a set of employees

within a company) there is a distinguished client responsible initialising the system

by running the expensive pre-processing and distributing the respective delegation key

and evaluation key to the other members of the group. However, given that the set of

65

3.1 Introduction

functions for different groups of clients may overlap, it seems required that each distin-

guished client invests the same effort to initialise the respective system for their group.

This effort is redundant as all distinguished clients just repeat each others work while

the workload has already increased as the client initialised a system to accommodate

multiple servers and multiple functions. The role of these clients become akin to an

authority of entities within the system. Therefore, we propose the introduction of a

separate trusted entity which we denote as the key distribution centre (KDC). The role

of the key distribution centre is to initialise the system and issue the evaluation keys

on behalf of all clients within the system.

Given that we have enrolled multiple untrusted servers within a PVC system, it may

well be desirable that cheating servers are prevented from performing further compu-

tations and as such being revoked from the system, as they are deemed completely

untrustworthy in case they were caught cheating. In the single-client VC scheme [72],

the client can simply choose to no longer delegate computations to the server. In a

multi-client setting, on the other hand, it is necessary that all clients within the system

are aware that a server is known to be not trustworthy and stop using it to spare their

resources. However, in both VC and PVC, to overcome the problem, we are required to

initialise a new system which requires the client to invest again her valuable resources

on the pre-processing. In our new PVC proposal, it is not desirable to initialise a new

system as other (potentially trustworthy) servers are also enrolled and can be still used.

Note that if any client would outsource a computation to a misbehaving server then

the verification procedure would still ensure that the errors are detected. However, we

wish future clients not to waste their limited resources by delegating to a ‘bad’ server,

and wish to disincentivise servers from cheating in the first place, as they know they

will be detected and revoked, and therefore incur a significant (financial) penalty from

not receiving future work.

Our main contribution in this chapter is to introduce the new notion of revocable publicly

verifiable computation (RPVC). Our scheme aims to achieve the following goals:

• we allow to enrol multiple servers within a PVC system;

• we allow the server to handle multiple outsourced functions within a single PVC

system;

• we introduce the notion of a KDC that is responsible for handling the compu-

tational expensive part and to issue evaluation keys for the functions. In case a

client detects a cheating server, the client may report to the KDC which in turn

is able to revoke the misbehaving server without having to initialise a new PVC

system.

We provide a rigorous definitional framework for RPVC, that we believe more ac-

66

3.2 Revocable Publicly Verifiable Outsourced Computation

curately reflects real environments than previously considered in the PVC literature.

This new framework both removes redundancy and includes additional functionalities,

leading to several new security notions.

Related Work

In independent and concurrent work, Carter et al. [45] introduced a trusted third party

for a verifiable computation scheme as well. This more powerful entity is responsible to

generate garbled circuits for such schemes. However, the solution requires the entity to

be online throughout the computation and models the system as a secure multi-party

computation protocol between the client, server and third party. We do not believe

this solution is practical in general since it is conceivable that a trusted entity is not

always available in order to take an active part in computations.

For example, following the battlefield communications scenario by Gennaro et al. [72],

VC schemes are required where soldiers are deployed with lightweight computing de-

vices which gather data from their surroundings. The soldiers then send the data to

their regional servers for analysis and receive a result that needs to be verified. In this

scenario, the trusted party could be located within a high security base or governmen-

tal building generating relevant keys which are provided to the soldiers before being

deployed with the lightweight device. However, we believe it is rather infeasible for a

soldier to contact and maintain a permanent communication link with the headquarters

for the duration of a computation.

It seems a reasonable assumption and scenario that in a VC scheme there could be

many available servers offering computations but only a single (or a small number) of

trusted third parties. The third party could easily become here a bottleneck in the

system and limit the number of computations that can take place at any one time.

Organisation of Chapter

In Section 3.2 we introduce our new system model framework for our revocable PVC

scheme. This new model leads to new and extended security models which we discuss

and analyse in detail in Section 3.3. This is followed, in Section 3.4, by a discussion

about the technical challenges within our enhanced model and a concrete instantiation

for a RPVC scheme based on the revocable KP-ABE scheme. In Section 3.5 we present

detailed proofs of security for the achievable security notions. We conclude the chapter

in Section 3.6.

3.2 Revocable Publicly Verifiable Outsourced Computation

The aim of this section is to enhance the existing PVC system model to accommodate a

more practical system comprising multiple clients and multiple servers. We introduce

a single trusted entity known as the key distribution centre (KDC) that acts as an

67

3.2 Revocable Publicly Verifiable Outsourced Computation

authority on entities enrolled in the system and thus makes entity management more

straightforward. Our model allows multiple servers to compute multiple functions in a

secure manner and we ensure that a server is not able to use an evaluation key for a

function G to return a valid computational result for F (x).

In the remainder of this section, we discuss in more detail the role of the key distribution

centre and discuss two system architectures which later lead to several new security

notions. We also provide a formal definition of revocable PVC.

3.2.1 Key Distribution Centre

Existing frameworks assume that a client or several clients run the expensive pre-

processing of a VC scheme and that a single server performs the outsourced compu-

tation. We believe that this is not adequate for a number of reasons, irrespective of

whether the client is sufficiently powerful to perform the required operations. First,

in a real-world system, we may wish to outsource the setup phase to a trusted third

party. In this setting, the third party would operate rather similarly to a certificate

authority, providing a trust service to facilitate other operations of an organisation (in

this case outsourced computation, rather than authentication). Second, we may wish

to limit the functions that some clients can outsource.

A distinguished client with additional computational resources to perform the expen-

sive pre-processing could act as the KDC. However, we consider the KDC to be a

separate entity to illustrate separation of duty between the clients that request compu-

tations, and the KDC that is authoritative on the system and users, and we minimise

its workload to key generation and revocation only.

It may be tempting to suggest that the KDC, as a trusted entity, performs all computa-

tions itself. However we believe that this is not a practical solution in many real-world

scenarios, e.g. the KDC could be an authority within the organisation responsible for

user authorisation that wishes to enable workers to securely use cloud-based Software-

as-a-Service. As an entity within organisation boundaries, performing all computations

would negate the achieved benefits from initially outsourcing computations to exter-

nally available servers.

We want to emphasise that the KDC is basically responsible to perform the expensive

pre-processing to reduce the client’s computational burden. The KDC is responsible

for providing each server with a set of evaluation keys enabling them to perform com-

putations for a set of functions. The client may request the computation of F (x) from

any server that is certified to compute F . The KDC also enables efficient revocation of

misbehaving servers as the update key material can be easily generated and distributed.

68

3.2 Revocable Publicly Verifiable Outsourced Computation

3.2.2 Standard Model

The standard model is a natural extension of the PVC architecture of Parno et al. [118]

with the addition of a trusted key distribution centre. The entity population comprises

a set of clients, a set of servers and a KDC. The KDC initialises the system and gener-

ates keys to enable a verifiable computation service. It publishes the keys to delegate

computations for the clients, whilst keys to evaluate specific functions are given to indi-

vidual servers. Clients can submit computation requests to a particular server for their

respective inputs, and publish some verification information. The servers receive the

encoded input values and perform the computation to generate encoded results. Any

party can verify the correctness of the server’s output using the published verification

information. If the output is incorrect, the verifier may report the misbehaving server

to the KDC for revocation, which will prevent the server from performing any further

computations within the system.

KDCS1 S2 S3

PublicC1 C2

ekF,S1 ekF,S2

ekG,S3

σF,x1 θF (x1)

σF,x2 θF (x2)

σG,x3

θG(x3)

vkF,x1

vkF,x2

vkG,x3

Revoke pkF , pkG

Verify

Verify

Figure 3.1: Operation of the standard model of a RPVC scheme

Note that the expensive KeyGen operation (pre-processing) is now run by the more

capable KDC, and many servers are able to use the generated keys to evaluate the same

function, whereas in previous PVC proposals each client would have been required to

run KeyGen to set up a system with its choice of server.

Figure 3.1 illustrates the entity population and their respective interaction within the

standard model of a PVC scheme.

3.2.3 Manager Model

The manager model, in contrast, employs an additional manager entity who “owns”

a pool of computation servers. Clients submit jobs to the manager, who will select a

server from the pool based on workload scheduling, available resources or as a result of

some bidding process in case servers are to be rewarded per computation. A plausible

scenario is that servers enlist with a manager to “sell” the use of spare resources, whilst

69

3.2 Revocable Publicly Verifiable Outsourced Computation

clients subscribe to utilise these through the manager. Encoded results are returned

to the manager who should be able to verify the server’s work. The manager forwards

correct results to the client whilst a misbehaving server may be reported to the KDC

for revocation, and the job assigned to another server. Due to public verifiability, any

party with access to the output and the verification token can also verify the result.

This also enables the client to check whether the manager performed its duties correctly.

KDCS1

M
S2

Public

C1

C2

ekF,S1

ekG,S2

σF,x1

θF (x1)

τθF (x1)

σ
G,x

2

θG(x2)

τθ
G
(x

2)

vkF,x1

pkF

pkG

vkG,x2

Revoke

Verify

Figure 3.2: Operation of the manager model of a RPVC scheme

The interaction between entities in this model is illustrated in Figure 3.2. The manager

and computational servers are shown within a dashed region to illustrate the boundaries

of internal and external entities, i.e. the entities not within the dashed region could all

be within an organisation that wish to use the external resources provided by the

manager to outsource computations.

Notice that the manager performs the verification operation and if the computation

is correct the manager forwards the result with an acceptance token to the client. In

case the verification procedure fails the manager reports to the KDC for revocation

and sends the client a rejection token expressing that within the current time period t

the computation failed.

Both models, the standard model and manager model, aim to enhance the existing

PVC model to reflect a more practical scenario. However, being in a publicly verifiable

setting enables any entity to verify a computational result and thus learn the output.

In some scenarios this may be acceptable whereas in others it is not desirable that

external entities can access the result, yet there still remains legitimate reasons for spe-

cific entities, such as the manager, to verify only the correctness of the result without

learning the actual value. Therefore, a notion of blind verification would be a desirable

property such that the manager (or any other entity) may verify only the validity of

the computation but is not able to determine the actual result of the computation.

The delegating client would create an additional (secret) piece of information called

the retrieval token which enables her to determine the result, and thus would provide a

70

3.2 Revocable Publicly Verifiable Outsourced Computation

notion of output privacy. This additional piece of information could also be shared with

authorised (trustworthy) entities such that they may learn the result too. Parno et al.

also envisage that such a property may be useful in the PVC setting and provide a one

line remark that permuting keys and ciphertexts derived during ProbGen could provide

output privacy. Unfortunately, our system model cannot provably accommodate the

notion of blind verification but we believe that this is an interesting problem to inves-

tigate in future work.

In Table 3.1 we provide an overview which entities are responsible for running each

algorithm in “normal” verifiable outsourced computation (VC), publicly verifiable out-

sourced computation (PVC), the standard model of RPVC, and finally RPVC in the

Manager model.

Algorithm
Run by

VC PVC RPVC Standard RPVC Manager

KeyGen C1 C1 KDC KDC
ProbGen C1 C1, C2, . . . C1, C2, . . . C1, C2, . . .
Compute S S S1, S2, . . . S1, S2, . . .
Verify C1 C1, C2, . . . C1, C2, . . . M,C1, C2, . . .

Table 3.1: Overview of entity population in various VC models

3.2.4 Formal Definition

We now present a formal definition of all necessary algorithms for a RPVC scheme.

Definition 3.1. A revocable publicly verifiable outsourced computation (RPVC) scheme

consists of the following algorithms:

• (pp,mk)
$← Setup(1λ,F) : this randomised algorithm is run by the KDC to estab-

lish public parameters pp and a master secret key mk for a family of functions

F ;

• pkF $← FnInit(F,mk, pp) : this randomised algorithm is run by the KDC to gen-

erate a public delegation key pkF enabling clients to outsource computations of a

function F ;

• skS $← Register(S,mk, pp) : this randomised algorithm is run by the KDC to enrol

a computation server S within the system by generating a personalised signing key

skS for S;

• ekF,S $← Certify(S, F,mk, pp) : this randomised algorithm is run by the KDC to

certify a computation server by providing it with an evaluation key ekF,S for a

function F and server S;

71

3.2 Revocable Publicly Verifiable Outsourced Computation

• (σF,x, vkF,x)
$← ProbGen(x, pkF , pp) : this randomised algorithm is run by a client

to delegate the computation of F (x) to a server. The client inputs her input value

x, the public delegation key and the public parameters. The algorithm outputs

an encoded input σF,x and a verification key vkF,x which can be later used for

verifying the returned computational result;

• θF (x)
$← Compute(σF,x, ekF,S , skS , pp) : this randomised algorithm is run by a

server S using its evaluation key ekF,S, a signing key skS and an encoded input

σF,x of x. It outputs an encoding θF (x) of F (x);

• (y, τθF (x)
)← Verify(θF (x), vkF,x, pp) : this algorithm is run by any verifying party

(standard model), or by the manager (manager model), in possession of vkF,x and

an encoded output θF (x). It outputs the actual result y. If the result y corresponds

to F (x) it additionally creates a token τθF (x)
= (accept, S) indicating that the

result was correctly computed. Otherwise, the result y corresponds to ⊥ and it

creates a token τθF (x)
= (reject, S) indicating that the result is malformed and

S misbehaved;

• um $← Revoke(τθF (x)
,mk, pp) : this randomised algorithm is run by the KDC

inputting the token from the verification process. If τθF (x)
= (reject, S), the

algorithm revokes all evaluation keys ek·,S of the server S thereby preventing S

from performing any further evaluations within the current system. The update

material um consists of a set of updated evaluation keys ek·,S′ which are issued

to all non-revoked servers. Otherwise, in case τθF (x)
= (accept, S) then the

algorithm outputs ⊥ indicating that no update was necessary.

In some instantiations of a PVC scheme, it may not be necessary to issue entirely new

evaluation keys to each entity. For example, in our concrete instantiation (cf. Sec-

tion 3.4), we only need to issue a partially updated key.

Although not explicitly stated, the KDC may update the public parameters pp dur-

ing any algorithm in order to address any changes within the system. Those changes

can encompass of servers being added or removed from the system or a server may be

granted the ability to compute additional functions.

Note that in case we would employ the blind verification mechanism, as discussed in

Section 3.2.3, into the formal definition of RPVC we would be required to split the

verification algorithm into two sub-algorithms. Namely, we would divide it into a blind

verification and retrieve algorithm. As discussed before, blind verification would en-

able one to check only the correctness of the output without learning the actual result,

whereas the retrieve algorithm would then enable the client who initially prepared the

encoded input to retrieve the actual result using her secret retrieval token.

72

3.3 Security Models

We say that a RPVC scheme is correct if the verifying party almost certainly accepts the

returned result generated by a non-revoked server using a valid generated verification

key and encoded output given the non-revoked server used a valid generated encoded

input and evaluation key. More formally this can be represented as follows.

Definition 3.2. A revocable publicly verifiable outsourced computation (RPVC) scheme

is correct for a family of functions F if for all functions F ∈ F , all inputs x ∈ Dom(F)

and all non-revoked servers S, the following holds:

Pr[(pp,mk)
$← Setup(1λ,F),

pkF
$← FnInit(F,mk, pp),

skS
$← Register(S,mk, pp),

ekF,S
$← Certify(S, F,mk, pp),

(σF,x, vkF,x)
$← ProbGen(x, pkF , pp),

θF (x)
$← Compute(σF,x, ekF,S , skS , pp),

y ← Verify(θF (x), vkF,x, pp),

um
$← Revoke(τθF (x)

,mk, pp)]

= 1− negl(λ).

3.3 Security Models

In this section, we introduce several security models capturing different requirements

of a RPVC scheme. The introduction of the KDC, multiple servers and the ability

to compute multiple functions, and the subsequent changes in operation give rise to

several new security concerns. In more detail:

• Public Verifiability: since two (or more) servers may be certified to compute

the same function, it is important to ensure that servers cannot collude in order to

convince a client to accept an incorrect computational result as a correct result;

• Revocation: we must ensure that neither an uncertified nor a de-certified server

can convince a client to accept an output;

• Vindictive Server: we must ensure that a malicious server cannot convince a

client to believe that an honest server has produced an incorrect output;

• Vindictive Manager: we must ensure that, in the manager model, a malicious

manager cannot convince a client of an incorrect result.

Given those concerns, we define four notions of security for our RPVC scheme where

each is modelled as a cryptographic game. For the notions of public verifiability, revoca-

tion and vindictive manager, we need to define weaker notions of security which we term

73

3.3 Security Models

selective and selective semi-static, respectively. This restriction arises from the particu-

lar IND-sHRSS indirectly revocable key-policy attribute-based encryption scheme we

use in our construction that introduces similar constraints (cf. Section 3.4). In other

words, given the current primitives we use in our construction we cannot achieve full

security for all security notions, but we can achieve slightly weaker variants. However,

as we employ the KP-ABE scheme in a black-box fashion, if stronger primitives are

found it should be straightforward to change to them and finally achieve full security.

In the remainder of this section, we first present the ideal notions of security we wish

to achieve for a RPVC scheme. We then discuss the necessary modifications to define

the selective and selective, semi-static notions we are currently able to achieve.

3.3.1 Ideal Security Properties

In this section we discuss the ideal security notions we wish to achieve in our RPVC

framework. Even if it is not possible to achieve all of these notions with the current

primitives, we include them for completeness.

3.3.1.1 Public Verifiability

We extend the public verifiability game of Parno et al. [118] to formalise that multiple

servers should not be able to collude in order to gain an advantage in convincing any

verifying party of an incorrect output. More formally, that is that the algorithm Verify

returns accept on an encoded output θ? not corresponding to the correct output F (x)

of the computation.

Recall that Parno et al. [118] initially only considered the case where the adversary

is limited to learn only one evaluation key and one encoded input. This stems from

the fact that the system is initialised only for one server and one function. The mo-

tivation for this updated game is that there is a now a trusted party issuing keys to

multiple servers that may collude. Here each server is able to request evaluation keys

for multiple functions and must not be able to use an evaluation key for a function

G to produce a valid looking result for a computation request for F (x). Thus, in the

formal description of our game, we allow the adversary to learn multiple evaluation

keys for different functions and each is associated with different server identities (since

evaluation keys are server-specific in our setting to enable per-server revocation). Fur-

thermore, in our setting, it is likely that the set of servers evaluate many computations

on behalf of multiple clients simultaneously, and so we allow the adversary to collect

multiple encoded inputs by simply running the ProbGen algorithm.

In Figure 3.3, we present the ideal notion of public verifiability. The game begins with

the challenger setting up the system. The adversary A receives the resulting parameters

and is given oracle access to FnInit(·,mk, pp), Register(·,mk, pp), Certify(·, ·,mk, pp) and

Revoke(·,mk, pp) which we denote by O. All oracles simply run the relevant algorithm.

74

3.3 Security Models

ExpPubVerif
A

[
RPVC, 1λ,F

]
1 : (pp,mk)←$ Setup(1λ,F)

2 : (F, x?)←$ AO(pp)

3 : pkF ←$ FnInit(F,mk, pp)

4 : (σF,x? , vkF,x?)←$ ProbGen(x?, pkF , pp)

5 : θ?←$ AO(σF,x? , vkF,x? , pkF , pp)

6 : (y, τθ?)← Verify(θ?, vkF,x? , pp)

7 : if (y, τθ?) 6= (⊥, (reject, S)) and (y 6= F (x?)) then

8 : return 1

9 : else return 0

Figure 3.3: The ideal public verifiability experiment ExpPubVerif
A

[
RPVC, 1λ,F

]

This step models the adversary observing an existing RPVC system and corrupting

various servers to learn their evaluation keys.

Eventually, the adversary finishes its query phase to the oracles and outputs its choice

of challenge pair consisting of the challenge function F and challenge input x?. Note

that the adversary’s underlying goal is to convince the client of accepting an incorrect

result for the computation F (x?). The challenger will then run FnInit to initialise the

challenge function F and generate a challenge by running ProbGen on input x?, and

give the resulting encoded input to A. The adversary is again given oracle access and

eventually outputs θ?. It wins if the encoded output verifies correctly but does not

encode the value F (x?).

Definition 3.3. The advantage of a PPT adversary in the PubVerif game for a

revocable publicly verifiable outsourced computation scheme RPVC, for a family of

functions F is defined as:

AdvPubVerif
A,RPVC (1λ,F) = Pr

[
ExpPubVerif

A

[
RPVC, 1λ,F

]
→ 1

]
.

We say that the revocable publicly verifiable outsourced computation scheme RPVC is

secure with respect to public verifiability if for all PPT adversaries A, it holds that

AdvPubVerif
A,RPVC (1λ,F) ≤ negl(λ).

In practical environments, a server may be interacting with multiple clients simultane-

ously and it could be that having multiple simultaneous interactions could provide an

advantage against any one of the computations. Thus, when modelling this scenario

as a game, we may wish the adversary would choose a polynomially sized set of input

75

3.3 Security Models

values to be challenged upon to model these simultaneous inputs and for the adversary

to win against any one of the inputs. We formalise this for the case of public verifia-

bility and present the notion of public verifiability with a polynomial sized set of input

values in Figure 3.4. In the following theorem, we show that this notion is polynomially

equivalent to the case where the adversary chooses a single challenge input as described

in Figure 3.3.

ExpmPubVerif
A

[
RPVC, 1λ,F

]
1 : (pp,mk)←$ Setup(1λ,F)

2 : {(Fi, x?i)}i∈[n]←$ AO(pp)

3 : for i = 1, . . . , n do

4 : pkFi ←$ FnInit(Fi,mk, pp)

5 : (σFi,x?
i
, vkFi,x?

i
)←$ ProbGen(x?i , pkFi , pp)

6 : θ?←$ AO({σFi,x?
i
, vkFi,x?

i
, pkFi}, pp)

7 : (y, τθ?)← Verify(θ?, vkF,x?
i
, pp)

8 : if ∃i ∈ [n] : (y, τθ?) 6= (⊥, (reject, S)) and (y 6= Fi(x
?
i)) then

9 : return 1

10 : else return 0

Figure 3.4: The public verifiability experiment with polynomial sized set of input values
ExpmPubVerif

A
[
RPVC, 1λ,F

]

Theorem 3.4. Let λ be the security parameter, and n(λ) ∈ N a function polynomial

in the security parameter. Then public verifiability where the adversary may target

an arbitrary set of n challenge inputs (Figure 3.4) is polynomially equivalent to public

verifiability where the adversary chooses a single challenge input (Figure 3.3).

Proof. It is trivial to show that security with multiple choices implies security with a

single choice, since an adversary with multiple choices could simply choose n = 1 and

output a single choice.

To see that security with a single choice also implies security with multiple choices we

can perform the following reduction. Suppose that RPVC is a secure RPVC scheme

when the adversary AS makes a single choice of challenge input. For contradiction, let

AM be an adversary with non-negligible advantage δ against RPVC when it can make

multiple challenge choices. We show that AS could use AM as a sub-routine to gain a

non-negligible advantage against RPVC even with just a single challenge choice. Let

C be the challenger playing the public verifiability game with a single challenge as in

Figure 3.3 with AS that in turn acts as the challenger for AM in the public verifiability

game with multiple challenges as described in Figure 3.4. It follows:

76

3.3 Security Models

1. C runs Setup and sends the resulting parameters to AS that simply forwards them

to AM.

2. AM makes oracle queries which AS passes to C and forwards the response to AM.

3. AM will return a set of n challenge input pairs {(Fi, x?i)}i∈[n].

4. AS chooses one of these input pairs at random, (F, x?)
$← {(Fi, x?i)}i∈[n], and

sends this to C.

5. C returns the results of running FnInit and ProbGen on F and x? and then provides

further oracle access to AS.

6. AS can query the FnInit oracle for all other public keys pkFi as well as query the

ProbGen oracle for the remaining inputs {x?i }i∈[n] \ x? and returns the whole set

to AM. Since no other query was made between C generating the challenge and

these ProbGen queries, the system parameters have not changed and all challenges

are consistent.

7. AM makes oracle queries which AS again forwards to C, and eventually outputs

a challenge output θ?.

8. Let x?j be the challenge input corresponding to θ?. In more detail, since AM

is assumed to be successful, the algorithm Verify(θ?, vkF,x?j , pp) does not return

(⊥, (reject, ·)) and hence θ? is a valid encoding of F (x?j) for some x?j . If x?j = x?

then AS forwards θ? to C as its result. Otherwise, AS stops.

Hence,

AdvPubVerif
AS,RPVC(1

λ,F) = Pr[x? = x?j] ·AdvmPubVerif
AM,RPVC (1λ,F) =

δ

n
.

Since we assumed δ being non-negligible, and as n is polynomial in λ, we conclude that

AdvPubVerif
AS,RPVC(1

λ,F) is non-negligible. However, we assumed that RPVC was secure

against a single challenge and hence the adversary making multiple challenges with

non-negligible advantage may not exist.

Similar arguments hold for the other games, and henceforth we shall only consider

single challenges.

3.3.1.2 Revocation

The notion of revocation requires that, if a server is detected as misbehaving, meaning

that a server S returns a result such that the verification algorithm Verify outputs

(⊥, (reject, S)), then any subsequent computations by S should be rejected, even if

the result may be correct.

77

3.3 Security Models

The motivation here is that even though the costly computation and pre-processing

stages have been outsourced to the server and KDC respectively, there is still a cost

involved for the client to delegate and verify a computation. Our underlying aim is

to remove any incentive for a malicious server to attempt providing an outsourcing

service since the server is aware that no result will be accepted. In addition, we may

punish and further disincentive malicious servers by removing their ability to perform

computations and thus earn rewards. Finally, from a privacy perspective, we may not

wish to supply input data to a server that is known to be untrustworthy.

The ideal notion of revocation is defined in Figure 3.5. The game begins by declaring

a Boolean flag chall which is initially set to false and a list QRev in which servers

will be added in case they are revoked and removed from when re-certified. The chall

flag will be set to true when the challenge is created, and after this point QRev is no

longer updated. Thus QRev will comprise all server identities that are revoked at the

challenge time. The adversary wins if it can output a result ‘from’ one of these servers

and have it accepted in the verification stage.

The game proceeds in a similar fashion to the notion of public verifiability with the chal-

lenger running Setup to initialise the system and providing the public parameters to the

adversary. The adversary is given oracle access to FnInit(·,mk, pp), Register(·,mk, pp),
Certify(·, ·,mk, pp) and Revoke(·,mk, pp) which we denote by O. All oracles simply

run the relevant algorithm except for the Certify and Revoke oracles which additionally

maintain the list of revoked entities. The formal details are specified in the respective

oracles in Figure 3.5. After the adversary has finished this query phase, it outputs a

challenge function F and challenge input x?. The challenger runs FnInit for the chal-

lenge function and sets the chall flag to true. It then generates the challenge by

running ProbGen on x? and gives the resulting parameters to the adversary along with

oracle access again. However we want to emphasise again that since chall is set to

true, QRev will no longer be updated. Eventually, the adversary outputs a result θ?

and wins if Verify successfully accepts the result (either correct or malformed) for a

server that was revoked when the challenge was generated.

Definition 3.5. The advantage of a PPT adversary in the Revoc game for a revocable

publicly verifiable outsourced computation scheme RPVC, for a family of functions F
is defined as:

AdvRevoc
A,RPVC(1

λ,F) = Pr
[
ExpRevoc

A

[
RPVC, 1λ,F

]
→ 1

]
.

We say that the revocable publicly verifiable outsourced computation scheme RPVC is

78

3.3 Security Models

ExpRevoc
A

[
RPVC, 1λ,F

]
1 : chall = false

2 : QRev ← ε

3 : (pp,mk)←$ Setup(1λ,F)

4 : (F, x?)←$ AO(pp)

5 : pkF ←$ FnInit(F,mk, pp)

6 : chall = true

7 : (σF,x? , vkF,x?)←$ ProbGen(x?, pkF , pp)

8 : θ?←$ AO(σF,x? , vkF,x? , pkF , pp)

9 : (y, τθ?)← Verify(θ?, vkF,x? , pp)

10 : if (y, τθ?) = (y, (accept, S)) and (S ∈ QRev) then

11 : return 1

12 : else return 0

OCertify(S, F ′,mk, pp)

1 : if (chall = false) then QRev ← QRev \ S
2 : return Certify(S, F ′,mk, pp)

ORevoke(τθF ′(x) ,mk, pp)

1 : um←$ Revoke(τθF ′(x)
,mk, pp)

2 : if (um 6=⊥ and chall = false) then QRev ← QRev ∪ S
3 : return um

Figure 3.5: The ideal revocation experiment ExpRevoc
A

[
RPVC, 1λ,F

]

secure with respect to revocation if for all PPT adversaries A, it holds that

AdvRevoc
A,RPVC(1

λ,F) ≤ negl(λ).

3.3.1.3 Vindictive Server

This security notion of vindictive server is primarily motivated in the context of the

manager model where a pool of computational servers is available to accept a ‘job’

but they are distributed by the manager such that the client does not know a priori

the server identity to which the job was assigned. Since an invalid result can lead to

revocation, this reveals a new threat model (particularly if servers are rewarded per

computation). A malicious server may return incorrect results but attribute them to

a different server identity such that a potentially honest server is punished by being

revoked on the basis of the malicious server’s behaviour. The pool of available servers

79

3.3 Security Models

for future computations is therefore reduced in size and thus leads to a likely increase

in rewards for the malicious server since it may get assigned more work.

The notion of vindictive servers is formalised in Figure 3.6. The game starts with

the challenger maintaining a list of currently registered entities QReg, a list QServer of

servers for which the adversary was able to learn the signing key as well as initialising S

which represents the target server identity, initially set to ⊥, until the adversary selects

its target identity. The game proceeds from here on similarly to the previous notions

except that, on line 8 and 10, the adversary chooses the target server identity S and

then generates an encoded output that the adversary hopes will lead to the revocation

of S .

The adversary is given oracle access to FnInit(·,mk, pp), Register(·,mk, pp),
Certify(·, ·,mk, pp) and Revoke(·,mk, pp) which we denote by O. All oracles simply

run the relevant algorithm except for the Certify and the two additionally defined ora-

cles Register2 and Compute. The formal details are provided in the respective oracles

represented in Figure 3.6. In general, those oracles must ensure that the adversary is

never issued the signing key skS as the adversary would then be trivially able to act

like S and win the game. For the same reason, the adversary loses the game in line

9 if it has previously learnt the signing key skS for the target server chosen in line 8

meaning that S is listed on QServer. In line 10, the adversary is additionally provided

with access to a compute oracle OCompute(·, ek·,S , skS , pp) which enables the adversary

to observe evaluation results generated by the target server S . This oracle basically

models the adversary observing S before attacking.

In more detail, the Register oracle outputs ⊥ if it is queried with the target identity

S . Otherwise, if the queried server identity is not already recorded on the list of reg-

istered entities QReg, then the oracle adds the queried server identity to the lists QReg

and QServer as it will issue a signing key skS . On line 8, the adversary is additionally

provided with a modified Register oracle. This Register2 oracle performs similarly to

the Register oracle but does not return the resulting signing key skS . However, it may

update the public parameters to reflect any additional registered entities within the

system. The adversary may query any identity to Register2 including S . The purpose

of this oracle is to model the adversary observing uncorrupted servers within the RPVC

system which it can target for revocation. Formally, this means the adversary is able to

enrol servers within the system but unable to learn any server specific secrets. Those

restrictions need to be considered in the oracles as if the adversary corrupts a server

and learns its secret signing key, then the adversary would be able to trivially output

an incorrect result and cause the server to be revoked. However, this would contradict

the aim of this notion which is to cause an honest, uncorrupted server to be revoked.

80

3.3 Security Models

ExpVindS
A

[
RPVC, 1λ,F

]
1 : QReg ← ε

2 : QServer ← ε

3 : S ←⊥
4 : (pp,mk)←$ Setup(1λ,F)

5 : (F, x?)←$ AO,Register2(pp)

6 : pkF ←$ FnInit(F,mk, pp)

7 : (σF,x? , vkF,x?)←$ ProbGen(x?, pkF , pp)

8 : S ←$ AO,Register2(σF,x? , vkF,x? , pkF , pp)

9 : if (S ∈ QServer) then return 0

10 : θ?←$ AO,Register2,Compute(σF,x? , vkF,x? , pkF , pp)

11 : (y, τθ?)← Verify(θ?, vkF,x? , pp)

12 : if (y, τθ?) = (⊥, (reject, S)) and (⊥8 Revoke(τθ? ,mk, pp)) then

13 : return 1

14 : else return 0

ORegister(S,mk, pp)

1 : if (S = S) then return ⊥
2 : if (S, ·) /∈ QReg then

3 : skS ←$ Register(S,mk, pp)

4 : QReg ← QReg ∪ (S, skS)

5 : QServer ← QServer ∪ S
6 : return skS

ORegister2(S,mk, pp)

1 : if (S, ·) /∈ QReg then

2 : skS ←$ Register(S,mk, pp)

3 : QReg ← QReg ∪ (S, skS)

4 : QServer ← QServer ∪ S
5 : return ⊥

OCompute(σF ′,x, ekF ′,S , skS , pp)

1 : if (F ′ = F) and (x = x?) then

2 : return ⊥
3 : else return Compute(σF ′,x, ekF ′,S , skS , pp)

Figure 3.6: The ideal vindictive server experiment ExpVindS
A

[
RPVC, 1λ,F

]

The oracles Register and Register2 are modified compared to the standard Register

oracle. Both oracles first check whether the queried server identity has already been

added to the list of registered entities QReg. If not, then both algorithms run the usual

Register algorithm and record the server identity and signing key to the list QReg. In

case that the server was already registered then the Register oracle returns the stored

signing key whilst the Register2 oracle returns ⊥. Thus, both oracles will generate

together a single singing key per server and output identical responses.

81

3.3 Security Models

In order to avoid a trivial win for the adversary in which the adversary simply forwards

prior outputs that were actually generated by S , we need to restrict queries to the

Compute oracle. The adversary is restricted to not being able to ask for the evaluation

key for the challenge computation F (x?) from S . Note that for all other servers than S ,

the adversary is able to run Compute itself using all parameters learnt from the other

queries.

Finally, the adversary wins if the challenger believes that S generated the encoded

output which does not verify correctly and therefore revokes S .

Definition 3.6. The advantage of a PPT adversary in the VindS game for a revocable

publicly verifiable outsourced computation scheme RPVC, for a family of functions F
is defined as:

AdvVindS
A,RPVC(1

λ,F) = Pr
[
ExpVindS

A

[
RPVC, 1λ,F

]
→ 1

]
.

We say that the revocable publicly verifiable outsourced computation scheme RPVC is

secure with respect to vindictive servers if for all PPT adversaries A, it holds that

AdvVindS
A,RPVC(1

λ,F) ≤ negl(λ).

3.3.1.4 Vindictive Manager

The notion of vindictive manager is a natural extension of the public verifiability no-

tion to the manager model where a vindictive manager may attempt to provide a client

with an incorrect answer. In this notion, clients may subscribe to a pool of servers

managed by a manager. However, the manager may not wish to be responsible for

incorrect results in order to avoid losing business and also may not have the required

resources to re-compute a malformed result. Thus, occasionally, the manager may try

to send an incorrect result to the client on purpose claiming that it is correct.

We note that instantiations may vary depending on the level of trust given to the

manager. For example, a completely trusted manager may simply return the result to

a client, whilst an untrusted manager may have to provide the full output from the

server so that the client can perform the full verification step as well. Note that in

this case, security against vindictive managers will reduce to security against public

verifiability since the manager would need to forge an encoded output that passes a

full verification step. Here in our framework, we consider a middle ground where the

manager is semi-trusted but the clients would still like a final, efficient check.

The ideal notion of security against vindictive manager is defined in Figure 3.7. The

game starts with the challenger initialising the system as usual. The adversary receives

the resulting parameters and is given oracle access to FnInit(·,mk, pp), Register(·,mk, pp),

82

3.3 Security Models

ExpVindM
A

[
RPVC, 1λ,F

]
1 : (pp,mk)←$ Setup(1λ,F)

2 : (F, x?)←$ AO(pp)

3 : pkF ←$ FnInit(F,mk, pp)

4 : S←$ UID
5 : skS ←$ Register(S,mk, pp)

6 : ekF,S ←$ Certify(S, F,mk, pp)

7 : (σF,x? , vkF,x?)←$ ProbGen(x?, pkF , pp)

8 : θF (x?)←$ Compute(σF,x? , ekF,S , skS , pp)

9 : (y, τθF (x?)
)←$ AO(σF,x? , θF (x?), vkF,x? , pkF , pp)

10 : if (y, τθF (x?)
) 6= (⊥, (reject, S)) and (y 6= F (x?)) then

11 : return 1

12 : else return 0

Figure 3.7: The ideal vindictive manager experiment ExpVindM
A

[
RPVC, 1λ,F

]

Certify(·, ·,mk, pp) and Revoke(·,mk, pp) which we denote by O. Each oracle simply

runs the relevant algorithms. After the adversary has finished its query phase, it out-

puts a challenge function F and challenge input x?. The challenger runs FnInit and

outputs the public delegation key. In the next step, the challenger randomly selects

a server identity from the space of all identities UID for which the challenge will be

created. The challenger runs Register and Certify for this server, creates a problem

instance by running ProbGen on x? and finally runs Compute on the generated encoded

input. The adversary is then given the encoded input, the verification key, the encoded

output from Compute, the usual parameters, as well as the usual oracle access as de-

tailed above, and eventually outputs the result y which corresponds to θF (x?) and an

acceptance token τθF (x?)
. The adversary wins if the challenger accepts this output and

y 6= F (x?).

Definition 3.7. The advantage of a PPT adversary in the VindM game for a revoca-

ble publicly verifiable outsourced computation scheme RPVC, for a family of functions

F is defined as:

AdvVindM
A,RPVC(1

λ,F) = Pr
[
ExpVindM

A

[
RPVC, 1λ,F

]
→ 1

]
.

We say that the revocable publicly verifiable outsourced computation scheme RPVC is

secure with respect to vindictive managers if for all PPT adversaries A, it holds that

AdvVindM
A,RPVC(1

λ,F) ≤ negl(λ).

83

3.3 Security Models

3.3.2 Restricted Security Properties

In this section we present the actual restricted security properties which we can prov-

ably achieve with the current primitives. In more detail, using the current primitives,

we cannot achieve the ideal notion of security for public verifiability, revocation and

vindictive manager. We are therefore required to introduce slightly weaker versions of

these security notions in order to reflect the similar restrictions placed on our construc-

tion by employing an IND-sHRSS indirectly revocable KP-ABE scheme as introduced

in Section 2.3.2. Since we use this primitive in a black-box manner, any achievement

with finding a fully secure primitive with the same functionality should easily lead to

achieve ideal security for our suggested notions.

These restricted security variants require up to two additional restrictions on the ad-

versary. Namely, a selective and a semi-static restriction. In more detail, firstly, a

selective restriction requires the adversary to choose the set of inputs for the challenge

stage before seeing the public parameters. This notion stands in contrast to the ideal

notion where the adversary can declare the set of inputs after it has seen the public

parameters as well as accessed the oracles to the system. This restriction has similarly

been used in many ABE schemes throughout the literature to give a heuristic level of

security when the ideal notion is difficult to achieve as it allows to initialise the system

with a particular attack target in mind.

Secondly, a semi-static restriction requires the adversary to declare a challenge list R of

servers that must be revoked from the system before ProbGen generates the challenge

encoded inputs and before the adversary is provided with oracle access. This restriction

is related to the revocation mechanism of the revocable KP-ABE scheme and means

that oracles are able to refuse to perform oracle queries that would lead to trivial wins

for the adversary, for example by issuing functional evaluation keys for servers that

should be revoked during the challenge time period. To formally accommodate this

semi-static restriction, we need to add some additional steps to each security notion.

In more detail, the challenger defines the parameter t which models the underlying

system time and is initially set to 1, and the second parameter is QRev which is a list

comprising all currently revoked server identities during the current time period. Note

that QRev is initialised to be empty when the system is set up describing that no server

has been revoked yet.

Whenever a revocation query has been made to the system both parameters are usually

updated. The time parameter is incremented for every revocation query indicating that

keys from prior time periods may no longer be valid. For the parameter QRev, every

revocation query means that servers are added to the list if it was queried with a

rejection token (reject, ·), and it can possibly mean that servers are removed from the

list in case they are re-certified for a function. Note that unless a server is added or

removed from QRev, the revocation list remains consistent over all consecutive oracle

84

3.3 Security Models

queries modelling a realistic system evolution. Recall that the semi-static restriction

forces the adversary to choose a list of revoked servers R for the challenge time period.

Note that if the current list of revoked servers QRev for the challenge time period t?

is not a superset of R, i.e. there exists a server that the adversary claimed would be

revoked but actually is not revoked, then the adversary loses the game to avoid a trivial

win since the adversary has not made a suitable sequence of oracle queries.

To avoid other trivial wins we need to restrict the adversary’s oracle queries such that

it cannot obtain both a secret key and an update key, which together form a valid

evaluation key for a server that is revoked at the challenge time. Otherwise, if the

adversary can form a functional evaluation key it can evaluate the encoded input and

output a correct response. However, a revoked server would not have such an ability

in practice.

In the IND-sHRSS game [17], update keys are associated with a particular time period

and queries can be made for arbitrary time periods. However, in our RPVC setting, we

consider an interactive protocol and as such require that time increases monotonically.

The adversary in the IND-sHRSS game selects a time period for the challenge as well

as the challenge input. However, in our security notions, we parametrise the adversary

on the number of queries q it requests to the oracles and define security over all choices

of q. In particular, we restrict the adversary to make qt ≤ q queries to the Revoke oracle

in its first oracle query phase. After qt queries have been made the challenge needs to

be generated. Since the time parameter is only incremented whenever a Revoke query

has been made, the challenge occurs when t? = qt, and hence the challenger may select

t? as its challenge time in a reductive proof.

In order to remove the above restrictions we would require, on one hand, a fully secure

indirectly revocable KP-ABE scheme to overcome the selective restriction, and on the

other hand, an adaptive notion of revocation to overcome the semi-static restriction.

However, currently instantiating such a primitive is an open problem.1

3.3.2.1 Selective Public Verifiability

In Figure 3.8, we define a selective notion of public verifiability. The only difference

between the selective notion and the ideal notion, represented in Figure 3.3, is that in

the selective notion the adversary is required to provide its challenge inputs F and x?

before the challenger runs Setup. Otherwise, the game proceeds identical to the ideal

notion.

Note that in this security notion, the semi-static restriction is not required since the

revocation mechanism is not part of the winning condition.

1Attrapadung and Imai [17] defined a notion with adaptive queries but did not provide an instan-
tiation.

85

3.3 Security Models

ExpsPubVerif
A

[
RPVC, 1λ,F

]
1 : (F, x?)←$ A(1λ,F)

2 : (pp,mk)←$ Setup(1λ,F)

3 : pkF ←$ FnInit(F,mk, pp)

4 : (σF,x? , vkF,x?)
$← ProbGen(x?, pkF , pp)

5 : θ?←$ AO(σF,x? , vkF,x? , pkF , pp)

6 : (y, τθ?)← Verify(θ?, vkF,x? , pp)

7 : if (y, τθ?) 6= (⊥, (reject, S)) and (y 6= F (x?)) then

8 : return 1

9 : else return 0

Figure 3.8: The selective public verifiability experiment ExpsPubVerif
A

[
RPVC, 1λ,F

]

Definition 3.8. The advantage of a PPT adversary in the sPubVerif game for

a revocable publicly verifiable outsourced computation scheme RPVC, for a family of

functions F is defined as:

AdvsPubVerif
A,RPVC (1λ,F) = Pr

[
ExpsPubVerif

A

[
RPVC, 1λ,F

]
→ 1

]
.

We say that the revocable publicly verifiable computation outsourced scheme RPVC is

secure with respect to selective public verifiability if for all PPT adversaries A, it holds

that

AdvsPubVerif
A,RPVC (1λ,F) ≤ negl(λ).

3.3.2.2 Selective, Semi-static Revocation

In Figure 3.9, we consider the selective, semi-static notion of revocation. Recall from

Section 3.3.1.2 that the winning condition against the security notion was formalised

in terms of the challenger accepting any result formed by a revoked entity. Since re-

vocation is a central requirement in the winning condition, we require here both the

selective and semi-static restrictions to accommodate the IND-sHRSS game.

The game begins with the adversary selecting the challenge function F and challenge

input x? to be outsourced. The challenger now initialises an initially empty list of cur-

rently revoked entities QRev as well as a time parameter t. Next, the challenger runs

Setup and FnInit to initialise the system and to derive the public delegation key pkF for

the function F . The adversary receives all public parameters and is required to output

a list R of servers that need to be revoked when the challenge is created. In the next

86

3.3 Security Models

ExpsssRevoc
A

[
RPVC, 1λ,F , qt

]
1 : (F, x?)←$ A(1λ,F , qt)
2 : QRev ← ε

3 : t← 1

4 : (pp,mk)←$ Setup(1λ,F)

5 : pkF ←$ FnInit(F,mk, pp)

6 : R← A(pkF , pp)

7 : AO(pkF , pp)

8 : if (R 6⊆ QRev) then return 0

9 : (σF,x? , vkF,x?)←$ ProbGen(x?, pkF , pp)

10 : θ?←$ AO(σF,x? , vkF,x? , pkF , pp)

11 : (y, τθ?)← Verify(θ?, vkF,x? , pp)

12 : if (y, τθ?) = (y, (accept, S)) and (S ∈ R) then

13 : return 1

14 : else return 0

OCertify(S, F ′,mk, pp)

1 : if (F ′ = F and S /∈ R) or (t = qt and R 6⊆ QRev \ S) then return ⊥
2 : QRev ← QRev \ S
3 : return Certify(S, F ′,mk, pp)

ORevoke(τθF ′(x) ,mk, pp)

1 : t← t+ 1

2 : if (τθF ′(x)
= (accept, ·)) then return ⊥

3 : if (t = qt and R 6⊆ QRev ∪ S) then return ⊥
4 : QRev ← QRev ∪ S
5 : return Revoke(τθF ′(x)

,mk, pp)

Figure 3.9: The selective, semi-static revocation experiment
ExpsssRevoc

A
[
RPVC, 1λ,F , qt

]

step, line 7, the adversary is given oracle access to FnInit(·,mk, pp), Register(·,mk, pp),
Certify(·, ·,mk, pp) and Revoke(·,mk, pp) which we denote by O. The oracles simply

run the usual algorithms except for queries to the Certify and Revoke oracles, which

the challenger replies to accordingly as specified in Figure 3.9. The challenger needs

to ensure that the revocation list QRev is permanently kept up-to-date by adding and

removing the queried entities. In case of revocation the challenger needs to ensure that

the time parameter is incremented to the next step and requires that no issued keys

87

3.3 Security Models

will lead to a trivial win. The latter part is handled by the Certify algorithm which

does not issue evaluation keys ekF,S for the challenge function F and a server S that

may not be revoked at the time the challenge is generated.

Recall that the adversary is, due to the semi-static restriction, parametrised to make

exactly qt revocation queries and the time parameter is only incremented during the

revocation algorithm. Thus, the challenge time period occurs when t = qt. Following

the second restriction of the Certify oracle in Figure 3.9, an evaluation key for a server

S should not be issued if requested during the challenge time period qt and if there

exists any server (other than S which is about to be certified) within the system that

according to the adversary’s chosen challenge revocation list R should be revoked but

has not actually been revoked, i.e. not listed in QRev. Intuitively, this restriction means

that Certify issues a valid and functional evaluation key within the current time period

and such a key can only be disabled by revoking the particular server which on the

other hand then leads to the requirement of incrementing the time period. Increment-

ing the time may be a problem if the challenge time period is already reached after

qt Revoke queries. Our particular construction may reveal generated update material

via Certify from the latest revocation procedure that enables the evaluation keys to be

functional for the current time period. If such update material is issued then this leads

to any non-revoked evaluation key being updated for the current challenge time period

qt and therefore can be used to perform computations and return valid results that

are accepted by the challenger. Therefore, if such an updated key belongs to a server

that was listed on R, then this would count as a trivial win for the adversary since the

adversary claimed that this server would be revoked for the challenge time period but

was not revoked.

Whenever the Revoke oracle is queried in Figure 3.9, first the time parameter t will

be incremented and the oracle returns ⊥ if the queried token corresponds to an ac-

ceptance token (accept, ·) which reflects that no server needs to be revoked. Since

the time parameter t is incremented for each query made to the oracle, the adversary

may query acceptance tokens to Revoke in order to progress the system time without

altering the revocation list if desired. However, in case a query is made at the challenge

time period t = qt, the challenger must return ⊥ if the chosen challenge revocation list

R is not a subset of the current revocation list including the queried S as it is about

to be revoked. In other words, the algorithm outputs ⊥ if there exists a server on the

challenge revocation list R that should be revoked, other than S, but is not on the

list of currently revoked servers QRev. This requirement is needed in order to avoid

a trivial win for the adversary, since otherwise the adversary can request an updated

evaluation key for a server listed on R which enables the adversary to create a valid

result which will be accepted by the challenger as it was generated by a non-revoked

88

3.3 Security Models

server.

The adversary finishes its oracles query phase (line 7) after making a polynomial number

of queries q, including qt many Revoke queries, and does not return a value other than

signalling to the challenger that it may proceed with the remainder of the game. The

challenger checks that all queries made by the adversary have indeed generated a list

of currently revoked servers that is a superset of the challenge revocation list R. If this

is not true, the challenger aborts the game and the adversary loses as it was not able

to choose its queries or the list R appropriately. Otherwise, the challenger continues

with the game and generates the challenge by running ProbGen on x? and provides

the resulting encoded input to the adversary. The adversary is again provided with

oracle access as above and eventually outputs its guess θ?. The adversary wins if the

challenger accepts any result θ?, i.e. a correct or malformed response, as a valid result

from any server that was revoked at the time of the challenge which were at least the

ones chosen by the adversary on the list R.

Definition 3.9. The advantage of a PPT adversary in the sssRevoc game for a

revocable publicly verifiable outsourced computation scheme RPVC, for a family of

functions F is defined as:

AdvsssRevoc
A,RPVC (1λ,F , qt) = Pr

[
ExpsssRevoc

A

[
RPVC, 1λ,F , qt

]
→ 1

]
.

We say that the revocable publicly verifiable outsourced computation scheme RPVC is

secure with respect to selective, semi-static revocation if for all PPT adversaries A, it

holds that

AdvsssRevoc
A,RPVC (1λ,F , qt) ≤ negl(λ).

3.3.2.3 Selective Vindictive Manager

Recall that the security notion of vindictive manager is a natural extension of the pub-

lic verifiability notion to the manager model where a vindictive manager may attempt

to provide a client with an incorrect answer. Note that the winning condition of vin-

dictive manager, as in the notion of public verifiability, does not rely on the revocation

mechanism and therefore we only require the selective restriction for this security no-

tion. In Figure 3.10, we formally consider the selective notion of vindictive manager.

The game starts with the adversary selecting its challenge function F and challenge

input x?. The challenger initialises the system as usual by running Setup and FnInit for

F . It then randomly selects a server from the space of server identities UID for which

the challenger generates the challenge parameters for the adversary. The challenger

runs Register and Certify for the chosen server and challenge function, runs ProbGen

89

3.3 Security Models

ExpsVindM
A

[
RPVC, 1λ,F

]
1 : (F, x?)←$ A(1λ,F)

2 : (pp,mk)←$ Setup(1λ,F)

3 : pkF ←$ FnInit(F,mk, pp)

4 : S←$ UID
5 : skS ←$ Register(S,mk, pp)

6 : ekF,S ←$ Certify(S, F,mk, pp)

7 : (σF,x? , vkF,x?)←$ ProbGen(x?, pkF , pp)

8 : θF (x?)←$ Compute(σF,x? , ekF,S , skS , pp)

9 : (y, τθF (x?)
)←$ AO(σF,x? , θF (x?), vkF,x? , pkF , pp)

10 : if (y, τθF (x?)
) 6= (⊥, (reject, S)) and (y 6= F (x?)) then

11 : return 1

12 : else return 0

Figure 3.10: The selective vindictive manager experiment ExpsVindM
A

[
RPVC, 1λ,F

]

on the challenge input, and finally runs Compute to output an encoded output θF (x?).

The adversary is provided with all public parameters, the encoded input σF,x? and

its verification key vkF,x? , the encoded output θF (x?) as well as access to the oracles

FnInit(·,mk, pp), Register(·,mk, pp), Certify(·, ·,mk, pp) and Revoke(·,mk, pp) which we

denote by O. The adversary eventually outputs the result y which corresponds to

θF (x?) and an acceptance token τθF (x?)
. The adversary wins if the challenger accepts

this output and y 6= F (x?).

Definition 3.10. The advantage of a PPT adversary in the sVindM game for a

revocable publicly verifiable outsourced computation scheme RPVC, for a family of

functions F is defined as:

AdvsVindM
A,RPVC(1

λ,F) = Pr
[
ExpsVindM

A

[
RPVC, 1λ,F

]
→ 1

]
.

We say that the revocable publicly verifiable outsourced computation scheme RPVC is

secure with respect to selective vindictive managers if for all PPT adversaries A, it

holds that

AdvsVindM
A,RPVC(1

λ,F) ≤ negl(λ).

90

3.4 Construction

3.4 Construction

In this section we provide an instantiation of a RPVC scheme. Our proposed construc-

tion follows the principles of Parno et al. [118] (summarised in Section 2.7.3) which

uses key-policy attribute-based encryption (KP-ABE) in a black-box manner to out-

source the computation of a monotone Boolean function. We restrict our attention

to Boolean functions, and in particular the complexity class NC1 which includes all

circuits of depth O(log n) [12] where n corresponds to the number of gates. Thus,

functions we can outsource can be built from common operations such as AND gates,

OR gates, NOT gates2, equality and comparison operators, arithmetic operators and

regular expressions. Note that our scheme only evaluates Boolean functions with single

bit output and therefore seems slightly limited.3 However, it is possible to outsource

the evaluation of functions with n-bit outputs by outsourcing n different functions each

returning a single bit in the ith position, where 1 ≤ i ≤ n.

Let us recall from Section 2.7.3 the basic underlying principles required for a PVC

construction. Only instantiating a single ABE scheme leads to a PVC protocol with a

one-sided error since a computational server is able to return ⊥ in response to a com-

putational request and therefore the verifier is not able to determine whether F (x) = 0

or whether the server intentionally misbehaved and refused to decrypt. To overcome

this issue, we need to restrict the possible set of functions we can evaluate to be the

family of Boolean functions closed under complement F as well as we need to initialise

a second ABE scheme. In more detail, if the function F belongs to F then the com-

plement function F (x) = F (x) ⊕ 1 also belongs to F . The client then encrypts two

randomly chosen messages m0 and m1 under the same attribute representation of the

input and the server must decrypt each ciphertext using the keys associated with access

structures encoding F or F respectively. Since exactly one of F and F will be satis-

fied by any given input, exactly one message (plaintext) will be successfully returned

during the decryption procedure which enables the client to determine whether F (x)

is 1 or 0 according to the order of the well-formed response as detailed in equation (2.1).

As discussed earlier in this chapter, we aim to enhance current PVC proposals and

provide within our RPVC model the possibility to evaluate multiple functions in a se-

cure manner. Recall that the original scheme from Parno et al. is only initialised for a

single function. Therefore, it is necessary to initialise a new system in case the client

wishes to outsource the computation of a different function. Parno et al. may partially

overcome this limitation with introducing the notion of multi-function VC (Definition

2We are able to use NOT gates by swapping to the non-monotonic ABE scheme by Ostro-
vsky et al. [112]

3If we are interested to evaluate different function families then we will require different constructions
from that presented here for Boolean functions.

91

3.4 Construction

2.38) offering the possibility to handle multiple functions. However, the drawback of

this solution is that it only works in the non-publicly verifiable setting, and the public

verifiable setting is left as an open problem.

Our proposed solution moves towards a solution for multi-function PVC but is ulti-

mately only an intermediate step towards a solution to the above problem. In contrast,

we take a slightly different point of view compared to Parno et al. and require that

the clients encode their input per computation they outsource. We introduce a simple

encoding trick which enables servers to be certified for multiple functions and this also

prevents the server from misusing the evaluation keys. Furthermore, we also apply

this trick in order to restrict the client’s input only being evaluated for the specified

function the client wishes to evaluate. We also wish to accommodate multiple servers

within our model that are certified to compute multiple functions.

In the remainder of this section, we discuss the necessary technical details we use for

our RPVC construction and provide details of our encoding trick and describe how we

are able to handle multiple certified servers within the system. Finally, we provide the

instantiation details and state our main theorem.

3.4.1 Technical Details

We use an indirectly revocable KP-ABE scheme for a class of monotone Boolean func-

tions F closed under complement (cf. Section 2.3.2) which comprises of the algorithms

ABE.Setup, ABE.KeyGen, ABE.KeyUpdate, ABE.Encrypt and ABE.Decrypt. We mainly

chose this notion as our building block as it enables us to implement the revocation

mechanism for our model and since the client’s device is computationally weak, the

indirect revocation mechanism reduces the client’s workload as she is not required

to maintain the revocation list. We also use a signature scheme with algorithms

Sig.KeyGen, Sig.Sign and Sig.Verify, and a one-way function g. Let U be the universe

of attributes for the indirectly revocable KP-ABE scheme which we need to slightly

extend compared to the original definition as stated in Section 2.3.2. In more detail,

let U = Uattr∪UID∪Utime∪UF be the universe of attributes for the indirectly revocable

KP-ABE scheme. It is formed as the union of the following sub-universes, where Uattr

consists of the attributes that form characteristic tuples for input data, UID comprises

attributes representing entity identifiers, Utime comprises attributes representing time

periods issued by the time source T and finally UF comprises attributes that represent

functions in F .

3.4.1.1 Handling Multiple Servers

The scheme of Parno et al. required a one-key IND-CPA notion of security for the

underlying KP-ABE scheme since it only permitted the evaluation of a single function.

92

3.4 Construction

This is a more relaxed notion than considered in the vast majority of the ABE literature

where the adversary is limited to learning just one decryption key. Parno et al. could

use this property due to their restricted system model where the client is certified for

only a single function per set of public parameters which requires the client to set up

a new ABE environment per function and server.

Within our system model, we aim to accommodate multiple computational servers

being also certified for multiple functions and as such the adversary is provided with

a KeyGen oracle which enables to request and learn polynomial many decryption keys

for different servers and different functions. The scheme needs to ensure that collusions

between servers holding different decryption keys can be prevented as well as that a

malicious server is not able to use a decryption key for a particular function to claim

a computational result for another function and have the result accepted by the client.

Collusions can be prevented by the IND-CPA security of the ABE scheme. In order

to prevent the misuse of decryption keys for multiple functions we introduce our simple

encoding trick in the next section.

3.4.1.2 Handling Multiple Functions

Recall that Parno et al. introduced the notion of multi-function VC in the non-publicly

verifiable setting but requires a somewhat more complex notion of KP-ABE with Out-

sourcing as introduced by Green et al. [90]. In this thesis, we take a different approach

in order to handle multiple functions on the same input data within a single PVC

system for multiple servers and only require a simple encoding trick. We believe that

in practical environments it is unrealistic to expect a server to compute just a single

function, and we also believe that it is a reasonable cost expectation to prepare an

encoded input per computation, as long as the associated cost of doing so is relatively

low, especially given that the input data to different functions may well differ. Thus,

whereas Parno et al. use a more non-standard and complex primitive to enable this

functionality, we require only a simple encoding trick which allows servers to possess

different evaluation keys for multiple functions in the publicly verifiable setting and we

only require the standard and well-studied multi-key notion of security considered in

the literature.

First we remark that the PVC construction of Parno et al., as summarised in Sec-

tion 2.7.3, suffers a straightforward attack in case one extends the scheme by providing

the adversary with a KeyGen oracle to provide access to multiple evaluation keys. In

more detail, the client would encrypt as usual two randomly sampled messages both

under the attribute representation of the input within different ABE schemes. The ma-

licious server must successfully decrypt one of these messages by using its evaluation

key, which comprises the ABE decryption keys of some function G and its complement

93

3.4 Construction

G, since either G or G is satisfied by the input data. Thus, even if the malicious server

does not hold an evaluation key for F , it can still successfully decrypt one message

and return the result of G(x) claiming it to be the correct outcome of F (x) which the

client accepts since the verification check (equality check using a one-way function g)

was successful.

To overcome this attack and to use more standard primitives when handling multiple

functions in the publicly verifiable setting, we now describe our simple encoding trick.

Let us define a bijective mapping Λ: F → UF that maps functions from the function

family F of a RPVC scheme to attributes in the sub-universe UF . Our encoding

trick basically adds a conjunctive clause, i.e. we add an additional AND gate, to each

monotone Boolean function F ∈ F . This resulting function label also needs to be

present in the input attribute set such that this input can only be used for a particular

function in order to prevent a misuse of evaluation keys since using a different evaluation

key would lead to the policy not being satisfied by the input attributes. In more

technical terms, we encode the monotone Boolean function F in a decryption key for

the policy F ∧ Λ(F) and similarly encode the complement function F in a decryption

key for the policy F ∧ Λ(F). Finally, the client wishes to restrict the evaluation of

her input data x exclusively for F . Thus, we need to add the label Λ(F) ∈ UF also

to the attribute set Ax encoding her input data x resulting in a representation of the

input data as Ax ∪ Λ(F). Note that decryption will only be successful if and only

if the policy is satisfied by the input data and additionally the same label is present

in both the policy and input data. This function label prevents the above mentioned

attack since a malicious server that is certified for multiple functions cannot use an

evaluation key for some function G computing on some data intended for F . More

precisely, the decryption components within the evaluation key are associated with

G ∧ Λ(G) and G ∧ Λ(G), whereas the client initially specified her input data being

associated with the function label for F , i.e. Ax ∪ Λ(F). Neither policy is satisfied as

the label Λ(G) is not present in the attribute set representing the input and therefore

the malicious server cannot return any correct message that convinces the client to

accept the computation. In our setting, we also require the client to perform the

ProbGen procedure per computation as the function label may differ in case the client

wishes her input to be evaluated for a different function. On the other hand, if the

client wishes to receive an evaluation on some new input data for the same function,

she can just change the input data and keep the function label.

As a result of the above, and unlike the single function notion of Parno et al., we are

able to provide the adversary with oracle access in our security games.

3.4.2 Instantiation Details

Our RPVC scheme operates in the following way.

94

3.4 Construction

1. Setup, presented in Algorithm 1, first forms the attribute universe as well as

establishes public parameters and a master secret key by calling ABE.Setup twice.

We require to establish two distinct ABE schemes to overcome the one-sided error

in the evaluation and also to enable the security proofs to go through. Informally,

one system will be linked to the function F and one to the complement function

F . The public parameters and master secret keys for the respective ABE systems

are distinguished with a superscript 0 or 1 respectively.

This Setup algorithm initialises a time source T.4 It also initialises a two-

dimensional array of registered servers LReg indexed by server identities. The

purpose of this array is to store required public information about the certified

servers within the system. For each server S, LReg[S][0] stores the respective

signature verification key while LReg[S][1] stores a list of functions the server is

authorised to compute. The algorithm also initialises a list of revoked servers

LRev that is initially empty as no server has been revoked from the system yet.

Finally, the public parameters pp are defined to contain both sets of ABE param-

eters mpk0
ABE and mpk1

ABE, the array LReg and the time source T such that each

entity within the system is able to check the current time period. The master

secret key mk comprises the ABE master secret msk0
ABE and msk1

ABE as well as

the list of revoked servers LRev.

Note that the public parameters may be implicitly updated throughout the ex-

ecution of all algorithms of a RPVC scheme accommodating any changes in the

system population.

Algorithm 1 (pp,mk)
$← Setup(1λ,F)

1 : U ← Uattr ∪ UID ∪ Utime ∪ UF
2 : (mpk0ABE,msk

0
ABE)←$ ABE.Setup(1λ,U)

3 : (mpk1ABE,msk
1
ABE)←$ ABE.Setup(1λ,U)

4 : for S ∈ UID do

5 : LReg[S][0]← ε

6 : LReg[S][1]← {ε}
7 : endfor

8 : LRev ← ε

9 : Initialise T

10 : pp← (mpk0ABE,mpk
1
ABE, LReg,T)

11 : mk ← (msk0ABE,msk
1
ABE, LRev)

4T can be seen as a counter that is maintained in the public parameters or a networked clock from
which the time period may be efficiently sampled as t← T.

95

3.4 Construction

2. FnInit, presented in Algorithm 2, simply outputs the public parameters and is the

same for all functions. This step is not required in our particular construction,

but we retain the algorithm for consistency with prior definitions as well as for

generality as other instantiations may require this step.

Algorithm 2 pkF
$← FnInit(F,mk, pp)

1 : pkF ← pp

3. Register, presented in Algorithm 3, creates a public-private key pair by calling

the KeyGen algorithm of the digital signature scheme. The algorithm provides

the server with its own secret signing key and updates LReg[S][0] to store the

verification key for S. This ensures that a server is not imitated and maliciously

revoked.

Algorithm 3 skS
$← Register(S,mk, pp)

1 : (skSig, vkSig)←$ Sig.KeyGen(1λ)

2 : skS ← skSig

3 : LReg[S][0]← LReg[S][0] ∪ vkSig

4. Certify, presented in Algorithm 4, aims to generate an evaluation key ekF,S for

a function F enabling a server to compute this function on behalf of the client.

The algorithm first removes the server from the list of revoked entities and then

updates the server’s array and includes the function F to the list of functions the

server is authorised to compute. It then checks the current time period t from the

time source T and calls both the ABE.KeyGen algorithm and the ABE.KeyUpdate

algorithm twice. Recall that we want to prevent a server that is certified for two

different functions F and G (that differ on their output) from using the key for

G to recover the plaintext and claiming it as a result for F . To prevent this,

we use the encoding trick from Section 3.4.1.2 and add an additional function

attribute label Λ(·) to the policy that corresponds to the function. Thus, we

run the two ABE algorithms once with the policy for the function and function

label F ∧ Λ(F) using ABE system parameters with superscript 0, and once with

the policy for the complement function and function label F ∧ Λ(F) using ABE

system parameters with superscript 1.

Finally, the evaluation key is formed by the decryption keys and two update keys

for the current time period.

96

3.4 Construction

Algorithm 4 ekF,S
$← Certify(S, F,mk, pp)

1 : LRev ← LRev \ S
2 : LReg[S][1]← LReg[S][1] ∪ F
3 : t← T

4 : sk0ABE←$ ABE.KeyGen(S, F ∧ Λ(F),msk0ABE,mpk
0
ABE)

5 : sk1ABE←$ ABE.KeyGen(S, F ∧ Λ(F),msk1ABE,mpk
1
ABE)

6 : uk0LRev,t←$ ABE.KeyUpdate(LRev, t,msk
0
ABE,mpk

0
ABE)

7 : uk1LRev,t←$ ABE.KeyUpdate(LRev, t,msk
1
ABE,mpk

1
ABE)

8 : ekF,S ← (sk0ABE, sk
1
ABE, uk

0
LRev,t, uk

1
LRev,t)

5. ProbGen, presented in Algorithm 5, aims to create an encoded problem instance

σF,x that the server can use to evaluate the function as well as preparing a verifica-

tion key that enables anyone to verify the server’s computational result. The algo-

rithm first samples the current time period t from the time source T in the public

parameters pp. It then samples two messages m0 and m1 of equal length uni-

formly at random from the message space. The algorithm calls the ABE.Encrypt

algorithm twice each generating a ciphertext.

The first ciphertext c0 is formed by encrypting message m0 under the attribute

representation Ax∪Λ(F) of the input data and the function label Λ(F) ∈ UF . The

function label itself is an attribute representing the function for which the input

may be evaluated. Furthermore, the encryption algorithm requires the current

time period t and the public parameters mpk0
ABE for the first ABE system for

finally forming c0. The second ciphertext c1 is formed similarly by encrypting

m1 under the attributes Ax ∪ Λ(F), the current time period t and the public

parameters mpk1
ABE for the second ABE system. Both ciphertexts together form

the problem instance (or encoded input) σF,x and will be sent to the server.

The algorithm also prepares a public verification key vkF,x. The key is simply

generated by applying a one-way function g to the each randomly sampled mes-

sage and also includes a copy of LReg from the public parameters that enables to

check whether the list is modified between the current time period and the time

of verification (e.g. a server is revoked).

97

3.4 Construction

Algorithm 5 (σF,x, vkF,x)
$← ProbGen(x, pkF , pp)

1 : t← T

2 : (m0,m1)←$M×M
3 : c0←$ ABE.Encrypt(m0, (Ax ∪ Λ(F)), t,mpk0ABE)

4 : c1←$ ABE.Encrypt(m1, (Ax ∪ Λ(F)), t,mpk1ABE)

5 : σF,x ← (c0, c1)

6 : vkF,x ← (g(m0), g(m1), LReg)

6. Compute, presented in Algorithm 6, is performed by a server S and aims to return

the result of the evaluation of a function on some input data. The server parses

the problem instance σF,x and attempts to decrypt each ciphertext individually

by using ABE.Decrypt. The server tries to decrypt c0 by using the appropriate

material associated to the first ABE system in the public parameters and the

evaluation key, i.e. it uses sk0
ABE, uk0

LRev,t
and mpk0

ABE, and returns d0. Similarly,

the server attempts to decrypt c1 by using the appropriate material related to the

second ABE system, i.e. it uses sk1
ABE, uk1

LRev,t
andmpk1

ABE, and returns d1. Note

that the two plaintexts will follow the principle of a well-formed computational

response as detailed in equation (2.1). It returns (d0, d1) = (m0,⊥) if F (x) = 1

or (d0, d1) = (⊥,m1) if F (x) = 0. After the decryption procedure, the server uses

its personal signing key and signs the plaintexts including its own identity.

The server finally forms the computational result θF (x) comprising the two plain-

texts, the server identity and the server’s signature on the output.

Algorithm 6 θF (x)
$← Compute(σF,x, ekF,S , skS , pp)

1 : Parse σF,x as (c0, c1)

2 : d0 ← ABE.Decrypt
(
c0, sk

0
ABE, uk

0
LRev,t,mpk

0
ABE

)
3 : d1 ← ABE.Decrypt

(
c1, sk

1
ABE, uk

1
LRev,t,mpk

1
ABE

)
4 : γ←$ Sig.Sign(d0, d1, S, skS)

5 : θF (x) ← (d0, d1, S, γ)

7. Verify, presented in Algorithm 7, determines whether the returned computational

result is valid or not. The algorithm first parses the computational result θF (x)

as (d0, d1, S, γ) and the verification key vkF,x as (g(m0), g(m1), LReg). It checks

whether the function F is listed in LReg[S][1] meaning that the server that gen-

erated the computational result is authorised to compute F . If this check fails,

the result is immediately rejected.

98

3.4 Construction

If the check was successful, the verifier continues with verifying the server’s sig-

nature on the computational result using Sig.Verify to check its validity which

assures that the result was indeed generated by S. Those checks ensure whether

the list LReg in the public parameters and the one stored in the verification key

are identical and thus have not been modified throughout the execution of the

scheme. In case the signature verification fails, the result is immediately rejected.

Otherwise, the verifier continues with verifying whether the returned plaintext

is correct. The verifier starts with applying the one-way function g to the first

entry d0 and compares the result with the first entry of the verification key. If

both values match (i.e. g(m0) = g(d0)) then the verifier accepts the result and

is able to determine following equation (2.1) that the computational result y

corresponds to 1. If this is the case then it also creates an acceptance token

τθF (x)
= (accept, S) indicating that the server indeed performed the computa-

tion correctly. If both values do not match (i.e. g(m0) 6= g(d0)) then the verifier

applies the one-way function g to the second entry d1 and compares the result

with the second element of the verification key.5 In case this is a match (i.e.

g(m1) = g(d1)) then the verifier accepts the result and following equation (2.1)

she is able to determine that the computational result y corresponds to 0 and

also outputs an acceptance token τθF (x)
= (accept, S). If neither comparison is

successful the verifier rejects the result and reports S for revocation by forming

a rejection token τθF (x)
= (reject, S).

Note that this algorithm can be run by any entity since the computational result

and verification key are publicly available.

Algorithm 7 (y, τθF (x)
)← Verify(θF (x), vkF,x, pp)

1 : Parse θF (x) as (d0, d1, S, γ) and vkF,x as (g(m0), g(m1), LReg)

2 : if F ∈ LReg[S][1] then

3 : if accept← Sig.Verify ((d0, d1, S), γ, LReg[S][0])

4 : if g(m0) = g(d0) return (y ← 1, τθF (x)
← (accept, S))

5 : elseif g(m1) = g(d1) return (y ← 0, τθF (x)
← (accept, S))

6 : else (y ←⊥, τθF (x)
← (reject, S))

7 : endif

8 : endif

9 : endif

10 : return (y ←⊥, τθF (x)
← (reject, S))

8. Revoke, presented in Algorithm 8, aims to revoke misbehaving servers by re-

5Note that g(⊥) =⊥.

99

3.4 Construction

distributing fresh evaluation keys to all non-revoked servers. If the algorithm

receives as input a rejection token τθF (x)
= (reject, S) for a server S, the KDC

first removes all functions from the list LReg[S][1] such that the server is no longer

authorised to perform any computations and additionally adds the server to the

list of revoked entities LRev. The algorithm then refreshes the time source T and

samples the new time period.6 Next the ABE.KeyUpdate algorithm is run twice,

i.e. it is run once for each ABE system. The algorithms generate new update

key material for the current time period with respect to the revocation list LRev.

Finally, for all non-revoked servers within the system, the KDC refreshes and

redistributes the updated evaluation keys.

If the algorithm receives a token not specifying any server to be revoked it returns

⊥ indicating that the algorithm did not update any keys.

Algorithm 8 um
$← Revoke(τθF (x)

,mk, pp)

1 : if τθF (x)
= (reject, S) then

2 : LReg[S][1]← {ε}
3 : LRev ← LRev ∪ S
4 : Refresh T

5 : t← T

6 : uk0LRev,t←$ ABE.KeyUpdate(LRev, t,msk
0
ABE,mpk

0
ABE)

7 : uk1LRev,t←$ ABE.KeyUpdate(LRev, t,msk
1
ABE,mpk

1
ABE)

8 : for S′ ∈ UID do

9 : Parse ekF,S′ as (sk0ABE, sk
1
ABE, uk

0
LRev,t−1, uk

1
LRev,t−1)

10 : ekF,S′ ← (sk0ABE, sk
1
ABE, uk

0
LRev,t, uk

1
LRev,t)

11 : endfor

12 : return um← {ekF,S′}S′∈UID

13 : else

14 : return ⊥

Theorem 3.11. Given an indirectly revocable KP-ABE scheme secure in the sense

of indistinguishability against selective-target with semi-static query attacks (IND-

sHRSS) for a class of monotone Boolean functions F closed under complement, an

EUF-CMA secure signature scheme and a one-way function g. Let RPVC be the re-

vocable publicly verifiable outsourced computation scheme as defined in Algorithms 1–8.

Then RPVC is secure in the sense of selective public verifiability (Figure 3.8), selec-

tive semi-static revocation (Figure 3.9), vindictive servers (Figure 3.6) and selective

vindictive managers (Figure 3.10).

6If the time source is a counter then refreshing leads to incrementing the time period.

100

3.5 Proofs of Security

Informally, the proofs of selective public verifiability and selective vindictive man-

agers rely on the IND-sHRSS security of the underlying indirectly revocable KP-ABE

scheme and the one-wayness of the function g while the proof of revocation only relies

on the IND-sHRSS security. Security against vindictive servers relies in the EUF-

CMA security of the digital signature scheme such that a vindictive server cannot

return an incorrect result with a forged signature claiming to be formed by an honest

server. Note that the chosen message attack is required since the vindictive server could

act like a client and submit computation requests to get a valid signature.

In the description of the Setup algorithm (cf. Algorithm 1) we already discussed that

we require to initialise two distinct ABE systems. This is mainly in order to overcome

the possible one-sided error in the protocol in case only a single system is initialised

as well as to enable the security proofs to go through. Recall that we link one system

with the function F and the other system with the complement function F . To avoid

the adversary to trivially win in the security proofs, we need to restrict the type of

oracle queries the adversary can form when querying a KeyGen oracle. In particular,

we require that the adversary cannot query a KeyGen oracle for a function that is

satisfied by the challenge input (attribute set). Thus, we require to initialise two ABE

systems where one is maintained by the challenger and hence requires oracle access and

one is handled by the adversary itself. We need to choose these systems carefully such

that the system maintained by the challenger is associated to the unsatisfied function

F or F and hence appropriate keys can be obtained by querying the KeyGen oracle.

3.5 Proofs of Security

In this section we prove Theorem 3.11 by providing the full proofs of security for selec-

tive public verifiability, selective semi-static revocation, vindictive servers and selective

vindictive managers.

3.5.1 Selective Public Verifiability

Lemma 3.12. The RPVC scheme defined by Algorithms 1–8 is secure in the sense

of selective public verifiability (Figure 3.8) under the same assumptions as in Theo-

rem 3.11.

Proof. Suppose ARPVC is an adversary with non-negligible advantage against the se-

lective public verifiability game (Figure 3.8) when instantiated by Algorithms 1–8. We

begin by defining the following three games:

• Game 0. This is the selective public verifiability game as defined in Figure 3.8.

• Game 1. This is the same as Game 0 with the modification that in ProbGen,

we no longer return an encryption of m0 and m1. Instead, we choose another

101

3.5 Proofs of Security

equal length random message m′ 6= m0,m1 and, if F (x?) = 1, we replace c1 by

the encryption of m′, and otherwise we replace c0. In other words, we replace

the ciphertext associated with the unsatisfied function with the encryption of

a separate random message unrelated to the other system parameters, and in

particular to the verification keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing

a random message m′, we implicitly set m′ to be the challenge input w in the

one-way function inversion game.

The proof partially follows in the fashion of Parno et al. [118] and we aim to show

that from the point of view of the adversary Game 2 is indistinguishable from Game

0 except with negligible probability. Thus, this means that an adversary against the

selective public verifiability game can be run against Game 2. We then finally show

that if an adversary has a non-negligible advantage against Game 2 then the adversary

can invert a one-way function.

Game 0 to Game 1. We begin by showing that there is a negligible distinguish-

ing advantage between Game 0 and Game 1. Suppose otherwise, that ARPVC can

distinguish the two games with non-negligible advantage δ. We then show that it is

possible to construct an adversary AABE that uses ARPVC as a sub-routine to break

the IND-sHRSS security of the indirectly revocable KP-ABE scheme. We consider a

challenger C playing the IND-sHRSS game (Figure 2.3) with AABE, and AABE in turn

acts as a challenger for ARPVC. Given the above parameters the entities interact in the

following way.

1. ARPVC declares its choice of challenge function F and challenge input x?.

2. AABE first computes F (x?) = r and transforms the challenge input from ARPVC

into its own challenge input for the IND-sHRSS game. It sets x? = Ax? ∪ Λ(F)

where Λ(F) ∈ UF corresponds to the attribute representing the challenge function

F . Finally, AABE also sets its challenge for the time period t? = 1 for the IND-

sHRSS game and sends both challenge parameters x? and t? to the challenger

C.

3. C runs the ABE.Setup algorithm to generate mpkABE,mskABE and sends mpkABE

to AABE.

4. AABE initialises its target revocation list R which is initially empty and sends

it to C. Next, AABE runs RPVC.Setup in such a way that the ABE system

maintained by the challenger C is used as the ABE system with parameters

(mpkrABE,msk
r
ABE). The main reason for this is to avoid a trivial win for AABE

in the IND-sHRSS game. In more detail, since AABE does not receive the se-

cret parameters mskABE generated by C, the adversary AABE is required to issue

102

3.5 Proofs of Security

queries to oracles handled by C in order to generate valid parameters for ARPVC.

However, we require to restrict AABE from querying the KeyGen oracle for a func-

tion that evaluates to 1 on the challenge input x?. This prevents the decryption

of the challenge ciphertext and thus avoids a trivial win by the adversary.

Recall that in the RPVC.Certify algorithm (cf. Algorithm 4), one decryption key

for a function F is generated using the parameters (mpk0
ABE,msk

0
ABE) associated

with the first initialised ABE system, while another decryption key is generated

encoding the complement function F using the parameters (mpk1
ABE,msk

1
ABE)

related to the second ABE scheme.

Depending on the outcome of the initial computation F (x?) = r we need to

ensure that the challenger C and adversary AABE are in possession of the correct

parameters. In more detail, if F (x?) = 1, then the policy F ∧ Λ(F) will be

satisfied by AABE’s (transformed) challenge input x? = Ax? ∪ Λ(F). Therefore,

AABE cannot make any KeyGen oracle queries to C for the policy F ∧Λ(F). In this

case, it is required that we ensure that the ABE system parameters maintained

by the challenger corresponds to (mpk1
ABE,msk

1
ABE) and the ones maintained by

AABE correspond to (mpk0
ABE,msk

0
ABE). Thus, AABE is able to generate a key

for F ∧ Λ(F) itself and queries to challenger’s KeyGen oracle are not trivially

satisfied by the input.

On the other hand, if F (x?) = 0, then the complement policy F ∧Λ(F) may not

be queried to the KeyGen oracle as this would lead to a trivial win. Following

the RPVC.Certify algorithm (cf. Algorithm 4), then the decryption key associated

with the complement function uses the parameters (mpk1
ABE,msk

1
ABE) and as

such we need to ensure that AABE maintains those parameters and the challenger

maintains the parameters (mpk0
ABE,msk

0
ABE).

Thus, we need to ensure that the challenger maintains the parameters

(mpkrABE,msk
r
ABE) where r = F (x?).

Now AABE simulates running the RPVC.Setup algorithm (cf. Algorithm 1) with

the exception that when ABE.Setup is called on line 2 and 3 it sets mpkrABE to

be the parameter provided by the challenger, and implicitly sets mskrABE to be

that held by the challenger.

5. AABE runs RPVC.FnInit as detailed in Algorithm 2.

6. AABE must generate a challenge problem instance for ARPVC as the output of

RPVC.ProbGen. To do so, AABE samples three distinct, equal length messages

m0, m1 and m′ uniformly at random from the message space. AABE provides m0

and m1 as its choice of challenge for the IND-sHRSS game to C, and receives

back the encryption, ct?, of one of these messages (mb? for b?
$← {0, 1}, where b?

was chosen by the challenger), under attributes x? and time t?. More formally

103

3.5 Proofs of Security

this is ct?
$← ABE.Encrypt(mb? , x?, t

?,mpkrABE). It needs to assign ct? to be one of

the ciphertexts c or c′ that form the challenge problem instance (encoded input)

σF,x? using the correct ABE system parameters. AABE chooses a random bit

s
$← {0, 1} which intuitively corresponds to its guess for the challenger’s choice

of b?. Therefore,

• If r = 0, then AABE sets c to be ct? and randomly generates the remaining

ciphertext as

c′
$← ABE.Encrypt(m′, x?, t?,mpk1

ABE).

It sets vk = g(ms) and vk′ = g(m′).

• If r = 1, then AABE randomly generates the ciphertext as

c
$← ABE.Encrypt(m′, x?, t?,mpk0

ABE),

and sets c′ to be ct?. It sets vk = g(m′) and vk′ = g(ms).

Finally, AABE sets σF,x? = (c, c′) and vkF,x? = (vk, vk′, LReg).

7. ARPVC receives all outputs from the above RPVC.ProbGen algorithm, and then

is provided with oracle access to which AABE responds in the following way:

• Queries to RPVCFnInit and RPVC.Register are performed as specified in Al-

gorithms 2 and 3.

• Queries of the form RPVC.Certify(S, F ′,mk, pp) are handled by AABE run-

ning Algorithm 4 with the exception that the ABE.KeyGen and

ABE.KeyUpdate algorithms for the ABE system with the parameters main-

tained by the challenger are replaced by queries to the respective oracles

provided by C. AABE queries the ABE.KeyGen oracle in order to obtain a

decryption key skrABE. Here we need to distinguish two cases.

If r = 0, the query is formed over the parameters of the first ABE system

and is of the form OKeyGen(S, F ′ ∧ Λ(F ′),msk0
ABE,mpk

0
ABE). If r = 1, then

the query is formed over the parameters of the second ABE system and is of

the form OKeyGen(S, F
′ ∧ Λ(F ′),msk1

ABE,mpk
1
ABE). The challenger returns

for both cases a valid decryption key unless the challenge input x? satisfies

the queried policy. Note that in case the queried function F ′ does not

correspond to the challenge function F then due to the bijective mapping

Λ the attribute function labels do not coincide, i.e. Λ(F ′) 6= Λ(F). Thus,

neither of the possible queries to the KeyGen oracle will be satisfied. On the

other hand, since we chose the ABE system maintained by the challenger

to be unsatisfied for F , any query for F will be rejected. Hence, if F ′ 6= F ,

104

3.5 Proofs of Security

then the first clause of the “if” statement in the KeyGen oracle of the IND-

sHRSS game (Figure 2.3) will never be correct and therefore the challenger

will always return a valid decryption key in response to a query.

In order to generate a valid update key ukrLRev,t
, AABE makes a query

to the ABE.KeyUpdate oracle which are of the form

OKeyUpdate(LRev, t,msk
r
ABE,mpk

r
ABE). The challenger returns a valid up-

date key if the current queried time period t does not coincide with the

challenge time period t? which AABE chose to be 1 and if the queried revo-

cation list LRev contains the challenge target revocation list R which AABE

chose initially to be empty. Since R = ε is a subset of any revocation list

LRev, the second clause of the “if” statement in the KeyUpdate oracle of

the IND-sHRSS game (Figure 2.3) will not be satisfied and therefore the

challenger will always return a valid update key.

• Queries of the form RPVC.Revoke(τθF (x)
,mk, pp) are handled by AABE run-

ning Algorithm 8 with the exception of generating an update key ukrLRev,t
on

line 6 and 7 which will be replaced with respective queries to the KeyUpdate

oracle provided by C. AABE queries the oracle for

OKeyUpdate(LRev, t,msk
r
ABE,mpk

r
ABE) and the challenger returns a valid key

if the queried time period t does not correspond to the challenge time period,

i.e. t 6= 1, and if the queried revocation list does not contain the challenge

target revocation list R. Since AABE chose R to be empty, the second clause

of the “if” statement in the KeyUpdate oracle will not be satisfied and the

challenger returns a valid update key.

8. Eventually ARPVC finishes its query phase and outputs a guess θ?. Let Y be the

non-⊥ plaintext contained in θ?. If g(Y) = g(ms), AABE outputs a guess b′ = s.

Else, AABE guesses b′ = 1− s.

Note that if s = b? (the challenge bit chosen by C in the IND-sHRSS game in step 6),

then the distribution of the above coincides with Game 0 since the verification key

comprises g(m′) and g(ms) where m′ and ms are the two plaintexts corresponding to

the ciphertexts of the encoded input for which ARPVC recovers exactly one. Otherwise,

if s = 1 − b? then the distribution coincides with Game 1 since the verification key

comprises the one-way function g applied to a legitimate message m′ and a random

message m1−s that is unrelated to both ciphertexts.

Now, we consider the advantage of this constructed adversary AABE playing the IND-

sHRSS game for the revocable KP-ABE scheme. Recall that by assumption, ARPVC

has a non-negligible advantage δ in distinguishing between Game 0 and Game 1, that

105

3.5 Proofs of Security

is ∣∣∣Pr
[
ExpGame 0

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

ARPVC

[
RPVC, 1λ,F

]
→ 1

]∣∣∣ > δ
where ExpGame i

ARPVC

[
RPVC, 1λ,F

]
denotes the output of running ARPVC in Game i.

Now we derive the probability of AABE guessing b? correctly and it follows:

Pr[b′ = b?] = Pr[s = b?] Pr[b′ = b?|s = b?] + Pr[s 6= b?] Pr[b′ = b?|s 6= b?]

=
1

2
Pr[g(Y) = g(ms)|s = b?] +

1

2
Pr[g(Y) 6= g(ms)|s 6= b?]

=
1

2
Pr
[
ExpGame 0

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
+

1

2
(1− Pr[g(Y) = g(ms)|s 6= b?])

=
1

2
Pr
[
ExpGame 0

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
+

1

2

(
1− Pr

[
ExpGame 1

ARPVC

[
RPVC, 1λ,F

]
→ 1

])
=

1

2

(
Pr
[
ExpGame 0

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
+ 1
)

>
1

2
(δ + 1)

Hence,

AdvAABE
>

∣∣∣∣Pr[b′ = b?]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2

Since δ is assumed to be non-negligible, δ2 is also non-negligible. IfARPVC has advantage

δ at distinguishing these games then AABE can win the IND-sHRSS game with non-

negligible probability. Thus since we assumed the ABE scheme to be IND-sHRSS

secure, we conclude that ARPVC cannot distinguish Game 0 from Game 1 with non-

negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is to simply set the

value of m′ to no longer be random but instead to correspond to the challenge w in

the one-way function inversion game (Figure 2.8). We argue that the adversary has no

distinguishing advantage between these games since the new value is independent of

anything else in the system except the verification key g(w) and hence looks random

to an adversary with no additional information (in particular, ARPVC does not see the

challenge for the one-way function as this is played between C and AABE).

106

3.5 Proofs of Security

Final Proof. We now show that using ARPVC in Game 2, AABE can invert the one-

way function g – that is, given a challenge z = g(w) AABE can recover w. Specifically,

during ProbGen, AABE chooses the messages as follows:

• if F (x?) = 1, we implicitly set m1 to be w and the corresponding verification key

component to be z = g(w). We randomly choose m0 from the message space and

compute the remainder of the verification key as usual.

• if F (x?) = 0, we implicitly set m0 to be w and set the verification key component

to z = g(w). m1 is chosen randomly from the message space and the remainder

of the verification key is computed as usual.

Now, since ARPVC is assumed to be successful, it will output a forgery comprising the

plaintext that was encrypted under the unsatisfied function (F or F). By construc-

tion, this will be w (and the adversary’s view is consistent since the verification key is

simulated correctly using z). AABE can therefore forward this result to C in order to

invert the one-way function with the same non-negligible probability that ARPVC has

against the selective public verifiability game.

We conclude that if the ABE scheme is IND-sHRSS secure and the one-way function

is hard-to-invert, then the RPVC as defined by Algorithms 1–8 is secure in the sense

of selective public verifiability.

3.5.2 Selective, Semi-static Revocation

Lemma 3.13. The RPVC scheme defined by Algorithms 1–8 is secure in the sense of

selective, semi-static revocation (Figure 3.9) under the same assumptions as in Theo-

rem 3.11.

Proof. In this proof, we aim to perform a reduction from the the selective, semi-static

revocation game (Figure 3.9) to the IND-sHRSS security of the underlying revoca-

ble KP-ABE scheme (Figure 2.3). We wish the prove this reduction by achieving a

contradiction and therefore we assume that ARPVC is an adversary with non-negligible

probability against the selective, semi-static revocation game when instantiated by Al-

gorithms 1–8. We show that we can construct an adversary AABE that uses ARPVC as

a sub-routine to break the IND-sHRSS security of the indirectly revocable KP-ABE

scheme. Let C be a challenger playing the IND-sHRSS game with AABE, and AABE

acts as a challenger for ARPVC. Given the security parameter λ, the function family

F and the number of queries qt the adversary ARPVC makes to the Revoke oracle, the

entities interact in the following way.

1. ARPVC declares its choice of challenge function F and challenge input x?.

2. AABE initialises an (empty) list QRev of currently revoked entities and sets the

current time period to t = 1. Next, AABE transforms the challenge input from

107

3.5 Proofs of Security

ARPVC into its own challenge input for the IND-sHRSS game. It sets A? = Ax?∪
Λ(F) where Ax? is the attribute encoding of the challenge input and Λ(F) ∈ UF
corresponds to the attribute representing the function F . Finally, AABE also sets

its challenge for the time period t? = qt for the IND-sHRSS game and sends

both challenge parameters to the challenger C.

3. C runs ABE.Setup to create (mpkABE,mskABE) and sends the public parameter

mpkABE to AABE.

4. AABE simulates running the RPVC.Setup algorithm (cf. Algorithm 1) as specified

with the exception in line 2 where the first ABE system is initialised. There,

AABE sets mpk0
ABE to be mpkABE which was generated by the challenger, and

msk0
ABE is implicitly set to be the secret parameters held by C. Since AABE does

not possess mskABE, it will make use of oracle queries to C whenever msk0
ABE is

required.

5. AABE runs RPVC.FnInit as detailed in Algorithm 2.

6. ARPVC receives all public parameters pkF and pp and chooses a challenge target

revocation list R which AABE receives and forwards to its challenger C.

7. ARPVC may now perform oracle queries which AABE handles as follows:

• Queries to RPVC.FnInit and RPVC.Register are run as written in Algorithms 2

and 3.

• Queries of the form RPVC.Certify(S, F ′,mk, pp) are handled by AABE by

running the Certify oracle as specified in Figure 3.9. If the queried function

F ′ corresponds to the challenge function F and if the queried identity S is not

listed on the challenge target revocation list, i.e. S /∈ R, then AABE returns

⊥ to ARPVC. Note that otherwise, the adversary would be issued with

an evaluation key that will not be revoked at the time of the challenge and

therefore would trivially win. AABE also returns ⊥ if the current time period

t is equal to the challenge time period qt and if there is a server (other than

S) that is not currently revoked but should be revoked in accordance with

ARPVC’s challenge target revocation list R. Otherwise, i.e. if this check failed

and the oracle has not returned ⊥, it removes S form the list of currently

revoked entities QRev and simulates running Certify. This is simulated by

running Algorithm 4 as detailed above with the exception of line 4 and 6

where the query needs to be passed to C since it only possesses the valid

parameters.

In more detail, in order to simulate line 4, AABE queries C for OKeyGen(S, F ′∧
Λ(F ′),msk0

ABE,mpk
0
ABE). C returns the decryption key unless the policy

F ′ ∧Λ(F ′) is satisfied by A? and S /∈ R. Observe that the policy will never

108

3.5 Proofs of Security

be satisfied unless F ′ = F (since Λ is a bijective mapping and Λ(F ′) needs

to be present such that the policy is satisfied). Hence, C will always return

a valid key if F ′ 6= F .

On the other hand, if the queried function F ′ = F , then by the checks

performed by AABE at the beginning of the Certify oracle (Figure 3.9), S

is included on R (else ⊥ would have been returned prior to this point).

Therefore, even if the challenge function is queried, C will return a key. In

particular, note that C never returns ⊥ in a manner inconsistent with that

expected by ARPVC in accordance with the Certify oracle.

In order to simulate line 6, AABE makes a query to

OKeyUpdate(QRev, t,msk
0
ABE,mpk

0
ABE). C returns a valid update key unless

the current time period t is the challenge time period qt and the queried

revocation list does not contain the challenge target revocation list R. How-

ever, if this was the case then AABE would already have returned ⊥ by the

second clause of the “if” statement in the Certify oracle. Therefore, C shall

always return an update key which AABE can use in the execution of Certify.

• Queries of the form RPVC.Revoke(τθF (x)
,mk, pp) are handled by AABE by

running the Revoke oracle as specified in Figure 3.9. Whenever a call is

made to the Revoke oracle, AABE first increments the time period t. If

the token does not identify a server to revoke, it outputs ⊥ (as would the

Revoke algorithm). Following line 3 of the oracle specification, in case the

current time period corresponds to qt (i.e. the maximal number to Revoke

queries), then AABE returns ⊥ if QRev does not contain all servers listed on

the challenge target revocation list R. Otherwise, S is added to QRev. AABE

now simulates running the RPVC.Revoke algorithm by running Algorithm 8

as specified with the exception of line 6. To simulate this line, AABE needs

to make a query to C of the form OKeyUpdate(QRev, t,msk
0
ABE,mpk

0
ABE). C

returns a valid update key unless t = qt and the queried revocation list does

not contain the challenge target revocation list R. However, if this would be

the case, then AABE would have returned ⊥ above, and so a valid update

key is returned which AABE can forward to ARPVC.

8. Eventually (after qt Revoke queries), ARPVC finishes its query phase. AABE checks

if ARPVC has made suitable Revoke queries. If there exists an entity in R that is

not currently revoked (listed in QRev), it returns 0 and aborts immediately.

9. AABE must now generate a challenge for ARPVC. AABE chooses three distinct,

equal length messages m0,m1 and m′ uniformly at random from the message

space. It then sends m0 and m1 to C as its choice of challenge for the IND-sHRSS

game. C chooses a random bit b?
$← {0, 1} and returns

ct?
$← ABE.Encrypt(mb? , A

?, qt,mpk
0
ABE). AABE sets c = ct?, generates c′

$←

109

3.5 Proofs of Security

ABE.Encrypt(m′, A?, qt,mpk
1
ABE) and forms the challenge problem instance σF,x? =

(c, c′). AABE selects a bit s
$← {0, 1} and forms the verification key as vkF,x? =

(g(ms), g(m′), LReg). Note that s intuitively corresponds to AABE’s guess for b?.

10. ARPVC receives the resulting parameters from ProbGen and is again provided with

oracle access. These queries are handled in the same way as before, and ARPVC

eventually outputs its guess θ?.

11. Let Y be the non-⊥ plaintext returned in θ?. If g(Y) = g(ms), AABE guesses

b′ = s. Else, AABE guesses b′ = 1− s.
If g(Y) = g(m′), AABE makes a random guess b′ = b̃

$← {0, 1} since ARPVC did

not forge a result for either m0 or m1 and therefore is of no use for AABE in order

to break the IND-sHRSS game.

Now we consider the advantage of AABE playing the IND-sHRSS game. By assump-

tion, ARPVC has a non-negligible advantage δ against the selective, semi-static revoca-

tion game. It follows

Pr[b′ = b?] = Pr[b′ = b?|s = b?] Pr[s = b?] + Pr[b′ = b?|1− s = b?] Pr[1− s = b?]

+ Pr[b′ = b?|b̃ = b?] Pr[b̃ = b?]

= Pr[g(Y) = g(ms)|s = b?] Pr[s = b?]

+ Pr[g(Y) 6= g(ms)|1− s = b?] Pr[1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] Pr[b̃ = b?]

=
1

2
Pr[g(Y) = g(ms)|s = b?] +

1

2
Pr[g(Y) 6= g(ms)|1− s = b?]

+
1

2
Pr[g(Y) = g(m′)|b̃ = b?]

=
1

2

(
Pr[g(Y) = g(ms)|s = b?] + (1− Pr[g(Y) = g(ms)|1− s = b?])

+ Pr[g(Y) = g(m′)|b̃ = b?]
)

=
1

2

(
Pr[g(Y) = g(ms)|s = b?]− Pr[g(Y) = g(ms)|1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] + 1
)

=
1

2
(δ + 1).

Hence,

AdvAABE
>

∣∣∣∣Pr[b′ = b?]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

110

3.5 Proofs of Security

Since δ is non-negligible, δ
2 is also non-negligible. If ARPVC has advantage δ at break-

ing the selective, semi-static revocation game then AABE can win the IND-sHRSS

game with non-negligible probability. However, since the ABE scheme was assumed

IND-sHRSS secure, such an adversary ARPVC cannot exist. Therefore, we conclude

that that if the ABE scheme is IND-sHRSS secure then RPVC as instantiated by

Algorithms 1–8 is secure in the sense of selective, semi-static revocation.

3.5.3 Vindictive Servers

Lemma 3.14. The RPVC scheme defined by Algorithms 1–8 is secure in the sense of

vindictive server (Figure 3.6) under the same assumptions as in Theorem 3.11.

Proof. For a contradiction let us assume thatARPVC is an adversary with non-negligible

advantage against the vindictive server game (Figure 3.6) when instantiated by Algo-

rithms 1–8. We show that an adversary ASig with non-negligible advantage δ in the

EUF-CMA signature game (Figure 2.7) can be constructed using ARPVC as a sub-

routine. ASig interacts with the challenger C in the EUF-CMA security game and

itself acts as the challenger for ARPVC in the security game for vindictive servers for a

function F as follows.

The basic idea is that ASig can create a RPVC instance and play the vindictive server

game with ARPVC by executing Algorithms 1–8 itself. ASig will guess a server identity

that it thinks the adversary ARPVC will select to vindictively revoke. The signature

signing key that would be generated during the Register algorithm for this server will

be implicitly set to be the signing key in the EUF-CMA game and any Compute oracle

queries for this identity will be forwarded to the challenger to compute. Then, assuming

that ASig guessed the correct server identity, ARPVC will output a forged signature that

ASig may output as its guess in the EUF-CMA game. Given the security parameter

and the the function family F , the entities interact in the following way.

1. The challenger C (in the EUF-CMA game) initialises an initially empty list Q

of messages queried to the Sig.Sign oracle. It runs Sig.KeyGen(1λ) to generate a

challenge signing key SK and verification key V K. C sends V K to ASig.

2. ASig starts with initialising two empty lists. The fist list QReg records all regis-

tered entities within the system as well as a list QServer which records all entities

for which the adversary has learnt a signing key. ASig also initialises the target

server identity S to be ⊥. Furthermore, ASig chooses a server identity from UID

denoted as S̃. This identity is ASig’s guess of the (final) target server identity

S that ARPVC will choose at some later point in the game. Note, if this guess

will be correct, then any signing operations related to S̃ can be performed using

the oracle provided by C and hence when ARPVC attacks this server identity, its

output can be used to break the EUF-CMA game.

111

3.5 Proofs of Security

3. ASig runs RPVC.Setup and provides the resulting public parameters to ARPVC.

ARPVC is also provided with oracle access which ASig can respond in the following

way:

• All queries to the oracles FnInit, Certify, Revoke and the additional oracle

Register2 are handled as specified in the respective algorithm;

• Queries made for servers that do not correspond to ASig’s guess, i.e. S 6= S̃,

to the Register oracle are handled by ASig running the Register oracle as

specified in Figure 3.6. A query to the oracle returns ⊥ if the query is for

the target server identity S . If, on the other hand, queries are made for

servers that match to ASig’s guess, i.e. S = S̃, then C aborts the game to

avoid a trivial win for ASig. This is the case because ARPVC may not choose

its target server S to be a server for which it previously learnt the signing key

and which are recorded on the list QServer. Therefore, ARPVC cannot choose

S = S = S̃ and hence, ASig’s choice of target server identity was wrong and

thus the EUF-CMA challenge parameters were embedded incorrectly in the

reduction.

4. Eventually, ARPVC finishes its query phase and outputs its choice of challenge

function F and challenge input x?.

5. ASig runs RPVC.FnInit as detailed in Algorithm 2. It also runs RPVC.ProbGen on

the challenge input x? as specified in Algorithm 5.

6. ARPVC is provided with the resulting parameters and is given again oracle access

which is handled as above.

ARPVC eventually outputs its choice for a target server identity S . ASig returns

0 if ARPVC has previously queried this identity in the Register oracle and thus

the identity was listed on QServer.

7. If S 6= S̃, then ASig outputs ⊥ since it has guessed incorrectly the server identity.

Otherwise, ARPVC continues with access to the provided oracles as before and

additionally receives access to a Compute oracle as specified in Figure 3.6. ARPVC

submits queries to the Compute oracle of form OCompute(σF ′,x, ekF ′,S , skS , pp) for

some computation F ′(x) which does not correspond to F (x?). Recall that this

oracle enables ARPVC to observe S before attacking. If S 6= S̃ then ASig simply

follows Algorithm 6 using the decryption and signing keys generated during the

oracle queries. Otherwise, if S = S̃ then ASig does not have access to the signing

key SKS . Thus, it runs the ABE.Decrypt operations correctly to generate plain-

texts d0 and d1, and submits m = (d0, d1, S̃) as a Sig.Sign oracle query to C. The

challenger adds m to the list Q and returns γ ← Sig.Sign(m,SK), which ASig

uses to return θF (x) = (d0, d1, S̃, γ).

112

3.5 Proofs of Security

8. ARPVC finally outputs θ? = (d?0, d
?
1, S, γ) which appears to be an invalid result

computed by S . Thus, RPVC.Verify will output a reject token for S , i.e. τθ? =

(reject, S), and accept ← Sig.Verify((d?0, d
?
1, S), γ, V K). Thus, γ is a valid

signature under key SK.

9. ASig outputs m? = (d?0, d
?
1, S) and γ? = γ to C.

Note that the Compute oracle was not simulated for the computation F (x?) due to

the “if” statement (line 1) in the oracle (cf. Figure 3.6) since ASig did not make any

query to the Sig.Sign oracle provided by C. Thus the forgery (m?, γ?) outputted by

ASig satisfies the requirement in the EUF-CMA game (Figure 2.7) that m? /∈ Q.

We argue that, assuming S = S̃ (i.e. ASig correctly guessed the challenge identity) then

ASig succeeds with the same non-negligible advantage δ as ARPVC. We assume that

n = |UID| is polynomial in the security parameter (else the KDC could not efficiently

search the list LReg). The probability that ASig correctly guesses S = S̃ is 1
n and

AdvASig
≥ 1

n
AdvARPVC

≥ δ

n
.

We conclude that, since n is polynomial in the security parameter, if ARPVC has a

non-negligible advantage in the vindictive servers game (Figure 3.6) then ASig has the

same advantage in the EUF-CMA game, but since the signature scheme is assumed

EUF-CMA secure, ARPVC may not exist.

We note that we lose a polynomial factor in the advantage due to having to guess the

server S̃ that the adversary will attempt to revoke. This factor could be removed if we

formulated the security model in a selective fashion such that ARPVC must declare up

front which server it will target, and then ASig can implicitly set the signing key for

that server (in the Register step) to be the challenge key in the EUF-CMA game and

forward any Compute oracle requests to the challenger.

3.5.4 Selective Vindictive Manager

Lemma 3.15. The RPVC scheme defined by Algorithms 1–8 is secure in the sense

of selective vindictive manager (Figure 3.10) under the same assumptions as in Theo-

rem 3.11.

Proof. Since the notion of vindictive manager is a natural extension of the public

verifiability notion in the framework of the manager model, the following security proof

follows similar to the proof of Lemma 3.12. We begin by defining the following three

games:

113

3.5 Proofs of Security

• Game 0. This is the selective vindictive manager game as defined in Figure 3.10.

• Game 1. This is the same as Game 0 with the modification that in ProbGen, we

no longer return an encryption of m0 and m1. Instead, we choose another random

message m′ 6= m0,m1 and, if F (x?) = 1, we replace c1 by the encryption of m′,

and otherwise we replace c0. In other words, we replace the ciphertext associated

with the unsatisfied function with the encryption of a separate random message

unrelated to the other system parameters, and in particular to the verification

keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing

a random message m′, we implicitly set m′ to be the challenge input w in the

one-way function game.

We aim to show that from the the adversary’s point of view Game 2 is indistinguishable

from Game 0 except with negligible probability. Thus, this means that an adversary

against the selective vindictive manager game can be run against Game 2. We then

finally show that if an adversary has a non-negligible advantage against Game 2 then

the adversary can invert a one-way function.

Game 0 to Game 1. We begin by showing that there is a negligible distinguish-

ing advantage between Game 0 and Game 1. Suppose otherwise, that ARPVC can

distinguish the two games with non-negligible advantage δ. We then show that it is

possible to construct an adversary AABE that uses ARPVC as a sub-routine to break

the IND-sHRSS security of the indirectly revocable KP-ABE scheme. We consider a

challenger C playing the IND-sHRSS game (Figure 2.3) with AABE, and AABE in turn

acts as a challenger for ARPVC. Given the above parameters the entities interact in the

following way.

1. ARPVC declares its choice of challenge function F and challenge input x?.

2. AABE first transforms the challenge input from ARPVC into its own challenge

input for the IND-sHRSS game. It sets x? = Ax? ∪ Λ(F) where Λ(F) ∈ UF
corresponds to the attribute representing the challenge function F . Finally, AABE

also sets its challenge for the time period t? = 1 for the IND-sHRSS game

and sends both challenge parameters to the challenger C. AABE also computes

r = F (x?) which will determine which of the two ABE systems will be used for

functions and which for the complement functions. This is required since C will

not issue a decryption key for a function satisfied by the challenge input and so

AABE must be sure that it will only be queried for the non-satisfied function. In

the following, let us use the notation Fr as follows:

• If r = 0 then Fr = F and F1−r = F

114

3.5 Proofs of Security

• If r = 1 then Fr = F and F1−r = F .

That is, we choose r such that Fr(x
?) = 0.

3. C runs the ABE.Setup algorithm to generate mpkABE,mskABE and sends mpkABE

to AABE.

4. AABE initialises an empty challenge target revocation list R.

5. AABE then simulates running RPVC.Setup by running Algorithm 1 as written,

with the exception that one of the sets of ABE system parameters is assigned to

be those generated by the challenger. Recall that r = F (x?). AABE sets mpkrABE

to be the public parameters issued by C and mskrABE is implicitly set to be that

held by C. It runs ABE.Setup to generate mpk1−r
ABE,msk

1−r
ABE as usual.

6. AABE runs RPVC.FnInit as detailed in Algorithm 2. Later AABE needs to output

a challenge encoded output and therefore it needs to simulate a computation

server. To do so, AABE first needs to pick a server identity from the space UID

uniformly at random and runs the Register algorithm as detailed in Algorithm 3

to register S. AABE then needs to simulate running the Certify algorithm for S

and challenge function F . However, AABE does not hold the full master secret key

mk and therefore is required to make appropriate oracle calls to the challenger.

AABE will run Algorithm 4 as specified with exceptions to queries to KeyGen and

KeyUpdate oracles for which the challenger’s parameters are necessary. In more

detail:

• skrABE is generated by issuing an oracle query to the ABE.KeyGen oracle

of the form OKeyGen(S, Fr ∧ Λ(F),mskrABE,mpk
r
ABE). C will return a valid

decryption key unless x? ∈ Fr ∧Λ(F) and S /∈ R. It is clear that S is never

listed in R as the list was chosen to be empty and therefore the second clause

in the “if” statement in the KeyGen oracle (Figure 2.3) is always satisfied.

However, r was specifically chosen such that Fr(x
?) = 0. Hence, x? /∈ Fr

and x? = Ax? ∪ Λ(F) /∈ Fr ∧ Λ(F). Thus, C will always be able to return a

valid decryption key skrABE.

• sk1−r
ABE is generated by AABE running ABE.KeyGen using msk1−r

ABE for the

function F1−r ∧ Λ(F) as usual.

• ukrLRev,t
is generated by making a query to the ABE.KeyUpdate oracle of the

form OKeyUpdate(LRev, t,msk
r
ABE,mpk

r
ABE). C will return a valid update key

unless the current time period t is the challenge time period t? and R 6⊆ LRev.

Note that t? was chosen to be 1 and since no Revoke queries were requested,

the time period t indeed corresponds to t?. On the other hand, the list R

was initially chosen to be empty and therefore it is indeed a subset of LRev

115

3.5 Proofs of Security

(both lists are empty). Therefore, the second clause in the “if” statement in

the KeyUpdate oracle (Figure 2.3) is never satisfied and thus C will always

return a valid update key ukrLRev,t
.

• uk1−r
LRev,t

is generated by AABE running ABE.KeyUpdate using msk1−r
ABE as

usual.

7. AABE must generate a challenge problem instance for ARPVC as the output of

RPVC.ProbGen for either Game 0 or Game 1. To do so, AABE samples three

distinct, equal length messages m0, m1 and m′ uniformly at random from the

message space. AABE provides m0 and m1 as its choice of challenge to C, and

receives back the encryption, ct?, of one of these messages (mb? for b?
$← {0, 1},

where b? is chosen by the challenger), under attributes x?, time t? and public

parameters mpkrABE. It needs to assign ct? to be one of the ciphertexts c or c′

that form the challenge problem instance (encoded input) σF,x? using the correct

ABE system parameters. AABE chooses a random bit s
$← {0, 1} which intuitively

corresponds to its guess for the challenger’s choice of b?. Therefore,

• If r = 0, then AABE sets c to be ct? and randomly generates the remaining

ciphertext as

c′
$← ABE.Encrypt(m′, x?, t?,mpk1

ABE).

It sets vk = g(ms) and vk′ = g(m′).

• If r = 1, then AABE randomly generates the ciphertext as

c
$← ABE.Encrypt(m′, x?, t?,mpk0

ABE),

and sets c′ to be ct?. Further it sets vk = g(m′) and vk′ = g(ms).

Finally, AABE sets σF,x? = (c, c′) and vkF,x? = (vk, vk′, LReg).

8. AABE now simulates the server S performing the computation to output θF (x?)

by running algorithm 6 as specified, since valid keys have been generated for S

in the preceding steps.

9. The resulting values σF,x? , θF (x?), vkF,x? , pkF and pp are sent to ARPVC that is

also additionally provided with oracle access to which AABE responds as follows:

• Queries to RPVC.FnInit and RPVC.Register are performed as specified in

algorithms 2 and 3.

• Queries of the form RPVC.Certify(S, F ′,mk, pp) are handled by AABE run-

ning algorithm 4 with the exception that the ABE.KeyGen and

116

3.5 Proofs of Security

ABE.KeyUpdate algorithms for the ABE system with the parameters main-

tained by the challenger are replaced by queries to the respective oracles

provided by C.
AABE queries the ABE.KeyGen oracle in order to obtain a decryption key

skrABE with queries of the form OKeyGen(S, F ′r ∧ Λ(F ′),mskrABE,mpk
r
ABE).

The challenger returns a valid decryption key unless the challenge input x?

satisfies the queried policy.

Note that in case the queried function F ′ does not correspond to the chal-

lenge function F then due to the bijective mapping Λ the attribute function

labels do not coincide, i.e. Λ(F ′) 6= Λ(F). Thus, neither of the possible

queries to the KeyGen oracle will be satisfied. On the other hand, since we

chose the ABE system maintained by the challenger to be unsatisfied for F ,

any query for F will be rejected. Hence, if F ′ 6= F , then the first clause

of the “if” statement in the KeyGen oracle of the IND-sHRSS game (Fig-

ure 2.3) will never be correct and therefore the challenger will always return

a valid decryption key in response to a query.

In order to generate a valid update key ukrLRev,t
, AABE makes a query

to the ABE.KeyUpdate oracle which are of the form

OKeyUpdate(LRev, t,msk
r
ABE,mpk

r
ABE). The challenger returns a valid up-

date key if the current queried time period t does not coincide with the

challenge time period which AABE chose to be 1 and the queried revocation

list LRev contains the challenge target revocation list R which AABE chose

initially to be empty. Since R = ε is a subset of any revocation list LRev,

the second clause of the “if” statement in the KeyUpdate oracle of the IND-

sHRSS game (Figure 2.3) will not be satisfied and therefore the challenger

will always return a valid update key.

• Queries of the form RPVC.Revoke(τθF (x)
,mk, pp) are handled by AABE run-

ning Algorithm 8 with the exception of generating an update key ukrLRev,t
on

line 6 and 7 which will be replaced with respective queries to the KeyUpdate

oracle provided by C. AABE queries forOKeyUpdate(LRev, t,msk
r
ABE,mpk

r
ABE)

and the challenger returns a valid key if the queried time period t does not

correspond to the challenge time period, i.e. t 6= 1, and if the queried re-

vocation list does not contain the challenge target revocation list R. Since

AABE chose R to be empty, the second clause of the “if” statement in the

KeyUpdate oracle will not be satisfied and the challenger returns a valid

update key.

10. Eventually ARPVC outputs its guess for the non-⊥ value Y and τθF (x)
. If g(Y) =

g(ms), AABE outputs a guess b′ = s. Else, AABE guesses b′ = 1− s.

117

3.5 Proofs of Security

Notice that if s = b? (the challenge bit chosen by C in the IND-sHRSS game), then

the distribution of the above coincides with Game 0 since the verification key com-

prises g(m′) and g(ms) where m′ and ms are the two plaintexts corresponding to the

ciphertexts of the encoded input for which ARPVC recovers exactly one. Otherwise,

if s = 1 − b? then the distribution coincides with Game 1 since the verification key

comprises the one-way function g applied to a legitimate message m′ and a random

message m1−b? that is unrelated to both ciphertexts.

Now, we consider the advantage of this constructed AABE playing the IND-sHRSS

game for the revocable KP-ABE scheme. Recall that by assumption, ARPVC has a

non-negligible advantage δ in distinguishing between Game 0 and Game 1 – that is∣∣∣Pr
[
ExpGame 0

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

ARPVC

[
RPVC, 1λ,F

]
→ 1

]∣∣∣ > δ
where ExpGame i

ARPVC

[
RPVC, 1λ,F

]
denotes the output of running ARPVC in Game i.

Now we derive the probability of AABE guessing b? and it follows:

Pr[b′ = b?] = Pr[s = b?] Pr[b′ = b?|s = b?] + Pr[s 6= b?] Pr[b′ = b?|s 6= b?]

=
1

2
Pr[g(Y) = g(ms)|s = b?] +

1

2
Pr[g(Y) 6= g(ms)|s 6= b?]

=
1

2
Pr
[
ExpGame 0

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
+

1

2
(1− Pr[g(Y) = g(ms)|s 6= b?])

=
1

2
Pr
[
ExpGame 0

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
+

1

2

(
1− Pr

[
ExpGame 1

ARPVC

[
RPVC, 1λ,F

]
→ 1

])
=

1

2

(
Pr
[
ExpGame 0

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

ARPVC

[
RPVC, 1λ,F

]
→ 1

]
+ 1
)

>
1

2
(δ + 1)

Hence,

AdvAABE
>

∣∣∣∣Pr[b′ = b?]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

Since δ is assumed to be non-negligible, δ2 is also non-negligible. IfARPVC has advantage

δ at distinguishing these games then AABE can win the IND-sHRSS game with non-

118

3.6 Conclusion

negligible probability. Thus since we assumed the ABE scheme to be IND-sHRSS

secure, we conclude that ARPVC cannot distinguish Game 0 from Game 1 with non-

negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is to simply set the

value of m′ to no longer be random but instead to correspond to the challenge w in

the one-way function inversion game (Figure 2.8). We argue that the adversary has

no distinguishing advantage between these games since the new value is independent

of anything else in the system bar the verification key g(w) and hence looks random

to an adversary with no additional information (in particular, ARPVC does not see the

challenge for the one-way function as this is played between C and AABE).

Final Proof. We now show that using ARPVC in Game 2, AABE can invert the one-

way function g – that is, given a challenge z = g(w) AABE can recover w. Specifically,

during ProbGen, AABE chooses the messages as follows:

• if F (x?) = 1, we implicitly set m1 to be w and the corresponding verification key

component to be z = g(w). We randomly choose m0 from the message space and

compute the remainder of the verification key as usual.

• if F (x?) = 0, we implicitly set m0 to be w and set the verification key component

to z = g(w). m1 is chosen randomly from the message space and the remainder

of the verification key computed as usual.

Now, since ARPVC is assumed to be successful, it will output a forgery comprising the

plaintext that was encrypted under the unsatisfied function (F or F). By construc-

tion, this will be w (and the adversary’s view is consistent since the verification key is

simulated correctly using z). AABE can therefore forward this result to C in order to

invert the one-way function with the same non-negligible probability that ARPVC has

against the selective vindictive manager game.

We conclude that if the ABE scheme is IND-sHRSS secure and the one-way function

is hard-to-invert, then the RPVC as defined by Algorithms 1–8 is secure in the sense

of selective vindictive manager.

Overall Theorem 3.11 follows as a Corollary of Lemmas 3.12–3.15.

3.6 Conclusion

In this chapter, we have introduced the new notion of revocable publicly verifiable

outsourced computation (RPVC) and provided a rigorous framework that we believe

to be more realistic than the purely theory oriented models of prior work, especially

when the KDC is an entity responsible for user authorisation within a organisation. We

119

3.6 Conclusion

believe our model more accurately reflects practical environments and the necessary

interaction between entities for PVC. Each server may provide services for many dif-

ferent functions and for many different clients. Additionally, in our model, any clients

may submit multiple requests to any available servers, whereas prior work considered

just the single server case.

The consideration of this new model leads to new functionalities as well as new se-

curity threats. We have shown that by using a revocable KP-ABE scheme we can

revoke misbehaving servers such that they receive a penalty for misbehaving. We have

extended previous notions of security to fit our new definitional framework, introduced

new models to capture additional threats (e.g. vindictive servers using revocation to

remove competing servers), and provided a provably secure construction. We believe

that this work is a useful step towards making PVC practical and provides a natural

set of baseline definitions from which to add future functionality.

As mentioned throughout the chapter, we believe that for future work it would be

interesting and beneficial to investigate the construction of a fully secure indirectly

revocable KP-ABE scheme with adaptive queries. Such a scheme would allow to over-

come the limitations of the selective and semi-static notions which are forced upon our

security models given the current primitives.

Furthermore, achieving a notion of output privacy via the informally discussed mecha-

nism of blind verification is yet another interesting problem which would enhance the

usability of our RPVC framework in practice.

120

Chapter 4

Publicly Verifiable Delegable Com-
putation

Contents

4.1 Introduction . 121

4.2 Publicly Verifiable Delegable Computation 124

4.3 Security Model . 128

4.4 Construction . 129

4.5 Proof of Security . 135

4.6 Conclusion . 140

In this chapter, we investigate a different mode of publicly verifiable com-

putation. We study the problem in which an untrusted server holds a data

set in such a way that any client can ask the server to compute a func-

tion on any input portion of the data set. We show that ciphertext-policy

attribute-based encryption can provide this novel mode of computation and

see that this setting has natural applications such as verifiable queries on re-

mote data and verifiable MapReduce operations. The results of this chapter

appear in the full online version of [6].

4.1 Introduction

With the emergence of cloud computing, where clients and businesses rent computation

and storage resources from powerful cloud service providers, it is of great importance to

ensure the correctness of computations and the integrity of stored data. Let us consider

the following example scenario. A server possesses a static (authenticated) data set D

consisting of data points. For instance, each data point could correspond to a measured

temperature at fixed time intervals, e.g. every day at midday. The server now wishes

to specify a list of functions F for which it is willing to let entities query the data

set. Here, for example, the server could specify one function to compute the average

temperature over a portion of the data set, whereas another function could evaluate

the standard deviation. A client could now request the evaluation of a function from F
on the server’s data set in order to receive a result for which the client wants to ensure

correctness. However, as the data owner wishes to keep the data set confidential the

121

4.1 Introduction

crucial task is to ensure that verification of the result is successful even without the

client knowing the data.

In this chapter, we model the above scenario and introduce the notion of publicly ver-

ifiable delegable computation which we simply abbreviate as VDC. This proposal can

be considered as a reversed model to the problem of publicly verifiable outsourced

computation (PVC), where clients outsource requests for computations on their own

input data, as discussed in the previous chapter. In VDC, servers play the role of the

data owner possessing a static database over which any client can request computa-

tions/queries to be performed. Hence, compared to PVC, the entity relationship is

more akin to the traditional client-server model. In the previous chapter, we have seen

that key-policy attribute-based encryption can be used to provide a mechanism of prov-

ing correctness of an outsourced computation. Here, in this chapter, we study whether

ciphertext-policy attribute-based encryption (CP-ABE) lends itself in any meaningful

way to the setting of outsourced computation. Note that CP-ABE is a reversed notion

of KP-ABE where the association of attribute sets and policies to ciphertexts and keys

are simply reversed. We answer in the affirmative and show that CP-ABE can be em-

ployed to build such a VDC scheme. We may embed the static data set in a server’s

secret key whilst the computation of functions can be requested by creating ciphertexts

using public information. In order to keep the data set confidential, as well as enabling

the client to query on any subsets of the data set, we let the server publish a unique de-

scription of each data point in form of a label. It suffices for the client to select servers

and data based only on the knowledge of these labels. The scheme enables clients to

publicly verify the computational results. Referring back to the battlefield example

from Chapter 3, local servers within a coalition may offer soldiers to query their stored

data. However, it is of great importance that soldiers in the proximity of the querying

soldier may also verify the returned result since the outcome may also influence their

own decisions. In case the results are of sensitive nature the querier needs to employ a

VC scheme that provides output privacy. Furthermore, we discuss that VDC has some

natural applications. For example, VDC enables to construct verifiable MapReduce

operations for parallel computing problems, and can also be used to perform verifiable

queries on remote databases without accessing the data itself.

The efficiency requirement for VDC is also very different from PVC: unlike PVC, out-

sourcing a computation is not merely an attempt to gain efficiency as the client never

possesses the input data and therefore cannot execute the computation herself (even

with the necessary resources). Thus, VDC does not have the stringent efficiency require-

ment present as in PVC. Recall that in PVC outsourcing and verifying computations

are required to be more efficient than performing the computation itself in order to

make outsourcing computations worthwhile. The efficiency requirement is simply that

122

4.1 Introduction

verification of a result is more efficient than computing it. We believe that CP-ABE

behaves reasonably well in this setting. More precisely, our solution achieves constant

time public verification and the size of the query depends on the function F , while the

size of the server’s response depends only on the size of the result itself and not on the

input size which may be large, particularly when querying remote databases.

Related Work

Work from the realm of authenticated data lends itself to the framework of verifi-

able computations over outsourced data (albeit for specific functions only). Backes

et al. [21] introduce a framework using privacy-preserving proofs over authenticated

data outsourced by a trusted client that enables other entities to execute computations

over the outsourced data. In more detail, a trusted source produces and authenticates

some data which is given to the (untrusted) server. Other entities are able to request

computations on this authenticated data and also efficiently verify the results whereas

they should not learn more than the computational result. In particular, the client

should not learn the data itself. The solution presented in [21] makes use of homo-

morphic MACs and succinct non-interactive arguments (SNARGs) [75, 108]. Similar

results are presented in [137] using public logs. It is notable that the solutions in [21],

[33] and [114] achieve public verifiability, and we note that the scheme in [114] only

achieves it for specific set operations.

Chung et al. [53] introduce the concept of memory delegation where a client uploads her

memory to a server that can update and compute a function F over the entire memory.

In contrast, the model we propose in this chapter does not consider the client to be the

data owner and we can enable computations to be performed on any subset of the input

data, but are restricted to the static data case. Backes et al. [22] consider a client that

outsources data and requests computations on a data portion. The client can efficiently

verify the correctness of the result without holding the input data. Most works require

the client to know the data in order to verify [73, 29, 33, 113]. Verifiable oblivious

storage [9] ensures data confidentiality, access pattern privacy, integrity and freshness

of data accesses. Etemad and Küpçü [64] show how to handle different types of queries

on hierarchical authenticated data structures. Ahn et al. [3] present a framework for

computing on authenticated data using the notion of P-homomorphic signatures.

Organisation of Chapter

In Section 4.2, we describe and provide a formal definition of our model of publicly verifi-

able delegable computation and we discuss some example applications, e.g. MapReduce,

in which our model can be applied. Next, in Section 4.3, we define security in terms of

public verifiability for our model and provide in Section 4.4 an example construction of

VDC based on ciphertext-policy attribute-based encryption. In Section 4.5, we show

123

4.2 Publicly Verifiable Delegable Computation

that our given construction is secure according to the introduced security model. We

conclude the chapter in Section 4.6.

4.2 Publicly Verifiable Delegable Computation

In this section, we introduce a new PVC mode of computation called publicly verifiable

delegable computation (VDC). The model introduces a change in roles regarding the

data ownership. In more detail, in VDC the server initially holds a data set (gathered

over time or given by a trusted source) which it makes available for querying of specific

functions and the client is able to efficiently verify the result without ever having pos-

sessed the data set herself. Thus, this model reverses the roles of data owner compared

to Chapter 3.

We now first informally describe our VDC model. The scheme uses similarly to Chap-

ter 3 the notion of a key distribution centre (KDC) that handles the expensive pre-

processing operation and distributes the keys but is not responsible for performing

any computations itself. In more detail, a VDC scheme for a family of functions F
comprises n computational servers Si, i ∈ [n]. Each server owns a static data set Di

consisting of ki elements (Di = {xi,j}kij=1) and also specifies a list of functions Fi ⊆ F
that it is willing to compute on (specified) portions of the data set. To enable clients

to query specific portions of the data, Si publishes a unique descriptive label l(xi,j) of

each data point xi,j ∈ Di. Note that, to preserve confidentiality of the server’s data

set from the client, the labels should not reveal the value of the data, but may reveal

the semantic meaning of such data. The KDC authenticates the server’s data set by

providing an evaluation key ekDi,Si to Si. This key enables Si to compute any function

F in Fi on its data set Di. Clients can request computations of any function F ∈ Fi on

any set of data points X ⊆ Di (as long as X ∈ Dom(F)) by specifying the respective set

of labels {l(xi,j)}xi,j∈X . Note that the function has |X| inputs, e.g. if X = {x1, x2, x5}
then the server computes the function F (x1, x2, x5).

One could suggest that a server Si just simply caches the results of computations F ∈ Fi
on its data set. However, this is an unattractive solution as the choice of specific data

points X that are acceptable for each computation may vary and as such the number

of results that need to be cached could be large.

In Figure 4.1, we illustrate the entity population and respective interaction between

the entities within the VDC model.

124

4.2 Publicly Verifiable Delegable Computation

KDCS1C1

S2

ekX1,S1

ekX2,S2

pkF

σF,X1

σF,X2

Figure 4.1: Operation of a VDC scheme

4.2.1 Formal Definition

A VDC scheme for a family of functions F begins with a key distribution centre (KDC)

running Setup to produce public parameters and a master secret key.1 Furthermore,

the KDC also registers each server Si, by providing an individual private signing key

skSi , and publishes a public delegation key pkF for each function of interest F ∈ F .

Each server Si registers their interest in performing computations on their data set Di.

This enrolment process is done by the KDC using the Certify algorithm to issue a sin-

gle evaluation key ekDi,Si enabling Si to perform computations on Di. Note that this

implicitly also enables Si to compute on any subsets of Di. Each data owner (server)

specifies a list of functions Fi ⊆ F that they are willing to evaluate on their data sets.

However, not all data points in the data set xi,j ∈ Di may be appropriate for each

function. Therefore, we define the set of functions Fi to consist of elements represented

in the form (F,
⋃
xi,j∈Dom(F) l(xi,j)) listing the function and the associated permissible

inputs.

The client executes the ProbGen algorithm to request a computational result from a

server. The client specifies a function F ∈ Fi and a set of data points X ⊆ Dom(F)

represented by their unique labels {l(xi,j)}xi,j∈X . The algorithm outputs an encoded

input σF,X and a verification key vkF,X that enables anyone to verify the computa-

tional result later. In the Compute algorithm a server Si uses its evaluation key ekDi,Si
and the encoded input to output an encoded result θF (X) corresponding to the compu-

tational result F (X).

Finally any entity can verify the correctness of θF (X) using vkF,X . Verification outputs

the result y = F (X) indicating that the computation was performed correctly, or else

y =⊥ showing that the computational response is malformed. More formally this is

captured in the following definition.

Definition 4.1. A publicly verifiable delegable computation (VDC) scheme comprises

1Backes et al. [21] make use of a trusted source which can be thought of as the trusted KDC in our
model.

125

4.2 Publicly Verifiable Delegable Computation

the following algorithms:

1. (pp,mk)
$← Setup(1λ,F) : this randomised algorithm is run by the KDC to ini-

tialise the system. The inputs are the security parameter λ and the family of

functions F ;

2. pkF
$← FnInit(F,mk, pp) : this randomised algorithm is run by the KDC to gen-

erate a public delegation key pkF allowing clients to request computations of a

function F ∈ F ;

3. skSi
$← Register(Si,mk, pp) : this randomised algorithm is run by the KDC to

enrol a server Si within the system. It generates the server’s personalised signing

key skSi;

4. ekDi,Si
$← Certify(Si, Di, {l(xi,j)}xi,j∈Di ,Fi,mk, pp) : this randomised algorithm is

run by the KDC to generate an evaluation key ekDi,Si enabling the certified server

Si to perform computations of all functions F ∈ Fi ⊆ F , chosen by the server.

Those computations can be performed on the server’s input data Di = {xi,j}kij=1

consisting of ki data points each uniquely labelled by l(xi,j);

5. (σF,X , vkF,X)
$← ProbGen(F, {l(xi,j)}xi,j∈X , pkF , pp) : this randomised algorithm

is run by the client to request a computation of the function F evaluated on a set

of data points X ⊆ Di owned by the server Si. The inputs are the function F ,

a set of labels identifying each data point xi,j ∈ X that the client wishes F to be

evaluated on, as well as the public delegation key pkF and the public parameters

pp. The algorithm outputs an encoded input σF,X and a public verification key

vkF,X .

6. θF (X)
$← Compute(σF,X , ekDi,Si , skSi , pp) : this randomised algorithm is run by the

server Si to compute F (X). The inputs are the encoded input σF,X , an evaluation

key ekDi,Si enabling Si to compute on its data set Di, the server’s signing key

skSi and the public parameters pp. The algorithm outputs an encoded output

θF (X) representing F (X).

7. y ← Verify(θF (X), vkF,X , pp) : this algorithm can be run by any entity. The in-

puts are the encoded output θF (X) produced by Si, the verification key vkF,X and

the public parameters pp. The algorithm produces an output y = F (X) if the

result was computed correctly, or else y =⊥ indicating that the computation was

performed incorrectly.

In our VDC scheme we do not consider the mechanism of revocation but observe that

an indirectly revocable CP-ABE scheme could be employed in a similar fashion to the

indirectly revocable KP-ABE scheme as presented in Chapter 3. Although not explic-

itly mentioned, the KDC may update the public parameters pp during any algorithm

126

4.2 Publicly Verifiable Delegable Computation

and execution in order to reflect any changes in the entity population as e.g. servers

may be added or granted the ability to perform computations for additional functions.

Note that in the algorithm ProbGen, the data itself is not needed in order to form a

computational request for the server. The respective unique labels suffice as the client

never owned the data in the first place herself.

A VDC scheme is correct if verification succeeds with overwhelming probability when

all algorithms are run honestly. More formally this can be represented as follows.

Definition 4.2. A publicly verifiable delegable computation scheme is correct for a

family of functions F if, for all functions F ∈ F , servers Si and respective input data

sets Di, and all computational inputs X ⊆ Di, where X ∈ Dom(F), the following holds:

Pr[(pp,mk)
$← Setup(1λ,F),

pkF
$← FnInit(F,mk, pp),

skSi
$← Register(Si,mk, pp),

ekDi,Si
$← Certify(Si, Di, {l(xi,j)}xi,j∈Di ,Fi,mk, pp),

(σF,X , vkF,X)
$← ProbGen(F, {l(xi,j)}xi,j∈X , pkF , pp),

θF (X)
$← Compute(σF,X , ekDi,Si , skSi , pp),

F (X)← Verify(θF (X), vkF,X , pp)]

= 1− negl(λ).

4.2.2 Possible Applications of VDC

We briefly discuss two example applications where our notion of VDC could be applied.

MapReduce [61] (or Hadoop) is a programming model for the parallel processing of

large computations using a cluster or grid of computers (nodes) which can take

advantage of the locality of data to decrease transmission costs. Each worker

node computes a sub-problem on a portion of the data and reports to a manager

who combines the results. VDC enables verifiable MapReduce such that only valid

results are combined. The manager acts as the KDC to distribute evaluation keys

for partitions of the data to workers, and then requests multiple sub-problems to

be solved over this partitioning.

Note that in the setting of MapReduce, the set of permissible functions Fi could

indeed correspond to the full set F since the client is the original data owner of

the entire input data and provides each server with only a static portion of input

data.

Verifiable queries on remote databases. Servers may also act as remote database

providers and register with a KDC to provide a verifiable querying service. Any

127

4.3 Security Model

client may use public information to query any function allowed by the server

on these databases. Data is remotely stored and a client sees nothing more than

the results of queries, which they are assured to be correct. Alternatively, in

this setting, the data owner could act as the KDC to outsource its data to an

untrusted server. Due to the public delegation and verification properties, other

data users can query the outsourced data and verify the correctness of the results.

The data owner does not need to retain any knowledge of the data after it has

been outsourced.

4.3 Security Model

In the context of VDC we consider security in the sense of public verifiability represented

as a game-based notion in Figure 4.2. This notion ensures that a server is not able

to return a malformed response without being detected even if it has corrupted other

servers and holds verification keys, as well as even if the client or verifier never possessed

the input data themselves. The notion can be seen as a natural extension to the one

discussed in Section 3.3 and since we do not consider revocation in this framework, we

do not require the other security notions as in Section 3.3.

4.3.1 Public Verifiability

In Figure 4.2, we present the security notion of public verifiability. The game begins

with the challenger C initialising the system and providing the resulting public pa-

rameters pp to the adversary A. The adversary is provided with oracle access to the

functions FnInit(·,mk, pp), Register(·,mk, pp) and Certify(·, ·, ·, ·,mk, pp), which we de-

note by O. The adversary A selects the challenge inputs consisting of the challenge

function F , the challenge data set X? and the respective labels l(xj) for each data

point xj ∈ X?. Note that as the adversary owns the challenge data set X? it may addi-

tionally query the Certify oracle for a data set D ⊇ X?. Next the challenger initialises

the challenge function F by running FnInit outputting the respective key pkF . The

challenger C then outputs a challenge by executing ProbGen on the challenge function

and input labels. The adversary receives the resulting parameters from the challenger

and is again provided with oracle access as above. A wins if it produces an encoded

output that verifies correctly but does not correspond to the actual result F (X?).

Definition 4.3. The advantage of a PPT adversary in the PubVerif game for a

VDC construction, for a family of functions F is defined as:

AdvPubVerif
A,VDC (1λ) = Pr

[
ExpPubVerif

A

[
VDC, 1λ,F

]
→ 1

]
.

A VDC scheme, VDC, is secure against public verifiability if for all PPT adversaries

128

4.4 Construction

ExpPubVerif
A

[
VDC, 1λ,F

]
1 : (pp,mk)←$ Setup(1λ,F)

2 : (F,X?, {l(xj)}xj∈X?)←$ AO(pp)

3 : pkF ←$ FnInit(F,mk, pp)

4 : (σF,X? , vkF,X?)←$ ProbGen(F, {l(xj)}xj∈X? , pkF , pp)

5 : θ?←$ AO(σF,X? , vkF,X? , pkF , pp)

6 : y ← Verify(θ?, vkF,X , pp)

7 : if (y 6=⊥) and (y 6= F (X?)) then

8 : return 1

9 : else return 0

Figure 4.2: The public verifiability experiment ExpPubVerif
A

[
VDC, 1λ,F

]

A, it holds that

AdvPubVerif
A,VDC (1λ) ≤ negl(λ).

4.4 Construction

4.4.1 Overview

In this section, we provide a construction of a VDC scheme. Our VDC scheme is based

upon ciphertext-policy attribute-based encryption and enables the computation of the

family of (monotone) Boolean formulas closed under complement, operating similarly

to the RPVC scheme as introduced in Chapter 3.

The client will choose a random message from the message spaceM to act as a verifica-

tion token and encrypt this using a CP-ABE scheme under the Boolean function F to

be evaluated. Each server Si receives a decryption key for a set of attributes encoding

the data Di that they hold. Note that the following decryption procedure proceeds

similarly to the basic PVC principles as summarised in Section 2.7.3. In more detail,

the server attempts to decrypt the ciphertext and learns the chosen message if and only

if F (Di) = 1. By the security of the CP-ABE scheme, the server learns nothing about

the message if F (Di) = 0 since this corresponds to an access structure that is not sat-

isfied. Thus, if the correct message is returned, the client is convinced that F (Di) = 1.

If, however, F (Di) = 0, the decryption will return ⊥. This is insufficient for verification

since any server can return ⊥ to convince a client of a false negative result and therefore

the protocol suffers the same one-sided error problem as the scheme in Section 2.7.3.

129

4.4 Construction

To overcome this problem, we produce two CP-ABE ciphertexts. As in the previous

chapter, one ciphertext corresponds to F , whilst the other ciphertext corresponds to

the complement function F = F (X) ⊕ 1 which always outputs the opposite result to

F for Boolean functions. Thus, if F (Di) = 0 then, necessarily, F (Di) = 1. Hence, the

server’s key for data Di will decrypt exactly one ciphertext and the returned message

will distinguish whether F or F was satisfied, and therefore the value of F (X), where

X ⊆ Di. Note that each function is encoded in terms of attributes, and is specific to

each input, i.e. the encoding of a function F will differ to compute F (X) and F (X ′) as

the input data set comprises different unique labels specifying data points. However, if

the function F is encoded in terms of the data set X but is then evaluated on an input

set X ′ ⊃ X the server simply evaluates the function only on data points in X and

discards all other data points that belong to X ′. Thus, the computation remains the

same and outputs F (X). Similarly to equation (2.1), a well-formed response (d0, d1)

in VDC satisfies the following:

(d0, d1) =

(m0,⊥), if F (Di) = 1;

(⊥,m1), if F (Di) = 0.
(4.1)

If the returned plaintext does not match one of the randomly chosen random messages

then the server has returned an incorrect result. Note that if both returned results cor-

respond to ⊥ also indicates that the server returned an incorrect result but a rational

malicious server would never return this.

Public verifiability is achieved by publishing a token comprising the output of a one-way

function g applied to each sampled plaintext. Any entity can apply g to the server’s

response and compare this result with the published token to check correctness. The

public parameters contain next to the public key a list about registered entities within

the system. That is a two-dimensional array LReg (indexed by server identities) where

the first dimension, LReg[Si][0], contains a signature verification key, whilst the second

dimension, LReg[Si][1], lists all functions and labels for which Si is certified.

Let U = Uattr ∪ Ul ∪ UID be the universe of attributes for the CP-ABE scheme. It is

formed over the union of three sub-universes, where Uattr consists of the attributes that

form characteristic tuples for input data, Ul is a disjoint (from Uattr) universe repre-

senting unique labels l(xi,j) for each attribute, and UID comprises server identities. We

assume in our instantiation that the algorithms check, in case it is applicable, that all

functions and input data are formed over Uattr and each additionally contains exactly

one attribute/clause over the label universe Ul. To encode an n-bit binary input string

x = x1x2 . . . xn as an attribute set Ax, we define Uattr = {x1, x2, . . . , xn} of n attributes

and let xi ∈ Ax if and only if the ith bit of the input string is 1, i.e. Ax = {xi : xi = 1}.

130

4.4 Construction

Note that the inputs to our computations are sets of data points X ⊆ Di owned by

the server. We can think of the set X being the concatenation of the bit string repre-

sentation of each data point xi,j ∈ X and so we can encode X in the same way as above.

We consider adversaries that have access to multiple keys and therefore must ensure

that a key for different data sets cannot produce a valid looking response. We do this,

similarly to the previous chapter and label each data point xi,j with a unique label l(xi,j)

that is valid across the entire system, and assign each label with an attribute in Ul.
Note that we refer for simplicity to these attributes as l(xi,j) too. The decryption key

for a data set Di is formed over the attribute set (Ax∪
⋃
xi,j∈Di l(xi,j)). During ProbGen

for a computation F (X) on a subset of the data set X ⊆ Di, we first need to sample

two random messages m0 and m1 of equal length. The employed CP-ABE encryption

algorithm uses the access structure encoding of the conjunction (F ∧∧xi,j∈X l(xi,j)) to

encrypt m0 obtaining the first ciphertext c0. The same procedure can be applied for

the complement function F , i.e. a second CP-ABE encryption algorithm is executed

using the access structure encoding of the conjunction (F ∧∧xi,j∈X l(xi,j)) to encrypt

m1 obtaining the second ciphertext c1. Thus, the CP-ABE decryption algorithm only

succeeds if F (Di) = 1 and all labels l(xi,j) for xi,j ∈ X are matched in the key and

ciphertext. Note that since we wish to evaluate a subset X of a data set Di, F (Di) = 1

implies that F (X) = 1 where the decryption procedure ignores the remaining xi,j /∈ X.

Note that a generated secret key for a different data set Dj which does not contain X

as a subset will not include the correct labels and thus cannot be used for an attempt

to compute F (X).

Our instantiation of VDC is somewhat more efficient than that for PVC since we do

not require to setup two independent ABE systems and thus need to perform two

(expensive) key generations. The client needs to perform roughly the amount of work

of executing the computation twice by herself in order to prepare the encoded input.

That is, she needs to prepare the access structure encodings
(
F ∧∧xi,j∈X l(xi,j)

)
and(

F ∧∧xi,j∈X l(xi,j)
)

which will be used in the encryption algorithms to prepare the

encoded input. However, we believe that this is an acceptable workload for the client as

she never possessed the input data sets herself and wishes to learn the computational

result F (X) from the server.

4.4.2 Instantiation Details

Let CP-ABE = (ABE.Setup,ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) define a CP-ABE

encryption scheme over the universe U for a class of Boolean functions F closed under

complement. We also make use of a signature scheme with algorithms Sig.KeyGen,

Sig.Sign and Sig.Verify, and a one-way function g. Then Algorithms 1–7 define a VDC

scheme for the class of functions F which works as follows:

131

4.4 Construction

1. Setup, presented in Algorithm 1, first forms the attribute universe U for the

function family F . The attribute universe comprises of all input labels and server

identities. The algorithm then calls the ABE.Setup algorithm in order to initialise

the CP-ABE scheme. Next it initialises a two-dimensional array LReg indexed

by the server identities. For each server Si, the first dimension of the array

LReg[Si][0] stores a signature verification key for Si and the second dimension

LReg[Si][1] stores a list of functions that Si is willing to compute. Note that LReg

is initially empty. The output of the algorithm consists of the public parameters

pp and the master secret mk for the VDC system. The public parameters consist

of the master public key mpkABE of the CP-ABE scheme and the array LReg. The

master key comprises of the master secret key mskABE of the CP-ABE scheme.

Algorithm 1 (pp,mk)
$← Setup(1λ,F)

1 : U ← Uattr ∪ Ul ∪ UID
2 : (mpkABE,mskABE)←$ ABE.Setup(1λ,U)

3 : for Si ∈ UID
4 : LReg[Si][0]← ε

5 : LReg[Si][1]← {ε}
6 : endfor

7 : pp← (mpkABE, LReg)

8 : mk ← mskABE

2. FnInit, presented in Algorithm 2, simply outputs the public parameters for the

VDC scheme and is therefore the same for all functions. This step is not par-

ticularly required in our construction as we make use of a public-key CP-ABE

scheme but we retain the algorithm for consistency with prior definitions as well

as for generality as other instantiations may require this step.

Algorithm 2 pkF
$← FnInit(F,mk, pp)

1 : pkF ← pp

3. Register, presented in Algorithm 3, registers a potential server’s interest in offering

computations. This is achieved by creating a key pair using the digital signature

Sig.KeyGen algorithm. The resulting signing key skSig is issued to Si while the

verification key vkSig is added to the first dimension of the public array LReg such

that anyone can verify signatures produced by Si.

132

4.4 Construction

Algorithm 3 skSi
$← Register(Si,mk, pp)

1 : (skSig, vkSig)←$ Sig.KeyGen(1λ)

2 : skSi
← skSig

3 : LReg[Si][0]← LReg[Si][0] ∪ vkSig

4. Certify, presented in Algorithm 4, certifies a server Si for offering to execute

computations of functions in the set Fi ⊆ F on its data set Di. The data

set contains ki data points xi,j and each element is uniquely expressed by an

attribute l(xi,j) ∈ Ul. The algorithm first adds the pair (F,
⋃
xi,j∈Dom(F) l(xi,j))

to the array LReg[Si][i] for each function F ∈ Fi. This publicises to prospective

clients what functions F the server Si is willing to compute on any set of its

data points xi,j ∈ Di ⊆ Dom(F). The algorithm outputs a CP-ABE decryption

key skABE,Di for the data set Di. This key is formed over the attribute set

(ADi ∪
⋃
xi,j∈Di l(xi,j)) and the evaluation key ekDi,Si is set to be the CP-ABE

decryption key.

Algorithm 4 ekDi,Si
$← Certify(Si, Di, {l(xi,j)}xi,j∈Di ,Fi,mk, pp)

1 : for F ∈ Fi
2 : LReg[Si][1]← LReg[Si][1] ∪ (F,

⋃
xi,j∈Dom(F)

l(xi,j))

3 : endfor

4 : skABE,Di
←$ ABE.KeyGen((ADi

∪
⋃

xi,j∈Di

l(xi,j)),mskABE,mpkABE)

5 : ekDi,Si
← skABE,Di

5. ProbGen, presented in Algorithm 5, chooses two equal length messages m0 and m1

uniformly at random from the message space. For a computational request the

algorithm needs to form two CP-ABE ciphertexts c0 and c1 that encrypt the cho-

sen messages under the policies
(
F ∧∧xi,j∈X l(xi,j)

)
and

(
F ∧∧xi,j∈X l(xi,j)

)
respectively, and X ⊆ Di. Those two ciphertexts form the encoded input σF,X .

The verification key vkF,X is created by applying a one-way function g to each

message and g allows the key to be published.

133

4.4 Construction

Algorithm 5 (σF,X , vkF,X)
$← ProbGen(F, {l(xi,j)}xi,j∈X , pkF , pp)

1 : (m0,m1)←$M×M
2 : c0←$ ABE.Encrypt(m0, (F ∧

∧
xi,j∈X

l(xi,j)),mpkABE)

3 : c1←$ ABE.Encrypt(m1, (F ∧
∧

xi,j∈X
l(xi,j)),mpkABE)

4 : σF,X ← (c0, c1)

5 : vkF,X ← (g(m0), g(m1), LReg)

6. Compute, presented in Algorithm 6, first attempts to decrypt both ciphertexts

using the issued evaluation key ekDi,Si . Decryption succeeds only if the function

evaluates to 1 on the input data set X, i.e. the policy is satisfied. Since F

and F output opposite results on the input data set, this ensures that exactly

one plaintext will correspond to a failure symbol ⊥. It then signs the resulting

plaintexts using the server’s signing key skSi . Finally the algorithm outputs the

encoded output containing the recovered plaintexts, the server’s identity and its

signature.

Algorithm 6 θF (X)
$← Compute(σF,X , ekDi,Si , skSi , pp)

1 : Parse σF,X as (c0, c1)

2 : d0 ← ABE.Decrypt (c0, ekDi,Si
,mpkABE)

3 : d1 ← ABE.Decrypt (c1, ekDi,Si ,mpkABE)

4 : γ←$ Sig.Sign(d0, d1, Si, skSi
)

5 : θF (X) ← (d0, d1, Si, γ)

7. Verify, presented in Algorithm 7, first parses the encoded output θF (X) as

(d0, d1, Si, γ) and the verification key vkF,X as (g(m0), g(m1), LReg). The algo-

rithm first checks whether the function F is listed in LReg[Si][1], i.e. the respective

server that generated the computational result is authorised to compute F . If

this check fails, the result is immediately rejected.

If the check was successful, the verifier continues with verifying the signature

using the signature verification key vkSig stored in LReg. In case the signature

is accepted, it applies the one-way function g to each plaintext in θF (X) and

compares the results to the components in the verification key. If either compar-

ison is successful, this indicates that the server has indeed recovered a message.

Otherwise, it shows that the server provided a malformed response. Note, if m0

134

4.5 Proof of Security

was returned then F (X) = 1, and otherwise if m1 was returned then F (X) = 0

following equation (4.1).

Algorithm 7 y ← Verify(θF (X), vkF,X , pp)

1 : Parse θF (X) as (d0, d1, Si, γ) and vkF,X as (g(m0), g(m1), LReg)

2 : if F ∈ LReg[Si][1] then

3 : if accept← Sig.Verify (d0, d1, Si, γ, LReg[Si][0])

4 : if g(m0) = g(d0) return y ← 1

5 : elseif g(m1) = g(d1) return y ← 0

6 : else y ←⊥
7 : endif

8 : endif

9 : endif

10 : return y ←⊥

Theorem 4.4. Given an IND-CPA secure CP-ABE scheme for a class of Boolean

functions F closed under complement, a one-way function g, and a signature scheme

secure against EUF-CMA. Let VDC be the verifiable delegable computation scheme

as defined in Algorithms 1–7. Then VDC is secure in the sense of public verifiability

(Figure 4.2).

Informally, the proof relies on the IND-CPA property of the underlying CP-ABE

encryption scheme and the one-wayness of g. It proceeds by showing that an adversary

is not able to observe whether the plaintext has been altered for the unsatisfied function

F or F . Thus, the verification key can be the one-way function challenge g(w) and we

can set the plaintext implicitly to be w. A successful adversary finally returns w to

break the one-wayness of g.

4.5 Proof of Security

In this section we present the full proof of Theorem 4.4. The proof partially follows the

same principles as the proof of Lemma 3.12 in Chapter 3. The main proof differences

occur by using CP-ABE here rather than KP-ABE.

Proof. Suppose AVDC is an adversary with non-negligible advantage against the public

verifiability experiment (Figure 4.2) when instantiated with Algorithms 1–7. We begin

by defining the following three games:

• Game 0. This is the public verifiability game as defined in Figure 4.2.

135

4.5 Proof of Security

• Game 1. This is the same as Game 0 with the modification that in ProbGen,

we no longer return an encryption of m0 and m1. Instead, we choose another

equal length random message m′ 6= m0,m1 and, if F (X?) = 1, we replace c1

by ABE.Encrypt(m′, (F ∧∧xi,j∈X l(xi,j)),mpkABE). Otherwise, we replace c0 by

ABE.Encrypt(m′, (F ∧ ∧xi,j∈X l(xi,j)),mpkABE). In other words, we replace the

ciphertext associated with the unsatisfied function with the encryption of a sepa-

rate random message unrelated to the other system parameters, and in particular

to the verification keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing

a random message m′, we implicitly set m′ to be the challenge input w in the

one-way function game (Figure 2.8).

We show that an adversary with non-negligible advantage against the public verifiability

game can be used to construct an adversary that may invert the one-way function g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing

advantage between Game 0 and Game 1. Suppose otherwise, that AVDC can distin-

guish the two games with non-negligible advantage δ. We then construct an adversary

AABE that uses AVDC as a sub-routine to break the IND-CPA security of the CP-

ABE scheme. We consider a challenger C playing the IND-CPA game (Figure 2.4)

with attribute universe U with AABE, that in turn acts as a challenger in the public

verifiability game for AVDC:

1. C runs the ABE.Setup algorithm on the security parameter and universe U to

generate mpkABE and mskABE. The challenger gives mpkABE to AABE.

2. AABE now simulates running VDC.Setup such that the outcome is consistent with

mpkABE. It initialises the list LReg and sets pp = (mpkABE, LReg). The master

key mk is implicitly set to mskABE.

3. AVDC is provided with the public parameters pp and oracle access to the following

functionalities, which are handled by AABE.

• VDC.FnInit(·,mk, pp) and VDC.Register(·,mk, pp) can be executed as speci-

fied in Algorithms 2 and 3.

• VDC.Certify(·, ·, ·, ·,mk, pp) can be run in order to generate the evaluation key

ekDi,Si for a queried data set Di. To do so, AABE makes use of the KeyGen

oracle OKeyGen in the CP-ABE game. First, it updates LReg according to the

specified procedure in the first two lines of the Certify algorithm. AABE then

sets the attribute data set D̃ to be (ADi∪
⋃
xi,j∈Di l(xi,j)) and makes an oracle

query to the challenger C of the form OKeyGen(D̃,mk, pp). The challenger

generates a CP-ABE decryption key sk
ABE,D̃

if and only if D̃ /∈ A?. C may

136

4.5 Proof of Security

generate the key ekDi,Si since A? is still {∅}, and provide AABE with the

key.

4. AVDC outputs the function F , its input data set X? and unique labels {l(xj)}
corresponding to the data points xj in X? as its challenge parameters.

5. AABE also runs VDC.FnInit as given in the construction, cf. Algorithm 2.

6. To generate the challenge input, AABE begins by choosing three random equal

length messages m0, m1 and m′ from the message space.

Now AABE needs to choose its challenge access structure A? for the CP-ABE

IND-CPA game. First, it computes r = F (X?). If r = 0, AABE sets A? =

(F ∧∧xj∈X? l(xj)). Else it sets A? = (F ∧∧xj∈X? l(xj)). Next it sends A? and

the messages m0 and m1 to C as its challenge parameters for the CP-ABE game.

We note that A? is a valid challenge access structure as the only queries made

to the KeyGen oracle OKeyGen of the CP-ABE IND-CPA game were initiated

by queries to the Certify oracle OCertify handled by AABE. Note that due to the

unique labels {l(xj)}xj∈X? present in the access structure, no requests to the

Certify oracle for input data points in X ′ ⊂ X? would result in a KeyGen query

for attributes that satisfy A?. If the oracle is queried for X ′ ⊇ X? then we can

observe that A? was chosen specifically such that it is unsatisfied on this input.

Thus, KeyGen is never queried for an attribute set that satisfies A?, and therefore

the challenge is valid.

C chooses a random bit b and returns ct?
$← ABE.Encrypt(mb,A?,mpkABE). AABE

samples a random bit t which intuitively corresponds to its guess for the the

challenger’s choice of b.

• If r = 1 (that is, A? = (F ∧∧xj∈X? l(xj))), AABE generates

c
$← ABE.Encrypt(m′, (F ∧

∧
xj∈X?

l(xj)),mpkABE)

and sets c′ = ct? (formed over A? by C). It also sets vk = g(m′) and

vk′ = g(mt).

• Else r = 0, and AABE sets c = ct? and computes

c′
$← ABE.Encrypt(m′, (F ∧

∧
xj∈X?

l(xj)),mpkABE).

It sets vk = g(mt) and vk′ = g(m′).

Finally, AABE sets σF,X? = (c, c′) and vkF,X? = (vk, vk′, LReg).

7. AABE sends the output from ProbGen along with the public information to AVDC

that is also given oracle access to which AABE responds as follows.

137

4.5 Proof of Security

• VDC.FnInit(·,mk, pp) and VDC.Register(·,mk, pp) can be executed as de-

tailed in the construction, cf. Algorithm 2 and Algorithm 3.

• VDC.Certify(·, ·, ·, ·,mk, pp): To generate the evaluation key for the queried

attribute set Di, AABE follows the same procedure as specified in step 3.

However, we note that by the definition of the access structure A?, D̃ satisfies

A? only if X? ⊆ Di. This follows from the uniqueness of the labels within the

whole system as it holds that {l(xj)}xj∈X? ⊆ {l(xi,j)}xi,j∈Di . Additionally

it follows that Di must satisfy either F or F as chosen in A?. However, this

was chosen specifically such that X? (and therefore Di, as F will simply

select the elements of X? to evaluate on) does not satisfy the function, and

therefore D̃ /∈ A? and C may generate the key, which AABE will receive as

ekDi,Si .

8. Eventually, AVDC outputs θF (X?) which it believes is a valid forgery, i.e. that the

output will be accepted yet does not correspond to the correct value of F (X?).

9. AABE parses θF (X?) as (d, d′, Si, γ). One of d and d′ will be ⊥ (by construction)

and we denote the other value (non-⊥) by Y . Observe that, since AVDC is

assumed to be a successful adversary against public verifiability, the non-⊥ value,

Y , that it will return will be the plaintext mt since the challenge access structure

was always set to be unsatisfied on the challenge input. Thus, if g(Y) = g(mt),

AABE outputs a guess b′ = t and otherwise guesses b′ = (1− t).

If t = b (the challenge bit chosen by C), we observe that the above corresponds to Game

0 since the verification key comprises g(m′) where m′ is the message a legitimate server

could recover, and g(mb) where mb is the other plaintext.

Alternatively, t = 1 − b and the distribution of the above experiment is identical to

Game 1 since the verification key comprises the legitimate message and a random

message m1−t that is unrelated to the ciphertext.

Now, we consider the advantage of this constructed adversary AABE playing the IND-

CPA game for CP-ABE. Recall that by assumption, AVDC has a non-negligible advan-

tage δ in distinguishing between Game 0 and Game 1, that is∣∣∣Pr
[
ExpGame 0

AVDC

[
VDC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

AVDC

[
VDC, 1λ,F

]
→ 1

]∣∣∣ > δ
where ExpGame i

AVDC

[
VDC, 1λ,F

]
denotes the output of running AVDC in Game i.

138

4.5 Proof of Security

The probability of AABE guessing b correctly is:

Pr[b′ = b] = Pr[t = b] Pr[b′ = b|t = b] + Pr[t 6= b] Pr[b′ = b|t 6= b]

=
1

2
Pr[g(Y) = g(mt)|t = b] +

1

2
Pr[g(Y) 6= g(mt)|t 6= b]

=
1

2
Pr
[
ExpGame 0

AVDC

[
VDC, 1λ,F

]
→ 1

]
+

1

2
(1− Pr[g(Y) = g(mt)|t 6= b])

=
1

2
Pr
[
ExpGame 0

AVDC

[
VDC, 1λ,F

]
→ 1

]
+

1

2

(
1− Pr

[
ExpGame 1

AVDC

[
VDC, 1λ,F

]
→ 1

])
=

1

2

(
Pr
[
ExpGame 0

AVDC

[
VDC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

AVDC

[
VDC, 1λ,F

]
→ 1

]
+ 1
)

>
1

2
(δ + 1)

Hence,

AdvAABE
>

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

Therefore, if AVDC has advantage δ at distinguishing these games then AABE can

win the IND-CPA game for CP-ABE with non-negligible probability. Thus since we

assumed the CP-ABE scheme to be secure, we conclude that AVDC cannot distinguish

Game 0 from Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is simply to set the

value of m′ to no longer be random but instead to correspond to the challenge w in the

one-way function inversion game. We argue that the adversary has no distinguishing

advantage between these games since the new value is independent of anything else

in the system bar the verification key g(w) and hence looks random to an adversary

with no additional information (in particular, AVDC does not see the challenge for the

one-way function as this is played between C and AABE).

Final Proof. We now show that using AVDC in Game 2, AABE can invert the one-

way function g – that is, given a challenge z = g(w) we can recover w. Specifically,

during ProbGen, we choose the messages as follows:

• if F (X?) = 1, we implicitly set m1 to be w and set the verification key component

vk′ = z = g(w). We choose m0 randomly from the message space and compute

139

4.6 Conclusion

the remainder of the verification key as usual.

• if F (X?) = 0, we implicitly set m0 to be w and set the verification key component

vk = z = g(w). We choose m1 randomly from the message space and compute

the remainder of the verification key as usual.

Now, since AVDC is assumed to be successful, it will output a forgery comprising the

plaintext encrypted under the unsatisfied function (F or F). By construction, this

will be w and the adversary’s view is consistent since the verification key is simulated

correctly using z. AABE can therefore forward this result to C in order to invert the

one-way function with the same non-negligible probability that AVDC has against the

public verifiability game.

We conclude that if the CP-ABE scheme is IND-CPA secure and the one-way function

is hard-to-invert, then VDC as defined by Algorithms 1–7 is secure in the sense of public

verifiability.

4.6 Conclusion

In this chapter, we have introduced the notion of publicly verifiable delegable compu-

tation as a new mode of computation within the PVC setting. In particular, we have

shown that ciphertext-policy attribute-based encryption can be used to achieve VDC

in a similar fashion to how we used revocable KP-ABE to construct RPVC in Chap-

ter 3. The obtained system model reverses the role of the client and server as the data

owner compared to the previous mode. In RPVC, the data owner is the client who

employs a server to evaluate a function on her data since she does not have the neces-

sary resources herself. In VDC, on the other hand, the server acts as the data owner

making the data available for specific queries, and the client can request a computation

and verify the correctness of the result even if the client never possessed the data herself.

We have presented a rigorous framework and a provably secure construction within our

security model. Furthermore, we discussed relevant natural applications of VDC and

showed that the use of alternative attribute-based encryption primitives can be also

used to provide a proof method.

In future work, we would like to compare the solution of Backes et al. [21] using SNARGs

and homomorphic MACs as a proof method of correct computation to ours more closely

and investigate whether ABE provides SNARG functionality. Another interesting di-

rection would be to investigate methods to allow dynamic updates of the data owned

by the servers as a result of computations. In our model, the cost of outsourcing a

computation depends on the functions and thus it would be interesting to focus on

reducing this cost.

140

Chapter 5

Hybrid Publicly Verifiable Outsourced
Computation

Contents

5.1 Introduction . 141

5.2 Hybrid Publicly Verifiable Outsourced Computation 143

5.3 Security Models . 153

5.4 Revocable Dual-policy Attribute-based Encryption 157

5.5 Construction . 175

5.6 Proofs of Security . 182

5.7 Conclusion . 196

In this chapter we present a scheme that unifies the introduced proposals

of the previous chapters of this thesis capturing the modes of RPVC and

VDC within a single instantiated system. Furthermore, we introduce an-

other mode of publicly verifiable computation that enables us to enforce

(graph-based) access control policies over the delegators, servers and ver-

ifiers. We make use of a novel variant of dual-policy attribute-based en-

cryption to instantiate the unified umbrella scheme called hybrid publicly

verifiable computation. The results of this chapter appear in [6].

5.1 Introduction

Throughout this thesis so far, we enriched the achievable functionalities for publicly

verifiable outsourced computation schemes. In Chapter 3, we have extended the PVC

construction of Parno et al. [118] to accommodate a revocation mechanism into the

realm of PVC to revoke misbehaving servers from the system built on a revocable

KP-ABE scheme [17]. In Chapter 4, we changed the setting and considered a reversed

system model, compared to Chapter 3, wherein servers hold some data sets and make

them available for public, verifiable querying. Technically, this was achieved by switch-

ing the attribute-based encryption scheme, which acts as a proof mechanism, from

KP-ABE to CP-ABE. Thus, the VC schemes that arise can be seen as large, multi-user

systems comprising many servers and delegators. However, in such systems, the indi-

vidual user requirements may be diverse and thus require different forms of outsourced

141

5.1 Introduction

computations.

Let us consider the following scenarios: (i) employees with limited resources (e.g. using

mobile devices when out of the office) need to delegate computations to more powerful

servers. The workload of the employee may also involve responding to computation re-

quests to perform tasks for other employees or to respond to inter-departmental queries

over restricted databases; (ii) entities that invest heavily in outsourced computations

could find themselves with a valuable, processed data set that is of interest to other

parties, and hence want to selectively share this information by allowing others to query

the data set in a verifiable fashion; (iii) database servers that allow public queries may

become overwhelmed with requests, and need to enlist additional servers to help (es-

sentially the server acts as a delegator to outsource queries with relevant data). Finally,

(iv) consider a form of peer-to-peer network for sharing computational resources – as

individual resource availability varies, entities can sell spare resources to perform com-

putations for other users or make their own data available to others, whilst making

computation requests to other entities when resources run low.

Current PVC solutions (including the ones introduced in the previous chapters) do not

handle these flexible requirements particularly well; although there are several different

proposals in the literature that realise some of the requirements described above, each

requires an independent (potentially expensive) setup stage. Thus, in this chapter, we

unify these previous notions under an umbrella framework which we call hybrid publicly

verifiable computation (HPVC) which is a single mechanism with the associated costs

of a single setup operation and a single set of system parameters to be published and

maintained that simultaneously satisfies all of the above requirements. In other words,

we provide a system that is configured to support the modes RPVC and VDC depend-

ing on the individual user requirements. We show that yet another form of attribute-

based encryption, namely dual-policy attribute-based encryption (DP-ABE) [19] (cf.

Section 2.3.4), can be used to instantiate our HPVC system. DP-ABE has not at-

tracted much attention in the literature, which we believe is mainly due to applications

for this primitive being less obvious than for the single-policy schemes.

We also introduce another mode of computation, namely RPVC with access control.

Motivated in the above setting of multi-user VC systems, we may wish to (i) restrict the

computations that may be outsourced by delegators; and (ii) restrict the computations

a server may perform as it is generally unlikely that all participating entities within

the system have uncontrolled access to all functionalities. We show that by using the

full power of DP-ABE, i.e. using both forms of access policies simultaneously, we can

also enforce access control policies over the computations a server may perform in our

HPVC system.

142

5.2 Hybrid Publicly Verifiable Outsourced Computation

Related Work

In independent and concurrent work, Shi et al. [129] considered a similar use of DP-ABE

to combine keyword search on encrypted data with enforcing access control policies.

Two more notable works that have considered access control related to the VC setting

are the following. Clear and McGoldrick [55] considered access control policies over

delegators only and in a non-verifiable, multi-input outsourced computation setting

using homomorphic ciphertext-policy ABE and fully homomorphic encryption. Xu

and Tang [143] also addressed the necessity for access control in the setting of verifiable

computation, but limited their scope to non-public verifiable computation (i.e. not the

full multi-user setting) enforcing access control on delegators only.

Organisation of Chapter

In Section 5.2, we describe and provide a formal definition of our hybrid publicly veri-

fiable computation model and we discuss the possible different modes of computation

the scheme supports. Next, in Section 5.3, we define the main security notions for our

model. In order to implement the revocation functionality, we first develop a new form

of DP-ABE including the ability to revoke misbehaving entities and prevent them to

decrypt further ciphertexts. Thus, in Section 5.4, we combine the revocation techniques

from the indirectly revocable KP-ABE scheme (cf. Section 2.3.2) we used in Chapter 3

with the DP-ABE scheme [19] as summarised in Section 2.3.4 to define and construct

a new primitive called revocable key DP-ABE scheme. In the same section, we pro-

vide all relevant details including a definition, security model, as well as a concrete

construction and full proof of security. In Section 5.5, we use the recently constructed

primitive in a black-box manner and provide an example construction of HPVC. This

is followed, in Section 5.6, by showing that our given construction is secure according

to the introduced security models. We conclude this chapter in Section 5.7.

5.2 Hybrid Publicly Verifiable Outsourced Computation

In this section, we define our umbrella framework called hybrid publicly verifiable out-

sourced computation (HPVC). This is a single system that supports multiple modes of

computation with the associated cost of a single setup operation and system parame-

ters. We follow the previous chapters and enable a single KDC to initialise an HPVC

system that provides different functionalities for many clients with diverse requirements.

The presented unified (umbrella) construction, as detailed in Section 5.5, is based on a

novel use of DP-ABE (cf. Section 2.3.4). Given that DP-ABE conjunctively combines

KP-ABE and CP-ABE, we observe that by using special (“dummy”) attribute tokens,

we can also only implement KP-ABE and CP-ABE if necessary. Entities within an

HPVC scheme may play the role of both delegators and servers dynamically as re-

quired depending on the activated mode of computation. In more detail, our HPVC

143

5.2 Hybrid Publicly Verifiable Outsourced Computation

scheme captures the following modes of computations:

• Revocable PVC: in this setting, clients with limited resources outsource com-

putations on data of their choice to more powerful, untrusted servers using only

public information. This framework may accommodate multiple servers simulta-

neously within the system offering computations-as-a-service and they are able

to compute multiple different functions. Servers may try to cheat to persuade

verifiers of incorrect information or to avoid using their own resources. Misbehav-

ing servers can be detected and revoked so that further results will be rejected

and they will not be rewarded for their effort. This model was introduced in

Chapter 3.

• Publicly Verifiable Delegable Computation: in this setting, servers are the

data owners and make a static data set available to clients for verifiable querying.

Clients request computations on subsets of the data set using public, descriptive

labels and are able to efficiently verify the results even if the clients never owned

the data themselves. This model was introduced in Chapter 4.

• RPVC with Access Control: in this setting, we wish to restrict the set of

servers that may perform a particular computation. The set of servers that may

evaluate a computation for a client can therefore be restricted based on factors

such as sensitivity of input data or physical server location.

The last framework of RPVC with access control has not yet been formally introduced

within this thesis. We believe that such a model is highly beneficial in many situations

to limit the sets of entities that can view input data and results. Additionally, it is also

highly unlikely that all clients within a system (or an organisation) have identical and

uncontrolled access to all functionalities. A more detailed discussion about the individ-

ual modes, and in particular the third mode of computation, is provided in Section 5.2.3.

Note that such an HPVC scheme provides us with a flexible solution handling diverse

client requirements within a large system where individual workflows may require differ-

ent forms of outsourced computation. Thus, it is possible within the HPVC framework

that entities may play the role of both delegators and servers as required. For example,

let us consider a large company with many different departments that have contracted

cloud service providers offering computation-as-a-service. Employees can now use those

providers to outsource large computations but they may themselves need to provide

results from inter-departmental queries on local databases. Thus, an employee who

basically acts as a server in the VDC mode and is overwhelmed with local queries can

then change to the RPVC mode to contract a more powerful server to perform the

computation on their behalf. Such diverse requirements can be easily handled within

our HPVC system.

144

5.2 Hybrid Publicly Verifiable Outsourced Computation

5.2.1 Informal Overview

An HPVC system for a family of functions F begins (as before) with the key distribu-

tion centre (KDC) initialising the system by producing public parameters and a master

secret key. For each function of interest F , the KDC derives the appropriate delegation

key pkF . Then the KDC registers entities Si that wish to act as a server within the

system by providing each with an individual private signing key skSi .

In the next step, the server receives an evaluation key ek(O,ψ),Si that, depending on

the mode the algorithm is run in, either enables the evaluation of the function O or

the evaluation of input data ψ. Recall from the previous chapters that we aimed to

provide the server with the possibility to evaluate multiple functions and wished to

restrict specific input data to only being evaluated by specific functions. Thus, we have

introduced a simple encoding trick by issuing specific attribute labels. Now, in the

Certify algorithm where the server is issued with an evaluation key, the set of labels Li

the server chooses depends on the chosen mode. In more detail, the set of labels Li

in the modes RPVC and RPVC-AC uniquely represent the function F that a server is

certified to evaluate, and in the mode VDC the set of labels uniquely represents data

points contained in the data set Di held by Si. In either mode, the server also specifies

a list of computations Fi that it is willing to compute.

A delegator now runs the ProbGen algorithm where depending on the mode the respec-

tive inputs slightly differ. The delegator provides a set of labels LF,X ⊆ Li where, as in

the previous algorithm, those labels represent in the modes RPVC and RPVC-AC the

function F that should be computed on the provided input, and in the mode VDC the

labels represent the data points X ⊆ Di (X ⊆ Dom(F)) that should be computed on.

The algorithm finally outputs an encoded input σ(ω,S) and the respective verification

key vk(ω,S).

In the Compute algorithm, a server may use the encoded input and its evaluation key

to compute an encoded output corresponding to the computational result F (X). The

verification algorithm Verify inputs the encoded output, verification key and public

parameters and outputs a value y and a token τθF (X)
. The token indicates whether

the result is correct and adds the server identity. If verification failed, the token is

sent to the KDC which then revokes the server to prevent it from performing further

computations within the system and hence incurs a penalty. Otherwise, the returned

value y is accepted as the correct result.

5.2.2 Formal Definition

We now present a formal definition of all necessary algorithms for an HPVC scheme.

145

5.2 Hybrid Publicly Verifiable Outsourced Computation

Definition 5.1. An hybrid publicly verifiable outsourced computation (HPVC) scheme

for a family of functions F comprises the following algorithms:

1. (pp,mk)
$← Setup(1λ,F) : this randomised algorithm is run by the KDC to es-

tablish public parameters pp and a master secret key mk for the system. The

inputs are the security parameter λ, and the family of functions F that may be

computed;

2. pkF
$← FnInit(F,mk, pp): this randomised algorithm is run by the KDC to gener-

ate a public delegation key, pkF , allowing entities to outsource, or request, com-

putations of F ;

3. skSi
$← Register(Si,mk, pp): this randomised algorithm is run by the KDC to

enrol an entity Si within the system to act as a server. It generates a personalised

signing key skSi;

4. ek(O,ψ),Si
$← Certify(mode, Si, (O, ψ), Li,Fi,mk, pp): this randomised algorithm is

run by the KDC to generate an evaluation key ek(O,ψ),Si enabling the entity Si to

compute on the pair (O, ψ). The algorithm also takes as input the mode in which

it should operate, a set of labels Li, a set of functions Fi, the master secret key

as well as the public parameters;

5. (σ(ω,S), vk(ω,S))
$← ProbGen(mode, (ω,S), LF,X , pkF , pp): this randomised algorithm

is run by an entity to request a computation of F (X) from Si. The inputs are

the mode, the pair (ω,S) representing the computation request, a set of labels

LF,X ⊆ Li, the delegation key for F and the public parameters. The algorithm

outputs an encoded input σ(ω,S) and a verification key vk(ω,S);

6. θF (X)
$← Compute(mode, σ(ω,S), ek(O,ψ),Si , skSi , pp): this randomised algorithm is

run by an entity Si to compute F (X). The inputs are the mode, an encoded

input σ(ω,S), an evaluation key ek(O,ψ),Si and a signing key for Si. The algorithm

outputs an encoded output θF (X) representing F (X);

7. (y, τθF (X)
) ← Verify(θF (X), vk(ω,S), pp): this algorithm is run by any entity that

wants to verify whether the result was computed correctly or not. The inputs are

the encoded output θF (X), the verification key vk(ω,S) and the public parameters.

The algorithm outputs the actual result y. If the result y corresponds to F (x) it

additionally creates a token τθF (x)
= (accept, Si) indicating that the result was

correctly computed. Otherwise, the result y corresponds to ⊥ and it creates a token

τθF (x)
= (reject, Si) indicating that the result is malformed and Si misbehaved;

8. um
$← Revoke(τθF (X)

,mk, pp): this randomised algorithm is run by the KDC

inputting the token from the verification process, the master secret key and public

parameters. If τθF (X)
= (reject, Si), the algorithm revokes all evaluation keys

146

5.2 Hybrid Publicly Verifiable Outsourced Computation

ek(·,·),Si of the server Si by rendering them non-functional and thereby preventing

Si from performing any further evaluations within the current system. The update

material um consists of a set of updated evaluation keys {ek(O,ψ),S′} which are

issued to all servers. Otherwise, in case τθF (X)
= (accept, Si) then the algorithm

outputs ⊥ indicating that no update was necessary.

Although not explicitly stated, the KDC may update the public parameters pp during

any algorithm in order to address any changes in the entity population.

We say that an HPVC scheme is correct if the verifying party almost certainly accepts

the returned result generated by a non-revoked server using a valid generated verifi-

cation key and encoded output given the non-revoked server used a valid generated

encoded input and evaluation key in each of the respective modes. More formally this

can be represented as follows.

Definition 5.2. An hybrid publicly verifiable outsourced computation (HPVC) scheme

is correct for a family of functions F if, for all attribute sets ω and ψ, for all access

structures O and S defined for a computation F (X), for F ∈ F and X ∈ Dom(F), if

ω ∈ O and ψ ∈ S, and for all non-revoked servers Si, then the following holds:

Pr[(pp,mk)
$← Setup(1λ,F),

pkF
$← FnInit(F,mk, pp),

skSi
$← Register(Si,mk, pp),

ek(O,ψ),Si
$← Certify(mode, Si, (O, ψ), Li,Fi,mk, pp),

(σ(ω,S), vk(ω,S))
$← ProbGen(mode, (ω,S), LF,X , pkF , pp),

θF (X)
$← Compute(mode, σ(ω,S), ek(O,ψ),Si , skSi , pp),

y ← Verify(θF (X), vk(ω,S), pp),

um
$← Revoke(τθF (X)

,mk, pp)]

= 1− negl(λ).

5.2.3 Modes of Computation

In this section, we discuss in more detail the requirements and approaches needed to

enable a specific mode of computation. As mentioned before, our HPVC scheme is

generically defined in terms of objective and subjective policies (O and S respectively)

as well as objective and subjective attribute sets (ω and ψ respectively). The value of

these parameters determine in which mode the algorithms are executed. In Table 5.1,

we specify these parameters and relate them to their respective mode. We define two

additional parameters TO and TS which are required in case we run the HPVC system

in a specific mode. For the moment it suffices to interpret them as “dummy” objects

147

5.2 Hybrid Publicly Verifiable Outsourced Computation

mode O ψ ω S
RPVC F {TS} X {{TS}}
VDC {{TO}} Di {TO} F
RPVC-AC F s X P

mode Li LF,X Fi
RPVC {l(F)} {l(F)} {F}
VDC {l(xi,j)}xi,j∈Di {l(xi,j)}xi,j∈X {(F, {l(xi,j)}xi,j∈Dom(F))}F∈F
RPVC-AC {l(F)} {l(F)} {F}

Table 5.1: Parameter definitions for different modes of computation

which are able to satisfy {TO} ∈ {{TO}}. With this interpretation it is possible that we

set the objective policy O = {{TO}} which is always trivially satisfied by the objective

attribute set ω = {TO} as above. This similarly holds for TS. We use these parameters

in order to “disable” either the objective or subjective part within our HPVC system

to run the system in one of the possible modes. More details about these parameters

can be found in Section 5.5.

5.2.3.1 RPVC

In order to run the system in the RPVC mode (as introduced in Chapter 3), we only

require to input the objective policy O and the objective attribute set ω. Therefore, the

objective policy is set to be the function F and the objective attribute set corresponds

to the input X to outsource the computation of F (X). Note that the input set X

only contains a single input data point x which is chosen specifically per computation.

Since we wish here to run the system in the RPVC mode, the unneeded subjective

parameters S and ψ correspond to the dummy parameter TS such that S is trivially

satisfied by ψ. Furthermore, the set of functions Fi chosen in Certify corresponds in this

mode simply to the function F , and the sets of labels Li and LF,X both just comprise

a single element labelling F . In more detail, this label l(F) corresponds to the label

derived from the bijective mapping Λ: F → UF defined in Section 3.4.1.2.

5.2.3.2 VDC

In order to run the system in the VDC mode (as introduced in Chapter 4), we only

require to input the subjective policy S and the subjective attribute set ψ. Here,

the subjective policy S represents the function F whilst the subjective attribute set ψ

corresponds to the data set Di held by server Si comprising ki data points. Similarly to

the previous mode, the unneeded objective parameters O and ω are set to correspond

to the dummy parameter TO such that O is trivially satisfied by ω. In this mode,

the set of functions Fi chosen in Certify corresponds to the set of functions a server is

willing to let a client query on its data set along with the labels of each permissible

input for the function. The set Li contains labels that label each data point xi,j ∈ Di

148

5.2 Hybrid Publicly Verifiable Outsourced Computation

held by the server, whilst the set LF,X specifically contains labels of data points for a

particular computation.

5.2.3.3 RPVC-AC

Before explicitly detailing the requirements to run the system in the RPVC-AC mode,

let us first motivate the necessity for an access control framework in the realm of pub-

licly verifiable outsourced computation.

In the previous chapters of this thesis, we have extended the system model to accom-

modate a large pool of servers and delegators. As with any multi-client setting, we

may wish to control access to resources in a verifiable computation system. In [5], we

show that not only is this setting of multi-user VC well-suited to the cryptographic

enforcement of access control policies, but that such policies fulfil a natural and vital

role in protecting outsourced computations. Specifically in the setting of multi-user

VC, we may wish on one hand to restrict the computations that may be outsourced by

delegators, and on the other hand to restrict the computations a server may perform.

The first need stems from separation of duties and the observation that, within an

organisation, it is extremely unlikely that all users have equal, uncontrolled access to

all functionalities. We may restrict the set of delegators that may outsource a compu-

tation to those that are authorised to compute it (if given sufficient resources) by the

organisation’s policies. The second requirement arises from the fact delegators may not

authenticate servers beforehand and have less control over which servers may operate

on their data. The sensitivity of the data or other requirements, such as the physical

location or resources of the server, may limit the servers that should be permitted to

perform the computation.

Another motivation for access control in the VC setting is that computational services

may be charged for (e.g. in subscription-based utility computing [85, 122]) and that

service providers may offer different levels of services to different clients (e.g. different

levels may provide access to different functions or computational resources). We must

ensure that only valid subscribers may access each tier of service.

In many multi-user settings for access control to stored data [32, 125], servers enforce

access control policies by authenticating users and granting or denying access based on

access control lists or capability lists. This approach is not appropriate in the multi-user

VC setting since the servers are assumed to be untrusted and may have a huge interest

in violating the policies. We instead use a cryptographic enforcement mechanism for

access control policies where cryptographic keys are used to protect objects and restrict

access, thus here the access control mechanism reduces to the appropriate distribution

of keys to authorised entities. In [5], we use the trusted key distribution centre (KDC)

as introduced in Chapter 3 for our RPVC model and extend its duties to instantiate

149

5.2 Hybrid Publicly Verifiable Outsourced Computation

the access control mechanism, i.e. we additionally require it to issue keys appropriate

to the access control policy that enable read and write access to certain components

of the system. For example, input data for particular functions may be protected such

that only authorised servers may read the data and hence perform the computation.

Note that in our RPVC scheme in Chapter 3, the KDC already implicitly provides

some access control in the sense that servers are certified to perform specific functions

through the generation of evaluation keys. However, no access control is applied to

delegators – any entity can outsource an evaluation of any function for which the

KDC has published delegation information (essentially due to the use of asymmetric

cryptographic primitives). Cryptographic enforcement mechanisms are particularly ap-

propriate when the objects and policies are relatively static such that additional keys

need not be generated and objects need not be re-encrypted as those are rare events.

In the context of VC, we may assume that the set of functions that may be evaluated

is fixed (a given VC construction can implement a specified family of functions) and

that the input data to each function is also static (limited to the set of ‘valid’ inputs

to that function). Thus, the set of objects (function evaluations in VC) is static, and

policies will primarily be specified in terms of these computations. Thus multi-user VC

is a very natural setting in which to use cryptographic access control.

We consider in [5] graph-based policies where “objects” to be protected are not data

files, as in traditional access control policies, but outsourced computations and their

results. Here the underlying entity population comprises the sets of delegators C, com-

putational servers S, and verifiers V. In detail, we discuss and specify concrete policies

that restrict (i) which functions a delegator may delegate, (ii) which computations a

server may evaluate, and (iii) which outputs a verifier may read. In our context, to

enforce policies restricting the computations that may be delegated to a server, a del-

egator must use an appropriate key to encrypt the input data. Without the correct

encryption, the input will be just discarded by the server. The enforcement of policies

for performing computations is achieved by distributing keys to servers that can be

used to decrypt encrypted inputs. Without decryption, the server will be unable to

read the input data and evaluate the function. The enforcement of (read) policies on

outputs uses cryptographic access control in a more conventional fashion, i.e. results

are published and protected via encryption with an appropriate key.

In order to realise the policies, we require a security labelling function. We define a

security labelling function in terms of a mapping λ : C∪S∪V∪O → L where C,S and V
are the respective sets from the entity population, O is the family of computations that

may be outsourced and (L,6) is a poset of security labels. Note that in this context

we refer to computations as o = (F,X, aux) ∈ O where each computation o specifies all

150

5.2 Hybrid Publicly Verifiable Outsourced Computation

required information in order to formulate the access control policy, i.e. the function F

to be computed, the input data X, and any other relevant contextual informations are

denoted by aux.1 This security labelling function assigns a label from L, representing

the security classification (clearance), to each delegator, server and computation in the

system. The access control policy requires that λ(E) ≥ λ(o) for an entity E ∈ C∪S∪V
attempting to evaluate a computation o ∈ O. Note that different types of policy can be

achieved by different choices for the sets O and L. In [5], we discuss in detail delegation

and computation policies, i.e. policies over functions and policies over function inputs,

as well as verification policies.

{F, G}

{F, H}

{G, H}

{F, G, H}

{G}

{F}

{H}

Figure 5.1: Example poset L = 2{F,G,H} for RPVC with access control

Let us provide here an example discussion about an access control policy over functions,

i.e. we examine the case where policies are formulated purely in terms of the functions

being computed. Thus, in this example objects correspond to functions O = F and

security labels are represented as sets of functions L = 2F . In simple terms, we associate

each delegator C and server S with a set of functions λ(C) ⊆ F and λ(S) ⊆ F
respectively. We define a correctness criterion that states that C should be able to

prepare inputs for all functions F ∈ λ(C) (and similarly for S), i.e. entities should

be able to perform all operations that they are authorised for. The security criterion

requires λ(C), λ(S) ⊇ λ(o) in order to delegate or compute F respectively, and that a

set of unauthorised entities cannot collude to perform an operation that any of them

could not perform alone.

More formally, we define the set of security labels L to be 2F (the power set of all con-

sidered functions). Then, λ(C) ⊆ F defines the set of functions that a delegator C may

outsource an evaluation of, λ(S) ⊆ F denotes the functions a server S may compute,

and λ(o) = {F} labels the computation of F ∈ F . Then, for any X,Y ∈ L we define

an order relation < such that X < Y if and only if X ∈ F , Y ⊆ F and X ∈ Y . The

1This notation for computations was chosen in reference to their role as protected objects in the
access control system.

151

5.2 Hybrid Publicly Verifiable Outsourced Computation

corresponding Hasse diagram with F = {F,G,H} is shown in Figure 5.1.2 Any entity

E authorised for λ(E) is, by the correctness criterion, authorised to operate on all

computations such that λ(o) < λ(E). For example, in Figure 5.1, an entity authorised

for the set λ(E) = {F,G} is authorised for the functions F and G as expected. Each

label l ∈ L will be associated with a key κl. To outsource a computation o of F (X), C

prepares the encoding of X using the key κo = {F} which, by the security criterion, C

knows if and only if λ(C) > λ(o), i.e. if and only if {F} ∈ λ(C). To compute F (X), S

uses the corresponding key κo. As before, S may do this if and only if {F} ∈ λ(S).

Furthermore, we presented in [5], a definition of a RPVC scheme with access control as

well as relevant novel security notions for the scheme. Finally, we provided a concrete

example instantiation based on the RPVC scheme as introduced in Chapter 3. In order

to enforce the policies in the instantiation, we make use of a key assignment scheme

(KAS) that assigns an appropriate key to each label. Thus, each entity is provided

with a key corresponding to their respective label, and they may derive keys for all

descendants.

Now we turn our attention to the case of running our HPVC scheme in the RPVC-

AC mode. In contrast to the previous discussion on access control, we are able to

slightly relax the access control framework within HPVC. The framework retains public

verifiability and public delegability but we limit the use of access control policies to

be restricted on the set of servers that may compute a given outsourced computation.

Informally, we use the objective policy O to evaluate an outsourced computation as in

the RPVC mode whilst we additionally use the subjective policy S to enforce access

control on the server. Servers receive an evaluation key ek(O,ψ),S in which the objective

policy corresponds to a function F and the subjective attributes correspond to a set

of descriptive attributes describing their authorisation rights s, where s ⊆ Uauth and

Uauth is an attribute universe that is solely used to authorisation. Using the above

terminology of the security labelling function, a server receives the label λC(S) =

(F, s) where λC(·) denotes a computation policy.3 The ProbGen algorithm for HPVC

inputs the objective attributes which correspond here to the input data X and the

subjective policy corresponds to an authorisation policy P ⊆ 2Uauth \ {∅} which specify

the necessary required authorisation attributes to perform the computation. In terms of

the security labelling function, the label for the computation o corresponds to λC(o) =

(X,P). A server may produce a valid output that will be accepted by the verification

algorithm if and only if s ∈ P , i.e. the server satisfies the authorisation policy.

2Nodes for empty sets are excluded from the figure.
3In [5], we differentiate between computation policies over delegators and servers, denoted by λC(·),

and verification policies over delegators only, denoted by λV (·).

152

5.3 Security Models

5.3 Security Models

In this section we discuss the security notions we wish to achieve in our HPVC frame-

work. In more detail, we can achieve security in the sense of public verifiability, re-

vocation and authorised computation. Those notions follow the same motivations as

discussed in the previous chapters. We require, as in Chapter 3, to include some addi-

tional restrictions on the games that are placed from our current rkDPABE primitive

(which we introduce in Section 5.4) which acts as our main building block for our HPVC

construction in this chapter. For brevity, we do not discuss further the respective ideal

notions of security but it is straightforward to adapt those notions from Chapter 3 by

accommodating some additional HPVC parameters.

5.3.1 Selective Public Verifiability

In Figure 5.2, we define a selective notion of public verifiability. This notion is a combi-

nation of the public verifiability notions introduced in Chapters 3 and 4, to formalise in

the HPVC model that no server is able to return a malformed result for a computation

without being detected.

ExpsPubVerif
A

[
HPVC, 1λ,F

]
1 : (ω?,O?, ψ?,S?, LF,X? , mode)←$ A(1λ,F)

2 : (pp,mk)←$ Setup(1λ,F)

3 : if mode = VDC then (F ← S?, X? ← ψ?)

4 : else (F ← O?, X? ← ω?)

5 : pkF ←$ FnInit(F,mk, pp)

6 : (σ?, vk?)←$ ProbGen(mode, (ω?,S?), LF,X? , pkF , pp)

7 : θ?←$ AO(σ?, vk?, pkF , pp)

8 : (y, τθ?)← Verify(θ?, vk?, pp)

9 : if (y, τθ?) 6= (⊥, (reject, S)) and (y 6= F (X?)) then

10 : return 1

11 : else return 0

Figure 5.2: The selective public verifiability experiment ExpsPubVerif
A

[
HPVC, 1λ,F

]
The game begins with the adversary first selecting its challenge parameters. Note that

the adversary chooses the mode it wishes the challenge to be generated in and the re-

spective labels necessary for this mode. Furthermore, the adversary outputs choices for

ω?, O?, ψ? and S?, despite only ω? and S? are used to form the challenge input. This

notation was used mainly for notational convenience to allow us to define the challenge

153

5.3 Security Models

computation in terms of F and X? in line 3 or 4 depending on the mode. However, we

want to stress that this information can also be learnt from the set of labels LF,X? and

the chosen mode of computation. Thus, this notational convenience does not weaken

the game since the information has been already determined by the adversary’s choices.

After the adversary has chosen the parameters, the game proceeds with the challenger

running Setup to initialise the system and FnInit to return the public delegation key

pkF for the chosen challenge function. The challenger continues with running ProbGen

on the challenge inputs to output a challenge for the adversary. The adversary receives

the challenge and public information and is given oracle access to FnInit(·,mk, pp),
Register(·,mk, pp), Certify(·, ·, (·, ·), ·, ·,mk, pp) and Revoke(·,mk, pp) which we denote

by O. All oracles simply run the relevant algorithm. Finally, the adversary wins the

game if it is able to create an encoded output that verifies correctly but does not encode

the correct value F (X).

Definition 5.3. The advantage of a PPT adversary in the sPubVerif game for

an hybrid publicly verifiable outsourced computation scheme HPVC, for a family of

functions F is defined as:

AdvsPubVerif
A,HPVC (1λ,F) = Pr

[
ExpsPubVerif

A

[
HPVC, 1λ,F

]
→ 1

]
.

We say that the hybrid publicly verifiable outsourced computation scheme HPVC is

secure with respect to selective public verifiability if for all PPT adversaries A, it

holds that

AdvsPubVerif
A,HPVC (1λ,F) ≤ negl(λ).

5.3.2 Selective, Semi-static Revocation

The notion of revocation requires that, if a server is detected as misbehaving, meaning

that a server Si returns a result such that the verification algorithm Verify outputs

(⊥, (reject, Si)), then any subsequent computations by Si should be rejected, even if

the result may be correct.

In Figure 5.3, we define a selective, semi-static notion of revocation which is similarly

defined to the notion in Section 3.3.2.2. As in the previous game, this notion starts

with the adversary choosing its challenge parameters which the challenger can parse to

determine F and X?. The challenger maintains a (initially empty) list QRev of currently

revoked entities as well as the current time period t which can be incremented during

Revoke oracle queries. The game proceeds with the challenger running Setup to initialise

the system and FnInit to return the public delegation key pkF for the chosen challenge

function. After this, on line 8, the adversary needs to declare (before receiving oracle

154

5.3 Security Models

ExpsssRevoc
A

[
HPVC, 1λ,F , qt

]
1 : (ω?,O?, ψ?,S?, LF,X? , mode)←$ A(1λ,F , qt)
2 : if mode = VDC then (F ← S?, X? ← ψ?)

3 : else (F ← O?, X? ← ω?)

4 : QRev ← ε

5 : t← 1

6 : (pp,mk)←$ Setup(1λ,F)

7 : pkF ←$ FnInit(F,mk, pp)

8 : R← A(pkF , pp)

9 : AO(pkF , pp)

10 : if (R 6⊆ QRev) then return 0

11 : (σ?, vk?)←$ ProbGen(mode, (ω?,S?), LF,X? , pkF , pp)

12 : θ?←$ AO(σ?, vk?, pkF , pp)

13 : if ((y, (accept, S))← Verify(θ?, vkF,x? , pp) and (S ∈ R)) then

14 : return 1

15 : else return 0

OCertify(mode, Si, (O, ψ), Li,Fi,mk, pp)
1 : if (LF,X? ⊆ Li and Si /∈ R) or (t = qt and R 6⊆ QRev \ Si) then return ⊥
2 : QRev ← QRev \ Si
3 : return Certify(mode, Si, (O, ψ), Li,Fi,mk, pp)

ORevoke(τθF ′(X)
,mk, pp)

1 : t← t+ 1

2 : if (τθF ′(x)
= (accept, ·)) then return ⊥

3 : if (t = qt and R 6⊆ QRev ∪ Si) then return ⊥
4 : QRev ← QRev ∪ Si
5 : return Revoke(τθF ′(X)

,mk, pp)

Figure 5.3: The selective, semi-static revocation experiment
ExpsssRevoc

A
[
HPVC, 1λ,F , qt

]

access) a list R of servers to be revoked at the time period where the challenge will be

generated which we assume will be at time period qt. The adversary is then provided

with oracle access to FnInit(·,mk, pp), Register(·,mk, pp), Certify(·, ·, (·, ·), ·, ·,mk, pp)
and Revoke(·,mk, pp) which we denote by O. Certify and Revoke oracle queries are

handled as specified in Figure 5.3. The adversary finishes its oracles query phase (line

9) after making a polynomial number of queries q, including qt many Revoke queries,

155

5.3 Security Models

and does not return a value other than signalling to the challenger that it may proceed

with the remainder of the game. The challenger checks that all queries made by the

adversary have indeed generated a list of currently revoked servers that is a superset of

the challenge revocation list R. If this is not true, the challenger aborts the game and

the adversary loses as it was not able to choose its queries or the list R appropriately.

Otherwise, the challenger continues with the game and generates the challenge by

running ProbGen. The adversary wins the game if it outputs any result, i.e. a correct

or malformed response, as a valid result from any server that was revoked at the time

of the challenge.

Definition 5.4. The advantage of a PPT adversary in the sssRevoc game for an hy-

brid publicly verifiable outsourced computation scheme HPVC, for a family of functions

F is defined as:

AdvsssRevoc
A,HPVC (1λ,F , qt) = Pr

[
ExpsssRevoc

A

[
HPVC, 1λ,F , qt

]
→ 1

]
.

We say that the hybrid publicly verifiable outsourced computation scheme HPVC is

secure with respect to selective, semi-static revocation if for all PPT adversaries A, it

holds that

AdvsssRevoc
A,HPVC (1λ,F , qt) ≤ negl(λ).

5.3.3 Selective Authorised Computation

In Figure 5.4, we define a selective notion of authorised computation. This notion en-

sures that only a server that satisfies an additional authorisation policy in the encoded

input should be able to perform a given computation on this encoded input. Thus, in

contrast, a result generated by an unauthorised server should always be rejected even

if the result is correct.

The game begins with explicitly setting the mode of computation to RPVC-AC and the

adversary chooses the parameters for the game accordingly as otherwise the parameters

would not be meaningful. Those parameters consist of a challenge function F , challenge

input X?, the authorisation policy P and the respective function labels for this mode.

The game proceeds with the challenger running Setup to initialise the system and FnInit

to return the public delegation key pkF for the chosen challenge function. It continues

with the challenger running ProbGen to create the challenge for the adversary. The

adversary receives the challenge and public information and is given oracle access to

FnInit(·,mk, pp), Register(·,mk, pp), Certify(·, ·, (·, ·), ·, ·,mk, pp) and Revoke(·,mk, pp)
which we denote by O. All oracles simply run the relevant algorithm with the exception

of Certify queries which are separately specified in Figure 5.4. The Certify oracle returns

⊥ if the queried attribute set ψ satisfies the authorisation policy P , as otherwise the

156

5.4 Revocable Dual-policy Attribute-based Encryption

ExpsAuthComp
A

[
HPVC, 1λ,F

]
1 : mode = RPVC-AC

2 : (F,X?, P, {l(F)})←$ A(1λ,F)

3 : (pp,mk)←$ Setup(1λ,F)

4 : pkF ←$ FnInit(F,mk, pp)

5 : (σ?, vk?)←$ ProbGen(RPVC-AC, (X?, P), {l(F)}, pkF , pp)
6 : θ?←$ AO(σ?, vk?, pkF , pp)

7 : (y, τ?)← Verify(θ?, vk?, pp)

8 : if τ? 6= (reject, ·) then

9 : return 1

10 : else return 0

OCertify(RPVC-AC, Si, (F,ψ), {l(F)},Fi,mk, pp)
1 : if (ψ ∈ P) then return ⊥
2 : return Certify(RPVC-AC, Si, (F,ψ), {l(F)},Fi,mk, pp)

Figure 5.4: The selective authorised computation experiment
ExpsAuthComp

A
[
HPVC, 1λ,F

]

adversary would be able to trivially produce a valid response as an authorised entity.

The adversary wins the game if it outputs a result and token that is accepted by a

verifier.

Definition 5.5. The advantage of a PPT adversary in the sAuthComp game for

an hybrid publicly verifiable outsourced computation scheme HPVC, for a family of

functions F is defined as:

AdvsAuthComp
A,HPVC (1λ,F) = Pr

[
ExpsAuthComp

A

[
HPVC, 1λ,F

]
→ 1

]
.

We say that the hybrid publicly verifiable outsourced computation scheme HPVC is

secure with respect to selective authorised computation if for all PPT adversaries A,

it holds that

AdvsAuthComp
A,HPVC (1λ,F) ≤ negl(λ).

5.4 Revocable Dual-policy Attribute-based Encryption

Dual-policy attribute-based encryption, as described in Section 2.3.4, was introduced by

Attrapadung and Imai [19] and conjunctively combines KP-ABE and CP-ABE such

157

5.4 Revocable Dual-policy Attribute-based Encryption

that both the secret decryption key and the ciphertext comprise an access structure and

an attribute set. The same authors [17] have also introduced the notion of revocation

in ABE schemes (cf. Section 2.3.2) which we already have seen in Chapter 3 leads to

a PVC scheme which can revoke misbehaving servers from the system. Recall that

the notion of revocation supports two different modes, namely direct revocation and

indirect revocation. The former notion enables a client to specify a revocation list at

the point of encryption such that periodic re-keying is not necessary but the encryptors

must have the knowledge of the specific (current) revocation list. On the other hand,

indirect revocation requires a time period to be specified at the point of encryption and

needs an authority that issues update key material at each time period in order to en-

able entities to update their key to stay functional during the time period. Throughout

this thesis we have focused on the mode of indirect revocation, mainly as it minimises

the client’s workload as she is not required to maintain a synchronised revocation list.

This mode is implemented in the KP-ABE setting by amending the policy including an

entity identifier and by embedding the current time period into the ciphertext. Update

keys are issued only to non-revoked entities at each time period. Note that only the

combination of a secret key with an update key for a time period forms a functional

evaluation key that is able to decrypt a ciphertext formed using the time period.

In this section, we aim to implement a revocation mechanism for a DP-ABE scheme.

However, in this context, we are able to embed the revocation mechanism into the KP-

ABE functionality or the CP-ABE functionality. Recall that decryption in DP-ABE

is only successful if and only if both attribute sets satisfy their corresponding access

structure. Thus, in order to prevent the decryption functionality to be successful,

it suffices that at least one attribute set does not satisfy the corresponding access

structure. Here we present a formal definition of a revocable DP-ABE scheme using

indirect revocation in the key-policy.

5.4.1 Formal Definition

In the following we provide a formal definition of a revocable key dual-policy attribute-

based encryption scheme. Recall from Section 2.3.4 that we refer to the access structure

associated to a decryption key as an objective access structure, denoted as O, and the

attribute set associated with a ciphertext is referred to as an objective attribute set,

denoted as ω. Both the objective access structure and attribute set are associated with

the KP-ABE functionality. Similarly, we refer to the access structure associated with

a ciphertext as a subjective access structure, denoted as S, whereas we refer to the

attribute set associated to a decryption key as a subjective attribute set, denoted as

ψ. Thus, both the subjective access structure and attribute set are associated with the

CP-ABE functionality.

158

5.4 Revocable Dual-policy Attribute-based Encryption

An indirectly revocable key DP-ABE scheme defines the universe of attributes to be

U = Uattr ∪ Ul ∪ UID ∪ Utime ∪ TO ∪ TS. In more detail, Uattr is the “normal” attribute

universe for describing ciphertexts and forming access policies, Ul contains a set of

attributes (disjoint from Uattr) that uniquely label each function and each data item,

Utime comprises attributes for time periods, and UID contains attributes encoding entity

identities. TO and TS are additional (“dummy”) attributes that efficiently enable the

DP-ABE scheme to either function as a KP-ABE scheme or CP-ABE scheme. In Sec-

tion 5.5, we discuss in more detail how those dummy attributes influence the execution

of the different modes of computations within our unified HPVC construction.

More formally, an indirectly revocable key DP-ABE scheme is presented in the following

definition.

Definition 5.6. A revocable key dual-policy attribute-based encryption (rkDP-ABE)

scheme consists of the following algorithms:

• (pp,mk)
$← Setup(1λ,U) : this randomised algorithm takes as input the security

parameter and the universe of attributes U and outputs public parameters pp and

master secret key mk;

• ct(ω,S),t $← Encrypt(m, (ω,S), t, pp) : this randomised encryption algorithm inputs

a message m, an objective attribute set ω, a subjective policy S, the current time

period t ∈ Utime and the public parameters pp. It outputs a ciphertext ct(ω,S),t that

is valid for time t;

• skid,(O,ψ)
$← KeyGen(id, (O, ψ),mk, pp) : this randomised key generation algorithm

takes as input an identity id ∈ UID, an objective access structure O, a subjective

attribute set ψ, as well as the master secret key mk and public parameters pp. It

outputs a secret decryption key skid,(O,ψ);

• ukR,t $← KeyUpdate(R, t,mk, pp) : this randomised algorithm takes a revocation

list R ⊆ UID containing the identities of revoked entities, the current time period t,

as well as the master secret key mk and public parameters pp. It outputs updated

key material ukR,t which makes the decryption keys skid,(O,ψ), for all non-revoked

identities id /∈ R, functional to decrypt ciphertexts encrypted for the time period

t;

• pt ← Decrypt(ct(ω,S),t, (ω,S), skid,(O,ψ), (O, ψ), ukR,t, pp) : this decryption algo-

rithm takes as input a ciphertext ct(ω,S),t formed for the time period t and the

associated pair (ω,S), a secret decryption key skid,(O,ψ) for an entity id and the

associated pair (O, ψ), an update key ukR,t for the current time period t and the

public parameters pp. The algorithm outputs a plaintext pt which corresponds to

the correct message m, if and only if the objective attributes ω satisfy the objec-

tive access structure O and the subjective attributes ψ satisfy the subjective access

159

5.4 Revocable Dual-policy Attribute-based Encryption

structure S and the value of t in the update key matches the one specified during

encryption. If not, pt outputs ⊥.

Correctness of a revocable key DP-ABE scheme is defined as follows.

Definition 5.7. A revocable key DP-ABE scheme is correct if for all m ∈ M, all

id ∈ UID, all R ⊆ UID, all access structures O,S ⊆ 2Uattr \ {∅}, all attribute sets

ω, ψ ⊆ Uattr and all t ∈ Utime, if ω ∈ O and ψ ∈ S and id /∈ R, it holds that

Pr[(pp,mk)
$← Setup(1λ,U),

ct(ω,S),t
$← Encrypt(m, (ω,S), t, pp),

skid,(O,ψ)
$← KeyGen(id, (O, ψ),mk, pp),

ukR,t
$← KeyUpdate(R, t,mk, pp),

m← Decrypt(ct(ω,S),t, (ω,S), skid,(O,ψ), (O, ψ), ukR,t, pp)]

= 1− negl(λ).

5.4.2 Security Model

The security model for a rkDP-ABE scheme is a natural extension of the IND-sHRSS

security notion for an indirectly revocable KP-ABE scheme (cf. Section 2.3.2) and the

security notion is presented in Figure 5.5.

Definition 5.8. The advantage of a PPT adversary in the IND-sHRSS game for a

revocable key DP-ABE construction RKDPABE is defined as:

AdvIND-sHRSS
A,RKDPABE(1

λ) = Pr
[
ExpIND-sHRSS

A

[
RKDPABE , 1λ,U

]
→ 1

]
− 1

2
.

We say that the revocable key DP-ABE scheme is secure in the sense of indistin-

guishability against selective-target with semi-static query attack (IND-sHRSS) if for

all PPT adversaries A, it holds that

AdvIND-sHRSS
A,RKDPABE(1

λ) ≤ negl(λ).

5.4.3 Construction of a rkDP-ABE scheme

Our revocable DP-ABE scheme will be based on a combination of DP-ABE [19], which

itself is a combination of CP-ABE [142] and KP-ABE [89], and an ABE scheme sup-

porting revocation [17]. We represent a subjective access structure S by a linear secret

sharing scheme (LSSS) which we denote by (M,ρ) and represent an objective access

structure O as a LSSS denoted by (N, π).

Let Us and Uo be the universe of subjective and objective attributes respectively. The

objective attribute universe comprises disjoint sub-universes N , T ,M and UID referring

160

5.4 Revocable Dual-policy Attribute-based Encryption

ExpIND-sHRSS
A

[
RKDPABE , 1λ,U

]
1 : (t?, (ω?,S?))←$ A(1λ,U)

2 : (pp,mk)←$ Setup(1λ,U)

3 : R←$ A(pp)

4 : (m0,m1)←$ AOKeyGen(·,·,mk,pp)KeyUpdate(·,·,mk,pp)(R, pp)

5 : if (|m0| 6= |m1|) then return 0

6 : b←$ {0, 1}
7 : ct?←$ Encrypt(mb, t

?, (ω?,S?), pp)

8 : b′ ← AOKeyGen(·,(·,·)mk,pp),OKeyUpdate(·,·,mk,pp)(ct?, R, pp)

9 : if b′ = b then

10 : return 1

11 : else return 0

OKeyGen(id, (O, ψ),mk, pp)

1 : if ((ω? ∈ O) and (ψ ∈ S?) and (id /∈ R)) then

2 : return ⊥
3 : else KeyGen(id, (O, ψ),mk, pp)

4 : return skid,(O,ψ)

OKeyUpdate(R, t,mk, pp)

1 : if (t = t?) and (R 6⊆ R) then

2 : return ⊥
3 : else KeyUpdate(R, t,mk, pp)

4 : return ukR,t

Figure 5.5: The IND-sHRSS experiment ExpIND-sHRSS
A

[
RKDPABE , 1λ,U

]

to standard ABE attributes, time periods, messages and entity identities respectively.

UID is set to be the set of leaves in a complete binary tree X = {1, . . . , n}. Without

loss of generality, we assume that T ∩ X = ∅ (e.g. by using a collision resistant hash

function and using distinct prefixes to map elements from T and X). The attribute

set for the rkDP-ABE scheme is defined to be U = Us ∪ Uo. Let us define m to be the

maximum size of a subjective attribute set assigned to a key, i.e. we restrict |ψ| 6 m,

and similarly define n to be the maximum size of an objective attribute set associated

with a ciphertext, i.e. |ω| 6 n. Furthermore, we denote the maximum number of rows

of a subjective access structure matrix M to be ls,max. Now let m′ = m + ls,max − 1

and n′ = n − 1. Finally, let d be the maximum of |Cover(R)| for all R ⊆ UID, where

Cover(R) is defined as in Section 2.3.5.3. We construct each algorithm of the rkDPABE

161

5.4 Revocable Dual-policy Attribute-based Encryption

scheme as follows:

1. Setup(1λ,U): The algorithm picks random exponents γ, α ∈ Zp and a generator

g ∈ G. It defines three functions Fs : Zp → G, Fo : Zp → G and P : Zp → G by

randomly choosing h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud and setting

Fs(x) =
m′∏
j=0

hx
j

j , Fo(x) =
n′∏
j=0

qx
j

j , P (x) =
d∏
j=0

ux
j

j . (5.1)

The public parameters are defined as

pp = (g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud).

For each node label x ∈ X in the tree, it randomly chooses ax ∈ Zp and rx ∈ Zp
to define a first degree polynomial fx(z) = axz + αrx + γ. The master key is

mk = (γ, α, {ax, rx}x∈X).

2. Encrypt(m, (ω,S), t, pp): The encryption algorithm takes as input a LSSS access

structure (M,ρ) for the subjective policy S and an objective attribute set ω ⊂ Uo.

Denote the dimensions of M as ls × ks matrix. The algorithm randomly chooses

values s, y2, . . . , yks ∈ Zp and sets u = (s, y2, . . . , yks). It computes λi = Mi · u
(for i = 1, . . . , ls), where Mi is the vector corresponding to the ith row of M . The

ciphertext is then computed as ct(ω,S),t = (C,C(1), {C(2)
k }k∈ω, {C

(3)
i }i=1,...,ls , C

(4)),

where

C = m · (e(g, g)γ)s, C(1) = gs,

C
(2)
k = Fo(k)s, C

(3)
i = gαλiFs(ρ(i))−s,

C(4) = P (t)s.

Intuitively, C masks the message by a group element in the target group of the bilin-

ear map formed from the master secret γ and an encryption secret s (to randomise

the encryption procedure). Decryption will have to compute this mask to recover

the message.

C(1) provides the encryption secret s. C
(2)
k embeds each attribute in the objective set

ω into the ciphertext, incorporating the encryption secret s such that attributes from

prior ciphertexts cannot be combined with this encryption. Similarly, C
(3)
i embeds

the subjective policy S into the ciphertext using the shares of s divided according

to S, i.e. s is shared over the set of attributes such that any set of attributes that

satisfies S can reconstruct the encryption secret s. Finally, C(4) links the encryption

secret (and hence this particular ciphertext) to the specified time period t such that

an update key for t is required to decrypt the ciphertext; this enables the revocation

mechanism.

162

5.4 Revocable Dual-policy Attribute-based Encryption

3. KeyGen(id, (O, ψ),mk, pp): The key generation algorithm takes as input a LSSS

access structure (N, π) for the objective policy O and a subjective attribute set

ψ ⊂ Us. Let the dimensions of N be denoted by lo × ko. The algorithm also takes

an identity id ∈ UID which is a leaf in the binary tree.

For all x ∈ Path(id), the algorithm shares fx(1) using the LSSS (N, π). To do

so, it randomly chooses zx,2, . . . , zx,ko ∈ Zp and sets vx = (fx(1), zx,2, . . . , zx,ko).

For i = 1, . . . , lo, it calculates the share σx,i = Ni · vx, where Ni is the vector

corresponding to the ith row of N .

The algorithm then randomly chooses rx,1, . . . , rx,lo ∈ Zp and rx ∈ Zp for all x ∈
Path(id), and outputs the private key

skid,(N,π) = ((D
(1)
x,i , D

(2)
x,i)x∈Path(id),i=1,...,lo , (Dx, {D(3)

k }k∈ψ)x∈Path(id)),

where

Dx = grx , D
(1)
x,i = grx,i ,

D
(2)
x,i = gσx,iFo(π(i))rx,i , D

(3)
k = Fs(k)rx .

Intuitively, rx and rx,i for each x ∈ Path(id) randomises the key for the user id

so that users may not collude. Dx and D
(1)
x,i allow use of these random key values

during decryption. D
(2)
x,i embeds the shares of fx(1) = ax + αrx + γ such that only

the authorised sets according to O may reconstruct fx(1). Finally, D
(3)
k embeds the

attributes in ψ with the randomness chosen for this particular key. By linking these

parameters to the path in a tree, only users for whom a valid update key has been

issued (i.e. the non-revoked users) will be able to make use of these parameters to

compute fx(1) for a node x; fx(1) is required as it contains the master secret γ

which is used to cancel with the ciphertext component C to recover the message.

4. KeyUpdate(R, t,mk, pp): The algorithm first computes Cover(R) to find a minimal

node set that covers U \R. For each x ∈ Cover(R), it randomly chooses rx ∈ Zp and

sets the update key as ukR,t =
{
U

(1)
x , U

(2)
x

}
x∈Cover(R)

, where

U (1)
x = gfx(t)P (t)rx , U (2)

x = grx .

Intuitively, each update key component is randomised by rx and linked to a partic-

ular node x in the tree (covering only non-revoked users). P (t) embeds the current

time period which will match with the ciphertext component C(4). We also embed

a point of the polynomial fx(t); given this point, and the point fx(1) (which can be

recovered from the decryption key components D
(2)
x,i given a satisfying set of objec-

tive attributes ω), one can perform Lagrange interpolation to recover the point fx(0)

which will yield use of the master secret γ to cancel with the ciphertext component

163

5.4 Revocable Dual-policy Attribute-based Encryption

C.

5. Decrypt(ct(ω,S),t, (ω,S), skid,(O,ψ), (O, ψ), ukR,t, pp): The decryption algorithm takes

as an input the ciphertext ct(ω,S),t which contains a subjective access structure (M,ρ)

for S and a set of objective attributes ω, and a decryption key skid,(N,π) which

contains a set of subjective attributes ψ and an objective access structure (N, π) for

O. Suppose that ψ satisfies (M,ρ), the set ω satisfies (N, π), and that id /∈ R (so

that decryption is possible).

Let Is = {i : ρ(i) ∈ ψ} and Io = {i : π(i) ∈ ω}. The algorithm computes sets of

reconstruction constants {(i, µi)}i∈Is and {(i, νi)}i∈Io using the LSSS reconstruction

algorithm. Since id /∈ R, the algorithm also finds a node x such that x ∈ Path(id) ∩
Cover(R). Finally, it computes the following

C ·
∏
i∈Is

(
e
(
C

(3)
i , Dx

)
· e
(
C(1), D

(3)
ρ(i)

))µi
(∏

j∈Io

(
e
(
D

(2)
x,j ,C

(1)
)

e
(
C

(2)
π(j)

,D
(1)
x,j

)
)νj) t

t−1
(
e
(
U

(1)
x ,C(1)

)
e
(
C(4),U

(2)
x

)
) 1

1−t
= m.

We verify the correctness of the decryption as follows. Let us write the decryption

computation as C · C′K , where K = (K ′)
t
t−1 (K ′′)

1
1−t , and then consider each part in turn.

Intuitively, C ′ is similar to a standard ABE decryption operation to match attributes

to policies, whilst K ′ and K ′′ combine the two components of a functional decryption

key (namely, a secret key and an update key) and perform a Lagrange interpolation to

form a group element e(g, g)s(γ+αrx) = e(g, g)sγ · e(g, g)sαrx . The second part of this

product will be the result of computing C ′ whilst the first will cancel with C to leave

only m.

C ′ =
∏
i∈Is

(
e
(
C

(3)
i , Dx

)
· e
(
C(1), D

(3)
ρ(i)

))µi
=
∏
i∈Is

(
e
(
gαλiFs(ρ(i))−s, grx

)
· e (gs, Fs(ρ(i))rx)

)µi
=
∏
i∈Is

(
e (g, g)αλirx · e (g, Fs(ρ(i)))−rxs · e (g, Fs(ρ(i)))rxs

)µi
= e(g, g)αrx

∑
i∈Is µiλi

= e(g, g)αrxs.

In the above expression, the second equality follows by substituting the values from the

construction; the third equality follows from the properties of bilinear maps; the fourth

equality simply moves the product into the exponent; and the final equality follows

164

5.4 Revocable Dual-policy Attribute-based Encryption

from the reconstruction constants of the LSSS, namely that
∑

i∈Is µiλi = s.

K ′ =
∏
j∈Io

 e
(
D

(2)
x,j , C

(1)
)

e
(
C

(2)
x,π(j), D

(1)
x,j

)
νj

=
∏
j∈Io

(
e (gσx,jFo(π(j))rx,j , gs)

e (Fo(π(j))s, grx,j)

)νj
=
∏
j∈Io

(
e (g, g)σx,js · e (g, Fo(π(j)))rx,j ,s

e (g, Fo(π(j)))rx,j ,s

)νj
= e (g, g)s

∑
j∈Io νjσx,j = e(g, g)sfx(1).

In the above expression, the second equality follows directly from the construction; the

third one follows from the properties of bilinear maps; the fourth equality stems from

moving the product into the exponent; and the last one follows from the set of LSSS

reconstruction constants with
∑

j∈Io νjσx,j = fx(1) = ax + αrx + γ.

K ′′ =
e
(
U

(1)
x , C(1)

)
e
(
C(4), U

(2)
x

) =
e
(
gfx(t)P (t)rx , gs

)
e (P (t)s, grx)

=
e (g, g)fx(t)s · e (g, P (t)rxs)

e (g, P (t)rxs)

= e(g, g)fx(t)s

Then, it follows

K = (K ′)
t
t−1 (K ′′)

1
1−t =

(
e(g, g)sfx(1)

) t
t−1
(
e(g, g)fx(t)s

) 1
1−t

= (e(g, g)s)fx(1) t
t−1

+fx(t) 1
1−t

Notice that fx(1) t
t−1 + fx(t) 1

1−t is in fact a Lagrange interpolation for the two points

(1, fx(1)), (1, fx(t)) for the first degree polynomial fx. Thus, fx(1) t
t−1 + fx(t) 1

1−t =

fx(0) = αrx + γ. Hence, K = e(g, g)s(αrx+γ). Combining all of these results, we obtain

the result of the decryption operation

C · C
′

K
= m · e(g, g)sγ · e(g, g)αsrx

e(g, g)s(αrx+γ)
= m · e(g, g)sγ · e(g, g)αsrx

e(g, g)sγ · e(g, g)αsrx
= m.

5.4.4 Security Proof

Theorem 5.9. The rkDPABE construction is secure with respect to indistinguishability

against selective-target with semi-static query attack (IND-sHRSS), as specified in

Figure 5.5, assuming that the decisional q-BDHE problem is hard.

The proof follows from a combination of [17] and [18] with some adjustment in the

simulation of the private keys. We show that if an adversary can win the IND-sHRSS

game with advantage ε with a challenge subjective access structure matrix of size l?s×k?s ,
then a simulator with advantage ε in solving the decisional q-BDHE problem can be

constructed, where m+ k?s 6 q.

165

5.4 Revocable Dual-policy Attribute-based Encryption

Proof. Suppose, to achieve a contradiction with Theorem 5.9, that there exists an ad-

versary A that has an advantage ε in attacking the rkDPABE scheme. We build a

simulator B that solves the decisional q-BDHE problem (see Definition 2.24) in G. Re-

call that we abbreviate ga
j

by gj . The simulator B is given a random q-BDHE challenge

(g, h,yg,a,q, Z) where yg,a,q = (g1, . . . , gq, gq+2, . . . , g2q) and Z is either e(gq+1, h) or a

random element in G1. B acts as the challenger for A in the IND-sHRSS game as

follows.

1. A begins by selecting its challenge parameters (t?, ω?, S?) where S? is represented

by a LSSS (M?, ρ?). Let the matrix M? be of size l?s × k?s , where m+ k?s ≤ q and

let l?s = ls,max and |ω?| = n.

2. B now simulates running Setup for the rkDPABE scheme, and embeds the chal-

lenge policy into the public parameters. It first chooses γ′
$← Zp, sets gα = g1 =

ga, and implicitly defines γ = γ′ + aq+1 by defining

e(g, g)γ = e(g1, gq) · e(g, g)γ
′

= e
(
ga, ga

q) · e (g, g)γ
′

= e(g, g)γ
′+aq+1

.

It then must define the polynomials Fs, Fo and P (as in [17] and [18]). To define

Fs, B begins by defining Fs(x) = gp(x), where p is a polynomial in Zp[x] of degree

m+l?s−1 which is implicitly defined in the following manner. It chooses k?s+m+1

polynomials p0, . . . , pk?s+m in Zp[x], each of degree m + l?s − 1, such that for all

x = ρ?(i) for some i (i.e. all x in the image of ρ?, of which there are exactly l?s

since ρ? is an injective mapping):

pj(x) =

M?
i,j for j ∈ [1, k?s]

0 for j ∈ [k?s + 1, k?s +m]
(5.2)

The polynomial p0 is chosen randomly, and for all other x (not in the image of

ρ?), pj is defined randomly by randomly choosing values at m other points. By

writing the coefficients of each polynomial as pj(x) =
∑m+l?s−1

i=0 pj,i · xi, one can

define the polynomial p(x) to be

p(x) =

k?s+m∑
j=0

pj(x)aj . (5.3)

Then, B sets hi =
∏k?s+m
j=0 g

pj,i
j for i ∈ [0,m+ l?s − 1]. Finally, as we assumed

166

5.4 Revocable Dual-policy Attribute-based Encryption

l?s = ls,max, note that m′ = m+ ls,max − 1 = m+ l?s − 1,

Fs(x) =
m′∏
i=0

hx
i

i

=
m′∏
i=0

k?s+m∏
j=0

g
pj,i
j

xi

=

m′∏
i=0

k?s+m∏
j=0

gpj,ia
j

xi

= g
∑k?s+m
j=0

∑m′
i=0 pj,ix

iaj

= g
∑k?s+m
j=0 pj(x)aj

= gp(x).

The first equality in the above expression follows from equation (5.1) whilst the

second follows by the above definition of hi. The third equality is obtained by

definition of gj = ga
j

and the last one follows by equation (5.3).

To define Fo, B randomly picks a polynomial f ′(x) =
∑n−1

j=0 f
′
jx
j in Zp[x] of degree

n−1. It then defines f(x) =
∏
k∈ω?(x−k) =

∑n−1
j=0 fjx

j (which can be computed

entirely from ω?); note that f(x) = 0 if and only if x ∈ ω?. It defines qj = g
fj
q g

f ′j

for j = [0, n− 1]. Using the above we can finally compute

Fo(x) =

n−1∏
j=0

q
(xj)
j

=

n−1∏
j=0

g
fj
q · gf

′
j

xj

= g
∑n−1
j=0 fjx

j

q · g
∑n−1
j=0 f

′
jx
j

= gf(x)
q gf

′(x).

To define P , B defines

p̂(y) = yd−1 · (y − t?) =
d∑
j=0

p̂jy
j .

This ensures p̂(t) = 0 if and only if t = t? for t ∈ T , and that for x ∈ X , p̂(x) 6= 0

since we assumed T ∩ X = ∅.
B then randomly picks a degree d polynomial ρ(y) =

∑d
j=0 ρjy

j in Zp[x] and lets

167

5.4 Revocable Dual-policy Attribute-based Encryption

uj = (ga)p̂jgρj for j = 0, . . . , d. Thus we can compute

P (y) =
d∏
j=0

uy
j

j

=

 d∏
j=0

(ga)p̂jgρj

yj

= (ga)
∑d
j=0 p̂jy

j

g
∑d
j=0 ρjy

j

= (ga)p̂(y)gρ(y). (5.4)

The public key pk for the rkDP-ABE scheme is defined to be

pk = (g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud),

which is given to A. Note that the randomness of the q-BDHE challenge

(g, h,yg,a,q, Z) and the independently chosen randomness used in the construc-

tion of the polynomials pj , f
′, and ρ ensure the public parameters are distributed

as expected.

3. A declares its list R and is then given oracle access to the KeyGen and KeyUpdate

functions. Let XR = {x ∈ Path(id) : id ∈ R}. For each node label x ∈ X in the

tree, B randomly chooses a′x ∈ Zp and implicitly defines

ax =

a′x − αrx − γ if x ∈ XR
a′x − αrx−γ

t? if x /∈ XR
(5.5)

Hence,

fx(1) = ax + αrx + γ = a′x − αrx − γ + αrx + γ = a′x if x ∈ XR (5.6)

fx(t?) = axt
? + αrx + γ = (a′x −

αrx − γ
t?

)t? + αrx + γ = a′xt
? if x /∈ XR (5.7)

To simulate KeyGen queries for an objective access structure (N, π), a subjective

attribute set ψ and an identity id, we consider the following cases:

• (ω? ∈ O) and (id ∈ R) :

For each x ∈ Path(id), note that since id ∈ R, x ∈ XR. Hence, from (5.6),

B can compute fx(1) for all x ∈ Path(id). B can therefore compute the key

components precisely as in the construction by sharing the value of fx(1).

• (ω? /∈ O) and (id ∈ R) :

For each x ∈ Path(id), note that, since id ∈ R, x ∈ XR. Hence, from (5.6),

B can compute fx(1) for all x ∈ Path(id).

168

5.4 Revocable Dual-policy Attribute-based Encryption

B randomly chooses rx ∈ Zp. It then lets Dx = grx , and for all k ∈ ψ

lets D
(3)
k = Fs(k)rx as in the construction. Recall that the dimensions of N

are lo × ko. Since ω? does not satisfy N for this case of the query, and by

Proposition 2.21, there exists a vector ax = (a1, . . . , ako) ∈ Zkop such that

a1 = −1 and Ni · ax = 0 for all i where π(i) ∈ ω?.
B randomly chooses z′x,2, . . . , z

′
x,ko
∈ Zp and defines v′x = (0, z′x,2, . . . , z

′
x,ko

).

It then implicitly defines a vector vx = −(a′x)ax +v′x (by using (5.2)) which

will be used for creating the share of fx(1) = γ + αrx + ax (note that the

first element of vx is indeed fx(1) by (5.6)), as in our construction.

Now, for all i such that π(i) ∈ ω?, B randomly chooses rx,i ∈ Zp and

computes D
(1)
x,i = grx,i and

D
(2)
x,i = gNi·v′xFo(π(i))rx,i

= gNi·(vx+(a′x)ax)Fo(π(i))rx,i

= gNi·vxFo(π(i))rx,i ,

where the last equality holds because Ni · ax = 0. Note that σx,i = Ni · vx
in our construction and hence D

(2)
x,i is of valid form.

For all other i, where π(i) /∈ ω?, B randomly chooses r′x,i ∈ Zp. Observe that

Ni · vx = Ni · (−(a′x)ax + v′x)

= Ni · (v′x − (a′x)ax)

Note that, unlike [18], due to our definition of ax, we do not have a term in

aq+1 here, and B can generate D
(2)
x,i = gNi·vxFo(π(i))rx,i and D

(1)
x,i = grx,i .

• (ψ /∈ S?) and (id /∈ R) :

For each x ∈ Path(id), B does the following. Since ψ does not satisfy M?, by

Proposition 2.21, there exists a vector wx = (w1, . . . , wk?s) ∈ Zk
?
s
p such that

w1 = −1 and Mi ·wx = 0 for all i where ρ(i) ∈ ψ?. Now, by our definition

of pj(x) in (5.2), we have that (p1(x), . . . , pk?s (x)) · (w1, . . . , wk?s) = 0.

B then computes one possible solution of variables wk?s+1, . . . , wk?s+m for the

system of |ψ| equations: for all x ∈ ψ

(p1(x), . . . , pk?s+m(x)) · (w1, . . . , wk?s+m) = 0,

which is possible as |ψ| 6 m.

169

5.4 Revocable Dual-policy Attribute-based Encryption

B then randomly chooses r′x ∈ Zp and implicitly defines

rx = r′x + w1

(
t?

t? − 1

)
· αq + w2

(
t?

t? − 1

)
· αq−1 + · · ·+

+ wk?s+m

(
t?

t? − 1

)
· αq−(k?s+m)+1

by setting the key Dx = gr
′
x
∏k?s+m
k=1 (gq+1−k)

wk

(
t?

t?−1

)
= grx . Then, since

γ = γ′ + αq+1 and as x /∈ XR, we have

fx(1) = γ + αrx + ax

= γ′ + αq+1 + αrx + ax

= γ′ + αq+1 + αrx + a′x −
αrx − γ
t?

= γ′ + a′x +
γ

t?
+ αq+1 + (α(

t? − 1

t?
))rx

= γ′ + a′x +
γ

t?
+ αq+1 +

(
α

(
t? − 1

t?

)(
r′x + w1

(
t?

t? − 1

)
· αq

+w2

(
t?

t? − 1

)
· αq−1 + · · ·+ wk?s+m

(
t?

t? − 1

)
· αq−(k?s+m)+1

))
= γ′ + a′x +

γ

t?
+ αq+1 + α

(
t? − 1

t?

)
r′x + w1α

q+1 + w2α
q

+ · · ·+ wk?s+mα
q−(k?s+m)+2

= γ′ + a′x +
γ

t?
+ α

(
t? − 1

t?

)
r′xw2α

q + · · ·+ wk?s+mα
q−(k?s+m)+2,

where the αq+1 term in γ has cancelled out using Proposition 2.21 and the

third equality followed from using equation (5.5). The simulator now ran-

domly chooses zx,2, . . . , zx,ko ∈ Zp and implicitly lets the vector

vx = (γ + αrx + ax, zx,2, . . . , zx,ko) as in the construction.

B also randomly chooses rx,1, . . . , rx,lo ∈ Zp and computes for i = 1, . . . , lo

the key D
(1)
x,1 = grx,i . The other keys are computed in the following way. We

have

D
(2)
x,i =

gγ′+a′x+ γ
t? · gr

′
x

1

k?s+m∏
k=2

(gq−k+2)wk

Ni,1

·
ko∏
j=2

gNi,jzjFo(π(i))rx,i

which can be computed since gq+1 is not required and, by collecting the

exponents, it can be verified that D
(2)
x,i = gNi·vx · Fo(π(i))ri .

170

5.4 Revocable Dual-policy Attribute-based Encryption

Recall that (p1(k), . . . , pk?s+m(k)) · (w1, . . . , wk?s+m) = 0 for all k ∈ ψ.

D
(3)
k = Dp0(k)

x

k?s+m∏
j=1

gr′xj ∏
k∈[1,k?s+m],k 6=j

(gq+1−k+j)
wk

pj(k)

= (grx)p0(k)

k?s+m∏
j=1

(grx)α
jpj(k)

=

k?s+m∏
j=0

(grx)pj(k)αj = (grx)
∑k?s+m
j=0 pj(k)αj

= (grx)p(k) = Fs(k)rx ,

where the second equality holds by observing that

D
(3)
k = D

(3)
k (gq+1)(p1(k),...,pk?s+m(k))·(w1,...,wk?s+m)

since (gq+1)(p1(k),...,pk?s+m(k))·(w1,...,wk?s+m) = (gq+1)0 = 1 (see [18]).

• (ω? /∈ O) and (ψ ∈ S?) and (id /∈ R) :

For each x ∈ Path(id), B randomly chooses rx ∈ Zp. It then lets Dx = grx ,

and for all k ∈ ψ lets D
(3)
k = Fs(k)rx as in the construction. Recall that the

dimensions of N are l0× k0. Since ω? does not satisfy N for this case of the

query, and by Proposition 2.21, there exists a vector ax = (a1, . . . , ako) ∈ Zkop
such that a1 = −1 and Ni · ax = 0 for all i where π(i) ∈ ω?.
B randomly chooses z′x,2, . . . , z

′
x,ko
∈ Zp and defines v′x = (0, z′x,2, . . . , z

′
x,ko

).

It then implicitly defines a vector vx = −(a′x − αrx−γ
t? + αrx + γ)ax + v′x

which will be used to create the share of fx(1) = γ + αrx + ax (note that

the first element of vx is indeed fx(1) by (5.5)), as in our construction.

Now, for all i such that π(i) ∈ ω?, B randomly chooses rx,i ∈ Zp and

computes D
(1)
x,i = grx,i and

D
(2)
x,i = gNi·v′xFo(π(i))rx,i = gNi·vxFo(π(i))rx,i ,

where the last equality holds because Ni · ax = 0. Note that σx,i = Ni · vx
in our construction and hence D

(2)
x,i is of the valid form.

171

5.4 Revocable Dual-policy Attribute-based Encryption

For all other i, where π(i) /∈ ω?, B randomly chooses r′x,i ∈ Zp. Observe that

Ni · vx = Ni ·
(
−
(
a′x −

αrx − γ
t?

+ αrx + γ

)
ax + v′x

)
= Ni ·

(
−
(
a′x −

αrx − (γ′ + aq+1)

t?
+ αrx + (γ′ + aq+1)

)
ax + v′x

)
= Ni ·

(
v′x −

(
a′x + γ′

(
1

t?
+ 1

))
ax

)
+

(
rx

(
1

t?
− 1

)
Ni · ax

)
α

−
((

1

t?
+ 1

)
Ni · ax

)
aq+1

contains a term in aq+1 and hence we cannot compute this value (as aq+1

is the gap in the q-BDHE game). Instead, we will use the rx,i term in

Fo(π(i))rx,i to cancel the unknown value aq+1. B implicitly defines rx,i =

r′x,i −
a(1
t?

+1)Ni·ax

f(π(i)) . To do so, it defines

D
(2)
x,i = g

(
rx(1

t?
−1)Ni·ax−(1

t?
+1)Ni·axf

′(π(i))
f(π(i))

)
1

· gNi·(v′x−(a′x+γ′(1
t?

+1)))axFo(π(i))r
′
x,i .

To see that D
(2)
x,i is valid, we observe

D
(2)
x,i = g

(1
t?

+1)Ni·ax

q+1 ·D(2)
x,i · g

−(1
t?

+1)Ni·ax

q+1

= g
(1
t?

+1)Ni·ax

q+1 · grx(
1
t?
−1)Ni·ax

1 · gNi·(v′x−(a′x+γ′(1
t?

+1)))ax

·
(
g
−(1

t?
+1)Ni·ax

q+1 g
−(1

t?
+1)Ni·axf

′(π(i))
f(π(i))

1

)
· Fo(π(i))r

′
x,i

= gNi·vx

(
gf(π(i))
q gf

′(π(i))
)−a(1

t?
+1)Ni·ax

f(π(i)) · Fo(π(i))r
′
x,i

= gNi·vx · Fo(π(i))
−a(1

t?
+1)Ni·ax

f(π(i)) · Fo(π(i))r
′
x,i

= gNi·vx · Fo(π(i))rx,i ,

where the second last equality follows from equation (5.4).

B also defines

D
(1)
x,i = gr

′
x,ig

−(1
t?

+1)Ni·ax

f(π(i))

1 = grx,i .

Note that f(π(i)) 6= 0 since π(i) /∈ ω?, and so D
(1)
x,i and D

(2)
x,i are well defined.

To simulate KeyUpdate queries for time period t and revocation list R, we consider

the following cases:

172

5.4 Revocable Dual-policy Attribute-based Encryption

• t = t? and R ⊆ R:

For each x ∈ Cover(R), B chooses a random rx ∈ Zp and computes U
(1)
x =

(ga
′
xt
?
)P (t?)rx and U

(2)
x = grx . Both keys are valid since R ⊆ R and thus for

all x ∈ Cover(R) we have x /∈ XR. Hence, by (5.7), fx(t?) = a′xt
?.

• t 6= t?:

For each x ∈ Cover(R), B chooses a random r′x ∈ Zp
– If x ∈ Cover(R) ∩ XR, it defines

U (1)
x = (ga

′
x)t(gγ

′
)(1−t)(g

r′x
1)(1−t)g

− ρ(t)(1−t)
p̂(t)+1−t

q P (t)r
′
x

U (2)
x = (gr

′
x)(gq)

− 1−t
p̂(t)+1−t

Note that p̂(t) 6= 0 for t 6= t? so this is well defined. We claim that these

keys look valid according to the construction with implicit randomness

rx = r′x − aq(1−t)
p̂(t)+1−t .

Note that, in this case, x ∈ XR and hence by (5.5)

fx(t) = axt+ αrx + γ = (a′x − αrx − γ)t+ αrx + γ

= a′xt+ αrx(1− t) + γ′(1− t) + aq+1(1− t).

Then,

U (1)
x

(1)
= gfx(t)P (t)rx

(2)
= ga

′
xt+arx(1−t)+γ′(1−t)+aq+1(1−t)gap̂(t)rxgρ(t)rx

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)garx(1−t)gap̂(t)rxgρ(t)rx

(3)
= ga

′
xtgγ

′(1−t)ga
q+1(1−t)ga(1−t)r′xg−a(1−t)Bgap̂(t)r

′
x

g−ap̂(t)Bgρ(t)r′xg−ρ(t)B

(4)
= ga

′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r′xg−a(1−t)Bg−ap̂(t)Bg−ρ(t)B

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r′xg−ρ(t)Bg−Ba((1−t)+ap̂(t))

(5)
= ga

′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r′x

g
−ρ(t)

(
aq(1−t)
p̂(t)+1−t

)
(ga)

−
(
aq(1−t)
p̂(t)+1−t

)
((1−t)+p̂(t))

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r′xg

−ρ(t)
(
aq(1−t)
p̂(t)+1−t

)
(ga)−(aq(1−t))

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r′xg

−ρ(t)
(
aq(1−t)
p̂(t)+1−t

)
g−a

q+1(1−t)

= ga
′
xtgγ

′(1−t)P (t)r
′
xga(1−t)r′xg

−ρ(t)
(
aq(1−t)
p̂(t)+1−t

)

= (ga
′
x)t(gγ

′
)(1−t)(g

r′x
1)(1−t)g

− ρ(t)(1−t)
p̂(t)+1−t

q P (t)r
′
x .

173

5.4 Revocable Dual-policy Attribute-based Encryption

Note that equality (1) follows by construction and (2) uses fx(t) from

above and equation (5.4). Equality (3) follows by replacing rx with

r′x − B and equality (4) follows from using (5.4). Equality (5) is valid

by using B = aq(1−t)
p̂(t)+1−t .

Then,

U (2)
x = grx = gr

′
xg
− aq(1−t)
p̂(t)+1−t

= (gr
′
x)(gq)

− 1−t
p̂(t)+1−t .

Hence, these keys look valid according to the construction.

– If x ∈ Cover(R) \ XR, it defines

U (1)
x = (ga

′
x)t(gγ

′
)(t
t?

+1)(g
r′x
1)(1− t

t?
)g
−
ρ(t)(1+ t

t?
)

p̂(t)+1− t
t?

q P (t)r
′
x

U (2)
x = (gr

′
x)(gq)

−
1+ t

t?

p̂(t)+1− t
t?

In this case, by (5.5), ax = a′x − αrx−γ
t? . By a similar argument as

above, these keys look valid according to the construction with implicit

randomness rx = r′x −−
aq(1+ t

t?
)

p̂(t)+1− t
t?

.

4. A selects two messages m0 and m1. B chooses b
$← {0, 1} and creates a ciphertext

C = mb · Z · e(h, gγ
′
), C(1) = h, and for k ∈ ω? we write C

(2)
k = hf

′(x). We

write h = gs for some unknown s. The simulator then chooses random elements

y′2, . . . , y
′
k?s
∈ Zp and lets y′ = (0, y′2, . . . , y

′
k?s

). It defines C
(3)
i = (g1)M

?
i ·y
′ ·

(gs)−p0(ρ?(i)) for i = 1, . . . , l′s and C(4) = (gs)ρ(t?), to implicitly share the secret s

via the vector

vx = (s, sα+ y′2, sα
2 + y′3, . . . , sα

k′s−1 + y′k′s).

We claim that if Z = e(gq+1, h) then the created ciphertext is a valid challenge.

The validity of C(1) = h = gs comes from the implicit definition of h. To see that

C is valid, recall that γ = γ′ + aq+1. Then,

C = mb · Z · e(h, gγ
′
) = mb · e(gq+1, h) · e(h, gγ′) = mb · e(g, g)sa

q+1 · e(g, g)sγ
′

= mb · e(g, g)s(γ
′+aq+1) = mb · e(g, g)sγ .

For all k ∈ ω?, we defined f(k) such that f(k) = 0, and hence

C
(2)
k = hf

′(k) = (gs)f
′(k) = (gf(k)

q gf
′(k))s = Fo(k)s.

174

5.5 Construction

For i = 1, . . . , l′s, we have

C
(3)
i = (g1)M

?
i ·y
′ · (gs)−p0(ρ?(i))

= (gα)M
?
i ·y
′
k?s∏
j=1

gM
?
i,jsα

j · (gs)−p0(ρ?(i))

k?s∏
j=1

(gs)−M
?
i,jα

j

= gαM
?
i ·vx · (gs)−p(ρ?(i)) = gαM

?
i ·vx · Fs(ρ?(i))−s,

Finally, since p̂(t?) = 0, we have C(4) = (gs)ρ(t?) = ((ga)p̂(t
?)gρ(t?))s = P (t?)s.

5. The challenge ciphertext is given to A along with oracle access which is handled

as in Step 3.

6. A eventually outputs b′ ∈ {0, 1} as its guess of b. If b = b′ then B outputs 1 to

guess that Z = e(gq+1, h). Otherwise, B outputs 0 to guess that Z is random.

If (g, h,yg,a,q, Z) is sampled from RBDHE then Pr[B(g, h,yg,a,q, Z) → 0] = 1
2 since A

was given a malformed challenge and hence can only guess the value of b. On the

other hand if (g, h,yg,a,q, Z) is sampled from PBDHE then we formed a valid challenge

ciphertext and, as A is assumed to have non-negligible advantage ε in the IND-sHRSS

game, |Pr[B(g, h,yg,a,q, Z)→ 0]− 1
2 | ≥ ε. It follows that B has advantage at least ε in

solving q-BDHE problem in G. However, we assumed that this problem is hard, so an

adversary with non-negligible advantage in the IND-sHRSS game cannot exist.

5.5 Construction

In this section we provide a construction of an HPVC scheme for a family F of mono-

tone Boolean functions closed under complement using a revocable key dual-policy ABE

scheme RKDPABE in a black box manner comprising the algorithms DPABE.Setup,

DPABE.Encrypt, DPABE.KeyGen, DPABE.KeyUpdate and DPABE.Decrypt. We also use

a signature scheme with algorithms Sig.KeyGen, Sig.Sign and Sig.Verify, and a one-way

function g. Let U = Uattr ∪ Ul ∪ UID ∪ Utime ∪ TO ∪ TS be the universe of attributes

acceptable by the revocable key dual-policy ABE scheme, formed as the union of the

following sub-universes, where Uattr consists of the attributes that form characteristic

tuples for input data, Ul be a set of attributes (disjoint from Uattr) that uniquely label

each function and each data item, UID comprises attributes representing entity identi-

fiers, Utime comprises attributes representing time periods issued by the time source T
and finally TO and TS represent the objective dummy attribute and subjective dummy

attribute respectively.

We encode as usual Boolean functions in terms of access structures over Uattr. Com-

putations with n-bit outputs can be built from n Boolean functions returning each bit

175

5.5 Construction

in turn. We can handle negations by either building rkDPABE from non-monotonic

ABE [112] or by adding negated attributes to the universe [142]. We choose to use the

latter approach and add negated attributes to Uattr. Thus, for the ith bit of a binary

input string X = x1 . . . xn, we define attributes A0
X,i and A1

X,i ∈ Uattr and X is encoded

as AX = {AjX,i ∈ Uattr : xi = j}.

In more detail, the dummy attributes TO and TS play generally a crucial role in a DP-

ABE scheme as they efficiently enable a DP-ABE scheme to function as either KP-ABE

or CP-ABE [19]. For KP-ABE, the subjective policy corresponds to S = {{TS}} and

is satisfied by the subjective attribute ψ containing the special attribute TS. Thus, S
is trivially satisfied and decryption (in KP-ABE) only depends on the objective policy

and attributes. Similarly, the same holds for CP-ABE where the objective policy corre-

sponds to O = {{TO}} that is trivially satisfied by the objective attribute ω containing

the special attribute TO. As discussed in Section 2.7.3 and Section 3.4, we require to

establish two distinct ABE schemes to overcome a possible one-sided error in the ver-

ification stage. Thus, we initialise two distinct rkDP-ABE systems over U and hence

we define a total of four additional dummy attributes where T 0
O, T

0
S relate to the first

rkDP-ABE system, and T 1
O, T

1
S relate to the second rkDP-ABE system. As summarised

in Table 5.1, the function corresponds in the modes RPVC and RPVC-AC to O = F

and S = {{T 0
S}}. Thus, the complement function for those modes can be defined as

O = F and S = {{T 1
S}}. Similarly, it follows for the mode VDC that O = {{T 0

O}} and

S = F , and the the complement can be defined as O = {{T 1
O}} and S = F . Each mode

operates by encrypting a pair of randomly chosen messages and issuing keys such that

the recovery of one message implies whether the encryption of a message was linked to

F or F , and thus whether F (X) = 1 or 0. Ciphertext indistinguishability ensures that

an adversary cannot cheat by returning the other message.

Our HPVC scheme operates in the following way.

1. Setup, presented in Algorithm 1, first forms the attribute universe U and ini-

tialises two rkDPABE schemes over the universe. It further creates an empty

two-dimensional array LReg to list registered entities, a (empty) list of revoked

entities LRev as well as a time source T (e.g. a networked clock or counter) to

index update keys. The algorithm finally outputs the public parameters pp and

master secret key mk comprising of public and secret rkDPABE parameters re-

spectively. Furthermore, the public parameters also contain LReg and the dummy

attributes enabling a client to flexibly switch between the modes of computations

by disabling certain parts of the rkDPABE scheme while the master secret key

additionally contains the list of revoked entities LRev. Note that the public pa-

rameters may be implicitly updated throughout the execution of all algorithms

of an HPVC scheme accommodating any changes in the system population.

176

5.5 Construction

Algorithm 1 (pp,mk)
$← Setup(1λ,F)

1 : U ← Uattr ∪ Ul ∪ UID ∪ Utime ∪ TO ∪ TS
2 : (mpk0ABE,msk

0
ABE, T

0
O, T

0
S)←$ DPABE.Setup(1λ,U)

3 : (mpk1ABE,msk
1
ABE, T

1
O, T

1
S)←$ DPABE.Setup(1λ,U)

4 : for Si ∈ UID do

5 : LReg[Si][0]← ε

6 : LReg[Si][1]← {ε}
7 : endfor

8 : LRev ← ε

9 : Initialise T

10 : pp← (mpk0ABE,mpk
1
ABE, T

0
O, T

0
S , T

1
O, T

1
SLReg,T)

11 : mk ← (msk0ABE,msk
1
ABE, LRev)

2. FnInit, presented in Algorithm 2, sets the public delegation key pkF (for all func-

tions F) to be the public parameters for the system (since we use public key

primitives). This step is not required in our particular construction, but we re-

tain the algorithm for consistency with prior definitions as well as for generality

as other instantiations may require this step.

Algorithm 2 pkF
$← FnInit(F,mk, pp)

1 : pkF ← pp

3. Register, presented in Algorithm 3, creates a public-private key pair by calling

the KeyGen algorithm of the digital signature scheme. The algorithm provides

the server with its own secret signature key and updates LReg[Si][0] to store the

verification key for Si. These prevent servers being impersonated and wrongly

revoked.

Algorithm 3 skSi
$← Register(Si,mk, pp)

1 : (skSig, vkSig)←$ Sig.KeyGen(1λ)

2 : skSi
← skSig

3 : LReg[Si][0]← LReg[Si][0] ∪ vkSig

4. Certify, presented in Algorithm 4, aims to generate an evaluation key ek(O,ψ),Si for

a server Si. The algorithm first adds an element (F,
⋃
l∈Li l) to the list LReg[Si][1]

177

5.5 Construction

for each F ∈ Fi. This publicises the computations that Si can perform (either

functions in RPVC and RPVC-AC modes, or functions and data labels in VDC).

The algorithm removes Si from the revocation list, gets the current time period

from T and generates a decryption key for (O, Aψ ∪
⋃
l∈Li l) in the first DP-ABE

system and Aψ is the attribute set encoding ψ. The additional attributes for the

labels l ∈ Ul ensure that a key cannot be used to evaluate computations that do

not correspond to these labels. In RPVC and RPVC-AC, this means that a key

for a function G cannot evaluate a computation request for F (X). In VDC, it

means that an evaluation key must be issued for a dataset Di that includes (at

least) the specified input data X. It is sufficient to include labels only on the

subjective attribute set without also adding them to the objective policy. As these

labels are a security measure against a misbehaving server, we amend the servers

key but need not take similar measures against the delegator. Delegators are then

able to specify the required labels in their created subjective policy. Those labels

need to be present in the server’s key for a successful evaluation (decryption).

The KDC should check that the label corresponds to the input to ensure that

a server does not advertise data he does not own. It also generates an update

key for the current time period to prove that Si is not currently revoked. In

RPVC and RPVC-AC modes, another pair of keys is generated using the second

DP-ABE system for the complement inputs.

178

5.5 Construction

Algorithm 4 ek(O,ψ),Si
$← Certify(mode, Si, (O, ψ), Li,Fi,mk, pp)

1 : for F ∈ Fi do

2 : LReg[Si][1]← LReg[Si][1] ∪ (F,
⋃
l∈Li

l)

3 : endfor

4 : LRev ← LRev \ Si
5 : t← T

6 : sk0ABE←$ DPABE.KeyGen(Si, (O, Aψ ∪
⋃
l∈Li

l),msk0ABE,mpk
0
ABE)

7 : uk0LRev,t←$ DPABE.KeyUpdate(LRev, t,msk
0
ABE,mpk

0
ABE)

8 : if (mode = RPVC) or (mode = RPVC-AC) then

9 : sk1ABE←$ DPABE.KeyGen(Si, (O, Aψ ∪
⋃
l∈Li

l),msk1ABE,mpk
1
ABE)

10 : uk1LRev,t←$ DPABE.KeyUpdate(LRev, t,msk
1
ABE,mpk

1
ABE)

11 : else

12 : sk1ABE ←⊥
13 : uk1LRev,t ←⊥
14 : endif

15 : ekF,S ← (sk0ABE, sk
1
ABE, uk

0
LRev,t, uk

1
LRev,t)

5. ProbGen, presented in Algorithm 5, aims to create a problem instance σ(ω,S) that

the server can use to evaluate the computation as well as preparing a verification

key that enables anyone to verify the server’s computational result. The algorithm

starts with choosing messages m0 and m1 randomly from the message space.

The message m0 is encrypted with (Aω, S ∧
∧
l∈LF,X l) in the first rkDPABE

system, whilst m1 is encrypted with the complement policy under either the first

rkDPABE system for VDC or the second one for RPVC and RPVC-AC depending

on the chosen mode of computation. Note that the attributes remain the same

as it is the same attribute T 0
O or input data X respectively. The algorithm also

prepares a public verification key vk(ω,S). The key is simply generated by applying

a one-way function g to each randomly chosen message and also includes a copy of

LReg from the public parameters in case the list is modified between the current

time period and the time of verification.

179

5.5 Construction

Algorithm 5 (σ(ω,S), vk(ω,S))
$← ProbGen(mode, (ω,S), LF,X , pkF , pp)

1 : (m0,m1)←$M×M
2 : t← T

3 : c0←$ DPABE.Encrypt(m0, (Aω,S ∧
∧

l∈LF,X

l), t,mpk0ABE)

4 : if (mode = VDC) then

5 : c1←$ DPABE.Encrypt(m1, (Aω,S ∧
∧

l∈LF,X

l), t,mpk0ABE)

6 : else

7 : c1←$ DPABE.Encrypt(m1, (Aω,S ∧
∧

l∈LF,X

l), t,mpk1ABE)

8 : endif

9 : σ(ω,S) ← (c0, c1)

10 : vk(ω,S) ← (g(m0), g(m1), LReg)

6. Compute, presented in Algorithm 6, is performed by a server Si and aims to return

the result of the evaluation of a function on some input data. The algorithm

attempts to decrypt both ciphertexts of the problem instance σ(ω,S), ensuring

that different modes of computation use the correct parameters. Decryption

succeeds only if the function evaluates to 1 on the input data X, i.e. the policy

is satisfied. Since F and F output opposite results on X, exactly one plaintext

will correspond to a failure symbol ⊥. The server signs the results using its

personal signing key. Finally, the algorithm outputs the computational result

θF (X) comprising the two plaintexts, the server id and the server’s signature on

the output.

Algorithm 6 θF (X)
$← Compute(mode, σ(ω,S), ek(O,ψ),Si , skSi , pp)

1 : Parse σ(ω,S) as (c0, c1) and ek(O,ψ),Si
as (sk0ABE, sk

1
ABE, uk

0
LRev,t, uk

1
LRev,t)

2 : d0 ← DPABE.Decrypt
(
c0, sk

0
ABE, uk

0
LRev,t,mpk

0
ABE

)
3 : if (mode = VDC) then

4 : d1 ← DPABE.Decrypt
(
c1, sk

0
ABE, uk

0
LRev,t,mpk

0
ABE

)
5 : else

6 : d1 ← DPABE.Decrypt
(
c1, sk

1
ABE, uk

1
LRev,t,mpk

1
ABE

)
7 : endif

8 : γ←$ Sig.Sign(d0, d1, Si, skSi
)

9 : θF (X) ← (d0, d1, Si, γ)

180

5.5 Construction

7. Verify, presented in Algorithm 7, determines whether the returned computational

result is valid or not. The algorithm first checks whether the function F is listed

in LReg[S][1] to ensure that the server that generated the computational result is

authorised to compute F . If this check fails, the result is immediately rejected.

Next, the algorithm verifies the signature using the verification key for Si stored

in LReg. If correct, it applies the one-way function g to each plaintext in θF (X)

and compares the results to the components of the verification key. If either

comparison results in a match (i.e. the server successfully recovered a message),

the algorithm creates an acceptance token τθF (X)
= (accept, Si) indicating that

the server indeed performed the computation correctly. Otherwise the result is

rejected, and the algorithm creates a rejection token τθF (X)
= (reject, Si) and

Si is reported for revocation. If m0 was returned then F (X) = 1 as m0 was

encrypted for the non-complemented inputs. Otherwise m1 was returned and

thus F (X) = 0. Note that this algorithm can be run by any entity since the

computational result and verification key are publicly available.

Algorithm 7 (y, τθF (X)
)← Verify(θF (X), vk(ω,S), pp)

1 : Parse θF (x) as (d0, d1, Si, γ) and vk(ω,S) as (g(m0), g(m1), LReg)

2 : if F ∈ LReg[Si][1] then

3 : if accept← Sig.Verify ((d0, d1, Si), γ, LReg[Si][0])

4 : if g(m0) = g(d0) return (y ← 1, τθF (X)
← (accept, Si))

5 : elseif g(m1) = g(d1) return (y ← 0, τθF (X)
← (accept, Si))

6 : else return (y ←⊥, τθF (x)
← (reject, Si))

7 : endif

8 : endif

9 : endif

10 : return (y ←⊥, τθF (x)
← (reject, Si))

8. Revoke, presented in Algorithm 8, aims to revoke misbehaving servers by redis-

tributing fresh update keys to all non-revoked servers. The algorithm first checks

whether a server Si should in fact be revoked, i.e. whether it received as input

a rejection token τθF (X)
= (reject, Si). If so, it deletes the list LReg[Si][1] of

computations that Si may perform such that the server is no longer authorised to

perform any computations within the system. Additionally, it also adds Si to the

revocation list LRev, and refreshes the time source T and samples the new time

period. The algorithm then generates new update keys for all non-revoked enti-

ties such that non-revoked keys are still functional in the new time period and

distributes them accordingly. If the algorithm receives as input an acceptance

token indicating that there is no need to revoke any server since computations

181

5.6 Proofs of Security

were performed correctly, it outputs ⊥.

Algorithm 8 um
$← Revoke(τθF (X)

,mk, pp)

1 : if τθF (X)
= (reject, Si) then

2 : LReg[Si][1]← {ε}
3 : LRev ← LRev ∪ Si
4 : Refresh T

5 : t← T

6 : uk0LRev,t←$ DPABE.KeyUpdate(LRev, t,msk
0
ABE,mpk

0
ABE)

7 : if (mode = RPVC) or (mode = RPVC-AC) then

8 : uk1LRev,t←$ ABE.KeyUpdate(LRev, t,msk
1
ABE,mpk

1
ABE)

9 : endif

10 : for S′ ∈ UID do

11 : Parse ekF,S′ as (sk0ABE, sk
1
ABE, uk

0
LRev,t−1, uk

1
LRev,t−1)

12 : ekF,S′ ← (sk0ABE, sk
1
ABE, uk

0
LRev,t, uk

1
LRev,t)

13 : endfor

14 : return um← {ekF,S′}S′∈UID

15 : else

16 : return ⊥

Theorem 5.10. Given an IND-sHRSS secure rkDPABE scheme for a class of mono-

tone Boolean functions F closed under complement, an EUF-CMA secure signature

scheme and a one-way function g. Let HPVC be the hybrid publicly verifiable out-

sourced computation scheme as defined in Algorithms 1–8. Then HPVC is secure in

the sense of selective public verifiability (Figure 5.2), and selective semi-static revoca-

tion (Figure 5.3) and selective authorised computation (Figure 5.4).

5.6 Proofs of Security

In this section we present the full proof of Theorem 5.10 by providing proofs of secu-

rity for the notions of selective public verifiability, selective semi-static revocation and

selective authorised computations.

5.6.1 Selective Public Verifiability

Lemma 5.11. The HPVC scheme defined by Algorithms 1–8 is secure in the sense

of selective public verifiability (Figure 5.2) under the same assumptions as in Theo-

rem 5.10.

182

5.6 Proofs of Security

Proof. Note that this proof is a combination of the proofs presented in Sections 3.5.1

and 4.5. The reduction follows similarly and we basically update the notation to ac-

commodate an HPVC scheme.

Suppose AHPVC is an adversary with non-negligible advantage against the selective

public verifiability game (Figure 5.2) when instantiated by Algorithms 1–8. We begin

by defining the following three games:

• Game 0. This is the selective public verifiability game as defined in Figure 5.2.

• Game 1. This is the same as Game 0 with the modification that in ProbGen, we

no longer return an encryption of m0 and m1. Instead, we choose another random

message m′ 6= m0,m1 and, if F (X?) = 1, we replace c1 by the encryption of m′,

and otherwise we replace c0. In other words, we replace the ciphertext associated

with the unsatisfied function with the encryption of a separate random message

unrelated to the other system parameters, and in particular to the verification

keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing

a random message m′, we implicitly set m′ to be the challenge input w in the

one-way function game.

We show that from the adversary’s point of view Game 2 is indistinguishable from

Game 0 except with negligible probability. This means that an adversary against the

selective public verifiability game can be run against Game 2. We then finally show

that if an adversary has a non-negligible advantage against Game 2 then the adversary

can invert a one-way function.

Game 0 to Game 1. We begin by showing that there is a negligible distinguish-

ing advantage between Game 0 and Game 1, both with parameters (HPVC, 1λ,F).

Suppose otherwise, that AHPVC can distinguish the two games with non-negligible ad-

vantage δ. We then show that it is possible to construct an adversary AABE that uses

AHPVC as a subroutine to break the IND-sHRSS security of the (indirectly) revocable

key DP-ABE scheme formalised in Figure 5.5. Note that we only focus on the modes

RPVC and VDC, and the mode RPVC-AC can be seen as a special case of the mode

RPVC as we can assume the adversary being authorised to evaluate a challenge com-

putation. We consider a challenger C playing the IND-sHRSS game (Figure 5.5) with

AABE, and AABE in turn acts as a challenger for AHPVC. Given the above parameters

the entities interact in the following way.

1. AHPVC declares its choice of challenge parameters (ω?,O?, ψ?,S?, LF,X? , mode)

including a set of labels LF,X? and the mode of computation mode detailing in

which mode the challenge needs to be generated.

183

5.6 Proofs of Security

2. AABE must send a challenge attribute set and policy (ω̃, S̃), and a challenge time

period t̃ to the challenger as AABE’s challenge input for the IND-sHRSS game

of the rkDP-ABE scheme. Recall from Table 5.1 that in case mode = VDC the

challenge subjective policy S? corresponds to the function F and the subjective

attribute set ψ corresponds to the challenge input data X? ⊆ Di. Also following

Table 5.1, in case mode = RPVC the challenge objective policy O? corresponds

to the function F and the objective attribute set ω corresponds to the challenge

input data X?. In either mode, the other challenge input parameters correspond

to either dummy attributes or dummy policies, and these dummy policies are

trivially satisfied by the dummy attributes (cf. Section 5.5). As usual, AABE

computes r = F (X?).

• If mode = VDC, we need to set the challenge input pair to the IND-sHRSS

game of the rkDP-ABE scheme such that the pair is not satisfied by the

challenge input X? and thus need to set S̃ to be unsatisfied.

– If r = 1: we set

ω̃ = Aω? = {TO},

and

S̃ = S? ∧
∧

lj∈LF,X?
lj = F ∧ {l(xi,j)}xi,j∈X? .

– If r = 0: we set

ω̃ = Aω? = {TO},

and

S̃ = S? ∧
∧

lj∈LF,X?
lj = F ∧ {l(xi,j)}xi,j∈X? .

• If mode = RPVC, then we set

ω̃ = Aω? = AX? ,

and

S̃ = S? ∧
∧

lj∈LF,X?
lj = {{TS}} ∧ {l(F)}.

Finally, AABE also sets its challenge (ω̃, S̃) for the time period t̃ = 1 for the

IND-sHRSS game and sends all challenge parameters to the challenger C.

184

5.6 Proofs of Security

3. C runs the DPABE.Setup algorithm to generate mpkABE,mskABE and sends

mpkABE to AABE.

4. AABE initialises its target revocation list R which is initially empty and sends it

to C, and simulates running HPVC.Setup such that the outcome is consistent with

the previously generated mpkABE. If mode = VDC, it sets mpk0
ABE ← mpkABE

as provided by the challenger and implicitly sets msk0
ABE ← mskABE. Note

that any use of msk0
ABE will be simulated using oracle calls to the challenger. If

mode = RPVC, it sets mpkrABE ← mpkABE as issued by C, and implicitly sets

mskrABE ← mskABE to be the key held by the challenger. In either case, AABE

executes DPABE.Setup itself to generate a second DP-ABE system.

5. AABE runs HPVC.FnInit as detailed in Algorithm 2.

6. AABE must generate a challenge problem instance for AHPVC as the output of

HPVC.ProbGen. To do so, AABE samples three distinct, equal length messages

m0, m1 and m′ uniformly at random from the message space. AABE provides m0

and m1 as its choice of challenge to C, and receives back the encryption, ct?, of

one of these messages (mb? for b?
$← {0, 1}, where b? is chosen by the challenger),

under the challenge attribute set and policy (ω̃, S̃) and challenge time period

t̃. More formally, ct?
$← DPABE.Encrypt(mb? , (ω̃, S̃), t̃,mpkABE). It needs to

assign ct? to be one of the ciphertexts c or c′ that form the challenge problem

instance (encoded input) σF,X? using the correct ABE system parameters. AABE

chooses a random bit s
$← {0, 1} which intuitively corresponds to its guess for the

challenger’s choice of b?.

• If mode = VDC, we need to distinguish the following cases.

– If r = 1, AABE generates

c
$← DPABE.Encrypt(m′, ω̃,S? ∧

∧
lj∈LF,X?

lj , t̃,mpk
0
ABE)

and sets c′ = ct?. It also sets vk = g(m′) and vk′ = g(ms).

– If r = 0, AABE sets c = ct? and generates

c′
$← DPABE.Encrypt(m′, ω̃,S? ∧

∧
lj∈LF,X?

lj , t̃,mpk
0
ABE).

It also sets vk = g(ms) and vk′ = g(m′).

• If mode = RPVC, AABE sets c = ct? and generates

c′
$← DPABE.Encrypt(m′, ω̃,S? ∧

∧
l∈LF,X?

l, t̃,mpk1
ABE).

185

5.6 Proofs of Security

It also sets vk = g(m′) and vk′ = g(ms).

Finally, AABE sets σF,X? = (c, c′) and vkF,X? = (vk, vk′, LReg).

7. AHPVC receives all outputs from the above HPVC.ProbGen algorithm, and then

is provided with oracle access to which AABE responds in the following way:

• HPVC.FnInit(·,mk, pp) and HPVC.Register(·,mk, pp) are executed as speci-

fied in Algorithms 2 and 3.

• HPVC.Certify(mode, Si, (O, ψ), Li,Fi,mk, pp) : in order to generate an eval-

uation key for the queried parameters, AABE needs to request queries to the

KeyGen oracle in the rkDP-ABE game formalised in Figure 5.5. AABE up-

dates first the usual list entries and then sets O′ = O and ψ′ = Aψ∪
⋃
lj∈Li lj

and requests an oracle query to the challenger forOKeyGen(Si, (O′, ψ′),mk, pp)
as specified in Figure 5.5. The challenger shall generate a rkDP-ABE de-

cryption key if and only if ω̃ /∈ O′ or ψ′ /∈ S̃ or Si ∈ R. Note that Si /∈ R is

fulfilled since we chose R to be empty. By construction, the condition ψ′ ∈ S̃
is satisfied only if the labels {lj}lj∈Li ⊇ {lk}lk∈LF,X? . As specified above, if

the labels do not satisfy this relation then ψ′ /∈ S̃ and the challenger may

generate the key, which AABE will receive as sk0
ABE.

If, on the other hand, the labels do satisfy this relation then we have the

following cases depending on the chosen mode.

– If mode = VDC, then from the above relation {lk}lk∈LF,X? ⊆ {lj}lj∈Li
it follows that {l(xi,k)}xi,k∈X? ⊆ {l(xi,j)}xi,j∈Di and thus it follows that

X? ⊆ Di. Thus, this means that by the uniqueness of the labels within

the system, AHPVC has requested an evaluation key for a superset of the

challenge input set X?, i.e. the set Di that contains the challenge input

set X? and possibly some more additional data points. If X? ⊆ Di,

then the data set Di must satisfy either F or F in order to satisfy S̃.

However, S̃ was chosen in such a way that it is not satisfied by X? and

thus also not by Di. Hence, the challenger may generate a valid key

which AABE stores as sk0
ABE.

– If mode = RPVC, then (as specified in Table 5.1) both sets Li and

LF,X? are singleton sets. Thus, from {lj}lj∈Li ⊇ {lk}lk∈LF,X? it follows

that Li = LF,X? = {l(F)}. By the uniqueness of the labels within

the system, it then follows that O = O? which means that AHPVC has

requested an evaluation key for the challenge function F . However, in

step 4, the challenger got assigned the ABE system with master secret

key mskrABE such that O? is not satisfied by the challenge input ω̃.

Therefore, also O′ is not satisfied either by the challenge input ω̃ and

186

5.6 Proofs of Security

hence the challenger may generate a valid key which AABE stores as

skrABE.

AABE needs further to make queries to a KeyUpdate oracle OKeyUpdate to the

challenger in order to obtain an update key. The challenger returns a valid

key if and only if t 6= t̃ or R ⊆ QRev. Observe that the second condition is

satisfied since R = ε and hence is a subset of QRev. Hence a challenger may

generate a valid update key.

Also if mode = RPVC, then AABE additionally generates a secret key sk1−r
ABE

by itself using the parameters of the second DP-ABE system which it owns

for the pair (O, ψ).

• HPVC.Revoke(τθF (X)
,mk, pp) : whenever a Revoke query is requested, AABE

executes Algorithm 8 as specified except it requires to make a KeyUpdate

oracle query to the challenger for the update key that relates to the ABE

system owned by C. If mode = RPVC, this is the key ukrLRev,t
, and if

mode = VDC, this is the key uk0
LRev,t

. The challenger may create a valid

update key if and only if t 6= qt or R ⊆ QRev. Since R was defined to be an

empty list and hence is a subset of QRev the challenger may always return

a valid update key.

EventuallyAHPVC finishes its query phase and outputs a guess θ? which it believes

to be a valid forgery.

8. AABE parses the guess θ? as (d, d′, Si, γ). One of the values d and d′ will be ⊥
(by construction) and we denote the other value (non-⊥) by Y . Observe that,

since AHPVC is assumed to be a successful adversary against selective public

verifiability, the non-⊥ value, Y , that it will return will be the plaintext ms since

the challenge access structure was always set to be unsatisfied on the challenge

input. Thus, if g(Y) = g(ms), AABE outputs a guess b′ = s and otherwise guesses

b′ = (1− s).

Notice that if s = b? (the challenge bit chosen by C in the IND-sHRSS game in Fig-

ure 5.2), then the distribution of the above coincides with Game 0 since the verification

key comprises g(m′) and g(ms) where m′ and ms are the two plaintexts corresponding

to the ciphertexts of the encoded input for which AHPVC recovers exactly one. Other-

wise, if s = 1 − b? then the distribution coincides with Game 1 since the verification

key comprises the one-way function g applied to a legitimate message m′ and a random

message m1−b? that is unrelated to both ciphertexts.

Now, we consider the advantage of this constructed AABE playing the IND-sHRSS

game for the revocable key DP-ABE scheme. Recall that by assumption, AHPVC has

187

5.6 Proofs of Security

a non-negligible advantage δ in distinguishing between Game 0 and Game 1, that is∣∣∣Pr
[
ExpGame 0

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

AHPVC

[
HPVC, 1λ,F

]
→ 1

]∣∣∣ > δ
where ExpGame i

AHPVC

[
HPVC, 1λ,F

]
denotes the output of running AHPVC in Game i.

Now we derive the probability of AABE guessing b? correctly. It follows:

Pr[b′ = b?] = Pr[s = b?] Pr[b′ = b?|s = b?] + Pr[s 6= b?] Pr[b′ = b?|s 6= b?]

=
1

2
Pr[g(Y) = g(ms)|s = b?] +

1

2
Pr[g(Y) 6= g(ms)|s 6= b?]

=
1

2
Pr
[
ExpGame 0

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
+

1

2
(1− Pr[g(Y) = g(ms)|s 6= b?])

=
1

2
Pr
[
ExpGame 0

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
+

1

2

(
1− Pr

[
ExpGame 1

AHPVC

[
HPVC, 1λ,F

]
→ 1

])
=

1

2

(
Pr
[
ExpGame 0

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
+ 1
)

>
1

2
(δ + 1)

Hence,

AdvAABE
>

∣∣∣∣Pr[b′ = b?]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2

Since δ is assumed non-negligible, δ
2 is also non-negligible. If AHPVC has advantage δ

at distinguishing these games then AABE can win the IND-sHRSS game with non-

negligible probability. Thus since we assumed the ABE scheme to be IND-sHRSS

secure, we conclude that AHPVC cannot distinguish Game 0 from Game 1 with non-

negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is to simply set the

value of m′ to no longer be random but instead to correspond to the challenge w in

the one-way function inversion game (Figure 2.8). We argue that the adversary has no

distinguishing advantage between these games since the new value is independent of

188

5.6 Proofs of Security

anything else in the system except the verification key g(w) and hence looks random

to an adversary with no additional information (in particular, AHPVC does not see the

challenge for the one-way function as this is played between C and AABE).

Final Proof. We now show that using AHPVC in Game 2, AABE can invert the one-

way function g – that is, given a challenge z = g(w) AABE can recover w. Specifically,

during HPVC.ProbGen, AABE chooses the messages as follows:

• if F (X?) = 1, we implicitly set m1 to be w and the corresponding verification

key component to be z = g(w). We randomly choose m0 from the message space

and compute the remainder of the verification key as usual.

• if F (X?) = 0, we implicitly set m0 to be w and set the verification key component

to z = g(w). m1 is chosen randomly from the message space and the remainder

of the verification key computed as usual.

Now, since AHPVC is assumed to be successful, it will output a forgery comprising the

plaintext that was encrypted under the unsatisfied function (F or F) that evaluates

to 0. By construction, this will be w (and the adversary’s view is consistent since the

verification key is simulated correctly using z). AABE can therefore forward this result

to C in order to invert the one-way function with the same non-negligible probability

that AHPVC has against the selective public verifiability game.

We conclude that if the rkDP-ABE scheme is IND-sHRSS secure and the one-way

function is hard-to-invert, then the HPVC as defined by Algorithms 1–8 is secure in

the sense of selective public verifiability.

5.6.2 Selective, Semi-static Revocation

Lemma 5.12. The HPVC scheme defined by Algorithms 1–8 is secure in the sense of

selective, semi-static revocation (Figure 5.3) under the same assumptions as in Theo-

rem 5.10.

Proof. Note that this proof follows in a similar manner to the proof presented in Sec-

tion 3.5.2 and we mainly update the notation to accommodate an HPVC scheme.

In this proof, we aim to perform a reduction from the the selective, semi-static re-

vocation game (Figure 5.3) to the IND-sHRSS security of the underlying revocable

key DP-ABE scheme (Figure 5.5). We wish the prove this reduction by achieving a

contradiction and therefore we assume that AHPVC is an adversary with non-negligible

probability against the selective, semi-static revocation game when instantiated by

Algorithms 1–8, and making qt Revoke queries. We show that we can construct an

adversary AABE that uses AHPVC as a sub-routine to break the IND-sHRSS security

189

5.6 Proofs of Security

of the indirectly revocable key DP-ABE scheme. Note that as in the previous proof,

we only focus on the modes RPVC and VDC, and the mode RPVC-AC can be seen

as a special case of the mode RPVC as we can assume the adversary being authorised

to evaluate a challenge computation. Let C be a challenger playing the IND-sHRSS

game with AABE, and AABE acts as a challenger for AHPVC.

1. ARPVC declares its choice of challenge input parameters

(ω?,O?, ψ?,S?, LF,X? , mode) for a challenge computation F (X?) including a set

of labels LF,X? and the mode of computation mode detailing in which mode the

challenge needs to be generated.

2. AABE initialises an (empty) list QRev of currently revoked entities and sets the

current time period t = 1. Next, AABE needs to form its own challenge input for

the IND-sHRSS game. AABE sets its challenge for the time period t̃ = qt, and

it forms ω̃ = Aω? and S̃ = S? ∧ ∧lj∈LF,X? lj . Finally, it sends (t̃, (ω̃, S̃)) to the

challenger.

3. C runs the DPABE.Setup algorithm to generate mpkABE,mskABE and sends

mpkABE to AABE.

4. AABE simulates running HPVC.Setup such that the outcome is consistent with

the previously generated mpkABE from C. It executes the algorithm as detailed

with the exception of line 2, since msk0
ABE and mpk0

ABE were already generated

by the challenger.

5. AABE runs HPVC.FnInit as detailed in Algorithm 2.

6. AHPVC chooses a challenge revocation list R, which AABE forwards to C.

7. AHPVC is provided with oracle access to which AABE responds in the following

way:

• HPVC.FnInit(·,mk, pp) and HPVC.Register(·,mk, pp) are executed as speci-

fied in Algorithms 2 and 3.

• Queries of the form HPVC.Certify(mode, Si, (O, ψ), Li,Fi,mk, pp) are han-

dled by AABE by running the Certify oracle as specified in Figure 5.3. AABE

executes Algorithm 4 as detailed except lines 6 and 7, as these rely on

the master secret key msk0
ABE held by the challenger. In order to sim-

ulate line 6, AABE requires to make a KeyGen oracle query of the form

OKeyGen(Si, (O, Aψ ∪
⋃
lk∈Li lk),msk

0
ABE,mpk

0
ABE). The challenger responds

by running the KeyGen oracle as detailed in Figure 5.5 which returns a

valid key if and only if ω̃ /∈ O or Aψ ∪
⋃
lk∈Li lk /∈ S̃ or Si ∈ R. Now

if (Aψ ∪
⋃
lk∈Li lk /∈ S̃) is fulfilled then the challenger can return a valid

190

5.6 Proofs of Security

decryption key. By construction, we observe that the condition ψ ∈ S̃ is sat-

isfied only if {lk}lk∈Li ⊇ {lj}lj∈LF,X? . By the uniqueness of the label within

the system this implies LF,X? ⊆ Li. However, in this case, the first condition

in the “if” statement in the Certify oracle in Figure 5.3 is satisfied and thus

AABE would have returned ⊥ without querying KeyGen if Si /∈ R to avoid

certifying AHPVC for the challenge computation. If (Aψ ∪
⋃
lk∈Li lk ∈ S̃) is

satisfied at the point of making a KeyGen query, then Si ∈ R, and thus the

challenger can respond to all queries made to it during this phase with a

valid key.

In order to simulate line 7, AABE makes a query to the challenger of the

form OKeyUpdate(QRev, t,msk
0
ABE,mpk

0
ABE). Here the challenger responds as

detailed in Figure 5.5 which returns a valid update key if and only if t 6= t̃

or R ⊆ QRev. Recall that AABE chose t̃ = qt, and at the point of calling

the KeyUpdate oracle, the list of currently revoked entities corresponds to

QRev ← QRev \Si. Therefore, if the challenger returns ⊥ in response to this

query, then AABE would already have returned ⊥ as a response to the Certify

oracle (Figure 5.3) as a result of the second condition in the “if” statement.

Hence, for all queries made to the challenger, a valid update key is returned.

• Queries of the form HPVC.Revoke(τθF (X?)
,mk, pp) are handled by AABE by

running the Revoke oracle as specified in Figure 5.3. In order to simulate run-

ning the algorithm, AABE executes Algorithm 8 with the exception of line 6.

Here AABE is required to make KeyUpdate oracle calls to the challenger of

the form OKeyUpdate(QRev, t,msk
0
ABE,mpk

0
ABE). Note that the Revoke ora-

cle in Figure 5.3 returns ⊥ if t = qt and R 6⊆ QRev \ Si. This corresponds

directly to the conditions that C cannot form a valid update key through a

KeyUpdate oracle call (Figure 5.5) since t = t̃ and R 6⊆ QRev. However, since

Si was already removed from the list of currently revoked entities QRev, C
can form a valid update key and AABE can simulate the remainder of the

algorithm.

8. Eventually (after qt Revoke queries), AHPVC finishes the query phase. AABE

checks if AHPVC has made suitable Revoke queries. If there exists an entity in R

that is not currently revoked (listed in QRev), it returns 0 and aborts immediately.

9. AABE must now generate a challenge for AHPVC. AABE chooses three distinct,

equal length messages m0,m1 and m′ uniformly at random from the message

space. It then sends m0 and m1 to C as its choice of challenge for the IND-sHRSS

game. C chooses a random bit b?
$← {0, 1} and returns

ct?
$← ABE.Encrypt(mb? , ω̃,S? ∧

∧
lj∈LF,X? lj , t̃,mpk

0
ABE). AABE sets c = ct? and

generates depending on the chosen mode the second ciphertext. If mode = VDC,

then c′
$← ABE.Encrypt(m′, ω̃,S? ∧ ∧lj∈LF,X? lj , t̃,mpk

0
ABE). In case mode =

191

5.6 Proofs of Security

RPVC, then c′
$← ABE.Encrypt(m′, ω̃,S?∧∧lj∈LF,X? lj , t̃,mpk

1
ABE). Finally, AABE

forms the challenge problem instance σ? = (c, c′). AABE selects a bit s
$← {0, 1}

and forms the verification key as vk? = (g(ms), g(m′), LReg). Note that s intu-

itively corresponds to AABE’s guess for b?.

10. AHPVC receives the resulting parameters from ProbGen and is again provided

with oracle access. These queries are handled in the same way as previously, and

eventually AHPVC outputs its guess θ?.

11. Let Y be the non-⊥ plaintext returned in θ?. If g(Y) = g(ms), AABE guesses

b′ = s. Else, AABE guesses b′ = 1− s.
If g(Y) = g(m′), AABE makes a random guess b′ = b̃

$← {0, 1} since AHPVC did

not forge a result for either m0 or m1 and therefore is of no use for AABE in order

to break the IND-sHRSS game.

Now we consider the advantage of AABE playing the IND-sHRSS game. By assump-

tion, AHPVC has a non-negligible advantage δ against the selective, semi-static revoca-

tion game. It follows

Pr[b′ = b?] = Pr[b′ = b?|s = b?] Pr[s = b?] + Pr[b′ = b?|1− s = b?] Pr[1− s = b?]

+ Pr[b′ = b?|b̃ = b?] Pr[b̃ = b?]

= Pr[g(Y) = g(ms)|s = b?] Pr[s = b?]

+ Pr[g(Y) 6= g(ms)|1− s = b?] Pr[1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] Pr[b̃ = b?]

=
1

2
Pr[g(Y) = g(ms)|s = b?] +

1

2
Pr[g(Y) 6= g(ms)|1− s = b?]

+
1

2
Pr[g(Y) = g(m′)|b̃ = b?]

=
1

2

(
Pr[g(Y) = g(ms)|s = b?] + (1− Pr[g(Y) = g(ms)|1− s = b?])

+ Pr[g(Y) = g(m′)|b̃ = b?]
)

=
1

2

(
Pr[g(Y) = g(ms)|s = b?]− Pr[g(Y) = g(ms)|1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] + 1
)

=
1

2
(δ + 1).

192

5.6 Proofs of Security

Hence,

AdvAABE
>

∣∣∣∣Pr[b′ = b?]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

Since δ is non-negligible, δ2 is also non-negligible. If AHPVC has advantage δ at breaking

the selective, semi-static revocation game then AABE can win the IND-sHRSS game

with non-negligible probability. However, since the indirectly revocable key DP-ABE

scheme was assumed to be IND-sHRSS secure, such an adversary AHPVC cannot exist.

Therefore, we conclude that if the revocable key DP-ABE scheme is IND-sHRSS secure

then HPVC as instantiated by Algorithms 1–8 is secure in the sense of selective, semi-

static revocation.

5.6.3 Selective Authorised Computation

Lemma 5.13. The HPVC scheme defined by Algorithms 1–8 is secure in the sense

of selective authorised computation (Figure 5.4) under the same assumptions as in

Theorem 5.10.

Proof. In this proof, we aim to perform a reduction from the selective authorised com-

putation game (Figure 5.4) to the IND-sHRSS security of the underlying revocable

key DP-ABE scheme (Figure 5.5). We wish to prove this reduction by achieving a

contradiction and therefore we assume that AHPVC is an adversary with non-negligible

probability against the selective authorised computation game when instantiated by Al-

gorithms 1–8. We show that we can construct an adversary AABE that uses AHPVC as a

subroutine to break the IND-sHRSS security of the indirectly revocable key DP-ABE

scheme. Note that the notion of selective authorised computation is only meaningful

as long as the system is run in the RPVC-AC mode. Let C be a challenger playing the

IND-sHRSS game with AABE, and AABE acts as a challenger for AHPVC.

1. AHPVC begins by declaring its choice of challenge input parameters for the RPVC-

AC mode consisting of F , X?, the authorisation policy P and the function label

{l(F)}.

2. AABE needs to form its own challenge input for the IND-sHRSS game. Thus,

AABE sets its challenge for the time period t̃ = 1, and it forms ω̃ = AX? and

S̃ = P ∧ {l(F)}. Finally, it sends (t̃, (ω̃, S̃)) to the challenger.

3. C runs the DPABE.Setup algorithm to generate mpkABE,mskABE and sends

mpkABE to AABE.

193

5.6 Proofs of Security

4. AABE simulates running HPVC.Setup such that the outcome is consistent with

the previously generated mpkABE from C. It executes the algorithm as detailed

with the exception of line 2, since msk0
ABE and mpk0

ABE were already generated

by the challenger. AABE chooses an empty list of currently revoked entities R

and sends it to the challenger.

5. AABE runs HPVC.FnInit as detailed in Algorithm 2.

6. AABE must now generate a challenge for AHPVC. AABE chooses three distinct,

equal length messages m0,m1 and m′ uniformly at random from the message

space. It then sends m0 and m1 to C as its choice of challenge for the IND-sHRSS

game. C chooses a random bit b?
$← {0, 1} and returns

ct?
$← ABE.Encrypt(mb? , ω̃, P ∧{l(F)}, t̃,mpk0

ABE). AABE sets c = ct? and gener-

ates itself the second ciphertext by encrypting m′ as c′
$← ABE.Encrypt(m′, ω̃, P ∧

{l(F)}, t̃,mpk1
ABE). Finally, AABE forms the challenge problem instance σ? =

(c, c′). AABE selects a bit s
$← {0, 1} and forms the verification key as vk? =

(g(ms), g(m′), LReg). Note that s intuitively corresponds to AABE’s guess for b?.

7. AHPVC receives the resulting parameters from ProbGen and is provided with oracle

access to which AABE responds in the following way:

• HPVC.FnInit(·,mk, pp) and HPVC.Register(·,mk, pp) are executed as speci-

fied in Algorithms 2 and 3.

• Queries of the form HPVC.Certify(RPVC-AC, Si, (F,ψ), {l(F)},Fi,mk, pp)
are handled by AABE by running the Certify oracle as specified in Figure 5.4.

In case the queried set of subjective attributes ψ satisfy the challenge au-

thorisation policy then AABE returns ⊥. Otherwise, AABE executes Algo-

rithm 4 as detailed with the exception in lines 6 and 7, as these rely on

the master secret key msk0
ABE held by the challenger. In order to sim-

ulate line 6, AABE requires to make a KeyGen oracle query of the form

OKeyGen(Si, (F,Aψ ∪
⋃
lk∈Li lk),msk

0
ABE,mpk

0
ABE). The challenger responds

by running the KeyGen oracle as detailed in Figure 5.5 which returns a valid

key if and only if ω̃ /∈ O or Aψ ∪
⋃
lk∈Li lk /∈ S̃ or Si ∈ R. However, for the

query to have been made to KeyGen, AABE must not have returned ⊥ in the

Certify oracle request in Figure 5.4 and therefore ψ /∈ P , and hence ψ /∈ S̃.

Therefore, the challenger can always return a valid decryption key sk0
ABE.

In order to simulate line 7 in the Certify algorithm, AABE makes a query to

the challenger of the form OKeyUpdate(QRev, t,msk
0
ABE,mpk

0
ABE). Here the

challenger responds as detailed in Figure 5.5 which returns a valid update

key if and only if t 6= t̃ or R ⊆ QRev. Since R was initially chosen to be

empty and thus R ⊆ QRev for any QRev. Therefore, the challenger can create

a valid update key.

194

5.6 Proofs of Security

• Queries of the form HPVC.Revoke(τθF (X?)
,mk, pp) are handled by AABE ex-

ecuting Algorithm 8 with the exception of line 6. Here AABE is required to

make KeyUpdate oracle calls to the challenger of the form

OKeyUpdate(QRev, t,msk
0
ABE,mpk

0
ABE). The challenger returns a valid up-

date key through a KeyUpdate oracle call (Figure 5.5) if and only if t 6= t̃ or

R ⊆ QRev. Since R was initially chosen to be empty and thus R ⊆ R for

any R and in particular LRev. Therefore, the challenger can always create a

valid update key.

8. Eventually AHPVC finishes its oracle query phase and outputs its guess θ? which

corresponds to the result of F (X?) protected by an authorisation policy P . Note

that AHPVC never received a key for a set of authorisation attributes s ∈ P .

9. As θ? should appear valid, by construction it should contain a non-⊥ plaintext

which we denote by Y . If g(Y) = g(ms), AABE guesses b′ = s. Else, AABE

guesses b′ = 1− s.
If g(Y) = g(m′), AABE makes a random guess b′ = b̃

$← {0, 1} since AHPVC did

not forge a result for either m0 or m1 and therefore is of no use for AABE in order

to break the IND-sHRSS game.

Now we consider the advantage of AABE playing the IND-sHRSS game. By assump-

tion, AHPVC has a non-negligible advantage δ against the selective authorised compu-

tation game. It follows

Pr[b′ = b?] = Pr[b′ = b?|s = b?] Pr[s = b?] + Pr[b′ = b?|1− s = b?] Pr[1− s = b?]

+ Pr[b′ = b?|b̃ = b?] Pr[b̃ = b?]

= Pr[g(Y) = g(ms)|s = b?] Pr[s = b?]

+ Pr[g(Y) 6= g(ms)|1− s = b?] Pr[1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] Pr[b̃ = b?]

=
1

2
Pr[g(Y) = g(ms)|s = b?] +

1

2
Pr[g(Y) 6= g(ms)|1− s = b?]

+
1

2
Pr[g(Y) = g(m′)|b̃ = b?]

=
1

2

(
Pr[g(Y) = g(ms)|s = b?] + (1− Pr[g(Y) = g(ms)|1− s = b?])

+ Pr[g(Y) = g(m′)|b̃ = b?]
)

=
1

2

(
Pr[g(Y) = g(ms)|s = b?]− Pr[g(Y) = g(ms)|1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] + 1
)

=
1

2
(δ + 1).

195

5.7 Conclusion

Hence,

AdvAABE
>

∣∣∣∣Pr[b′ = b?]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

Since δ is non-negligible, δ2 is also non-negligible. If AHPVC has advantage δ at breaking

the selective authorised computation game then AABE can win the IND-sHRSS game

with non-negligible probability. However, since the indirectly revocable key DP-ABE

scheme was assumed to be IND-sHRSS secure, such an adversary AHPVC cannot exist.

Therefore, we conclude that if the revocable key DP-ABE scheme is IND-sHRSS

secure then HPVC as instantiated by Algorithms 1–8 is secure in the sense of selective

authorised computations.

5.7 Conclusion

In this chapter, we have introduced an umbrella notion for PVC called hybrid publicly

verifiable outsourced computation. HPVC supports three different modes of computa-

tion (RPVC, VDC, and RPVC-AC) that we have introduced throughout this thesis so

far, and thus meets diverse user requirements of a large multi-user system. In other

words, our model enables entities to request computations from other users, restrict

which entities can perform computations on their behalf, perform computations for

other users, and make data available for queries from other users, all in a verifiable

manner. We provide an instantiation of HPVC built from a novel use of DP-ABE.

DP-ABE has previously attracted relatively little attention in the literature, which we

believe to be primarily due to its applications being less obvious than for the single-

policy ABE schemes. Whilst KP- and CP-ABE are generally considered in the context

of cryptographic access control, it is unclear that the policies enforced by DP-ABE are

natural choices for access control. Thus an interesting side-effect of this chapter is to

show that additional applications for DP-ABE do exist.

In future work, one may further investigate our revocable DP-ABE scheme to compare

the efficiency of revoking the key- and ciphertext-policies. Furthermore, it would be

beneficial to investigate techniques in order to enable the stored data at the server to

be updated.

196

Chapter 6

Extended Functionality in Verifiable
Searchable Encryption

Contents

6.1 Introduction . 197

6.2 Extended Verifiable Searchable Encryption 199

6.3 Security Models . 204

6.4 Construction . 207

6.5 Proofs of Security . 219

6.6 Conclusion . 229

In this chapter we use verifiable outsourced computation techniques from the

previous chapters to enable a wider family of queries in verifiable searchable

encryption. We introduce a scheme based upon ciphertext-policy attribute-

based encryption that permits a user to verify that search results are correct

and complete. Our scheme also permits verifiable computational queries

over keywords and specific data values, that go beyond the standard key-

word matching queries, to allow functions such as averaging or counting

operations. The results of this chapter appear in [7].

6.1 Introduction

With the emergence of cloud computing, it is now common practice for data owners

to outsource their data to public servers providing storage on a pay-as-you-go basis.

This can reduce the costs of data storage compared with that of running a private data

centre (e.g. hardware, construction, air conditioning and security costs), making this a

cost effective solution. If the server is not fully trusted and the data is of a sensitive

nature, the data owner may wish to encrypt the data to ensure confidentiality. Un-

fortunately, this prevents the efficient retrieval of specific portions of the data as the

server is unable to identify the relevant information.

The above setting has been studied intensively in recent years. For example, searchable

encryption as introduced in Section 2.4 addresses this issue by indexing the encrypted

data in such a way as to allow a server to execute a search query (formed by the data

197

6.1 Introduction

owner or an authorised data user) over the encrypted data and return the identifiers

of any file that satisfies the search query. In this chapter, we study whether techniques

from the area of publicly verifiable outsourced computation lend themselves in any

meaningful way to the setting of searchable encryption. We answer in the affirma-

tive and show that techniques from publicly verifiable delegable computation (VDC)

as developed in Chapter 4 can be used to build a verifiable searchable encryption

(VSE) scheme that is able to handle a wider class of queries compared to current VSE

approaches. Concretely, we use CP-ABE to build an extended verifiable searchable en-

cryption (EVSE) scheme and embed the static data set (documents) in a server’s secret

key whilst the queries can only be requested by authorised users being in possession

of a secret user key. In more detail, the server holds an outsourced database from the

data owner which is made available for being searched over by authorised users. It is

crucial to have a verification mechanism in this context since the users querying the

database never possessed the data themselves and wish to obtain an assurance that the

server has not cheated by returning malformed search results. Note that by employing

techniques from Chapter 4, we achieve the scheme being publicly verifiable enabling

anyone to verify the correctness and completeness of the query results but the scheme

is not publicly delegable.

By adapting techniques from VDC to VSE, our scheme is able to perform a wider

family of queries including some types of computations. We can form the following

queries.

• More expressive queries: our scheme supports queries such as boolean formulas

involving conjunctions, disjunctions and negations, threshold operations, polyno-

mials, arbitrary CNF and DNF formulas, and fuzzy search.1

• Evaluation of computations: our scheme supports the evaluation of some com-

putations over the encrypted data, such as averaging and counting operations.

As well as assigning keywords to label data, we propose to also assign keywords

representing certain data values that may be computed over (either in the form

of single keywords or as a string of keywords encoding binary data).

Related Work

The scheme by Zheng et al. [148] also uses ABE primitives in their construction. This

scheme is able to achieve multi-level access, where users can be restricted to searching

only certain parts of the database. Keywords are grouped with respect to their access

control policies, and the search time is linear in the number of groups. However, their

scheme is restricted to only achieve a single keyword equality search. Sun et al. [136]

introduced a dynamic SE scheme that can support conjunctive queries and is based

upon ABE in order to create the indexes. Each user in the system has a separate

1Depending on the choice of underlying ABE scheme; see Section 6.4.1.

198

6.2 Extended Verifiable Searchable Encryption

public key to create their indexes which can be added to the server at anytime. This

scheme uses a combination of bloom filters and signatures to achieve verifiability of

search results. Curtmola et al. [57] extended the SE system model to allow multiple

users to query the data, using broadcast encryption to manage user access privileges.

We will make use of broadcast encryption in a similar way to authorise users to query

data stored at the server. Abdalla et al. [1] raised the issue of building a searchable

encryption scheme that enables a user to form more advanced queries, such as Boolean

formulas for keywords. The schemes presented in [37, 84, 116] also provide solutions

towards this issue by enabling users to form queries for conjunctive combinations of

keywords, range queries, and subset queries. We believe that our work also contributes

to achieving richer query functionality on encrypted data.

Organisation of Chapter

In Section 6.2, we describe and provide a formal definition of our verifiable search-

able encryption model with extended functionalities and discuss the possible types of

queries that are captured by our scheme. Next, in Section 6.3, we define three notions

of security that are relevant in our context, and in Section 6.4 we provide an exam-

ple construction of EVSE based on ciphertext-policy attribute-based encryption. In

Section 6.5, we show that our given construction is secure according to the introduced

security models. We conclude this chapter in Section 6.6.

6.2 Extended Verifiable Searchable Encryption

In this section, we introduce a model for verifiable searchable encryption using verifiable

computation techniques from the previous chapters in order to enable a wider family of

queries, and some types of computations, to be performed over outsourced encrypted

data with (publicly) verifiable query results.

6.2.1 Informal Overview

Our system model comprises the same entity population as previously considered in

the literature, i.e. it comprises a data owner, a remote storage server, and a set of

authorised data users. The data owner wishes to outsource documents and controls

which additional users are able to query its encrypted data. Following the accepted

format used in searchable encryption, queries may be formulated over keywords which,

for example, may identify documents that are associated with a given set of keywords.

However, in our setting, we also allow computational queries of functions in the class

NC1, which consists of Boolean functions computable by circuits of depth O(log n)

where each gate has a fan-in of two, over encoded data values.

199

6.2 Extended Verifiable Searchable Encryption

As a motivating practical scenario for our work, consider workgroups within an organ-

isation. The manager or system administrator acts as the data owner for the organisa-

tion and outsources a shared encrypted database to a remote server. Authorisation is

granted by issuing a secret key to each user within the organisation which is required

when creating a query token qtQ (or trapdoor) for a particular query Q. The token is

sent to the server that evaluates the query on the encoded index to generate a search

result θQ. We allow any entity to verify the correctness and completeness of the re-

sult and thus achieve public verifiability. That is, we also permit the server to verify

correctness to avoid the rejection problem (cf. Section 2.7), where a server may learn

some useful information by observing if results are accepted.

Throughout this chapter, we assume a strict separation between queriers (the data

owner and users) and the remote server storing the data. We do not enable the server

to issue queries itself since it would trivially be able to learn the encoding of the index

and queries. In contrast, legitimate users know this encoding and are able to obtain

meaningful results.

6.2.2 Formal Definition

An EVSE scheme for a family of queries F begins with the data owner initialising the

scheme by running Setup to create the public parameters and the master secret key.

The data owner wishes to outsource data D which is considered to be a collection of n

documents. Prior to outsourcing, the data owner specifies a pre-index for D, denoted

by δ(D), which assigns a set of descriptive labels to each document, for example key-

words contained in the document or specific data values that may be computed upon.

The encoded form of the data, including the descriptive labels, is referred to as the

index of D and generated by running the algorithm BuildIndex. The algorithm outputs

the index ID and the data owner stores it at the server.

In order to be able to form a valid query, a data owner first authorises a user by issuing

her with a secret key. An authorised user executes the Query algorithm to request a

search over the encrypted data from the server. The user specifies a query Q and uses

the authorisation key, and the algorithm outputs the query token qtQ for Q as well as

a verification key vkQ that enables anyone to verify the search result. In the Search

algorithm the server S uses its index ID and the encoded query token to output an

encoded search result θQ corresponding to the actual underlying result.

Any entity is able to verify the correctness of θQ using vkQ. Verification outputs the

result r = Q(δ(D)) indicating that the search was performed correctly, or else r =⊥
showing that the search result is malformed.

200

6.2 Extended Verifiable Searchable Encryption

Given that the data owner enrolled multiple users to query its outsourced database, it

may well be desirable that misbehaving users, or in terms of the above example where

users may leave an organisation, are prevented from further querying the database and

as such being revoked from the system. In order to revoke a user the data owner could

simply initialise a new system and provide each authorised user within this system

with a new secret key. However, this is an expensive solution given that the data

owner needs to invest a large amount of resources to process the data and keys yet

again. Thus, in our scheme revocation is based on provided states between authorised

users and the server, i.e. the states serve as a proof that each entity within the system

is authorised to form queries. In case a user is revoked, the data owner simply updates

and re-distributes the respective states to all non-revoked entities.

Note that we slightly change algorithm names for our scheme compared to “classical”

searchable encryption schemes to accommodate the blend between searchable encryp-

tion and publicly verifiable outsourced computation. Our multi-user (single-server)

EVSE scheme is more formally captured in the following definition.

Definition 6.1. An extended verifiable searchable encryption (EVSE) scheme com-

prises the following algorithms:

1. (mk, pp)
$← Setup(1λ,U) : this randomised algorithm is run by the data owner to

initialise the system. It takes as input the security parameter λ and a universe

of attributes U representing keywords and data points. The algorithm outputs the

data owner’s master secret key mk that is used for further administrative tasks

and public parameters pp, both of which are provided to the remaining algorithms

where required;

2. (ID, sts, sto)
$← BuildIndex(δ(D), l(δ(D)), G,mk, pp) : this randomised algorithm

is run by the data owner to output a searchable index ID for the data D, as well

as a server state sts and data owner state sto.2 The algorithm uses as input the

master secret key and public parameters, the pre-index of the data δ(D) and a

unique label l(δ(D)) representing the pre-index, as well as the set G of authorised

users;

3. skid
$← AddUser(id, G,mk, pp) : this randomised algorithm is run by the data

owner to authorise a user id to enable them to form valid queries for querying

the data. The algorithm authorises a user id by issuing them a secret key skid.

The inputs are a user id, the current set of authorised users, as well as the public

parameters and master secret key;

4. (qtQ, vkQ)
$← Query(Q, sts, sto, skid, pp) : this randomised algorithm is run by an

authorised user using its secret key, public parameters and both states to generate

2The data owner shares its state with each authorised user and thus sto = stu. For simplicity we
will only use the notation sto.

201

6.2 Extended Verifiable Searchable Encryption

a query token qtQ for a query Q she wishes to search for over the data. It further

also outputs a public verification key vkQ;

5. θQ
$← Search(ID, qtQ, sts, skS, pp) : this randomised algorithm is run by the server

to execute a query specified by the query token qtQ on the index ID. It generates

an encoded result θQ which can be returned to the querying user or published;

6. r ← Verify(θQ, vkQ, pp) : this algorithm can be run by any entity. The inputs are

the encoded output θQ produced by the server, the verification key vkQ and the

public parameters pp. The algorithm produces an output r = Q(δ(D)) if the search

was performed correctly, or else r =⊥ indicating that the search was performed

incorrectly;

7. (st′s, st
′
o)

$← RevokeUser(id, G,mk, pp) : this randomised algorithm is run by the

data owner using its master secret key to revoke a user’s authorisation to form

further queries. It does so by generating new server and data owner states and

distributes them accordingly.

Although not explicitly mentioned, the data owner may update the public parameters

pp during any algorithm in order to reflect any changes in the entity population as

new users may have been added and granted the ability to perform searches over the

outsourced database. The algorithms AddUser and RevokeUser can be run at any point

in the scheme after the system was initialised and the index was created. Note that we

assume throughout this chapter that the server does not collude with revoked users.

An EVSE scheme is correct if there is a negligible probability that verification does not

succeed when all algorithms are run honestly. More formally this can be represented

as follows.

Definition 6.2. An extended verifiable searchable encryption scheme is correct for a

family of queries F if for all queries Q ∈ F and all non-revoked entities, the following

holds:

Pr[(mk, pp)
$← Setup(1λ,U),

(ID, sts, sto)
$← BuildIndex(δ(D), l(δ(D)), G,mk, pp),

skid
$← AddUser(id, G,mk, pp),

(qtQ, vkQ)
$← Query(Q, sts, sto, skid, pp),

θQ
$← Search(ID, qtQ, sts, skS, pp),

r ← Verify(θQ, vkQ, pp)

(st′s, st
′
o)

$← RevokeUser(id, G,mk, pp)]

= 1− negl(λ).

202

6.2 Extended Verifiable Searchable Encryption

Server

DO

Public

u1 u2

ID
sku1 sku2

qtQ1 qtQ2

θQ1 θQ2

pp
vkQ1 vkQ2

Figure 6.1: Operation of an EVSE scheme

We consider the following two main types of queries in this chapter:

• Keyword matching queries: Queries of this type have formed the basis of

most prior work in SE. Suppose there exists a universe (dictionary) of keywords.

Each encrypted data item is associated with an index of one or more keywords

to describe the contents. Queries are formed over the same universe of keywords.

In this work, we permit Boolean formulas over keywords (e.g. ((a∧ b)∨ c) where

a, b, c are keywords). We return an identifier for each data item whose associated

keywords in the index satisfy this formula. Thus we can perform very expressive

search queries over keywords.

• Computational queries: Queries of this type are similar to the operations

commonly discussed in the context of outsourced computation. We allow statis-

tical queries over keywords, e.g. counting the number of data items that satisfy

a keyword matching query, as well as operations over selected data values that

have been encoded using additional portions of the keyword universe. It is pos-

sible to encode the entire database in such a way to enable computations over

all data fields, but it would usually be more efficient to select a (small) subset of

fields that are most useful or most frequently queried. Clearly, keyword matching

queries can be seen as a special case of computational queries where the function

operator is equality testing.

We can also combine both the functionalities of the aforementioned query types and

provide mixed queries. For example, such a query could be formulated as finding the

average of data values contained in all documents associated with a particular keyword.

All presented types of queries are performed in a verifiable manner to ensure that results

are correct and complete. Furthermore, each type of query can be formed either by a

single, authorised user or by a set of authorised users that may each contribute different

clauses to the search query. We discuss this type of query more detailed in Section 6.4.4.

In Figure 6.1, we illustrate the entity population and respective interaction within our

EVSE model.

203

6.3 Security Models

6.3 Security Models

In the context of EVSE we consider three different notions of security, namely public

verifiability, index privacy and query privacy. As usual, we represent the security

definitions in terms of a game-based notion. Throughout the following, the notation

AO denotes the adversary being provided with oracle access to the following algorithms:

BuildIndex(·, ·, ·,mk, pp), AddUser(·, ·,mk, pp), Query(·, ·, ·, ·, pp) and Search(·, ·, ·, ·, pp).
We assume that oracle queries are performed in a logical order such that all required

information is generated from previous queries.

6.3.1 Public Verifiability

In Figure 6.2, we present the notion of public verifiability. This notion ensures that a

server cannot cheat by returning an incorrect result without being detected. The game

begins with the challenger C initialising the system and providing the resulting public

parameters pp to the adversary A. The adversary is provided with oracle access as

detailed above. The adversary A selects the challenge inputs consisting of the challenge

ExpPubVerif
A

[
EVSE , 1λ

]
1 : (pp,mk)←$ Setup(1λ,U)

2 : (Q, δ(D?), l(δ(D?)), sts, sto)←$ AO(pp)

3 : G ⊆ Users

4 : id←$ Users

5 : skid←$ AddUser(id, G,mk, pp)

6 : (qtQ, vkQ)←$ Query(Q, sts, sto, skid, pp)

7 : θ?←$ AO(qtQ, vkQ, pp)

8 : r ← Verify(θ?, vkQ, pp)

9 : if (r 6=⊥) and (r 6= Q(δ(D?))) then

10 : return 1

11 : else return 0

Figure 6.2: The public verifiability experiment ExpPubVerif
A

[
EVSE , 1λ

]
query Q, the challenge pre-index δ(D?), respective pre-index label l(δ(D?)) as well

as server and data owner states. In the next step, the challenger runs AddUser on a

randomly chosen id from the user space enrolling a querier into the system by providing

them with a secret key. The challenger C then outputs a challenge by executing Query

on the challenge query. The adversary receives the resulting parameters from the

challenger and is again provided with oracle access as above. A wins if it produces

an encoded output that verifies correctly but does not correspond to the actual result

204

6.3 Security Models

Q(δ(D?)).

Definition 6.3. The advantage of a PPT adversary in the PubVerif game for an

EVSE construction, EVSE, is defined as:

AdvPubVerif
A,EVSE (1λ) = Pr

[
ExpPubVerif

A

[
EVSE , 1λ

]
→ 1

]
.

An EVSE scheme, EVSE, is secure in the sense of public verifiability if for all PPT

adversaries A, it holds that

AdvPubVerif
A,EVSE (1λ) ≤ negl(λ).

6.3.2 Selective Index Privacy

In Figure 6.3, we present the notion of index indistinguishability against a selective

chosen keyword attack, which ensures no information regarding the attributes is leaked

from the index. The game begins with the adversary outputting two sets of documents

D0 and D1 that it wishes to be challenged on, with the restriction that |D0| = |D1|. The

challenger runs Setup initialising the system and providing the resulting public param-

eters pp to the adversary A, and initialises a set G of authorised users. The challenger

selects a bit b uniformly at random selecting which set of documents to encode into the

index. Before the index is created, the challenger needs to create the pre-index from the

ExpsIndPriv
A

[
EVSE , 1λ

]
1 : (D0, D1)←$ A(1λ,U)

2 : if (|D0| 6= |D1|) then return 0

3 : (pp,mk)←$ Setup(1λ,U)

4 : b←$ {0, 1}
5 : G ⊆ Users

6 : (δ(Db), l(δ(Db)))← Encode(Db)

7 : (IDb
, sts, sto)←$ BuildIndex(δ(Db), l(δ(Db)), G,mk, pp)

8 : b′←$ AO(IDb
, sts, pp)

9 : if b′ = b then

10 : return 1

11 : else return 0

Figure 6.3: The selective index privacy experiment ExpsIndPriv
A

[
EVSE , 1λ

]
set of documentsDb. This is done using an Encode mechanism that takes the elements of

205

6.3 Security Models

Db as input and outputs the pre-index δ(Db) with respective label l(δ(Db)).
3 The chal-

lenger then runs BuildIndex using δ(Db) and l(δ(Db)) to produce the index IDb , which

is given to A. The adversary is then given oracle access to the following algorithms:

BuildIndex(·, ·, ·,mk, pp), AddUser(·, ·,mk, pp), Query(·, ·, ·, ·, pp) and Search(·, ·, ·, ·, pp)
which we denote by O. However, we require the restriction that the query results

are identical for each index ID0 , ID1 , i.e. if θQ0 ← Search(ID0 , qtQ, sts, skS, pp) and

θQ1 ← Search(ID1 , qtQ, sts, skS, pp) then we need θQ0 = θQ1. After this query phase, A
outputs a guess b′ and wins the game if its guess corresponds to the randomly chosen

bit b. In other words, A wins the game if it can identify which document set (D0 or

D1) was encoded into the index IDb .

Definition 6.4. The advantage of a PPT adversary in the sIndPriv game for an

EVSE construction, EVSE, is defined as:

AdvsIndPriv
A,EVSE (1λ) = Pr

[
ExpsIndPriv

A

[
EVSE , 1λ

]
→ 1

]
− 1

2
.

An EVSE scheme, EVSE, is secure in the sense of selective index privacy if for all

PPT adversaries A, it holds that

AdvsIndPriv
A,EVSE (1λ) ≤ negl(λ).

6.3.3 Selective Query Privacy

In Figure 6.4, we present the notion of selective query privacy that captures that the

queries themselves should not leak any information about the queries. Note the queries

only reveal the logical make-up (gates). This notion is formalised in a similar fashion

to the notion of index privacy (Figure 6.3).

The game begins with the adversary outputting two queries Q0 and Q1 that use the

same gates. We denote the gate structure of a query Q by GQ and require that

GQ0 = GQ1 , otherwise the challenger aborts the game. The challenger runs Setup,

initialising the system and providing the resulting public parameters pp to the adver-

sary A. Additionally the challenger selects a bit b uniformly at random and initialises

a set G of authorised users. In the next step, the challenger runs BuildIndex using δ(D)

and l(δ(D)) to produce the index ID as well as the server and data owner state. The

challenger provides the index and server state toAEVSE. In the next step, the challenger

runs AddUser on a randomly chosen id from the user space providing the entity with

a secret key. The challenger uses an Encode mechanism in order to prepare the query

Qb that will be used as input to Query, and runs the algorithm outputting an encoded

query token qtQb and verification key vkQb that is provided to the adversary. The adver-

sary is then given oracle access to the following algorithms: BuildIndex(·, ·, ·,mk, pp),
3Encode is not required in our instantiation as the pre-indexes can be chosen directly from Ũ as the

user knows the permutation Π and the mapping from U ′ to Ũ ; the adversary however does not.

206

6.4 Construction

ExpsQueryPriv
A

[
EVSE , 1λ

]
1 : (Q0, Q1)←$ A(1λ,U)

2 : if (GQ0 6= GQ1) then return 0

3 : (pp,mk)←$ Setup(1λ,U)

4 : b←$ {0, 1}
5 : G ⊆ Users

6 : (ID, sts, sto)←$ BuildIndex(δ(D), l(δ(D)), G,mk, pp)

7 : id←$ Users

8 : skid←$ AddUser(id, G,mk, pp)

9 : Q̃b ← Encode(Qb)

10 : (qtQ̃b
, vkQ̃b

)←$ Query(Q̃b, sts, sto, skid, pp)

11 : b′←$ AO(qtQ̃b
, vkQ̃b

, ID, sts, pp)
12 : if b′ = b then

13 : return 1

14 : else return 0

Figure 6.4: The selective query privacy experiment ExpsQueryPriv
A

[
EVSE , 1λ

]

AddUser(·, ·,mk, pp), Query(·, ·, ·, ·, pp) and Search(·, ·, ·, ·, pp) which we denote by O.

Eventually, after the query phase it outputs its guess b′ for b, and wins the game if the

guess was correct.

Definition 6.5. The advantage of a PPT adversary in the sQueryPriv game for an

EVSE construction, EVSE, is defined as:

AdvsQueryPriv
A,EVSE (1λ) = Pr

[
ExpsQueryPriv

A

[
EVSE , 1λ

]
→ 1

]
− 1

2
.

An EVSE scheme, EVSE, is secure in the sense of selective query privacy if for all

PPT adversaries A, it holds that

AdvsQueryPriv
A,EVSE (1λ) ≤ negl(λ).

6.4 Construction

6.4.1 Overview

In this section, we provide a construction of an EVSE scheme and we base its instantia-

tion on a ciphertext-policy attribute-based encryption scheme. As shown in Chapter 4,

CP-ABE can be used to verifiably request computations to be performed on data held

207

6.4 Construction

by a server, and we referred to this mode of computation as VDC. In VDC, a trusted

key distribution centre (KDC) initialises the system and issues a CP-ABE decryption

key to the server pertaining to the data it holds. Here in the setting of EVSE, we use

a similar technique but have the data owner act as the KDC. Thus, we do not require

the data to be revealed to an external KDC and our underlying entity population cor-

responds to that in the searchable encryption literature. In our EVSE setting, the data

owner issues a CP-ABE decryption key to the server that corresponds to the index of

the data. The particular encoding method is described in Section 6.4.2.

We consider the family F of Boolean functions closed under complement, i.e. if F ∈ F
then F (X) = F (X)⊕ 1 is also in F . A query Q is represented as a Boolean function of

keywords and computational data points. If a monotonic CP-ABE scheme is used then

queries can be comprised of AND and OR gates (and negation can inefficiently be han-

dled by including both a positively and negatively labelled attribute in the universe and

requiring the presence of exactly one of them in the query). A non-monotonic CP-ABE

scheme enables queries formed from AND, OR and NOT gates, which is a universal set

of gates, and fuzzy CP-ABE enables fuzzy keyword search. We can achieve all func-

tions in the class NC1, which includes common arithmetic and comparison operators

useful in queries. An n-bit result can be formed by performing n Boolean queries, each

of which returns the ith bit of the output.

The query token qtQ for a query Q ∈ F comprises two CP-ABE ciphertexts for access

structures representing Q and Q ∈ F respectively. To perform the search, the server

attempts to decrypt each ciphertext under the secret decryption key and outputs the

result. Each decryption succeeds if and only if the query evaluates correctly on the

pre-index. Any entity within the system may perform the verification operation using

the public verification key to determine the search result and whether the search was

performed correctly.

6.4.2 Data Encoding

Defining the Index

Searchable encryption schemes usually operate on the level of documents with lists of

keywords. In this chapter, we have moved more towards a practice-oriented setting

where we operate on databases. That is, we suppose the database D to be outsourced

comprises n documents, i.e. D = D1, . . . , Dn. In the following we discuss how to form a

pre-index δ(D), which represents the keywords and data fields that may be queried over.

Let us denote by D a dictionary of keywords that describes the documents within the

data. D alone suffices for keyword matching queries but for computational queries,

208

6.4 Construction

we also need to be able to encode data values such that they can be input to queries

represented as access structures encoding Boolean functions. Thus, for each data field

x that may be input to a computational query, let the maximum size of the data value

be mx bits. We define mx additional attributes Ax,1, Ax,2, . . . , Ax,mx , and define the

universe C =
⋃
x∈D ∪mxi=1Ax,i to be the union of these attributes over all data fields.

Let y be a value stored in the data field x and let the binary representation of y be

y1, . . . , ymx . We view y as a characteristic tuple (cf. Section 2.7.3) of an attribute set

Ay ⊆ C, where Ay = {Ax,i : yi = 1}. In other words, we include an attribute for

position i in the set if and only if the ith bit of y equals 1.

Finally, in order to enable the index for all n documents to be encoded within a sin-

gle CP-ABE key (and hence for computations to be performed simultaneously on all

documents), and to ensure that the correct index data is used for each query, we must

encode a labelling of the document that each attribute pertains to. We define our

attribute universe U for the CP-ABE scheme to be U = {D ∪ C} × [n], i.e. we take n

copies of D and C and assume that all documents have the same fields. Each element

of {D∪C} describes a particular keyword or data value, and each copy relates to a dif-

ferent document in D. We index each copy of an attribute w ∈ {D∪C} as {wi}ni=1 and

then wi denotes the presence of w in document Di. In practice, it may be desirable to

use a ‘large universe’ CP-ABE scheme, wherein arbitrary textual strings are mapped to

attributes (group elements), e.g. using a hash function H. Thus, for a keyword or data

value w in the ith document, the attribute could be defined as H(w||i). Finally, the

pre-index of the data D is a set of attributes δ(D) ⊆ U . The index that is outsourced

will be a CP-ABE key generated over this attribute set.

Let us consider the following example that shows how we define the pre-index within our

system model. Suppose we have three documents D = D1, D2, D3 with the following

characteristics:

• Document 1: Keywords: Male, Vaccinated. Data: Age = 7 = 1112.

• Document 2: Keywords: Female. Data: Age = 4 = 1002.

• Document 3: Keywords: Male, Vaccinated. Data: -

Then, we can define the dictionary of keywords that describes those documents as

D = {Male, Female, Vaccinated}.

To enable computational queries on the documents, we need to define three additional

attributes that provide us with

C = {AAge,1, AAge,2, AAge,3}.

209

6.4 Construction

Next we need to form our attribute universe as

U ={D ∪ C} × [n]

={MaleDoc1, MaleDoc2, MaleDoc3,
FemaleDoc1, FemaleDoc2, FemaleDoc3,

VaccinatedDoc1, VaccinatedDoc2, VaccinatedDoc3,

A(Age,1),Doc1, A(Age,1),Doc2, A(Age,1),Doc3,

A(Age,2),Doc1, A(Age,2),Doc2, A(Age,2),Doc3,

A(Age,3),Doc1, A(Age,3),Doc2, A(Age,3),Doc3}.

We can now form the pre-index δ(D) ⊆ U of the data D that represents the available

keywords and data fields. Thus, the pre-index corresponds to

δ(D) ={MaleDoc1, VaccinatedDoc1, A(Age,1),Doc1, A(Age,2),Doc1, A(Age,3),Doc1,

FemaleDoc2, A(Age,1),Doc2,

MaleDoc3, VaccinatedDoc3},

and the index given to the server is a CP-ABE decryption key over this attribute set.

Hiding the Index

In general, CP-ABE schemes do not hide the attributes within the decryption key. This

is usually expected behaviour since CP-ABE is often used to cryptographically enforce

access control policies [67, 93] and it is natural to assume that an entity is aware of their

access rights. However, in this setting we are using CP-ABE not to protect objects

from unauthorised access, but instead to prove the outcome of a function evaluation

as in previous chapters. The decryption keys in our setting are formed over attributes

encoding the index of outsourced data, as opposed to encoding access rights. Since the

server should not learn any information about the data, including the index, we must

implement a mechanism by which the decryption key hides the associated attributes.

In many CP-ABE schemes, the public parameters comprise an ordered set of group el-

ements [142], each associated with an attribute from the universe. In more detail, that

is, for all i ∈ U , choose ti
$← Zp, then form the encoded attribute set {gti}i∈U . Thus,

given a key (or ciphertext) that comprises gti , it is possible, based on the ordering of

this set, to determine the attribute i ∈ U it relates to. In addition, the attributes may

be listed in the clear, and attached to keys and ciphertexts to indicate which group

elements should be applied at each point. Clearly, this is unsuitable for our requirement

to hide the index.

210

6.4 Construction

To this end, we first apply a random permutation to the universe of attributes U
such that the position of the group elements within the ordered set does not reveal

the attribute string (unless the permutation is known). We then use a symmetric

encryption scheme to encrypt each attribute x ∈ U under a key k, and instantiate the

CP-ABE scheme on this universe of encrypted attributes. Thus, without knowledge

of the key k, the server should be unable to determine the attribute x that a given

group element corresponds to. We assume that only the keywords or data items being

searched and computed over are considered sensitive, and not the logical make-up of

the Boolean function (in terms of gates).

6.4.3 Formal Details

The data owner initialises the system and encodes the data as an index which is pushed

to the server. Each authorised user will be issued with a personalised secret key enabling

them to form queries. Note that forming a query is similar to preparing a computational

request in VDC (cf. Section 4.4). In order to form a query Q, a user chooses a message

uniformly at random from the message space M to act as a verification token, and

encrypt this using the CP-ABE scheme under the access structure encoding Q. The

server attempts to decrypt the ciphertext and recovers the chosen message if and only

if Q(δ(D)) = 1. Note that this decryption procedure proceeds similarly to the basic

PVC principles as introduced in Section 2.7.3. By the indistinguishability security of

the CP-ABE scheme, the server learns nothing about the message if Q(δ(D)) = 0

since this corresponds to an access structure not being satisfied. Thus, if a server

returns the correct message, the user is assured that the query evaluated to 1 on the

data. If, however, Q(δ(D)) = 0, then decryption will return ⊥. This is insufficient for

verification purposes since the server can return ⊥ to convince a user of a false negative

search result. Thus, the user must produce two CP-ABE ciphertexts to overcome this

one-sided error. As in the previous chapters, one ciphertext corresponds to the query

Q, whilst the other ciphertext corresponds to the complement query Q (which always

outputs the opposite result to Q as the query is represented as a Boolean function).

Thus, if Q(δ(D)) = 0 then, necessarily, Q(δ(D)) = 1. Hence, the server’s key will

decrypt exactly one ciphertext and the returned message will distinguish whether Q or

Q was satisfied, and therefore the value of Q(δ(D)). A well-formed response (d0, d1)

from a server satisfies the following:

(d0, d1) =

(m0,⊥), if Q(δ(D)) = 1;

(⊥,m1), if Q(δ(D)) = 0.
(6.1)

If the returned plaintext does not match one of the randomly chosen messages then the

server has returned an incorrect result. This is also the case if both returned results

are ⊥ but a rational malicious server would never return this.

211

6.4 Construction

Public verifiability is achieved by publishing a token comprising a one-way function g

applied to each plaintext. Any entity can apply g to the server’s response and compare

with this token to check correctness.

Our adversarial model allows the adversary (and hence servers in our system) to hold

more than one index (key) as the data owner may have outsourced multiple data sets,

and therefore we must ensure that a key cannot produce a valid looking response

to a query on a different index. Similarly to the previous chapters, we achieve this

by labelling each pre-index with a label l(δ(D)) and define an attribute for each label.

Then, for a pre-index δ(D), the decryption key is formed over the attribute set (Aδ(D)∪
l(δ(D))).4 Recall that encoded data stored on the server’s side is a collection of n

documents, which we label D1, . . . , Dn. When making a query Q(δ(D)), a sub-query

Qi may be formed for each document (e.g. to check if a given keyword is contained in

each document). In this case, during Query the CP-ABE encryption algorithm uses the

access structure encoding of the conjunction (Qi ∧ l(δ(D))) for i ∈ [n]. A valid result

can only be formed by applying the sub-query to the specified document, which is also

labelled by Di ∈ D. Thus, the CP-ABE decryption algorithm succeeds if and only if

the query is satisfied and the label l(δ(D)) is matched in the key and ciphertext. Note

that a key for a different pre-index will not include the correct label and thus cannot

be used to compute search results for other data sets. Inputs to the Query algorithm

are assumed to be of this form.

6.4.4 Instantiation Details

Let CP-ABE = (ABE.Setup,ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) define a CP-ABE

encryption scheme over the universe U for a class of queries F closed under com-

plement. Let SE= (SE.KeyGen, SE.Encrypt, SE.Decrypt) be a symmetric encryption

scheme secure in the sense of IND-CPA. Let BE = (BE.KeyGen, BE.Encrypt, BE.Add,

BE.Decrypt) be a broadcast encryption scheme that retains IND-CPA security against

a coalition of revoked users. Finally, let g be a one-way function, and let Π and φ be

pseudo-random permutations (PRPs). Then Algorithms 1–7 define an EVSE scheme

for a class of queries F .

1. Setup, presented in Algorithm 1, aims to initialise the scheme. It starts with run-

ning BE.KeyGen to create a broadcast encryption key mkBE as well as SE.KeyGen

to output a symmetric encryption key kSE. It also chooses a random key κ serv-

ing as the key to the PRP Π. Since we aim to hide the index, we apply a PRP

Π to the universe of attributes U such that the position of elements within the

ordered set does not reveal the attribute string and thus we obtain U ′. We then

4Note that Aδ(D) = δ(D). We chose to use this notation to emphasise that the key is formed over
the attribute set as well as to keep consistency throughout this thesis with the used notation in the
previous chapters.

212

6.4 Construction

use a symmetric encryption scheme to encrypt each attribute in U ′ under a key

kSE obtaining an encrypted universe Ũ . The algorithm then calls the ABE.Setup

algorithm in order to initialise the CP-ABE scheme on this universe of encrypted

attributes Ũ . The output of the algorithm consists of the public parameters pp

and the master secret mk for the EVSE system. The public parameters consist

of the master public key mpkABE of the CP-ABE scheme and Ũ . The master

secret comprises of the master secret key mskABE of the CP-ABE scheme, the

broadcast encryption key mkBE, the symmetric encryption key kSE as well as the

PRP Π and its key κ.

Algorithm 1 (mk, pp)
$← Setup(1λ,U)

1 : mkBE←$ BE.KeyGen(1λ)

2 : kSE←$ SE.KeyGen(1λ)

3 : κ←$ {0, 1}λ

4 : U ′ ← Πκ(U)

5 : for i ∈ U ′ do

6 : ui←$ SE.Encrypt(i, kSE)

7 : endfor

8 : Ũ ← {ui}i∈U ′

9 : (mskABE,mpkABE)←$ ABE.Setup(1λ, Ũ)

10 : pp← (mpkABE, Ũ)

11 : mk ← (mskABE,mkBE, kSE, κ,Π)

2. BuildIndex, presented in Algorithm 2, aims to generate a searchable index in

form of a CP-ABE decryption key. This key is formed over the attribute set

(Aδ(D) ∪ l(δ(D))) where Aδ(D) expresses the pre-index δ(D) of the outsourced

data D which corresponds to a set of attributes in the universe Ũ that represent

the available keywords and data fields. The algorithm outputs the index which

is then given to the server. Next the algorithm samples a key j from {0, 1}λ that

is used to generate the server state sts. The server state simply consists of a

broadcast encryption of j and the set of authorised users that includes the server.

Finally the algorithm outputs an owner state sto which simply gets the key j

assigned. Note that this state is also provided to all authorised users within G.

213

6.4 Construction

Algorithm 2 (ID, sts, sto)
$← BuildIndex(δ(D), l(δ(D)), G,mk, pp)

1 : ID ←$ ABE.KeyGen((Aδ(D) ∪ l(δ(D))),mskABE,mpkABE)

2 : j←$ {0, 1}λ

3 : sts←$ BE.Encrypt(G, j,mkBE)

4 : sto ← j

3. AddUser, presented in Algorithm 3, aims to enrol entities within the system.

To add an entity, the algorithm generates an entity key ukid for the broadcast

encryption scheme running BE.Add. In case the entity is a user, then the user’s

secret key consists of the 5-tuple (uku, kSE, κ,Π, sto) that enables her to form

queries as well as being able to link back search results to the outsourced data.

In case the entity is a server, it simply gets the entity key uks assigned as its

secret key.

Algorithm 3 skid
$← AddUser(id, G,mk, pp)

1 : ukid←$ BE.Add(id,mkBE)

2 : if id is a user then

3 : sku ← (uku, kSE, κ,Π, sto)

4 : else

5 : sks ← uks

6 : endif

4. Query, presented in Algorithm 4, aims to prepare the user’s search request which

is sent to the server. Before forming the search query token, an authorised user

first retrieves the latest server state sts and uses her user key uku to recover j̃. If

j̃ 6= sto, then the algorithm aborts. Otherwise, a successful check indicates that

the user is in the correct state and thus authorised to form queries to search over

the outsourced database. When making a query Q, we may form sub-queries Qi

for each document of the database. Thus, for each sub-query Qi the algorithm

chooses two equal length messages m0,i and m1,i uniformly at random from the

message space. To form a search request (a query token qtQi) the algorithm needs

to form two CP-ABE ciphertexts c0,i and c1,i that encrypt the chosen messages

under the access structures Qi and Qi respectively. Those two ciphertexts form

the encoded query token qtQi , and the algorithm then encrypts them using a

PRP φ under key j outputting γi. Note that the user makes use of the PRP

in order to prove to the server that she possesses the valid current state and

thus is indeed authorised to send queries. The verification key vkQi is created

214

6.4 Construction

by applying a one-way function g to each message and g allows the key to be

published. Finally the algorithm outputs the set of γi as the query token qtQ,

and the set of verification keys as vkQ.

Algorithm 4 (qtQ, vkQ)
$← Query(Q, sts, sto, sku, pp)

1 : j̃ ← BE.Decrypt(sts, uku)

2 : if j̃ 6= sto then return 0

3 : for i = 1 to |Q| do

4 : (m0,i,m1,i)←$M×M
5 : c0,i←$ ABE.Encrypt(m0,i, Qi,mpkABE)

6 : c1,i←$ ABE.Encrypt(m1,i, Qi,mpkABE)

7 : qtQi ← (c0,i, c1,i)

8 : γi ← φj(qtQi
)

9 : vkQi
← (g(m0,i), g(m1,i))

10 : endfor

11 : qtQ ← {γi}|Q|i=1

12 : vkQ ← {vkQi}|Q|i=1

5. Search, presented in Algorithm 5, evaluates the search on the database returning

a search result. The algorithm first decrypts the current server state sts with

its server key uks to recover the key j. The algorithm uses the key j to recover

the query tokens by computing φ−1
j (γi). Note that the key j currently used for

φ is only known to the data owner and the set of currently authorised entities

(including the server), and thus this PRP evaluation determines whether the

request was formed by an authorised user and whether the server is authorised to

evaluate this request. Next the algorithm attempts to decrypt both ciphertexts

using the index ID. Decryption succeeds only if the query evaluates to 1 on the

input database represented in terms of the pre-index, i.e. the access structure is

satisfied. Since Qi and Qi output opposite results on the pre-index, this ensures

that exactly one plaintext will correspond to a failure symbol ⊥. Finally the

algorithm outputs the set of all encoded search results denoted by θQ.

215

6.4 Construction

Algorithm 5 θQ
$← Search(ID, qtQ, sts, skS, pp)

1 : j ← BE.Decrypt(sts, ukS)

2 : for i = 1 to |Q| do

3 : (qtQi
)← φ−1j (γi)

4 : qtQi = (c0,i, c1,i)

5 : d0,i ← ABE.Decrypt(c0,i, ID,mpkABE)

6 : d1,i ← ABE.Decrypt(c1,i, ID,mpkABE)

7 : θQi ← (d0,i, d1,i)

8 : endfor

9 : θQ ← {θQi
}|Q|i=1

6. Verify, presented in Algorithm 6, first parses each encoded output θQi as (d0,i, d1,i)

and each verification key vkQi as (g(m0,i), g(m1,i)). The algorithm applies the

one-way function g to each plaintext in θQi and compares the results to the compo-

nents in the verification key. If either comparison is successful, this indicates that

the server has indeed recovered a message. Otherwise, it shows that the server

provided a malformed response. Note, if m0,i was returned then Qi(δ(D)) = 1,

and otherwise if m1,i was returned then Qi(δ(D)) = 0 following equation (6.1).

Algorithm 6 r ← Verify(θQ, vkQ, pp)

1 : for i = 1 to |Q| do

2 : if g(m0,i) = g(d0,i) return ri ← 1

3 : elseif g(m1,i) = g(d1,i) return ri ← 0

4 : else r ←⊥
5 : endif

6 : endfor

7 : r ← {ri}|Q|i=1

7. RevokeUser, presented in Algorithm 7, aims to revoke a user in case the data

owner wishes to cancel her authorisation. The algorithm samples a new key j′

and creates a new updated server state. The updated server state st′s simply

consists of a broadcast encryption of j′ and the set of authorised users (including

the server) excluding the user to be revoked. The algorithm also outputs an

updated owner state st′o which simply gets the key j′ assigned. The data owner

sends st′s to the server and to all non-revoked users st′o.

216

6.4 Construction

Algorithm 7 (st′s, st
′
o)

$← RevokeUser(id, G,mk, pp)

1 : j′←$ {0, 1}λ

2 : st′s←$ BE.Encrypt(G \ id, j′,mkBE)

3 : st′o ← j′

Theorem 6.6. Given an IND-CPA secure CP-ABE scheme, an authenticated sym-

metric encryption scheme and a broadcast encryption scheme, both secure in the sense

of IND-CPA, pseudorandom permutations Π and φ, and a one-way function g. Let

EVSE be the extended verifiable searchable encryption scheme defined in Algorithms 1–

7. Then EVSE is secure in the sense of public verifiability (Figure 6.2), index privacy

(Figure 6.3) and query privacy (Figure 6.4).

The formal security proofs can be found in Section 6.5.

Note that in the algorithm RevokeUser the new state st′s is given to the server that

uses it to replace the old state. Thus, for all subsequent queries, the server uses the

new key j′ when inverting the PRP φ. Since revoked users (and unauthorised users)

are not able to recover j′, with overwhelming probability, their queries will not yield

valid query tokens after the server applies φ−1
j′ (γi). In other words, users receive their

keys for the broadcast encryption scheme only when they are authorised to search by

the data owner. However, a user who has not joined the system yet could retrieve

(by sending a request) the current server state sts from the server, i.e. the broadcast

encryption of j′, but since the user does not possess a correct authorisation key she

will not be able to recover j′. Thus, the user is not able to form valid query tokens.

Similarly, this works for the case that a user is revoked as she cannot recover j′ because

she is not part of the authorised set of users. Note that even if a re-authorised user may

be able to recover out-dated values of j that were used throughout searches while she

was was revoked this does not provide the user with any advantage against the server

since the values are no longer of interest. Furthermore, note that upon receiving the

query token, the server only needs to evaluate the PRP in order to determine whether

a user is revoked. In case we wish to implement additional contextual access control

for authorisation, we can follow the discussion in Section 5.2.3 and replace the PRP φ

with a key assignment scheme as introduced in [5].

In terms of the number of rounds of communication required per search, our EVSE

scheme requires only one round of communication. The search time and size of the

search results in our scheme is linear in n, i.e. it is linear in the amount of data items

stored on the server. To this end, EVSE may be more suited to smaller databases to

prevent these features from being prohibitively expensive. Our scheme hides the access

217

6.4 Construction

Scheme Data type Query type Publicly
Verifiable

Leakage Computations

[140] Static Ranked equality No AP,SP No

[104] Dynamic Equality No AP No

[135] Static Conjunctive, Disjunctive No AP No

[136] Dynamic Conjunctive No AP No

[133] Dynamic Equality No AP, SP No

[148] Static Equality No AP No

[141] Static Fuzzy No AP, SP No

[70] Static Semantic No AP, SP No

[48] Static Equality No AP, SP No

[51] Static Conjunctive Yes AP, SP No

Our
scheme

Conjunctive, Disjunctive,
Static Arbitrary CNF/DNF Yes GQ Yes

formulae, NC1

Table 6.1: Comparison of functionalities in searchable encryption schemes

pattern as all search results are of the same form, regardless of what type of query was

submitted.

As pointed out in Section 6.2.2, in some settings it might be desirable for multiple users

to form a joint query. For example, it could be that a query should be formed from

search terms arising from the expertise of multiple departments within an organisation.

Thus, each department could contribute additional terms to narrow the filter of search

results. Let us briefly consider three possible solutions to provide this functionality.

Firstly, one could use multi-input functional encryption [79] which extends CP-ABE

to permit multiple users to create partial ciphertexts and for a single key to decrypt

the union of these. Clearly, this provides a natural extension to our CP-ABE based

instantiation, but current constructions of multi-input FE require complex and expen-

sive primitives such as indistinguishability obfuscation. Instead, it could be possible

to assume all data users are provided with access to a shared common reference string

upon joining the system. This could simply be a random integer x along with a shared

hash key for a hash function H : Zp → Zp. Then, when forming a ciphertext, all users

compute x = H (x) and use the new value of x as the secret encryption exponent for

a CP-ABE scheme. Thus, all users are essentially using the same random coins in a

distributed version of the CP-ABE encryption algorithm.

Another solution is based on the use of oblivious transfer to allow one distinguished user

to collect CP-ABE ciphertext fragments from all other users relating to their input.

One implementation of this requires an ABE scheme with the local encoding property

as described by Gordon et al. [88].

218

6.5 Proofs of Security

In Table 6.1 we provide a brief comparison between our scheme and those in the lit-

erature as discussed throughout this chapter and in the background Section 2.4. The

abbreviation AP stands for access pattern, SP stands for search pattern and GQ denotes

the gate structure of a query Q.

6.5 Proofs of Security

In this section we present the full proof of Theorem 6.6 by providing proofs of security

for the notions of public verifiability, index privacy and query privacy.

6.5.1 Public Verifiability

Lemma 6.7. EVSE as defined in Algorithms 1–7 is secure in the sense of public veri-

fiability (Figure 6.2) under the same assumptions as in Theorem 6.6.

Proof. This proof is similar to the public verifiability proof presented in Section 4.5.

Suppose AEVSE is an adversary with non-negligible advantage against the public veri-

fiability experiment (Figure 6.2) when instantiated with Algorithms 1–7. We begin by

defining the following three games:

• Game 0. This is the public verifiability game as defined in Figure 6.2.

• Game 1. This is the same as Game 0 with the modification that in Query, we

no longer return an encryption of m0 and m1. Instead, we choose another equal

length random message m′ 6= m0,m1 and, if Q(δ(D?)) = 1, we replace c1 by

ABE.Encrypt(m′, Q ∧ l(δ(D?)),mpkABE). Otherwise, we replace c0 by

ABE.Encrypt(m′, Q∧l(δ(D?)),mpkABE). In other words, we replace the ciphertext

associated with the unsatisfied query with the encryption of a separate random

message unrelated to the other system parameters, and in particular to the veri-

fication keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing

a random message m′, we implicitly set m′ to be the challenge input w in the

one-way function game (Figure 2.8).

We show that an adversary with non-negligible advantage against the public verifiability

game can be used to construct an adversary that may invert the one-way function g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing

advantage between Game 0 and Game 1. Suppose otherwise, that AEVSE can distin-

guish the two games with non-negligible advantage δ. We then construct an adversary

AABE that uses AEVSE as a sub-routine to break the IND-CPA security of the CP-

ABE scheme. We consider a challenger C playing the IND-CPA game (Figure 2.4)

219

6.5 Proofs of Security

with attribute universe Ũ with AABE, who in turn acts as a challenger in the public

verifiability game for AEVSE:

1. The challenger starts with initialising A? to be {∅}. C continues by running

the ABE.Setup algorithm on the security parameter and attribute universe Ũ to

generate mpkABE and mskABE. The challenger gives mpkABE to AABE.

2. AABE now simulates running EVSE.Setup such that the outcome is consistent

with mpkABE. The master key mk is implicitly set to mskABE.

3. AEVSE is provided with the public parameters and oracles access to the following

functionalities, which are handled by AABE.

• EVSE.BuildIndex(·, ·, ·,mk, pp) can be run to generate the index for a queried

database D. To do so, AABE makes use of the KeyGen oracle OKeyGen

in the CP-ABE game. AABE then sets the attribute data set D̃ to be

(Aδ(D) ∪ l(δ(D))) and makes an oracle query to the challenger C of the

form OKeyGen(D̃,mk, pp). The challenger generates a CP-ABE decryption

key sk
ABE,D̃

if and only if D̃ /∈ A?. C may generate the index ID as, up to

this point, A? is still {∅}, and provide AABE with the key.

• All other oracles run according to their respective algorithms.

4. AEVSE outputs the query Q, its choice of pre-index δ(D?), the respective unique

label l(δ(D?)) as well as the server and data owner states as its challenge param-

eters.

5. AABE chooses the set of authorised users G.

6. AABE chooses a random id from the user space Users which will be used as input

for the algorithm AddUser. It simulates running EVSE.AddUser for the chosen id

creating a valid key for the Query algorithm.

7. To generate the challenge input, AABE begins by choosing three random equal

length messages m0, m1 and m′ from the message space.

Now AABE needs to choose its challenge access structure A? for the CP-ABE

IND-CPA game. First, it computes r = Q(δ(D?)). If r = 0, AABE sets A? =

(Q ∧ l(δ(D?))). Else it sets A? = (Q ∧ l(δ(D?))). Next it sends A? and the

messages m0 and m1 to C as its challenge parameters for the CP-ABE game.

We note that A? is a valid challenge access structure as the only queries made

to the KeyGen oracle OKeyGen of the CP-ABE IND-CPA game were initiated by

queries to the BuildIndex oracle OBuildIndex handled by AABE. Note that due to

the uniqueness of the labels present in the access structure, no requests to the

BuildIndex oracle for input documents D′ ⊂ D? would result in a KeyGen query

220

6.5 Proofs of Security

for attributes that satisfy A?. If the oracle is queried for D′ ⊇ D? then we can

observe that A? was chosen specifically such that it is unsatisfied on this input.

Thus, KeyGen is never queried for an attribute set that satisfies A?, and therefore

the challenge is valid.

C chooses a random bit b and returns ct?
$← ABE.Encrypt(mb,A?,mpkABE). Upon

receiving ct?, AABE chooses a random bit t which corresponds to AABE’s guess

for the challenger’s choice of b.

• If r = 1, AABE generates

c
$← ABE.Encrypt(m′, Q ∧ l(δ(D?)),mpkABE)

and sets c′ = ct? (formed over A? by C). It also sets vk = g(m′) and

vk′ = g(mt).

• Else r = 0, and AABE sets c = ct? and computes

c′
$← ABE.Encrypt(m′, Q ∧ l(δ(D?)),mpkABE).

It sets vk = g(mt) and vk′ = g(m′).

Finally, AABE sets qtQ = (c, c′) and vkQ = (vk, vk′).

8. AABE sends the output from Query along with the public information to AEVSE,

which is also given oracle access to which AABE responds as follows.

• EVSE.BuildIndex(·, ·, ·,mk, pp): To generate the index for the queried database

D, AABE follows the same procedure as specified in step 3. However, we note

that by the definition of the access structure A?, D̃ satisfies A? only if the

unique labels in D̃ and A? match. Furthermore, it follows that δ(D?) must

satisfy either Q or Q as chosen in A?. However, this was chosen specifically

such that δ(D?) does not satisfy the query, and therefore D̃ /∈ A? and C may

generate the key which corresponds to the index.

• All other oracles run according to their respective algorithms.

9. Eventually, AEVSE outputs θ? which it believes is a valid forgery (i.e. that the

output will be accepted yet does not correspond to the correct value of Q(δ(D?))).

10. AABE parses θ? as (d, d′). One of d and d′ will be ⊥ (by construction) and we

denote the other value by Y . Observe that, since AEVSE is assumed to be a

successful adversary against public verifiability, the non-⊥ value, Y , that it will

return will be the plaintext mt since the challenge access structure was always set

to be unsatisfied on the challenge input. Thus, if g(Y) = g(mt), AABE outputs a

guess b′ = t and otherwise guesses b′ = (1− t).

221

6.5 Proofs of Security

If t = b (the challenge bit chosen by C), we observe that the above corresponds to Game

0 (since the verification key comprises g(m′) where m′ is the message a legitimate server

could recover, and g(mb) where mb is the other plaintext).

Alternatively, t = 1 − b and the distribution of the above experiment is identical to

Game 1 (since the verification key comprises the legitimate message and a random

message m1−b that is unrelated to the ciphertext).

Now, we consider the advantage of this constructed adversary AABE playing the IND-

CPA game for CP-ABE. Recall that by assumption, AEVSE has a non-negligible ad-

vantage δ in distinguishing between Game 0 and Game 1, that is∣∣∣Pr
[
ExpGame 0

AEVSE

[
EVSE , 1λ

]
→ 1

]
− Pr

[
ExpGame 1

AEVSE

[
EVSE , 1λ

]
→ 1

]∣∣∣ > δ
where ExpGame i

AVDC

[
EVSE , 1λ

]
denotes the output of running AEVSE in Game i.

The probability of AABE guessing b correctly is:

Pr[b′ = b] = Pr[t = b] Pr[b′ = b|t = b] + Pr[t 6= b] Pr[b′ = b|t 6= b]

=
1

2
Pr[g(Y) = g(mt)|t = b] +

1

2
Pr[g(Y) 6= g(mt)|t 6= b]

=
1

2
Pr
[
ExpGame 0

AEVSE

[
EVSE , 1λ

]
→ 1

]
+

1

2
(1− Pr[g(Y) = g(mt)|t 6= b])

=
1

2
Pr
[
ExpGame 0

AEVSE

[
EVSE , 1λ

]
→ 1

]
+

1

2

(
1− Pr

[
ExpGame 1

AEVSE

[
EVSE , 1λ

]
→ 1

])
=

1

2

(
Pr
[
ExpGame 0

AEVSE

[
EVSE , 1λ

]
→ 1

]
− Pr

[
ExpGame 1

AEVSE

[
EVSE , 1λ

]
→ 1

]
+ 1
)

>
1

2
(δ + 1).

Hence,

AdvAABE
>

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

Therefore, if AEVSE has advantage δ at distinguishing these games then AABE can

win the IND-CPA game for CP-ABE with non-negligible probability. Thus since we

assumed the CP-ABE scheme to be secure, we conclude that AEVSE cannot distinguish

Game 0 from Game 1 with non-negligible probability.

222

6.5 Proofs of Security

Game 1 to Game 2. The transition from Game 1 to Game 2 is simply to set the

value of m′ to no longer be random but instead to correspond to the challenge w in the

one-way function inversion game. We argue that the adversary has no distinguishing

advantage between these games since the new value is independent of anything else

in the system bar the verification key g(w) and hence looks random to an adversary

with no additional information (in particular, AEVSE does not see the challenge for the

one-way function as this is played between C and AABE).

Final Proof. We now show that using AEVSE in Game 2, AABE can invert the

one-way function g – that is, given a challenge z = g(w) we can recover w. Specifically,

during Query, we choose the messages as follows:

• if Q(δ(D?)) = 1, we implicitly set m1 to be w and set the verification key com-

ponent vk′ = z. We choose m0 randomly from the message space and compute

the remainder of the verification key as usual.

• if Q(δ(D?)) = 0, we implicitly set m0 to be w and set the verification key com-

ponent vk = z. We choose m1 randomly from the message space and compute

the remainder of the verification key as usual.

Now, since AEVSE is assumed to be successful, it will output a forgery comprising the

plaintext encrypted under the unsatisfied query (Q or Q). By construction, this will

be w (and the adversary’s view is consistent since the verification key is simulated

correctly using z). AABE can therefore forward this result to C in order to invert the

one-way function with the same non-negligible probability that AEVSE has against the

public verifiability game.

We conclude that if the CP-ABE scheme is IND-CPA secure and the one-way function

is hard-to-invert, then EVSE as defined by Algorithms 1–7 is secure in the sense of

public verifiability.

6.5.2 Index Privacy

Lemma 6.8. EVSE as defined in Algorithms 1–7 is secure in the sense of index privacy

(Figure 6.3) under the same assumptions as in Theorem 6.6.

Proof. Suppose AEVSE is an adversary against the selective index privacy game (Fig-

ure 6.3) when instantiated with Algorithms 1-7. We begin by defining the following

two games:

• Game 0. This is the selective index privacy game as defined in Figure 6.3.

• Game 1. This is the same as Game 0 with the modification that we use a

random permutation in Algorithm 1 to construct Ũ .

223

6.5 Proofs of Security

As a first step of the proof, we show that there is a negligible function negl such that∣∣∣Pr
[
ExpGame 0

AEVSE

[
EVSE , 1λ

]
→ 1

]
− Pr

[
ExpGame 1

AEVSE

[
EVSE , 1λ

]
→ 1

]∣∣∣ ≤ negl(λ).

We use AEVSE to construct a distinguisher D for the permutation Π, and its goal is

to determine whether this permutation is “pseudorandom” or “random” by observing

whether AEVSE succeeds. The distinguisher is provided with oracle access O to some

function which either outputs a pseudorandom permutation or random permutation

during any invocation. If the adversary AEVSE succeeds then D guesses that its ora-

cle must be a pseudorandom permutation, whereas if AEVSE does not succeed then D
guesses that its oracle must be a random permutation.

The distinguisher D starts by simulating the selective index privacy game for AEVSE,

and queries the oracle O for any invocation in line 4 of the EVSE.Setup algorithm. The

game proceeds as specified and eventually AEVSE outputs a bit b′, and the distinguisher

outputs 1 if b′ = b indicating that the adversary wins and 0 otherwise.

Now if D’s oracle is a pseudorandom permutation, then the adversary’s view when run

as a sub-routine by the distinguisher is distributed identically to the adversary’s view

in Game 0, and hence

Pr
κ←$ {0,1}λ

[
DΠκ(·)(1λ)→ 1

]
= Pr

[
ExpGame 0

AEVSE

[
EVSE , 1λ

]
→ 1

]
.

Similarly, it follows that if D’s oracle is a random permutation, then the adversary’s

view when run as a sub-routine by the distinguisher is distributed identically to the

adversary’s view in Game 1, and hence

Pr
Π̃←$ Perm

[
DΠ̃(·)(1λ)→ 1

]
= Pr

[
ExpGame 1

AEVSE

[
EVSE , 1λ

]
→ 1

]
.

By the assumption that Π is a pseudorandom permutation, it holds that∣∣∣Pr
[
DΠκ(·)(1λ)→ 1

]
− Pr

[
DΠ̃(·)(1λ)→ 1

]∣∣∣ ≤ negl(λ),

and hence it follows that the adversary’s advantage in distinguishing which game it

plays is negligible.

Reduction to IND-CPA. Now let AEVSE be an adversary with non-negligible ad-

vantage δ against Game 1. We then construct an adversary ASE that uses AEVSE as a

sub-routine to break the IND-CPA security of the symmetric encryption scheme SE .

We consider a challenger C playing the IND-CPA game (Figure 2.1) with ASE, that

in turn acts as a challenger in Game 1 for AEVSE:

1. AEVSE chooses its two challenge data sets, namely D0 = (d0,1, d0,2, ..., d0,q) and

224

6.5 Proofs of Security

D1 = (d1,1, d1,2, ..., d1,q) ⊆ U such that both contain the same number of elements

(|D0| = |D1|). Note that a rational adversary will always choose the two sets in

such a way that they differ by at least one element. AEVSE submits these challenge

sets to ASE.

2. ASE aborts the game in case the challenge data sets do not contain the same

number of elements and AEVSE loses immediately.

3. ASE simulates running EVSE.Setup and is provided with oracle calls to the LoR

encryption oracle by C. The adversary ASE passes both sets D0 and D1 to the

challenger as its challenge input parameters for the IND-CPA game. In more

detail, the challenger handles the LoR oracle call in the following way.

• C samples a random bit b̃ which it uses for the LoR encryption oracle.

• The challenger inputs every pair (d0,i, d1,i) ∈ D0 × D1 to the LoR oracle

OLoR(d0,i, d1,i, kSE, b̃) outputting challenge ciphertexts ct
b̃,i

. All returned

ciphertexts then form the set D?.

4. ASE simulates the ABE.Setup algorithm to generate mpkABE,mskABE and sends

mpkABE to AEVSE. It retains mskABE and sets the public parameters to pp ←
(mpkABE, Ũ).

5. ASE chooses a random bit b
$← {0, 1}.

6. ASE initialises the set of authorised users G from the user space.

7. ASE needs to create the attribute representation of the data set D?, i.e. it requires

to create a pre-index δ(D?) to encode it into the challenge index for AEVSE. This

is done using the algorithm Encode, which takes as input the elements from the

challenge set D? and maps them to elements in Ũ . It further also outputs an

attribute label for the pre-index l(δ(D?)).

8. ASE runs BuildIndex using the pre-index created in the previous step to create the

challenge index ID? for AEVSE. In more detail, ASE executes

ID? ←$ ABE.KeyGen((Aδ(D?) ∪ l(δ(D?))),mskABE,mpkABE) and provides AEVSE

with the challenge index. BuildIndex continues as specified and generates sts and

sto. sts is shared with AEVSE and sto is retained by ASE.

9. AEVSE receives all relevant outputs from above, and then is provided with oracle

access to which ASE responds. All oracles are executed as specified in their

respective algorithm. The only relevant restriction is that AEVSE cannot request

an index via a BuildIndex oracle query for the initial choice of data sets D0 and

D1.

10. Eventually AEVSE outputs its guess b′ for b.

225

6.5 Proofs of Security

11. If b′ = b, then ASE guesses b = b as its guess for the IND-CPA game.

Else b′ 6= b, then ASE makes a random guess b = b̂
$← {0, 1} since AEVSE is of no

use for ASE to break the IND-CPA game.

Now we consider the advantage of ASE playing the IND-CPA game. By assumption,

AEVSE has a non-negligible advantage against the selective index privacy game, i.e.

Pr[b′ = b] ≥ δ + 1
2 . Therefore it follows:

Pr[b = b̃] = Pr[b = b̃|b′ = b] Pr[b′ = b] + Pr[b = b̃|b′ 6= b] Pr[b′ 6= b]

= Pr[b = b̃] Pr[b′ = b] + Pr[b̂ = b̃] Pr[b′ 6= b]

=
1

2
Pr[b′ = b] +

1

2
Pr[b′ 6= b]

=
1

2

(
Pr[b′ = b] + Pr[b′ 6= b]

)
≥ 1

2

(
δ +

1

2
+

1

2

)
=

1

2
(δ + 1).

Hence,

AdvASE
>

∣∣∣∣Pr[b = b̃]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

Since δ is non-negligible, δ2 is also non-negligible. If AEVSE has advantage δ at breaking

the selective index privacy game then ASE can win the IND-CPA game with non-

negligible probability. However, since the SE scheme was assumed IND-CPA secure,

such an AEVSE cannot exist. Therefore, we conclude that if the SE scheme is IND-

CPA secure then EVSE as instantiated by Algorithms 1–7 is secure in the sense of

selective index privacy.

6.5.3 Query Privacy

Lemma 6.9. EVSE as defined in Algorithms 1–7 is secure in the sense of query privacy

(Figure 6.4) under the same assumptions as in Theorem 6.6.

Proof. This proof is very similar to the proof of Lemma 6.8. We begin by assuming

that AEVSE is an adversary with non-negligible advantage against the query privacy

game (Figure 6.4) when instantiated with Algorithms 1–7. We begin similarly to the

previous proof by defining the following two games:

• Game 0. This is the selective query privacy game as defined in Figure 6.4.

226

6.5 Proofs of Security

• Game 1. This is the same as Game 0 with the modification that we use a

random permutation in Algorithm 1 to construct Ũ .

As a first step of the proof, we show that there is a negligible function negl such that∣∣∣Pr
[
ExpGame 0

AEVSE

[
EVSE , 1λ

]
→ 1

]
− Pr

[
ExpGame 1

AEVSE

[
EVSE , 1λ

]
→ 1

]∣∣∣ ≤ negl(λ).

We use AEVSE to construct a distinguisher D for the permutation Π, and its goal is

to determine whether this permutation is “pseudorandom” or “random” by observing

whether AEVSE succeeds. The distinguisher is provided with oracle access O to some

function which either outputs a pseudorandom permutation or random permutation

during any invocation. If the adversary AEVSE succeeds then D guesses that its ora-

cle must be a pseudorandom permutation, whereas if AEVSE does not succeed then D
guesses that its oracle must be a random permutation.

The distinguisher D starts by simulating the selective index privacy game for AEVSE,

and queries the oracle O for any invocation in line 4 of the EVSE.Setup algorithm. The

game proceeds as specified and eventually AEVSE outputs a bit b′, and the distinguisher

outputs 1 if b′ = b indicating that the adversary wins and 0 otherwise.

Now if D’s oracle is a pseudorandom permutation, then the adversary’s view when run

as a sub-routine by the distinguisher is distributed identically to the adversary’s view

in Game 0, and hence

Pr
κ←$ {0,1}λ

[
DΠκ(·)(1λ)→ 1

]
= Pr

[
ExpGame 0

AEVSE

[
EVSE , 1λ

]
→ 1

]
.

Similarly, it follows that if D’s oracle is a random permutation, then the adversary’s

view when run as a sub-routine by the distinguisher is distributed identically to the

adversary’s view in Game 1, and hence

Pr
Π̃←$ Perm

[
DΠ̃(·)(1λ)→ 1

]
= Pr

[
ExpGame 1

AEVSE

[
EVSE , 1λ

]
→ 1

]
.

By the assumption that Π is a pseudorandom permutation, it holds that∣∣∣Pr
[
DΠκ(·)(1λ)→ 1

]
− Pr

[
DΠ̃(·)(1λ)→ 1

]∣∣∣ ≤ negl(λ),

and hence it follows that the adversary’s advantage in distinguishing which game it

plays is negligible.

Reduction to IND-CPA. Now let AEVSE be an adversary with non-negligible ad-

vantage δ against Game 1. We then construct an adversary ASE that uses AEVSE as a

sub-routine to break the IND-CPA security of the symmetric encryption scheme SE .

We consider a challenger C playing the IND-CPA game (Figure 2.1) with ASE, that

227

6.5 Proofs of Security

in turn acts as a challenger in Game 1 for AEVSE:

1. AEVSE chooses its two challenge queries Q0 and Q1 with the restriction that the

gate structures match in both queries, i.e. GQ0 = GQ1 . Note that in case GQ0 6=
GQ1 then ASE aborts the game and AEVSE loses immediately. The queries itself

are formed over attributes and a rational adversary will choose those queries in

such a way that they differ in at least one position. We denote the used attributes

for the challenge queries as q0 = (q0,1, q0,2, ..., q0,q) and q1 = (q1,1, q1,2, ..., q1,q) ⊆
U , respectively. AEVSE submits these challenge queries to ASE.

2. ASE simulates running EVSE.Setup and is provided with oracle calls to the LoR

encryption oracle by C. The adversary ASE passes both queries Q0 and Q1 to the

challenger and the underlying attributes (of the queries) are used as its challenge

input parameters for the IND-CPA game. In more detail, the challenger handles

the LoR oracle call in the following way.

• C samples a random bit b̃ which it uses for the LoR encryption oracle.

• The challenger inputs every pair (q0,i, q1,i) ∈ q0 × q1 to the LoR oracle

OLoR(q0,i, q1,i, kSE, b̃) outputting challenge ciphertexts ct
b̃,i

. All returned ci-

phertexts then form the attribute set q? of the query Q?.

3. ASE simulates the ABE.Setup algorithm to generate mpkABE,mskABE and sends

mpkABE to AEVSE. It retains mskABE and sets the public parameters to pp ←
(mpkABE, Ũ).

4. ASE chooses a random bit b
$← {0, 1}.

5. ASE initialises the set of authorised users G from the user space.

6. ASE runs BuildIndex to create the challenge index ID for AEVSE. In more detail,

ASE executes ID←$ ABE.KeyGen((Aδ(D) ∪ l(δ(D))),mskABE,mpkABE) and pro-

vides AEVSE with the index. BuildIndex continues as specified and generates sts

and sto. sts is shared with AEVSE and sto is retained by ASE.

7. ASE selects randomly a new identity id from the user space that it wishes to add

into the system. It runs AddUser to produce skid.

8. ASE needs to prepare the query Q? such that it can be used as an input in the

query algorithm. This is done using the algorithm Encode, which takes as input

the elements and maps them to elements in Ũ such that it forms a valid query Q̃.

9. ASE inputs Q̃ to the query algorithm Query and runs it as specified. The algorithm

outputs qt
Q̃

and vk
Q̃

which are both given to AEVSE.

228

6.6 Conclusion

10. AEVSE receives all relevant outputs from above, and then is provided with oracle

access to which ASE responds. All oracles are executed as specified in their

respective algorithms. The only relevant restriction is that AEVSE cannot request

query tokens via a Query oracle query for the initial choice of challenge queries

Q0 and Q1.

11. Eventually AEVSE outputs its guess b′ for b.

12. If b′ = b, then ASE guesses b = b as its guess for the IND-CPA game.

Else b′ 6= b, then ASE makes a random guess b = b̂
$← {0, 1} since AEVSE is of no

use for ASE to break the IND-CPA game.

Now we consider the advantage of ASE playing the IND-CPA game. By assumption,

AEVSE has a non-negligible advantage against the selective query privacy game, i.e.

Pr[b′ = b] ≥ δ + 1
2 . Therefore it follows:

Pr[b = b̃] = Pr[b = b̃|b′ = b] Pr[b′ = b] + Pr[b = b̃|b′ 6= b] Pr[b′ 6= b]

= Pr[b = b̃] Pr[b′ = b] + Pr[b̂ = b̃] Pr[b′ 6= b]

=
1

2
Pr[b′ = b] +

1

2
Pr[b′ 6= b]

=
1

2

(
Pr[b′ = b] + Pr[b′ 6= b]

)
≥ 1

2

(
δ +

1

2
+

1

2

)
=

1

2
(δ + 1).

Hence,

AdvASE
>

∣∣∣∣Pr[b = b̃]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

Since δ is non-negligible, δ2 is also non-negligible. If AEVSE has advantage δ at breaking

the selective query privacy game then ASE can win the IND-CPA game with non-

negligible probability. However, since the SE scheme was assumed IND-CPA secure,

such an AEVSE cannot exist. Therefore, we conclude that if the SE scheme is IND-

CPA secure then EVSE as instantiated by Algorithms 1–7 is secure in the sense of

selective query privacy.

6.6 Conclusion

In this chapter, we have introduced a model of multi-user verifiable searchable encryp-

tion with extended functionality enabling a querier to form a wider family of queries

229

6.6 Conclusion

including some type of computations, i.e. we extended the expressiveness of queries

that can be achieved in VSE. With this work we have begun to consider the applica-

tion of VC techniques from Chapter 4 in the setting of searchable encryption. On the

searchable encryption side, this enables additional functionality in the form of compu-

tational queries (e.g. computing the average of outsourced data fields that are linked

to a specific set of keywords), whilst on the VC side, this introduces additional privacy

concerns regarding the outsourced data and computations. No other VSE schemes to

our knowledge are able to perform the range of search queries or include negation of

keywords in their search queries. Additionally our scheme leaks neither the access nor

the search pattern to the server whilst executing a search. The choice of using VC

techniques based on ABE stems from the natural correspondence between attributes

and keywords in an index. We provided an instantiation of EVSE based on CP-ABE

and presented relevant security models in this context.

In future work, we will investigate whether other forms of VC enable us to achieve

different classes of functionality and especially improve efficiency. We would also like

to consider a model whereby multiple data owners can store data on a server without

each having to initialise their own scheme. In practice, this could result in employing

the KDC from the previous chapters setting up the system and publishing public pa-

rameters that any data owner can use, but enabling each data owner to generate their

own CP-ABE decryption keys for the data they hold to authorise users to query their

data without the need to involve the KDC. Furthermore, our scheme currently only

supports static data and in future work we wish to investigate extending our scheme

to support a dynamic data set as in the schemes [104, 133, 136].

230

Chapter 7

Cloud Storage Proofs of Retrievabil-
ity

Contents

7.1 Introduction . 231

7.2 Cloud Storage Proofs of Retrievability 234

7.3 Security Model . 239

7.4 Construction . 241

7.5 Practicability of CSPoR . 245

7.6 Evaluation . 259

7.7 Conclusion . 265

This chapter deals with the setting of providing provable data storage guar-

antees. One possible concept achieving such guarantees is known as proofs of

retrievability (PoR). We propose extensions and improvements to the cur-

rent PoR proposal in order to accommodate a more practical and applicable

framework. Thus, we introduce the notion of a storage container enabling

a client to store multiple different-sized files and propose a provably secure

instantiation checking retrievability of all files simultaneously. We discuss

different strategies a client can use in order to obtain a statement about

the retrievability from a server and finally evaluate the performance of our

scheme. The results of this chapter are currently under submission [97].

7.1 Introduction

Cloud service providers (CSPs) are gaining continuous importance over the last few

years as they offer various services in numerous application domains such as storage

services, computing services and key management services. Well-known examples of

providers are Amazon S3, Google Cloud Platform and Windows Azure. The huge suc-

cess of the cloud model is based on offering various benefits such as flexible scalability

and accessibility offered to companies and individuals to employ cloud services in a

cost effective manner. However, to fulfil the client’s expectation, the providers need to

build applications that are highly available. This can be a daunting process in prac-

tice. Therefore, the underlying key assumption for designing such applications is to

231

7.1 Introduction

assume that every component of the system will fail at some point in time. It is obvious

that based on this assumption, there is a need to create highly available services and

amongst other things we also require data consistency strategies for the cloud model.

Proofs of retrievability(PoR) [98, 126] offer such a strategy for the cloud’s storage

domain as they offer mechanisms in order to provide provable outsourced storage guar-

antees. We have introduced the concept of PoR in Section 2.8 and it has been subject to

a vast amount of research over the past decade. In PoR the guarantees are formulated

in terms of a checkable statement whether the client’s outsourced data is authentic

and retrievable. The first property expresses that the client wishes to verify that the

received data is correct whereas the latter property reflects the need to assure that no

data loss has occurred on the server. Unfortunately, CSPs do not offer those guar-

antees provably yet. Facing current trends where clients and companies produce and

outsource a vast amount of data every day [60] forces the provider to invest in a large

storage infrastructure as it seems to be common practice to produce triplicas (triple

replication) [8, 76] to compensate against data loss. To reduce the storage overhead

incurred by replicas, providers may transition to erasure codes [94, 102]. Therefore,

there is an actual need to employ PoR in the realm of cloud storage and increasing

their practicability will play a crucial role in the near future of cloud security.

CSPs offer cheap storage and computing solutions for clients. Thus, it is tempting for

a client to outsource all her (different-sized) files to a provider as it is easy to access the

files through various different (computational and storage restricted) devices. However,

by outsourcing the data, a client somehow loses the “control” over it and thus would

naturally wish to receive a provable assurance from a provider that the data is intact

and retrievable at any time. To provide such an assurance, a cloud service provider

could easily adapt the notion of a PoR into its architecture. Current PoR systems can

indeed provide such an assurance however, they are limited to check a single file at a

time. Thus, in this chapter, we introduce a new notion called cloud storage proofs of

retrievability (CSPoR) that is designed to efficiently provide an assurance that all files

are simultaneously retained by a server.

First, let us recall that current PoR schemes only provide a probabilistic assurance to

a client that the data is retained by arguing that deleted file blocks can be found with

overwhelming probability, i.e. a cheating server will be caught with very high probabil-

ity. In contrast, we believe that such an assurance does not suffice in practice where a

client wishes to receive a concrete retrievability assurance, i.e. an assurance that enough

portions of data are available such that reconstruction of the underlying (original) file

is possible. This assurance cannot usually be obtained with a single check but rather

requires several checks until the client checked sufficiently many data portions. Second,

232

7.1 Introduction

in case a verifier would reject a PoR instance, it currently seems that a client engages

in an immediate download of her file in order to protect the data from further harm,

reflecting a loss of trust in the provider. This “strategy” of downloading, however,

is impractical as already a detected single bit erasure may lead to a reject decision

within a PoR scheme and a client loses all benefits of outsourcing the data in the first

place. This propagates to an even bigger problem in our cloud storage scenario where

a client stores many different-sized files: already a small erasure in any one file would

then lead to download all files as a client is not aware which file(s) is corrupted, and

this behaviour renders the PoR functionality to be impractical for providing real-life

provable storage guarantee. However, we believe that both arguments are linked, and

show throughout this chapter that a CSPoR system is able to provide a retrievability

assurance about the files. We also discuss in detail different strategies that, on one

hand, provide the client with a flexible way to form valid PoR requests, and on the

other hand, provide a strategy to handle invalid instances differently than downloading

all files.

Our main contribution in this chapter is to introduce the new notion of Cloud Storage

PoR (CSPoR). Our scheme has the following features:

• our scheme captures the client’s need to store many (different-sized) files and

enables her to efficiently check whether all files (or any subsets) are still retained

by the server. To store several files we introduce the notion of a storage container

which represents the underlying storage structure of cloud storage systems;

• in order to obtain a retrievability assurance we need to perform several audit steps.

Therefore, we investigate the natural relation between the cost of computation

(choosing challenges) and communication (sending and receiving challenges and

replies respectively). We provide different strategies enabling the client to assess

the involved costs. Furthermore, we discuss a strategy, other than immediate

downloading of all files, that a client can employ in case a PoR verification has

failed;

• our solution is realisable in terms of an abstract API that encompasses cloud APIs

(e.g. from Amazon, Google and Windows) as special cases. Therefore, CSPoR

can be translated into the cloud storage framework without huge amendments

for the CSP;

• we evaluate the performance of CSPoR showing two examples where we out-

sourced per example 480 different-sized files. In the first example, the files are of

size at most 32 MiB with an overall outsourced file size of 7.5 GiB and our scheme

requires at most 7 seconds to obtain a retrievability assurance about those files.

In the second example, the outsourced files are of size at most 512 GiB where

233

7.2 Cloud Storage Proofs of Retrievability

the overall outsourced storage volume is 65 TiB. Unfortunately, for large files the

performance suffers and it takes hours to check retrievability.

We provide a rigorous definitional framework for CSPoR that we believe more ac-

curately reflects real cloud environments than previously considered in the realm of

PoR.

Related Work

In a recent and concurrent work, Paterson et al. [120] introduce a multiple server PoR

system capturing new security models as the underlying entity population is different

compared to classical PoR frameworks. The authors use the same idea of employing

a statistical hypothesis test in order to evaluate whether the responses of the prover

are sufficient to permit successful extraction. Since Paterson et al. consider a multiple

server PoR system where the success probability between different provers for the same

event may differ, the total number of successes follow a Poisson-binomial distribution

and thus they use different statistical techniques compared to our approach.

Organisation of Chapter

In Section 7.2 we introduce our new system model framework for our cloud storage

PoR scheme. This new model leads to an updated and extended security model which

we discuss in detail in Section 7.3. This is followed, in Section 7.4, by a concrete

instantiation of our CSPoR scheme and the respective security proof. In Section 7.5

we discuss different audit strategies a client could use in order to check the files. In

Section 7.6 we provide a performance evaluation for our scheme showing that the scheme

behaves reasonably. We conclude the chapter in Section 7.7.

7.2 Cloud Storage Proofs of Retrievability

The essential components of a cloud storage proofs of retrievability system are natu-

ral generalisations of “classical” PoR systems. We aim to enhance the current PoR

models to enable a client to store f multiple (different-sized) files F (1), . . . , F (f) with a

provider. However, trivial extensions of known solutions do not support the multiple

files case well. In more detail, one may simply perform a separate PoR for each file

which is infeasible due to the increased workload which scales in the number of files

over all procedures and requires the client to check each file individually. Another

simple approach could be to concatenate all files into one file F̂ = F (1)‖F (2)‖ . . . ‖F (f)

and execute a PoR scheme for the composed file F̂ . Unfortunately, the type of ECC

encoding required in this context becomes the bottleneck rendering this approach to

be infeasible. One type of encoding over all files at once results in a processed file

of the form F = F (1)‖F (2)‖ . . . ‖F (f)‖P (1,...,f) where P (1,...,f) denotes the added re-

234

7.2 Cloud Storage Proofs of Retrievability

dundancy generated over the concatenation of the files. In this particular case it is

possible to use existing PoR notions, however they suffer other drawbacks such that

one should avoid using them. For example, in case one wishes to update a single file

F (i), i ∈ [f] := {1, . . . , f}, then she is required to download the whole processed file F
since the redundancy was generated over all files present in the concatenation and thus

makes updating files an expensive endeavour. Furthermore, in case a PoR check fails it

is unclear in which file(s) the error has occurred and thus forces the client to download

the whole processed file and therefore she looses her initial advantage of outsourcing the

files in the first place. Another type of ECC encoding results in obtaining a processed

file of the form F = F (1)‖P (1)‖F (2)‖P (2)‖ . . . ‖F (f)‖P (f) where each original file F (i),

i ∈ [f], is initially processed before all files are concatenated and thus all parity parts

P (i) are independent from each other. In this context, updating a file F (i) is easier since

we can solely download the required one while simultaneously this approach suffers the

small file problem. In more detail, if some file F (i) of the processed file F is small (e.g.

the file solely consists of a password) then there is a non-negligible probability that the

employed random checking mechanism does not examine this file at all and hence even

a successful PoR check does not provide sufficient assurance about the retrievability of

all files. Yet another drawback of this approach is that in case any file and respective

parity blocks are deleted then this specific file is completely irrecoverable.

We overcome the above problem using our new PoR notion called cloud storage proofs

of retrievability (CSPoR) scheme. In more detail, our scheme first enables a client to

store multiple different-sized files in a set of storage containers located at the cloud

service provider and the client may form an aggregated challenge query checking all

files simultaneously. The server evaluates the challenge query and returns verification

values which enable the client to form a PoR answer.

Following previous works on PoR, we also utilise an erasure-correction code (ECC) in

our system requirements. ECC is a process that adds redundant data to the original

data in such a way that a receiver may recover the processed data even when a number

of erasures were introduced, either during the transmission of the file, or while storing

the file. Furthermore, in the context of PoR, ECC boosts the probability to detect a

misbehaving server since the server is required to delete more data than the original

file initially consisted of in order to make the file irrecoverable. We require the ECC to

be a systematic code to maximise data output whilst also being a maximum distance

separable (MDS) code which yields maximum reliability with a minimum amount of

storage overhead. We denote the erasure-correction code rate by 0 < ρ ≤ 1 and note

that incorrect data can be recovered by the decoding procedure if no more than (1−ρ)

of the data have been deleted. 1 Reed-Solomon codes meet those properties for any

1One can think of (1− ρ) as an abbreviation for (1− ρ) · 100 percent where 0 < ρ ≤ 1.

235

7.2 Cloud Storage Proofs of Retrievability

size of code and data words. A notable fast variant like Cauchy-Reed-Solomon codes

[102] may be used to enhance the involved encoding time of processing the data.

We consider a rational malicious server that may try to delete bits, blocks, or rearrange

files in order to make storage space available and to obtain financial benefits. We call

this an adversarial erasure strategy in contrast to a purely random erasure strategy

which may lead to make the file completely irretrievable for a client. To prevent suc-

cessful adversarial erasure a client may encrypt and permute the parity part of the file,

for example cf. [14].

In the remainder of this section we introduce the notion of storage container which

is the underlying storage unit for our scheme. We also provide a generic definition of

CSPoR.

7.2.1 Storage Container

Let us first introduce the notion of a storage container which acts as a storage unit

being able to store multiple files within one location, also providing a client with a

file system structure. This notion is motivated upon real-world cloud storage practices

where common CSPs use a similar notion of storage containers called Buckets [8, 86]

or Blobs [109].

Let a storage container be denoted by S storing multiple arbitrary files F ∈ {0, 1}∗.
Throughout this chapter, we assume that a client may possess several storage containers

S(c) hosted at a cloud service provider. This describes the client’s potential need to

handle different types of data in different storage containers, e.g. a client wishes to

store important documents separately from her picture library. This also captures the

common cloud storage practice where each storage container’s storage space (size) is

upper bounded by S
(c)
max which corresponds to the maximum number of storable files

within a container, and thus we need the possibility to create multiple containers. We

denote the total number of different storage containers by Γ ∈ N. The set of all storage

containers is denoted by Ŝ and is called a cloud storage.

7.2.2 Formal Definition of CSPoR

We now present a formal definition of CSPoR. This scheme enables a client to check

whether all files within a cloud storage are retained and retrievable from a cloud service

provider.

Definition 7.1. A cloud storage proofs of retrievability (CSPoR) scheme comprises

the following procedures:

• (pk, sk, Ŝ, Ŝid, γ̂)
$← CSPoRSetup(1λ): this randomised algorithm generates a

236

7.2 Cloud Storage Proofs of Retrievability

public-private key pair and takes as input the security parameter λ. Additionally,

it creates a cloud storage (i.e. a set of Γ storage containers) Ŝ := {S(c) | c ∈ [Γ]}
and their set of respective associated unique identifiers Ŝid := {S(c)

id | c ∈ [Γ]}.
Furthermore, some metadata γ̂ := {γ(c) | c ∈ [Γ]} is created for each storage

container;

• (F̂ , τ̂ , Ŝ, γ̂)
$← CSPoRStore(sk, F̂ , Ŝid): this randomised data storing algorithm

takes as input a secret key sk, Ŝid and the set of all files F̂ := {F̂
S

(c)
id

| c ∈ [Γ]} a

client wishes to store at the cloud service provider. Each F̂
S

(c)
id

consists of K
S

(c)
id

∈
N files that will be stored within a particular S(c) where F̂

S
(c)
id

:= {F (k) | F (k) ∈
{0, 1}∗, k ∈ [K

S
(c)
id

]} for c ∈ [Γ]. Each file within each storage container gets

processed yielding the set of all processed files for this storage container F̂
S

(c)
id

:=

{F (k) | k ∈ [K
S

(c)
id

]} and a respective set of file tags is generated τ̂
S

(c)
id

:= {τ (k) |
k ∈ [K

S
(c)
id

]} where each tag contains additional information (e.g. metadata) about

the processed file. Finally the algorithm outputs the set of all such processed files

F̂ := {F̂
S

(c)
id

| c ∈ [Γ]}, tags τ̂ := {τ̂
S

(c)
id

| c ∈ [Γ]} and the updated cloud storage

Ŝ. The metadata γ̂ is also updated;

• δ $←
[
CSPoRVerify(pk, sk, τ̂ ′, Ŝid)
 CSPoRProve(pk, F̂ ′, τ̂ ′, Ŝ)

]
: this challenge-

response protocol defines a protocol for proving cloud storage retrievability. The

prover algorithm takes as input the public key pk, the file tag set τ̂ ′ := {τ̂ ′
S

(c)
id

|
τ̂ ′
S

(c)
id

= {τ (k) | k ∈ K ′
S

(c)
id

}, c ∈ Γ′} and the set of the processed files F̂ ′ := {F̂ ′
S

(c)
id

|
F̂ ′
S

(c)
id

:= {F (k) | k ∈ K ′
S

(c)
id

}, c ∈ Γ′}, where K ′
S

(c)
id

⊆ [K
S

(c)
id

] and Γ′ ⊆ [Γ]. The

verification algorithm uses as input the key pair (pk, sk), the file tag set τ̂ ′ and

identifiers Ŝid. Algorithm CSPoRVerify outputs at the end of the protocol execu-

tion a binary value δ which equals accept if the verification succeeds, indicating

the files in F̂ ′ are being stored and retrievable from S, and reject otherwise.

At the beginning of the CSPoRSetup procedure, the involved parties agree on the storage

containers in the set Ŝ. Similarly, they agree on the files in the set F̂ at the beginning

of the CSPoRStore procedure. Note this does not require the files being given in clear

within the agreement. An agreement could also consist of hashes of these files.

Note that the cloud storage Ŝ may already contain data from previously performed

CSPoRStore procedures. Furthermore, observe that F̂ may not be exactly equal to F̂

but it must be guaranteed that F̂ can be recovered from F̂ .

We wish to remark that the involved file tag set τ̂ ′ in the challenge-response protocol

can correspond to either the full set of file tags τ̂ or any subset of file tags that enable a

CSPoR scheme to flexibly check any subset of files by specifying the appropriate tags.

237

7.2 Cloud Storage Proofs of Retrievability

Definition 7.2. We denote the challenge-response procedure

[
CSPoRVerify(pk, sk, τ̂ ′, Ŝid)
 CSPoRProve(pk, F̂ ′, τ̂ ′, Ŝ)

]
by CSPoRP. A single challenge-response step of a CSPoRP is called an audit.

Our CSPoR scheme captures the same probabilistic assurance about the retrievability

of the data as classical PoR schemes. However, as mentioned in the introduction, such

a probabilistic assurance may not suffice in practice. Therefore, our scheme aims to

provide a retrievability assurance about the files, i.e. informally we need to sample a

certain minimum amount of file block information (depending on the file size and the

ECC rate) per file in order to be assured about the retrievability of the files. Basically,

to receive such an assurance we begin to execute CSPoRP several times on different

challenge inputs and we denote the output as the ith audit by δi ∈ {accept, reject}.
Note that if the ith audit fails, i.e. δi = reject, then the CSPoRP procedure is alto-

gether not valid and outputs δ = reject. However, even if some audit fails, this may

not reflect whether the data is actually deleted or if simply not enough valid file blocks

have been checked. Thus, we provide different audit strategies capturing, on the one

hand, approaches to form flexible verification requests depending on a client’s current

resources in order to evaluate whether the responses of the prover are sufficient to per-

mit successful extraction, and on the other hand, we discuss approaches a client can

employ to detect which file(s) have been corrupted in case an audit has failed. Those

approaches can be found in Section 7.5.

Informally, a CSPoR protocol is correct if all processed files F outputted by the store

procedure will be accepted by the verification algorithm when interacting with a valid

prover. More formally this is captured as follows.

Definition 7.3. A CSPoR protocol is correct if there exists a negligible function negl

such that for every security parameter λ, every key pair (pk, sk) and set of storage

containers Ŝ with respective identifiers Ŝid and metadata γ̂ generated by CSPoRSetup,

for all sets of files F̂ (containing files F (k) ∈ {0, 1}∗), and for all (F̂ , τ̂ , Ŝ, γ̂) generated

by CSPoRStore, it holds that

Pr
[(

CSPoRVerify(pk, sk, τ̂ ′, Ŝid)
 CSPoRProve(pk, F̂ ′, τ̂ ′, Ŝ)
)
9 accept

]
= negl(λ).

In Figure 7.1, we illustrate the execution of a CSPoR scheme between a client and a

server as well as represent a model of a storage container S(c). A client C is able to

access the storage container held by a CSP S via a secure channel. The storage con-

tainer can contain an arbitrary set of files F̂ which were uploaded by a client during a

CSPoRStore procedure, and a CSP may hold an arbitrary amount Γ of storage contain-

238

7.3 Security Model

Client C

Cloud Storage Provider S

Storage Container S(c)

F̄ (1) F̄ (2) F̄ (3)

F̄ (4) F̄ (5)

F̄ (6) F̄ (7) F̄ (8) F̄ (9)

. . .

CSPoR
...

Figure 7.1: Model of a CSPoR scheme with a detailed representation of a generic
storage container

ers. In more detail, F̄ (k) := (F (k)||τ (k)) for k ∈ [K
S

(c)
id

] denotes a processed file with

respective file tag stored in a storage container S(c) located at a cloud storage provider.

Note that in practice the processed files and file tags may be stored separately.

7.3 Security Model

In this section we discuss security within our CSPoR model. We do not explicitly

consider confidentiality of a file F , but assume that a client may encrypt the files before

the initiation of the CSPoR protocol. The adversary aims to convince a client with

overwhelming probability that the outsourced files are still fully intact and retrievable.

In the following we define the security notion of extractability for our CSPoR scheme

following existing security notions for PoR models as introduced in Section 2.8.

Extractability

Intuitively, we wish to formalise and say that a CSPoR protocol is secure if any cheat-

ing prover that convinces the verification algorithm to accept is indeed storing all files

in F̂ with a sufficient level of probability. In other words, we wish to guarantee that,

whenever a malicious prover is in a position of successfully passing a CSPoRP instance,

it must know the entire file content of all files. We now follow the PoR security for-

malisation from Section 2.8 and extend it slightly to adjust the notion for our CSPoR

system. As in Section 2.8, we require an extractor algorithm E(pk, sk, τ̂ ,P ′) taking as

input the generated key pair, the set of file tag τ̂ as well as a description of the machine

implementing the prover’s role in the CSPoR protocol. The extractor’s output is the

set of files F̂ . As noted above, the extractor is given (non black-box) access to P ′ and

in particular can rewind it. Furthermore, we require that the algorithm is efficient, i.e.

E ’s running time needs to be polynomial in the security parameter.

239

7.3 Security Model

Consider the following extractability game ExpExtract
A,ε

[
CSPOR, 1λ

]
between a mali-

cious adversary A, an extractor E , and a challenger C.

1. The challenger initialises the system by running CSPoRSetup to generate the

public and private key pairs. The public keys are provided to A. It also generates

a set of storage containers Ŝ, a set of respective storage container identifiers Ŝid as

well as metadata for each storage container γ̂ which are all given to the adversary

A.

2. The adversary A is now able to interact with the challenger that takes the role

of an honest client. A is allowed to request executions to a CSPoRStore oracle

by providing, for each query, a set of files F̂ = {F̂
S

(c)
id

| c ∈ [Γ]} and the storage

container identifiers Ŝid basically indicate in which container the files should be

stored.

3. Likewise, A can request executions of the CSPoRP procedure for any set of files

on which it previously made a CSPoRStore query by specifying the corresponding

tags τ̂ . In the procedures, the challenger will play the role of the honest verifier V
and the adversary the role of the corrupted prover, i.e. V(pk, sk, τ̂ , Ŝid)
 A. In

the end of the execution the adversary is provided with the output of the verifier.

Furthermore, the CSPoRStore oracle queries and the executions of CSPoRP can

be interleaved arbitrarily.

4. Finally, the adversary outputs a set of challenge tags τ̂ ′ returned from some

CSPoRStore query and the description of a prover P ′.

5. Run the extractor algorithm F̂ ′ ← E(pk, sk, τ̂ ′,P ′) inputting the challenge tags τ̂ ′

and description P ′ where E gets black-box rewinding access to P ′, and attempts

to extract the file content of all files as F̂ ′.

6. If Pr
[(
V(pk, sk, τ̂ , Ŝid)
 P ′

)
→ accept

]
≥ ε and F̂ ′ 6= F̂ then output 1, else

0.

Note that we say a malicious prover P ′ is ε-admissible if the probability that it convinc-

ingly answers verification challenges is at least ε, i.e. if Pr
[(
V(pk, sk, τ̂ , Ŝid)
 P ′

)
→

accept
]
≥ ε. Here the probability is over the coins of the verifier and prover.

Definition 7.4. We say that a CSPOR scheme is ε-extractable (or secure) if there

exists an efficient extraction algorithm E such that, for all PPT adversaries A it holds

that Pr
[
ExpExtract

A,ε
[
CSPOR, 1λ

]
→ 1

]
is negligible in the security parameter.

240

7.4 Construction

7.4 Construction

In this section we provide a concrete instantiation of CSPoR. We start by outlining our

main building blocks and then provide details about our instantiation. We choose to

build our construction upon the private-key PoR scheme of Shacham and Waters [126]

mainly due to its ability to handle an unbounded number of verification queries. In

case a better communication complexity is required, one may build upon the scheme

presented in [40]. However, in our particular case we believe that an unbounded num-

ber of verification queries is more beneficial since processing the files already involves

using the client’s valuable resources and it is not a task the client wishes to repeat reg-

ularly. Our CSPoR instantiation overcomes the identified limitations as discussed in

Section 7.2, when employing existing schemes straightforwardly to prove retrievability

for multiple different-sized files simultaneously.

Building Blocks

Unless otherwise specified all operations are performed in the finite field F = Zp where

p is a λ-bit prime with λ being the security parameter. As we instantiate a private-key

CSPoR system it suffices to make use of a symmetric encryption scheme and we set the

public key pk =⊥. We make use of a pseudo-random function g : {0, 1}∗×{0, 1}φprf → F,

where φprf is the key length of the PRF2, and a MAC scheme. Furthermore, we make

use of storage containers S(c), c ∈ [Γ], as introduced in Section 7.2.1.

Specification of the CSPoRSetup Procedure

In the CSPoRSetup procedure the client derives its keys. First the client chooses a

random symmetric key κenc
$← Kenc and a random MAC key κmac

$← Kmac. The client

keeps the secret key sk = (κenc, κmac) and requests creating a cloud storage Ŝ, i.e. a

set of storage containers located at the server S.

Specification of the CSPoRStore Procedure

The CSPoRStore procedure is initiated by a client holding files F̂ = {F̂
S

(c)
id

| c ∈ [Γ]}
that she wishes to store in Ŝ. The following steps are carried out for each file F (k),

k ∈ [K
S

(c)
id

]c∈[Γ], in parallel:

• First we apply an information dispersal algorithm (i.e. an erasure code) with code

rate ρ over the file F (k). The resulting processed file is denoted by F (k);

• Next we process a processed file F (k) into ñ ∈ N blocks being s symbols long.

That is F (k) = {f (k)
ij }, where 1 ≤ i ≤ ñ, 1 ≤ j ≤ s and k ∈ [K

S
(c)
id

]c∈[Γ]. Note

that s is constant for all files while the number of blocks ñ varies depending on

2Note that we use the shorthand g
κ
(k)
prf

(i) := g(κ
(k)
prf , i).

241

7.4 Construction

the respective underlying original file size. Each symbol f
(k)
ij is encoded in terms

of elements in F;

• We sample uniformly at random a PRF key κ
(k)
prf

$← {0, 1}φprf . We also sample s

random elements from the finite field F which are kept private by the client, that

is α
(k)
1 , . . . , α

(k)
s

$← F;

• Next we compute for each file block of an outsourced file i ∈ [ñ] an authentication

tag σi as follows

σ
(k)
i ← g

κ
(k)
prf

(i) +
s∑
j=1

α
(k)
j f

(k)
ij ∈ F;

• Now we wish to compute a file tag τ (k) = τ
(k)
0 ‖MACκmac(τ

(k)
0) where τ

(k)
0 has the

form ñ‖Encryptκenc
(
κ

(k)
prf‖α

(k)
1 ‖ . . . ‖α

(k)
s

)
. Note that the cloud service provider

will also receive each file tag τ (k). However, this does not enable the server to

make use of the random elements as they are encrypted and it is not in possession

of the respective secret key but it only learns the size of the outsourced file.

Finally, the client combines all file tags into the set of tags τ̂ and all processed files

are aggregated as the set F̂ and will be uploaded to the respective storage container

in Ŝ located at the cloud service provider. Each processed file itself is of the form

F (k) :=
(
{f (k)
ij }, {σ

(k)
i }

)
1≤i≤ñ,1≤j≤s

.

Specification of the CSPoRP Procedure

The CSPoRP procedure consists of executing several audit steps to obtain an assurance

about the retrievability of the files. In Section 7.5, we discuss various strategies a client

can follow in order to execute the audit steps. In the following we describe the technical

details of a single audit step (providing a reply δi) which will be repeated A times in

order to obtain a final answer δ from the the CSPoRP procedure capturing our desired

assurance:

• The client first verifies the MAC on each τ (k) within τ̂ . If the MAC is invalid the

client aborts the protocol and outputs 0. Otherwise, she parses all τ (k) from τ̂ and

uses κenc in order to recover ñ(k), κ
(k)
prf and α

(k)
1 , . . . , α

(k)
s for all k ∈ [K

S
(c)
id

]c∈[Γ];

• Next the client C generates for each file a challenge by picking a random subset

I(k) ⊆$ [ñ(k)] of size `(k);

• Next C chooses for each i ∈ I(k) a random element from the finite field ν
(k)
i

$← F
and aggregates this sampling per file to a set Q(k) = {(i, ν(k)

i)i∈I(k)} of size `(k).

All sets Q(k) per storage container can be aggregated as Q
S

(c)
id

:= {Q(k) | k ∈

242

7.4 Construction

[K
S

(c)
id

], c ∈ [Γ]}. Finally, C sends as her challenge the combined set over all

containers Q̂ := {Q
S

(c)
id

| c ∈ [Γ]} to the server.

The cloud service provider now parses all files from F̂ as {f (k)
ij } and {σ(k)

i }, and the

corresponding challenges Q(k) from Q̂. Then for 1 ≤ j ≤ s, the provider computes

µ
(k)
j ←

∑
(i,ν

(k)
i)∈Q(k)

ν
(k)
i f

(k)
ij and σ(k) ←

∑
(i,ν

(k)
i)∈Q(k)

ν
(k)
i σ

(k)
i .

This execution is repeated for all files in all storage containers contained in Q̂. Then

S accumulates all responses and authentication tags asµ̃1 :=
∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

µ
(k)
1 , . . . , µ̃s :=

∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

µ(k)
s , σ̃ :=

∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

σ(k)

 .

Finally, the client parses the provider’s accumulated response and checks

σ̃
?
=
∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i)∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +
s∑
j=1

α
(k)
j µ̃j

 . (7.1)

If this equality check is successful, the verifier outputs δi = accept, and otherwise she

outputs reject.

If a check fails (δi = reject), a client assumes that the cloud service provider is mali-

cious and takes actions in either immediately downloading all files or follows another

strategy called reduced CSPoR as introduced in Section 7.5. However, we want to

emphasise that downloading is very impractical as a client loses the advantage of out-

sourcing the files in the first place. Furthermore, we want to stress that if CSPoRP

is successful then we have obtained a retrievability assurance that all files in Ŝ are

retained by the cloud service provider.

Correctness of the Instantiation

Now we present that our above scheme is correct. Let the PRF key be κ
(k)
prf and

α
(k)
1 , . . . , α

(k)
s

$← F be the secret coefficients for all k ∈ [K
S

(c)
id

]c∈[Γ]. Let the file sym-

bols be denoted by {f (k)
ij }, and the block authenticators are expressed as g

κ
(k)
prf

(i) +∑s
j=1 α

(k)
j f

(k)
ij . For a prover that responds honestly to queries from Q̂ such that

243

7.4 Construction

µ̃j =
∑

c∈[Γ]

∑
k∈[K

S
(c)
id

] µ
(k)
j and σ̃ =

∑
c∈[Γ]

∑
k∈[K

S
(c)
id

] σ
(k) then we have

σ̃ =
∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

σ(k) =
∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i)∈Q(k)

ν
(k)
i σ

(k)
i



=
∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i)∈Q(k)

ν
(k)
i

g
κ
(k)
prf

(i) +
s∑
j=1

α
(k)
j f

(k)
ij




=
∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i)∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +
∑

(i,ν
(k)
i)∈Q(k)

ν
(k)
i

s∑
j=1

α
(k)
j f

(k)
ij



=
∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i)∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +
s∑
j=1

α
(k)
j

∑
(i,ν

(k)
i)∈Q(k)

ν
(k)
i f

(k)
ij



=
∑
c∈[Γ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i)∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +
s∑
j=1

α
(k)
j µ

(k)
j

 ,

which shows that verification is satisfied.

Now we formulate our main theorem capturing the security of our CSPoR scheme.

Theorem 7.5. If the MAC scheme is unforgeable, the symmetric encryption scheme

is semantically secure, and the PRF is secure, then no adversary (except with negligible

probability) against the extractability game Extract of our CSPoR scheme ever causes

the verifier to accept a cloud storage proofs of retrievability protocol instance, except by

responding with correctly computed responses µ̃j (1 ≤ j ≤ s) and authentication tag σ̃.

Proof. The security of our proposed scheme follows immediately from the security of

the private-key SW scheme [126] as we base our construction on their scheme and thus

inherit the security property. The only main difference in the proof is that we have to

ensure the correctness of the aggregated set of responses {µ̃j}.

First, we need to argue that the verification algorithm will reject answers except if the

answers {µ̃j} were computed correctly by the prover. This can be shown via a sequence

of games for which we argue that the adversary’s distinguishing advantage between two

consecutive games is negligible. The analysis follows via the same game hops as in [126]

while adapting the notion of having aggregated answers {µ̃j} from all outsourced files.

Secondly, we need to argue that the extraction procedure can efficiently reconstruct a ρ

fraction of file blocks when interacting with a prover that provides correctly computed

244

7.5 Practicability of CSPoR

responses for a non-negligible fraction of the query space. The same arguments as

in [126] apply to our scheme. Here we only need to slightly change the proof details

when showing that a well-behaved ε-admissible cheating prover P ′ as the output of the

extractability game (cf. Section 7.3) can be turned into an ε-polite adversary B (imple-

mented as a probabilistic polynomial-time Turing machine). Note that we say an adver-

sary is ε-polite if it responds with probability ε to given queries Q covering an ε fraction

of the query- and randomness-tape space. P ′ can be used to construct the adversary

B. For a query Q, P ′ interacts with the verifier according to V(pk, sk, τ̂ , Ŝid)
 P ′. If

the interaction is successful the responses (µ̃1, . . . , µ̃s) will be written to its output tape

while a wrong interaction leads to writing ⊥ on the tape. Note that after k interactions

we can represent all responses as a (k × s) matrix. Each time the adversary B runs

the prover P ′ it is able to effectively rewind the prover. Since P ′ is well-behaved a

successful interaction computes valid (µ̃1, . . . , µ̃s) and given that P ′ is ε-admissible we

know that an ε fraction of the answers are computed correctly. Having this we can

further follow SW and can represent the extractor’s knowledge by a row in the matrix

for each audit step, i.e. as (µ̃
(t)
1 , . . . , µ̃

(t)
s) where t ∈ [A], and thus have sampled enough

information to permit successful extraction.

Lastly, we argue that following the ECC reconstruction property it suffices to positively

check any n blocks of a processed file consisting of ñ blocks to recover the original file

F (k) with all but negligible probability. This is trivially fulfilled by employing Reed-

Solomon codes of rate ρ, since any ρ fraction of encoded file blocks suffice in order to

reconstruct the underlying file. Note, however, that this does not protect a client from

revealing correlations between the plaintext blocks and redundant blocks through the

access pattern. This can be avoided if a client encrypts and permutes the parity part

of the file following Ateniese et al. [14].

Armknecht et al. [11] introduced the notion of an Outsourced PoR. In their model, an

external entity called an auditor joins the system and offers to audit the server on behalf

of a client whereas a client is able to efficiently check whether the auditor performs a

PoRP execution correctly. Their proposed scheme is also based upon the private-key

PoR scheme of [126]. Hence, by replacing the single-file scheme with a CSPoR scheme

leads to an outsourced CSPoR scheme.

7.5 Practicability of CSPoR

In this section, we discuss different audit strategies a client could use throughout a

CSPoRP procedure.

245

7.5 Practicability of CSPoR

7.5.1 Strategies for CSPoRP

As discussed throughout this chapter, we wish to specify concrete strategies a client

may use within a CSPoR system. Recall that a “standard” PoR provides the client with

a probabilistic assurance whether the data is retained or not. The usage of erasure-

correcting codes in the realm of PoR was introduced to boost the probability to detect

a malicious server as well as a mechanism to recover the original file in case some file

blocks are deleted. However, in practice a probabilistic assurance about the retained

data is not sufficient as it is not clear whether enough data is available to reconstruct the

file and thus we provide strategies that enable the client to obtain such an assurance.

We receive this assurance in case the client is able to determine that a sufficient part

of the file is retained by the server. Recall that a processed file F (k) consists of the

original file plus some redundancy specified via the ECC, i.e. F (k) consists of ñ = n/ρ.

Due to the ECC it suffices to sample any n from ñ blocks to recover the file using the

decoding algorithm. Thus, this property assures that a file is available if a client is able

to check successfully any n from ñ valid file blocks. Note that this holds as long as the

adversary does not delete more than (1− ρ) · 100 percent of ñ outsourced data blocks.

However, we also wish to stress that in case a client detects that data has been deleted

repeatedly she would lose all trust in the cloud service provider and would decide to

change to a new provider. Since this would incur a financial penalty, we assume that

this is usually a rare event.

7.5.2 Audit Strategies for CSPoRP

In this section, we discuss different strategies that enable a client to obtain a retriev-

ability assurance about the original files through CSPoRP.

7.5.2.1 Workload Partition

In order to receive a retrievability-assurance, a client needs to execute several audit

steps (within CSPoRP) in order to obtain a valid proof. Therefore, we believe that it

would be beneficial for a client to be able to determine a priori the average number

of required audits to prove retrievability, i.e. we wish to derive a formula computing

the number of audits A based on a fixed challenge size `. We show that this task is

related to a new variant of the well-known Coupon Collector’s Problem [124] to which

we provide a detailed solution and finally argue that this approach is a possible solution

for the above task. Furthermore, we also provide a solution for the reversed task, i.e.

we derive a formula that computes the appropriate challenge size given a pre-defined

number of audits A. We also show that a statistical hypothesis test may be used to

argue whether the received responses suffice to obtain the required assurance.

Recall that our scheme checks ` different file blocks per audit and generally a CSPoRP

246

7.5 Practicability of CSPoR

execution depends on n, ñ, ρ, `, and A. Since ρ is given as a system parameter, we

can derive the size of the processed file using the code rate combined with the size of

the original file, and thus it remains to follow the above goal and compute the values

for ` and A. Recall, for each audit step the values for the challenge of size ` are

chosen randomly without replacement from the set of processed file blocks [ñ].3 We

note that both values A and ` depend on each other. For example, if a client increases

the challenge size per audit then the required number of audits decreases as a client

checks more file blocks per request. Thus, this provides a client with a flexible trade-off

between communication and computation depending on her current resources.

Computing the Number of Audits

In this part, we aim to derive a formula that computes the (average) number of required

audits based on a fixed challenge size, the block identifiers for the original and pro-

cessed file as well as the erasure-correction code rate. Obtaining such a formula enables

a client to gain a priori knowledge about the necessary communication cost in order to

perform CSPoRP such that it provides an assurance about the data retrievability. In

other words, a client wishes to perform A audits of size ` in order to determine if any

n of ñ blocks are intact to be convinced that the original file is retrievable.

Computing the average required number of audits A can be expressed as a new variant

of the Coupon Collector’s Problem (CCP) [124].

Coupon Collector’s Problem

The classical CCP describes a solution to compute the required (average) waiting time

to obtain all coupons of a collection while drawing one coupon at a time whereas all

coupons appear equally likely. In our context, the waiting time corresponds to the

required number of audits, and the challenge size corresponds to the number of drawn

coupons at a time while the collection size corresponds to the total number of blocks

of a processed file, that is ñ. In order to derive our required (average) number of

audits from the CCP, we need to reformulate the above problem as follows. We wish

to compute the average waiting time A to obtain any partial collection of n coupons

from the full collection of size ñ while drawing ` coupons at a time with the restriction

that ` ≤ n. Note that all coupons are drawn from the full collection, i.e. from the

set [ñ], and all coupons appear equally likely. In other words, we need to evaluate the

expected number of groups of coupons to obtain at least n different coupons. Ferrante

and Frigo [65] present a solution of yet another variant of the above problem where

they compute the waiting time to obtain all coupons of the collection while drawing

` coupons at a time. We follow their approach using kth order statistics to derive a

3This is mainly done to prevent an adversarial cloud service provider deleting queried blocks since
the probability of choosing the same block again is equally likely to sampling a new block.

247

7.5 Practicability of CSPoR

solution for our problem. A good overview about the Coupon Collector’s Problem can

be found in [66].

We begin by considering that coupons are drawn in groups of constant size `, where

1 ≤ ` ≤ n, with the types of items in any group of coupons being independent random

variables.4 In our context, we require that each group does not contain more than one

coupon of any type. Thus, the total number of groups will be
(
ñ
`

)
and each group G can

be identified with a vector (g1, . . . , g`) ∈ {1, . . . , ñ} with gi < gi+1 for i ∈ {1, . . . , `−1}.

Definition 7.6. We denote by qk the probability of drawing (at any given time) the

kth group of coupons in lexicographical order, where i ∈ {1, . . . ,
(
ñ
`

)
}.

We consider the case of uniform probabilities and thus we have that the probability

corresponds for any group k to qk = 1

(ñ`)
. We set Vi to be a random variable which

equals the number of groups to be drawn in order to obtain the first coupon of type

i. Following Ferrante and Frigo [65], these random variables follow a geometric law

with parameter 1 − (ñ−1
`)

(ñ`)
. The random variables min(Vi, Vj) follow a geometric law

with parameter 1− (ñ−2
`)

(ñ`)
and this continues the same way up to the random variables

min(Vi1 , . . . , Viñ−`) having a geometric law with parameter 1 − 1

(ñ`)
. Note that the

minimum of more random variables min(Vi1 , . . . , Vik) for k > ñ − ` + 1 equals to the

constant random variable 1. Applying the Maximum-Minimum principle provides us

with the expected number of groups of coupons to complete the collection as

∑
1≤i1<i2<...<iφ≤ñ

E[min(Vi1 , Vi2 , . . . , Viφ)] =

(
ñ

φ

)
1

1− (ñ−φ`)
(ñ`)

=

(
ñ

φ

) (
ñ
`

)(
ñ
`

)
−
(
ñ−φ
`

) . (7.2)

We denote by V(ñ) the ñth order statistic and following the usual convention we have

V(ñ) = max(V1, . . . Vñ) and V(1) = min(Vi1 , . . . , Viñ) = min(V1, . . . , Vñ). Then we can

derive the 2nd order statistic as

V(2) =
∑

1≤i1<...<iñ−1≤ñ
min(Vi1 , . . . , Viñ−1)− (ñ− 1) min(V1, . . . , Vñ),

4Similarly to above, those groups of coupons are sampled randomly without replacement.

248

7.5 Practicability of CSPoR

and the 3rd order statistic can be obtained as

V(3) =
∑

1≤i1<...<iñ−2≤ñ
min(Vi1 , . . . , Viñ−2)− (ñ− 2)V(2) −

(
ñ− 1

ñ− 3

)
V(1)

=
∑

1≤i1<...<iñ−2≤ñ
min(Vi1 , . . . , Viñ−2)

− (ñ− 2)
∑

1≤i1<...<iñ−1≤ñ
min(Vi1 , . . . , Viñ−1)

+ (ñ− 2)(ñ− 1) min(V1, . . . , Vñ)

− (ñ− 1)(ñ− 2)

2
min(Vi1 , . . . , Viñ)

=
∑

1≤i1<...<iñ−2≤ñ
min(Vi1 , . . . , Viñ−2)

− (ñ− 2)
∑

1≤i1<...<iñ−1≤ñ
min(Vi1 , . . . , Viñ−1)

+
(ñ− 1)(ñ− 2)

2
min(V1, . . . , Vñ).

The general formula can be derived for any 1 ≤ n ≤ ñ as

V(n) =
∑

1≤i1<...<iñ−(n−1)≤ñ
min(Vi1 , . . . , Viñ−(n−1)

)

− (ñ− (n− 1))
∑

1≤i1<...<iñ−(n−2)≤ñ
min(Vi1 , . . . , Viñ−(n−2)

)

+
(ñ− (n− 1))(ñ− (n− 2))

2!

∑
1≤i1<...<iñ−(n−3)≤ñ

min(Vi1 , . . . , Viñ−(n−3)
) + . . .

+ (−1)n+1 (ñ− (n− 1))(ñ− (n− 2)) . . . (ñ− (n− (n− 1)))

(n− 1)!
min(V1, . . . , Vñ)

=
n∑
j=1

(−1)j+1

(
ñ− n+ j − 1

j − 1

) ∑
1≤i1<...<iñ−n+j≤ñ

min(Vi1 , . . . , Viñ−n+j)

 .

249

7.5 Practicability of CSPoR

We can finally compute the expectation as follows

E
[
X`
n(ñ)

]
= E

[
V(n)

]
= E

 n∑
j=1

(−1)j+1

(
ñ− n+ j − 1

j − 1

) ∑
1≤i1<...<iñ−n+j≤ñ

min(Vi1 , . . . , Viñ−n+j)


=

n∑
j=1

(−1)j+1

(
ñ− n+ j − 1

j − 1

) ∑
1≤i1<...<iñ−n+j≤ñ

E
[
min(Vi1 , . . . , Viñ−n+j)

]
=

n∑
j=1

[
(−1)j+1

(
ñ− n+ j − 1

j − 1

)(
ñ

ñ− n+ j

) (
ñ
`

)(
ñ
`

)
−
(ñ−(ñ−n+j)

`

)]

=

(
ñ

`

) n∑
j=1

[
(−1)j+1

(
ñ− n+ j − 1

j − 1

)(
ñ

ñ− n+ j

)
1(

ñ
`

)
−
(
n−j
`

)] . (7.3)

This expected value corresponds to the number of audits we initially aimed to compute,

i.e. A = E
[
X`
n(ñ)

]
. However, the precise computation of this value involves a huge

amount of computation and thus renders a quick computation for a computationally

weak client to be infeasible. Thus, we wish to obtain an approximation for A. Starting

from a classical version of the CCP, we argue that each draw of a new set of coupons

(consisting of elements in the size of the challenge `) increases the overall amount of

drawn sets and is also likely to provide us with new coupons we have not seen before.

For example, in the first draw all coupons are new and have not been seen before.

However, in the next draws this changes since the drawn sets of coupons may contain

coupons that we have already seen before. We stop drawing new groups of coupons

after a total of n different coupons have been seen. The (constant) size of the drawn

sets of coupons plays a crucial role and thus results in a modulo operation in the

formula. Note that this approach does not take into account all possible overlaps of

the groups but results in an expected value which is very easy to compute and may

suffice as a good approximation. Since the expected value corresponds to the number

of block identifiers which have been sampled, we divide the value by the challenge size

` to obtain the required number of groups and thus the number of audits. Hence, the

derived approximation for A can be expressed as

A ≈ A′ := 1

`

n−1∑
i=0

ñ− (i mod `)

ñ− i . (7.4)

For practical usage, one may use dA′e for the number of audits.

Before providing an example to obtain a better understanding of the concept of audits,

we wish to emphasise that in order to form a PoR request the client needs to sample the

block identifiers uniformly at random, as opposed to only asking blocks which have not

250

7.5 Practicability of CSPoR

been queried before. This prevents the adversary from deleting blocks after they have

been queried, and the client ensures that all blocks are still equally likely to be checked

to prevent the adversary from cheating. We illustrate the concept of audits in form of

an example in Table 7.1. The number of rows of a CSPoRP represent the number of

performed audits A while the number of bullets per row represents the challenge size

`.

CSPoRP Audit Sampled Block Identifiers of F Overall Distinct Block
No. No. 1 2 3 4 5 6 7 8 9 10 11 12 Ids Requested B

1
1 • • • 3
2 · • • • 4
3 · · • · • • · 7 ≥ 6 = n

2
1 • • • 3
2 • · • · • · 6 ≥ 6 = n
3 • · • · · • · · 8 ≥ 6 = n

3
1 • • • 3
2 • · • • 4
3 • • · • · · 6 ≥ 6 = n

4
1 • • • 3
2 • · • • 4
3 • · • · • 5 < 6 = n

Table 7.1: An example of four randomised CSPoRP procedures each consisting of three
audits using the same parameters

For the above example, we choose the original file F to consist of n = 6 blocks and

the ECC code rate to be ρ = 1/2. Thus, the processed file F consists of ñ = 12

blocks and we choose the challenge size as ` = 3. Using equation (7.4), we compute the

average required number of audits in order to obtain a retrievability assurance about

the original file. We obtain A′ = 2.3789 which becomes for a practical use dA′e = 3.

As we chose ` = 3, we sample three different block identifiers per audit uniformly at

random from the set of processed block identifier. Those block identifier are illustrated

as a bullet • while in the following audit steps we use a small dot · to illustrate that

this block identifier has been already sampled. As soon as we sample enough available

blocks, i.e. B ≥ n, CSPoRVerify should return accept indicating that enough block

information are obtained and F can be reconstructed, cf. Section 2.8. In the above

example, we present four randomised CSPoRP procedures for the same file showing

that the randomised sampling has an impact on the number of sampled block identifier

B. The first three CSPoRP procedures sample overall enough block identifier to ensure

that the file is retained by the cloud service provider. However, the last CSPoRP

procedure does not sample enough block identifier and CSPoRVerify returns reject.

Thus, either the file is corrupted and the client may not be able to reconstruct the file

even using the ECC decoding algorithm or the file is retained by the provider but the

251

7.5 Practicability of CSPoR

client was “unlucky” with the random sampling as too many same block identifier were

checked. Therefore, as a strategy, the client may run a new CSPoRP procedure and

increase the number of audits to ensure that it is more likely to query enough different

block identifier.

Computing the Challenge Size

In this part, we derive a formula that computes the challenge size ` for the query set

given a fixed number of audits A, the block identifiers of the original file n and of the

processed file ñ.

Let us now derive an approximation for the challenge size ` starting from equation

(7.4). We can write ñ = m`+ r where r < `,m ∈ N0, and thus it follows

A
{1}
<

1

`

n∑
i=1

ñ− ñ− i
i

{2}
≤ 1

`

n∑
i=1

ñ− ñ+ i

i

=
1

`

n∑
i=1

m`+ r − r + i

i
=

1

`

n∑
i=1

m`

i
+

1

`

n∑
i=1

i

i

=m
n∑
i=1

1

i︸ ︷︷ ︸
=mHn

+
1

`

n∑
i=1

i

i︸ ︷︷ ︸
<Hn

< (m+ 1)Hn,

where Hn denotes the nth harmonic number and the term i is an abbreviation for

(i mod `).

Let us remark that the first inequality {1} may evaluate to equality in case ρ = 1. This

means that the processed file corresponds to the original file and thus no redundancy

was encoded into the file. Note that the second inequality {2} evaluates to equality

if either ` = n = ñ or ` = 1. Furthermore, in case we restrict ourselves to the case

n = ñ, then in the above equation we would have ñ− i ≤ ñ + i + 1. The “+1” term

propagates to an additional term y := 1
`

∑n
i=1

1
i in the above equation which results

later into a slightly different approximation of the upper bound. However, we do not

restrict ourselves to this case and can therefore proceed with the above and conclude

that

mHn ≤ A < (m+ 1)Hn. (7.5)

Rearranging the first inequality of equation (7.5) yields a lower bound for ` as follows.

Recall that ñ = m`+ r and therefore we obtain

mHn ≤ A⇔
ñ

`
− r

`
≤ A

Hn
⇔ ñ

`
<

A

Hn
+ 1

252

7.5 Practicability of CSPoR

since r
` < 1. This yields the lower bound to be

ñHn

A+Hn
< `.

Next we rearrange the right inequality of (7.5) to obtain an upper bound. We get

A < (m+ 1)Hn ⇔
A

Hn
− 1 <

ñ

`
− r

`
≤ ñ

`
.

This yields the upper bound to be

` <
ñHn

A−Hn
.

Note that, as mentioned above, in case n = ñ, the additional “+1” term results into a

slightly different upper bound with A− 2Hn in the denominator. However, altogether

it follows that the bounds for ` can be approximated as

ñHn

A+Hn
< ` <

ñHn

A−Hn
.

Finally, a good choice in practice would be to choose the arithmetic mean of the bounds,

that is

` =

⌈
1

2

(
ñHn

A+Hn
+

ñHn

A−Hn

)⌉
. (7.6)

7.5.2.2 Statistical Hypothesis Testing

Another auditing strategy can be achieved by determining whether the success prob-

ability of a prover is sufficiently high. This can be done using a statistical hypothesis

test. In more detail, we wish to determine whether the average success probability ξ of a

prover P is at least µ where the success probability is defined as ξ(P) = Pr[P(Q̂)→ δi]

and Q̂ represents the combined challenges for all files. Thus, we formulate the null

hypothesis as

H0 : ξ(P) < µ

and the alternative hypothesis is formulated as

H1 : ξ(P) ≥ µ.

The goal is now to distinguish both hypotheses from each other. Suppose the client

sends k randomly chosen challenges to the server. 5 If the server now has a success

probability ξ(P) then the number of correct challenge responses received from the

5Note that we can combine the statistical hypothesis test with the previous strategy “workload
partition”, i.e. the number of challenges k can be identical to the number of audits A.

253

7.5 Practicability of CSPoR

server follows the binomial distribution Binom(k, ξ(P)). Further let us assume that the

server’s failure rate is minimal and we note that if the average success probability is

high enough then extraction will be successful. Since the success probability ξ(P) is

unknown, we can estimate it using the k randomly chosen challenges to the server, i.e.

ξ̂(P) =
δaccept
k

where δaccept = |{δi | δi = accept, i ∈ [k]}|. Following standard literature in statistical

sciences [46], we know that the probability of the estimation corresponding exactly to

the success probability is 0, that is more formally Pr[ξ̂(P) = ξ(P)] = 0. Therefore, we

approach the problem by estimating a confidence interval CI for the success probability.

It follows

CI =

{
ξ(P) :

ξ̂(P)− ξ(P)√
ξ(P)(1− ξ(P))/k

≤ z1−α

}
(7.7)

where z1−α being the 1 − α quantile of a Normal(0, 1) distribution and α is referred

to as the error level. The probability that the true success probability ξ is covered by

CI is approximately γ = 1 − α which is usually denoted as the confidence parameter.

Hence, we can reject the null hypothesis if

β :=
ξ̂(P)− µ√
µ(1− µ)/k

> z1−α. (7.8)

Note that if we are able to reject the null hypothesis, this enables us to argue that our

average success probability is significantly larger than µ and therefore extraction of the

files should be successful.

Let us consider the following examples. First we fix µ = 0.95 and the client sends

k = 1000 challenges to the server. We use the typical error level α = 0.05 and thus

z0.95 = 1.6449.

δaccept ξ̂(P) CI δ

Example 1 600 3/5 [0.57428, 1) reject

Example 2 970 97/100 [0.95978, 1) accept

In Example 1, the client received 600 valid replies from a server and thus ξ̂(P) = 3/5.

Using equation (7.7), we obtain a confidence interval in which the success probability

ξ(P) will be contained with a probability of 95%. Now we can use inequality (7.8) to

check whether the null hypothesis may be rejected. It follows that β = −50.7833. Thus

β ≯ z0.95 and we cannot reject the null hypotheses as the success probability is low.

This means that extraction of the files will not be successful and CSPoRP will output

reject.

254

7.5 Practicability of CSPoR

Similarly, in Example 2, we have that the client receives 970 valid replies from a server

and thus ξ̂(P) = 97/100. The client can compute the respective confidence interval

and derives β = 2.9019. Here β > z0.95 and thus the null hypothesis can be rejected

and thus the success probability is significantly higher than µ. Therefore, extraction

of the files will be successful and CSPoRP outputs accept.

Note that other approaches can also be considered to calculate the confidence interval.

A good overview of them can be found in [2]. For example, a well-known approach

was introduced by Clopper and Pearson [56] which uses a relationship between the

cumulative binomial distribution and the beta distribution in order to state an easy

formula to calculate the confidence interval.

7.5.2.3 Certificates

In this strategy the client wishes to receive a certificate from the server proving the

retrievability of her files. Note that this certificate is not meant to be a cryptographic

certificate. It is meant as a certificate that attests the validity and quality of the server

storing data appropriately. A certificate basically consists of a single audit step where

C chooses the challenge to be of size n, i.e. `(k) = n(k) for all k ∈ [K
S

(c)
id

]. If CSPoRP is

successful the server may create a certificate indicating that the request was executed

correctly and thus leading to a valid proof stating the retrievability of the outsourced

data. Additionally, the server may include a time stamp to state the validity of the

certificate. Note that this certificate may be valid for a longer time interval than a usual

audit request (e.g. one month) and makes the server liable for any data loss within this

time interval.

7.5.2.4 Scheduled CSPoR

A different strategy could be implemented by a scheduled CSPoR. Here a client may

wish to perform CSPoRP within a specific time frame (e.g. five hours) or may addi-

tionally label the files with tags indicating their classification levels. For example, a

client may tag all her bank and insurance files with the classification level secret while

her music library is tagged with unrestricted. Since our CSPoR system also enables

to check any specified subset of the cloud storage, the client is able audit files with a

classification tag secret more frequently than files tagged with unrestricted to ensure

that data loss in valuable files is detected immediately.

7.5.3 Handling Erasure Detection Using CSPoR

In this section, we develop methods a client can use in case a CSPoRP execution has

failed and thus the outsourced data may be damaged but not yet irrecoverable. In this

context, we say that files are irrecoverable if more than (1 − ρ) of the data have been

255

7.5 Practicability of CSPoR

deleted, and thus the ECC decoding procedure cannot recover the underlying file.

7.5.3.1 Immediate Download

The approach of downloading all files in case an error is detected (that is, at least

one of the audit steps returned reject) is the most cautious one a client could follow.

It seems that this approach is the only strategy other PoR works have considered so

far. However, this approach has enormous drawbacks for a client. Since C does not

know which file contains an error she would be required to download all files within our

cloud storage model. This is impractical for a client and she loses her initial benefits

of outsourcing the files in the first place. In order to avoid downloading all files, we

present in the following section a different strategy called reduced CSPoR.

7.5.3.2 Reduced CSPoR

In case a CSPoRP procedure fails (that is, at least one of the audits returned reject)

we engage in a reduced CSPoR as we do not know in which file(s) an error occurred.

Here, we present the strategy reduced CSPoR where a client runs a b-ary search to

detect in which branch the CSPoRP failed. However, note that always all branches of a

node need to be tested, since multiple files may be damaged. In case the corrupted files

have been found, a download or repair can be initiated. Note that errors only occur

rarely compared to successful audits, and thus files are usually retrievable. Otherwise,

the client may subscribe to a new CSP. Note that simultaneously executed reduced

CSPoRP are slower than a single CSPoRP since we are required to increase the amount

of communication with the server in the number of simultaneously executed CSPoRP.

This is acceptable since we assume that errors only occur very rarely. In Figure 7.2, we

provide two examples where each node represents a CSPoRP over all its children and

the leaves represent the respective files. A completely black node illustrates a corrupted

file whereas a thick black circled node represents a failed CSPoRP as an error occurred.

The left figure represents a scheme with no errors, thus a single CSPoRP is sufficient to

prove that all files are retrievable. The right figure contains errors in the files F (1) and

F (6). Thus, the initial CSPoRP over all files will fail. To find the corrupted files, we

need to execute three CSPoRP at the same time, each over three different file sets. The

first and second check will fail and hence we know that an error must be in at least two

files. In order to locate the corrupted files, we execute six CSPoRP at the same time

over each leaf, i.e. an individual check over each file F (1) to F (6). This finally identifies

the corrupted files and the client can proceed to recover the damaged files. Note that

the client only needs to recover the corrupted files and can leave all intact files with the

server. Thus, with CSPoR the client still possesses the benefit of initially outsourcing

the files and in case an error is detected only a small number of files need to be fixed.

Another strategy could be to initially split the received responses from CSPoRProve

into subsets and compare the smaller replies to determine immediately which files may

256

7.5 Practicability of CSPoR

F (1)F (2)F (3)F (4)F (5)F (6)F (7)F (8)F (9) F (1)F (2)F (3)F (4)F (5)F (6)F (7)F (8)F (9)

Figure 7.2: Illustration of the strategy reduced CSPoR

be corrupted. We believe that this may be an interesting strategy to investigate in

future work.

7.5.4 Communication Model

The above introduced CSPoR system can be translated straightforwardly into present

cloud architectures. This can be achieved by introducing procedures that capture the

communication steps between a client and a cloud service provider.

The expression

Π: [C : inC ; S : inS] −→ [C : outC ; S : outS]

denotes the event that a client C and a provider S run an interactive protocol Π where

inX and outX denote the input and output of entity X (either C or S), respectively.

In the following we describe the execution of the required procedures. Following the

order of our algorithms in Definition 7.1, we first need to run the procedure Create

between C and S in order to create a storage container S(j) located at the server in

which the client stores her files. Note that a storage container is upper-bounded by

S
(c)
max, i.e. C and S need to engage in another Create procedure to create a new storage

container as soon as the storage capacity is reached or a client wishes to store different

types of data in different storage containers. In more detail, the procedure

Create : [C : pk; S : pk] −→ [C : S
(j)
id , γC ; S : S(j), γS]

takes no other inputs than the public keys of both parties and outputs the identifier S
(j)
id

to identify the storage container S(j) and a tag γC which contains metadata related to

S(j) for the client. The CSP initialises the storage container S(j) on its infrastructure

and obtains a tag γS as its output.

After the successful generation of a storage container a client wishes to store her files

by executing a Store procedure as follows

Store : [C : F̂ ,S
(j)
id ; S : S(j)] −→ [C : κ̂, τ̂ ; S : F̂ ,S(j), τ̂].

257

7.5 Practicability of CSPoR

A client needs to provide as input her set of files F̂ and the respective storage container

identifier S
(j)
id to store the files in S(j). The procedure outputs the set of processed

files F̂ and the updated storage container S(j) for the server. Furthermore, the client

receives a set κ̂ which contains keys for file dependent functions (e.g. MACs or PRFs)

and a set of verification tags τ̂ which are computed on the client side. Those tags are

also provided to S and used to check consistency of the file sizes.

Finally, a client C and cloud service provider S engage in a CSPoRP procedure.

CSPoRP : [C : τ̂ , Ŝid; S : τ̂ , Ŝ] −→ [C : δ; S : ⊥].

In this procedure, a client provides her file tags τ̂ and her respective set of storage

container identifier Ŝid. Note that in general our CSPoR scheme enables a client

to check whether all outsourced files in Ŝ are intact and retrievable. However, it

is also possible for a client to check only a subset of her outsourced files by simply

choosing a subset of tags τ̂ ′ from τ̂ . The server inputs Ŝ and the file tags τ̂ . The

protocol run is accepted by the verifier if δ = accept, or rejected otherwise. More

precisely, the CSPoRP procedure uses additional locally computed values in order to

be executed. Following our instantiation in Section 7.4, a client prepares her challenge

set Q̂ according to the file tags τ̂ and sends the challenge set to S.

SendChallenge : [C : Q̂; S : ⊥] −→ [C : ⊥; S : Q̂].

The server uses the challenge set and computes the authentication tags σ and responses

µ as its replies which are returned to C.

Response : [C : ⊥; S : Ŝ, τ̂ , I] −→ [C : σ, µ; S : ⊥].

Finally, a client uses the authentication tags and response values to verify the CSPoRP

procedure as in Section 7.4. The client outputs a binary decision value δ indicating

whether she accepts or rejects the CSPoRP procedure.

Realisation of Procedures

The introduced procedures are easily translated into current cloud architectures. We

assume that a CSP exposes to its client a standard interface offering a handful of com-

mands in order to execute some basic operations such as storing a file, downloading a

file, as well as other commands. To implement such an interface for our CSPoR system,

we can use currently employed APIs from Amazon [8], Google [87] or Microsoft [109].

Following those APIs, it suffices to use only two commands to implement the above

procedures for a CSPoR system in current cloud architectures, namely POST and GET.

These commands can achieve different functionalities by simply specifying different

258

7.6 Evaluation

parameters as detailed in their respective APIs.

7.5.5 Dynamic Updates

Our CSPoR scheme can achieve dynamic updates in its simplest form which seems

to be inherent in current cloud storage implementations [8, 87, 109]. In more detail,

current architectures do not support updating specific blocks of an outsourced file

stored at a cloud service provider. Thus, a local file update on the provider’s side is

not possible, and a client needs to first retrieve the whole file, perform an update locally

and upload the updated file back to the provider. Following the notion of procedures

from Section 7.5.4, this can formally be described as

Download : [C : τ (k), Ŝid; S : Ŝ] −→ [C : F (k); S : ⊥].

Here, a client obtains the processed file F (k) from the cloud service provider. Now she

first needs to use the ECC decoding algorithm to obtain the original file F (k). After

the file is updated locally by the client, she encodes F (k) again with the ECC encoding

algorithm and uses the Store procedure to upload and store the file with the provider.

Note that most CSPs [8, 87, 109] also support versioning, i.e. the CSP still holds all

old version of the files even after the files have been updated, and a client is able to

retrieve any old version of the file by specifying a pointer in the command to the old

file.

7.6 Evaluation

In this section we evaluate the trade-off between computation and communication.

While the execution of each strategy can be different depending on each client’s in-

dividual resources, we provide an example execution of the above strategy “workload

partition”. We denote each specific execution of a strategy as an audit plan.

We evaluate the audit plan “Fixed Audits”. Another notable audit plan may be to

leverage a table with a column for each file and the number of audits for the largest

file is the number of rows. Then, instead of checking all files at the beginning, this

strategy may distribute the workload of checking the files more evenly.

Let us fix the following main parameters for this evaluation. Each file block consists

of s = 512 bytes (4096 bits) and each sector is a symbol in F. Hence, the size of two

blocks is one kibibyte (1 KiB, 1024 bytes). For simplicity, we store the files in only one

storage container (Γ = 1) and choose the ECC rate ρ = 1/2.

259

7.6 Evaluation

Audit Plan: Fixed Audits

In this audit plan we wish to execute a CSPoRP procedure within a (previously) fixed

number of audits and wish to evaluate the respective communication and computation

cost for the client and server. For simplicity, we assume the following file structure.

Each file F (k) consists of n(k) = 2k blocks, i.e. with increasing k we obtain a larger

file. In Table 7.2 and Table 7.3, we provide two example evaluations over 480 files with

different-sized files for various different fixed number of audits ranging from A = 1 to

A = 10000. Furthermore, the tables provide information about the sum of required

challenge sizes of all files and provide details about the respective overall communi-

cation cost (payload) from client to server (P[C → S]), and vice versa (P[S → C]),

for executing a CSPoRP. We also detail the portion of transmitted data in relation to

the overall outsourced data which we denote as Datasize% and finally we compute the

required time T to execute a CSPoRP. Note, for simplicity, we omit disk read times

and possible latencies for a client and cloud service provider.

In Table 7.2, we provide our first example evaluation and describe the procedure of

obtaining the respective values. The table describes an evaluation of 480 outsourced

Data A L Audit size P[C → S] Datasize% P[S → C] T

480 files: 7.5 GiB 1 7202070 54.9 MiB 54.9 MiB 0.72 2 KiB 0.5 sec
480 files: 7.5 GiB 5 5392050 41.1 MiB 206 MiB 2.68 10 KiB 2.6 sec
480 files: 7.5 GiB 10 4105920 31.3 MiB 313 MiB 4.08 20 KiB 3.1 sec
480 files: 7.5 GiB 30 2103150 16 MiB 481 MiB 6.26 60 KiB 4.8 sec
480 files: 7.5 GiB 60 1214970 9.27 MiB 556 MiB 7.24 120 KiB 5.6 sec
480 files: 7.5 GiB 120 658830 5.03 MiB 603 MiB 7.85 240 KiB 6 sec
480 files: 7.5 GiB 180 452010 3.45 MiB 621 MiB 8.08 360 KiB 6.2 sec
480 files: 7.5 GiB 500 169200 1.29 MiB 645 MiB 8.4 0.98 MiB 6.5 sec
480 files: 7.5 GiB 1000 85680 669 KiB 654 MiB 8.51 1.96 MiB 6.6 sec
480 files: 7.5 GiB 2500 34710 271 KiB 662 MiB 8.62 4.89 MiB 6.7 sec
480 files: 7.5 GiB 6000 14730 115 KiB 674 MiB 8.78 11.7 MiB 6.8 sec
480 files: 7.5 GiB 10000 8940 69.8 KiB 682 MiB 8.88 19.6 MiB 7 sec

Table 7.2: All parameters for a CSPoRP execution with 480 files with a total size of 7.5
GiB

files consisting of sixteen different files with increasing file sizes ranging from 1 KiB

to 32 MiB where we outsource 30 different files of each size, i.e. 30 times F̂ = {F (k) |
F (k) ∈ {0, 1}∗, k ∈ [16]}. The overall number of file blocks can be computed as n =

30
∑

k n
(k) = 30(2k+1 − 2) and corresponds here to n = 3932100 blocks. Next we

apply the erasure-correcting code with rate ρ = 1/2 to the files and thus ñ = 2n.

Furthermore, we need to generate authentication tags σ for each file block of all ñ

blocks. Thus, the overall number of blocks we outsource to a server consists of 4n

blocks which corresponds to 7.5 GiB. We calculate the challenge sizes for the respective

files using equation (7.6) for different fixed number of audits and calculate the sum of

all challenge sizes of one audit as L := 30
∑16

k=1 `
(k).

260

7.6 Evaluation

100 101 102 103 104
0

200

400

600

Audits A

P
ay
lo
ad

in
M
iB P[C → S]

Figure 7.3: Payload P from C to S for different number of audits for outsourced data
of size 7.5 GiB

In Figure 7.3, we illustrate the respective payload from a client to a cloud service

provider for different fixed number of audits in order to execute a CSPoRP procedure.

The figure shows that the entire payload for a client increases the more audit steps she

uses to execute a CSPoRP. This is the expected behaviour since we enable a client to

choose the number of audits depending on her current resources. Figure 7.4 illustrates

that the more audit steps are performed the smaller is the size of a single audit step

itself. For example in Table 7.2 we show that if a client chooses to check all outsourced

100 101 102 103 104
0

20

40

60

Audits A

P
ay
lo
ad

in
M
iB Audit Size

Figure 7.4: Single audit size for different number of audits for outsourced data of size
7.5 GiB

files within a single audit step A = 1 then the challenge size corresponds to 54.9 MiB

whereas in case she wishes to check all outsourced files within ten thousand audit steps

A = 10000 the respective challenge size per audit step is only 69.8 KiB.6 Thus, CSPoR

enables a client to flexibly choose the number of audits depending on her resources

(this may also depend on the device she uses) determining whether she samples small

or large challenges.

6The example with A = 1 corresponds to the discussed strategy of certificates as introduced in
Section 7.5.2.3.

261

7.6 Evaluation

100 101 102 103 104
0

10

20

30

Audits A

P
ay
lo
ad

in
M
iB P[S → C]

Figure 7.5: Payload P from S to C for different number of audits for outsourced data
of size 7.5 GiB

In Figure 7.5, we illustrate the respective payload from a cloud service provider to a

client. The provider’s payload is very small compared to the client’s payload and ranges

from 2 KiB to 19.6 MiB as it only returns s+ 1 aggregated values per file.

In Figure 7.6, we illustrate the overall required time for executing a CSPoRP procedure

over 480 files of a total size of 7.5 GiB assuming a communication throughput of 100

MiB/s. Depending on the number of audits the required time to obtain a retrievability

assurance ranges between 0.5 seconds and 7 seconds.

100 101 102 103 104
0

2

4

6

8

Audits A

T
im

e
in

S
ec
on

d
s

T for 100 MiB/s

Figure 7.6: Required time T for a full CSPoRP execution for different number of audits
for outsourced data of size 7.5 GiB

In Table 7.3, we provide our second example evaluation. Similarly to the previous

example, the table describes an evaluation of 480 outsourced files consisting of thirty

different files of increasing file size ranging from 1 KiB to 512 GiB, and we outsource

16 different files of each size, i.e. 16 times F̂ = {F (k) | F (k) ∈ {0, 1}∗, k ∈ [30]}. The

overall number of file blocks can be computed as n = 16
∑

k n
(k) = 16(2k+1 − 2) and

corresponds here to n = 34359738336 blocks. Next we apply the error correcting code

with rate ρ = 1/2 to the files and thus ñ = 2n and we need to generate authentication

262

7.6 Evaluation

Data A L Audit size P[C → S] Datasize% P[S → C] T

480 files: 65 TiB 1 65542267808 488.33 GiB 488.33 GiB 0.75 2 KiB 5000.47 sec
480 files: 65 TiB 5 55317309232 412.15 GiB 2.012 TiB 3.14 10 KiB 21101.88 sec
480 files: 65 TiB 10 46294897296 344.92 GiB 3.368 TiB 5.26 20 KiB 35320.2 sec
480 files: 65 TiB 30 28023896624 208.79 GiB 6.12 TiB 9.56 60 KiB 64141.61 sec
480 files: 65 TiB 60 17605552992 131.17 GiB 7.69 TiB 12.01 120 KiB 80591 sec
480 files: 65 TiB 120 10098261536 75.24 GiB 8.82 TiB 13.78 240 KiB 92452.35 sec
480 files: 65 TiB 180 7079565040 52.75 GiB 9.27 TiB 14.49 360 KiB 97223.03 sec
480 files: 65 TiB 500 2728924896 20.33 GiB 9.93 TiB 15.51 0.98 MiB 104100.22 sec
480 files: 65 TiB 1000 1392163536 10.37 GiB 10.13 TiB 15.83 1.96 MiB 106213.65 sec
480 files: 65 TiB 2500 563732864 4.2 GiB 10.25 TiB 16.02 4.89 MiB 107523.51 sec
480 files: 65 TiB 6000 236020816 1.76 GiB 10.30 TiB 16.1 11.7 MiB 108041.87 sec
480 files: 65 TiB 10000 141807840 1.06 GiB 10.31 TiB 16.12 19.6 MiB 108190.99 sec

Table 7.3: All parameters for a CSPoRP execution with 480 files with a total size of 65
TiB

tags σ for each of ñ blocks. Thus, the overall number of blocks we outsource to a

server consists of 4n blocks which corresponds to 65 TiB. We calculate the challenge

sizes for the respective files using equation (7.6) for different fixed number of audits

and calculate the sum of all challenge sizes of one audit as L := 16
∑30

k=1 `
(k).

As in the previous example, in Figure 7.7 we evaluate the payload from a client to

a cloud service provider for different fixed number of audits in order to execute a

CSPoRP procedure. Figure 7.7 looks similar to Figure 7.3 while the main difference is

that the client needs to sample more blocks per audit step since she outsourced larger

files and thus requires to check more blocks in order to obtain an assurance about the

retrievability of the files. Thus, the client’s payload ranges from approximately 0.5 TiB

to 10.31 TiB whereas before the maximum payload was 682 MiB.

100 101 102 103 104
0

5

10

Audits A

P
ay
lo
ad

in
T
iB P[C → S]

Figure 7.7: Payload P from C to S for different number of audits for outsourced data
of size 65 TiB

In Figure 7.8, we illustrate as in the previous example that the more audit steps are

performed for a CSPoRP procedure the smaller is the challenge size of a single audit

itself.

263

7.6 Evaluation

100 101 102 103 104
0

200

400

Audits A

P
ay
lo
ad

in
G
iB Audit Size

Figure 7.8: Single audit size for different number of audits for outsourced data of size
65 TiB

We illustrate in Figure 7.9 the payload from the cloud service provider to a client. This

figure is exactly the same as Figure 7.5 from the above example and thus the provider’s

payload does not change at all even if a client outsources more data. The reason is

that the provider needs always to compute s + 1 aggregated values per file which are

independent of the file size.

100 101 102 103 104
0

10

20

30

Audits A

P
ay
lo
ad

in
M
iB P[S → C]

Figure 7.9: Payload P from S to C for different number of audits for outsourced data
of size 65 TiB

Lastly, in Figure 7.10, we evaluate the overall required time for executing a CSPoRP

procedure over 480 files of a total size of 65 TiB assuming a communication through-

put of 100 MiB/s. The performance of CSPoRP is in magnitudes slower than in the

above example due to the large outsourced files. Here the required time to obtain an

information-theoretical assurance ranges between 5000 seconds and 108190 seconds, or

in other words it takes between 1.38 hours and 30.05 hours. Thus, we conclude that

the performance of CSPoR is very good as long as a lot of small files are checked. In

future work, we wish to enhance the performance of the scheme for large files.

264

7.7 Conclusion

100 101 102 103 104
0

0.5

1

·105

Audits A

T
im

e
in

S
ec
o
n
d
s

T for 100 MiB/s

Figure 7.10: Required time T for a full CSPoRP execution for different number of audits
for outsourced data of size 65 TiB

7.7 Conclusion

We introduced in this chapter an extension to the traditional PoR concept which we

call a cloud storage proofs of retrievability scheme. A CSPoR enables a client to check

whether all outsourced files at a cloud storage provider are still intact and retriev-

able. Our model introduces and uses the notion of a storage container modelling the

underlying storage structure which plays a crucial practical role in today’s cloud ser-

vice provider’s infrastructure. We proposed an efficient instantiation of CSPoR based

on well-known constructions and argue in detail about possible strategies in order to

obtain a retrievability assurance about all files. Our proposed solution overcomes short-

comings in current models when a client wishes to audit all files simultaneously.

We evaluated the performance of the scheme and showed that, for example, CSPoR

can check the retrievability of 480 different-sized files (of size at most 32 MiB) in be-

tween 0.5 seconds and 7 seconds depending on the number of performed audit steps.

Unfortunately, the performance of the scheme gets of magnitudes slower as soon as we

outsource large files of size 512 GiB. We provide a discussion about the required API

to lift CSPoR into a cloud system (e.g. Amazon’s S3).

In future work we believe it would be interesting and beneficial to consider other entity

populations such as a multi-server scheme similarly to Bowers et al. [39] who considered

this case for PDP. This scenario has been recently considered by Paterson et al. [120]

in the realm of PoR, although limited to the single file case. We also envisage that the

case of multiple clients outsourcing a vast amount of files to a cloud service provider

being interesting to investigate as other concepts such as storage deduplication may

play a crucial role. Since the performance of CSPoR was of magnitudes slower as soon

as a client outsourced large files, it would be interesting to investigate ways to enhance

the performance. One possible solution may be to split large files in smaller ones.

265

Chapter 8

Conclusion

In this thesis we have considered systems and solutions regarding the verification of

computations and data retrievability.

The main part of this thesis is devoted to the setting of publicly verifiable outsourced

computation which allows computationally weak devices to delegate computations to a

more powerful but yet untrusted server, and to verify the correctness of returned results

based on public information. It has been shown by Parno et al. [118] that KP-ABE

can be used as a verifiable proof mechanism for the satisfaction of Boolean functions

in PVC.

We began in Chapter 3 to consider the notion of PVC in a more practical framework in

which we accommodated multiple servers offering a computational service for multiple

functions simultaneously. Servers offering such a service may be rewarded per compu-

tation, and as such have an incentive to cheat by returning malformed responses rather

than devoting resources and time to compute a valid result. Thus, we implemented a

revocation mechanism into the PVC setting to remove misbehaving servers from the

system. This can be seen as a mechanism to save other delegators resources since they

do not need to waste their valuable resources by outsourcing to a misbehaving server

in the first place.

In Chapter 4 we considered a setting in which an untrusted server holds a data set in

such a way that any client can ask the server to compute a function on any input por-

tion of the data set. We showed that ciphertext-policy ABE can be used as a building

block in order to instantiate this mode of computation called publicly verifiable dele-

gable computation (VDC). This model can be seen as a reversed system architecture in

comparison to the proposal in Chapter 3. VDC is more akin to the traditional client-

server model and we showed that the model has some interesting possible applications

to verifiable queries to remote databases and verifiable processing of large data sets.

In Chapter 5 we brought together the previous notions and unified them into a sin-

gle publicly verifiable outsourced computation system called hybrid PVC. This model

only requires a single setup stage in order to provide a flexible outsourced computa-

tion solution capturing both previous systems. This was achieved by a novel use of

266

dual-policy ABE which combines KP-ABE and CP-ABE. We briefly introduced yet

another mode of publicly verifiable computation in this chapter that enables us to en-

force (graph-based) access control policies over the delegators, servers and verifiers.

This mode was motivated on the observation that even in a publicly verifiable setting

it is unlikely that all entities will have unrestricted access to all functionalities of the

system and thus we may enforce access control policies to restrict the access accordingly.

In Chapter 6 we investigated the possibility of using techniques developed mainly for

PVC in the realm of verifiable searchable encryption. We introduced an extended verifi-

able searchable encryption scheme based upon CP-ABE and techniques from Chapter 4

that permits a user to verify that search results are correct and complete. Our scheme

enables the client to perform a wider class of queries, i.e. it permits verifiable compu-

tational queries over keywords and specific data values, that go beyond the standard

keyword matching queries to allow functions such as averaging or counting operations.

In Chapter 7 we turned our attention to the setting of providing provable outsourced

data storage guarantees. We introduced a new proofs of retrievability (PoR) model

called cloud-storage PoR which enables a client to outsource multiple different-sized

files to a cloud service provider and we use homomorphic properties to efficiently check

whether all outsourced files are still retained and intact. This proposed extension aims

to provide a more practical approach to this problem and overcomes limitations in the

literature where only a single file can be checked. We discussed different strategies a

client may use in order to obtain a statement about the retrievability and also evalu-

ated the performance of our scheme.

Throughout this thesis we have emphasised in each chapter on possible future research

problems and we believe that both areas will continue being very active in the next

coming years.

267

Bibliography

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-

Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Con-

sistency properties, relation to anonymous ibe, and extensions. J. Cryptology,

21(3):350–391, 2008.

[2] A. Agresti and B. A. Coull. Approximate is better than ”exact” for interval

estimation of binomial proportions. The American Statistician, 52(2):119–126,

May 1998.

[3] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters.

Computing on authenticated data. J. Cryptology, 28(2):351–395, 2015.

[4] J. Alderman, C. Janson, C. Cid, and J. Crampton. Revocation in publicly veri-

fiable outsourced computation. In D. Lin, M. Yung, and J. Zhou, editors, Infor-

mation Security and Cryptology - 10th International Conference, Inscrypt 2014,

Beijing, China, December 13-15, 2014, Revised Selected Papers, volume 8957 of

Lecture Notes in Computer Science, pages 51–71. Springer, 2014.

[5] J. Alderman, C. Janson, C. Cid, and J. Crampton. Access control in publicly

verifiable outsourced computation. In Proceedings of the 10th ACM Symposium

on Information, Computer and Communications Security, ASIA CCS ’15, pages

657–662, New York, NY, USA, 2015. ACM.

[6] J. Alderman, C. Janson, C. Cid, and J. Crampton. Hybrid publicly verifiable

computation. In K. Sako, editor, Topics in Cryptology - CT-RSA 2016 - The

Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA, USA,

February 29 - March 4, 2016, Proceedings, volume 9610 of Lecture Notes in Com-

puter Science, pages 147–163. Springer, 2016.

[7] J. Alderman, C. Janson, K. M. Martin, and S. L. Renwick. Extended functional-

ity in verifiable searchable encryption. In E. Pasalic and L. R. Knudsen, editors,

Cryptography and Information Security in the Balkans - Second International

Conference, BalkanCryptSec 2015, Koper, Slovenia, September 3-4, 2015, Re-

vised Selected Papers, volume 9540 of Lecture Notes in Computer Science, pages

187–205. Springer, 2015.

268

[8] Amazon. Amazon S3 API, 2015. http://docs.aws.amazon.com/AmazonS3/

latest/API/s3-api.pdf.

[9] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious storage. In

H. Krawczyk, editor, Public-Key Cryptography - PKC 2014 - 17th International

Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires,

Argentina, March 26-28, 2014. Proceedings, volume 8383 of Lecture Notes in

Computer Science, pages 131–148. Springer, 2014.

[10] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient

verification via secure computation. In S. Abramsky, C. Gavoille, C. Kirchner,

F. Meyer auf der Heide, and P. Spirakis, editors, Automata, Languages and Pro-

gramming, volume 6198 of Lecture Notes in Computer Science, pages 152–163.

Springer Berlin Heidelberg, 2010.

[11] F. Armknecht, J. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter. Outsourced

proofs of retrievability. In G. Ahn, M. Yung, and N. Li, editors, Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security,

Scottsdale, AZ, USA, November 3-7, 2014, pages 831–843. ACM, 2014.

[12] S. Arora and B. Barak. Computational complexity: a modern approach. Cam-

bridge University Press, 2009.

[13] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization

of NP. J. ACM, 45(1):70–122, Jan. 1998.

[14] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. N. J.

Peterson, and D. Song. Remote data checking using provable data possession.

ACM Trans. Inf. Syst. Secur., 14(1):12, 2011.

[15] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson,

and D. X. Song. Provable data possession at untrusted stores. In P. Ning, S. D. C.

di Vimercati, and P. F. Syverson, editors, ACM Conference on Computer and

Communications Security, pages 598–609. ACM, 2007.

[16] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient

provable data possession. In A. Levi, P. Liu, and R. Molva, editors, 4th Interna-

tional ICST Conference on Security and Privacy in Communication Networks,

SECURECOMM 2008, Istanbul, Turkey, September 22-25, 2008, page 9. ACM,

2008.

[17] N. Attrapadung and H. Imai. Attribute-based encryption supporting di-

rect/indirect revocation modes. In M. G. Parker, editor, IMA Int. Conf., volume

5921 of Lecture Notes in Computer Science, pages 278–300. Springer, 2009.

269

http://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf
http://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf

[18] N. Attrapadung and H. Imai. Dual-policy attribute based encryption. In M. Ab-

dalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, ACNS, volume

5536 of Lecture Notes in Computer Science, pages 168–185, 2009.

[19] N. Attrapadung and H. Imai. Dual-policy attribute based encryption: Simul-

taneous access control with ciphertext and key policies. IEICE Transactions,

93-A(1):116–125, 2010.

[20] L. Babai. Trading group theory for randomness. In R. Sedgewick, editor, STOC,

pages 421–429. ACM, 1985.

[21] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: nearly

practical and privacy-preserving proofs on authenticated data. In 2015 IEEE

Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,

2015, pages 271–286. IEEE Computer Society, 2015.

[22] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation

on outsourced data. In A. Sadeghi, V. D. Gligor, and M. Yung, editors, 2013

ACM SIGSAC Conference on Computer and Communications Security, CCS’13,

Berlin, Germany, November 4-8, 2013, pages 863–874. ACM, 2013.

[23] M. Barbosa and P. Farshim. Delegatable homomorphic encryption with applica-

tions to secure outsourcing of computation. In O. Dunkelman, editor, Topics in

Cryptology - CT-RSA 2012, volume 7178 of Lecture Notes in Computer Science,

pages 296–312. Springer Berlin Heidelberg, 2012.

[24] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis,

Technion-Israel Institute of technology, Faculty of computer science, 1996.

[25] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A. Lysyanskaya.

Incentivizing outsourced computation. In Proceedings of the 3rd International

Workshop on Economics of Networked Systems, NetEcon ’08, pages 85–90, New

York, NY, USA, 2008. ACM.

[26] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of

symmetric encryption. In Foundations of Computer Science, 1997. Proceedings.,

38th Annual Symposium on, pages 394–403. IEEE, 1997.

[27] M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brick-

ell, editor, Advances in Cryptology - CRYPTO ’92, 12th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992,

Proceedings, volume 740 of Lecture Notes in Computer Science, pages 390–420.

Springer, 1992.

270

[28] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilisti-

cally checkable proofs and applications to approximations. In Proceedings of

the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93,

pages 294–304, New York, NY, USA, 1993. ACM.

[29] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from rams

to delegatable succinct constraint satisfaction problems: extended abstract. In

R. D. Kleinberg, editor, Innovations in Theoretical Computer Science, ITCS ’13,

Berkeley, CA, USA, January 9-12, 2013, pages 401–414. ACM, 2013.

[30] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation

over large datasets. In P. Rogaway, editor, Advances in Cryptology - CRYPTO

2011, volume 6841 of Lecture Notes in Computer Science, pages 111–131. Springer

Berlin Heidelberg, 2011.

[31] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-

cryption. In IEEE Symposium on Security and Privacy, pages 321–334. IEEE

Computer Society, 2007.

[32] M. A. Bishop. Computer Security. Art and Science. Addison-Wesley Professional,

2002.

[33] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision

resistance to succinct non-interactive arguments of knowledge, and back again.

In S. Goldwasser, editor, Innovations in Theoretical Computer Science 2012,

Cambridge, MA, USA, January 8-10, 2012, pages 326–349. ACM, 2012.

[34] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the

correctness of memories. Algorithmica, 12(2/3):225–244, 1994.

[35] A. Boldyreva, V. Goyal, and V. Kumar. Identity-based encryption with efficient

revocation. In P. Ning, P. F. Syverson, and S. Jha, editors, ACM Conference on

Computer and Communications Security, pages 417–426. ACM, 2008.

[36] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption

with keyword search. In Advances in Cryptology - EUROCRYPT 2004, volume

3027 of Lecture Notes in Computer Science, pages 506–522. Springer, 2004.

[37] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted

data. In S. P. Vadhan, editor, Theory of Cryptography, 4th Theory of Cryptogra-

phy Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007,

Proceedings, volume 4392 of Lecture Notes in Computer Science, pages 535–554.

Springer, 2007.

[38] C. Bösch, P. H. Hartel, W. Jonker, and A. Peter. A survey of provably secure

searchable encryption. ACM Comput. Surv., 47(2):18:1–18:51, 2014.

271

[39] K. D. Bowers, A. Juels, and A. Oprea. HAIL: a high-availability and integrity

layer for cloud storage. In E. Al-Shaer, S. Jha, and A. D. Keromytis, editors,

Proceedings of the 2009 ACM Conference on Computer and Communications

Security, CCS 2009, Chicago, Illinois, USA, November 9-13, 2009, pages 187–

198. ACM, 2009.

[40] K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: theory and

implementation. In R. Sion and D. Song, editors, Proceedings of the first ACM

Cloud Computing Security Workshop, CCSW 2009, Chicago, IL, USA, November

13, 2009, pages 43–54. ACM, 2009.

[41] K. D. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest. How to

tell if your cloud files are vulnerable to drive crashes. In Y. Chen, G. Danezis,

and V. Shmatikov, editors, ACM Conference on Computer and Communications

Security, pages 501–514. ACM, 2011.

[42] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic

encryption without bootstrapping. In S. Goldwasser, editor, Innovations in Theo-

retical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages

309–325. ACM, 2012.

[43] R. Canetti, B. Riva, and G. Rothblum. Verifiable computation with two or more

clouds. In Workshop on Cryptography and Security in Clouds, 2011.

[44] C. Carlet. Boolean functions for cryptography and error correcting codes. Boolean

models and methods in mathematics, computer science, and engineering, 2:257,

2010.

[45] H. Carter, C. Lever, and P. Traynor. Whitewash: Outsourcing garbled circuit

generation for mobile devices. In Proceedings of the 30th Annual Computer Secu-

rity Applications Conference, ACSAC ’14, pages 266–275, New York, NY, USA,

2014. ACM.

[46] G. Casella and R. Berger. Statistical Inference. Duxbury advanced series in

statistics and decision sciences. Thomson Learning, 2002.

[47] D. Cash, A. Küpçü, and D. Wichs. Dynamic Proofs of Retrievability via Oblivious

RAM. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT, volume 7881

of Lecture Notes in Computer Science, pages 279–295. Springer, 2013.

[48] Q. Chai and G. Gong. Verifiable symmetric searchable encryption for semi-

honest-but-curious cloud servers. In Proceedings of IEEE International Confer-

ence on Communications, ICC 2012, pages 917–922. IEEE, 2012.

272

[49] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote

encrypted data. In Applied Cryptography and Network Security, Third Inter-

national Conference, ACNS 2005, volume 3531 of Lecture Notes in Computer

Science, pages 442–455. Springer, 2005.

[50] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,

editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 89–

105. Springer, 1992.

[51] R. Cheng, J. Yan, C. Guan, F. Zhang, and K. Ren. Verifiable searchable sym-

metric encryption from indistinguishability obfuscation. In Proceedings of the

10th ACM Symposium on Information, Computer and Communications Secu-

rity, ASIA CCS ’15, pages 621–626, New York, NY, USA, 2015. ACM.

[52] S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive

verifiable computation. In A. Sahai, editor, TCC, volume 7785 of Lecture Notes

in Computer Science, pages 499–518. Springer, 2013.

[53] K. Chung, Y. T. Kalai, F. Liu, and R. Raz. Memory delegation. In P. Rogaway,

editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Con-

ference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841

of Lecture Notes in Computer Science, pages 151–168. Springer, 2011.

[54] K. Chung, Y. T. Kalai, and S. P. Vadhan. Improved delegation of computation

using fully homomorphic encryption. In T. Rabin, editor, Advances in Cryptology

- CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA,

August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer

Science, pages 483–501. Springer, 2010.

[55] M. Clear and C. McGoldrick. Policy-based non-interactive outsourcing of com-

putation using multikey FHE and CP-ABE. In P. Samarati, editor, SECRYPT,

pages 444–452. SciTePress, 2013.

[56] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits illustrated

in the case of the binomial. Biometrika, 26(4):pp. 404–413, 1934.

[57] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric

encryption: improved definitions and efficient constructions. In 3th ACM Con-

ference on Computer and Communications Security, pages 79–88. ACM, 2006.

[58] R. Curtmola, O. Khan, R. C. Burns, and G. Ateniese. MR-PDP: Multiple-Replica

Provable Data Possession. In ICDCS, pages 411–420. IEEE Computer Society,

2008.

[59] T. W. Cusick and P. Stanica. Cryptographic Boolean functions and applications.

Academic Press, 2009.

273

[60] S. Daily. Big Data, for better or worse: 90last two years, 2013. http://www.

sciencedaily.com/releases/2013/05/130522085217.htm.

[61] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[62] Y. Dodis, S. P. Vadhan, and D. Wichs. Proofs of Retrievability via Hardness

Amplification. In O. Reingold, editor, TCC, volume 5444 of Lecture Notes in

Computer Science, pages 109–127. Springer, 2009.

[63] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable

data possession. In E. Al-Shaer, S. Jha, and A. D. Keromytis, editors, ACM

Conference on Computer and Communications Security, pages 213–222. ACM,

2009.

[64] M. Etemad and A. Küpçü. Database outsourcing with hierarchical authenticated

data structures. IACR Cryptology ePrint Archive, 2015:351, 2015.

[65] M. Ferrante and N. Frigo. A note on the coupon - collector’s problem with

multiple arrivals and the random sampling, 2012.

[66] M. Ferrante and M. Saltalamacchia. The coupon collectors problem. MATerials

MATemtics, Volum 2014(treball no. 2):35, 2014.

[67] A. L. Ferrara, G. Fuchsbauer, and B. Warinschi. Cryptographically enforced

RBAC. In 2013 IEEE 26th Computer Security Foundations Symposium, New

Orleans, LA, USA, June 26-28, 2013, pages 115–129. IEEE, 2013.

[68] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials

and matrix computations, with applications. In T. Yu, G. Danezis, and V. D.

Gligor, editors, the ACM Conference on Computer and Communications Security,

CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 501–512. ACM, 2012.

[69] D. Fiore, R. Gennaro, and V. Pastro. Efficiently verifiable computation on en-

crypted data. In G. Ahn, M. Yung, and N. Li, editors, Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security, Scotts-

dale, AZ, USA, November 3-7, 2014, pages 844–855. ACM, 2014.

[70] Z. Fu, J. Shu, X. Sun, and N. Linge. Smart cloud search services: verifiable

keyword-based semantic search over encrypted cloud data. Consumer Electronics,

IEEE Transactions on, 60(4):762–770, 2014.

[71] S. Gajek. Dynamic symmetric searchable encryption from constrained functional

encryption. In K. Sako, editor, Topics in Cryptology - CT-RSA 2016 - The

Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA, USA,

274

http://www.sciencedaily.com/releases/2013/05/130522085217.htm
http://www.sciencedaily.com/releases/2013/05/130522085217.htm

February 29 - March 4, 2016, Proceedings, volume 9610 of Lecture Notes in Com-

puter Science, pages 75–89. Springer, 2016.

[72] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing:

Outsourcing computation to untrusted workers. In T. Rabin, editor, CRYPTO,

volume 6223 of Lecture Notes in Computer Science, pages 465–482. Springer,

2010.

[73] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs

and succinct NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, edi-

tors, Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Athens,

Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer

Science, pages 626–645. Springer, 2013.

[74] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzen-

macher, editor, STOC, pages 169–178. ACM, 2009.

[75] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all

falsifiable assumptions. In L. Fortnow and S. P. Vadhan, editors, Proceedings of

the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA,

USA, 6-8 June 2011, pages 99–108. ACM, 2011.

[76] S. Ghemawat, H. Gobioff, and S. Leung. The google file system. In M. L. Scott

and L. L. Peterson, editors, Proceedings of the 19th ACM Symposium on Oper-

ating Systems Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October

19-22, 2003, pages 29–43. ACM, 2003.

[77] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.

http://eprint.iacr.org/.

[78] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious

rams. Journal of the Association for Computing Machinery, 43:431–473, 1996.

[79] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F. Liu, A. Sahai,

E. Shi, and H. Zhou. Multi-input functional encryption. In P. Q. Nguyen and

E. Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of

Lecture Notes in Computer Science, pages 578–602. Springer, 2014.

[80] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.

Reusable garbled circuits and succinct functional encryption. In D. Boneh,

T. Roughgarden, and J. Feigenbaum, editors, STOC, pages 555–564. ACM, 2013.

275

http://eprint.iacr.org/

[81] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: in-

teractive proofs for muggles. In C. Dwork, editor, Proceedings of the 40th Annual

ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,

May 17-20, 2008, pages 113–122. ACM, 2008.

[82] S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without

rejection problem from designated verifier cs-proofs. IACR Cryptology ePrint

Archive, 2011:456, 2011.

[83] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive

proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on

Theory of Computing, STOC ’85, pages 291–304, New York, NY, USA, 1985.

ACM.

[84] P. Golle, J. Staddon, and B. R. Waters. Secure conjunctive keyword search over

encrypted data. In M. Jakobsson, M. Yung, and J. Zhou, editors, Applied Cryp-

tography and Network Security, Second International Conference, ACNS 2004,

Yellow Mountain, China, June 8-11, 2004, Proceedings, volume 3089 of Lecture

Notes in Computer Science, pages 31–45. Springer, 2004.

[85] Google. Google Compute Engine – Cloud Computing & IaaS – Google Cloud

Platform. http://cloud.google.com/compute/, 2014. [Online; accessed 23-

October-2014].

[86] Google. Google Cloud Platform: Concepts and Techniques, 2015. http://cloud.

google.com/storage/docs/concepts-techniques/.

[87] Google. Google Storage API Reference, 2015. https://cloud.google.com/

storage/docs/json_api/v1/.

[88] S. D. Gordon, J. Katz, F. Liu, E. Shi, and H. Zhou. Multi-client verifiable

computation with stronger security guarantees. In Y. Dodis and J. B. Nielsen,

editors, Theory of Cryptography - 12th Theory of Cryptography Conference, TCC

2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, volume 9015 of

Lecture Notes in Computer Science, pages 144–168. Springer, 2015.

[89] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for

fine-grained access control of encrypted data. In Proceedings of the 13th ACM

Conference on Computer and Communications Security, CCS ’06, pages 89–98,

New York, NY, USA, 2006. ACM.

[90] M. Green, S. Hohenberger, and B. Waters. Outsourcing the decryption of ABE

ciphertexts. In 20th USENIX Security Symposium, San Francisco, CA, USA,

August 8-12, 2011, Proceedings. USENIX Association, 2011.

276

http://cloud.google.com/compute/
http://cloud.google.com/storage/docs/concepts-techniques/
http://cloud.google.com/storage/docs/concepts-techniques/
https://cloud.google.com/storage/docs/json_api/v1/
https://cloud.google.com/storage/docs/json_api/v1/

[91] C. Gritti, W. Susilo, and T. Plantard. Efficient dynamic provable data possession

with public verifiability and data privacy. In E. Foo and D. Stebila, editors,

Information Security and Privacy - 20th Australasian Conference, ACISP 2015,

Brisbane, QLD, Australia, June 29 - July 1, 2015, Proceedings, volume 9144 of

Lecture Notes in Computer Science, pages 395–412. Springer, 2015.

[92] C. Guan, K. Ren, F. Zhang, F. Kerschbaum, and J. Yu. Symmetric-key based

proofs of retrievability supporting public verification. In G. Pernul, P. Y. A. Ryan,

and E. R. Weippl, editors, Computer Security - ESORICS 2015 - 20th European

Symposium on Research in Computer Security, Vienna, Austria, September 21-

25, 2015, Proceedings, Part I, volume 9326 of Lecture Notes in Computer Science,

pages 203–223. Springer, 2015.

[93] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scar-

fone. Guide to attribute based access control (ABAC) definition and considera-

tions. NIST Special Publication, 800:162, 2014.

[94] W. Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge

University Press, 2010.

[95] International Organization for Standardization (ISO). ISO/IEC 11889-1:2015:

Information technology - Trusted Platform Module Library - Part 1: Architec-

ture, 2008.

[96] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In

B. Preneel, editor, Secure Information Networks: Communications and Multi-

media Security, IFIP TC6/TC11 Joint Working Conference on Communications

and Multimedia Security (CMS ’99), September 20-21, 1999, Leuven, Belgium,

volume 152 of IFIP Conference Proceedings, pages 258–272. Kluwer, 1999.

[97] C. Janson, C. A. Reuter, F. Armknecht, and C. Cid. Cloud storage proofs of

retrievability, 2016. In Submission.

[98] A. Juels and B. S. K. Jr. PORs: Proofs Of Retrievability for Large Files. In

P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors, ACM Conference on

Computer and Communications Security, pages 584–597. ACM, 2007.

[99] S. Kamara, C. Papamonthou, and T. Roeder. Dynamic searchable symmetric

encryption. In Conference on Computer and Communications Security, pages

965–976. ACM, 2012.

[100] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman &

Hall/Crc Cryptography and Network Security Series). Chapman & Hall/CRC,

2007.

277

[101] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,

polynomial equations, and inner products. In Advances in Cryptology - EURO-

CRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 146–162.

Springer, 2008.

[102] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking erasure

codes for cloud file systems: minimizing I/O for recovery and degraded reads. In

W. J. Bolosky and J. Flinn, editors, Proceedings of the 10th USENIX conference

on File and Storage Technologies, FAST 2012, San Jose, CA, USA, February

14-17, 2012, page 20. USENIX Association, 2012.

[103] V. Kher and Y. Kim. Securing distributed storage: challenges, techniques, and

systems. In V. Atluri, P. Samarati, W. Yurcik, L. Brumbaugh, and Y. Zhou,

editors, Proceedings of the 2005 ACM Workshop On Storage Security And Sur-

vivability, StorageSS 2005, Fairfax, VA, USA, November 11, 2005, pages 9–25.

ACM, 2005.

[104] K. Kurosawa and Y. Ohtaki. How to update documents verifiably in searchable

symmetric encryption. In Cryptology and Network Security - 12th International

Conference, CANS 2013, volume 8257 of Lecture Notes in Computer Science,

pages 309–328. Springer, 2013.

[105] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou. Fuzzy keyword search

over encrypted data in cloud computing. In INFOCOM 2010. 29th IEEE In-

ternational Conference on Computer Commu- nications, Joint Conference of the

IEEE Computer and Communications Societies, pages 441–445. IEEE, 2010.

[106] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard. A Cooperative

Internet Backup Scheme. In USENIX Annual Technical Conference, General

Track, pages 29–41. USENIX, 2003.

[107] P. Liu, J. Wang, H. Ma, and H. Nie. Efficient verifiable public key encryption

with keyword search based on KP-ABE. In Ninth International Conference on

Broadband and Wireless Computing, Communication and Applications, BWCCA

2014, pages 584–589. IEEE, 2014.

[108] S. Micali. Cs proofs (extended abstracts). In FOCS, pages 436–453. IEEE Com-

puter Society, 1994.

[109] Microsoft. Microsoft Azure: How to use Blob storage from .NET,

2015. https://azure.microsoft.com/en-us/documentation/articles/

storage-dotnet-how-to-use-blobs/.

[110] F. Monrose, P. Wyckoff, and A. D. Rubin. Distributed execution with remote

audit. In NDSS, volume 99, pages 3–5, 1999.

278

https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-blobs/
https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-blobs/

[111] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism

design. In EC, pages 129–139, 1999.

[112] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-

monotonic access structures. In Proceedings of the 14th ACM Conference on

Computer and Communications Security, CCS ’07, pages 195–203, New York,

NY, USA, 2007. ACM.

[113] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation.

In A. Sahai, editor, TCC, volume 7785 of Lecture Notes in Computer Science,

pages 222–242. Springer, 2013.

[114] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of

operations on dynamic sets. In P. Rogaway, editor, Advances in Cryptology -

CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,

August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer

Science, pages 91–110. Springer, 2011.

[115] D. J. Park, K. Kim, and P. J. Lee. Public key encryption with conjunctive

field keyword search. In Information Security Applications, 5th International

Workshop, volume 3325 of Lecture Notes in Computer Science, pages 73–86.

Springer, 2004.

[116] D. J. Park, K. Kim, and P. J. Lee. Public key encryption with conjunctive field

keyword search. In C. H. Lim and M. Yung, editors, Information Security Ap-

plications, 5th International Workshop, WISA 2004, Jeju Island, Korea, August

23-25, 2004, Revised Selected Papers, volume 3325 of Lecture Notes in Computer

Science, pages 73–86. Springer, 2004.

[117] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical

verifiable computation. In Security and Privacy (S&P), 2013 IEEE Symposium

on, pages 238–252. IEEE, 2013.

[118] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in

public: Verifiable computation from attribute-based encryption. In R. Cramer,

editor, TCC, volume 7194 of Lecture Notes in Computer Science, pages 422–439.

Springer, 2012.

[119] M. B. Paterson, D. R. Stinson, and J. Upadhyay. A coding theory foundation for

the analysis of general unconditionally secure proof-of-retrievability schemes for

cloud storage. J. Mathematical Cryptology, 7(3):183–216, 2013.

[120] M. B. Paterson, D. R. Stinson, and J. Upadhyay. Multi-prover proof-of-

retrievability. Cryptology ePrint Archive, Report 2016/265, 2016. http:

//eprint.iacr.org/.

279

http://eprint.iacr.org/
http://eprint.iacr.org/

[121] V. Pham, M. H. R. Khouzani, and C. Cid. Optimal contracts for outsourced

computation. In R. Poovendran and W. Saad, editors, Decision and Game The-

ory for Security - 5th International Conference, GameSec 2014, Los Angeles,

CA, USA, November 6-7, 2014. Proceedings, volume 8840 of Lecture Notes in

Computer Science, pages 79–98. Springer, 2014.

[122] M. A. Rappa. The utility business model and the future of computing services.

IBM Systems Journal, 43(1):32–42, 2004.

[123] Y. Ren, J. Xu, J. Wang, and J.-U. Kim. Designated-verifier provable data pos-

session in public cloud storage. International Journal of Security and Its Appli-

cations, 7(6):11–20, 2013.

[124] B. Rosen. On the coupon collector’s waiting time. Ann. Math. Statist.,

41(6):1952–1969, 12 1970.

[125] R. S. Sandhu and P. Samarati. Access control: principle and practice. Commu-

nications Magazine, IEEE, 32(9):40–48, 1994.

[126] H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk,

editor, Advances in Cryptology - ASIACRYPT 2008, 14th International Con-

ference on the Theory and Application of Cryptology and Information Security,

Melbourne, Australia, December 7-11, 2008. Proceedings, volume 5350 of Lecture

Notes in Computer Science, pages 90–107. Springer, 2008.

[127] S.-T. Shen and W.-G. Tzeng. Delegable provable data possession for remote data

in the clouds. In S. Qing, W. Susilo, G. Wang, and D. Liu, editors, ICICS, volume

7043 of Lecture Notes in Computer Science, pages 93–111. Springer, 2011.

[128] E. Shi, E. Stefanov, and C. Papamanthou. Practical dynamic proofs of retriev-

ability. In A. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM Conference on

Computer and Communications Security, pages 325–336. ACM, 2013.

[129] J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng. Authorized keyword search on

encrypted data. In M. Kutylowski and J. Vaidya, editors, Computer Security -

ESORICS 2014 - 19th European Symposium on Research in Computer Security,

Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I, volume 8712 of

Lecture Notes in Computer Science, pages 419–435. Springer, 2014.

[130] V. Shoup. Sequences of games: a tool for taming complexity in security proofs.

Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

[131] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively

small key and ciphertext sizes. In P. Q. Nguyen and D. Pointcheval, editors,

280

http://eprint.iacr.org/

Public Key Cryptography - PKC 2010, 13th International Conference on Prac-

tice and Theory in Public Key Cryptography, Paris, France, May 26-28, 2010.

Proceedings, volume 6056 of Lecture Notes in Computer Science, pages 420–443.

Springer, 2010.

[132] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on en-

crypted data. In IEEE Symposium on Security and Privacy, Berkeley, California,

USA, pages 44–55. IEEE, 2000.

[133] E. Stefanov, C. Papamonthou, and E. Shi. Practical dynamic searchable encryp-

tion with small leakage. In 21st Annual Network and Distributed System Security

Symposium, NDSS 2014. The Internet Society, 2014.

[134] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea. Iris: a scalable cloud file

system with efficient integrity checks. In R. H. Zakon, editor, 28th Annual Com-

puter Security Applications Conference, ACSAC 2012, Orlando, FL, USA, 3-7

December 2012, pages 229–238. ACM, 2012.

[135] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li. Verifiable

privacy-preserving multi-keyword text search in the cloud supporting similarity-

based ranking. IEEE Transactions on Parallel Distributed Systems, 25(11):3025–

3035, 2014.

[136] W. Sun, S. Yu, W. Lou, T. Hou, and H. Li. Protecting your right: Verifiable

attribute-based keyword search with fine-grained owner-enforced search autho-

rization in the cloud. Parallel and Distributed Systems, IEEE Transactions on,

(99), 2013.

[137] J. van den Hooff, M. F. Kaashoek, and N. Zeldovich. Versum: Verifiable compu-

tations over large public logs. In G. Ahn, M. Yung, and N. Li, editors, Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications Secu-

rity, Scottsdale, AZ, USA, November 3-7, 2014, pages 1304–1316. ACM, 2014.

[138] V. Vu, S. T. V. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture

for interactive verifiable computation. In 2013 IEEE Symposium on Security and

Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 223–237. IEEE

Computer Society, 2013.

[139] C. Wang, N. Cao, J. Li, and W. Lou. Secure ranked keyword search over en-

crypted cloud data. In International Conference on Distributed Computing Sys-

tems, ICDCS 2010, pages 253–262. IEEE Computer Society, 2010.

[140] C. Wang, N. Cao, K. Ren, and W. Lou. Enabling secure and efficient ranked key-

word search over outsourced cloud data. IEEE Transactions Parallel Distributed

Systems, 23(8):1467–1479, 2012.

281

[141] J. Wang, H. Ma, J. Li, H. Zhu, S. Ma, and X. Chen. Efficient verifiable fuzzy

keyword search over encrypted data in cloud computing. Computer Science In-

formation Systems, 10(2):667–684, 2013.

[142] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,

and provably secure realization. In D. Catalano, N. Fazio, R. Gennaro, and

A. Nicolosi, editors, Public Key Cryptography - PKC 2011 - 14th International

Conference on Practice and Theory in Public Key Cryptography, Taormina, Italy,

March 6-9, 2011. Proceedings, volume 6571 of Lecture Notes in Computer Science,

pages 53–70. Springer, 2011.

[143] L. Xu and S. Tang. Verifiable computation with access control in cloud comput-

ing. The Journal of Supercomputing, 69(2):528–546, 2014.

[144] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In

FOCS, pages 162–167. IEEE Computer Society, 1986.

[145] J. Yuan and S. Yu. Proofs of retrievability with public verifiability and constant

communication cost in cloud. In Proceedings of the 2013 International Workshop

on Security in Cloud Computing, Cloud Computing ’13, pages 19–26, New York,

NY, USA, 2013. ACM.

[146] M. Yung. Zero-knowledge proofs of computational power (extended summary).

In J. Quisquater and J. Vandewalle, editors, Advances in Cryptology - EURO-

CRYPT ’89, Workshop on the Theory and Application of of Cryptographic Tech-

niques, Houthalen, Belgium, April 10-13, 1989, Proceedings, volume 434 of Lec-

ture Notes in Computer Science, pages 196–207. Springer, 1989.

[147] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The

power of file-injection attacks on searchable encryption. IACR Cryptology ePrint

Archive, 2016:172, 2016.

[148] Q. Zheng, S. Xu, and G. Ateniese. VABKS: verifiable attribute-based keyword

search over outsourced encrypted data. In 2014 IEEE Conference on Computer

Communications, INFOCOM 2014, pages 522–530. IEEE, 2014.

282

	Introduction
	Motivation
	Organisation of Thesis

	Background Material
	Preliminaries
	Notation
	Provable Security

	Encryption Schemes
	Symmetric Encryption Schemes
	Public-key Encryption Schemes

	Attribute-based Encryption
	Key-policy Attribute-based Encryption
	Revocable Key-policy Attribute-based Encryption
	Ciphertext-policy Attribute-based Encryption
	Dual-policy Attribute-based Encryption
	Instantiation of Attribute-based Encryption Schemes
	Linear Secret Sharing Schemes
	Bilinear Maps and Hardness Assumptions
	Terminology for Binary Trees

	Searchable Encryption
	Digital Signatures
	One-way Functions
	Verifiable Outsourced Computation
	Non-interactive Verifiable Outsourced Computation
	Publicly Verifiable Outsourced Computation
	Construction of Publicly Verifiable Computation Schemes

	Proofs of Retrievability

	Revocation in Publicly Verifiable Outsourced Computation
	Introduction
	Revocable Publicly Verifiable Outsourced Computation
	Key Distribution Centre
	Standard Model
	Manager Model
	Formal Definition

	Security Models
	Ideal Security Properties
	Public Verifiability
	Revocation
	Vindictive Server
	Vindictive Manager

	Restricted Security Properties
	Selective Public Verifiability
	Selective, Semi-static Revocation
	Selective Vindictive Manager

	Construction
	Technical Details
	Handling Multiple Servers
	Handling Multiple Functions

	Instantiation Details

	Proofs of Security
	Selective Public Verifiability
	Selective, Semi-static Revocation
	Vindictive Servers
	Selective Vindictive Manager

	Conclusion

	Publicly Verifiable Delegable Computation
	Introduction
	Publicly Verifiable Delegable Computation
	Formal Definition
	Possible Applications of VDC

	Security Model
	Public Verifiability

	Construction
	Overview
	Instantiation Details

	Proof of Security
	Conclusion

	Hybrid Publicly Verifiable Outsourced Computation
	Introduction
	Hybrid Publicly Verifiable Outsourced Computation
	Informal Overview
	Formal Definition
	Modes of Computation
	RPVC
	VDC
	RPVC-AC

	Security Models
	Selective Public Verifiability
	Selective, Semi-static Revocation
	Selective Authorised Computation

	Revocable Dual-policy Attribute-based Encryption
	Formal Definition
	Security Model
	Construction of a rkDP-ABE scheme
	Security Proof

	Construction
	Proofs of Security
	Selective Public Verifiability
	Selective, Semi-static Revocation
	Selective Authorised Computation

	Conclusion

	Extended Functionality in Verifiable Searchable Encryption
	Introduction
	Extended Verifiable Searchable Encryption
	Informal Overview
	Formal Definition

	Security Models
	Public Verifiability
	Selective Index Privacy
	Selective Query Privacy

	Construction
	Overview
	Data Encoding
	Formal Details
	Instantiation Details

	Proofs of Security
	Public Verifiability
	Index Privacy
	Query Privacy

	Conclusion

	Cloud Storage Proofs of Retrievability
	Introduction
	Cloud Storage Proofs of Retrievability
	Storage Container
	Formal Definition of CSPoR

	Security Model
	Construction
	Practicability of CSPoR
	Strategies for CSPoRP
	Audit Strategies for CSPoRP
	Workload Partition
	Statistical Hypothesis Testing
	Certificates
	Scheduled CSPoR

	Handling Erasure Detection Using CSPoR
	Immediate Download
	Reduced CSPoR

	Communication Model
	Dynamic Updates

	Evaluation
	Conclusion

	Conclusion
	Bibliography

