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Abstract

Resilient and Scalable Android Malware Fingerprinting and Detection

ElMouatez Billah Karbab, Ph.D.

Concordia University, 2020

Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual

analysis of such a large volume of malware is daunting and time-consuming. The diversity of tar-

geted systems in terms of architecture and platforms compounds the challenges of Android malware

detection and malware in general. This highlights the need to design and implement new scalable

and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a

malware fingerprinting framework to cover accurate Android malware detection and family attribu-

tion. In this context, we emphasize the following: (i) the scalability over a large malware corpus;

(ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms

and architectures.

In the context of bulk and offline detection on the laboratory/vendor level: First, we propose

an approximate fingerprinting technique for Android packaging that captures the underlying static

structure of the Android apps. We also propose a malware clustering framework on top of this

fingerprinting technique to perform unsupervised malware detection and grouping by building and

partitioning a similarity network of malicious apps. Second, we propose an approximate finger-

printing technique for Android malware’s behavior reports generated using dynamic analyses lever-

aging natural language processing techniques. Based on this fingerprinting technique, we propose a

portable malware detection and family threat attribution framework employing supervised machine

learning techniques. Third, we design an automatic framework to produce intelligence about the

underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis tech-

niques to generate relevant, actionable, and granular intelligence that can be used to identify the

iii



threat effects induced by malicious Internet activity associated to Android malicious apps.

In the context of the single app and online detection on the mobile device level, we further

propose the following: Fourth, we design a portable and effective Android malware detection system

that is suitable for deployment on mobile and resource constrained devices, using machine learning

classification on raw method call sequences. Fifth, we elaborate a framework for Android malware

detection that is resilient to common code obfuscation techniques and adaptive to operating systems

and malware change overtime, using natural language processing and deep learning techniques.

We also evaluate the portability of the proposed techniques and methods beyond Android plat-

form malware, as follows: Sixth, we leverage the previously elaborated techniques to build a frame-

work for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction

with advanced deep learning techniques.
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Chapter 1

Introduction

Mobile apps have become an inherent part of our everyday life, as many of the services we

use are provided to us through mobile apps. Mobile apps changed the way we communicate and

put smart devices in the center of many of our daily activities. In contrast to personal computers

(non-mobile systems), smart devices are equipped with sophisticated sensors, from cameras and

microphones to gyroscopes and GPS [98]. These various sensors enable a whole new world of

applications for end-users [98] and generate vast amounts of data, which contain highly sensitive

information. This raises the need for security solutions to protect users from malicious apps, which

exploit the sophistication and the sensitive content of smart devices.

Android OS witnessed a phenomenal growth, being deployed on wide spectrum of smart de-

vices. It has the most significant share in the mobile computing industry with 76.1% in 2019-Q3

[45] due to its open-source distribution and appealing features. Besides, it has become not only the

dominant platform for mobile phones and tablets but is also gaining increasing attention and pen-

etration in the Internet of Things (IoT) realm [2, 11, 25, 44]. In this context, Google has launched

Android Things [58], an Android OS for IoT devices, where developers benefit from the mature

Android stack to develop IoT apps targeting thin devices [1, 25, 38, 58]. In this context, protecting

Android devices from malicious apps is of paramount importance. The sophistication of mobile

devices and the ubiquitousness of IoT objects help to build a smart world, but also unleash unprece-

dented potential for cyber-threats. Such threats could be committed by adversaries who might gain

access to sensitive information and resources through Android malware apps.
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1.1 Motivations

The volume of malware is growing tremendously [29], millions per month. In 2013, there

was about 30 Million malware in the whole year [36]. In only February 2017, the number of

new malware variants has reached to 94.6 Million [56]. This phenomenal growth is due to the

ease of development of malicious apps nowadays, especially, repackaging existing malicious apps

to develop new variants. There are some discrepancies in the estimation of the actual daily new

malware [36, 56], but they agree to a large extent. In 2013, the estimation on new malware was

about 82k per day [36]. However, in 2017, experts [41] estimated a figure of 250k new malware

a day. The challenge relates to processing, analyzing, and fingerprinting new malware binaries to

produce analytics in a limited time window. In this respect, our research aims at answering the

following questions: (i) How can we efficiently fingerprint malware in large binary corpus? (ii)

How can we effectively detect malware? (iii) How can we group the detected samples into malware

families?

The popularity of Android OS and its open nature make it a tempting target for malicious apps

in mobile computing platforms [179], including mobile devices (e.g., phones and tablets) as well

as IoT devices [4, 55]. The reported Android malicious apps increased by 40% in the third quarter

of both 2017 and 2018 [54]. Android malicious apps target billions of users through centralized

app markets, where developers publish end-user apps. The simplicity and affordability of malicious

apps deployment in various app stores increase the number of compromised devices. Many security

solutions have been proposed to defend against Android malware. For example, the vetting system

in app markets such as Google Play1 plays a crucial role in detecting Android malware. However,

Android malicious apps are able to deceive the vetting systems 2 in app markets3 and infect millions

of devices4, which emphasizes the importance of effective Android malware detection capability.

There is a clear need for solutions that defend against malicious apps in mobile and IoT devices

with specific requirements to overcome the limitations of existing Android malware detection sys-

tems. First, the Android malware detection system should ensure a high accuracy with minimum
1https://play.google.com
2https://tinyurl.com/y57twlbs
3https://tinyurl.com/yx8vqld2
4https://tinyurl.com/y5rwybst
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false alarms. Second, it should be able to operate at different deployment scales: (i) Server ma-

chines, (ii) Personal computers, (iii) Smartphones and tablets, and (iv) IoT devices. Third, detecting

that a given app is malicious may not be enough, as more information about the threat is required

to prioritize the mitigation actions. Knowledge on the type of attack could be crucial to prevent the

intended damage. Therefore, it is essential to have a solution that goes a step further and attributes

the malware to a specific family, which defines the potential threat that infected system is exposed

to. Finally, it is necessary to minimize manual human intervention as much as possible and make the

detection dependent mainly on the app sample for automatic feature extraction and pattern recogni-

tion. As malicious apps are quickly getting stealthier, the security analyst should be able to catch

up with this trend. In this respect, for every new malware family, a manual analysis of the samples

is required to identify its pattern and features that distinguish it from benign apps.

1.2 Research Objectives

In this thesis, we focus on fingerprinting malware, which is the process of finding distinctive

patterns in malware in order to be distinguished from benign samples, as a core procedure in the

malware detection and family attribution. The main goals of the thesis are as follows:

(1) Android Malware Fingerprinting: Malware detection and family attribution of Android ma-

licious apps is a primary goal of this thesis. The developed frameworks and techniques are applied

to Android malware. However, the framework is general enough to be accommodated to address

malware on other platforms.

(2) Ransomware Fingerprinting: For ransomware detection, we apply the learned techniques

on the ransomware detection problem. In this context, we target the problem of cross-platform

ransomware detection.

Toward achieving the aforementioned goals, we dedicate special attention to the following cri-

teria:

(1) Scalable Malware Fingerprinting: In response to the increasing number and magnitude of

malware attacks, in this thesis, we focus on proposing scalable solutions and techniques for malware

fingerprinting, while maintaining high malware detection performance.
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(2) Resilient Malware Fingerprinting: Malware developers employ various obfuscation tech-

niques to thwart detection attempts. Therefore, obfuscation resiliency is crucial in modern malware

fingerprinting. In this thesis, we put the emphasis on resiliency to code transformation and common

obfuscation techniques in the development of our malware fingerprinting techniques and systems.

(3) Portable Malware Fingerprinting: (i) Manual feature engineering of platform-dependent mal-

ware features is not scalable given the amount and the changing velocity of malware techniques.

Therefore, portable feature engineering is an essential criterion in the development of fingerprint

solutions, such as feature engineering in dynamic analysis. (ii) The efficiency of the fingerprinting

techniques, starting from the initial data processing to the detection, is a crucial factor that affects

the deployment portability of the solution. (iii) The diversity of targeted architectures, platforms,

and execution environments of malware is a challenging problem. The portability of malware fin-

gerprinting tools across different architectures (ARM, x86, MIPS, etc.) is an important requirement

of the fingerprinting process.

1.3 Research Contributions

In this section, we present a summary of the thesis contributions.

1.3.1 Community-Based Android Malware Clustering

In this contribution, we propose APK-DNA [133], a fuzzy fingerprinting approach that captures

both the structure and the semantics of the APK file using most Android APK features. Using

APK-DNA, we propose the Cypider [130] framework, a set of techniques and tools aiming to

perform a systematic detection and grouping of mobile malware (Android Malware) by building

an efficient and a scalable similarity network of malicious apps. Our detection method is based

on a novel concept, namely malicious community, in which we consider, for a given family, the

instances that share common features. Under this concept, we assume that multiple similar Android

apps with different authors are most likely to be malicious. Cypider leverages this assumption

for the detection of variants of known malware families and zero-day malware. Cypider applies

community detection algorithms on the similarity network, which extracts sub-graphs considered as
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suspicious and most likely malicious communities. We propose a novel fingerprinting technique,

namely community fingerprint, based on a learning model for each malicious community.

1.3.2 Android Malware Fingerprinting on Dynamic Analysis

In this contribution, we propose DySign, a novel technique for fingerprinting Android mal-

ware’s dynamic behaviors. DySign allows for the generation of a digest from the dynamic analysis

of a malware sample. On top of DySign [128, 129], we propose, MalDy [125, 127], a portable

malware detection and family threat attribution framework using supervised machine learning tech-

niques. The key idea of MalDy portability is the modeling of the behavioral reports as a sequence

of words, along with advanced Natural Language Processing (NLP) and Machine Learning (ML)

techniques for automatic engineering of relevant security features to detect and attribute malware

without human in the loop. More precisely, we propose to use the bag-of-words (BoW) model to

capture the behavioral reports. Afterward, we build ML ensembles on top of BoW features. We

evaluate MalDy on various datasets from different platforms (Android and Win32) and execution

environments. The evaluation shows the effectiveness and the portability of MalDy across a spec-

trum of analyses and settings.

1.3.3 Fingerprinting Android Malware Cyber-Infrastructure

In this contribution, we present ToGather [124, 126], an automatic investigation framework

that takes Android malware samples as input and produces insights about the underlying malicious

cyber-infrastructures. ToGather leverages state-of-the-art graph analyses techniques to generate

actionable, relevant, and granular intelligence to detect the threat effects induced by the malicious

Internet activity of Android malware apps. The main contributions are: (1) We design and im-

plement of ToGather, a simple, yet practical framework for the generation of actionable, relevant

and granular intelligence on the malicious cyber-infrastructures used by Android malware. (2) We

propose a correlation mechanism with multiple cyber-threat intelligence feeds, which enriches not

only the resulting malicious cyber-infrastructure intelligence but also the labeling of the tracked

malicious activities.
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1.3.4 Portable Supervised Android Malware Detection

In this contribution, we propose MalDozer [69, 131, 132], an automatic Android malware de-

tection, and family attribution framework that relies on method call sequence classification using

deep learning techniques. Starting from a raw sequence of the app’s API method calls, MalDozer

automatically extracts and learns the malicious and the benign patterns from the actual samples in

order to detect Android malware. MalDozer can serve as a ubiquitous malware detection system

that can be deployed not only on servers, but also on mobile and even IoT devices. This framework

has the following main contributions: (1) MalDozer, a novel, effective, and efficient Android mal-

ware detection framework using the raw sequences of API method calls in conjunction with neural

networks. In this context, we take a step beyond malware detection by attributing the detected An-

droid malware to its family with high accuracy. (2) We propose an automatic feature extraction

technique during the training using method embedding, where the input is the raw sequence of API

method calls, extracted from Android Dalvik assembly.

1.3.5 Robust and Adaptive Android Malware Fingerprinting

In this contribution, we propose PetaDroid, a resilient and adaptive framework for android

malware detection and family clustering using advanced natural language processing and machine

learning techniques. PetaDroid detects Android malware samples using an ensemble of Convo-

lutional Neural Networks (CNNs) on top of our Inst2Vec features. Afterward, PetaDroid clusters

the detected malware into groups of the same family utilizing sample digests generated using deep

neural auto-encoder. PetaDroid is robust to common obfuscation techniques due to our fragment

randomization technique during the training. PetaDroid leverages the confidence of detection de-

cisions during deployment to collect extension dataset at each epoch. The extension dataset is used

to automatically build new models without manual sample collection and also to empower time

resiliency.
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1.3.6 Ransomware Fingerprinting using Hybrid Features

In this contribution, we propose SwiftR, a cross-platform framework for ransomware finger-

printing. SwiftR provides fast and accurate ransomware detection that relies on raw hybrid features

with advanced deep learning techniques. SwiftR proposes a novel ransomware detection framework

that is agnostic to architectures and platforms by introducing the use of intermediate representation

(IR) features from static analyses. Also, SwiftR proposes a novel ransomware detection using word-

based features from behavioral analysis reports produced by dynamic analyses. We endow SwiftR

with a novel neural network architecture that leverages the different contents of the malicious sample

to identify ransomware. In this framework, we make the following contributions: (1) We propose a

novel cross-platform ransomware fingerprinting framework. SwiftR can detect ransomware, distin-

guish it from general malware, and attribute it to a ransomware family. (2) Static SwiftR: We propose

novel implicit static analysis features extracted from VEX intermediate representation (IR). Further-

more, we design a novel multi-task hierarchical neural network for learning relevant ransomware

patterns from these raw static features. (3) Dynamic SwiftR: We proposed novel word-based features

and LSTM neural network machine learning to achieve portable ransomware fingerprinting.

1.4 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 provides the necessary back-

ground and state-of-the-art to Android malware detection. In Chapter 3, we propose an approxi-

mate fingerprinting approach for malware detection and apply it to Android malware. Afterward,

we present a novel malware clustering technique, based on the aforementioned fingerprinting ap-

proach and graph partition techniques. Chapter 4 tackles portable malware fingerprinting from

dynamic analysis reports using natural language processing and machine learning techniques. In

Chapter 5, we propose a framework for Android malware cyber-infrastructure investigation. In

Chapter 6, we propose a portable Android malware detection using deep learning techniques. In

Chapter 7, we present an Android malware detection framework with high obfuscation resiliency

and change overtime adaptation. Chapter 8 presents a ransomware fingerprinting framework that ap-

plies the elaborated techniques from the previous chapters of the thesis. Finally, Chapter 9 provides
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the conclusions, which discuss the relevance and importance of the addressed problems, followed

by a summary of our contributions. In addition, it mentions the limitations of our research while

presenting some avenues for future research on the topics studied.
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Chapter 2

Background and Related Work

In this chapter, we review and compare state-of-the-art proposals on Android malware analysis

and detection according to a novel taxonomy. Due to the large number of published contributions,

we focus our review on the most prominent articles in terms of novelty and contributions, with an

emphasis on those published in top-tier security journals and conferences. The proposed taxonomy

is based on the generality of Android malware threats. It classifies the existing systems into: (1)

general malware detection, which aims to detect malware without taking into account a particular

type of attack, and (2) attack-based malware detection, which aims at detecting specific attacks

such as privilege escalation attacks, data leakage attacks, etc. Furthermore, each threat category is

classified according to the system deployment of the detection approach, i.e., the physical environ-

ment into which the system is intended to run. Furthermore, we consider three main deployment

architectures: workstation-based, mobile-based, and hybrid architectures. The proposed two-level

taxonomy allows carrying out an objective and appropriate analysis by comparing only systems that

are addressing the same threat category, and having the same deployment architecture as they share

the same goals and have similar issues to solve.

2.1 Background

In this section, we introduce the essential background knowledge of Android OS. We also dis-

cuss briefly Android security and its implication on malware detection.
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2.1.1 Android OS Overview

Android is a mobile operating system maintained by Google and supported by the Open Handset

Alliance (OHA) [7]. Android is embraced by the Original Equipment Manufacturers (OEMs), chip-

makers, carriers and application developers. Android apps are written in Java. However, the native

code and shared libraries are developed in C/C++ [19]. The current Android architecture [39] con-

sists of the Linux kernel, which is designed for an embedded environment with limited resources.

On top of the Linux kernel, there is the Hardware Abstraction Layer (HAL), which provides stan-

dard interfaces that expose device hardware capabilities to the higher-level Java API framework, by

allowing programmers to create software hooks between the Android platform stack and the hard-

ware. Also, there is Android Runtime (ART), which is an application runtime environment used

by the Android OS and which replaced Dalvik virtual machine starting from Android 5.0. ART

translates the apps’ bytecode into native instructions that are later executed by the device’s run-

time environment. ART introduces the Ahead-Of-Time (AOT) compilation feature, which allows

compiling entire applications into native machine code upon their installation. The native libraries

developed in C/C++ support high-performance third-party reusable shared libraries. The Java API

framework provides APIs for the building blocks the user needs to create Android apps.

Android Apk Format

Android Application Package (Apk) is the file format adopted by Android for apps distribution

and installation. It comes as a ZIP archive file, which contains all the components needed to run the

app. By analogy, Apk files are similar to Windows EXE installation files or Linux RPM/DEB files.

The Apk package is organized into different directories (namely lib, res, assets), and files (namely

AndroidManifest.xml and classes.dex). More precisely, the AndroidManifest.xml file contains

the app meta-data, e.g., name, version, required permissions, and used libraries. The classes.dex

file contains the compiled Java classes. The lib directory stores C/C++ native libraries [19]. The

resources directory (res) contains the non-source code files, such as video, image, and audio files,

which are packaged during compilation.
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Android Markets

Android app market is an Internet site for developers to publish their apps. Google Play is

the official app market for Android. Before an app is published in this market, it needs to be

verified by the Bouncer vetting system [155] to check newly submitted apps against malware. This

involves scanning an app for known malicious code and performing dynamic analysis for a limited

period to detect hidden malicious behaviors. The vetting system can be evaded by apps that avoid

triggering malicious behavior during the analysis time. There are also other third-party markets such

as AppChina [40] and Mumayi [23], where developers can upload their apps. However, they provide

fewer restrictions to publish apps. Unlike Google Play store, they do not vet the submitted apps but

rather rely on users’ feedback, which helps attackers to publish repackaged apps and malware easily

(minimum vetting).

2.1.2 Android Security

Android OS employs two security mechanisms: permissions and sandboxing. In Android, apps

can access resources such as telephony, network, and SMS functions using APIs. Android APIs are

protected using a security mechanism based on permissions. Each application must define the per-

missions it requests in its AndroidManifest.xml file. A user needs to grant the required permissions

to install the app. Otherwise, the application cannot be installed. The Android kernel provides a

sandboxing feature, which isolates apps from one another. In Android, each application is assigned

a unique User ID (UID) and is run as a separate process. The file system access policy does not

allow one user (resp., application) to access or modify another user’s (application’s) files.

Android Security Threats

Attackers can exploit many weaknesses and vulnerabilities in the Android ecosystem to com-

promise and infect Android devices with malware. These weaknesses are summarized as follows:

(1) Most of the App markets deploy no or limited vetting system to check whether the submitted

apps are malicious or not. (2) The official Android market might contain malicious apps. Some apps

[3, 10, 22] in Google’s Play Store have been identified as malicious. Thus, there is a risk that users
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download malware. (3) There are non-market sources to obtain Android apps such as SD cards,

which open more attack entry points for malware. (4) Most of the users ignore or have little under-

standing of the Android permission policy. This is stated in a survey [110], which showed that only

17% of users look at the permissions when installing applications. (5) It has also been noticed that

developers request more permissions than they need [109]. As legitimate and malicious applica-

tions can request permissions, it is often difficult for users to determine, during the installation time

whether the requested permissions are harmful or not. (6) It is relatively easy for an adversary to

reverse-engineer a legitimate Android app, insert malicious code, and repackage the Apk file again.

Design Challenges of Malware Detection Systems

The design of Android malware detection system faces many challenges: (1) Ensuring simul-

taneously high-accuracy detection and efficiency in terms of time and resource use (CPU, RAM,

and battery in case of mobile device deployment), is difficult to achieve, especially in the case of

deploying the detection system on resource-constrained devices. (2) Malware developers employ

techniques to evade detection, such as code obfuscation or dynamically loading a binary code from

a remote server. (3) The vetting system executes apps for a limited time in a controlled environment,

e.g., sandboxing or emulation, to check their maliciousness. However, some malware only reveal

their malicious behaviors after a period of time to escape the analysis of maliciousness detection

systems during the early execution period. Also, some malware try to check the execution envi-

ronment for signs of a sand-boxing system [128, 129]. The goal is to prevent the execution of the

malicious payload under a sand-boxing environment.

2.2 Android Malware Detection Overview

In this section, we review the existing contributions on Android malware analysis. Android

malware detection methods focus on identifying whether the analyzed app is benign or malicious.

Malware detection proposals can be categorized into static [73, 111], dynamic [64, 87], and hy-

brid [81, 197] analysis-based.

Static Analysis Approaches: Static analysis techniques perform fast code disassembling and
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decompilation without the need to execute the binary. The static methods [66, 73, 77, 86, 101, 111,

119, 133, 137, 157, 167, 192, 194, 196, 200] depend on static features, which are extracted from the

Apk file such as requested permissions, APIs, bytecodes, opcodes. Static analysis techniques are

fast and covers all the execution paths of the analyzed app. However, this approach is undermined

by the use of various code transformation techniques [106]. We may divide static analysis based

techniques into the following categories: (i) Signature-based analysis: This analysis deals with the

extracted syntactic pattern features. The authors in [111] create a unique signature matching a par-

ticular malware. However, such signature cannot handle new variants of existing known malware.

Moreover, the signature database should be updated to handle new variants. AndroSimilar [107]

has been proposed to detect zero-day variants of known malware. It is an automated statistical

feature signature-based method for malware detection. (ii) Resource-based analysis: The mani-

fest file contains important meta-data about the components, i.e., activities, services, receivers, etc.

and the required permissions. There are some methods that have been proposed to extract such

information and subject it to analysis [92, 111, 112, 133]. (iii) Permission-based analysis: This

approach is based on discovering unnecessary permission requests that might lead to malicious ac-

tivity [78, 169]. In [104], the authors proposed a certification tool that defines a set of rules to

detect malware by identifying combinations of requested permissions. (iv) Semantic-based analy-

sis: There are existing approaches that analyze Dalvik bytecode that is semantically rich, containing

type information such as classes, methods and instructions. Additionally, such information can be

used to analyze control and data flow graphs that reveal privacy leakage and telephony services

misuse [114, 114, 135, 135].

Dynamic Analysis Approaches: The dynamic methods [64, 71, 87, 118, 168, 186, 199] use

features that are derived from the app’s execution. They are more resilient to code obfuscations

than static analysis methods. However, such methods [85, 97, 102, 103, 118, 163, 172] incur addi-

tional cost in terms of processing and memory to run the app. Also, anti-emulation techniques such

as sandbox detection and delaying malware execution can evade dynamic analysis methods. Dy-

namic techniques are divided into the following two categories: (i) Resources usage based: Some

malicious apps may cause Denial of Service (DoS) attacks by over-utilizing constrained hardware

resources. A range of parameters such as CPU usage, memory utilization statistics, network traffic
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pattern, battery usage and system-calls for benign and malware apps are gathered from the Android

subsystem. Then, automatic analysis techniques along with machine learning techniques are em-

ployed [97, 163, 172]. (ii) Malicious behavior based: This is related to abnormal behaviors such

as sensitive data leakage and sending SMS/emails [85, 97, 102, 103, 118, 163, 172].

Hybrid Analysis Approaches: The hybrid methods [65, 81, 114, 121, 145, 150, 175, 184, 197,

204] use both static and dynamic features.

Malware Family Attribution: In the previous categories, the proposed systems focus mainly

on the detection task in which we segregate malware and benign apps. In this category, the proposed

systems focus on the malware family attribution task, in addition to the detection task, as a goal for

the analysis. Malware family attribution aims to attribute the malware to its actual family. To secure

Android systems, some methods [63, 99, 143] focus on detecting variants of known families. Other

proposals [88, 94, 95, 105, 108, 115, 130, 136, 144, 178, 180, 183, 201, 202] adopt the unsupervised

learning approach to find families of similar apps. These proposals assume that two or multiple apps

that share similar code are likely to belong to the same malware family. Thus, they check if the apps

are using the similar malicious code (i.e., detection of malware families), or they check for reused

code of the same original app (i.e., code reuse detection).

2.3 Taxonomy of Android Malware Detection Systems

In this section, we present our taxonomy for Android malware detection systems. As shown in

Figure 2.1, the taxonomy considers three aspects for the classification and the comparative study: (1)

Targeted threat , (2) System deployment, and (3) Android stack layer aspects are for classification.

The first three aspects, i.e., targeted threat, system deployment, and the implementation layer are

used to cluster related works that address the same threats in the same performance objectives (i.e.,

they operate under the same class of deployment settings); finally it defines on which Android OS

stack layer, the system is implemented.(i.e, app, framework, and Linux kernel layer as shown in

Figure 2.3). Afterward, we conduct a comparative study on the resulting groups for the criteria of

the last two aspects, i.e., Feature Selection and Detection strategy.
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2.3.1 Malware Threats

Android Malware detection systems are designed to protect against different kinds of malicious

activities. Based on the targeted threats, we classify them, as shown in Figure 2.2, into: Attack-

based detection systems, generic detection systems, and helpers systems. By (1) attack-based de-

tection systems (also attack-dependent systems), we mean the systems that aim to address specific

attacks. For instance, Graphical User Interface (GUI) phishing in which the adversary might de-

velop a malicious app whose graphical user interface (GUI) is visually similar to a legitimate app,

to deceive the user. In another example, two or more apps can collaborate to launch a collusion

attack leveraging Android Inter-Components Communication (ICC). Although each app has a set

of non-critical permissions, the apps can collude to generate a joint set of permissions that enables

them to perform unauthorized malicious activities.
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Figure 2.2: Classification of target threats
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By generic detection systems, we mean systems that aim to detect malware without considering

specific attacks. Instead, they detect malware based on prior knowledge of specific malware patterns
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or a learned model. Alternatively, other detection systems focus on apps that contain similar code

or exhibit similar behaviors.

Helpers systems provide assistance to Android malware detection solutions. First, they are

mainly used in lab environments due to their need for heavy manual work. Second, the provided

tool or results of such assets will be leveraged to improve and enhance the actual malware detection

solutions such as code obfuscation tools. Finally, these assets may not have been directly related to

malware detection, but they could help sharpen the malware detection rate.

2.3.2 Detection System Deployment

Detection system deployment refers to the adopted architecture in terms of physical compo-

nents. An Android malware detection system can be deployed on different types of architectures:

(i) workstation, (ii) Mobile, and (iii) hybrid, as shown in Figure 2.4. Each type of architecture has

its design objectives and operates under specific constraints and deployment settings, as described

below:

System
Deployment

Deployment
Architecture

Workstation 

Physical
Component

Mobile Server
Personal

Computer
Mobile
Device

IoT
Device

Hybrid

Figure 2.4: System Deployment Classification

Workstation-based architecture: This type of architecture is centralized because all the detection

modules are deployed on a high-power server or high-end desktop machine, and it can be used for

two types of application scenarios:

First, App market analysis, in which the detection system, as depicted in Figure 2.5(a), has

to check a newly submitted app before publishing it on the market. It represents the first line of

defense in the Android ecosystem. For this reason, high detection accuracy is required. The second

requirement is the scalability of the detection system with respect to detection time to the high

arrival rate of apps, and hence the detection should be performed in real-time, i.e., online detection
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Figure 2.5: Workstation-Based Analysis

mode.

Second, Security lab analysis, the security lab analyst can be any user working in the industry, a

researcher from academia, or independent analyst, who uses machines of middle-resource capability

regarding CPU and memory such as desktop computers and laptops, as depicted in Figure 2.5(b).

We need this separate category because the malware analysis may involve manual investigation by

the security practitioner; in contrast, app market analysis category has fully automated detection

process. Thus, it is important to stress that this category leverages experts knowledge and may

involve manual analysis.

Mobile-based architecture: Any user with a mobile device can perform this analysis. The detection

operations (provided by preprocessing, feature extraction, and the detection components) are car-

ried out on the mobile device, as depicted in Figure 2.6(a). In addition to ensuring high detection

accuracy, the detection system should cope with the limited capabilities of mobile devices that are

characterized by constrained resources such as CPU, memory, and battery capacity.

Hybrid architecture: If the malware detection system operations are split between the mobile device

and a workstation, the architecture is called hybrid (see Figure 2.6(b)). In this case, the system

should incur low communication cost in addition to consuming limited resources in terms of CPU,

memory, and battery.

As each type of deployment system has different priority design objectives and offers different
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resource capacities from one another, we compare the detection systems that are categorized under

the same deployment type. The differences between deployment systems regarding the importance

of design objectives are summarized in Table 2.1.
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Figure 2.6: Hybrid and Mobile-Based Analysis

Architecture Workstation-Based Mobile-Based Hybrid
Deployment App Market Analysis Security Lab Analysis

High Accuracy Very Important Important Very Important Very Important
Detection Time Very Important Important Important Important

CPU Less important Important Very important Very important
RAM Less important Important Very important Very important

Battery Not important Not Important Very important Very important
Communication Not important Not Important Not Important Very important

Usability Not important Not important Important Important

Table 2.1: Design Objectives of Deployment Systems

2.4 Performance Criteria for Malware Detection

In this section, we present a generic framework as a template for Android malware detection

systems together with the performance criteria. This template helps to make an abstraction of the

components of a typical Android malware detection system and its characteristics and criteria based

on its position in the proposed taxonomy (previous section). The framework, as shown in Figure 2.7,
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consists of two main processes: Process to generate detection patterns, which builds the detection

pattern (or model), and Detection and response process, which analyzes a target Apk based on the

developed detection model. In general, a dataset of Apks is the input for the Detection pattern

generation process. The Apk is first processed through disassembling or decompilation to generate

the raw features as they exist in the Apk file. In some cases, the raw features are processed to

generate high-level features, which are, in turn, fed to training modules to produce the detection

model. Given a target Apk, the detection module will determine whether it is malicious or benign.

The detection result can take one of the following two forms: label (i.e., malicious or not) and score

(i.e., risk score). Also, a detection response might follow after obtaining the detection result.
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Figure 2.7: Template Framework for Android Malware Detection Systems

2.4.1 Feature Selection

As shown in Figure 2.8, features can be (1) Static, extracted from the Apk file, such as, per-

missions, API used, opcode, etc. (2) Dynamic, which is extracted from the running the app, such

as system calls, invoked APIs, network traffic, etc. (3) Hybrid, which combines both static and

dynamic features. The features can also be classified with respect to other aspects as follows:

Code transformation and Obfuscation resiliency: An obfuscation technique aims to evade detection

by instrumenting the features used by the detection model. The feature is said to be highly resilient

to an obfuscation technique if the malware detection process using such a feature is less affected by

such technique, or the malware needs to change its functional logic to evade detection.

Adaptation to OS and malware evolution: The release of a new Android OS version implies a new

set of API frameworks. Detection systems that consider APIs as features need to manually redefine
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the set of API features before applying the detection process, which makes the adaptation of the

detection system difficult.

Features preprocessing complexity: In static analysis, before extracting some raw features (APIs

used, opcode), it is required to disassemble the dex file, which takes a longer time than removing

permissions, which only requires accessing the Manifest file. Although permissions are quickly

extracted, the detection methods mainly based on such features are less resilient to obfuscations

compared to those employing features that are derived from the dex file.

Detection required runtime: This measures the time interval between processing the Apk and mak-

ing a decision (malware or not) about a given Android app.
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Figure 2.8: Feature Selection Criteria

2.4.2 Detection Strategy

As shown in Figure 2.9, the detection can be either offline or online. Upon malware detection,

the detection response can be either: passive notification sent to the user, active reaction, which

blocks the malware, or no response in the case of App market analysis and security lab analysis.

The detection scope defines the goals of the android malware fingerprinting: only malware detec-

tion, family attribution, or go a step further such as the detection of threat network, composed of

IP addresses and domains names, related to Android malware samples. The detection approach

indicates how the detection model is produced, which can be through a learning procedure or a

prior-knowledge. The prior-knowledge models are specification-based models that are manually
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constructed by a human expert based on rules that try to determine the legitimate or the malicious

behavior of the app. The main advantage of the prior-knowledge techniques is short detection as

they only check if the predefined rules are violated or not. The main drawback is that building

knowledge requires high-level human expertise and is often time-consuming and a difficult task.

As for the learning models, they are automatic and can adapt to changes when new information is

acquired.
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Figure 2.9: Detection Strategy Comparison Criteria

2.5 General Malware Threat Detection

In this section, we discuss Android malware detection proposals in the literature that target gen-

eral malware detection without focusing on : type of malware, and its attack techniques. Moreover,

this category leverages general features to fingerprint the malware. We classify the proposals in this

category into workstation-based, mobile-based, and hybrid-based solutions. This section comes af-

ter we define our classification taxonomy and comparison criteria to describe and compare between

the solutions in the light of our taxonomy and criteria.

2.5.1 Workstation-Based Solutions

This section presents the workstation-based solutions, which require a lot of resources in terms

of processing and memory, so its deployment must be on relatively powerful machines.
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MAMADROID [148, 158] is a framework for Android malware detection using static behav-

ioral features of Android apps. MAMADROID leverages static analysis to extract learning features

from a reverse engineered Android app, and Android APIs call sequences (a sequence of API is

a possible behavior of the Android app). Markov chains are used to model and represent abstract

forms of API sequences; the abstracted APIs consists of (i) Package such as java.lang and (ii) Fam-

ily such as java. In this model, a node is an Android API, and an edge is the probability of having a

transition from one API to another. The authors consider these probabilities as features for the MA-

MADROID machine learning system. Therefore, Markov chains play the role of features extractor,

and it is the cornerstone of the proposed detection system. MAMADROID can only be deployed in

large-scale and high-end machines due to the required resources. It is relatively slow due to intense

preprocessing; the reported runtime might reach 13min. to 18min. depending on the size of the

binary.

StormDroid [91] is a malware detection system that considers malware as a stream of apps

as in the case of App markets. The authors are motivated by the fact that most existing systems

rely mainly on permissions and sensitive Android APIs. Therefore, they propose, StromDroid as

a machine learning system for Android malware detection. StromDroid leverages both static and

dynamic analysis to achieve a high detection rate with a low false-positive rate. The evaluation

of StromDroid includes multiple types of machine learning classifiers; K-Nearest Neighbors is the

most accurate one. However, K-Nearest Neighbors is not sufficiently scalable because the detection

runtime grows linearly with the size of the training dataset; but it is constant for classification

algorithms.

The main goal of OpSeq [63] is to measure the similarity of unknown apps relative to known

malware. OpSeq defines similarity as a function of normalized opcode sequences found in sensi-

tive functional modules as well as app permission requests. OpSeq extracts the components from

a known sample and creates corresponding signatures, which are used to search for similar com-

ponents in target applications. OpSeq improves the use of opcode-sequence similarity by focusing

only on the components that make suspicious API calls. The list of requested permissions is used

as a second parameter to improve detection accuracy. OpSeq is tested on a dataset of 1, 192 known
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malware samples belonging to 25 different families, 359 benign apps, and 207 new obfuscated mal-

ware variants. The results show that OpSeq can correctly detect known malware with an F1-Score

of 98%. However, OpSeq generates fingerprints from only assembly opcodes N-grams from com-

ponents that make suspicious API calls: (1) Relying on opcodes only ignores other information

in the assembly code. (2) The system might not be scalable overtime due to the rapid change in

suspicious API calls (how can find out new suspicious APIs in new OS versions).

2.5.2 Mobile-Based Solutions

This section presents mobile-based solutions. The following research initiatives target mobile

deployment. In the mobile-based solutions, the design of the detection process (from the prepro-

cessing, and feature extraction, to the final decision) is optimized to fit in resources-constrained

devices with small memory capacity and computation power.

Drebin [73] is a supervised machine learning system for android malware detection. Static anal-

ysis is used to extract a variety of code and app features from Dalvik and Manifest file, respectively.

As for the code features, the authors rely mainly on the used permissions and Android APIs (or

lightweight features), which have been filtered to consider only suspicious APIs, such as dynamic

load or cryptographic API. App features, extracted from Manifest file, are mainly the requested

permissions, the app components and intents, and the requested hardware components. Drebin only

considers lightweight features so that the preprocessing would be very fast. Lightweight features

extraction is essential for Drebin system efficiency to run on mobile devices (also high-end servers).

Drebin leverages bit-vector to represent the extracted features in order to train a Support Vector

Machine (SVM) model off-line. Drebin [73] shows high detection performance with low false pos-

itive. In addition to detection results, Drebin provides explanatory details to the end-user in terms

of suspicious features scores that affect the detection decision. However, the usage of lightweight

features impact the resiliency of the system against common code obfuscation techniques. Also,

Drebin relies on manual feature engineering that produces a static list of features, which is less

resilient to OS change overtime (new features due to the new APIs, permissions, etc.).

DroidBarrier [68] is a runtime process authentication model for Android. DroidBarrier provides

legitimate apps (that are considered as benign at the launch of the system) with security credentials,
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which are used for authentication when the associated processes are created. Processes that do

not have credentials fail to authenticate, and their corresponding applications are considered mali-

cious. The main disadvantage of this approach is the need to determine which requests are initially

legitimate.

A machine learning approach for a malware detection system that runs on Android devices is

proposed in [166]. The authors model the detection system as a machine learning model, specifi-

cally as an anomaly detection system (only train the detection model on benign apps). To this end,

they leverage a large number of available benign apps to train the anomaly detection model. There-

fore, benign apps are considered as part of the normal area while everything else is considered as

anomalies or malicious apps. The authors extract from the Android apps features such as permis-

sions and Control Flow Graphs (CFG). A one-class support vector machine model, i.e., the anomaly

detection model, is trained on the previous features offline. Afterward, the model is deployed on

Android devices.

2.5.3 Hybrid Solutions

Hybrid solutions have two parts that are deployed respectively in mobile end-devices and the

end-servers. Both ends work collaboratively to achieve detection of Android malware.

Crowdroid [85] is a detection system, which is composed of a lightweight app, that is installed

on a mobile device and interacts with a centralized server to make detection decisions. The system,

at the mobile device, monitors the Linux Kernel system calls of each app and sends the gathered

information to a centralized server. The latter collects these calls from different users and applies

a clustering algorithm to distinguish between benign and malicious apps. Although the reported

detection performance of Crowdroid is perfect in some cases, the employed dataset is very small to

the generalize the performance results, as shown in Table 2.3. Also, the usage of anomaly detection

tends to generate a considerable amount of false positives compared with supervised classification.

DRACO, a hybrid Android malware detection system in [81], is proposed. In [81], the authors

propose DRACO, which is a hybrid Android malware detection system. The system uses both

dynamic and static analyses on two different ends: end-user smart devices and high-end servers, re-

spectively. DRACO is hybrid because it is deployed on Android devices and servers simultaneously.
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In Android devices, DRACO collects dynamic analysis features such as the CPU, memory usage,

and file system accesses. On the server-side, DRACO conducts a static analysis to extract features

such as Android API calls. Both sets of features are used to train a support vector machine model as

the core of the DRACO system. Using end-user smart devices as a dynamic analysis system raises

the issue of privacy and security of DRACO itself, whether at the client or the server-side. Also, the

used features are straightforward and are extracted completely in nowadays devices; therefore, this

opens the question of the need for the servers.

Monet [181] is a runtime fingerprinting system for Android malware detection. Monet’s gen-

erated fingerprints capture the behavior of the installed apps in the Android devices overtime. The

authors design and implement Monet, a system that is deployed on both Android devices (client) and

the high-end servers (server). Monet client is implemented in the Android middle-ware framework

and Linux kernel to capture the dynamic behaviors of the apps. Afterward, the system summarizes

and represents captured behaviors in the form of graphs or runtime fingerprints. These are later sent

to the Monet server to match against known malware for detection purposes. Monet’s client needs

changes in both the Android framework in the Linux kernel to properly function, which makes the

deployment very hard on a large scale and for simple end-users.

2.5.4 Discussions

Table 2.2 depicts a comparison between generic solutions relying on feature selection and de-

tection strategy criteria. All the workstation solutions [63, 91, 148] employ static analysis to extract

malicious and benign features because it is fast and allows to detect most malicious apps. These

proposals are resilient to common code transformation techniques, depending on the strength of the

chosen features [148]. However, these proposals are not immune to more advanced obfuscation

techniques such as encryption, especially if the solution uses relatively simple static features[63].

For this reason, Stromdroid [91] leverages dynamic analysis to enhance the detection rate against

obfuscated malicious apps. Stormdroid [91] and MAMADROID [148, 158] apply supervised ma-

chine learning techniques; in contrast, Opsec [63] relies on fuzzy signatures to identify malicious

apps. In the case of mobile-based solution, the authors of Drebin [73, 166] efficiently extract simple

static analysis features (such as permissions) to minimize the needs in terms of resources; also, they
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apply supervised machine learning, classification [73] and anomaly detection [166]. Furthermore,

[73] and [166] provide a passive notification to the end-user in contrast to Droidbarrier [68], which

prevents malicious actions. To do so, Droidbarrier [68] leverages runtime behaviors in the mobile

device to make a detection decision (authentification mechanism). Hybrid solutions [81, 85, 181]

rely on behavioral features collected from mobile devices to provide passive alarms for the end-

users.

Solution Feature selection Detection strategy
Type Resiliency Adapt Approach Scope Mode Response

Stormdroid [91] Hybrid Highest Medium Learning Known, Zero-day Supervised /
Mamadroid [148] Static High High Learning Known, Zero-day Supervised /
OpSeq [63] Static Medium Low Signature Known, Attribution / /
Drebin [73] Static Medium Low Learning Known, Zero-day Supervised Passive
Droidbarrier [68] Behavioral Highest High Knowledge / / Active
ML [166] Static Medium Medium Learning Known Supervised Passive
Crowdroid [85] Behavioral Highest High Learning Known, Zero-day Unsupervised Passive
DRACO [81] Hybrid Highest High Learning Known, Zero-day Supervised Passive
Monet [181] Hybrid Highest Highest Signature Known / Passive

Table 2.2: Qualitative Comparison of General Malware Attack Solutions

Table 2.3 depicts quantitative comparison between general solutions. Apk preprocessing com-

plexity varies between solutions. The highest complexity (StormDroid [91]) is related to the dy-

namic analysis of an Apk file in a sandbox environment; also, this might require to repackage the

Apk file [81] to include the monitoring APIs. A lower complexity [73] is achieved with decom-

pressing Apk file. The lowest Apk processing complexity solution [68] could not use the Apk file

because it monitors the running apps that are already installed in the mobile device. Feature ex-

traction complexity could be less costly even though the solution uses dynamic analysis because

the process of extracting is applied to simple logs files, in addition to the static features, such as

StromDroid [91], which requires a relatively small amount of time for the feature extraction. In

contrast, MAMADROID [148] uses static analysis, yet its feature extraction is very complex and

time-consuming (13-18 minutes per app), which is very high. The model generation computation

could be very light in case of signature-based solutions [63], [181] or classification-based solutions

[91] using k-nearest neighbor technique; because the solution needs only to fetch the most similar

app in the signature database or the training set. Most solutions show very high detection rates.

However, their evaluation dataset size variability drastically affects the generalization of the per-

formance results. For instance, MAMADROID has 88k apps and Drebin has 130k apps in their
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dataset, while Crowdroid [85] has 0.06k apps. The detection rate, time, and dataset size in Table

2.5 are collected from the original publications of the solution.

Solution

Apk Pre-
processing
Complex-

ity

Feature
Extraction
Complex-

ity

Model
Genera-

tion
Computa-

tion

Detection
Rate

Detection
Time Dataset

Stormdroid [91] Highest Medium Lowest Acc=93.8% 201 s
Ben=4.4k,
Mal=3.7k

Mamadroid [148] High Highest Low F1=99% 13-18 min
Ben=8.5K,
Mal=35.5K

OpSeq [63] Medium Medium Lowest F1=98% 11.6 s
Ben=0.4K,
Mal=1.2K

Drebin [73] Low Low Low Acc=94% 10 sec
Ben=124K,
Mal=5.6K

Droidbarrier [68] Lowest Lowest Lowest / /
Ben=0K,
Mal=1.3K

ML [166] Meduim High Low F1=85% /
Ben=2.1K,
Mal=0.1K

Crowdroid [85] Low Low High
Acc=85%-

100%
/

Ben=0.05K,
Mal=0.01K

DRACO [81] Highest Low Low Acc=98.4% 96 s
Ben=18K,
Mal=10k

Monet [181] High High Lowest Acc=99% 60 s
Ben=0.5K,
Mal=3.8K

Table 2.3: Quantitative Comparison of General Malware Attack Solutions

As shown in Table 2.4, depending on the deployment architectures of the general solutions,

we could classify them into workstation, mobile, and hybrid based architecture. Workstation so-

lutions such as [63, 91] target Android app layer for malware detection. In contrast, Droidbarrier

[68] (mobile-based), is implemented in the Linux Kernel layer. Furthermore, Monet [181] (hybrid

solutions) is implemented across two layers, Android framework and app layers.

2.6 Specific Malware Threat Detection

In this section, we present the attack-based detection solutions. These solutions still consider

the detection of malicious apps but they target a specific malicious behavior in the malicious app
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Solution Layer Architecture Physical Components Target application
Stormdroid [91] App Layer Workstation Server Malware Detection
Mamadroid [148] App Layer Workstation Server Malware Detection
OpSeq [63] App Layer Workstation PC Malware Detection
Drebin [73] App Layer Mobile Mobile/IoT devices Malware Detection
Droidbarrier [68] Linux Kernel Mobile Mobile/IoT devices Malware Detection
ML [166] App layer Mobile Mobile devices Malware Detection
Crowdroid [85] Framework, App layers Hybrid Mobile/IoT devices, Server Malware Detection
DRACO [81] App Layer Hybrid Mobile/IoT devices, Server Malware Detection
Monet [181] App, Framework layers Hybrid Mobile devices, Server Malware Detection

Table 2.4: Classifications of General Malware Attack Solutions

such as sensitive data leakage, GUI-phishing, and repackaging. In addition, we position attack-

based solutions based on the deployment classification, specifically, into workstation, mobile, and

hybrid architecture based solutions.

2.6.1 Workstation-Based Solutions

The following solutions constitute workstation-based solutions, in which the authors target

large-scale deployment.

ICCDetector [191] is a machine learning system to detect ICC-based (Android Inter-Component

Communication) malicious apps. The authors adopt the following approach for the proposed sys-

tem: (i) They extract ICC features for the Android app using a preexisting tool called EPICC. (ii)

They apply feature selections using Correlation-based Feature Selection (CFS). (iii) Finally, the se-

lected ICC features using EPICC are normalized in feature vectors to be input to a binary classifier

(SVM, Decision Tree, Random Forest). The feature vector stores the occurrence number of a given

feature. In the detection phase, the ICCDetector system uses the trained model to detect ICC-based

malware. Using ICC for malware detection, ICCDetector aims to fill the detection of ICC-based

malware gap that relies on ICC malicious payload.

AnDarwin [95, 96] detects similar apps that are written by the same developer as well as dif-

ferent developers. AnDarwin consists of four stages: (i) AnDarwin extracts similar vectors by

computing an undirected PDG (Program Dependence Graph) of each method in the app using only

data dependencies for the edges. (ii) AnDarwin finds similar code segments by clustering all the
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vectors of all apps. It identifies code clones by finding near-neighbors of vectors using Locality Sen-

sitive Hashing (LSH). (iii) AnDarwin eliminates library code based on the frequency of the clusters.

(iv) AnDarwin detects similar apps (full and partial detection) by computing the pairwise similarity

between all the sets using LSH techniques, specifically MinHash. Because AnDarwin is based on

PDG for extracting semantics vectors, it is less scalable with respect to analysis time. Using 75

threads, AnDarwin takes 4.47 days to extract semantic vectors (first stage) from 265,359 apps.

FlowDroid [74] performs a context, flow, object, and field-sensitive static taint analysis on An-

droid apps. It models Android app’s lifecycle states and handles taint propagation due to callbacks

and User Interface (UI) objects. It also utilizes SuSi [161], a machine-learning-based technique,

to automatically identify sources and sinks of sensitive information in an Android API. FlowDroid

achieves 86% precision and 93% recall, which represent better results than two commercial tools:

AppScan and Fortify SCA. However, the system uses high-complexity tools to process Apk files,

such as Soot [142] and Dexpler [79]. Also, it does not track data flows across different app compo-

nents that communicate using Android ICC.

MassVet [88] is designed for vetting apps at a massive scale, without knowing what malware

looks like and how it behaves. It runs a DiffCom analysis of the submitted app against the whole

market app. It compares a submitted app with all apps already on the market by focusing on the

difference between those sharing a similar UI structure, which is known to be primarily preserved

during repackaging. It also performs an intersection analysis to compare the new apps against

existing apps with different view structures and signed by various certificates. The aim is to inspect

their common parts to identify suspicious code segments (at the method level).

2.6.2 Mobile-Based Solutions

In the following, we present mobile-based solutions that are meant to be deployed on smart

mobile devices.

Aurasium [195] automatically repackages an application to attach a user-level policy enforce-

ment code. The role of this code is to monitor any security violations, such as sending SMS to

premium charging numbers. If such a case occurs, Aurasium displays the destination number and

the SMS content, so the user can confirm or deny the operation.
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AppGuard [76] is a policy-enforcement system, which provides the user with the ability to

revoke permissions after app-installation time. It takes an untrusted app and user-defined security

policies as input and inserts a security monitor API into the untrusted app by repackaging the Apk.

Security policies may specify restrictions on method invocations as well as secrecy requirements.

This requires the identification of relevant methods at the API level for which such checks are

required.

Patronus [182] is a device-based Intrusion Prevention System (IPS). The latter is a rule (policy)

based system, in which there is a policy database that defines what malicious behaviors are. Patronus

comprises two main parts: the client side app and the server side service. Both parts are on Android

devices. The client is a simple Android app; however, the server-side only updates the policy files

in the Android OS. Therefore, there is no need to change the actual Android OS; it only requires

to inject Patronus into the system to build a hook and capture app’s behaviors. Patronus needs a

special privilege to insert such files, which prevents a large scale deployment. Also, injecting files

into Android OS triggers some security concerns on these files. Finally, the policy-based detection

system is limited to the expressiveness of the rules in the database.

2.6.3 Hybrid Solutions

This section depicts solutions that leverage hybrid architecture.

XDroid [160] is proposed as a risk assessment tool and a user alert generator. XDroid has

two components: (i) XDroid client, which monitors app’s behaviors, such as Android API calls,

and timestamps these events. These events are sent continuously to an XDroid Server, where risk

assessment, user profiling, and alert customization services leverage time-series of events to assess

the suspicious behavior of a given app. To do so, the authors propose the use of Hidden Markov

Model (HMM), which is first trained on malicious and benign behavior services. Afterward, the

trained HMM Model is deployed to server. However, XDroid needs a special privilege in Android

devices to be able to log app’s behaviors; this could prevent this technique from having large-scale

deployments since devices need to be rooted to track app behaviors properly.

DroidEagle [180] uses the layout resources within an app to detect visually similar apps, a

common characteristic in repackaged apps and phishing malware. To discover visually similar apps,
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DroidEagle consists of two sub-systems: RepoEagle and HostEagle. RepoEagle performs large-

scale detection on apps repositories (e.g., apps markets), and HostEagle is a lightweight mobile app

that can help users to detect visually similar Android apps quickly upon download. The reported

performance results show that, within 3 hours, RepoEagle can detect 1298 visually similar apps

from 99,626 apps in a repository.

2.6.4 Discussions

Table 2.5 shows the comparison between attack-based solutions using feature selection and

detection strategy criteria. As shown in Table 2.5, most Workstation-based solutions are based on

static analysis. In addition to code static analysis, some solutions statically analyzed the resources

of the Apk file, for instance, MassVet [88] leverages only the GUI XML resources files in the Apk

and ignore the rest of the content. Furthermore, Workstation-based solutions tend to be resilient

against known obfuscation techniques since such technique mainly target bytecode, while these

solutions do not rely only on bytecode to detect Android malicious apps. On the other hand, mobile-

based solutions [76, 182, 195] rely only on behavioral features of app runtime on the end-users

mobile devices. These features are highly resilient to obfuscation and adapt to OS changes since

they are collected from executions of the malicious apps. Both Aurasium [195] and AppGuard

[76] provide a passive notification to end-users; Patronus [182] goes a step further by blocking the

detected malware. Also, mobile-based solutions rely on policy rules to prevent malicious behaviors.

Hybrid solutions employ behavioral analysis as in XDroid [160] and static analysis as proposed in

Droideagle [180]. The latter is resilient to code obfuscation because it relies on GUI similarity and

does not consider the bytecode.

Table 2.6 shows a quantitative comparison between attack-based solutions. Apk pre-processing

complexity varies among the solutions; it is medium in some solutions [74, 88] and high in other

solutions [96, 191] that use static analysis because the pre-processing of Apks. In case of Aurasium

[195] and AppGuard [76] the Apk pre-processing complexity is high because of the Apk’s repack-

aging complexity to inject the monitoring Apk hooks. It is low for XDroid [160] and Droideagle

[180] because the first [160] relies mainly on runtime traces and the second [180] uses Apk GUI

resources for its graphical signatures. Finally, attack-based solutions have very low complexity for
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Solution Feature selection Detection strategy
Type Resiliency Adapt Approach Scope Mode Response

ICCDetector [191] Static High Low Learning Known Supervised /
Andarwin [96] Static High High Signature Known / /
Flowdroid [74] Static High High Prior-knowledge Known, Zero-day / /
MassVet [88] Static High High Signature Known, Zero-day / /
Aurasium [195] Behavioral Highest Highest Prior-knowledge Known, Zero-day / Passive
AppGuard [76] Behavioral Highest Highest Prior-knowledge Known, Zero-day / Passive
Patronus [182] Behavioral Highest Highest Prior-knowledge Known, Zero-day / Active
XDroid [160] Behavioral Highest Highest Learning Known Unsupervised Active
Droideagle [180] Static High High Signature Known, Zero-day / Passive

Table 2.5: Qualitative Comparison of Specific Malware Attack Solutions

model generation because most of these models are based on policy rules databases.

Solution
APK

Preprocessing
Complexity

Feature
Extraction
Complexity

Model
Generation

Computation
Detection Rate Detection

Time Dataset

ICCDetector [191] High Low Low Acc=97.4% about 40 s Ben=12k,
Mal=5.3k

Andarwin [96] High High Lowest Found=36k
Rebranded App 10h Apps=266k

Flowdroid [74] Medium High Lowest F1=90% 16 s Ben=1k,
Mal=0.5k

MassVet [88] Medium Medium Lowest Acc=72% 10 s Apps=1.2
Million

Aurasium [195] High Lowest Lowest Seccess=99.6% / Ben=3.5k,
Mal=1.3k

AppGuard [76] High lowest Lowest / about 20 s Apps=250k

Patronus [182] Low Lowest Lowest F1=69-92% / Ben=0,5k,
Mal=0.3k

XDroid [160] Low Low Low F1=83% / Benn=0.7k,
Mal=5.6k

Droideagle [180] Low Low Lowest Similar=1.3K
apps Average=62 s Apps=100k

Table 2.6: Quantitative Comparison of Specific Malware Attack Solutions

Similarly to generic class, the attack-based solutions target Android malware detection. How-

ever, these solutions target specific malicious attacks, in contrast to general solutions, which target

malware in general. For instance, ICCDetector [191] aims to detect malware that employ Android

Inter-Components Communication (ICC) to their attack. Another example, Flowdroid [74] helps

detecting sensitive data leakages, which is a known pattern of malicious apps. Table 2.4 shows that

workstation-based solutions [191] [74, 88, 96] rely on app layers of Android stack; the other solu-

tions (mobile-based and hybrid) are implemented across app and framework layers. The exception

here is AppGuard [76], which is implemented on Linux kernel layer.
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Solution Layer Architecture Physical Components Target application
ICCDetector [191] App Layer Workstation PC ICC Abuse
Andarwin [96] App Layer Workstation Server Find Repackaging
Flowdroid [74] App Layer Workstation PC Sensitive Data Leakage
MassVet [88] App Layer Workstation PC Find GUI Repackaging
Aurasium [195] App, Framework Layers Mobile Mobile/IoT devices Policy Enforcement
AppGuard [76] Linux Kernel Mobile Mobile/IoT devices Policy Enforcement
Patronus [182] App, Framework Layers Mobile Mobile devices Mobile IPS
XDroid [160] App, Framework layers Hybrid Mobile/IoT devices, Server Risk Assessment
Droideagle [180] App, Framework layers Hybrid Mobile devices, Server GUI Phishing and Repackaging

Table 2.7: Classifications of Specific Malware Attack Solutions

2.7 Android Malware Detection Helpers

In this section, we present systems that help enhance Android malware detection systems. These

solutions do not provide a malware detection system, but they are used as tools to enhance the

malware detection in term of accuracy and runtime performance. The following solutions are lab

tools that could be leveraged for malware detection.

The authors in [75] analyze the Android framework statically. The authors propose a top-down

approach in their analysis by taking the source code of the Android framework as input. For this

purpose, the authors face different challenges: (i) The Android framework layer is different from

the application layer, so the existing analysis tools and techniques can not be used to analyze the

framework layer. (ii) The framework services may be queried simultaneously from multiple apps.

Thus, the framework layer uses various multi-threading mechanisms. (iii) It is unclear what re-

sources are protected by Android permissions. The authors use their analysis insights to develop the

Axplorer tool [75] for the analysis of the Android framework layer. To demonstrate the effectiveness

of their security analysis, the authors conduct a permission API mapping (map a given permisson

to the related Android Framework API). In comparison to previous research, they achieve a more

precise analysis. Finally, they propose a permission locality security concept to measure permission

coverage overlap of Android APIs.

DroidChameleon [162] is a tool to evaluate the robustness and resiliency of anti-malware solu-

tions against the state-of-the-art obfuscation techniques. DroidChameleon provides a set of obfus-

cation techniques to be tested on targeted malware detection systems. DroidChameleon supports

three levels of obfuscation techniques: (i) Trivial obfuscations, that do not change the bytecode but
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only repackages API file or disassembling and Reassembling the Dex file. (ii) Attacks detectable

by static analysis obfuscations that make a change to the bytecode in one or multiple ways such as

identifier renaming, code reordering, junk code insertion, which could be detected using static anal-

ysis. (iii) Attacks that could not be identified using static analysis such as reflection and bytecode

encryption. The authors conduct a systematic evaluation of existing anti-malware products against

various obfuscation techniques; this is a necessary evaluation to measure the resiliency of existing

malware detection systems.

2.7.1 Discussions

Demystifying [75] proposes an in-depth analysis of the Android framework. As an application

for this analysis, they reevaluate Android permission mapping to the actual Android assets with

high precision. Having such precise mapping helps in malware detection. Given an Android app the

detection system could map permissions to a more granular view by using Android assets. On the

other hand, the authors of DroidChameleon [162] propose a tool that provides a set of obfuscation

techniques to be applied to Android apps. DroidChameleon is a valuable tool that helps enhancing

malware detection system by evaluating these systems on obfuscated malware and benign sample

using DroidChameleon. In a security lab environment, one could ensure that the detection system

is resilient to DroidChameleon obfuscation techniques. A simple classification of Android malware

detection helpers is depicted in Table 2.8. In this thesis, we use DroidChameleon obfuscation tool

to build an Android obfuscation dataset that will be used for the evaluation of elaborated systems in

the next chapters.

Solution Layer Architecture Physical Components Target application
Demystifying [75] Framework Layer Workstation Server Android Framework Analytics tool
DroidChameleon [162] App Layer Workstation PC Obfuscation Tool

Table 2.8: Classification of Android Malware Detection Helpers
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2.8 Summary

In this chapter, we reviewed selected prominent Android malware detection solutions and pro-

posed a taxonomy to classify them. This taxonomy allows to carry out an in-depth comparative

study between the proposals of the same category. By proposing a generic functional framework

for Android malware detection, we defined the performance criteria used for our comparative study.

Through the study of different Android malware detection systems, we define the advantages and

disadvantages of each system approach. Moreover, we illustrated the situations where each ap-

proach exhibits good performance.

Android detection systems with high detection accuracy incur a long processing time for com-

plex feature extraction, which implies a high detection latency and the use of more computation

resources. On the other hand, detection systems with less sophisticated feature extraction achieve

a moderate detection accuracy with the advantage of low detection latency and small resources

needed, which allows such systems to function properly on mobile and IoT devices. To this end, an

appealing future work lies in achieving simultaneously high detection results and a low detection

latency with the minimum computation resources to fit all scales of devices.

In the next chapter, we propose a solution for Android malware clustering using static analysis

features and graph partitioning algorithms. According to the proposed taxonomy discussed in this

chapter, we position this solution as (i) general-attack oriented because it targets the detection of

all types of Android malware. Also, we consider it as (ii) workstation oriented due to the level

of resources it requires in the deployment. Finally, it is an application layer solution because it

considers only Android apps.
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Chapter 3

Robust Android Malicious Community

Fingerprinting

3.1 Overview

Security practitioners can combat large-scale Android malware by decreasing the analysis win-

dow size of newly detected malware. The window starts from the first detection until signature

generation by anti-malware vendors. The larger the window is, the more time malicious apps are

given to spread over the users’ devices. Current state-of-the-art techniques have a large analysis

window due to the significant number of Android malware appearing daily. Besides, these tech-

niques use manual analysis in some cases to investigate malware. Therefore, decreasing the need

for manual detection could significantly reduce the analysis window. To address the aforementioned

issue, we elaborate systematic techniques and tools for the detection of both known family apps and

new malware family apps (i.e., variants of existing families or unseen malware). To do so, we rely

on the assumption that any pair of Android apps, with distinct authors and certificates, are most

likely to be malicious if they are highly similar. Because the adversary usually repackages multiple

app packages with the same malicious payload to hide it from anti-malware and vetting systems.

Consequently, it is difficult to detect such malicious payloads from benign functionalities of a given

Android package. Accordingly, a pair of Android apps should not be very similar in their compo-

nents, excluding popular libraries. This observation, as mentioned earlier, could be used to design
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and develop a security framework to detect Android malware apps.

In this chapter, we propose a novel Android app fingerprinting technique, APK-DNA, inspired

by fuzzy hashing. We specifically target fingerprinting Android malicious apps. Computing the

APK-DNA of a suspicious app requires a low computation time. Afterward, we leverage the

previously-mentioned assumption (i.e., very similar apps might be malware from the same mal-

ware family) to propose a cyber-security framework, namely Cypider (Cyber-Spider For Android

Malware Detection), to detect and cluster Android malware without prior knowledge of Android

malware apps. Cypider consists of a novel combination of a set of techniques to address the problem

of Android malware, clustering, and fingerprinting. First, Cypider can detect repackaged malware

(malware families), which constitute the vast majority of Android malware apps [203]. Second, it

can detect new malware apps, and more importantly, Cypider performs the detection automatically

and in an unsupervised way (i.e., no prior knowledge about the apps). The fundamental idea of

Cypider relies on building a similarity network between the targeted apps static content in terms of

fuzzy fingerprints. Actually, Cypider extracts, from this similarity network, sub-graphs with high

connectivity, called communities, which are most likely to be malicious communities.

3.1.1 Threat Model

In the context of this chapter, the focus is on detecting malware targeting Android mobile apps

with no prior knowledge about the malware. In particular, instead of focusing on the detection of

an individual instance of malware, Cypider targets bulk detection of malware families and variants

as malicious communities in the similarity network of the apps dataset. Moreover, Cypider aims

for a scalable yet accurate solution that can handle the overwhelming volume of the daily detected

malware, which could aggressively exploit users’ smart devices. Cypider is robust (Section 3.6) but

not immune against obfuscated apps contents. Cypider could handle some types of obfuscations

because it considers different static contents of the Android package in the analysis. This makes

Cypider more resilient to obfuscation as it can group malware apps by also considering other static

contents that are not obfuscated, such as app permissions or Android API calls.
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3.2 Malware Fingerprints

A fuzzy (hashing) or approximate fingerprint of binary software is a digest that captures its static

content, in similar manner to cryptographic hashing fingerprints such as MD5 and SHA1. Still, the

fuzzy fingerprint change is virtually linear to the change in the binary content. In other words,

smaller changes in the static content of the malware will cause a minor change in the computed

fuzzy fingerprint. In the context of cybersecurity, this is an important property that helps in detecting

polymorphic malware attacks. Current fuzzy fingerprints such as ssdeep1 are computed for the app

binary as a whole, which makes them less effective for detecting malicious app variations. This

problem gets complicated in the case of Android OS due to the apps packaging structure, which

contains not only the actual compiled code but also other content such as media files. To overcome

this limitation, we propose an effective and broad fuzzy fingerprint that captures not only binary

features but also the underneath structure and semantics of the APK package.

Composed 
Fuzzy

Fingerprint

New App

?

Malware Detection & Family Attribution

Android 
Malware Fingerprints 

Database

Composed 
Fuzzy

Fingerprint

............ Similar?Update

Sub-Fingerprints Sub-Fingerprints
Compute Compute

Building Malware Fingerprints Database

Figure 3.1: Approximate Fingerprint Approach

Accordingly, our approach for computing Android app fingerprints relies on decomposing the

actual APK file into different content categories. For each category, we compute a customized

fuzzy hash (sub-fingerprint). Note that for some categories, for instance, Dex file, the application

of the customized fuzzy hashing on the whole category content does not capture the structure of

the underlying category. In this case, we apply fuzzy hashing against a selected N-grams of the

category content. In our context, we use byte n-grams on binary files and instruction n-grams on

assembly files. Furthermore, a best practice in malware fingerprinting is to increase the entropy

of the app package content [151]. To this end, we compress each category, as proposed in [151]
1https://ssdeep-project.github.io/ssdeep/index.html
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to increase the entropy, content before computing the customized fuzzy hash on its N-grams. The

resulting fuzzy hashes (sub-fingerprints) are then concatenated to produce the final composed fuzzy

fingerprint, called APK-DNA. As depicted in Figure 6.1, there are two main processes: First, we

build a database of fingerprints by generating APK-DNAs of known malware samples to identify

whether a new app is malicious or not and to attribute the family of malicious ones. Second, for each

malware under investigation, we compute its APK-DNA and match it against existing fingerprints

in the database of known malware samples.

By generating fuzzy fingerprints for all known malware (in this scenario, we need fingerprints

of known malware to make the detection; however, as will be presented in Section 3.3, Cypider

employs APK-DNA for a completely unsupervised approach, i.e., no prior knowledge on apps is

required), the system is ready for detection and family attribution. Thus, the detection process starts

by computing APK-DNA fingerprints for known Android malware. We use multiple compression

schemas for testing purposes. Thus, in the final fingerprint of the APK, only one compression

is used. Moreover, we use APK-DNA fingerprints as a basis to design and implement ROAR, a

novel framework for malware detection and family attribution. ROAR’s first approach, namely

family-fingerprinting, computes a fingerprint for each malware family. Afterward, it uses these

family fingerprints to make security detection decisions on new apps. In the second approach, peer-

matching, ROAR uses the whole fingerprint database for detection and attribution.

3.2.1 Approximate Static Fingerprint

In this section, we present our approach for Android apps fingerprints generation.

Fingerprint Structure

We leverage the aforementioned APK structure to define the most important components for

fingerprinting. The design of the APK fingerprint must consider most of its important components

as unique features to distinguish between different malware samples. As depicted in Figure 3.2,

APK-DNA is composed of three main sub-fingerprints based on their content type: Metadata, Bi-

nary, and Assembly. The Metadata sub-fingerprint contains information, which is extracted from

the AndroidManifest.xml file. We particularly focus on the required permissions. The aim is to
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fingerprint the permission used for a specific Android malware or malware family. Our intuition

stems from the fact that some Android malware samples need specific types of permissions to con-

duct their malicious actions. For example, the DroidKungFu1 malware [203] requires access to

personal data to steal sensitive information. Having Android malware without access permissions

to personal data, e.g., phone number, would suggest that this malware is most likely not part of

DroidKungFu1 family. Other metadata information could be considered for malware segregation,

for instance, Activity list, Service list, and Component. In the current design of APK-DNA, we focus

on the required access permissions.

APK-DNA Fuzzy Fingerprint

Meta-Data Assembly

Permissions Delvik Assembly

Binary
App Package

Activities
Raw Binary Compressed

Dex Complied Code
Raw Binary Compressed

Native Library
Raw Binary Compressed

Figure 3.2: Android Package Fingerprint Structure
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Figure 3.3: Fingerprints Computation Process

The Binary sub-fingerprint captures the binary representation of the APK file content. In other

words, we aim to fingerprint the byte sequence of Android malware. In this context, we use n-grams

[151] as we will present in Section 3.2.1. We divide the binary sub-fingerprint into three parts: App
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Package, Dex Compiled Code, and Native Library. The App Package consists of the APK file.

Thus, all the components inside the package are considered (e.g., media file). Along with the raw

APK package, we apply a compression schema on the package to increase its entropy [151]. In the

Dex Compiled Code, we focus on the code section of the Android malware, which is located in the

Dex file of Android apps. The use of the code section for malware detection has proven its accuracy

[122]. In the context of Android malware, we use extracted features from the classes.dex as part of

the APK-DNA. Besides, by applying compression, we use a high-entropy version of the classes.dex

for fingerprinting. The Native Library part of the binary sub-fingerprint captures C/C++ shared

libraries, used by malware. Using the native library for malware fingerprinting is essential in some

cases, for example, to distinguish between two Android malware samples. For instance, if the

malware uses a native library, it is more likely to be DroidKungFu2 rather than DroidKungFu1

because DroidKungFu2 malware family uses C/C++ library and DroidKungFu1 uses only Java

bytecode.

In the Assembly sub-fingerprint, we also focus on the code section of Android malware, which

is classes.dex. However, we do not consider the binary format. Instead, we use the reverse-engineer

assembly code. As we will present in Section 3.3.3, we reverse-engineered the Dalvik byte-code

in order to extract instruction sequences used in the app. The Assembly sub-fingerprint aims to

discriminate malware using the unique instruction sequences in the assembly file. We use the same

technique as in the Binary sub-fingerprint, i.e., n-grams. However, here we consider the assembly

instructions instead of bytes. In addition to assembly instructions, we could also consider section

names, call graphs, etc. In the current design, we focus on the assembly instructions for fingerprint-

ing.

Fingerprints Generation

In this section, we present the steps required to generate APK-DNA fingerprints. In addition,

we present the main techniques adopted in the design of the fingerprint, namely, N-gram and Fea-

ture Hashing. Afterward, we show the similarity techniques that are employed to compare APK

fingerprints.
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N-grams. The N-gram technique is used for computing contiguous sequences of N items from a

large sequence. For our purpose, we use N-grams to extract the sequences (the order is important

within the n-gram sequence) used by Android malware to be able to distinguish between different

malware samples. To increase the fingerprint accuracy, we leverage two types of N-grams, namely

instruction N-grams and bytes N-grams. As depicted in Figure 3.4, the instruction N-grams are

the unique sequences in the disassembly of a Dex file, where instructions are stripped from the

parameters. In addition to instruction N-grams, we also use byte N-grams on different contents of

the Android package. Figure 3.4 illustrates different N-grams on both instructions and bytes of the

first portion of the AnserverBot malware. We have experimented with multiple options such as

bigrams, 3-grams, and 5-grams. The last one provided the best results in the design of APK-DNA

fingerprint, as will be shown in the evaluation section. The result of N-grams extraction is the list

of unique 5-grams for each content category, i.e., assembly instructions, classes.dex, native library,

and APK file.
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sget-object invoke-direct const-string invoke-virtual 
move-result-object invoke-virtual invoke-virtual 
return-void const/4 sput-object return-void invoke-
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sget-object if-nez new-instance invoke-direct sput-
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Bigrams 3-grams 5-grams

Figure 3.4: Instructions and Bytes from AnserverBot Malware

Feature Hashing Feature hashing. is a machine learning preprocessing technique for squashing

an arbitrary number of features into a fixed-size feature vector. The feature hashing algorithm,

described in Algorithm 1, takes as input the set of sequences generated by applying the N-gram

technique and the length of the output feature vector. In the current implementation of APK-DNA,

we use a bit feature vector of 16KB. However, the size could be adjusted according to the needed

density of the bit-feature vector to distinguish between apps. For example, the size of the assembly
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instruction vector could be less than the dex vector since the density produced by the instruction

content is less than the dex one. Notice that in our implementation, we store only a binary value,

which defines whether the N-gram exists or not. The standard feature hashing uses the frequency,

i.e., the number of occurrences of a given N-gram. The output of the feature hashing algorithm is a

feature-bit vector. Instead of using existing fuzzy hashing algorithms such as ssdeep, we leverage the

feature vector as our fuzzy hashing technique for implementing APK-DNA fingerprint. In the next

section, we present the complete process of computing the fingerprint using N-grams and feature

hashing as basic blocks.

Algorithm 1: Feature Vector Computation
input : N-grams: Set,

L: Feature Vector Length
output: Binary Feature Vector
features vector = new bitvector[L];
for Item in N-grams do

H = hash(Item) ;
feature index = H mod L ;
features vector[feature index] = 1 ;

end

Fingerprint Computation Process. As shown in Figure 3.3, the fingerprint computation process

starts by decomposing the Android app APK file into four different content categories: 1) Dalvik

byte-code, 2) APK file, 3) native libraries, and 4) AndroidManifest file. Each binary content is

compressed to increase the entropy. Afterward, we extract the byte N-grams from the raw assembly

and the compressed content. The resulting set of N-grams is provided as input to the feature hashing

function to produce the customized fuzzy hashing. The size of each customized fuzzy hash is 16KB,

as mentioned in Section 3.2.1. For Dalvik bytecode, we fingerprint the assembly code in addition

to the binary fingerprint. First, we reverse engineer the Dex file to produce its assembly code.

After preprocessing the assembly, we use the instruction sequence of the Android app to extract the

instruction N-grams set. Afterward, we use feature hashing to generate a 16KB bit vector fingerprint

for the assembly code. The current design of APK-DNA uses the feature hashing technique without
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feature selection because we aim to keep maximum information on the targeted malware instance

or its family. However, feature selection could be a promising technique to explore in future APK-

DNA design.

Regarding the AndroidManifest file, we first convert it into a readable format, then parse it to

extract the required permissions by the Android app. To use the required permission app fingerprint-

ing, we use a bit vector of all Android permissions in a predefined order. For each given required

permission, we flag the bit to 1 in the permission vector if it exists in the AndroidManifest file.

The result is a bit vector for all the permissions of the Android app. At the end of the operations

mentioned above, we generate five-bit vectors. The final step of the fuzzy fingerprint computation

consists of concatenating all the produced digests into one fingerprint, designated as APK-DNA.

It is important to mention that, for similarity computation, we also keep track of the bits of each

content vector. Notice that the content categories are mandatory for Android apps except the native

library, which may not be part of the app. Therefore, we use a bit vector of zeros for the feature

vector of the native library. The final size of APK-DNA is 16KB for the feature vector of each

content (there are four feature vectors: assembly, bytecode, APK, and native library). However, for

the permission vectors, we use a 256-bit feature vector since the Android permission system does

not exceed this number.

Compute Fingerprints Similarity. The main reason for adopting the feature vector as a cus-

tomized fuzzy hash is to make the similarity computation straightforward using Jaccard Similarity,

as shown in Equation 1. Since we have a set of bit feature vectors flagging the existence of a feature,

we adopt a bitwise jaccard similarity, as depicted in Equation 2. The Jaccard Similarity is computed

by dividing the cardinality of the intersection set by the cardinality of the union set.

Jaccard(X,Y ) = |X
⋂︁

Y |
|X

⋃︁
Y |

0 ≤ Jaccard(X,Y ) ≤ 1 (1)

Jaccard bitwise(A,B) = Ones(A∧B)
Ones(A∨B)

0 ≤ Jaccard bitwise(X,Y ) ≤ 1 (2)
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Let A and B be two bit-feature vectors; the union of the two vectors is given by the logical

expression A∨B, and its cardinality is the number of ”1” bits in the resulting vector. Similarly, the

cardinality of the intersection of the two vectors is the number of ”1” bits in A ∧ B bit vector. As

presented in Section 3.2.1, APK-DNA fuzzy fingerprint is composed of five fuzzy hashes, which are

bit-feature vectors. To compute the similarity between two fingerprints, we calculate the bit-wise

Jaccard similarity between the bit feature vectors representing the same content. In other words, we

calculate the similarity between the feature vectors of the assembly, byte-code, APK, native library,

and permissions. The result is a set of five similarity values.

3.2.2 Malware Detection Framework

In this section, we leverage the proposed APK-DNA fingerprint for Android malware detection.

More precisely, we present i) thefamily-fingerprinting approach, where we define and use a family

fingerprint, and ii) the peers-matching approach, where we compute the similarity between malware

fingerprints. Both approaches are based on the peer-fingerprint-voting mechanism to decide on

malware detection and family attribution.

Peer Fingerprint Voting

As we have seen in Section 3.2.1, comparing two Android malware packages consists of com-

puting similarities between their metadata, binary, and assembly sub-fingerprints, which gives nu-

merical values on how the two packages are similar in a specific content category, as presented in

Algorithm 2. In addition, we add the summation of all the similarities as a summary value of these

sub-contents similarities. Note that other summary values, such as the average and the maximum,

could also be used. However, it is challenging to detect the most similar packages if we compare an

unknown package to known malware packages using multiple sub-fingerprints. The most obvious

solution is to merge bit-vectors of each content category into one vector and then compute the sim-

ilarity of the resulting feature vector. However, in our case, merging bit vectors will heavily reduce

the contribution of some sub-fingerprints in the similarity computation.

Likewise, the density of the assembly feature vector is considerably less compared to the binary

feature vector. Consequently, we propose to use a composed similarity using peer-fingerprint voting.
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Algorithm 2: APK-DNA Similarity Computation
input : APK-DNA A: list

APK-DNA B: list
output: similarity-list: list
similarity-list = empty-list();
for content in content categories do

similarity = Jaccard bitwise(A[content],B[content]) ;
similarity-list.add(similarity);

end
summation = sum(similarity-list);
similarity-list.add(summation);

Algorithm 3: Peer-Fingerprint Voting Mechanism
input : similarity-list A-B: list

similarity-list A-C: list
output: Decision
A-B-count = 0 ;
A-C-count = 0 ;
for content in content categories do

if A-B[content] >A-C[content] then
A-B-count += 1;

else
A-C-count += 1;

end
end
if A-B-count >A-C-count then

Decision = A-B;
else

Decision = A-C;
end

The idea is to compare parts (sub-fingerprints) instead of comparing full fingerprints, as depicted

in Algorithm 3. In other words, we examine each sub-similarity pairs. The decision is made by

a voting mechanism on the result of each sub-comparison. Moreover, in case of equal votes, we

compare the summation of the sub-similarities to remove the ambiguity as shown in the example

depicted in Figure 3.5. At this stage, we can compare different Android packages and decide on

the most similar package to a given one. In what follows, we propose two approaches to malware

detection.
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Figure 3.5: Peer-Fingerprint Voting

Peer Matching

In the peer-matching approach, ROAR queries the fingerprints database to check the most sim-

ilar malware fingerprint. To detect Android malware variation, we build a malware fingerprint

database by computing APK-DNA for known Android malware. The more fuzzy fingerprints in

this database, the broader the detection system could cover. As shown in Figure 3.6, for each new

malware, we compute its APK-DNA and add it to the database.
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Figure 3.6: Malware Detection Using Peer-Matching

To attribute the malware family to a new app, we first compute the similarity between the mal-

ware fingerprint and each entry in the database of known malware fingerprints, as depicted in Figure

3.6. To this end, we use bitwise Jaccard similarity, presented in Section 3.2.1, to produce a set of

sub-similarity values, i.e., the composed similarity. Afterwards, to compare the composed similarity

values, we use the previously presented peer-voting technique. The entry with the highest similarity

value that exceeds an acceptance threshold determines the malware family. In the current imple-

mentation, we use an experimentally derived static threshold. As such, Peer-matching is a simple

approach for malware detection and family attribution.
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Family-Fingerprinting

In this approach, some extra steps are needed to build a second database of malware family

fingerprints. The aim is to reduce the number of database entries required to match an Android

malware fingerprint. For this reason, we propose a custom approximate fingerprint for a malware

family. The intent is to leverage this family fingerprint for malware detection purposes. The idea

is to build a database of family fingerprints from known Android malware samples, and use this

database for similarity computation with unknown malware apps. The number of malware families

limits the actual size of the family-fingerprints database. Notice that the fingerprint structure for

a malware family is the same as for a single malware, i.e., metadata, binary, and assembly family

sub-fingerprints.

Algorithm 4: Family Fingerprint Computation
input : Malware Family X Fingerprints: Set
output: Family X Fingerprint: FP X
FP X = new bitvector[Zeros];
for fprint in Fingerprints do

FP X{meta} = FP X{meta} or fprint{meta};
FP X{bin} = FP X{bin} or fprint{bin};
FP X{asm} = FP X{asm} or fprint{asm};

end

Algorithm 4 depicts the computation of the family fingerprint based on the underlying content

sub-fingerprints. First, the fingerprint is initialized to zeros (each content sub-fingerprint). Af-

terward, the fingerprint is generated by applying a logical OR on the current value of the family

fingerprint with a single malware fingerprint. Note that each content sub-fingerprint is computed

separately. This operation is applied to all malware samples in the database. After calculating the

fingerprints from known malware samples, we store them in a family-fingerprint database, which

is used for detection and family attribution. The detection process is composed of several steps.

First, for a given Android package, we generate its fingerprint as described in Section 3.2.1. Then,

we compute the similarity between this fingerprint and each family fingerprint in the database. The

family with the highest similarity score will be chosen as the family of the new app if the similarity

value is above a defined threshold. In the current implementation, we use an experimentally derived

static threshold, which is only applied to the summation part of the composed similarity. The result
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is similar to the single malware fingerprint, but it represents a malware family instead of a particular

malware.
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Figure 3.7: Malware Detection Using Family-Fingerprint

3.2.3 Experimental Results

In this section, we present the results in terms of accuracy for both approaches that are adopted

in ROAR framework, namely family-fingerprinting and peer-matching.

Testing Setup

Our dataset contains 928 malware samples from Android Malware Genome Project [17, 203].

For evaluation, we selected malware families with many samples since some malware families in

Android Malware Genome Project [17] contain only a few samples (some families have only one

sample), as depicted in Table 3.1. Clearly, by filtering out other families that do not have enough

malware samples, we may miss the detection of these malware families. In addition to known

malware samples, we use benign Android applications in each evaluation. These apps have been

downloaded from Google play randomly without considering the popularity of the app, as shown in

Table 3.1.

For each evaluation benchmark and from the balanced dataset, we randomly sample 70% (70

for training and 30% for testing is a common split method in machine learning) of each family

from the dataset to build the fingerprints database. The rest of the dataset (30%) is used for the

evaluation of ROAR approaches and sub-fingerprints. Notice that the random sampling is done for

every benchmark evaluation. Accordingly, we repeat the assessment five times. The final result is
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# Malware Family/Apps Number of Samples
0 AnserverBot 187
1 KMin 52
2 DroidKungFu4 96
3 GoldDream 47
4 Geinimi 69
5 BaseBridge 122
6 DroidDreamLight 46
7 DroidKungFu3 309
8 Benign Apps 100

Table 3.1: Evaluation Malware Dataset

the average of the evaluation results.

Evaluation Results

In this section, we present the evaluation results of the ROAR framework. Each approach

is separately evaluated. The results are presented using F1-score, precision and recall. The ap-

proach is evaluated multiple times (five) using different fingerprint setups, i.e., combinations of sub-

fingerprints, which are used to compute the similarities using peer-voting technique. Furthermore,

we present a comparison between the proposed peer-voting similarity technique and the merged

fingerprint similarity.

Confusion Matrix Description. In addition to the previous evaluation metrics, we also use the

confusion matrices in each evaluation, as shown in Figures 3.8 and 3.9. Each confusion matrix is a

square table, where the number of rows and columns are respectively malware families and benign

apps following the same order as in Table3.1. The columns and rows from 0 to 7 are respectively

the malware families, AnserverBot, KMin, DroidKungFu4, GoldDream, Geinimi, BaseBridge,

DroidDreamLight, and DroidKungFu3, and the column and row 8 represent the benign apps. The

interpretation of the confusion matrix results is related to the intensity of the color in its diagonal.

The darker the color is in the diagonal, the higher and the more accurate are the results of the

evaluation (true positive). The color intensity of the confusion matrix cells represents the number

of malware/apps that have been assigned to this cell. However, the less intense is the color in the

diagonal, and the more intense in the other cells, the less accurate is the result.

False Negative. For any row from 0 to 7 (i.e., malware family), there is a missing malware

family attribution if we have a gray color in the other cells of the same row. Even though we missed
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in the family attribution task, we still detect the app as malicious. However, a gray cell in column 8

(benign apps) means that we missed bothdetection and family attribution (detection false negative).

False Positive. In the benign apps row (row number 8), the gray color in malware cells indicates

that there is a false positive. In other words, there are benign apps that are detected as malicious.

The number of false positives could be measured using the intensity of the color according to the

color bar.

Family-Fingerprinting Results. As depicted in Table 3.2, the F1-score, precision, and recall of

the family-fingerprinting vary according to the fingerprint setup. We evaluated the approach for

each content type separately, i.e., assembly, permission, and dex files, so that we can clearly see

the impact of each component in the final fingerprint. Both assembly and permission types show

more accurate results compared to dex type. Specifically, the permission shows a promising result

(82% precision), as illustrated in Table 3.2. This indicates the impact of the metadata on Android

malware detection. It is that investigating other metadata could result in higher accuracy. The

APK fingerprint results are surprising because of the poor accuracy value, under 40% f1-score.

The learned lesson is that applying the fuzzy fingerprinting (including ssdeep) to the whole package

could mislead the malware investigation when using fuzzy matching. The confusion matrix for each

setup demonstrates a more granular view of the result, as shown in Figure 3.8, where the indexes are

the malware families (Table 3.1). On the other hand, the combination setups indicate accurate results

compared with single content fingerprints. We depict three sub-fingerprints, which correspond to

the best results. Note that the setup composed of assembly, permission, and dex byte-code shows

the highest F1-Score.
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(F1-score=85%)

Figure 3.8: Confusion Matrices of Family-Fingerprint

Fingerprint Setup F1-Score Precision Recall
Assembly 76% 88% 68%

APK 33% 36% 32%
Permission 76% 84% 70%

Dex 44% 46% 43%
Assembly, Permission, Dex, APK 83% 88% 80%

Assembly, Permission 84% 88% 81%
Assembly, Permission, Dex 86% 89% 84%

Best Fingerprint Setup 86% 89% 84%

Table 3.2: Accuracy Results of the Family-Fingerprinting Approach

Peer-Matching Results. Peer-matching shows a higher F1-score, precision, and recall for all the

setups compared to family-fingerprinting, as shown in Table 3.3. This can be clearly seen in the con-

fusion matrices in Figure 3.9. In contrast to the previous results, the dex byte-code shows a higher

precision than assembly and permission, but it is still lower in both recall and F1-score. The setup

combination (assembly, permission) has the highest accuracy in the peer-matching approach. As

such, using only two content categories, metadata permission and assembly instruction sequences,

we achieve a very promising detection rate, especially considering that the computation of these
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sub-fingerprints is light and simple compared to the state-of-the-art fingerprint hashing techniques.

Fingerprint Setup F1-Score Precision Recall
Assembly 91% 91% 90%

Apk 46% 48% 44%
Permission 81% 82% 80%

Dex 86% 90% 84%
Assembly, Permission, Dex, APK 85% 91% 81%

Assembly, Permission, Dex 93% 94% 93%
Assembly, Permission 94% 95% 94%

Best Fingerprint Setup 94% 95% 94%

Table 3.3: Accuracy Result of Peer-Matching Approach
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Figure 3.9: Confusion Matrices of Peer-Matching Approach

Peer-Voting vs Merged Fingerprints. As presented in Section 3.2.2, the most obvious technique

to deal with multiple sub-fingerprints is to merge all of them (merged fingerprint). However, we

propose peer-voting to compare multiple sub-fingerprints and use the majority voting to confirm the

similarity. To test the proposed technique, we evaluate it against the merged fingerprint for the same

fingerprinting setup. As shown in Table 3.4, peer-voting shows a higher accuracy than the merging

one. A more illustrative view of the result can be seen in the confusion matrix in Figure 3.10.
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Fingerprint Setup F1-Score Precision Recall
Merged in Family-Approach 77% 84% 72%

Peer-Voting in Family-Approach 85% 89% 84%
Merged in Peer-Approach 87% 87% 86%

Peer-Voting in Peer-Approach 94% 95% 94%

Table 3.4: Accuracy Result Using Merged Fingerprint
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Figure 3.10: Confusion Matrices and F1-score using Merged Fingerprint and Peer-Voting

3.3 Malicious Community Fingerprints

3.3.1 Background

Usage Scenarios

In the context of this thesis research, Cypider has two primary usage scenarios. In the first

scenario, Cypider can be applied only to malicious Android apps. The aim is to speed up the

analysis process and attribute malware to their corresponding families. Under the first scenario,

the overall malware analysis process is boosted by automatically identifying malware families and

minimizing the overall manual analysis effort. The outcome of the previous process consists in the

communities of malicious apps. The attribution of a family to a given community can be achieved

by attributing a small set (one app in most cases) among its malicious apps. In the second scenario,

Cypider is applied to mixed Android apps (i.e., malicious or benign). Such a dataset could be

the result of a preliminary suspiciousness app filtering. Therefore, a lot of false positives can be

recorded; we assume that benign apps - meaning false positives - constitute 50% − 75% of the

actual suspicious apps. Based on the previous assumption, we could identify malicious Android

apps by detecting and extracting app communities that share a common payload. We could infer
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that apps with high similarity are most likely to be malicious.

3.3.2 Clustering Process

Cypider framework uses a dataset of unlabeled apps (malicious or mixed) in order to produce

community fingerprints for the identified app communities. Cypider overall process is achieved by

performing the following steps, as illustrated in Figure 6.1:

    App
Community
Fingerprint

?

Malware

Similar?

Fingerprints 
Database

Quarantine

Apps Feed

Active Dataset

APK
APK
APK

APK
APK
APK

APK Feature 
Vectors

Malicious
Communities

LSH Similarity

Compute and Store 
Community Fingerprint

DetectedNot Detected

Figure 3.11: Cypider Framework Overview

At the beginning of the Cypider process, we need to filter out apps developed by the same

author; we call them sibling apps. We aim here to remove the noise of having app communities of

sibling apps because they tend to have many similar features since authors reuse components across

different apps. Cypider identifies sibling apps in the dataset based on their version, app hash, and

author cryptographic signature (provided in the META-INF directory in the APK file). Therefore,

we only keep apps with no duplication in the author identities since adversaries favor the use of

multiple fake author identities to prevent the removal of all apps in case of detected maliciousness

in one of them. Regarding numerous apps with the same author, Cypider randomly selects one app.

Afterward, if the chosen app is recognized as malicious in the analysis results, Cypider will tag all

its sibling apps as malicious.

After filtering the sibling apps, we need to derive from the actual app’s package meaningful in-

formation that could identify the app and help to compute the similarity against other apps. For this
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purpose, Cypider extracts static features from the apps, which could be either benign or malicious,

depending on the usage scenario. Feature engineering is the most critical part of the whole frame-

work in the context of Android malware detection (other usage scenarios could have different static

features, but the overall approach is the same). It is essential to mention that the selected features

must be resilient to the attacker’s deceiving techniques. To this end, the features need to be broad

enough to cover most of the static characteristics of a given Android APK. The more extensive the

features are, the more resilient they are. For our purposes, we leverage static analysis features of the

APK in the design of Cypider. In particular, we extract such features from each content category

(classes.dex, resources, assembly, etc.), as described in Section 3.3.3.

Relying on the extracted features from each content, Cypider computes a fixed-length feature

vector for each content features. In order to reduce and normalize the size of the feature vectors,

we equip Cypider with a machine learning preprocessing technique, namely feature hashing [173]

(or hashing trick), as presented in Section 3.3.3. As a result, Cypider produces, from the extracted

features of the previous stage, multiple feature vectors with a small and fixed size. The number of

the generated feature vectors depends on how many APK contents are used in feature extraction

(each content type corresponds to one feature vector).

For efficient comparison between apps, we empower Cypider system with a highly scalable

similarity computation system based on locality-sensitive hashing (LSH) [80], which computes the

similarities between apps, as presented in Section 3.3.4. Given a pair of apps, we calculate the sim-

ilarity between each content feature vector from the previous stage to decide if they are connected

or not from the perspective of to that content. The result of this step is an undirected network (or

similarity network), where the nodes are Android apps, and the edges represent the high similarity

to one content between apps. For similar apps, multiple connecting edges are expected. Besides,

the more edges are, the more the apps are suspected to be malicious.

Cypider leverages a similarity network in order to detect malicious app communities. For mali-

cious app, Cypider extracts highly connected app communities and then excludes these apps from

the dataset. The remaining apps (i.e., apps that are not part of any community) are considered in

another Cypider malware detection iteration. We expect to get a pure (only malware apps from the

same family) or near-pure community if the containing apps of a given community have respectively
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the same or almost the same Android malware family. In the case of a mixed dataset, Cypider first

excludes all the app nodes with a degree 1 (i.e., the app is only self-similar), which are most likely

to be benign apps (or might be a zero day threat). Afterward, Cypider extracts the apps of malicious

communities.

The rest of apps will be considered in another Cypider iteration. At this point, we expect to have

some benign communities as false positives. However, the similarity network makes Cypider’s

decision explainable (the security practitioner can check which static contents are similar between

the detection communities) because the security practitioner can track which content these apps are

similar to. The previous option could also help sharpening the static features to prevent benign apps

from being detected in malicious communities. For community detection (Section 5.2.1), we adopt

a highly scalable algorithm [82] to enhance Cypider’s community detection module.

To this end, we consider a set of malicious communities, each of which is most likely to be

a malware family or a subfamily. Cypider leverages these malicious communities to generate the

so-called community fingerprint (Section 3.3.6) that captures the app features of a given detected

community. Instead of using traditional crypto or fuzzy hashing of only one malware instance,

we leverage a model produced by a one-class classifier [170], which provides a better-compressed

format of a given Android malware family. This model is used to decide whether new malware

apps are part of this family or not. The results consist of multiple community fingerprints, each of

which corresponds to a detected community. The generated fingerprints are stored in the signature

database for later use.

To this end, Cypider is ready to start another detection iteration with a new dataset, including

the rest of unassigned apps from the previous iteration. The same previous steps will be followed

for the new iteration. However, at this point, Cypider first checks the feature vectors of the new

apps against the known malware community fingerprints stored in the database. The matched apps

to a community fingerprint are labeled as malicious without adding them to the active dataset.

Undetected apps are added to the active dataset and are considered in the next iteration of the

detection process.

We consider Cypider approach as a continuous process, in which we detect and extract com-

munities from the active dataset that always gets new apps (malware only or mixed with benign)
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daily, in addition to the rest of apps from the previous iterations.

3.3.3 Static Features

In this section, we present static features of Android packaging (APK). In this chapter, we only

extract features from each app APK file using static analysis, to generate feature vectors, which

are then used to compute the similarity with other apps feature vectors. In other words, the feature

vector set will be the input to the LSH similarity computation module used to build the similarity

network. As previously mentioned, the features should be broad enough to cover most of the static

content of the APK file. Features could be categorized according to the main APK content types to:

i) Binary features, which are related to bytecode (Dex file) of the Dalvik virtual machine considering

the hex dump of the Dex file along with the actual file. ii) Assembly features, which are computed

from the assembly of classes.dex. iii) Manifest features, extracted from the Manifest file, which

is vital to Android apps since it provides essential information about the app to the Android OS.

iv) APK features, which include all the remaining APK file content, such as resources and assets.

In this section, we present the static features based on the adopted concept to extract them (e.g.,

N-gram).

N-grams.

The N-gram technique is used to compute contiguous sequences of N items from a large se-

quence. For our purpose, we use N-grams to extract the sequences derived from Android malware

content with the aim to discriminate different malware samples. The N-grams from various An-

droid app package contents, such as classes.dex, reflect the APK patterns and implicitly capture

the underlying Android package semantics. We compute multiple feature vectors for each APK

content. Each vector V ∈ D (|D| = ΦN where Φ represents all the possibilities of a given APK

content). Each element in the vector V contains the number of occurrences of a particular APK

content N-gram.

Classes.dex Byte N-grams. To increase the extracted information, we leverage two types of N-

grams, namely opcode N-grams and byte N-grams, which are extracted from the binary classes.dex
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file and its assembly respectively. From the hexdump of the classes.dex file, we compute Byte N-

grams by sliding a window of the hex string as depicted in Figure 3.4.

Assembly opcodes N-grams. The opcode N-grams are unique sequences in the disassembly of

classes.dex file, where the instructions are stripped from their operands. We choose opcodes instead

of full instructions for multiple reasons: (1) Using opcodes tends to be more resilient to simple

obfuscations that modify some operands such as hard-coded IPs or URLs. (2) Opcodes could be

more robust to modifications, caused by repackaging, that alter or rename some operands. (3) In

addition to being resilient to changes, opcodes can be efficiently extracted from Android apps.

The gained information from opcode N-grams could be increased by considering only functions

that use a sensitive APIs such as SMS API. Also, excluding the most common opcode sequence

decreases the noise in N-gram information. Also, the number of N-grams has a significant influence

on the gathered semantics. The result of N-gram extraction is the list of unique N-grams with the

occurrence number for each content category, i.e., opcode instructions, classes.dex. In addition to

the opcodes, we also consider the class names and the methods’ names as assembly features.

Native Library N-grams

The Native Library is part of the binary sub-fingerprint, which captures C/C++ shared libraries

[19] used by malware. Using the native library for malware fingerprinting is essential in some

cases to distinguish between two Android malware samples. For instance, if the malware uses a

native library, it is more likely to be DroidKungFu2 than DroidKungFu1 because DroidKungFu2

malware family uses C/C++ library and DroidKungFu1 uses only Java bytecode.

APK N-grams. The N-gram of the APK file can give an overview of the APK file semantics. For

instance, most of the repackaged apps are built from an original app with minor modifications [99].

Consequently, applying N-gram analysis on the APK file can detect a high similarity between the

repackaged app and the original one. Besides, some components of the APK file, e.g., images and

GUI layout structures, are preserved by the adversaries, especially if the purpose of the repackaging

process is to develop a phishing malware. Both apps, in this case, are visually similar, and hence
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the N-gram sequences computed from both apps will be similar in the zone related to the resource

directory.

Manifest File Features

In our context, AndroidManifest.xml is a source of essential information that could help in iden-

tifying malicious apps. The permissions required by apps are the most important features. For

example, apps that require SMS send permission are more suspicious than other apps since a big

portion of Android malware apps target sending SMS to premium charging phone numbers. In

addition, we extract other features from AndroidManifest.xml, namely, activities, services, and re-

ceivers.

Android API Calls

The required permissions provide a global view of possible app behaviors. However, we could

get a more granular view by tracking Android API calls, knowing that one permission could allow

access to multiple API calls. Therefore, we consider the API list used by the apps as the feature

list. Furthermore, we use a filter list of API of the suspicious APIs, such as sendTextMessage() and

orphan APIs, which are part of an undeclared permission. On the other hand, we extract the list of

permissions, where none of their APIs has been used in the app.

Resources

In this category, we extract features related to APK resources, such as text strings, file names,

and their content. An important criterion when filtering the files is to exclude the names of standard

files, e.g., String.xml. Also, we include files’ contents by computing MD4 hashes on each resource

file. At first glance, it seems that the use of MD4 is not convenient compared to more modern

cryptographic hashing algorithms such as MD5 and SHA1. However, we choose the MD4 purposely

because it is cheap in terms of computation. This allow to enhance the scalability of the system, yet,

we achieve the goal of the file comparison between the malicious apps of the active dataset. Finally,

we make a text string selection in the text resources, where we leverage tf-idf (term frequency-

inverse document frequency) [190] technique for this purpose.
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APK Content Types

Table 3.5 summarizes the proposed feature categories based on APK contents. It also depicts the

features considered in the current implementation of Cypider We believe that the used features give

a more accurate representation of Android packages as we showed in Section 3.2 . On the other

hands, the features that we excluded such as Text Strings and Assembly Class Names are highly

vulnerable to common obfuscation techniques. Also, excluded features such as Manifest Receivers

generate very sparse features vectors, which effect the overall accuracy.

# Content Type Features Implemented Feature
0 APK Byte N-grams X
1 Classes.dex Byte N-grams X
2 Native Library Bytes N-grams X
3 Assembly Opcodes Ngrams X
4 Assembly Class Names
5 Assembly Method Names
6 Android API X
7 Orphan Android API
8 Manifest Permissions X
9 Manifest Activities X

10 Manifest Services X
11 Manifest Receivers
12 IPs and URLs X
13 APK Files names X
14 APK File light hashes (md4)
15 Text Strings

Table 3.5: Content Feature Categories

Feature Preprocessing

Feature extraction and similarity computation are the core operations in the proposed frame-

work. Therefore, we need to optimize both their design and implementation to get the intended

scalability. The expected output from feature processing is a vector, which can straightforwardly

be used to compute the similarity between apps. App feature vectors are the input to Cypider

community detection system.

The N-gram technique, presented in Section 3.3.3, suffers from its very high dimensionality

D. The dimension number D hyper-parameter dramatically influences the computation and the

memory needed by Cypider for Android malware detection. The complexity of computing the

extracted N-grams features increases exponentially with N . For example, for the opcodes N-grams,

described in Section 3.3.3, the dimension D equals to R2 for bi-grams, where R = 200, the number

61



of possible opcodes in Dalvik VM. Similarly, for 3-grams, the dimension D = R3; for 4-grams,

D = R4. Furthermore, N has to be at least 3 or 5 to capture the semantics of some Android APK

content.

To address this issue, we leverage the hashing trick technique [173] to reduce the high dimen-

sionality of an arbitrary vector to a fixed-size feature vector. More formally, the hashing trick

reduces a vector V with D = RN to a compressed version with D = RM , where M << N . The

compacted vector boosts Cypider, both computation-wise and memory-wise, by allowing the clus-

tering system to handle a large volume of Android apps. Previous research [173, 188] has shown

that the hash technique could preserve a decent amount of information in the vector distance. More-

over, the computational cost incurred by using the hashing technique for reducing dimensionality

grows linearly with the number of samples and groups. Algorithm 1 illustrates the overall process

of computing the compacted feature vector from an N-grams set. Furthermore, it helps to control

the length of the compressed vector in an associated feature space.

3.3.4 LSH Similarity Computation

Building the similarity network is the backbone of Cypider framework. We generated the simi-

larity network by computing the pair-wise similarity between each feature vector of the apps APKs.

As a result, we obtain multiple similarities according to the number of these content vectors. Using

various similarities gives flexibility and modularity to Cypider. In other words, we could add any

new feature vector to the similarity network without disturbing Cypider process. Also, we could

remove features without affecting the overall process, which makes the experimentation of select-

ing the best features more convenient. More importantly, having multiple similarities between apps

static contents in the similarity network leads to explainable decisions, where the investigator can

track which contents a pair of apps are similar in the final similarity network. Similarity computa-

tion needs to be conducted in an efficient way that is much faster than the brute-force computation.

For this purpose, we leverage LSH techniques, and more precisely LSH Forest [80], a tunable high-

performance algorithm for similarity computation, employed by the Cypider framework. The key

idea behind LSH Forest is that similar items hashed using LSH are most likely to be in the same
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bucket (collide) and dissimilar items will be in different ones. Many similarity measures corre-

spond to LSH function with this property. In our case, we use the well-known Euclidean distance

for this purpose.
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Figure 3.12: LSH Similarity Computational Time

d(m,n) = ∥Vm − Vn∥ =

⌜⃓⃓⎷ |S|∑︂
i=1

(Vm(i)− Vn(i))2 (3)

Given a pair of Android apps, after extracting one content feature vector, we use the Euclidean

distance to compute the distance between two feature vectors m and n of one APK content, as

depicted in Equation 3. Figure 3.12 shows the LSH computation time with respect to the number of

apps using one CPU core and one thread for the permission feature vector. Even though the current

performance using LSH Forest is acceptable for a large number of daily malware samples (reaching

40, 000 apps per hour), we believe that we could drastically improve these results by just leveraging

an implementation that exploits all CPU cores in addition to multi-threading. The final result of

the similarity computation is a heterogeneous network, where the nodes are the apps, and edges

represent similarities between apps if a certain threshold is exceeded. The similarity threshold is

the percentage of average similarity of a given content. In other words, we compute the average

value of all the pairwise similarities for each feature content. Afterward, we set a percentage from

this average to be the final threshold. We use similarity threshold for all feature contents even

though they have different average values. The similarity threshold is systematically fixed based
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on our evaluation, and the same threshold is used in all experiments. However, we investigate the

effect of the similarity threshold on Cypider performance in the evaluation section. Note that the

network is heterogeneous because there are multiple types of edges, where the edge type represents

static content type.

3.3.5 Community Detection

A scalable community detection algorithm is essential to extract suspicious communities. For

this reason, we empower Cypider with Fast unfolding community detection algorithm [82], which

can scale to billions of network links. The algorithm achieves excellent results by measuring the

modularity of communities. The modularity is a scalar value M ∈ [−1, 1] that measures the density

of edges inside a given community compared to the edges between communities. The algorithm

uses an approximation of modularity since finding the exact value is computationally hard [82].

The previous algorithm requires a homogeneous network as input to work properly.

For this reason, we propose using a majority-voting mechanism (Section 3.2.1) to homogenize

the heterogeneous network generated by similarity computation. Given the number of content sim-

ilarity links s, the majority-voting method decides whether a pair of apps are similar or not by

computing the ratio s/S, where S is the number of all contents used in the current Cypider config-

uration. If the ratio is above the average, the apps will only have one link in the similarity network.

Otherwise, all the links will be removed. Notice that content similarity links could be retained for

later use, for example, to conduct a thorough investigation about given apps to figure out how simi-

lar they are, and on which content they are similar. The prior use case could be of a great importance

for security analysts.

We propose a majority-voting mechanism (see Section 3.2) to filter links between the nodes

(apps) to prevent having inaccurate suspicious communities. Furthermore, we employ a degree

filtering hyper-parameter to filter all node links with a degree that is less than a threshold value. The

previous hyperparameter keeps only edges of a given node when their number is above the threshold.

We call this hyper-parameters a content threshold, which is the number of similar contents to keep

a link in the final similarity network.
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Figure 3.13: Applying Cypider on a Small Dataset

Consequently, only nodes with high connectivity will maintain their edges, which are suppos-

edly similar to malicious apps. Notice that all parameters have been fixed in our evaluations. In the

case of a mixed dataset scenario, we use the degree 1 to filter all apps having a similarity link to

themselves since they are not similar to any other app in the active dataset. Cypider filters these

apps and consider them as benign apps. At this point, Cypider applies the community detection

algorithm [82] to extract a set of communities with different sizes. Afterward,all communities are

filtered with a community cardinal that is less than the minimum community size parameter (fixed for

all the evaluations). The purpose of the filtrating is to prevent the extraction of bad quality commu-

nities. Figure 3.13 depicts an example of using Cypider on a small Android dataset (250 malware

apps), where the process of community detection starts with homogeneous network and ends up

with suspicious communities. The content threshold and community size hyper-parameters are

thoroughly investigated in the evaluation section.

3.3.6 Community Fingerprint

Finding malicious communities is not the only goal of Cypider framework. Since Cypider is

completely unsupervised, we aim at generating fingerprints from the extracted communities auto-

matically. Therefore, in the following iteration, Cypider filters known apps without adding them

to the active dataset. Traditional cryptography fingerprints or fuzzy hashing techniques are not

suitable for our case since we aim to generate a fuzzy fingerprint, not only for one app but also

for the whole malicious community whether it is a malware family or subfamily. In this context,

we present a novel fingerprinting technique using the One-Class Support Vector Machine learning
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model (OC-SVM) [170], which was found to be fuzzy enough to cover malicious community apps.

The One-Class SVM model is used to detect the set of a set of malicious apps of a given community.

In particular, it detects the soft boundary model of that set. Adopting the one-class model, Cypider

classifies new apps as belonging to this community or not. The proposed fingerprinting technique

produces a much more compressed signature database compared to the traditional methods, where

the signature is generated only for one malicious app. Moreover, it notably reduces the computa-

tion since we check only the community fingerprints instead of checking each single malware hash

signature. In order to generate a community fingerprint from a set of malicious apps, Cypider first

extracts the features, as presented in Section 3.3.3. Afterward, the one-class model is trained using

static features of malicious community apps.

3.3.7 Experimental Results

In this section, we present Cypider implementation and the testing setup, including the dataset

and the performance measurement techniques. Afterward, we present the achieved results regard-

ing the defined metrics for both usage scenarios that are adopted in Cypider framework, namely

malware only (only malicious apps) and mixed (benign and malicious apps) datasets.

Dataset and Test Setup

In order to evaluate Cypider, we leverage well-known Android datasets, namely, (i) MalGenome

malware dataset [17, 203], (ii) Drebin malware dataset [18, 73, 175], and AndroZoo public Android

app repository. As presented in Table 4.3, we produce two other evaluation datasets based on the

previous ones by adding Android apps downloaded from Google Play in late 2014 and the beginning

of 2019. These apps have been randomly downloaded without considering their popularity or any

other factor. In order to build Drebin Mixed and AndroZoo Mixed datasets, we added 4, 403 benign

apps to the original Drebin dataset. The result is a mixed dataset (malware and benign) with 50% of

apps in each category. Similarly, we build the MalGenome Mixed dataset with 75% of benign apps.

The aim of using these datasets is to evaluate Cypider in unsupervised usage scenarios, with

and without benign apps. First, we assess Cypider on malware only using Drebin, AndroZoo, and

Genome datasets. This use case is the most attractive one in bulk malware analysis since it decreases
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Drebin DrebinMixed Genome GenomeMixed AndroZoo AndroZooMixed
Size 4330 8733 1168 4239 66k 66k

Malware 4330 4330 1168 1168 66k 66k
Benign 0 4403 0 3071 0 44k

Families 46 46 14 14 - 110k

Table 3.6: Evaluation Datasets

the number of malware to be analyzed by considering only a sample from each detected community.

Second, Cypider is evaluated against mixed datasets. The second scenario is more challenging

because we expect not only suspicious communities as output but also benign communities (false

positives) along with filtered benign apps.

To asses Cypider obfuscation resiliency, we conduct the evaluation on PRAGaurd obfuscation

dataset2, which contains 11k obfuscated maclicious apps using common obfuscation techniques

[147]. In addition, we generate 100k benign and malware obfuscated apps using DroidChameleon

obfuscater [162] using common obfuscations techniques and related combinations.

To this end, various metrics are needed to measure Cypider performance in each dataset. We

adopted the flowing metrics:

App Detection Metrics

A1: True Malware: This metric computes the number of malware apps that are detected by Cypi-

der. It is applied to both usage scenarios.

A2: False Malware: This metric computes the number of benign apps that have been detected as

a malware app. It is applied only to the mixed dataset since there are no benign apps in the

other datasets.

A3: True Benign: This metric computes the number of filtered benign apps by Cypider. It is only

applied to mixed dataset evaluation.

A4: False Benign: This metric computes the number of malware apps that are considered as be-

nign in the mixed dataset evaluation.
2http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
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A5: Detection Coverage: It measures the percentage of the detected malware from the overall

dataset. Formally, it is the number of clustered Android apps divided by the total number of

apps in the input dataset.

Community Detection Metrics

C1: Detected Communities: It indicates the number of suspicious communities that have been

extracted by Cypider.

C2: Pure Detected Communities: This metric computes the number of communities with a unique

Android malware family. In other words, a community is pure if it contains instances of the

same family. In this task, we rely on the labels of the used datasets to check the purity of a

given community. This metric is applied to both usage scenarios.

C3: K-Mixed Communities: This metric counts the communities with K-mixed malware families,

where K is the number of families in a detected community. This metric is applied to both

usage scenarios.

C4: Benign Communities: This metric computes the number of benign communities that have

been detected as suspicious. This metric is applied to in the mixed dataset evaluation.

Mixed Dataset Results

Table 3.7 presents the evaluation results of Cypider using Drebin Mixed and Genome Mixed

datasets. The most noticeable result is the fact that Cypider detects about half of the actual malware

in a single iteration in both datasets even though the noise of benign apps (false positive) is about

50% to 75% of the actual dataset. On the other hand, Cypider is able to filter a considerable number

of benign apps from the dataset. However, in both dataset evaluations, we obtain some false malware

(190− 103 apps) and false benign (38− 10 apps) respectively to datasets. According to our results,

these false positives, and false negatives appear, in most cases, in communities with the same labels

(malware or benign). Therefore, the investigation would be straightforward by analyzing some

samples from a given suspicious community. The similarity network and the resultant communities

are illustrated in Figure 3.15(a) and Figure 3.15(b) respectively.
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Community Metrics Drebin Mixed Genome Mixed
True Malware A1 2413 449
False Malware A2 190 103
True Benign A3 257 171
False Benign A4 38 10

Table 3.7: Mixed Evaluation Using Apps Metrics

Table 3.8 presents the results of Cypider’s evaluation using community metrics. A very inter-

esting result here is the number of pure detected communities, which is 179 pure communities out

of 188 detected communities in Mixed Drebin and 61 pure communities out of 61 detected commu-

nities (perfect purity) in Mixed Genome. Consequently, almost all the detected communities have

instances in the same malware family or benign ones. Even the mixed communities are composed

of only two labels (2-mixed). It is important to mention that all the detected benign communities

are pure without any malware instance, which makes the investigation much easier. Furthermore,

according to our analysis, most malware labels in the 2-mixed malicious communities are just a

naming variation of the same malware, which is caused by name convention differences among

vendors. For example, in one 2-mixed community, we found FakeInstaller and Opfake malware

instances. Actually, these names point to the same malware [13], which is FakeInstaller. Sim-

ilarly, we found FakeInstaller and TrojanSMS.Boxer.AQ, which points to the same malware [46]

with different vendor naming.

Apps Metrics Drebin Mixed Genome Mixed
Detected C1 188 61

Pure Detected C2 179 61
2-Mixed C3 9 0
Benign C4 18 16

Table 3.8: Evaluation Using Community Metrics

Community Metrics Drebin Genome
True Malware A1 2223 449

Table 3.9: Malware Evaluation Using Apps Metrics

Apps Metrics Drebin Genome
Detected C1 170 45

Pure Detected C2 161 45
2-Mixed C3 9 0

Table 3.10: Evaluation Using Community Metrics
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Results of Malware-only Datasets

Tables 3.9 and 3.10 present the performance results of Cypider using the app metrics and com-

munity metrics on malware only datasets. Since we use the same malware dataset as the mixed

dataset by only excluding benign apps, we obtain almost the same results. Cypider was able to

detect about 50% of all malware in one iteration. Moreover, nearly all the recognized communities

are pure. This high quality result is a significant advantage of Cypider in malware investigation

since the security analyst could automatically attribute the family to a given suspicious community

could be by only matching one or two samples. Furthermore, the analysis complexity dramatically

decreases from 2, 413 detected malware to only 188 discovered communities. We believe that this

could reduce the analysis window and help overcome the overwhelming number of daily detected

Android malware. Notice that there are nine 2-mixed communities in the Drebin dataset, which

contain different malware labeled for the same actual malware, as mentioned before. Figure 3.14(a)

depicts the similarity network of the Drebin malware dataset. After applying the community detec-

tion algorithm, we end up with malicious communities, as depicted in Figure 3.14(b).

(a) Simialrity Network (b) Detected Communities

Figure 3.14: Cypider Network of Drebin Malware Dataset
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(a) Simialrity Network (b) Detected Communities

Figure 3.15: Cypider Network of Drebin Malware Dataset

Family Community Size Family Detection (Acc) Malware (Acc) Benign (Acc) General (F1)
HiddenAds 1774 77.43 93.40 94.93 87.83
BridgeMaster 1041 76.99 93.08 93.22 87.05
InfoStealer 2973 86.60 88.37 91.26 75.50
Plankton 495 77.76 100.0 100.0 75.10
BaseBrigge 1499 76.76 88.51 92.47 73.28
Utchi 973 76.19 99.98 100.0 72.02

Table 3.11: Community Fingerprint Accuracy on Different Families

Community Fingerprint Results

Table 3.11 shows the evaluation results with respect to community fingerprinting, which is ap-

plied to different detected communities with various Android malware families. The community

fingerprint model (One-Class SVM) achieves 87% F1-score in detecting malware from the same

malware family that is used in the training phase. In the signature database, these new malware

samples share the same family with a given community fingerprint. Furthermore, the compressed

format of this fingerprint, i.e., learning model in a binary format, could fingerprint an entire Android

family, which generated a significantly more compacted signature database.

The performance of the community fingerprint mainly depends on the number of malware in

the detected community. Higher detection performance is achieved when more malware instances

exist in the community. In this respect, we determine a threshold systematically for the community
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cardinality (size), which is required to compute the fingerprint and store it in the signature database.

As shown in Table 3.11, one of the main characteristics of community fingerprinting, is its ability to

differentiate between general malware and benign samples with high accuracy. The reason behind

this high accuracy is the high similarity between general malware and the trained family. Notice

that the one-class SVM model is trained on samples from only one malware family. In other words,

malicious apps tend to have similar features, although they do not belong to the same malware

family. Thus, benign samples and general malware are highly dissimilar, and hence benign samples

are less likely to match with community fingerprint, which minimizes the overall false positive.

3.4 Hyper-Parameter Analyses

In this section, we analyze the effect of the employed hyper-parameters on Cypider on the over-

all performance measured using Purity, Coverage, and Community Numbers metrics. Specifi-

cally, we investigate the similarity threshold, the content threshold, and the community size, as

presented in Section 3.3.4 and Section 5.2.1.

3.4.1 Purity Analysis

In the purity analysis, we compute the overall percentage of clustered malware samples of the

groups belonging to the same Android malware family. A perfect purity metric means that each

detected community (cluster) contains samples from the same Android malware family. Figures

3.16 and 3.17 show the effect of Cypider hyper-parameters on the purity of the detected malware

communities in the similarity network of Drebin and AndroZoo datasets respectively.
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Figure 3.16: Purity Hyper-Parameters on Drebin
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It is worth noting that the content threshold is the most affecting hyper-parameter on the over-

all purity. A small content threshold results in a lower purity percentage, as shown in the evaluation

of both Drebin and AndroZoo datasets. This finding is intuitive because Cypider grouping out-

come is more accurate when using more content types threshold in the majority voting similarity

computation.
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Figure 3.17: Purity Hyper-Parameters on AndroZoo

On the other hand, the similarity threshold has a secondary effect compared to the content

threshold. This means that a tight threshold outputs less false samples in the detected communities.

Finally, we notice a very minor effect of the community size on the overall purity metric for both

Drebin and AndroZoo evaluations, as shown in Figures 3.16 and 3.17 respectively.

3.4.2 Coverage Analysis

In the coverage analysis, we assess the percentage of the detected malware from the overall

input dataset. A perfect coverage means that Cypider detects malware in the produced malware

communities. Figure 3.18 and 3.19 depict the change in the coverage percentage with Cypider

hyper-parameters for Drebin and AndroZoo datasets respectively.

We notice that the content threshold is the most affecting hyper-parameter on the overall cov-

erage metric. This means that a high content threshold in the majority voting (Section 3.3.4) leads

to the detection of fewer malware samples in the produced malware communities. Therefore, the

coverage metric decreases drastically with a high content threshold, as shown in Figures 3.18 and

3.19.

The similarity threshold and the community size have a secondary effect on the coverage
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Figure 3.18: Coverage Hyper-Parameters on Drebin
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Figure 3.19: Coverage Hyper-Parameters on AndroZoo

metric. For the similarity threshold, a wide distance threshold yields a higher detection rate, and

therefore a high coverage metric. For the community size threshold, a larger value leads to ignore

many small malware communities, which affects the detection coverage metric negatively.

3.4.3 Number of Communities Analysis

In this section, we analyze the total number of the detected communities produced by Cypider.

A perfect Cypider clustering yields a result in which the number of communities is equal to the

actual number of malware families in the input dataset. Figures 3.20 and 3.21 depict the effect of

Cypider hyper-parameters on the number of the detected communities on Drebin and AndroZoo

datasets respectively.

It is essential to mention that the community size has a strong influence on the number of

communities. A higher community size threshold will filter many small malware communities,

which influences the number of detected communities directly.
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Figure 3.20: Detected Communities Hyper-parameters on Drebin
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Figure 3.21: Detected Communities Hyper-parameters on AndroZoo

For the content threshold, the majority voting with a small content threshold causes many com-

munities to merge. This is because the samples have to be similar in only two content thresholds

to maintain a similarity. On the other hand, the majority voting with a high content threshold will

detect fewer malware samples and, hence, less overall malicious communities. Finally, we notice

a minor effect of the similarity threshold on the overall number of the detected communities, as

depicted in Figures 3.20 and 3.21 for Drebin and AndroZoo datasets respectively.

3.4.4 Efficiency Analysis

In this section, we investigate the overall efficiency of the Cypider framework. Specifically, we

present the runtime in seconds on the core computation of our framework: (i) the similarity com-

putation to build the similarity network, (ii) the community detection to partition the similarity

network into a set of malicious communities.

Figure 3.22 depicts the similarity computation time in seconds to build Cypider similarity net-

work. We notice that Cypider framework is very efficient at producing the similarity network
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Figure 3.22: Similarity Computation Time

because we employ locality sensitive hashing techniques to speed up the pairwise similarity com-

putation between the feature hashing vectors. For example, Cypider took only about 1 second to

compute the similarity between 111k samples feature hashing vectors.
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Figure 3.23: Community Detection Time Analysis on Drebin

Figures 3.23 and 3.24 present the community detection time in seconds on Drebin and Andro-

Zoo datasets respectively. We analyze the effect of similarity and content thresholds on the overall

community detection time. In Figures 3.23 and 3.24, we notice that Cypider spends more time due

to decreasing the content threshold and decreasing the similarity threshold in Drebin and AndroZoo

experiments. The previous thresholds setup increases the density of Cypider similarity network,

and therefore, the community detection processing takes more time in the partition process of the

network. On the other hand, increasing the content threshold while decreasing the similarity thresh-

old produces a very sparse similarity network, which takes a negligible time in the partition process.
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Figure 3.24: Community Detection Time Analysis on AndroZoo

3.5 Case Study: Recall and Precision Settings

In this section, we evaluate Cypider framework with respect to recall and precision. We aim to

assess Cypider performance in terms of purity and coverage in case the security practitioner focuses

on having: (i) maximum recall (a minimum false detection), or (ii) maximum precision (maximum

coverage). Both recall and precision settings are common in real deployments. We tune the recall

and precision settings by adjusting Cypider hyper-parameters to reach the set goal.
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Figure 3.25: Performance under Recall/Precision Settings

Figure 3.25 presents Cypider malware only performance on different datasets (MalGenome,

Drebin, AndroZoo) under recall and precision settings. In the recall setting, Cypider achieves 95%
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to 100% purity while maintaining 15% to 26% malware coverage. Therefore, we detect about 20%

(on average) of the input malware in form of communities with 98% purity (Figure 3.25, recall

charts). On the other hand, Cypider achieves 63% to 73% malware coverage while maintaining

84% to 93% purity, as shown in Figure 3.25 (precision charts).

(a) Recall Settings (b) Precision Settings

Figure 3.26: Malgenome Similarity Networks

The contrast between the recall and precision settings is more clearly visible in the similarity

network, as shown in Figures 3.26 and 3.27 for MalGenome and Drebin datasets respectively. The

aforementioned figures present each malware family in a different color. Malware communities de-

picted with more than one color contain more than one malware family. Pure malware communities

have only one color in the edges and nodes. We notice more detected malware communities in the

similarity network in the precision settings. In contrast, in the recall similarity network, we notice

fewer malware communities, and most of the nodes are part of any community (not detected).

Figure 3.28 depicts Cypider mixed performance under recall and precision settings for MalGenome,

Drebin and AndroZoo datasets. The most noticeable result is that all the detected benign communi-

ties have perfect purity metrics under both recall and precision settings. Moreover, benign coverage

is less than the malware coverage under all settings. In other words, Cypider could bring benign

samples during clustering but gathered in pure communities, which is very helpful in case of manual
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(a) Recall Settings (b) Precision Settings

Figure 3.27: Drebin Similarity Networks

investigations.

The difference between recall and precision settings in the mixed scenario is more clearly visible

in the similarity networks. Figures 3.29 and 3.30 show the recall and precision similarity network

of MalGenome and Drebin datasets respectively. Darker color communities contain malware sam-

ples, and lighter color communities contain benign samples. We notice a clear separation between

malicious communities and benign ones. Also, more numerous and larger communities have been

detected under the precision setting compared to the recall setting.

Tables 3.12 and 3.13 detail Cypider performance under the recall and the precision settings in

terms of coverage/purity and number of detected/pure communities respectively.

3.6 Case Study: Obfuscation

In this section, we investigate the robustness of Cypider framework against common obfus-

cation techniques and code transformation in general. We employ PRAGuard obfuscated Android

malware, which contains 11k samples, along with benign samples from AndroZoo dataset. Table

3.14 details Cypider performance on the malware and the mixed scenarios. We compare Cypi-

der performance before and after applying a single or a combination of obfuscation techniques, as
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Figure 3.28: Performance under Mixed Recall/Precision Settings

shown in Table 3.14.

The evaluation results show that common obfuscation techniques have a limited effect on Cypi-

der performance in general (60−77% coverage and 71−99% purity). Class encryption obfuscation

decreases the coverage from 66% in the non-obfuscated dataset to 36 − 38%. However, Class en-

cryption does not affect the purity. Similarly, Reflection obfuscation technique dropped down the

purity to 67 − 71% compared to the original dataset but does not affect the coverage performance.

To strengthen our findings (Table 3.14) on PRAGuard obfuscation dataset, we build our obfusca-

tion dataset using DroidChameleon obfuscation tool. We obfuscate Drebin malware dataset (5k

malware samples) and benign samples from AndroZoo dataset (5k malware samples). The result

is 100k samples (50k malware and 50k benign) from different obfuscation settings, as shown in

Table 3.15. Similar to PRAGuard experiment, we compare Cypider performance before obfusca-

tion (original Drebin dataset) and after obfuscation. However, this experiment is different from the

80



(a) Recall Settings (b) Precision Settings

Figure 3.29: Malgenome Mixed Similarity Network

(a) Recall Settings (b) Precision Settings

Figure 3.30: Drebin Mixed Similarity Network

PRAGuard one because both benign and malicious samples are obfuscated.

Table 3.15 details the result of Cypider framework on the different obfuscation techniques. The

most noticeable is that the obfuscation techniques provided by the DroidChameleon tool have a

limited effect on the clustering clustering. All the performance metrics are remain stable on both
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Evaluation Setup Dataset Size Coverage/Purity %
Dataset Scenario Settings #Benign #Malware #Total

Malgenome
Malware Recall / 1.23k 1.23k / 15.56%/99.0% 15.56%/99.0%

Precision / 1.23k 1.23k / 66.21%/91.0% 66.21%/91.0%

Mixed Recall 4.03k 1.23k 5.26k 3.7%/100.0% 15.48%/99.0% 6.46%/100.0%
Precision 4.03k 1.23k 5.26k 39.66%/100.0% 61.02%/92.0% 44.68%/98.0%

Drebin
Malware Recall / 5.55k 5.55k / 26.69%/93.0% 26.69%/93.0%

Precision / 5.55k 5.55k / 73.08%/84.0% 73.08%/84.0%

Mixed Recall 7.64k 5.55k 13.19k 3.85%/100.0% 29.77%/88.0% 14.74%/90.0%
Precision 7.64k 5.55k 13.19k 44.27%/100.0% 72.0%/83.0% 55.93%/91.0%

AndroZoo
Malware Recall / 66.76k 66.76k 0.0%/0.0% 18.48%/100.0% 18.48%/100.0%

Precision / 66.76k 66.76k 0.0%/0.0% 63.03%/92.0% 63.03%/92.0%

Mixed Recall 44.18k 66.76k 110.94k 5.52%/100.0% 18.7%/100.0% 13.45%/100.0%
Precision 44.18k 66.76k 110.94k 47.63%/100.0% 63.19%/91.0% 56.99%/94.0%

Table 3.12: Coverage and Purity Details

Evaluation Setup Dataset Size #Communities/#Pure
Dataset Scenario Settings #Benign #Malware #Total Bengin Malware Overall

Malgenome
Malware Recall / 1.23k 1.23k / 15/15 15/15

Precision / 1.23k 1.23k / 35/31 35/31

Mixed Recall 4.03k 1.23k 5.26k 18/18 17/17 35/35
Precision 4.03k 1.23k 5.26k 71/71 34/31 105/102

Drebin
Malware Recall / 5.55k 5.55k / 95/89 95/89

Precision / 5.55k 5.55k / 155/136 155/136

Mixed Recall 7.64k 5.55k 13.19k 30/30 109/102 139/132
Precision 7.64k 5.55k 13.19k 125/125 152/132 277/257

AndroZoo
Malware Recall / 66.76k 66.76k / 800/798 800/798

Precision / 66.76k 66.76k / 1355/1291 1355/1291

Mixed Recall 44.18k 66.76k 110.94k 176/176 828/826 1004/1002
Precision 44.18k 66.76k 110.94k 586/586 1321/1250 1907/1836

Table 3.13: Number of Detected/Pure Communities Details

Evaluation Setup Coverage/Purity % #Communities/#Pure
Scenario Obfuscation Bengin Malware Overall Bengin Malware Overall

Malware

Malgenome (Orignal) / 66.2%/92.3% 66.2%/92.3% / 35/31 17/17
(1) TRIVIAL / 60.3%/99.8% 60.3%/99.8% / 34/34 35/31
(2) STRING ENCRYPTION / 63.5%/96.7% 63.5%/96.7% / 34/32 35/31
(3) REFLECTION / 70.8%/71.9% 70.8%/71.9% / 30/27 35/31
(4) CLASS ENCRYPTION / 38.3%/98.5% 38.3%/98.5% / 27/26 35/31
(1) & (2) / 52.4%/99.8% 52.4%/99.8% / 42/42 35/31
(1) & (2) & (3) / 65.1%/67.5% 65.1%/67.5% / 38/34 35/31
(1) & (2) & (3) & (4) / 36.3%/99.7% 36.3%/99.7% / 39/39 35/31

Mixed

Malgenome (Orignal) 52.84%/100.0% 45.44%/95.0% 51.1%/99.0% 63/63 36/32 99/95
(1) TRIVIAL 50.98%/100.0% 65.72%/90.0% 54.3%/97.0% 66/66 38/32 104/98
(2) STRING ENCRYPTION 52.47%/100.0% 68.41%/93.0% 56.06%/98.0% 66/66 33/30 99/96
(3) REFLECTION 51.45%/100.0% 77.23%/63.0% 57.21%/89.0% 65/65 29/21 94/86
(4) CLASS ENCRYPTION 52.84%/100.0% 45.44%/95.0% 51.1%/99.0% 63/63 36/32 99/95
(1) & (2) / / / / / /
(1) & (2) & (3) / / / / / /
(1) & (2) & (3) & (4) 49.04%/100.0% 44.64%/94.0% 48.01%/99.0% 66/66 39/37 105/103

Table 3.14: Performance on Obfuscated - PRAGaurd Dataset
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Evaluation Setup Coverage/Purity % #Communities/#Pure
Scenario Obfuscation Bengin Malware Overall Bengin Malware Overall

Mixed

Drebin (Original) 44.27%/100.0% 72.0%/83.0% 55.93%/91.0% 125/125 152/132 277/257
Class Renaming 41.71%/100.0% 72.61%/83.0% 54.64%/91.0% 129/129 156/135 285/264
Method Renaming 42.02%/100.0% 71.08%/83.0% 54.19%/91.0% 121/121 149/129 270/250
Field Renaming 43.59%/100.0% 72.01%/83.0% 55.49%/91.0% 128/128 148/127 276/255
Code Reordering 43.43%/100.0% 71.49%/83.0% 55.19%/91.0% 127/127 155/135 282/262
Debug Information Removing 44.34%/100.0% 72.09%/83.0% 55.96%/91.0% 117/117 151/130 268/247
Junk Code Insertion 40.71%/100.0% 71.81%/83.0% 53.73%/90.0% 124/124 153/132 277/256
Instruction Insertion 42.65%/100.0% 71.25%/83.0% 54.63%/91.0% 120/120 156/136 276/256
String Encryption 43.2%/100.0% 72.16%/83.0% 55.32%/91.0% 133/133 147/127 280/260
Array Encryption 43.55%/100.0% 71.93%/83.0% 55.42%/91.0% 125/125 152/131 277/256

Malware

Drebin (Original) / 73.08%/84.0% 73.08%/84.0% / 155/136 155/136
Class Renaming / 74.14%/84.0% 74.14%/84.0% / 160/137 160/137
Method Renaming / 72.66%/83.0% 72.66%/83.0% / 159/136 159/136
Field Renaming / 73.75%/83.0% 73.75%/83.0% / 155/132 155/132
Code Reordering / 74.07%/83.0% 74.07%/83.0% / 158/135 158/135
Debug Information Removing / 72.92%/83.0% 72.92%/83.0% / 155/132 155/132
Junk Code Insertion / 73.86%/83.0% 73.86%/83.0% / 157/135 157/135
Instruction Insertion / 73.96%/85.0% 73.96%/85.0% / 160/137 160/137
String Encryption / 73.8%/83.0% 73.8%/83.0% / 155/132 155/132
Array Encryption / 73.8%/83.0% 73.8%/83.0% / 155/133 155/133

Table 3.15: Performance on Obfuscation - Drebin Dataset

non-obfuscated and obfuscated samples under the malware and mixed scenarios. We argue that

Cypider framework is resilient to common obfuscation and code transformation techniques because

our framework considers many APK contents for feature extraction. Therefore, the obfuscation

techniques can affect one APK content, but Cypider is able to leverage other contents to fingerprint

malware sample and compute the similarity with other malware samples.

3.7 Case Study: Win32 Malware

In this section, we study the application of Cypider on different platform malware. Specifi-

cally, we employ Cypider to group Win32 malware samples into communities of the same malware

family. Our goal is to check the effectiveness of Cypider outside the Android world.

3.7.1 Dataset Description

A Win32 malware dataset is the first thing that we looked for to carry out this case study. We

looked for a large, freely available labeled malware dataset that contains several families. All those

criteria are met in Microsoft malware dataset3 that has been used in a Kaggle4 competition in 2015.
3https://www.kaggle.com/c/microsoft-malware-prediction
4https://kaggle.com
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Family # Sample
1 Kelihos3 2942
2 Lollipop 2478
3 Ramnit 1541
4 Obfuscator 1228
5 Gatak 1013
6 Tracur 751
7 Vundo 475
8 Kelihos1 398
9 Simda 42

Total 10868

Table 3.16: Microsoft Kaggle Competition Malware Dataset

The dataset contains about 11k (≈ 500GB) malware samples from nine Win32 malware families,

as shown in Table 3.16. The Dataset contains for each malware the actual binary and its Intel x86

assembly in separate files.

3.7.2 Static Features

Win32 malware has a different binary compared to Android packages in terms of structure

and assembly. Therefore, we need to re-engineer new static features to compute Cypider features

vectors. For the sake of this case study, we used only three content features, namely: Intel x86

assembly opcodes, function calls, and binary bytes. Further features vectors for x86 binary samples

could be investigated as part of future work. Opcode or operation code is the first part of the machine

instruction to be executed on the targeted machine. Using opcodes in malware fingerprinting tends

to provide more resiliency to some obfuscation techniques that affect other portions of machine

instructions. We parse assembly files to extract the opcodes, in which we preserve the order of

appearance in a file. In our context, a function call is any system call that requests a service/resource

from the underlying operating system using know APIs. We parse the assembly file to extract

ordered function calls. Binary bytes are the contiguous bytes of a sample binary representation.

We obtain a byte sequence from the binary content of a malware sample. For all of the previous

content features, we use N-grams (4-grams) and feature hashing techniques (size=216). Afterward,

we apply principal component analysis (PCA) for dimensionality reduction to produce the final

compact content vectors (size=100).
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Figure 3.31: Framework Performance on Win32 Malware

Evaluation Setup Dataset Size #Communities/#Pure Coverage/Purity %
Microsoft Kaggle Malware 10.87k 160/154 80.52%/87.0%

Table 3.17: Purity and the Detected Communities on Win32

3.7.3 Findings

Figure 3.31 depicts Cypider performance on Microsoft malware competition dataset. Even

though we used only three features content, Cypider still achieves high performance in terms of

community purity and the overall coverage. Cypider is able to cluster 80% of the dataset with 87%

purity. Besides, most of the impure communities (13%) contains samples from only two or three

malware families.

Figure 3.32 presents the result of applying Cypider before filtering unassociated malware sam-

ples. Each color scale in Figure 3.32 represents a malware family in the dataset (Table 3.16). Figure

3.32 reveals different observations in Cypider similarity network, as follows. (1) The detected mal-

ware communities have a highly connected network. (2) Some malware communities are composed

of the connection of multiple sub malware communities networks. The sub-communities could

represent malware variants of the main malware family.

Table 3.17 summarizes the performance result of Cypider on Win32 malware dataset. Cypider

is able to group with high purity about 9k samples into 160 malicious communities. Specifically, it

identifies 154 pure communities out of 160 detected communities.
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Figure 3.32: Similarity Network of Win32 Malware Dataset

3.8 Summary

In this chapter, we have presented a fuzzy fingerprinting approach for investigating Android

malware variations. To this end, we have proposed APK-DNA, a novel fingerprint that captures not

only the binary of the APK file but also both its semantics. This is of paramount importance since it

allows the generated fingerprints to be highly resistant to app changes, which is a significant advan-

tage compared to traditional fuzzy hashing techniques. We have leveraged the proposed APK-DNA

fingerprint to design and implement an innovative, efficient and scalable framework for Android

malware detection, called Cypider. In essence, the detection mechanism relies on the community

concept. Cypider provides a systematic framework that can generate a fingerprint for each com-

munity, enabling the identification of known and unknown malicious communities. Cypider has

been implemented and evaluated on different malicious and mixed datasets. Our findings show that

Cypider is a valuable and promising framework for the detection of malicious communities. Cypi-

der only needs few seconds to build a network similarity of a large number of apps. The community

fingerprinting results are very promising as 87% of the detection is achieved.

In the next chapter, we present another fuzzy fingerprinting approach for Android malware de-

tection with the following specificities: (i) We rely on dynamic analysis instead of static analysis.
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(ii) We build on top the dynamic analysis fingerprints a classification system using supervised ma-

chine learning instead of the clustering approach employed in this chapter.
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Chapter 4

Android Malware Fingerprinting Using

Dynamic Analysis

4.1 Overview

In this chapter, we elaborate a data driven framework for detecting Android malware using auto-

matically engineered features derived from dynamic analyses. The state-of-the-art solutions, such as

[91, 134, 171], rely on manual feature engineering in malware detection. For example, StormDroid

[91] uses Sendsms and Recvnet dynamic features, which are chosen based on statistical analysis, for

Android malware detection. As another example, the authors in [141] used specific features to build

behavioral graphs for Win32 malware detection. The security features may change based on the

execution environment despite the target platform. For instance, the authors in [91] and in [70] used

different security features due to the difference between the execution environments. In the context

of a security application, we are looking for a portable framework for malware detection based on

the behavioral reports across a variety of platforms, architectures, and execution environments. The

security analyst would be able to rely on this plug-and-play framework with a minimum effort in

terms of feature engineerning. We plug the behavioral analysis reports for the training. Afterward,

we employ the produced classification model on new reports without an explicit security feature

engineering as in [89, 91, 141]. This previous process works virtually on any behavioral reports.

First, we propose a novel fingerprinting approach, namely DySign, which aims at generating
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a signature that is based on the dynamic analysis of Android malware apps. Second, relying on

DySign fingerprinting, we propose, MalDy, a portable framework for malware detection and family

threat investigation based on behavioral reports. MalDy framework is built on top of Natural Lan-

guage Processing (NLP) modeling and supervised machine learning techniques. The main idea is

to formalize a behavioral report, agnostic to the execution environment, into a Bag of Words (BoW)

where the features are the reports’ words. Afterward, we leverage machine learning techniques to

automatically discover relevant security features that help differentiate and attribute malware. The

result is MalDy, a portable (Section 4.3.4), effective (Section 4.3.4), and efficient (Section 4.3.4)

framework for malware analysis.

4.1.1 Threat Model

We position MalDy as a generic malware analysis tool. MalDy considers only behavioral re-

ports generated from the execution of program binary inside a sand-boxing environment. Therefore,

MalDy is by design resilient to binary code static analysis transformation like packing, compres-

sion, and dynamic loading. MalDy performance depends on the quality of the collected reports.

The more security information and features are provided about malware samples in the reports, the

more accurate MalDy could differentiate malware from benign and attribute to known families. The

malware execution time and the random event generator of the sandboxing may have a considerable

impact on MalDy because they affect the quality of the behavioral reports. Anti-emulation tech-

niques, used to evade dynamic analysis, could be challenging for MalDy framework. However, this

issue is related to the choice of the underlying execution environment.

4.2 Dynamic Analysis Fingerprints

The main aim of DySign is to generate an approximate fingerprint from dynamic analysis out-

put of malicious apps. Fingerprints are generated for each app in a database of known apps. Our

primary concern, after accuracy, is the scalability in the fingerprinting of existing known malware

and matching the generated fingerprints against new apps to check possible maliciousness. DySign

is intended to be the first fingerprint defense line, along with static file fuzzy fingerprinting, to tackle
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the overwhelming volume of malicious apps encountered daily. DySign has two primary usage sce-

narios: (i) Mobile apps monitoring: In this scenario, we have a set of installed apps that run in a

given smart device. Having a runtime report database of these apps would help DySign to period-

ically fingerprint the behaviors of these apps to check for the existence of abnormal behaviors. In

this scenario, DySign could raise an alert of behavior change after a suspicious update or a hack;

(ii) Cloud service analyzer: In this scenario, DySign is used as a core of cloud checking service of

the received analysis reports (either automatically using a collection service inside devices or man-

ually by users’ submissions) from Android device of suspicious apps. The goal is to match runtime

analysis against malicious apps. These scenarios are general applications of DySign. However, we

believe that it can be extended to many other usages due to the simplicity and scalability of DySign.

4.2.1 Methodology

In this section, we present the architecture of DySign, Figure 6.1 along with the different phases

of the proposed system.
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Figure 4.1: DySign Approach

Fingerprint Computation

Our ultimate goal is to automatically fingerprint Android malware based on dynamic analysis.

To this end, we use natural language processing techniques, where we consider the output of the

dynamic analysis as a plain text file and model it as a bag of words. The latter treats the text docu-

ment as a set of words separated by predefined delimiters such as spaces and curly brackets. Given a

set of analysis reports as a bag of words, we compute a relative fingerprint for each report based on
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the word frequency. More specifically, we segregate the reports by giving high weight to the words

with a high frequency (number of occurrence) in a given report and low frequency in the others.

The result is a vector of words’ weights for each analysis report. To compute DySign’s vector, we

leverage the so-called Term Frequency-Inverse Document Frequency (tf-idf ) [190], a well-known

technique adopted in the fields of information retrieval and natural language processing. The latter

computes vectors from input text documents by considering both frequency in individual documents

and the whole set. Let D = {d1, d2, . . . , dn} be a set of text documents, where n is the number

of documents, and let d = {w1, w2, . . . , wm} be a document, where m is the number of words

in d. The tf-idf of a word w and document d is the product of term frequency of w in d and the

inverse document frequency of w, as shown in Equation 4. The term frequency (Equation 5) is the

occurrence number of w in d. Finally, the inverse document frequency of w (Equation 6) represents

the lograthm of the ratio between the number of documents n and the number of documents that

contain w plus one. The computation of tf-idf is very scalable, which suites our needs.

tf-idf(w, d) = tf(w, d)× idf(w) (4)

tf(w, d) = |{w ∈ d, d = {w1, w2, ...wn} : w = wi}| (5)

idf(w) = log
|D|

1 + |{d : w ∈ d}|
(6)

The result of tf-idf is a set of vectors V = {v1, v2, . . . , vn} (DySign fingerprints) of word

weights for each document d ∈ D. Computing the similarity using DySign is straightforward using

the cosine similarity as shown in Equation 7.

cosine-similarity(v1, v2) = cos(θ) =
v1 · v2

||v1||||v2||
(7)

We use an illustrating example to answer a crucial question, How can DySign be used for

Android malware detection and family attribution?. Thus, we compute DySign fingerprints from

the analysis reports of malware samples from Drebin malware dataset [73, 175] along with benign
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apps downloaded from Google Play [28]. The example is summarized in Tables 4.1 and 4.2. How

DySign is used for malware detection is illustrated in Table 4.1. This example shows the potential

of DySign in distinguishing between malware and benign apps.

# App1 App2 TFIDF Cosine
1 00453ca8 (FakeInst)1 com.BigBawb.coin.apk 0.19
2 00453ca8 (FakeInst) com.interestcalculator.apk 0.21
3 21262a59 (FakeInst) com.sleggi.MiFreetime.apk 0.16
4 00453ca8 (FakeInst) 21262a59 (FakeInst) 0.42
5 00453ca8 (FakeInst) com.sleggi.MiFreetime.apk 0.27

1 First 8 characters from malware hash and its malware family.

Table 4.1: DySign and Android Malware Detection

As shown in Table 4.2, DySign could be used to segregate between Android malware families

by requiring a higher similarity between fingerprints of the same malware family. Based on these

insights, we generalize and build a system on top of DySign for Android malware detection and

family attribution.

# Malware1 Malware2 TFIDF Cosine
1 090b5be2 (Plankton)2 bedf51a5 (DroidKungFu) 0.56
2 149bde78 (Plankton) bedf51a5 (DroidKungFu) 0.46
3 090b5be2 (Plankton) 149bde78 (Plankton) 0.71

2 First 8 characters from malware hash and its malware family.

Table 4.2: DySign and Android Malware Family Attribution

How DySign is agnostic to malware samples and families? DySign is agnostic to malware

samples and families by design since no features are explicitly extracted for a given malware family

or a sample. In other words, DySign considers an analysis report as a bag of words. It only finds

the frequency of the word in a document relative to the other ones. This ensures that the extracted

DySign information is broad enough to cover most malware samples without relying on malware

specific features.

Architecture Overview

In this section, we present the architecture of DySign framework for Android malware detec-

tion. There are two main processes in DySign framework. i) The first process is building the analy-

sis report database. The initial phase of this process consists of sandboxing and inserting the reports

into the database of known Android malware (Algorithm 5). Afterward, the process proceeds as a

92



continuous task of updating the report’s database with new apps (Algorithm 6).

Algorithm 5: First Setup of Analysis Report Database
Input : MalDataset: APK Files of Known Malware

BenDataset: APK Files of Some Benign Apps

begin
foreach Apk ∈MalDataset do

Report← SandBoxing(Apk);
WordBag ← getWordBag(Report);
SaveDatabase(WordBag);

end
foreach Apk ∈ BenDataset do

Report← SandBoxing(Apk);
WordBag ← getWordBag(Report);
SaveDatabase(WordBag);

end
LunchUpdateProcess ()

end

Algorithm 6: Updating Analysis Report Database
Input : NewUpdateApp: Update App File (APK)

begin
while True do

if ∃ NewUpdateApp then
NewReport← SandBoxing(NewUpdateApp);
WordBag ← getWordBag(NewReport);
SaveDatabase(WordBag);

end
end

end

ii) The second process is the detection, in which we check the runtime behaviors of newly

received apps against known malware behaviors. First, the new app is executed in a sandboxing

environment during a time T to get the analysis report. The latter will be used along with the

database reports to compute the DySign fingerprint using tf-idf. Finally, we compute the similarity

between the DySign fingerprint of the new app and the existing fingerprints to identify whether it

is malicious or not and its family in the case that the app is identified as malicious. The complete

DySign process is presented in Algorithm 7. Using DySing’s fingerprint, we do not only detect

malware but also attribute the unknown samples to their Android malware families. Further, we can

also ascribe a family to the unknown samples if we already have samples of this family in DySign’s

dynamic analysis database. Algorithm 7 describes the process of generating a dynamic fingerprint.

A cornerstone in DySign framework is the sandboxing system, which heavily influences the
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Algorithm 7: DySign Framework Detection Process
Input : Database: Analysis Reports Of DySign Database

NewApp: New App File (APK)
Output: Decision: {Bengin or Malicious}

Family: Android Malware Family

begin
NewReport← SandBoxing(NewApp);
dbV ectors,NewV ector ← TFIDF(dbReports,NewReport);

MaxSim← 0;
Decision← Benign;
Family ← ∅ ;
foreach V ec ∈ dbV ectors do

Sim← Similarity(V ec,NewV ector);
if Sim > MaxSim then

MaxSim← Sim;
Decision← getDecision(V ec);
Family ← getAndroidFamily(V ec);

end
end
return Decision, Family;

end

produced analysis reports. We use DroidBox [47], a well-established sandboxing environment based

on the Android software emulator [12] provided by Google Android SDK [33]. Running the app

may not lead to a sufficient coverage of the executed app. As such, to simulate the user interaction

with the apps, we leverage MonkeyRunner [48], which produces random UI actions aiming for a

broader execution coverage. Also, the similarity computation could be a bottleneck for DySign

and could lead to inefficient matching against new unknown apps. To address this issue, we resort

to LSH K-Nearest Neighbor (KNN) [80]. The performance of similarity computation needs to be

much faster than the brute-force computation. To this end, we leverage Locality Sensitive Hashing

(LSH) techniques, and more precisely LSH Forest [80], a tunable high-performance algorithm for

similarity computation as described in Chapter 3 (Section 3.3.4).

4.2.2 Experimental Results

In this section, we present the evaluation results of our proposed system. The implementation

subsection shows the setup of our experiments. To evaluate the performance of malware detection

using DySign, we use a mixed dataset, i.e., malware and benign apps. As for the evaluation of the

attribution performance, we use a malware-only dataset.
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Evaluation Dataset

The first step towards evaluating DySign is to select appropriate datasets that can be utilized

for Android malware fingerprinting. Obtaining representative datasets is a fundamental challenge,

and there is certainly a strong need for reference datasets. Hence, the utilized dataset consists

of: (1) malware-only dataset using the well-known Drebin dataset [73, 175], and ii) mixed dataset

using Drebin dataset along with benign apps downloaded from Google Play [28]. Statistics about

the dataset are presented in Table 4.3. In Table 4.3, we use a subset of 3, 414 Android malware

samples, from Drebin dataset, distributed across 8 families. To make the data more balanced, we

exclude from this dataset all malware families with few samples due to the high skewness of the

dataset. This would prevent having, for instance, a family with 800 samples and other families with

only 1, 2, or even 20 samples.

Drebin Dataset Drebin Mixed With Benign
Total Size 3414 8639
Malware 3414 3414
Benign / 5225

Table 4.3: Android Dataset Description

Results

To evaluate our approach using the previous datasets, we split the training data into ten sets,

reserving one set as a testing set and using nine sets as training sets. We use precision (P), recall

(R) and F1 metrics, as per Equation 8, where TP, FP, FN represent respectively True Positives, False

Positives, and False Negatives.

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2× P ×R

P +R
(8)

Detection Performance: Since the application domain targeted by DySign is much more sensi-

tive to false-positives (FP) than false-negatives (FN), we employ the F-measure, where the results of

F1 measure are summarized in Table 4.4. We use two types of datasets: (i) The mixed dataset, used

for detection performance assessment, and (ii) the malware-only dataset, used to assess DySign’s

family attribution, as presented in Table 4.4. The obtained results show that our approach achieves
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good detection and attribution performance in a short time.

F1-Score Precision Recall Time
Mixed (Detection) 85% 94% 78% 4min 45s

Drebin (Attribution) 80% 82% 79% 2min 20s

Table 4.4: Detection and Attribution Performance
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Figure 4.2: Family Attribution Evaluation Using Confusion Matrix

Attribution Performance: Figure 4.2 presents the confusion matrix for a more granular view

of DySign’s family attribution. The darker the diagonal is in the matrix is, the more accurate is the

attribution. However, due to unbalanced malware families (Table 5.1), there are some cells in the

diagonal that are darker due to the high number of samples in the testing set of that family. For this

reason, we apply the log function on the original confusion matrix to have more informative results.

Notice that all the produced results are based on the sandbox reports of only T = 15s for each

app, whether it is a malware sample or a benign app. Therefore, the accuracy could be significantly

improved by having a longer time T .

Reports Size Analysis: Figure 4.3 shows the size distribution of the analysis reports. Figures

4.3(a) and 4.3(c) show the size distribution in bytes for benign and malware reports respectively. To

enhance the readability of the results, we apply the log function on byte distributions. The results

are shown in Figures 4.3(b) and 4.3(d) for benign and malware reports. The most noticeable is the
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Figure 4.3: Sandbox Output Size Distributions

size of the malware compared to the benign reports. Malware reports tend to be bigger than benign

ones. This difference happens in a short time since we execute the apps for only T = 15s. Our

observations show that: (1) Malicious apps tend to have similar behaviors and are generally eager to

access the resources to perform their malicious tasks as soon as they are executed. (2) Malware apps

tend to be self-driving, i.e., in most cases, they do not need a user interface interaction emulator.

Instead, for example, they try to connect to a given IP address with a specific payload.

Accuracy Performance and Dataset Size: Figure 4.4 shows the effect of the dataset size on the

detection and family attribution. It also shows the direct relationship between the number of samples

in the dataset and accuracy. The more significant is the size of the dataset, the more accurate are the

results. However, we could not test for higher scalability since the size of the Drebin dataset limits

us after excluding small families. According to the obtained results with our limited dataset, we

conclude that by having a bigger dataset, DySign framework could achieve more accurate results.

Scalability Analysis: DySign shows high scalability, as summarized in Figure 4.5. First,
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Figure 4.4: Detection Performance over Dataset Size
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Figure 4.5: Framework Scalability Analysis

DySign computation time is very fast and linearly scalable with the number of reports. Our system

could compute tf-idf from 100, 000 analysis reports in about 200s, as shown in Figure 4.5(c). Notice

that we over-sample from our dataset in order to get 100, 000 analysis reports used in the scalability

evaluation. Figure 4.5(b) shows the linear growth of LSH fingerprint matching with the number of

reports. Notice that for a 100, 000-report dataset, we match 10, 000 testing reports against 90, 000

reports in the training dataset.
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<open_key˜key="HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Layers"/> <open_key
key="HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Layers"/> <open_key
key="HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
LanmanWorkstation\NetworkProvider"/>
</registry_section> <process_section> <enum_processes
apifunction="Process32First" quantity="84"/> <open_process targetpid

="308"
desiredaccess="PROCESS_ALL_ACCESS PROCESS_CREATE_PROCESS

PROCESS_CREATE_THREAD
PROCESS_DUP_HANDLE PROCESS_QUERY_INFORMATION PROCESS_SET_INFORMATION
PROCESS_TERMINATE PROCESS_VM_OPERATION PROCESS_VM_READ PROCESS_VM_WRITE
PROCESS_SET_SESSIONID PROCESS_SET_QUOTA SYNCHRONIZE"
apifunction="NtOpenProcess" successful="1"/>

Figure 4.6: Win32 Behavioral Report

4.3 Supervised Malware Detection

In this section, we elaborate a supervised malware detection system on top DySign fingerprint

concept.

4.3.1 Overview

The execution of a binary sample (or app) produces textual logs, whether in a controlled envi-

ronment (software sandbox) or production ones. The execution logs, are composed of a sequence

of statements, as the result of the app execution events. Furthermore, each statement is a sequence

of words that gives a more granular description of an actual app event. From a security analysis per-

spective, app behaviors are summarized in an execution report, which is a sequence of statements,

and each statement is a sequence of words. Malicious apps tend to have distinguishable behaviors

from benign apps, and this difference is translated into words in the behavioral report. Also, similar

malicious apps (same malware family) behaviors tend to correspond to related words.

Nowadays, there are many software sandbox solutions for malware investigations. CWSandbox

(2006-2011) was one of the first sandbox solutions for production use. It is presently known as

ThreatAnalyzer1, owned by ThreatTrack Security. TheatAnalyzer is a sandbox system for Win32

malware, and it produces behavioral reports that cover most of malware behavioral aspects such as a
1https://www.threattrack.com/malware-analysis.aspx
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"accessedfiles": { "1546331488": "/proc/1006/cmdline","2044518634":
"/data/com.macte.JigsawPuzzle.Romantic/shared_prefs/com.apperhand.global

.xml",
"296117026":
"/data/com.macte.JigsawPuzzle.Romantic/shared_prefs/com.apperhand.global

.xml",
"592194838": "/data/data/com.km.installer/shared_prefs/TimeInfo.xml",
"956474991": "/proc/992/cmdline"},"apkName": "fe3a6f2d4c","closenet":
{},"cryptousage": {},"dataleaks": {},"dexclass": { "0.2725639343261719":

{
"path": "/data/app/com.km.installer-1.apk", "type": "dexload"}

Figure 4.7: Android Behavioral Report
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Figure 4.8: MalDy Methodology Overview

file, network, register access records. Figure 4.6 shows a snippet from a behavioral report generated

by ThreatAnalyzer. For android malware, we use DroidBox [47], a well-established sandbox envi-

ronment based on Android software emulator [12] provided by Google Android SDK [33]. Figure

4.7 shows a snippet of a behavioral report generated using DroidBox.

Notation

• X = {Xbuild, Xtest} : X is the global dataset used to build and report MalDy performance

in various tasks. We use the build dataset Xbuild to train and tune the hyper-parameters of

MalDy models. The test set Xtest is used to measure the final performance of MalDy, which

is reported in the evaluation section. X is divided randomly and equally to Xbuild (50%) and

Xtest (50%). To build the sub-datasets, we employ the stratified random split on the main
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dataset.

• Xbuild = {Xtrain, Xvalid} : Build set, Xbuild, is composed of the training set and validation

set and used to build MalDy ensembles.

• mbuild = mtrain + mvalid : Build size is the total number of reports used to build MalDy.

The training set takes 90% of the build dataset, and the rest is used as a validation set.

• Xtrain = {(x0, y0), (x1, y1), . . . , (xmtrain , ymtrain)} : The training set, Xtrain, is the training

dataset of MalDy machine learning models.

• mtrain = |Xtrain| : The size of mtrain is the number of reports in the training set.

• Xvalid = {((x0, y0), (x1, y1), . . . , (xmvalid
, ymvalid

)} : The validation set, Xvalid, is the

dataset sed to tune the trained model. We choose the hyper-parameters that achieve the best

scores on the validation set.

• mvalid = |Xvalid| : The size of mvalid is the number of reports in the validation set.

• (xi, yi) : A single record in X is composed of a single report xi and its label yi ∈ {+1,−1}.

The label meaning depends on the investigation task. In the detection task, a positive values

means malware, and a negative means benign. In the family attribution task, a positive means

the sample is part of the current model malware family, and a negative means is not.

• Xtest = {((x0, y0), (x1, y1), .., (xmtest , ymtest)} : We use Xtest to compute and report back

the final performance results as presented in the evaluation section (Section 4.3.4).

• mtest = |Xtest| : mtest is the size the Xtest and it represents 50% of the global dataset X .

4.3.2 Methodology

In this section, we present the general approach of MalDy, as illustrated in Figure 4.8. The

section describes the approach based on the chronological order of the building steps.
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Behavioral Reports Generation

MalDy Framework starts from a dataset X of behavioral reports with known labels (malware

or benign labels for the detection task, and malware family labels for the attribution task). We

consider two primary sources for such reports based on the collection environment. First, we collect

the reports from a software sandbox environment [189], in which we execute the binary program,

malware, or benign, in a controlled environment (mostly virtual machines). The primary usage

of sandboxing in security investigation is to check and analyze the maliciousness of programs.

Second, we could collect behavioral reports from a production system in the form of system logs

of the running apps. The goal is to investigate the sanity of the apps during their execution. As

presented in Section 4.3.1, MalDy employs a word-based approach to model behavioral reports.

Report Vectorization

In this section, we answer the question: how can we model the words in the behavioral report

to fit in our classification component? Previous solutions [91, 164] select specific features from the

behavioral reports by: (i) extracting relevant security features (ii) manually inspecting and selecting

from these features [91]. This process requires manual intervention of the security analyst. Also,

it is not scalable since he/she needs to redo this process manually for each new type of behavioral

report. In contrast, we are looking for features (words in our case) representation that allows for an

automatic feature engineering without the intervention of a security expert.

Build Models

MalDy framework utilizes a supervised machine learning technique to build its malware inves-

tigation models. In this respect, MalDy is composed of a set of models, and each model has a

specific purpose. First, we have the threat detection model that finds out the maliciousness likeli-

hood of a given app from its behavioral report. Afterward, the remaining machine learning mod-

els aim to investigate individual family threats separately. MalDy uses a model for each possible

threat. In our case, we have a malware detection model along with a set of malware family attri-

bution models. In this phase, we build each model separately using Xbuild. All the models are

102



employing a binary classification to quantify the likelihood of a specific threat. In the process of

building MalDy models, we evaluate different classification algorithms to compare their perfor-

mance. Furthermore, we tune each ML algorithm classification performance under an array of

hyper-parameters (different for each ML algorithm). The tunning is a completely automatic pro-

cess; the investigator only needs to provide Xbuild. We train each investigation model on Xtrain

and tune the models performance on Xvalid by finding the best hyper-parameters as presented in

Algorithm 8. Afterward, we determine the optimum decision thresholds for each model using

its performance on Xvalid. At the end of this stage, we have a list of optimum models’ tuples

Opt = {< c0, th0, params0 >,< c1, th1, params1 >, .., < cc, thc, paramsc >}, where c is the

number of explored classification algorithms. A tuple < ci, thi, paramsi > defines the optimum

hyper-parameters paramsi and decision threshold thi for ML classification algorithm ci.

Algorithm 8: Build Models Algorithm
Input : Xbuild: build set
Output: Opt: optimum models’ tuples
Xtrain, Xvalid = Xbuild

for c in MLAlgorithms do
score = 0 for params in c.params array do

model = train(alg,Xtrain, params) ;
s, th = validate(model, Xvalid) ;
if s > score then

ct = < c, th, params > ;
end

end
Opt.add(ct)

end
return Opt

Ensemble Composition

Previously, we discuss the process of building and tunning individual classification models for

specific investigation tasks (malware detection, family one threat attribution, family two threat attri-

bution, etc.). In this phase, we construct an ensemble model from a set of models generated using the

optimum parameters computed previously (Section 4.3.2), such that the ensemble outperforms any

underlying model. We take each set of optimally trained models {(C1, th1), (C2, th2), .., (Ch, thh)}

for a specific threat investigation task and unify them into an ensemble E. The latter utilizes the
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weighted majority voting mechanism across the individual model’s outcomes for a specific inves-

tigation task. Equation 9 shows the computation of the final outcome for one ensemble E, where

wi is the weight given for a single model. The current implementation employs equal weights for

the ensemble’s models. This phase produces MalDy ensembles, {E1
Detection, E

2
Family1, E

3
Family2

.., ET
familyJ}, a malware detection ensemble and an ensemble for each malware family.

ŷ = E(x) = sign

⎛⎝ |E|∑︂
i

wiCi(x, thi)

⎞⎠
=

⎧⎨⎩ +1 :
∑︁

i (wiCi) ≥ 0

−1 :
∑︁

i (wiCi) < 0

(9)

Ensemble Prediction Process

MalDy prediction process is divided into two phases, as depicted in Algorithm 9. First, given

a behavioral report, we generate the feature vector x using TF-IDF or FH vectorization techniques.

Afterward, the detection ensemble Edetection checks the maliciousness likelihood of the feature

vector x. If the maliciousness detection is positive, we proceed to the family threat attribution. Since

the family threat ensembles, {E2
Family1, E

3
Family2 .., E

T
familyJ}, are independent, we compute the

outcomes of each family ensemble Efamilyi . MalDy flags a malware family threat if and only if

the majority voting is above a given voting threshold vth (computed using Xvalid). In the case

where no family threat is flagged by the family ensembles, MalDy tags the current sample as an

unknown threat. Also, in the case of multiple flagged families, MalDy selects the family with the

highest probability, and provides the security investigator with sorted flagged families according to

the corresponding likelihood probabilities. The separation between the family attribution models

makes MalDy more flexible to update. Adding a new family threat will need only to train, tune, and

calibrate the family model without affecting the rest of the framework ensembles.

4.3.3 Framework

In this section, we present the essential techniques used in MalDy framework, namely, N-grams

[61], feature hashing (FH), and term frequency-inverse document frequency (TFIDF). Furthermore,

we present the explored and tuned machine learning algorithms during the model building phase
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Algorithm 9: Prediction Algorithm
Input : report: Report
Output: D: Decision
Edetection = E1

Detection ;
Efamily = {E2

Family1, .., E
T
familyJ} ;

x = Vectorize(report) ;
detection result = Edetection(x);
if detection result < 0 then

return detection result ;
end
for EFi

in Efamily do
family result = EFi

(x) ;
end
return detection result, family result ;

(Section 4.3.3).

we describe the components of the MalDy related to the automatic security feature engineering

process. We compute word N-grams on behavioral reports by counting the word sequences of size

N. Notice that N-grams are extracted using a moving forward window (of size N) by one step and

incrementing the counter of the found feature (word sequence in the window) by one. The window

size N is a hyper-parameter in the MalDy framework. N-gram computation happens simultaneously

with the vectorization using FH or TFIDF in the form of a pipeline to prevent computation and

memory issues due to the high dimensionality of N-grams. From a security perspective, the N-grams

tool can produce distinguishable features between the different variations of an event log compared

to single word (1-grams) features. The performance of the malware investigation is profoundly

affected by the features generated using N-grams (where N > 0). Based on the BoW model,

MalDy considers the count of unique N-grams as features that will be leveraged through a pipeline

to FH or TFIDF as presented in the previous sections.

Machine Learning Algorithms

Table 4.5 shows the candidate machine learning classification algorithms for MalDy framework.

The candidates represent the most used classification algorithms and come from different learning

categories, such as decision tree-based learning algorithms. Also, all these algorithms have efficient

public implementations. We chose to exclude logistic regression from the list due to the superiority
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of SVM in most cases. KNN may consume a lot of memory resources during production because

it needs all the training dataset to be deployed in the production environment. However, we keep

KNN in the MalDy candidate list because of its unique fast update feature. Updating KNN in a

production environment requires only to update the train dataset, and we do not need to retrain the

model. This option could be beneficial in certain malware analysis cases.

Classifier Category Classifier Algorithm Chosen
CART ✓

Tree Random Forest ✓
Extremely Randomized Trees ✓

General K-Nearest Neighbor (KNN) ✓
Support Vector Machine (SVM) ✓

Logistic Regression ✗
XGBoost ✓

Table 4.5: Explored Machine Learning Classifiers

4.3.4 Evaluation Results

Evaluation Datasets

Table 4.6 presents different datasets used to evaluate MalDy framework. We focus on Android

and Win32 platforms to prove the portability of MalDy. All the used datasets are publicly available

except Win32 Malware dataset, which is provided by a third-party security vendor. Behavioral re-

ports are generated using DroidBox [47] and ThreatAnalayzer2 for Android and Win32 respectively.

Platform Dataset Sandbox Tag #Sample/#Family
MalGenome [203] D Malware 1k/10

Android Drebin [73] D Malware 5k/10
Maldozer [132] D Malware 20k/20
AndroZoo [67] D Benign 15k/-

PlayDrone 3 D Benign 15k/-
Win32 Malware 4 T Malware 20k/15

Table 4.6: Evaluation Datasets(D: DroidBox, T: ThreatAnalyzer)

Next, we evaluate MalDy on different datasets and various settings. Specifically, we assess the

effectiveness of the word-based approach for malware detection and family attribution on Android

malware behavior reports. We evaluate the portability and the MalDy concept on other platforms

(e.g., Win32 malware) behavioral reports. Finally, we measure the efficiency of MalDy under dif-

ferent machine learning classifiers and vectorization techniques. During the evaluation, we answer
2threattrack.com
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Figure 4.9: MalDy Effectiveness Performance

some other questions related to the comparison between the vectorization techniques, and the used

classifiers in terms of effectiveness and efficiency. Also, we show the effect of the training sets size

and the usage of machine learning ensemble technique on the framework performance.

Effectiveness

Figure 4.9 shows the detection and the attribution performance under various settings and

datasets. The settings refer to the used classifiers in ML ensembles and their hyper-parameters,

as shown in Table 4.8. Figure 4.9(a) depicts the overall performance of MalDy. In the detection,

MalDy achieves 90% F1-score (100% maximum and about 80% minimum) on average under the

various settings (classification models, vectorization techniques, hyper-parameters tuning, single

model, and models ensemble). On the other hand, in the family attribution task, MalDy shows over

80% F1-score (family attribution is a harder task than the detection task) in various settings. More

granular results for each dataset are shown in Figures 4.9(b), 4.9(c), and 4.9(d) for Malgenome

[203], Drebin [73], and Maldozer [132] datasets respectively. Notice that Figure 4.9(a) combines
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the performance of baseline (worst performance), tuned, and ensemble models, and summarize the

results in Table 4.7.

Detection (F1 %) Attribution (F1 %)
Base Tuned Ens Base Tuned Ens

General
mean 86.06 90.47 94.21 63.42 67.91 73.82
std 6.67 6.71 6.53 15.94 15.92 14.68
min 69.56 73.63 77.48 30.14 34.76 40.75
25% 83.58 88.14 90.97 50.90 55.58 69.07
50% 85.29 89.62 96.63 68.81 73.31 78.21
75% 91.94 96.50 99.58 73.60 78.07 84.52
max 92.81 97.63 100.0 86.09 90.41 93.78
Genome
mean 88.78 93.23 97.06 71.19 75.67 79.92
std 5.26 5.46 4.80 16.66 16.76 16.81
min 77.46 81.69 85.23 36.10 40.10 44.09
25% 85.21 89.48 97.43 72.36 77.03 81.47
50% 91.82 96.29 99.04 76.66 81.46 86.16
75% 92.13 96.68 99.71 80.72 84.82 88.61
max 92.81 97.63 100.0 86.09 90.41 93.78
Drebin
mean 88.92 93.34 97.18 65.97 70.37 76.47
std 4.93 4.83 4.65 9.23 9.14 9.82
min 78.36 83.35 85.37 47.75 52.40 55.10
25% 84.95 89.34 96.56 61.67 65.88 75.05
50% 91.60 95.86 99.47 69.62 74.30 80.16
75% 92.25 96.53 100.0 72.68 76.91 81.61
max 92.78 97.55 100.0 76.28 80.54 87.71
Maldozer
mean 80.48 84.85 88.38 53.11 57.68 65.06
std 6.22 6.20 5.95 16.03 15.99 13.22
min 69.56 73.63 77.48 30.14 34.76 40.75
25% 75.69 80.13 84.56 39.27 43.43 53.65
50% 84.20 88.68 91.58 56.62 61.03 71.65
75% 84.88 89.01 92.72 67.34 71.89 74.78
max 85.68 89.97 93.39 71.17 76.04 78.30

Table 4.7: Tuning Effect on Performance

Classifier Effect. The results in Figure 4.10, Table 4.7, and Table 4.8 confirm the effectiveness of

MalDy framework and its word-based approach. Figure 4.10 presents the effectiveness performance

of MalDy using the different classifiers for the final ensemble models. Figure 4.10(a) shows the

combined performance of the detection and family attribution. All the ensembles achieved a good

F1-score, and XGBoost ensemble shows the highest scores. Figure 4.10(b) confirms the previous

scores for the detection task. Also, Figure 4.10(c) presents the malware family attribution scores

per ML classifier. More details on classifiers performance is depicted in Table 4.8.
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Figure 4.10: Effectiveness per Machine Learning Classifier

Effect of the Vectorization Technique. Figure 4.11 shows the effect of vectorization techniques

on the detection and the attribution performance. Figure 4.11(a) depict the overall combined perfor-

mance under various settings. As depicted in Figure 4.11(a), Feature hashing and TF-IDF show a

very similar performance. In the detection task, the vectorization techniques’ F1-scores are almost

identical to those presented in Figure 4.11(b). We notice a higher overall attribution score using

TF-IDF compared to FH, as shown in Figure 4.11(c). However, there are some cases where FH out-

performs TF-IDF. For instance, XGBoost achieves a higher attribution score under feature hashing

vectorization, as shown in Table 4.8.

Effect of Tuning Hyperparameters. Figure 4.12 illustrates the effects of tuning and ensemble

phases on the overall performance of MalDy. In the detection task, as in Figure 4.12(a), the ensem-

ble improves the performance by 10% (F1-score) over the base model. The ensemble is composed

of a set of tuned models that already outperform the base model. In the attribution task, the ensemble

improves the F1-score by 9%, as shown in Figure 4.12(b).
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Figure 4.11: Effectiveness per Vectorization Technique
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Figure 4.12: Ensemble Performance and Tunning Effect

Portability

In the following, we assess the portability of the MalDy by applying the framework on a new

type of behavioral reports. Also, we investigate the appropriate training dataset size for MalDy to

achieve a good results. We report only the results of the attribution task on Win32 malware because

currently we do not have a dataset of Win32 benign behavioral reports for the detection task.
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Settings Attribution F1-Score (%) Detection F1-Score (%)
Model Dataset Vector Base Tuned Ensemble Base Tuned Ensemble FPR(%)
cart drebin hashing 64.93 68.94 72.92 91.55 95.70 99.40 00.64

drebin tfidf 68.12 72.48 75.76 92.48 96.97 100.0 00.00
genome hashing 82.59 87.28 89.90 91.79 96.70 98.88 00.68
genome tfidf 86.09 90.41 93.78 92.25 96.50 100.0 00.00

maldozer hashing 33.65 38.56 40.75 82.59 87.18 90.00 06.92
maldozer tfidf 40.14 44.21 48.07 83.92 88.67 91.16 04.91

etrees drebin hashing 72.84 77.27 80.41 91.65 95.77 99.54 00.23
drebin tfidf 71.12 76.12 78.13 92.78 97.55 100.0 00.00

genome hashing 74.41 79.20 81.63 91.91 96.68 99.14 00.16
genome tfidf 73.83 78.65 81.02 92.09 96.61 99.57 00.03

maldozer hashing 65.23 69.34 73.13 84.56 88.70 92.42 06.53
maldozer tfidf 67.14 71.85 74.42 84.84 88.94 92.74 06.41

knn drebin hashing 47.75 52.40 55.10 78.36 83.35 85.37 12.86
drebin tfidf 51.87 56.53 59.20 82.48 86.57 90.40 05.83

genome hashing 36.10 40.10 44.09 77.46 81.69 85.23 07.01
genome tfidf 37.66 42.01 45.31 81.22 85.30 89.13 02.10

maldozer hashing 41.68 46.67 48.69 69.56 73.63 77.48 26.21
maldozer tfidf 48.02 52.73 55.31 70.94 75.36 78.51 03.86

rforest drebin hashing 72.63 76.80 80.46 91.54 95.95 99.12 00.99
drebin tfidf 72.15 76.40 79.91 92.31 96.62 100.0 00.00

genome hashing 78.92 83.73 86.12 91.37 95.79 98.95 00.68
genome tfidf 79.45 83.90 87.00 92.75 97.49 100.0 00.00

maldozer hashing 66.06 70.72 73.41 84.49 88.96 92.01 07.37
maldozer tfidf 67.96 72.04 75.89 85.07 89.41 92.72 06.10

svm drebin hashing 57.35 61.95 82.92 84.50 89.33 96.08 00.86
drebin tfidf 63.11 67.19 87.71 85.11 89.35 96.73 01.15

genome hashing 69.99 74.68 86.08 85.47 89.83 96.54 00.19
genome tfidf 73.16 77.82 86.20 84.46 88.46 97.73 00.39

maldozer hashing 30.14 34.76 65.76 72.32 77.12 81.88 15.82
maldozer tfidf 36.69 41.09 70.18 76.82 81.14 85.46 08.56

xgboost drebin hashing 76.28 80.54 84.01 92.05 96.50 99.61 00.29
drebin tfidf 73.53 77.88 81.18 92.23 96.45 100.0 00.00

genome hashing 81.80 85.84 89.75 91.86 96.09 99.62 00.32
genome tfidf 80.36 84.48 88.24 92.81 97.63 100.0 00.00

maldozer hashing 71.17 76.04 78.30 85.68 89.97 93.39 05.86
maldozer tfidf 69.51 74.15 76.87 85.01 89.16 92.86 06.05

Table 4.8: Android Malware Detection

MalDy on Win32 Malware. Table 4.9 presents MalDy attribution performance in terms of F1-

score. In contrast with previous results, we trains MalDy models on only 2k (10%) out of 20k report’

dataset (Table 4.6). The rest of the reports are used for testing (18k reports, or 80%). Despite that,

MalDy achieves high scores that reach 95%. The results in Table 4.9 illustrate the portability of

MalDy, which increases the utility of the framework across the different platforms and environ-

ments.
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Model Ensemble F1-Score(%)
Hashing TFIDF

CART 82.35 82.74
ETrees 92.62 92.67
KNN 76.48 80.90
RForest 91.90 92.74
SVM 91.97 91.26
XGBoost 94.86 95.43

Table 4.9: System Performance on Win32 Malware

MalDy Train Dataset Size Using the Win32 malware dataset (Table 4.9), we investigate the

training set size hyper-parameter for MalDy to achieve good results. Figure 4.13 illustrates the

outcome of our analysis for both vectorization techniques and the different classifiers. We notice

the high scores of MalDy even with relatively small datasets. This is made very clear in the case

where MalDy uses the SVM ensemble, which corresponds to a 87% F1-score with only 200 training

samples.

Efficiency

Figure 4.14 illustrates the efficiency of MalDy by showing the average runtime require to inves-

tigate a behavioral report. The runtime is composed of the preprocessing time and the prediction

time. As depicted in Figure 4.14, MalDy needs only about 0.03 seconds per given report for all the

ensembles and the preprocessing settings except for the SVM ensemble. The latter requires 0.2 to

0.5 seconds (depending on the preprocessing technique) to decide about a given report. Although

the SVM ensemble needs a small training set to achieve good results, it is costly in production envi-

ronment in terms of runtime. Therefore, the security investigator could customize the MalDy to suit

particular analysis priorities. The efficiency experiments have been conducted on Intel(R) Xeon(R)

CPU E52630 (128G RAM), using only one CPU core.
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Figure 4.13: Win32 Performance and Effect of the Training Size
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Figure 4.14: Overall Framework Efficiency

4.4 Summary

In this chapter, we detailed a pioneering investigation on the use of dynamic features for An-

droid malware fingerprinting. We leverage state-of-the-art machine learning and NLP techniques

to produce generic fingerprints. The evaluation of DySign on both real-life malware and benign

apps demonstrated good detection and attribution performances with high scalability. By using the

DySign concept, we proposed a portable, effective, and yet efficient framework for malware de-

tection and family attribution. The key concept involves the modeling of behavioral reports using

the bag of words model. Furthermore, we leverage advanced NLP and ML techniques to build dis-

criminative machine learning ensembles. MalDy achieves over 94% F1-score in Android malware

detection task on Malgenome, Drebin, and MalDozer datasets and more than 90% in the malware
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family attribution task. We demonstrate MalDy portability by applying the framework on Win32

malware reports where the framework achieves 94% on the attribution task. MalDy performance

depends on the execution environment reporting system, and the quality of the reporting affects its

performance.

In the previous chapter and the current one, we focus on Android malware detection using

machine learning classification and clustering, respectively based on dynamic and static analyses

features. In the next chapter, we propose a system for the mining of cyber-threat networks, which

are composed of malicious IP addresses and domain names, starting from the detected Android

malware. The aforementioned cyber-threat networks support malicious apps and act as a backend

service. Thus, finding malicious cyber-threat networks represents a natural progression following

the detection of Android malware as proposed in previous chapters (Chapters 4 and 3).
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Chapter 5

Fingerprinting Cyber-Infrastructures of

Android Malware

5.1 Overview

In this chapter, we propose ToGather, an automatic investigation framework for Android mal-

ware cyber-infrastructures. In our context, a malware cyber-infrastructure is a set of IP addresses

and domain names orchestrated together to serve as a backend for malicious activities, including

malicious apps. ToGather framework is a set of techniques and tools together with security feeds,

which automatically build a situational awareness about Android malware cyber-infrastructures.

ToGather characterizes the cyber-infrastructure starting from android malware samples to relate

the malware to the corresponding network footprint in terms of IPs and domains. ToGather goes

even a step further by dividing this cyber-infrastructure into sub-infrastructure components based on

the connectivity between nodes. The result is in the segmentation of the global threat network into

multiple network communities representing many granular sub-cyber-infrastructures. To this end,

ToGather leverages cyber-threat intelligence that is derived from various sources such as spam,

Windows malware, darknet, and passive DNS to ascribe cyber-threats to the corresponding cyber-

infrastructure. Accordingly, the input of ToGather framework is made of malware samples togather

with security feeds, while the output represents networks of cyber-infrastructures together with their

115



network footprint, which provides the security practitioner an overview of Android malware cyber-

activities on the Internet.

5.1.1 Threat Model

We position ToGather as a detector of malicious cyber-infrastructures of Android malware. It

is designed to uncover threat networks and sub-networks starting from Android malware samples.

ToGather does not guarantee zero false-positives due to the large number of benign domain names

and IP addresses that might not be filtered out using ToGather whitelists. ToGather is resilient to

obfuscation during the extraction of network information from Android malware because it applies

both static and dynamic analyses. Hence, if the static content is heavily obfuscated, ToGather is

still able to collect IP addresses and domain names from dynamic analysis reports.

5.1.2 Usage Scenarios

ToGather is designed to be practical and efficient in the hands of security practitioners. (1)

Security analysts might use ToGather framework as an investigation tool to minimize the efforts

of generating threat networks for a given Android malware family. The analyst leverages the IP ad-

dresses and domain names ordered by their importance in the generated threat network to prioritize

the takedown and mitigation operations. (2) ToGather acts as a monitoring system. It analyzes a

feed of Android malware (e.g., new samples daily) to generate a snapshot of the threat network and

thus uncover malicious activities (e.g., spamming and phishing). Periodic reporting gives insights

into the evolution and the malicious behaviors of a given malware family over time.

5.2 Methodology

In this section, we present the overall workflow of ToGather framework, as shown in Figure 5.1,

starting from Android malware samples and ending with the produced relevant threat intelligence:

1) The first step in ToGather consists of deriving network information from Android samples in

a given analysis window (e.g., day, week, month) whether the samples are from the same malware

family or not. However, we consider one malware family as a typical use-case of ToGather, as
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Figure 5.1: ToGather Approach Overview

presented in the evaluation section. ToGather conducts dynamic and static analyses where each

analysis produces a report for each Android malware sample. Therefore, we produce dynamic

and static analyses reports for each malware sample. Leveraging both analysis types enhances the

resiliency of ToGather against common obfuscation techniques, which hide relevant information

about malicious activities such as domain names and IP addresses (network information). After-

ward, ToGather extracts network information (IP addresses and domain names) by parsing the

related text blocks (strings) from analysis reports and applies a simple text pattern search. In static

analysis, we mainly concentrate on the Dalvik compiled code (classes.dex) for such extraction. We

collect network information more efficiently from dynamic analysis reports since they are more

structured and have labeled fields.

2) Next, we filter the extracted network identifiers from noise information such as non-routed

IP addresses. Also, we filter domain names and URLs that use Unicode characters. For the current

ToGather implementation, we consider domain names and URLs written only in the standard En-

glish/Latin alphabet. In the case of URL links, we keep only domains. To this end, we have a set

of valid IP addresses and domain names found in Android malware. It is important to notice that

malware hashs tag network information, and these tags are kept during all the workflow steps of

ToGather. To minimize false positives, ToGather applies whitelisting mechanisms. For domain

names, ToGather leverages Alexa [51] and Quantcast [53] (more than one million domain names).

However, the number of white domain names is a hyper-parameter of ToGather that can be used to

control the number of false positives. In the case of IP addresses, we leverage a set of public white

IPs such as Google DNS servers and other ones [20]. It is important to emphasize that ToGather

considers public cloud vendor IPs and domain names as a whitelist. The aim is to observe and then

gain insight into the use of the cloud infrastructure by Android malware. This idea originates from
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the observation that Android malicious apps (and malware in general) make more use of the cloud

as a low-cost infrastructure for their malicious activity.

3) In this step, we propose a mechanism to enhance and enrich the malicious network infor-

mation to cover related domains and IPs. In essence, ToGather aims at answering the following

questions: (i) What are the IP addresses of current malicious domains? Here we investigate the

IP addresses of server machines that host malicious activities that are most likely related to the

analyzed Android malware. (ii) What are the domain names pointing to the current malicious IP

addresses? The intuition is that a malicious server machine with a given IP address could host var-

ious malicious contents, and the adversary could use multiple domains pointing to such contents.

To answer this question, ToGather has a module to enrich network information using passive DNS

replication. The latter is a technology that builds zone replicas without the cooperation from zone

administrators, based on captured name server responses, as presented in Section 5.2.3. We use the

network information, whether IP addresses or domains, as parameters of two functions applied on

a passive DNS database. The goal of the function is to enrich the list of domains and IP addresses

that could be part of the adversary threat network. The enrichment services are: (i) GetIP(Domain):

This function takes a domain as a parameter to query the passive DNS database. The result is all

IP addresses pointing to the domain. (ii) GetDomain(IP): This function gets all the domains that

resolve to the IP address given as a parameter.

We consider passive DNS correlation for two reasons: (i) A small number of Android malware

samples generally yields limited network information. (ii) Security practitioners aim at having a

more in-depth situational awareness about malware Internet activity. As such, they would like to

consider all related IPs and domain names. The result of the correlation is a set of IP addresses

and domain names inferred using passive DNS related to Android malware apps. The correlation

results could, however, overwhelm the investigation process. Passive DNS correlation is therefore

optional if we have a significant number of samples from a given Android family. The correlation

with passive DNS could produce some known benign entries. For this reason, we filter the likely

harmless network information by matching the newly found IP addresses against top Alexa [51] and

Quantcast [53] domain names and known public IP addresses [52].

4) At this stage, we have a set of network information tagged by malware hashes. To extract
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relevant and actionable intelligence, ToGather aggregates all the previous records into a hetero-

geneous network with different types of nodes: malware hashes, IP addresses and domain names.

We consider the heterogeneous network that is extracted from a given Android malware family as

the malicious activity map of that family on the Internet. We call such a heterogeneous network,

a threat network. Furthermore, ToGather produces homogenous networks by executing multiple

projections according to the node type (IP address or domain name). Therefore, ToGather produces

three homogeneous graphs, one only considers IP addresses connections, the other only considers

domain name connections, and a threat network with IPs and domains as network information. The

Graph homogeneity is required to apply graph partitioning on domain threat network, and network

information threat network.

Sub-Threat Networks

Community Detection Computation of Actions Priority Malicious Activity Tagging

Page
Ranking

Threat 
Tagging

Global Threat Network

Tagged Threat Networks

Figure 5.2: Graph Analysis Overview

5) Further, ToGather aims at producing more granular graphs (see Figure 5.2) from the gener-

ated threat networks derived in the previous step. In this respect, ToGather checks the possibility

of community identification in these threat networks based on the connectivity between nodes. The

higher is the connectivity between the nodes in a particular area of the network, the more is the pos-

sibility to have a malicious community. For community detection (Section 5.2.1), we adopt a highly

scalable algorithm [82] to enhance ToGather community detection module. The intuition behind

using the community concept is as follows: (i) Considering ToGather typical usage scenario, where

we enter Android malicious apps from the same family, the community could define different threat

networks that are related to the malicious activities. In other words, either one adversary is using
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these threat networks as backups, or we have multiple adversaries instead. In the case of Android

malware, the second hypothesis is more plausible because of the low cost of repackaging of existing

malware samples to suit the need of the adversary. (ii) In case ToGather receives Android malware

from different families, the communities is interpreted as the threat networks of different Android

malware families to focus on the relation between them. The output of this step is a set of threat

networks related to IPs, domains, as well as network information and their communities (sub-threat

networks).

6) To produce actionable cyber-threat intelligence, we leverage the page ranking algorithm (Sec-

tion 5.2.2) to deliver ranking scores for critical nodes of a given (sub)-threat network. Consequently,

the investigator should have some priority list when it comes to mitigation or takedown of nodes that

are associated with a malicious cyber-infrastructure. As a result, ToGather produces a threat net-

work for each Android malware family together with the ranking of each node. Because ToGather

generates multiple homogeneous graphs based on the node type (IP, domain, network information),

it produces different ranking lists. Therefore, the security practitioner has the opportunity of select-

ing the node type during the mitigation or the takedown to protect his system. Also, it is essential

to mention that it is expensive for the adversary to get new IP addresses. In contrast, domain names

could be frequently changed due to their affordability.

7) We do not focus only on Android malware. Instead, we aim to gain insights into the shared

network IP and domains of the analysed Android malware samples with other platform malware

families. Indeed, an adversary could have many malicious activities in several operating systems to

achieve wider coverage. Therefore, similarly to the first step, we conduct dynamic and static anal-

yses on Windows and Linux malware samples to extract the corresponding network information.

The same step is applied to this network information. Afterward, we correlate the Android network

information with the non-Android malware information to discover another dimension of the ad-

versary network. The result will be all IP addresses and domains of Android malware in addition

to all network records of a given non-Android malware family if they share some network informa-

tion. It is essential to notice that malware families also label information networks of non-Android

malware.

120



8) In this final workflow step of ToGather, we leverage other intelligence sources to label ma-

licious activities that are committed by the discovered threat networks. The current ToGather im-

plementation includes the correlation with spam emails, reconnaissance traces, and phishing URLs.

We consider ToGather as an active service that receives at every epoch time (day, week, month)

Android malware with the corresponding family (the typical use case) and produces valuable intel-

ligence about this malware family.

5.2.1 Threat Communities Detection

A scalable community detection algorithm is essential to extract communities from the threat

network. For this reason, we empower ToGather with the Fast Unfolding Community Detection

algorithm [82], which can scale to billions of network links. The algorithm achieves excellent results

by measuring the modularity of communities. The latter is a scalar value M ∈ [−1, 1] that measures

the density of edges inside a given community compared to the edges between communities. The

algorithm uses an approximation of the modularity since finding the exact value is computationally

hard [82]. The main reason to choose the algorithm proposed in [82] is its scalability. As depicted

in Figure 5.3, we apply the community detection on a million-node graph with a medium density

(P = 0.001 probability of connecting a node A is another node B in the generated network), which

we believe has a similar density to the threat network generated from Android malware samples. For

the sake of completeness, we perform the same experiment on graphs with a different probability

P . As presented in Figure 5.4(c), we can detect communities in 30, 000-node graphs with ultra

high density (unrealistic) in a relatively small (compared to the time dedicated to the investigation)

amount of time (3 hours).
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Figure 5.3: Scalability of the Community Detection
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Figure 5.4: Graph Density Versus Scalability

The previous algorithm requires as input a homogeneous network to work correctly. In our case,

the threat network generated from the network information is heterogeneous because it contains

two main node types: (i) The malware sample identifier, which is the cryptographic hash of the

malware sample; (ii) the network information: the domain names and the IPv4 addresses. Also, we

apply the projection on the first heterogeneous network to generate homogeneous graphs. To do so,

ToGather makes the graph projection by abstracting away from malware identifier while keeping

network information, i.e., if malware connects to two IPs, the projection would produce only the

two IPs involved in the connection. To this end, we get different projection results based on the

node abstraction: (a) General threat network containing both IP addresses and domain names, (b)

IP threat network containing only IP addresses, (c) domains related threat network containing only

domain names.

5.2.2 Action Prioritization

From community detection, ToGather checks if there are possible sub-graphs in the threat

networks based on node connectivity. Even though threat networks zoom into malicious cyber-

infrastructures of a given Android malware family, it is difficult for the security practitioner to tackle
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the whole threat network at once. For this reason, ToGather proposes an action priority system.

The latter takes the IP, domain (or both), and the threat network and produces an action priority list

based on the maliciousness of each node. By leveraging the graph structure of the threat network, we

measure the maliciousness of a given node by its degree, meaning the number of edges that connect

it to other nodes. From a security point of view, the more connections an IP or domain has, the more

it is important for a malicious cyber-infrastructure. Therefore, we build a priority list sorted by the

importance, that an IP, or a domain can inflict in terms of malicious activity. The importance of a

given node in a network graph is known as node’s centrality. This represents a real-valued function

tailored to provide a ranking [83] which identifies the most relevant nodes. For this purpose, some

algorithms have been defined, such as Hypertext Induced Topic Search (HITS) algorithm [140] and

Google’s PageRank algorithm [84]. In our approach, we adopt Google’s PageRank algorithm due to

its efficiency [154]. In the following, we briefly introduce the PageRank algorithm and the random

surfer model.

PageRank Algorithm

Definition 1 (PageRank).

Let I(vi) be the set of vertices that link to a vertex vi and let degout(vi) be the out-degree

centrality of a vertex vi. The PageRank of a vertex vi, denoted by PR(vi), is provided by the

following [84]:

PR(vi) = d

⎡⎣ ∑︂
vj∈I(vi)

PR(vj)

degout(vi)

⎤⎦+ (1− d)
1

|D|
(10)

The constant d is called damping factor, assumed to be set to 0.85 [84]. The previous Equa-

tion breaks down to one equation per node vi with an equal number of unknown PR(vi) values.

The PageRank algorithm tries to find out iteratively different PageRank values, which sum up to 1

(sumn
i=1PR(vi) = 1). The authors of the PageRank algorithm consider the use case of web surfing,

where the user starts from a web page and randomly moves to another one through a web link. If

the web surfer is on page vj with a probability or a damping factor d, then the probability to change

page vi is 1
degout(vj)

. The user could follow the links and teleport [84] to a random web page in V
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with 1 − d probability. The described surfing model is a stochastic process, and W is a stochastic

transition matrix, where node ranking values are computed as presented in the following:

PR⃗ = d
[︂
W.PR⃗

]︂
+ (1− d)

1

|D|
1⃗ (11)

The stochastic matrix W is defined as follows:

wij =
1

degout(vj)
if a vertex vj is linked to vi

wij = 0 otherwise

The notation R⃗ stands for a vector where its ith element is PR(vi) (PageRank of vi). The

notation 1⃗ stands for a vector having all elements equal to 1. The computation of PageRank values

is done iteratively by defining a convergence stopping criterion ϵ. At each computation step t, a

new vector (PR⃗, t) is generated based on previous vector values (PR⃗, t− 1). The algorithm stops

computing values when the condition |(PR⃗, t)− (PR⃗, t− 1)| < ϵ is satisfied.

5.2.3 Security Correlation

Network Enrichment Using Passive DNS

A DNS sensor [187] is used to capture inter-server DNS communication in a passive DNS

database. Afterward, the records of passive DNS stored in the database can be queried. We can

benefit from a passive DNS database in many ways. For instance, we can know the history of a

domain name, as well as the IP addresses that the domain is or was pointing to. We can also find out

what domain names are hosted on a given name server or what domains are/(have been) pointing

to a given IP address. There are a lot of use cases of passive DNS for security purposes (e.g., map-

ping criminal cyber-infrastructure [72], tracking spam campaigns, tracking malware command and

control systems, detection of fast-flux networks, security monitoring of a given cyber-infrastructure

and botnet detection). In our context, we propose the correlation of ToGather intelligence with

a passive DNS database to enrich the investigation of Android malware by (i) Finding suspicious
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domains that are pointing to a malicious IP address extracted from the analysis of a malware sam-

ple; (ii) finding suspicious IP addresses that are resolved from a malicious domain that is obtained

from the analysis of malware sample; (iii) measuring the maliciousness magnitude of an IP. The

maliciousness can be measured by counting the number of domains that resolve to this malicious

IP address. Typically, these domains could be related to different malicious activities or a single

one; (iv) filtering outdated domain names: The passive DNS query generally returns timestamp in-

formation. ToGather could leverage timestamps to filter out old domain names that are no longer

active.

PDNS Correlation

Three Samples

Figure 5.5: Threat Network With/Without Correlation

Threat Network Tagging

From Android malware samples, ToGather produces a threat network that summarizes their

malicious activities. Afterward, ToGather detects and provides threat sub-networks if any. Be-

sides, it helps prioritizing the actions to be taken to mitigate malicious activities using the PageRank

algorithm. In this section, we go a step further towards the automatic investigation by leveraging

other security feeds. Specifically, we aim at correlating threat networks with spam intelligence,

reconnaissance intelligence, etc. The objective is to give a multi-dimensional view of the malicious

activities that are related to the investigated Android malware family. Moreover, ToGather consid-

ers the correlation with network information from other platform malware; in the current setup, we

correlate with PC malware from different operating systems.

PC Malware: ToGather tags every produced threat network by leveraging a database of network

information extracted from PC malware VirusShare [5]. The malware database is continuously

updated. The obtained data is identified by malware hash and its malware family. The latter helps
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identifying PC malware (and their families) that share network information with the Android threat

network.

Spam: ToGather takes advantage of a spam database (30 Million records) to report the relation-

ship between spamming campaigns and a given threat network. This information is precious for

security analysts who are tracking spam campaigns.

Phishing: Similarly to spamming, we consider phishing activities in ToGather tagging. Phishing

activities aim at stealing sensitive information using fake web pages that are similar to known trusted

ones. Typically, the attacker spreads phishing sites using malicious URLs. We extract only the

domain name and store it in a phishing database (5 Million records).

Probing: ToGather considers tags of the threat network nodes if they are part of a probing activ-

ity. This presupposes the availability of a probing database (300 Million records) that contains IP

addresses that have been part of scanning activities within the same epoch. Probing is derived from

darknet traffic, and the probing IP addresses could be persisted in a probing database.

5.3 Experimental Results

In this section, we present the evaluation results of our proposed system. The goal of the evalu-

ation is to assess the effectiveness of ToGather framework in terms of its ability to provide cyber-

threat situational awareness from a set of Android malware samples.

5.3.1 Android Malware Dataset

In the evaluation, we use a real Android malware dataset from Drebin [73], a known dataset that

contains samples labeled with their families. Drebin dataset [18] contains 5560 labeled malware

samples from 179 families [18], as shown in Table 5.1. It is important to stress that Drebin contains

all the samples of the MalGenome dataset [17]. As a ground truth for the malware labeling, we take

the labels provided by Drebin since there are some differences between Genome and Drebin dataset
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labeling. For example, MalGenome recognizes different versions of DroidKungFu malware (1, 2,

and 4), where Drebin has only DroidKungFu.

Malawre Family Number of Samples
0 FakeInstaller 925
1 DroidKungFu 667
2 Plankton 625
3 Opfake 613
4 GinMaster 339
5 BaseBridge 330
6 Iconosys 152
7 Kmin 147

Table 5.1: Dataset Description by Malware Family

5.3.2 Implementation

We have implemented ToGather using Python programming language. In the static analysis,

in order to perform reverse engineering of the Dex byte-code, we use dexdump, a tool provided

with Android SDK. We extract the network information from the Dex dis-assembly using regular

expressions. Beside, ToGather extracts network information from static text content in the APK

file of Android malware.

In dynamic analysis, a cornerstone of ToGather is the sandboxing system, which heavily in-

fluences the produced analysis reports. We use DroidBox [47], a well-established sandboxing en-

vironment based on the Android software emulator [12] provided by Google Android SDK [33] as

presented in the previous chapter.

5.3.3 Drebin Threat Network

In this section, we present the results of applying ToGather framework on the samples of Drebin

dataset with all the 179 families. Figure 5.6 depicts the threat network information (domain names

and IP addresses) of Drebin dataset, where a different color represents each family. Although the

threat networks are not very clear visually, we could distinguish some connected communities with

the same nodes’ colors, i.e., the same malware family. This initial observation enhances the need

for a community detection module in ToGather. The community here is a set of graph nodes

that are highly connected even though they share some links with external nodes. In Figure 5.7,

we consider only domain names; here, we can distinguish more sub-threat networks having nodes
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from the same malware family. We choose to filter all IP addresses for Drebin dataset due to

observations during the experimentation process: (i) Some malware samples contain a significant

number of IP addresses; exceeding, in some cases, 100 IPs such as Plankton sample with MD5 hash

3f69836f64f956a5c00aa97bf1e04bf2. The adversary could deceive the investigator by overwhelming

the app with unused IP addresses along with used ones. (ii) A big portion of the IP addresses are

part of cloud infrastructure; we filter most of the public ones, but there are plenty of less known

infrastructures in remote countries. (iii) In most cases, the adversary utilizes domains for malicious

activity due to the low cost and flexibility compared to IP addresses. In this experimentation, we

consider only domain names, but the security analyst could include IP addresses when needed.

Figure 5.6: Network Information of Drebin
Dataset

Figure 5.7: Domain Names Drebin Dataset

Using all Drebin dataset (179 malware families) to produce the threat network is an extreme use

case for ToGather framework; using only few malware families represents a typical use case when

we aim to investigate the threat network relations. However, even with the whole Drebin dataset,

ToGather, as presented in Figure 5.7, shows promising results, where we notice sub-threat networks

with/without links to other nodes. By considering only domain names in Figure 5.7, it is noticeable

that the size of the threat network significantly decreases by removing IP addresses; typically, there

are substantially more domains than IP addresses in the Android apps. However, this is due to the

extensive whitelisting of domains compared to IPs (more than 1 million domain) and the size of
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the Drebin dataset. At this stage, we do not present the community detection and page ranking on

the threat network; this will be conducted on a one-family use case in Section 5.3.4. ToGather

leverages different malicious datasets, as previously described in Section 5.2.3, to tag the nodes of

the produced threat network. Figure 5.2 depicts the diverse malicious activities of the nodes from

Drebin threat network. First, the table shows the top PC malware families, which share network

information with the Drebin threat network. For family names, we adopt the Kaspersky malware

family naming as our ground truth. Besides, Figure 5.2 shows the percentage of each malicious type

in the Drebin threat network. The result indicates that 56% of the shared nodes have a spamming

activity, 40% are related to PC malware, 3% scanning, and 1% phishing activities. Notice that the

previous percentages are only from the shared nodes and not from all the threat networks.

PC	
Families
40%

Scan
3%

Spam
56%

Phishing
1%

PC	Families Scan Spam Phishing

# Family Hits
1 Agent a 1268
2 VBNA 283
3 Adload 152
4 EgroupDial 121
5 TrustAsia 120
6 Vobfus 88
7 KuPlays 74
8 Pipibo 72
9 Sality 62

aKaspersky Naming

Table 5.2: Drebin Dataset Tagging Results

5.3.4 Family Threat Networks

In this section, we present the results of ToGather in its typical usage scenario where malware

samples from the same family are analyzed. Figure 5.8 shows the steps of generating threat networks

from the DroidKungFu family sample. First, ToGather produces the threat network, including

network information collected from the DroidKungFu analysis and Passive DNS correlation, as

shown in Figure 5.8(a). Afterward, ToGather filters the whitelist network information. The results,

shown in Figure 5.8(b), depict bright separated sub-threat networks without applying the community

detection algorithm. This could be an insightful result for the security practitioner, especially that

this sub-threat network contains network information exclusively from some samples. ToGather
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goes a step ahead by applying both community detection (resolution hyperparameter r = 3) and

page ranking algorithms (damping factor d = 0.85 and stopping criterion ϵ = 0.001) as hyperpa-

rameters to divide the network and rank the importance of the nodes respectively. The result consists

of multiple sub-threat networks, with high interconnection and low intra-connection, representing

the cyber-infrastructures of DroidKungFu malware family.

(a) Unfiltered (b) Filtered

(c) Divide (d) Ranking

Figure 5.8: DroidKungFu Malware Threat Network

Figure 5.9 shows the results provided by ToGather when using Android malware samples from

BaseBridge family. Similarly, after the filtering operation, we could easily distinguish small

sub-threat networks. In some cases, the community detection task could be optional due to the clear

separation between the sub-threat networks. For instance, Figure 5.10 depicts the threat networks
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for GinMaster, Adrd, and Plankton Android malware families before and after the commu-

nity detection task. Here, Adrd family has multiple sub-threat networks without the need for the

community detection function since it does not affect much the results. In the case of Plankton,

it is necessary to detect and extract the sub-threat network.

(a) Unfiltered (b) Filter&Divide (c) Ranking

Figure 5.9: Basebrigde Malware Threat Network

Tables 5.3 and 5.4 show the top PC malware families and samples that share the network infor-

mation with BaseBredge and DroidKungFu threat networks. An essential factor in the correlation

is the explainability, where we could determine which network information is shared between the

Android malware and PC malware. This could help the security investigator to track the other

dimension of the adversary cyber-infrastructure.

# Sample Hits
1 ed7621ec4d a 2
2 e3bc76d14c 2
3 503902c503 1
4 bd9b87869b 1
5 8e0cf0a1ba6 1
6 f8a5cac12dc 1
7 14db95e5f6 1
8 9b5b576ef3 1
9 2ec2abc28d 1

aMD5 Hash First 10 Chars

# Family Hits
1 Agent a 23
2 Vobfus 21
3 EgroupDial 13
4 Badur 9
5 LMN 7
6 WBNA 4
7 Pipibo 2
8 Blocker 2
9 Virut 2

aKaspersky Naming

Table 5.3: Top PC Malware Related to BaseBridge Family

In addition to the PC malware tagging, we correlate with other cyber malicious activity datasets

over the Internet. Figure 5.11 presents the malicious activities of DroidKungFu and BaseBridge

families that are related to their threat network. Here, we find that both families could be part of a
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(a) Ginmaster (1) (b) Adrd (1) (c) Plankton (1)

(d) Ginmaster (2) (e) Adrd (2) (f) Plankton (2)

Figure 5.10: Android Families From Drebin Dataset

spam campaign while having some scanning activity. Notice that these results represent a fraction

of the actual activity because of limited datasets.

# Sample Hits
1 74529155cc a 3
2 bd5a9f768cf 2
3 259a244ab1 2
4 52da75225 1
5 11786afada 1
6 ad5e6d577b 1
7 9f4215bfc3 1
8 3c76ff67d0 1
9 117f21550 1

aMD5 Hash First 10 Chars

# Family Hits
1 Agent a 33
2 Adload 24
3 TrustAsia 13
4 KuPlays 11
5 Pipibo 8
6 FangPlay 5
7 StartPage 4
8 Injector 4
9 Turbobit 4

aKaspersky Naming

Table 5.4: Top PC Malware Related to DroidKungFu Family
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Figure 5.11: Maliciousness Tagging Per Family

5.4 Summary

In this chapter, we presented ToGather framework, a set of techniques, tools, and mecha-

nisms as well as security feeds bundled together in order to achieve situational awareness about

Android malware threats automatically. ToGather leverages state-of-art graph partitioning algo-

rithms and multiple security feeds to produce insightful, granular, as well as actionable intelligence

about malicious cyber-infrastructures related to Android malware samples. We evaluated ToGather

on real malware from the Drebin Dataset [73]. The results show promising insights about cyber-

infrastructures of Android malware families. The produced threat networks could show one side

of the adversary infrastructure, which is the Android malware one; this side could lead to a larger

threat network. Furthermore, all the results can be extracted automatically and periodically from

a feed of Android malware samples belonging to one or various families. This requires fixing the

hyperparameters related to the used algorithms of the community detection, and page ranking, as

we did in our experimentation.

In this chapter as well as in Chapters 3 and 4, we propose Android malware fingerprinting

systems that target the workstation category in the taxonomy proposed in Chapter 2. In the next

chapter, we propose a portable Android malware detection system that targets all the deployment

categories (mentioned in Chapter 2). More specifically, this involves a detection system that is
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versatile enough to be efficiently deployed on high-end servers as well as on IoT devices such as

Raspberry PI boards.
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Chapter 6

Portable Supervised Malware

Fingerprinting using Deep Learning

6.1 Overview

In this chapter, we propose MalDozer, an innovative and efficient framework for Android mal-

ware detection, leveraging sequence mining via neural networks. MalDozer focuses on portable

malware detection based on applying supervised machine learning on static analysis features in

contrast to Cypider, presented in Chapter 3, in which we propose an unsupervised system based on

static analysis features. While Cypider provides a framework for malware clustering, aimed at mar-

ket level app analysis. MalDozer provides an efficient malware detection to allow the deployement

inside resource-constrained devices. MalDozer framework is based on an artificial neural network

that takes, as input, the raw sequences of API method calls, as they appear in the DEX file, to en-

able malware detection and family attribution. MalDozer can automatically recognize malicious

patterns using only the sequences of raw method calls in the assembly code.

6.1.1 Threat Model

We position MalDozer as an anti-malware system that detects Android malware and attributes

it to a known family with high accuracy and minimal false positive and false negative rates. We

assume that the analyzed Android apps, whether malicious or benign, are developed mainly in Java
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or any other language that is translated to DEX bytecode. Therefore, Android apps developed by

other means, e.g., web-based, are out of the scope of the current design of MalDozer. Also, we

assume that apps’ core functionalities are in DEX bytecode and not in C/C++ native code [19],

i.e., the attacker is mainly using the DEX bytecode for the malicious payload. Furthermore, we

assume that MalDozer detection results are not affected by malicious activities. In the case of a

server, Android malicious apps are assumed to not modify the server system. However, in the case

of deployment on infected mobiles or IoT devices, MalDozer should be protected from malicious

activities to avoid tampering its results.

6.1.2 Usage Scenarios

The effectiveness of MalDozer, i.e., its high accuracy, makes it a suitable choice for malware de-

tection in market level deployment (Taxonomy in Chapter 2), especially that its update only requires

very minimal manual intervention. We only need to train MalDozer model on new samples without

a feature engineering, since MalDozer can automatically extract and learn relevent malicious and

benign features during the training. Notice that MalDozer could detect unknown malware based

on our evaluation as presented in Section 6.3. Furthermore, due to the efficiency of MalDozer, it

could be deployed on mobile devices such as phones and tablets. As for mobile devices, MalDozer

acts as the detection component in the anti-malware app inside Android phones, where the goal is

to check the maliciousness likelihood of new apps. Family attribution is very handy when detecting

new malware apps. Indeed, MalDozer helps the anti-malware system to take the necessary precau-

tions and actions based on the malware family, which could involve specific malicious threats such

as ransomware.

6.2 Methodology

In this section, we present MalDozer framework and its components (Figure 6.1). MalDozer

has a simple design, where a minimalistic preprocessing is employed to obtain the assembly code

methods. As for the feature extraction (representation learning) and detection/attribution, they are
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based on the actual neural network. This permits MalDozer to be very efficient with fast prepro-

cessing and neural network execution. Since MalDozer is based on supervised machine learning,

we first need to train our model. Afterward, we deploy the trained model along with a preprocessing

procedure on the targeted devices. Notice that the preprocessing procedure is common between the

training and the deployment phases to ensure the correctness of the detection results (Figure 6.1).

Malware

APK Preprocessing

Method Embedding Training

Benign

cv

DEX

Class #01            -
  Class descriptor  : 'Lcom/adwo/adsdk/D;'
  Access flags      : 0x0010 (FINAL)
  Superclass        : 'Landroid/content/BroadcastReceiver;'
  Interfaces        -
  Static fields     -
  Instance fields   -
    #0              : (in Lcom/adwo/adsdk/D;)
      name          : 'a'
      type          : 'Lcom/adwo/adsdk/AdwoAdView;'
      access        : 0x1002 (PRIVATE SYNTHETIC
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  Class descriptor  : 'Lcom/adwo/adsdk/D;'
  Access flags      : 0x0010 (FINAL)
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  Access flags      : 0x0010 (FINAL)
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  Interfaces        -
  Static fields     -
  Instance fields   -
    #0              : (in Lcom/adwo/adsdk/D;)
      name          : 'a'
      type          : 'Lcom/adwo/adsdk/AdwoAdView;'
      access        : 0x1002 (PRIVATE SYNTHETIC

Class #01            -
  Class descriptor  : 'Lcom/adwo/adsdk/D;'
  Access flags      : 0x0010 (FINAL)
  Superclass        : 'Landroid/content/BroadcastReceiver;'
  Interfaces        -
  Static fields     -
  Instance fields   -
    #0              : (in Lcom/adwo/adsdk/D;)
      name          : 'a'
      type          : 'Lcom/adwo/adsdk/AdwoAdView;'
      access        : 0x1002 (PRIVATE SYNTHETIC

Assembly 
Blocks

java/lang/Runtime;->exec
android/net/ConnectivityManager;->getActiveNetworkInfo
android/hardware/Camera;->open
android/net/wifi/WifiManager;->getConnectionInfo
android/os/Vibrator;->vibrate

java/lang/Runtime;->exec
android/net/ConnectivityManager;->getActiveNetworkInfo
android/hardware/Camera;->open
android/net/wifi/WifiManager;->getConnectionInfo
android/os/Vibrator;->vibrate
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android/net/ConnectivityManager;->getActiveNetworkInfo
android/hardware/Camera;->open
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android/os/Vibrator;->vibrate
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Figure 6.1: Approach Overview

1- Extraction of API Method Calls. MalDozer workflow extracts the sequences of API calls

from Android app packages, in which we consider only DEX file. We disassemble the classes.dex

to produce Dalvik VM assembly. Our goal is to model the Dalvik assembly to keep the maxi-

mum raw information with minimum noise. Notice here that we could use Android APIs (such as

android/net/ConnectivityManager in Figure 6.2) instead of permission to have a gran-

ular view that helps distinguishing malware apps.

android/net/ConnectivityManager
android/net/ConnectivityManager
android/telephony/SmsManager
android/telephony/SmsManager
android/location/LocationManager
android/location/LocationManager

Figure 6.2: Android API from a Malware Sample

However, quantifying Android API could be challenging because there are plenty of common

API calls shared between apps. Some solutions tend to filter only sensitive APIs and use them for de-

tection. In this case, we require a manual categorization of sensitive APIs. Moreover, Android API
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gives an abstract view of the actual malicious activity that could hinder malware detection. For this

reason, we leverage Android API method calls as android/net/ConnectivityManager;->

getNetworkInfo in Figure 6.3. By doing so, the proposed malware detector will have a more

granular view of the app activity. In our case, we address this problem from another angle; we treat

Android apps as a sequence of API method calls. We consider all the API calls with no filtering,

where thier calling order is part of the information we use to identify malware. It represents the tem-

poral relationship between two API method calls (in a given basic block) and defines the intended

sub-tasks of the app. The sequence of API method calls preserves the temporal relationship over

the individual basic blocks of the linear disassembly and ignores the order of the basic blocks. The

obtained result is a merged sequence (Figure 6.1).

android/net/ConnectivityManager;->getNetworkInfo
android/net/ConnectivityManager;->getAllNetworkInfo
android/telephony/SmsManager;->sendTextMessage
android/telephony/SmsManager;->sendMultipartTextMessage
android/location/LocationManager;->getLastKnownLocation
android/location/LocationManager;->getBestProvider

Figure 6.3: Granular View Using API Method Calls

In other words, a DEX file, denoted by cd, is composed of a set of n compiled Java classes,

cd = {cl1, · · · , cln}. Each Java class cli is, in turn, composed of a set of m methods, which are

basic blocks, cli = {mti1, · · · ,mtim}. By going down to the API method level, mtij is a sequence

of k API method calls. Formally mtij = (P i,j
1 , · · · , P i,j

k ) , where P i,j
l is the lth API method call in

method mtij .

2- Dictionary Mapping of API Method Calls. In this step, we map the sequences of API method

calls that are in an Android app to the corresponding identifiers. More precisely, we replace each

API method with an identifier, resulting in a sequence of numbers. We also build a dictionary

that maps each API call to its identifier. Notice that in the current implementation, the mapping

dictionary is deployed with the learning model to map the API calls of the analyzed apps. In the

deployment, we might find unknown API calls related to third party libraries. To overcome this

problem: (i) We consider a large training dataset that covers most of the API calls. (ii) In the

deployment phase, we replace unknown API calls with fixed identifiers. Afterward, we unify the
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length of the sequences L (hyper-parameter) and pad a given sequence with zeros if its length l < L.

3- Unification of the Sequences’ Size. The length of the sequences varies from one app to another.

Hence, it is important to unify the length of the sequences. Two cases are depending on the length

of the sequence and the hyper-parameter. We choose a uniform sequence size as follows: i) If

the length of a given sequence is greater than the uniform sequence size L, we take only the first L

items to represent the apps. ii) In case the length of the sequence is less than L, we pad the sequence

with zeros. It is important to mention that the uniform sequence size hyper-parameter influences

the accuracy of MalDozer. A simple rule is that the larger is the size, the better it is, but this will

require a lot of computation power and a long time to train the neural network.

4- Generation of the Semantic Vectors. The identifier in the sequences needs to be shaped to

fit as input to our neural network. The issue could be solved by representing each identifier by

a vector. The question that arises is how are such vectors produced? A straightforward solution

is to use one-hot vectors, where a vector has one in the interface value row, and zero in the rest.

Such a vector is very sparse because its size is equal to the number of API calls, which makes it

impractical and computationally prohibitive for the training and the deployment. To address this

issue, we resort to dense vectors. These vectors are semantically related, and we could express their

relation by computing a distance. The smaller the distance is, the more related the vectors are (i.e.,

API calls). We describe word embedding in Section 6.2.1. The output of this step is sequences of

vectors for each app that keeps the order of the original API calls; each vector has a fixed size K

(hyper-parameter).

5- Prediction using a Neural Network. The final component in MalDozer framework is the

neural network, which is composed of several layers. The number of layers and the complexity

of the model are hyper-parameters. However, we aim to keep the neural network model as simple

as possible to reduce the execution time during its deployment, especially on IoT devices. In our

design, we rely on the convolutional layers [138] to automatically discover the pattern in the raw

method calls. The input to the neural network is a sequence of vectors, i.e., a matrix of L × K

shape. In the training phase, we train the neural network parameters (layers weight) based on the
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app vector sequence and its labels: (i) malware or benign for the detection task, and (ii) malware

families for the attribution task. In the deployment phase, we extract the sequence of methods and

use the embedding model to produce the vector sequence. Finally, the neural network takes the

vector sequence to decide about the given Android app.

6.2.1 MalDozer Method Embedding

The neural network takes vectors as input. Therefore, we represent our Android API method

calls as vectors. As a result, we formalize an Android app as a sequence of vectors with a fixed

size (L). We could use one-hot vectors. However, their size is the number of unique API method

calls in our dataset. This makes such a solution not scalable to a large-scale training. Also, the

word embedding technique outperforms the results of the one-hot vector technique in our case

[138, 153, 159]. Therefore, we seek a compact vector, which also has semantic value. To fulfill

these requirements, we choose the word embedding techniques, namely, word2vec [153] and GloVe

[159]. Our primary goal is to have for each Android API method a dense vector; the vector’ values

are learned from the method contexts in a large dataset of Android apps. Thus, in contrast to one-

hot vectors, each word embedding vector contains a numerical summary of the Android API call

semantic representation.

Moreover, the learned API call vectors have semantic relationships to each other in terms of

functionality, i.e., developers tend to use specific API method calls in the same context. In our case,

we learn these vectors from our dataset that contains benign and malicious apps by using word2vec

[153]. The latter is a computationally efficient predictive model based on learning word embedding

vectors, which are applied in our case to raw Android API method calls. The output obtained from

training the embedding word model is a matrix K×A, where K is the size of the embedding vector,

and A is the number of unique Android API method calls. Both K and A are hyper-parameters;

we use K = 64 in all our models. We choose K = 64 because: (i) it is a common practice in

NLP literature to use K ∈ {32, 64, 128, ...} values for word embedding vectors sizes. (ii) The

value 64 is a good tradeoff between the efficiency, which is required in mobile deployment, and the

effectiveness compared to the use of 32 and 128 embedding vector sizes. In the deployment phase

(Figure 6.1), MalDozer uses the word embedding model and looks up for each API method call
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identifier to find the corresponding embedding vector.
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Figure 6.4: Neural Network Architecture

6.2.2 MalDozer Neural Network

MalDozer neural network is inspired by [138], where the authors use a neural network for

sentence classification tasks such as sentiment analysis. The proposed architecture shows high

results and outperforms many of state-of-the-art benchmarks with a relatively simple neural network

design. We raise the questions: Why could such a Natural Language Processing (NLP) model be

useful in Android malware detection? and why do we choose to build it on top of this design [138]?

We formulate our answers as follows: i) NLP is a challenging field where we deal with text. So,

there is an enormous number of vocabularies; also, we could express the same meaning in different

ways. Besides, the same semantics could be expressed with different combinations of words, which

is the equivalent of code obfuscation in natural language processing.

In our context, we deal with sequences of Android API method calls and want to find the combi-

nation of method calls patterns, which produces the same (malicious) activity. We use API method

calls as they appear in the bytecode. Indeed, there is a temporal relationship between API meth-

ods in basic blocks. Nevertheless, the extraction process neglects the order among blocks and only

considers the order inside the code blocks. By analogy to NLP, blocks are sentences, and the API

method calls are words. Further, an app (paragraph) is a list of basic blocks (unordered sentences).

Malware detection using API method calls looks easier compared to the NLP one because of the

huge difference in the vocabulary, i.e., the number of Android API method calls is significantly less

than the number of words in natural language. Also, combinations in natural language are much
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more complex compared to Android API calls. ii) We choose to use this model due to its efficiency

and ability to run on resource-constrained devices. Table 6.1 depicts the neural network architec-

ture of MalDozer’s detection and attribution tasks. Since both networks are very similar, the only

notable difference is in the output layer.

In the detection task, we need only one neuron in the output layer because the network decides

whether the app is malware or not. As for the attribution task, there are multiple neurons, one for

each Android malware family. Having the same architecture for the detection and attribution makes

the development and the evaluation of a given design simpler. Because the network architecture

achieves good results in one task, it will have very similar results in the other one. As presented in

Figure 6.4, the first layer is a convolution layer [138] with Rectified Linear Unit (ReLU) activation

function (f(x) = max(0, x)). Afterward, we use the global max pool [138] and connect it to a

fully-connected layer. Notice that in addition to Dropout [176] used to prevent over-fitting, we also

utilize Batch Normalization [120] to improve our results. Finally, we have an output layer, where

the number of neurons depends on the detection or attribution tasks.

# Layers Options Activ
1 Convolution Filter=512, FilterSize=3 ReLU
2 MaxPooling / /
3 FC #Neurons=256, Dropout=0.5 ReLU
4 FC #Neurons={1,#Families1} Softmax

1 The number of malware families in the training dataset.

Table 6.1: MalDozer Malware Neural Network

Server (1/2) Laptop RPI2
GPU TITAN X / no no no
CPU Intel E5-2630 Intel T6400 ARM Core A7
RAM 128GB 3GB 1GB

Table 6.2: Hardware Specifications

6.2.3 Implementation

In this section, we present the software and hardware components of MalDozer implementation.

Software. We implement MalDozer using Python and Bash scripting languages. First, Python

zip library extracts the DEX file from the APK file. We use dexdump command-line to produce
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the assembly from DEX file. Dexdump is available through the Android SDK, but in the case of

Raspberry PI, we build it from its source code. Regular expressions are employed to extract API

method calls from the assembly. To develop the neural network, we use Tensorflow library [26].

Notice that there is no optimization in the preprocessing; in the runtime evaluation, we use only a

single thread app.

Hardware. To evaluate the efficiency of MalDozer, we evaluate multiple types of hardware, as

shown in Table 6.2, starting from servers to Raspberry PI [25]. For training, the Graphics Processing

Unit (GPU) is a vital component because the neural network training needs immense computational

power. The training takes hours under NVIDIA TitanX. However, the deployment could be virtually

on any device, including IoT devices (such as Raspberry Pi). To this end, we consider Raspberry PI

as an IoT device because it is one of the hardware platforms supported by Android Things [58]. We

also use low-end laptops in our evaluation, as shown in Table 6.2.

6.3 Evaluation

In this section, we conduct our evaluation using different datasets that primarily cover the fol-

lowing performance aspects: (I) Detection Performance: We evaluate how effectively MalDozer

can distinguish between malicious and benign apps in terms of F1-measure, precision, recall, and

false-positive rate. (II) Attribution Performance: We evaluate how effectively MalDozer can cor-

rectly attribute a given malicious app to its malware family. (III) Runtime Performance: We measure

the preprocessing and the detection runtime on different types of hardware.

6.3.1 Datasets

In our evaluation, we have two main tasks: i) Detection, which aims at checking if a given app is

malware or not, ii) Attribution, which aims at determining the family of the detected malware. We

conduct the evaluation experiments under two types of datasets: i) Mixed dataset, which contains

malicious apps and benign apps, as presented in Table 6.3. ii) Malware dataset, which contains only

malware, as shown in Table 6.4. As for the malware dataset, we leverage reference datasets such as
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Malgenome [17] and Drebin [73]. We also collect two other datasets from different sources, e.g.,

virusshare.com, Contagio Minidump [21]. The total number of malware samples is 33K, including

Malgenome and Drebin datasets. As for the attribution task, we use only malware from the previous

datasets, where each family has at least 40 samples, as presented in Tables 6.12, 6.13, and 6.14.

To this end, we propose MalDozer dataset, as in Table 6.12, which contains 20K malware samples

from 32 malware families. We envision to make MalDozer dataset available upon request for the

research community. The benign app samples have been collected from Playdrone dataset [24]. We

leverage the top 38K apps that are ranked by the number of downloads.

Dataset #Malware #Benign Total
Malgenome 1,258 37,627 38.885
Drebin 5,555 37,627 43,182
MalDozer 20,089 37,627 57,716
All 33,066 37,627 70,693

Table 6.3: Datasets for Detection Task

Dataset #Malware #Family
Malgenome 985 9
Drebin 4,661 20
MalDozer 20,089 32

Table 6.4: Datasets for Attribution Task

6.3.2 Malware Detection Performance

We evaluate MalDozer on different cross-validation settings, two, three, five and ten-fold, to ex-

amine the detection performance under different training/test set percentages (50%, 66%, 80%, 90%)

from the actual dataset (10 training epochs). Table 6.5 depicts the detection results on Malgenome

dataset. MalDozer achieves excellent results, F1-Score=99.84%, with a small False Positive Rate

(FPR), 0.04%, despite the unbalanced dataset, where benign app samples are the most dominant in

the dataset. The detection results are similar under all cross-validation settings. Table 6.6 presents

the detection results on Drebin dataset, which are very similar to the Malgenome ones. MalDozer

reaches F1-Score=99.21%, with FPR=0.45%. Similar detection results are shown in Table 6.7 on

MalDozer dataset ( F1-Score=98.18% and FPR=1.15%). Table 6.8 shows the results related to all

datasets, where MalDozer achieves a good result (F1-Score=96.33%). However, it has a higher

false positive rate compared to the previous results (FPR=3.19%). This leads us to manually inves-

tigate the false positives. We discover, by correlating with virusTotal.com, that several false positive

apps are already detected by many vendors as malware.
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F1% P% R% FPR%
2-Fold 99.6600 99.6620 99.6656 0.06
3-Fold 98.1926 98.6673 97.9812 1.97
5-Fold 99.8044 99.8042 99.8045 0.09
10-Fold 99.8482 99.8474 99.8482 0.04

Table 6.5: Detection on Malgenome Dataset

F1% P% R% FPR%
2-Fold 98.8834 98.9015 98.9000 0.13
3-Fold 99.0142 99.0130 99.01579 0.51
5-Fold 99.1174 99.1173 99.1223 0.31

10-Fold 99.2173 99.2173 99.2172 0.45

Table 6.6: Detection on Drebin Dataset

F1% P% R% FPR%
2-Fold 96.8576 96.9079 96.8778 1.01
3-Fold 97.6229 97.6260 97.6211 2.00
5-Fold 97.7804 97.7964 97.7753 2.25
10-Fold 98.1875 98.1876 98.1894 1.15

Table 6.7: Detection on MalDozer Dataset

F1% P% R% FPR%
2-Fold 96.0708 96.0962 96.0745 2.53
3-Fold 95.0252 95.0252 95.0278 4.01
5-Fold 96.3326 96.3434 96.3348 2.67
10-Fold 96.2958 96.2969 96.2966 3.19

Table 6.8: Detection on All Dataset
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Figure 6.5: Evaluation of Unknown Malware Detection

Unknown Malware Detection

Although MalDozer demonstrates very good detection results, some questions still arise: (i)

Can MalDozer detect samples of unknown malware families? and (ii) How many samples are

needed for a given family to achieve a good accuracy? To answer these questions, we conduct

the following experiment on Drebin mixed dataset (Malware + Benign), where we focus on top

malware families, i.e., BaseBridge, DroidKungFu, FakeInstaller, GinMaster, Opfake, and Plankton.

For each family, we train (5 epochs) our model on a subset dataset, which does not include samples

of that family. These samples are used as a test set. Afterward, we train with few samples from

the family and evaluate the model on the rest of the sample in that family. Progressively, we add

more samples to the training and assess the accuracy of our model on detecting the rest of the
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family samples. Answering the above questions: (i) Can MalDozer detect unknown malware family

samples? Yes, Figure 6.5 shows the accuracy versus the number of samples in the training dataset.

We see that MalDozer (zero samples versus accuracy) could detect the unknown malware family

samples without previous training. The accuracy varies from 60% to 90%. (ii) How many samples

for a given family to achieve a good accuracy? MalDozer needs only about 10 to 20 samples to

reach 90% (Figure 6.5). In the case of DroidKungFu, MalDozer needs 20 samples to reach 90%.

Considering only 10 to 20 samples from a malware family is a rather small number to obtain quality

results. This varies from a malware family to another due to: (i) the similarity of the malicious

pattern of the new family compared known patterns. The higher the similarity to existing malware,

the better the detection performance with (sometimes without any family sample in the training

dataset) minimum samples in the training dataset. (ii) Some new malware families tend to have

simple patterns in their payload. Therefore, the learning system needs only a few samples to grasp

the patterns of the whole family.

Resiliency Against API Evolution over Time

As we have seen in the previous section, MalDozer could detect new malware samples from

unknown families using samples from Drebin dataset collected in the period of 2011/2012. We aim

to answer another important question: Can MalDozer detect malicious and benign apps collected

in different years? To answer this question, we evaluate MalDozer on four datasets collected from

[67] spanning across four consecutive years: 2013, 2014, 2015, and 2016. We take five malicious

apps and five benign apps from the samples of each year. Than, we train MalDozer in one year

dataset and test it on the rest of the datasets. The obtained results show that MalDozer detection

is more resilient to API evolution over time compare to the result reported in [148], as presented

in Figure 6.6. Starting with 2013 dataset (Figure 6.6(a)), we train MalDozer on 2013 samples and

evaluate it on 2014, 2015, and 2016 ones. We notice a high detection rate in the 2014 dataset since

it is collected in the consecutive year of the training dataset. However, the detection rate decreases

in 2015 and 2016 datasets, but it is above an acceptable detection rate (F1-Score=70%). Similarly,

we obtained the results of the 2014 dataset, as depicted in Figure 6.6(b). Also, training MalDozer

on 2015 or 2016 datasets exhibits excellent results under all the datasets collected in other years,
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where we reach F1-Score from 90% to 92.5%.
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Figure 6.6: Detection versus Time
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Figure 6.7: Shuffle Rate versus F1-Score

Resiliency against changing the order of API methods

In the following, we evaluate the robustness of MalDozer against changes in the order of API

method calls. Such changes may occur for various reasons, such as: (i) We could use different

disassembly tools in the production, (ii) A malware developer could repackage the same malicious

app multiple times. The previous scenarios could lead to losing the temporal relations among the

API calls. In the case of malware developer, she/he will be limited by keeping the same malicious

semantics in the app. To validate the robustness of MalDozer against such methods that alter the

order, we conduct the following experiment: First, we train our model on the training dataset.

Afterward, we randomly shuffle the sequence of API method calls in the test dataset. We divide

the testing app sequence into N blocks, then shuffle them and evaluate the F1-Score. We repeat

until N is equal to the number of sequences, i.e., one API call in each block. The result of this

experiment is shown in Figure 6.7. The latter depicts the F1-Score versus the number of blocks,

starting with four blocks and ending with 15K blocks, where each block contains one API call.

Figure 6.7 demonstrates the resiliency of MalDozer against changing the order of API method
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calls. We observe that even with completely random individual API method calls, MalDozer still

achieves 93% F1-score.

6.3.3 Family Attribution Performance

Family attribution is an important task for Android security, where MalDozer distinguishes

itself from the existing malware detection solutions, since only few solutions provide this function-

ality. Starting with Malgenome dataset, MalDozer achieves a very good result, i.e., F1-Score of

99.18%. Similarly, MalDozer reaches an F1-Score of 98% on Drebin dataset. The results per mal-

ware family attribution performance for Malgenome and Drebin are presented in Tables 6.13 and

6.14. MalDozer achieves good results in the case of MalDozer dataset, F1-Score of 85%. Our

interpretation of this result comes from Tables 6.12, 6.13 and 6.14, which depict the detailed results

per malware family. For example, the family agent exhibts poor results because of the mislabel-

ing, since agent is a common name for many Android malware families. We believe that there is a

lot of noise in family labeling of the MalDozer dataset since we leverage only one security vendor

for labeling. Despite this fact, MalDozer demonstrates acceptable results and robustness.

F1% P% R%
2-Fold 98.9834 99.0009 98.9847
3-Fold 98.9910 99.0026 98.9847
5-Fold 99.0907 99.1032 99.0862

10-Fold 99.1873 99.1873 99.1878

Table 6.9: Attribution on
Malgenome

F1% P% R%
98.1192 98.1401 98.1334
98.6882 98.6998 98.6912
98.5824 98.5961 98.5839
98.5198 98.5295 98.5196

Table 6.10: Attribution on
Drebin

F1% P% R%
89.3331 89.5044 89.3424
81.8742 82.7565 81.8109
83.8518 84.1360 84.0061
85.5233 85.6184 85.8479

Table 6.11: Attribution on
MalDozer

6.3.4 Run-Time Performance

In this section, we evaluate the efficiency of MalDozer, i.e., the runtime during the deployment

phase. We divide the runtime into two parts: i) Preprocessing time: the required time to extract

and preprocess the sequences of Android API method calls. ii) Detection time: time needed to

predict a given sequence of API method calls. We measure the detection time according to the

model complexity of different hardware. Figure 6.11(a) depicts the average preprocessing time,

along with its standard deviation, related to each hardware. The server machines and the laptop

spend, on average, 1 second in the preprocessing time, which is quite acceptable for production.
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Malware Family #Sample F1-Score
01 FakeInst 4822 96.15%
02 Dowgin 2248 84.24%
03 SmsPay 1544 81.61%
04 Adwo 1495 87.79%
05 SMSSend 1088 81.48%
06 Wapsx 833 78.85%
07 Plankton 817 94.18%
08 Agent 778 51.45%
09 SMSReg 687 80.61%
10 GingerMaster 533 76.39%
11 Kuguo 448 78.28%
12 HiddenAds 426 84.20%
13 Utchi 397 93.99%
14 Youmi 355 72.39%
15 Iop 344 93.09%
16 BaseBridge 341 90.50%
17 DroidKungFu 314 85.85%
18 SmsSpy 279 85.05%
19 FakeApp 278 93.99%
20 InfoStealer 253 82.82%
21 Kmin 222 91.03%
22 HiddenApp 214 76.71%
23 AppQuanta 202 99.26%
24 Dropper 195 77.11%
25 MobilePay 144 78.74%
26 FakeDoc 140 96.38%
27 Mseg 138 55.38%
28 SMSKey 130 81.03%
29 RATC 111 84.81%
30 Geinimi 106 95.58%
31 DDLight 104 90.55%
32 GingerBreak 103 84.87%

Table 6.12: MalDozer Android Malware
Dataset

Malware Family #Sample F1-Score
01 DroidKungFu3 309 99.83%
02 AnserverBot 187 99.19%
03 BaseBridge 121 98.37%
04 DroidKungFu4 96 99.88%
05 Geinimi 69 97.81%
06 Pjapps 58 95.65%
07 KMin 52 99.99%
08 GoldDream 47 99.96%
09 DroidDreamLight 46 99.99%

Table 6.13: Malgenome Attribution Dataset
Malware Family #Sample F1-Score

01 FakeInstaller 925 99.51%
02 DroidKungFu 666 98.79%
03 Plankton 625 99.11%
04 Opfake 613 99.34%
05 GinMaster 339 97.92%
06 BaseBridge 329 97.56%
07 Iconosys 152 99.02%
08 Kmin 147 99.31%
09 FakeDoc 132 99.24%
10 Geinimi 92 97.26%
11 Adrd 91 96.13%
12 DroidDream 81 98.13%
13 Glodream 69 90.14%
14 MobileTx 69 91.97%
15 ExploitLinuxLotoor 69 99.97%
16 FakeRun 61 95.16%
17 SendPay 59 99.14%
18 Gappusin 58 97.43%
19 Imlog 43 98.85%
20 SMSreg 41 92.30%

Table 6.14: Drebin Attribution Dataset

Also, as mentioned previously, we do not optimize the current preprocessing workflow. On an IoT

device [25], the preprocessing takes, on average, about 4 seconds, which is more than acceptable

for such a small device. Figure 6.11(b) presents the detection time on average that is related to each

hardware. First, it is noticeable that the standard deviation is quite negligible, i.e., the detection time

is constant for all apps. Also, the detection time is very low for all the devices. As for the IoT device,

the detection time is only 1.3 seconds. Therefore, the average time that MalDozer needs to decide

for a given app is 5.3 seconds on average in case of an IoT device, as we know that preprocessing

takes most of the time (4/5.3). Here, we ask the following two questions: (i) Which part in the

preprocessing needs optimization? (ii) Does the preprocessing time depend on the size of APK or

DEX file? To answer these questions, we randomly select 1K benign apps and 1K malware apps.

We measure the preprocessing time and correlate it with the size of APK and DEX files. Figure 6.8

shows the experimentation results in the case of an IoT device [25]. The scattered charts depict the
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preprocessing time along with the size of the APK or DEX file for the mixed, the benign-only, and

the malware-only datasets. From Figure 6.8, it is clear that the preprocessing time is linearly related

to the size of the DEX file. We perform the same experiment on a server and a laptop, and we get

very similar results, as shown in Figures 6.9 and 6.10. Finally, we notice that the size of benign

apps tends to be bigger than the one of malicious apps. Thus, the preprocessing time of benign apps

is longer.
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Figure 6.8: Preprocessing Time versus Package Sizes (IoT device)

#Params F1% Word2Vec Size
Model 01 6.6 Million 98.95 100k
Model 02 4.6 Million 95.84 70k
Model 03 3.4 Million 93.81 50k
Model 04 1.5 Million 90.08 20k

Table 6.15: Model Complexity versus Detection Performance

Model Complexity Evaluation

In this section, we examine the effect of model complexity on the detection time. By model

complexity, we mean the number of parameters in the model, as depicted in Table 6.15. Many

hyper-parameters can influence the complex nature of the model, but we primarily consider the
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Figure 6.9: Preprocessing Time versus Package Sizes (Laptop)
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Figure 6.10: Preprocessing Time versus Package Sizes (Server)
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Figure 6.11: Run-Time versus Hardware
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Figure 6.12: Detection Time versus Model Complexity

word2vec embedding size. The latter is crucial for the detection of the model, especially if we

have a big dataset. Table 6.15 demonstrates the complexity of the model versus the F1-Score. It is

noticeable that the larger the number of parameters is, the more its performance increases. Based on

our observation, bigger models are more accurate and more robust to changes. Finally, Figure 6.12

displays the execution time of the models in Table 6.15 on the IoT device. The detailed execution

related to all the hardware is presented in Figure 6.12.

6.4 Summary

In this chapter, we presented MalDozer, an automatic, efficient, and effective Android malware

detection, and attribution system. MalDozer relies on deep learning techniques and raw sequences

of API method calls to identify Android malware. We have evaluated MalDozer on several small

and large datasets, including Malgenome, Drebin, and our MalDozer dataset, in addition to a dataset

of benign apps downloaded from Google Play. The evaluation results show that MalDozer is highly
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accurate in terms of a malware detection as well as their attribution to corresponding families.

Moreover, MalDozer can efficiently run under multiple deployment architectures, ranging from

servers to small IoT devices. This work represents a step towards practical, automatic, and effective

Android malware detection and family attribution.

In the next chapter, we propose a system that focuses on the robustness and the adaptability

aspects in Android malware detection. First, the detection system should show resiliency to com-

mon code obfuscation and transformation techniques. Second, the detection performance should

be resilient to the operating system, and malware changes overtime by employing an adaptation

mechanism to handle changes.
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Chapter 7

Resilient and Adaptive Android

Malware Fingerprinting and Detection

7.1 Overview

In this chapter, we present PetaDroid, an Android detection system that provides, in contrast to

MalDozer (previous chapter), (i) resiliency to common obfuscation techniques by introducing code

randomization during training; (ii) adaptation to operating system and malware change overtime by

introducing the use of confidence-based decisions to collect adaptation datasets overtime. In this

context, we identify several limitations and gaps in the state-of-the-art Android malware detection

solutions.

First, the accuracy of Android malware detection systems tends to decrease over time due to

different factors (new OS versions, new malware families, new malicious techniques). We use time

resiliency terminology to denote the adaptation of the Android malware detection solution to the

change of malware, its attack techniques, and the Android platform. (i) It is important to note

that detection systems may not be able to detect recently discovered samples because the system

did not see such family samples during the training phase. However, the changes introduced by

new families are, in most cases, incremental compared to existing malware threats. (ii) Malware

developers build attacks against Android devices exploiting these zero-day flaws. The developed

malware samples may be part of an existing family, but such samples could also exhibit some
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variation in their implementation, depending on the employed the exploitation techniques. Such

variant malware indicate a progressive evolution that could deceive detection systems over time. (iii)

New APIs are introduced in the Android platform in every new version or update to the operating

system and its ecosystem services. New APIs provide new capabilities for developers to build

new app functionalities. On the other hand, malware developers could exploit these APIs to make

new malicious functionalities to deceive existing Android malware detection. In time, the problem

accumulates from one year to another, as seen in previous solutions [148, 158]. The gap between

the detection capability and the emergence of new threats is indeed increasing, but the effect is

minimum on a given time and incremental, which could be addressed timely. Therefore, we say

that an Android malware detection solution is time-resilient if it can adapt to the changes of the

Android platform as well as the changes in benign and malicious app patterns. A crucial component

to adaptation is the ability of the solution to generalize from a small number of samples. Therefore,

the detection performance on a small training set is an essential requirement for modern solutions.

Because the sooner our detection solution can grasp the malicious patterns from a small dataset, the

faster we can detect such threat, especially at a market level.

Second, only a few existing solutions, [73, 132], provide Android malware family attribution

functionality. Furthermore, these solutions are built using supervised learning where prior knowl-

edge on the families is required. However, such knowledge is hard to get and not realistic in many

cases, especially for new families.

Third, malware developers employ various obfuscation techniques to thwart detection attempts.

Obfuscation resiliency is a key requirement in modern malware fingerprinting that employs static

analyses. Very few solutions address the obfuscation issue in the context of Android malware de-

tection. Existing obfuscation resilient solutions such as DroidSheive [177] require manual feature

extraction.

Forth, solutions, such as DroidSheive [177], StormDroid [91], and Drebin [73], rely on manual

feature engineering based on classification techniques such as SVM and KNN. Despite their good

detection performance, their approach is not scalable to the amount and the growth pace of Android

malware. Therefore, there is an increasing need for solutions that are based on automatic feature

engineering using deep learning and NLP techniques.
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Fifth, state-of-the-art solutions, such as MaMaDroid [148, 158], require a lot of computing

power due to the complex preprocessing, which affects the overall efficiency. The last aspect is an

important requirement for Android malware detection due to the growing number of Android apps.

PetaDroid aims at satisfying all the aforementioned issues/requirements of modern Android

malware fingerprinting by addressing the previously identified gaps and challenges in existing state-

of-the-art solutions.

7.2 Methodology

In this section, we detail PetaDroid methodology and its components.

7.2.1 Approach

PetaDroid employs static analysis techniques on Android Dalvik Virtual Machine (DVM) bi-

nary code (DEX) to check the maliciousness of Android apps. PetaDroid starts by extracting raw

static features from the Android Packaging (APK), specifically the Dalvik VM bytecode (DEX). We

develop a fast preprocessing phase to extract raw Dalvik assembly instructions. We generate, on the

fly, the canonical form of the assembly instructions by substituting the value of constants, memory

addresses with symbolic names. The output is a raw sequence of canonical assembly instructions

of Dalvik virtual machine.

PetaDroid maintains a logical separation among the software component of applications. We

keep track of classes and methods’ instruction sequences within the application global instruction

sequence. It is a natural breakdown because an Android app is a set of classes, and a class is a set of

methods and attributes. The global app execution sequence is composed of a list of micro-execution

paths (method sequences), through which the execution proceeds during runtime. The extracted

canonical instruction sequences help preserving the underlying micro-execution paths of the app

while without and emphasison the global execution order. Micro-execution paths are instruction

and API sequences of code functions (classes’ methods).

Previous solutions [158] apply heavy and complex preprocessing to construct a global call graph
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to simulate runtime execution. In contrast, our extraction approach is lightweight (very little com-

putation needed in the preprocessing) because we consider only the method order within each given

class methods. We argue that tracking the method order is sufficient to identify malicious apps. It

allows swift preprocessing in commodity hardware while maintaining the intended granularity. Fur-

thermore, and in contrast with previous solutions [158], we adopt granular features using a canon-

ical instruction flowed by representation learning. We propose custom code modeling techniques

for representation learning inspired by advanced natural language processing techniques. Specifi-

cally, we design and develop Inst2Vec and InstNGram2Bag code modeling techniques to model and

discover latent information to produce embeddings from canonical instruction sequences.

In a nutshell, PetaDroid has six phases:

(1) Representation Learning: PetaDroid learns latent representations using unsupervised word2vec

techniques [153].

(2) Malware Detection: PetaDroid employs neural network module as features’ selector from the

embedding representation. In the classification task, the training dataset guides feature selection to

make the right detection outcome. PetaDroid classification system rests on ensemble deep learning

models (CNN) that consume Inst2Vec embedding features to fingerprint malicious applications.

(3) Detection Adaptation: PetaDroid classification ensemble produces a detection confidence

probability. Apps detected with high confidence, whether malicious or benign, will extend PetaDroid

primary labeled dataset (used to build the current detection ensemble). Periodically, PetaDroid

makes a new detection ensemble on the new dataset (primary and extended).

(4) Code Representation: For the detected malware, we produce feature vectors using N-grams

bag of words and feature hashing techniques on top of the canonical instruction sequence. The

outcome is what we call an InstNGram2Bag vector for each detected malware. An InstNGram2Bag

vector summarize the intrinsic semantic of Android malware.

(5) Digest Generation: we produce digests by applying deep neural auto-encoders [116] on the

InstNGram2Bag vectors to produce a compact embedding or a digest for each malicious sample.

(6) Malware Family Clustering: PetaDroid clusters the flagged malicious apps into groups with

high inter-similarity between their digests, and most likely of the same malware family. PetaDroid
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clustering system is based on DBScan1 clustering algorithm.

7.2.2 Android App Representation

In this section, we present the preprocessing of Dalvik code and its representation into a se-

quence of canonical instructions. We seek the preservation of the maximum information about apps’

behaviors while keeping the process very efficient. The preprocessing begins with the disassembly

of an app bytecode to Dalvik assembly code, as depicted in Figure 7.1.

// Object Creation
new-instance v10, java/util/HashMap
// Object Access
invoke-direct v10, java/util/HashMap
if-eqz v9, 003e
..
// Method Invocation
// * = Android/telephony
invoke-virtual v4, */TelephonyManager.getDeviceId()java/lang/String
move-result-object v11
// Method Invocation
invoke-virtual v4, */TelephonyManager.getSimSerialNumber()java/lang/String
move-result-object v13
// Method Invocation
invoke-virtual v4 */TelephonyManager.getLine1Number()java/lang/String
move-result-object v4
...
// Object Creation
new-instance v20, java/io/FileReader
const-string v21, ”/proc/cpuinfo”
invoke-direct/range v20, v21, java/io/FileReader.init(java/lang/String)
new-instance v21, java/io/BufferedReader
...
move/from16 v2, v20
// Field Access
// * = Android/content/pm
iget-object v0, v0, */ApplicationInfo.metaData Android/os/Bundle
move-object/from16 v19, v0

Figure 7.1: Android Assembly from a Malware Sample

We model the Dalvik VM assembly code as code fragments where each fragment is a method

code in the Dalvik assembly. It is a natural separation because Dalvik code D is composed of a set of

classes D = {C1, C2, . . . , Cs}. Each class Ci contains a set of methods C = {M1,M2, . . . ,Mk}

where we find actual assembly code instructions. We preserve the order of Dalvik assembly in-

structions within methods while ignoring the global execution paths. Method execution is a possi-

ble micro-behavior for an Android app, while a global execution path is a likely macro-behavior.

PetaDroid assembly preprocessing produces a list of instruction sequences P = {S1, S2, . . . , Sh}
1https://en.wikipedia.org/wiki/DBSCAN
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where each sequence S contains an ordered instruction S = ⟨I1, I2, . . . , Iv⟩. Thus, a sequence S

defines a possible micro-execution (or behavior ) from the Android app’s overall runtime execution.

invoke-virtual v19,

Call⏟ ⏞⏞ ⏟
StringBuilder.append (

Arguments⏟ ⏞⏞ ⏟
java/lang/String )

Returns⏟ ⏞⏞ ⏟
StringBuilder⏞ ⏟⏟ ⏞

Method Invocation

(12)

new-instance v10,

Object Class⏟ ⏞⏞ ⏟
java.util.HashMap

invoke-direct v10, java.util.HashMap⏞ ⏟⏟ ⏞
Object Manipulation

(13)

iget-object v0, v0,

Field Name⏟ ⏞⏞ ⏟
ApplicationInfo.metaData

Fiele Type⏟ ⏞⏞ ⏟
Android.os.Bundle⏞ ⏟⏟ ⏞

Field Access

(14)

Figure 7.2: Canonical Representation of Dalvik Assembly

As shown in Figure 7.1, Dalvik assembly is too sparse. We want to keep the assembly instruc-

tion skeleton that reflects possible runtime behaviors with less sparsity. In PetaDroid (in contrast

to MalDozer in previous chapter), we propose a canonical representation for Dalvik assembly code

as shown in Figure 7.2. The key idea is to keep track of the Android platform APIs and objects

utilized inside the method assembly. In order to fingerprint malicious apps, the canonical represen-

tation will mostly preserve the actions and the manipulated system objects, such as sending SMS

action or getting (setting) sensitive information objects. PetaDroid canonical representation cov-

ers three types of Dalvik assembly instructions namely: Method invocation, object manipulation,

and field access, as shown in Figure 7.2. In the method invocation, we focus on the method call,

Package.ClassName.MethodName, the parameters list, Package.ClassName, and the return type,

Package.ClassName. In object manipulation, we capture the class object, Package.ClassName, that

is being used. Finally, we track the access to system fields by capturing the field name, Pack-

age.ClassName.FieldName, and its type, Package.ClassName. Our manual inspections of Dalvik

assembly for hundreds of malicious and benign samples shows that these three forms cover the

essential of Dalvik assembly instructions.

PetaDroid instruction parser keeps only the canonical representation and ignores the rest. For

example, our experiments show that Dalvik opcodes add a lot of sparsity without enhancing the

malware fingerprinting performance. On the contrary, it could affect the overall performance [152]
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java/util/HashMap
java/util/HashMap
..
Android/telephony/TelephonyManager.getDeviceId()
java/lang/String
Android/telephony/TelephonyManager.getSimSerialNumber()
java/lang/String
Android/telephony/TelephonyManager.getLine1Number()
java/lang/String
...
java/io/FileReader
java/io/FileReader.init()
java/lang/String
java/io/BufferedReader
...
Android/content/pm/ApplicationInfo.metaData
Android/os/Bundle

Figure 7.3: Flatten Canonical Representation form a Malware Sample

negatively. The final step in the preprocessing of a method M (see Figure 7.1) is to flatten the

canonical representation of a method into a single sequence S (see Figure 7.3). In the current

design, we keep only Android platform related assets like API, classes, and system fields in the

final method’s sequence S. For this purpose, we maintain a vocabulary dictionary (assets names

of Android platform) V = {⟨Asset1, 1⟩, . . . , ⟨Assetd, d⟩} to filter and discretize the method se-

quence during the preprocessing. The output of the app representation phase is a list of sequences

P = {cS1, cS2, . . . , cSh}. Each sequence is an ordered canonical instruction representation of one

method.

7.2.3 Malware Detection

In this section, we present PetaDroid malware detection process using CNN on top of Inst2Vec

embedding features. The detection process starts from a list of discretized canonical instruction

sequences P = {cS1, cS2, . . . , cSh}. PetaDroid CNN ensemble produces a detection result to-

gether with maliciousness and benign detection probabilities for a given sample. In order to achieve

automatic adaptation over time, we leverage the detection probabilities to automatically collect an

extension dataset that PetaDroid employs to build new CNN ensemble models.
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Fragment Detection

The fragment-based detection is a key technique in PetaDroid Android malware fingerprinting.

A fragment F is a truncated portion from the concatenation cP of P = {cS1, cS2, . . . , cSh}. The

size |F | is the number of canonical instructions in the fragment F and it is a hyper parameter in

PetaDroid framework. For a sequence cSi, the order of canonical instructions is preserved within

a method. In other words, we grantee the preservation of order inside the method sequence or what

we refer to as a micro-action. On the other hand, no specific order is assumed between methods’

sequences or what we refer to as macro-action (or behavior). In our context, and before we truncate

cP into size |F |, we propose applying a random permutation on P to produce a random order in

the macro-behavior while preserving its methods’ micro-behaviors. The randomization happens in

every access, whether it is during training or deployment phases. Each Android sample has h!
(h−k)!

possible permutation for the methods’ sequences P = {cS1, cS2, . . . , cSh}, where h is the number

of methods’ sequence in a given Android app; and k is number of sampled sequences. Notice that

the size of the concatenated k sequences must be greater than |F | (fragment size hyperparameter).

The intuition behind fragment detection is the abstraction of Android apps behavior into a list of

very small micro-actions. We consider each method canonical instruction sequence cS as possible

micro-actions for an Android app. In a fragment, we keep the possible micro-actions intact and

discard the app flow graph. We argue that this will force pattern learning, during the training, to fo-

cus on only micro-actions, which allows better generalization. Fragment-based detection has many

advantages in the context of malware detection. First, fragment detection plays the role of dataset

augmenter, which allows the learning model to generalize better from a small dataset. Second, it

challenges the machine learning model and its training process to learn dynamic patterns at every

training epoch. In other words, it focuses the model on robust, distinctive patterns from a sample of

random micro-actions of methods. Third, we argue that our fragment-based detection helps improv-

ing the robustness of the malware detection model against conventional obfuscation techniques and

code transformation in general. Fourth, in the testing phase, PetaDroid infers the maliciousness of

a given sample by applying PetaDroid CNN on multiple sample fragments to obtain a detection

decision with a specific confidence interval.
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Inst2Vec Embedding

Inst2Vec is based on word2vec [153] technique to produce an embedding vector for each canon-

ical instruction in our sequences. Inst2Vec is trained on instruction sequences to learn instructions

semantics from the underlying contexts. This means that Inst2Vec learns a dense representation of

a cononical instruction that reflect the instruction co-occurrence and context. The produced embed-

dings capture the semantics of instructions and translate into geometric values over multiple dimen-

sions. Our Android malware detection technique is inspired by word2vec, modern NLP techniques

as well as neural machine translation techniques. Furthermore, embedding features show high code

fingerprinting accuracy and resiliency to common obfuscation techniques [100]. Word2vec [153]

is a vector space model to represent the words of a document in a continuous vector space where

words with similar semantics are mapped closely in the space. From a security perspective, we

want to map our features (canonical instructions in a fragment) to continuous vectors where their

semantics is translated to a distance in the vector space. Word2vec is a neural probabilistic model

that is trained using the maximum likelihood concept. More precisely, given sequence of words:

w1, w2, · · · , wT , at each position t = 1, · · · , T , the model predicts a context of sequence within a

window of fixed size m given center word wj (illustrated in Equation 15), where m is the size of

the training context [153].

L(θ) =
T∏︂
t=1

∏︂
−m≤j≤+m,j ̸=0

P (wt+j |wt; θ) (15)

The objective function [153] J(θ) is the negative log likelihood as shown in Equation 17. The

probability P (wt+j |wt; θ) is defined in Equation 19, where vw and v′w are the input and the output

of the embeddings of w.

J(θ) = − 1

T
logL(θ) (16)

= − 1

T

T∑︂
t=1

∑︂
−m≤j≤m,j ̸=0

logP (wt+j |wt; θ) (17)
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P (wO|wI) = softmax(v̀TwO
vwI ) (18)

=
exp(v̀TwO

vwI )∑︁W
w=1 exp(v̀

T
wvwI )

(19)

We train the embedding model by maximizing log-likelihood as illustrated in Equation 21.

JML = logP (wO|wI) (20)

= (v̀TwO
vwI )− log

(︄
W∑︂
w=1

exp{v̀TwvwI}

)︄
. (21)

Classification Model

Our single CNN model takes Inst2Vec features, which are a sequence of embeddings, each em-

bedding captures the semantics of instructions. The temporal convolutional neural network [138],

or 1-Dimensional CNN [198], is the working core component in PetaDroid single classification

model. Table 7.1 details the architecture of our CNN single model.

# Layers Options

1 1D-Conv Filter=128, Kernel=(5,5), Stride=(1,1),
Padding=0, Activation=ReLU

2 BNorm BatchNormalization
3 Global Max Pooling /

4 Linear #Output=512 , Activation=ReLU
5 Linear #Output=256 , Activation=ReLU
6 Linear #Output=1 , Activation=ReLU

Table 7.1: PetaDroid CNN Detection Model

The non-linearity used in our model employ the rectified linear unit (ReLUs) h(x) = max{0, x}.

We used Adam [113] optimization algorithm with a mini-batch of size fo 32 and a learning rate

3e− 4 for 100 epochs in all our experiments.

Dataset Notation

In this section, we present the notations that will be used in the next sections.
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X = {(⟨cP0, y0⟩, ⟨cP1, y1⟩, .., ⟨cPm, ym⟩}: X is the global dataset used to build ensemble

models and report PetaDroid performance on various tasks. Where m is number of ⟨sample, label⟩

records in the global dataset X .

X = {Xbuild, Xtest}: We use a build set Xbuild to train and tune the hyper-parameters of

PetaDroid models. The test set Xtest represents Android apps that the system will receive during

the deployment. The test set Xtest is used to measure the final performance of PetaDroid, which is

reported in the evaluation section. X is split randomly into Xbuild (50%) and Xtest (50%).

Xbuild = {Xtrain, Xvalid}: The build set, Xbuild, is composed of a training set Xtrain and a

validation set Xvalid. It is used to build PetaDroid single CNN models for the CNN ensemble. For

each single CNN model, we tune the model parameters to achieve the best detection performance

on Xvalid. The build set mbuild = mtrain + mvalid : is the total number of records used to build

PetaDroid. The training set takes 80% of the build set Xbuild and 20% of Xbuild is used for the

validation set Xvalid.

Detection Ensemble

PetaDroid detection component relies on an ensemble Φ = ⟨sC1, sC2, . . . , sCϕ⟩. Ensemble

Φ is composed of ϕ single CNN models The number of single CNN models in the ensemble ϕ

is a hyperparameter. We fixed ϕ = 6 in the evaluation experiments. As mentioned previously

PetaDroid trains each CNN model C for number of epochs (epochs = 100). In each epoch, we

compute LossT and LossV , the training and validation losses respectively, and save a snapshot of

the single CNN model parameters. LossT and LossV are the log loss across training and validation

sets:

p = singleCNNθ(y = 1|cP )

loss(y, p) = −(y log(p) + (1− y) log(1− p)),

LossT =
−1

mtrain

mtrain∑︂
i=1

loss(yi, pi),

LossV =
−1

mvalid

mvalid∑︂
i=1

loss(yi, pi),
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Where p is the maliciousness likelihood probability given a fragment F (a concatenated and trun-

cated canonical instructions cP ) and model parameters θ (Section 7.2.2). PetaDroid selects au-

tomatically the top ϕ models from the saved model snapshots that have the lowest training and

validation losses LossT and LossR respectively.

ŷ = Φ(x) =
1

ϕ

(︄
ϕ∑︂
i

sCi(x)

)︄
(22)

PetaDroid CNN ensemble Φ produces a maliciousness probability likelihood by averaging the

likelihood probabilities of single CNN models sC, as shown in Equation 22.

Confidence Analysis

PetaDroid ensemble computes the maliciousness probability likelihood ProbMal given a frag-

ment F , as follows:

ŷ = Φ(F ), P robMal = ŷ, P robBen = (1− ŷ)

Previous Android malware detection solutions, such as [91, 132, 148], utilize a simple detection

technique (we refer to it as a general decision) to decide on the maliciousness of Android apps. In

the general decision, we compute general threshold ζ ∈ [0, 1] that achieves the highest detection

performance on the validation dataset Xvalid. In the deployment phase (or evaluation in our case on

Xtest), The general decision Dζ utilize the computed threshold ζ to make detection decisions:

Dζ =

⎧⎪⎪⎨⎪⎪⎩
Malware ProbMal > ζ

Benign ProbMal <= ζ

PetaDroid employs F1-score as detection performance metric to automatically select ζ and to re-

port general detection performance on the test set Xtest during our evaluation, in Section 7.3. We

choose F1-score as our detection performance metric due to its simplicity, and its measurement re-

flects the reality under unbalanced datasets like in our case. Besides F1-score, we could use other

metrics like ROC, precision, or recall. The general decision strategy is simple and effective in sys-

tem development. It provides a firm decision for every sample. On the other hand, the security
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practitioner might prefer dealing with decisions that have associated confidence values and filter out

less-confident decisions for further investigation. In a real deployment, we would like to have as

many as possible detection decisions with high confidence and filter out the few uncertain apps that

have low confidence probability. Unfortunately, the general decision strategy does not provide such

functionality. For this purpose, we propose the confidence decision strategy, a mechanism to au-

tomatically filter out apps with uncertain decisions. PetaDroid computes a confidence threshold η

that achieves not only a high detection performance (F1-score) but also a negligible error rate (false

negative and false positive rates) in the validation dataset. In other words, we add the error rate

constraint to the system that computes the detection threshold η from Xvalid. In the deployment,

we make confidence-based decision as follow:

Dη =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Uncentain ProbMal < η ∧ ProbBen < η

Malware ProbMal >= η ∧ ProbMal > ProbBen

Benign ProbBen >= η ∧ ProbBen > ProbMal

For example, we could fix the error rate to < 1% and automatically find η that achieves the

highest F1-score in the validation set. Our goal is to maximize certain detection decisions on the

deployment, which we called the detection coverage performance and minimize alerts for uncertain

ones that require further analyses and investigation. In our case, the detection coverage performance

is the percentage of confidence decisions from Xtest. In Section 7.3, we conduct experiments where

we report general detection performance metric in order to compare with existing solutions such

as [91, 132, 148]. In addition, we report confidence detection performance and detection coverage

performance metrics which we believe are more suitable for real-world deployment. Furthermore,

the confidence decision strategy is key in PetaDroid retraining process, aiming toward automatic

adaptation as will be explained next.

PetaDroid Adaptation Mechanism

In this section, we describe our mechanism to adapt to Android ecosystem changes overtime

automatically. The key idea is to re-train the CNN ensemble on new benign and malware sam-

ples at every epoch to learn the latest changes. To enhance the automatic adaptation, we leverage
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the confidence analysis to collect an extension dataset that captures the incremental change over

time. Initially, we train PetaDroid ensemble using Xbuild = {Xtrain + Xvalid}. Afterward,

PetaDroid leverages the confidence detection strategy to build an extension dataset Xexten from

test dataset Xtest with high-confidence detected apps. In a real deployment, Xtest is a stream of

Android apps that needs to be checked for maliciousness by the vetting system. The test dataset

Xtest = {XCertain, XUncertain} is composed of apps having a high-confidence decision (XCertain

or Xexten) and apps having uncertain decisions XUncertain. In the deployment, PetaDroid accu-

mulates high-confidence apps over time to form Xexten dataset. At every time epoch, PetaDroid

utilizes the extension dataset Xexten to extend the original Xbuild and later updates the CNN ensem-

ble models. In our evaluation, and after updating the CNN ensemble, we report updated general

performance and updated confidence-based performance, which are respectively the general and

confidence-based performance of the new trained CNN ensemble on Xtest. They answer the ques-

tion: what would be the detection performance on Xtest = {XCertain, XUncertain} after we build

the ensemble on XNewBuild = {XCertain, Xbuild}? In other words, PetaDroid reviews previous

detection decisions using the new CNN ensemble and drives new general and confidence-based

performance.

In a deployment environment, PetaDroid is continuously receiving new Android apps, whether

benign or malware, represented by Xtest in our evaluation. PetaDroid employs the extension

dataset Xexten to overcome pattern changes, whether malicious or benign, automatically. Our

approach is based on the assumption that Android apps patterns change incrementally with slow

progress. Therefore, starting from a relatively small Xbuild dataset,PetaDroid could learn new pat-

terns from new Xexten dataset progressively over time. PetaDroid ensemble update is an automatic

operation for every period. During off-line analyses, PetaDroid data extension process could be

employed to improve the classification result on a fixed test dataset Xtest starting from a small

Xbuild. Our evaluation (Section 7.3.6) shows the effectiveness of our update strategy.

7.2.4 Malware Clustering

In this section, we detail the family clustering system of PetaDroid. PetaDroid clustering

aims at grouping the previously detected malicious apps (Section 7.2.3) into highly similar groups
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of malicious apps, which are most likely part of the same malware family. PetaDroid clustering

process starts from a list of discretized canonical instruction sequences P = ⟨cS1, cS2, . . . , cSh⟩ of

the detected malicious apps. We introduce the InstNGram2Vec technique and deep neural network

auto-encoder to generate embedding digests for malicious apps. Afterward, we cluster malware

digests using the DBScan clustering algorithm to generate malware family groups.

InstNGram2Vec

InstNGram2Vec is a technique that maps concatenated instruction sequences to fixed-size em-

beddings employing NLP bag of words N-grams [61] and feature hashing [173] techniques.

Common N-Gram Analysis (CNG). The common N-gram analysis (CNG) [61], or simply N-

gram, has been extensively used in text analyses and natural language processing in general and

related applications such as automatic text classification and authorship attribution [61]. N-gram

computes the contiguous sequences of n items from a large sequence. In the context of PetaDroid,

we compute canonical instructions N-grams on concatenated sequence cP by counting the instruc-

tion sequences of size n. Notice that the N-grams are extracted using a forward moving window (of

size n) by one step and incrementing the counter of the found features (instruction sequence in the

window) by one. The window size n is a hyper-parameter; we fixed n = 4 in all our experimen-

tations. N-gram computation takes place simultaneously with the feature hashing in the form of a

pipeline to prevent and limit computation and memory overuse due to the high dimensionality of

N-grams.

Feature Hashing. PetaDroid employs Feature Hashing (FH) [173] along with N-grams to vec-

torize cP . The feature hashing algorithm takes as an input cP N-grams generator and the target

length L of the feature vector. The output is a feature vector with components xi and a fixed

size L. In our framework, we fix L = |V |, where V is the vocabulary dictionary (Section 7.2.2).

We normalize xi using the euclidean norm (also called L2 norm). Applying InstNGram2Vec on

a detected malicious app cP produces a fixed size hashing vector hv. Therefore, the result is

HV = {hv0, hv1, . . . , hvDMal}, and hashing vector hv for DMal detected malicious apps.
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Deep Neural Auto-Encoder and Digest Generation.

We develop a deep neural auto-encoder through stacked hidden layers of encoding and decoding

operations, as shown in Table 7.2. The proposed auto-encoder learns the latent representation of An-

droid apps in an unsupervised way. The unsupervised learning of the auto-encoder is done through

the reconstruction (Table 7.2) of the unlabeled hashing vectors HV = {hv0, hv1, . . . , hvDMal} of

random Android apps. Notice that we do not need any labeling during; for the training of PetaDroid

auto-encoder, off-the-self Android apps are sufficient.

# Layers Options

01 Linear #Output=|V |, Activation=Tanh
02 Linear #Output=512 , Activation=Tanh
03 Linear #Output=256 , Activation=Tanh
04 Linear #Output=128 , Activation=Tanh
05 Linear #Output=64 , Activation=Tanh
06 Linear #Output=64 , Activation=Tanh
07 Linear #Output=128 , Activation=Tanh
08 Linear #Output=256 , Activation=Tanh
08 Linear #Output=512 , Activation=Tanh
10 Linear #Output=|V |, Activation=Tanh

Table 7.2: Architecture PetaDroid Deep Neural Auto-Encoder

The training goal is to make the auto-encoder learn to efficiently produce a latent representation

(or digest) of an Android app hv that keeps the discriminative patterns of malicious and benign

Android apps. Formally, the input to the deep neural auto-encoder [116] network is an unlabeled

hash vector HV = {hv0, hv1, . . . , hvDMal}, denoted x′ ∈ U on which operates the encoder

network fenc : R|V | → Rp, p = 64 as shown in Table 7.2 (parameterized by Θenc) to produce the

latent representation zx′,Θenc , i.e.

zx′,Θenc = fenc(x
′; Θenc) (23)

The produced digest, namely zx′,Θenc ∈ Rp, is used by the decoder network fdec : Rp → R|V | to

rebuild or reconstruct the InstNGramBag2Vec feature vector. The training lost of the auto-encoder

network given the unlabeled hv x′ is,

x̃′ = fdec(z; Θdec) (24)
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x̃′ ∈ Rd×w denotes the generated reconstruction.

Lauto(x
′; Θenc,Θdec) = ∥x′ − fdec(zx′,Θenc ; Θdec)∥

2 (25)

In the training phase, the gradient-based optimizer minimizes the objective reconstruction func-

tion on the InstNGramBag2Vec feature vectors of unlabeled Android apps.

(Θ∗enc,Θ
∗
dec) = arg min

Θenc,Θdec

N1+N2∑︂
i=1

Lauto(x
′
i; Θenc,Θdec) (26)

Notice that PetaDroid auto-encode is trained only once during all the experimentation due to

it general usage. To this end, PetaDroid employs a trained encoder fdec to produce digests Z =

{z0, z1, . . . ,zDMal} for the detected malicious apps.

Malware Family Clustering

PetaDroid clusters the detected malware digests Z = {z0, z1, . . . ,zDMal} into groups of

malware with hight similarity and most likely belonging the same family. In PetaDroid cluster-

ing, we use an exclusive clustering mechanism. This mean that we do not cluster all the detected

malicious apps. The clustering algorithm only groups highly similar samples and tags the rest as

unclustered. This feature is convenient in real-world deployments since we might not always detect

malicious apps from the same family, and we would like to have family groups only if there are

groups of the sample malware family. To achieve this feature, we employ the DBScan clustering

algorithm. DBScan, in contrast with clustering algorithms such as K-means, produces clusters with

high confidence. The most important metrics in PetaDroid clustering is the homogeneity of the

produces clusters.

7.2.5 Implementation

We build PetaDroid using Python and Bash programming languages. We use dexdump2

to disassemble Android app DEX code into Dalvik assembly. The tool dexdump is a simple, yet

very efficient tool, to parse APK file and produce disassembly in a textual form. We develop python
2https://tinyurl.com/y4ze8nyy
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and bash scripts to parse Dalvik assembly to produce sequences of canonical instructions. Notice

that there is no optimization in the preprocessing; in the efficiency evaluation, we only use a single

thread script for a given Android app. We implement PetaDroid neural networks, CNN ensemble

and auto-encoders, using PyTorch3. For clustering, we employ official hdbscan4 implementation.

We evaluate the efficiency of PetaDroid on a commodity hardware server (Intel(R) Xeon(R) CPU

E5-2630, 2.6GHz). For training, we use NVIDIA TitanX Graphic Processing Unit (GPU).

7.3 Evaluation

In this section, we evaluate PetaDroid framework through a set of experiments and settings in-

volving different datasets. We aim to answer questions such as: What is the detection performance

of PetaDroid on datasets with various sizes (Section 7.3.2)? What is the effect of PetaDroid ensem-

ble and build dataset sizes on the overall performance (Section 7.3.2)? What is the performance of

family clustering (Section 7.3.3)? How efficient is PetaDroid in terms of runtime on commodity ma-

chines (Section 7.3.7)? How robust is PetaDroid against common obfuscation techniques (Section

7.3.4)?

7.3.1 Android Dataset

Our evaluation dataset contains 9.7 million Android apps (the dataset size is 100 Tera bytes)

collected across the last ten years from August 2010 to August 2019, as depicted in Table 7.3. The

extensive coverage in size (9.7 M), time range (06-2010 to 08-2019), and malware families (+300

family) make the result of our evaluation quite compelling. First, we leverage reference Android

malware datasets namely: MalGenome [203], Drebin [73], MalDozer [132], and AMD [185]. We

use these datasets in the evaluation of both PetaDroid detection and family clustering because they

have family labels. A reference dataset helps comparing our evaluation results with the related work.

Also, we collected Android malware from VirusShare 5 malware repository. This dataset serves in

the evaluation of PetaDroid detection. For benign apps, we randomly samples from the AndroZoo
3https://pytorch.org
4https://en.wikipedia.org/wiki/DBSCAN
5https://VirusShare.com
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Figure 7.4: AndroZoo Benign and Malware Distribution over Time

[67] dataset (7.4 Million benign samples) two to seven times the size of reference malware dataset

in each experiment.

Name #Samples #Families Time
MalGenome [203] 1.3K 49 2010-2011
Drebin [73] 5.5k 179 2010-2012
MalDozer [132] 21k 20 2010-2016
AMD [185] 25k 71 2010-2016
VirusShare 6 33k / 2010-2017
MaMaDroid [158] 40k / 2010-2017
AndroZoo [67] 9.5M / 2010- Aug 2019

Table 7.3: Evaluation Datasets

In the comparison between PetaDroid, MaMaDroid [148, 158], and DroidAPIMiner [60], we

apply PetaDroid on the same dataset (benign and malware) used in MaMaDroid evaluation7 to

measure the performance of PetaDroid against state-of-the-art Android malware detection solu-

tions.

In our use cases, we employ the whole AndroZoo8 [67] dataset (the collection ends August

2019), which contains 7.4 million benign apps and 2.1 million malware apps. We rely on VirusTotal

detection of multiple anti-malware vendors in (metadata provided by AndroZoo repository) to label

the samples. As shown in Figure 7.4, the dataset covers more than ten years. To asses PetaDroid
7https://bitbucket.org/gianluca students/mamadroid code/src/master/
8https://androzoo.uni.lu/
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obfuscation resiliency, we conduct an obfuscation evaluation on PRAGuard dataset9, which con-

tains 11k obfuscated malicious apps using common obfuscation techniques [147]. In addition, we

generate over 100k benign and malware obfuscated Android apps employing DroidChameleon ob-

fuscation tool [162] using common obfuscation techniques and their combinations.

7.3.2 Malware Detection

In this section, we report the detection performance of PetaDroid and the effect of hyper-

parameters on malware detection performance.

Detection Performance

Table 7.4 shows PetaDroid general and confidence-based performance in terms of F1-score, re-

call and precision metrics on the reference datasets. In the general performance, PetaDroid achieves

high F1-score 96 − 99% with low false positive rate (recall score of 95.7 − 99.5%). The detection

performance is higher under confidence settings. The F1-score is 99% and very low false-positive

rate with a recall score of 99.8% on average. The confidence-based performance causes the filtra-

tion of 1− 8% low confidence samples from the testing set. In all our experiments, the confidence

performance flags ≈ 6% on average, as uncertain decisions, which is a small and realistic value in

a deployment with low false positives. The filtered Android apps are flagged as suspicious apps,

which might need further attention from the security practitioner.

Name General (%) Confidence (%)
F1 - P - R F1 - P - R

Genome 99.1 - 99.5 - 98.6 99.5 - 100. - 99.0
Drebin 99.1 - 99.0 - 99.2 99.6 - 99.6 - 99.7
MalDozer 98.6 - 99.0 - 98.2 99.5 - 99.7 - 99.4
AMD 99.5 - 99.5 - 99.5 99.8 - 99.7 - 99.8
VShare 96.1 - 96.4 - 95.7 99.1 - 99.7 - 98.6

Table 7.4: General and Confidence Performances on Various Reference Datasets

Dataset Size Effect

One of the advantages of fragment-based malware detection is the data augmentation of the

building dataset by random shuffles. PetaDroid, as shown in Table 7.5, exploits this feature to
9http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
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enhance the detection performance on small build datasets. In Table 7.5, there is a small change

in the detection performance when the build set percentage drops from 90% to 50% from the over-

all dataset. Note that the build dataset is already composed of 80% training and 20% validation

set Xbuild = {Xtrain, Xvalid}, which makes the model trained on a smaller dataset. However,

PetaDroid detection still perform well under these settings. Notice that in all our experiments, we

use 50% from the evaluation dataset as a build dataset.

General (F1 %) Confidence (F1 %)
Build Dataset Size (%) 50% - 70% - 90% 50% - 70% - 90%
Genome 98.8 - 99.1 - 98.8 100. - 99.5 - 99.1
Drebin 98.2 - 99.1 - 99.1 99.6 - 99.6 - 99.8
MalDozer 98.3 - 98.6 - 98.7 99.6 - 99.5 - 99.6
AMD 99.3 - 99.5 - 99.5 99.7 - 99.8 - 99.7
VShare 95.6 - 96.1 - 96.4 99.0 - 99.1 - 99.1

Table 7.5: Effect of Building Dataset Size on the Detection Performance

Ensemble Size Effect

Another important factor that affect PetaDroid malware detection performance is the number

of CNN models in the detection ensemble. Table 7.6 depicts PetaDroid performance under dif-

ferent ensemble sizes. We notice the high detection accuracy using single CNN model (95 − 99%

F1-score). In addition to the strength of CNN in discriminating Android malware, fragment de-

tection adds a significant value the overall performance even in a single CNN mode. In the case of

MalGenome (Table 7.6), the ensemble size adds no value to the detection performance due to small

size of MalGenome dataset (1.3k malware + 12k benign randomly sampled from AndroZoo [67]).

In case of VirusShare (Table 7.6), augmenting the ensemble size enhanced the detection rate.

Our empirical tests show that ϕ = 6 as the ensemble size gives good detection results. Increasing

beyond ϕ = 6 will have negligible benefits.

General (F1 %) Confidence (F1 %)
#Model 1 - 5 - 10 - 20 1 - 5 - 10 - 20
MalGenome 99.5 - 99.3 - 99.3 - 99.1 99.5 - 99.5 - 99.5 - 99.5
Drebin 99.0 - 99.1 - 99.0 - 99.1 99.4 - 99.6 - 99.6 - 99.6
MalDozer 98.0 - 98.6 - 98.4 - 98.6 99.0 - 99.5 - 99.5 - 99.5
AMD 99.3 - 99.5 - 99.5 - 99.5 99.5 - 99.8 - 99.7 - 99.8
VShare 95.0 - 96.0 - 96.1 - 96.1 98.1 - 99.0 - 99.2 - 99.1

Table 7.6: Effect of Ensemble Size on Detection
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7.3.3 Family Clustering

In this section, we present the results of PetaDroid family clustering on reference datasets.

Malware family clustering phase comes after PetaDroid detects a considerable number of malicious

Android apps. The number of detected apps could vary from 1k (MalGenome [203]) to 24k (AMD

[185]) samples depending on the deployment. We use homogeneity [165] and coverage metrics

to measure the family clustering performance. The homogeneity metric scores the purity of the

produced family clusters. A perfect homogeneity means each produced cluster contains samples

from only one malware family. PetaDroid clustering aims only to generate groups with confidence-

based while ignoring less certain groups. The coverage metrics score the percentage of the clustered

dataset with confidence.
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Figure 7.5: Clustering Performance on Reference Datasets

Figure 7.5 summarize the clustering performance in terms of homogeneity and coverage scores.

PetaDroid can produce clusters with high homogeneity 90 − 96% while keeping an acceptable

coverage, 50% on average. At first glance, 50% coverage seems to be a modest result, but we argue

that it is satisfactory because: (i) we could extend the coverage, but this might affect the quality

of the produced clusters. In the deployment, high confidence clusters with minimum errors and

acceptable coverage might be better than perfect coverage (in case of K-means clustering algorithm)

with a high error rate. (ii) The evaluation datasets have long tail malware families, meaning that most

families have only a few samples. This makes the clustering very difficult due to the few samples
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(less than five samples) in each malware family in the detected dataset. In a real deployment, we

could add unclustered samples to the next clustering iterations. In this case, we might accumulate

enough samples to cluster for the long tail malware families.

7.3.4 Obfuscation Resiliency

In this section, we report PetaDroid detection performance on obfuscated Android apps. We

experiment on: (1) PRAGuard obfuscation dataset [147] (10k) and (2) obfuscation dataset gen-

erated using DroidChameleon [162] obfuscation tool (100k). In the PRAGuard experiment, we

combine Praguard dataset with 20k benign Android apps randomly sampled from benign app of

AndroZoo repository. We split the dataset equally into build dataset Xbuild = {Xtrain, Xvalid} and

test dataset Xtest. Table 7.7 presents the detection performance of PetaDroid on different obfus-

cation techniques. PetaDroid shows high resiliency to common obfuscation techniques by having

almost perfect detection rate, 99.5% F1-score on average.

General Performance (%)
ID Obfuscation Techniques F1 (%) P (%) R (%)
1 Trivial 99.4 99.4 99.4
2 String Encryption 99.4 99.3 99.4
3 Reflection 99.5 99.5 99.5
4 Class Encryption 99.4 99.4 99.5
5 (1) + (2) 99.4 99.4 99.4
6 (1) + (2) + (3) 99.4 99.3 99.5
7 (1) + (2) + (3) + (4) 99.5 99.4 99.6

Overall 99.5 99.6 99.4

Table 7.7: PetaDroid Obfuscation Resiliency on PRAGuard Dataset

In the DroidChameleaon experiment, we evaluate PetaDroid on other obfuscation techniques,

as shown in Table 7.8. The generated dataset contains obfuscated benign (apps originally from An-

droZoo) and malware samples (originally from Drebin). In the building process of CNN ensemble,

we only train with one obfuscation technique (Table 7.8) and make the evaluation on the rest of the

obfuscation techniques. Table 7.8 reports the result of obfuscation resiliency on DroidChameleon

generated dataset. The results show the robustness of PetaDroid. According to this experiment,

PetaDroid is able to detect malware obfuscated with common techniques even if the training is

done on non-obfuscated datasets. We believe that PetaDroid obfuscation resiliency comes from

the usage of (1) Android API (canonical instructions) sequences as features in the machine learning
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development. Android APIs are crucial in any Android app. A malware Developer cannot hide API

access, for example, SendSMS unless the malicious payload is downloaded at runtime. Therefore,

PetaDroid is resilient to common obfuscations as long as they do not remove or hide API access

calls. (2) The other factor is fragment-randomization, which makes PetaDroid models robust to

code transformation and obfuscation in general. We argue that training machine learning models on

dynamic fragments enhances the resiliency of the models against code transformation.

General Performance
Obfuscation Techniques F1 (%) P (%) R (%)
No Obfuscation 99.7 99.8 99.6
Class Renaming 99.6 99.6 99.5
Method Renaming 99.7 99.7 99.7
Field Renaming 99.7 99.8 99.7
String Encryption 99.8 99.8 99.7
Array Encryption 99.8 99.8 99.7
Call Indirection 99.8 99.8 99.7
Code Reordering 99.8 99.8 99.7
Junk Code Insertion 99.8 99.8 99.7
Instruction Insertion 99.7 99.8 99.7
Debug Information Removing 99.8 99.8 99.7
Disassembling and Reassembling 99.8 99.8 99.7

Table 7.8: PetaDroid Obfuscation Resiliency on DroidChameleon Generated Dataset

7.3.5 Change over Time Resiliency

An important feature in modern Android malware detection is the resiliency to change over time

[132, 148, 158]. We study the resiliency of PetaDroid over the last seven-year (2013-2019). We

randomly sample from AndroZoo repository a number of 10k Android apps (5k malware and 5k

benign apps) for each year (2013-2019). As result, we have 70k = 35kMal + 35kBen. We build

the CNN ensemble using year Yx samples and evaluate on the other years Y1..N samples. Figure

7.6(a) shows the general and the confidence performances of PetaDroid, for models trained on 2013

samples, in terms of F1-score on 2014-2019 samples. As shown in Figure 7.6(a), PetaDroid ,

trained on 2013 dataset, achieved 98.17%, 96.10%, 93.01%, 70.60%, 54.82%, 55.59% F1-score

on 2014, 2015, 2016, 2017, 2018, and 2019 datasets respectively. PetaDroid sustains a relatively

good performance over the first few years. In 2018 and 2019, the performance drops considerably.

In comparison to MaMaDroid [158], PetaDroid shows a higher time resiliency over seven years,

while MaMaDroid drops considerably in year three (40% F1-score on year four). Figure 7.6(b)
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shows the training is on 2014 samples, which shows a performance enhancement over the overall

evaluation period. The overall performance tends to increase as we train on a recent year dataset

as depicted in Figure 7.6(c), 7.6(d), and 7.6(e). In Figure 7.6(f) and 7.6(g), training is on samples

from 2018 and 2019 respectively, PetaDroid performance slightly decreases on old samples form

2013 and 2014. Our interpretation is that old and deprecated Android APIs are not present in new

apps from 2018 and 2019, which we use for the training and this influences negatively the detection

performance.

We take from this experiment that PetaDroid is resilient to change over time for years t ± 2

when we train on year Yt samples. PetaDroid covers about five years {Yt−2, Yt−1, Yt, Yt+1, Yt+2}

of Android app change.

7.3.6 PetaDroid Automatic Adaptation

PetaDroid automatic adaptation goes beyond time resiliency. PetaDroid employs the confi-

dence performance to collect an extension dataset Xextend during the deployment. PetaDroid au-

tomatically uses Xextend in addition to the previous build dataset as a new build dataset Xbuild(t) =

Xbuild(t−1)∪Xextend to build a new ensemble at every new epoch. Table 7.9 depicts PetaDroid per-

formance with and without automatic adaptation. PetaDroid achieves very good results compared

to the previous section (Figure 7.6(a)). PetaDroid maintains an F1-score in the range of 83 − 95%

during all years. Without adaption, PetaDroid F1-score drops considerably starting from 2017 sam-

ples. Table 7.9 shows the performance of revisiting detection decisions on previous Android apps

Xtest (benign and malware) after updating PetaDroid ensemble using Xbuild ∪Xextend, Xextend ⊆

Xtest. The update performance is significantly enhanced in the overall detection during all years.

Revisiting malware detection decisions is common practice in App market (periodic full or partial

scan the market’s apps), which empowers the use case of PetaDroid automatic adaptation feature

and the update metric.

7.3.7 Efficiency

In Figure 7.7, we depict the average time of PetaDroid detection process. The latter include

disassembly, preprocessing, and inference time. PetaDroid spends, on average, 4.0 seconds to

178



2014 2015 2016 2017 2018 2019
0

10
20
30
40
50
60
70
80
90

100

General F1 %
Confedance F1 %

(a) (2013)

2014 2016 2018
0

10
20
30
40
50
60
70
80
90

100

General F1 %
Confedance F1 %

(b) (2014)

2014 2016 2018
0

10
20
30
40
50
60
70
80
90

100

General F1 %
Confedance F1 %

(c) (2015)

2014 2016 2018
0

10
20
30
40
50
60
70
80
90

100

General F1 %
Confedance F1 %

(d) (2016)

2014 2016 2018
0

10
20
30
40
50
60
70
80
90

100

General F1 %
Confedance F1 %

(e) (2017)

2014 2016 2018
0

10
20
30
40
50
60
70
80
90

100

General F1 %
Confedance F1 %

(f) (2018)

2014 2016 2018
0

10
20
30
40
50
60
70
80
90

100

General F1 %
Confedance F1 %

(g) (2019)

Figure 7.6: PetaDroid Resiliency to Changes over Time

fingerprint an Android app. The runtime increases for benign apps, 5.5 seconds, because their

package sizes tend to be larger compared to malicious ones. For malware apps, PetaDroid spends,

on average, 3.0 seconds for fingerprinting on the app. The detection process of benign apps takes

more time on the average compared with malicious apps because benign apps tends to have larger
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Year No Update(F1%) General(F1%) Confidence(F1%) Update(F1%)
2014 98.2 97.0 97.9 99.7
2015 96.1 95.8 96.7 97.5
2016 93.0 93.3 94.8 96.4
2017 70.6 83.9 84.2 95.4
2018 54.8 87.6 91.6 93.8
2019 55.6 96.3 98.7 99.1

Table 7.9: Performance of PetaDroid Automatic Adaptation

size than malicious apps.
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Figure 7.7: PetaDroid Runtime Efficiency

7.4 Comparative Study

In this section, we conduct a comparative study between PetaDroid and state-of-the-art An-

droid malware detection systems namely, MaMaDroid [148, 158] and DroidAPIMiner [60]. Our

comparison is based on applying PetaDroid on the same dataset (malicious and benign apps) and

settings that MaMaDroid used in the evaluation (provided by the authors in [158]). The dataset is

composed of 8.5K benign and 35.5K malicious apps in addition to Drebin [73] dataset. The mali-

cious samples are tagged, by time; malicious apps from 2012 (Drebin), 2013, 2014, 2015, and 2016

and benign apps are tagged as oldbenign and newbenign, according to MaMaDroid evaluation.

7.4.1 Detection Performance Comparison

Table 7.10 depicts the direct comparison between MaMaDroid and PetaDroid different dataset

combinations. In PetaDroid, we present the general and the confidence performance in terms of

F1-score. For MaMaDroid and DroidAPIMiner, we present the original evaluation result [158] in

terms of F1 score, which are equivalent to the general performance in our case. Notice that, we
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present only the best results of MaMaDroid and DroidAPIMiner as reported in [158].

Peta (F1%) MaMa (F1%) Miner (F1%)
General-Confidence

drebin&oldbenign 98.94 - 99.40 96.00 32.00
2013&oldbenign 99.43 - 99.81 97.00 36.00
2014&oldbenign 98.94 - 99.47 95.00 62.00
2014&newbenign 99.54 - 99.83 99.00 92.00
2015&newbenign 97.98 - 98.95 95.00 77.00
2016&newbenign 97.44 - 98.60 92.00 36.00

Table 7.10: Detection Performance of MaMaDroid, PetaDroid, and DroidAPIMiner

As depicted in Table 7.10, PetaDroid outperforms MaMaDroid and DroidAPIMiner in all

datasets in the general performance. The detection performance gap increases with the confidence-

based performance. Notice that the coverage in the confidence-based settings is almost perfect (only

few apps have been filtered due to the low confidence) for all the experiments in Table 7.10.

7.4.2 Efficiency Comparison

In Table 7.11, we report the required average time for MaMaDroid and PetaDroid to finger-

print one Android app. PetaDroid takes 03.58 ± 04.21 seconds on average for the whole process

(DEX disassembly, assembly preprocessing, CNN ensemble inference). MaMaDroid, compared to

PetaDroid, tends to be slower due to the heavy preprocessing. MaMaDroid preprocessing [148] is

composed of the call graph extraction, sequence extraction, and Markov change modeling, which re-

quire 25.40±63.00, 1.73±3.2, 6.7±3.8 seconds respectively for benign samples and 09.20±14.00,

1.67 ± 3.1, 2.5 ± 3.2 seconds respectively for malicious samples. On average, PetaDroid (3.58s)

is approximately eight times faster than MaMaDroid (≈ 23).

PetaDroid (seconds) MaMaDroid (seconds)
Malware 02.64± 03.94 09.20± 14.00 + 1.67± 3.1 + 2.5± 3.2
Bengin 05.54± 05.12 25.40± 63.00 + 1.73± 3.2 + 6.7± 3.8
Average 03.58± 04.21 ≈ 23s

Table 7.11: MaMaDroid and PetaDroid Runtime

7.4.3 Time Resiliency Comparison

MaMaDroid evaluation emphasizes the importance of time resiliency for modern Android mal-

ware detection. Table 7.12 depicts the performance with different dataset settings, such as training
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using an old malware dataset and testing on a newer one. PetaDroid outperforms (or obtains a

very similar result in few cases) MaMaDroid and DroidAPIMiner in all settings. Furthermore, the

results show that PetaDroid is more robust to time resiliency compared to MaMaDroid [158].

Testing Sets drebin & oldbenign 2013 & oldbenign 2014 & oldbenign 2015 & oldbenign 2016 & oldbenign
Training Sets Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta

drebin&oldbenign 32.0 96.0 99.4 35.0 95.0 98.6 34.0 72.0 77.5 30.0 39.0 44.0 33.0 42.0 47.0
2013&oldbenign 33.0 94.0 97.8 36.0 97.0 99.6 35.0 73.0 85.4 31.0 37.0 59.3 33.0 28.0 56.6
2014&oldbenign 36.0 92.0 95.8 39.0 93.0 98.6 62.0 95.0 99.4 33.0 78.0 91.4 37.0 75.0 88.9

drebin & newbenign 2013 & newbenign 2014 & newbenign 2015 & newbenign 2016 & newbenign
Training Sets Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta

2014&newbenign 76.0 98.0 99.3 75.0 98.0 99.7 92.0 99.0 99.8 67.0 85.0 91.4 65.0 81.0 82.1
2015&newbenign 68.0 97.0 97.1 68.0 97.0 97.8 69.0 99.0 98.9 77.0 95.0 99.0 65.0 88.0 95.4
2016&newbenign 33.0 96.0 95.6 35.0 98.0 98.2 36.0 98.0 97.9 34.0 92.0 95.2 36.0 92.0 98.3

Table 7.12: Classification performance of MaMaDroid, PetaDroid, DroidAPIMiner.

7.5 Case Studies

In this section, we conduct mega-scale experiments on AndroZoo dataset (9.5 million Android

apps). We argue that these experiments reflect real word deployments due to the dataset size, time

distribution (2010-2019), and malware family diversity. We report that PetaDroid detection overall

performance and overtime performance using our automatic adaptation feature in terms of general

confidence.

7.5.1 Scalable Detection

In this experiment, we employ 8.5 out of 9.5 million Android apps from AndroZoo dataset. The

used dataset is composed of 1.0 million malicious samples and 7.5 millions benign sample. We filter

out app samples that do not correlate with VirusTotal, or they have less than five maliciousness flags

in VirusTotal. In our experiments, we randomly sample k samples as build dataset Xbuild and use

the rest 8.5M−k as Xtest. We use different k sizes, k ∈ {10k, 20k, 50k, 70k, 100k}, and we repeat

each experiment ten times to compute the average detection performance. In Table 7.13, we report

the detection performance in terms of F1-score of PetaDroid on AndroZoo dataset. PetaDroid

shows a high F1-score for all the experiments, 95 − 97% F1-score. We achieved 95.34% F1-score

when the build set is only 10k. We argue that fragment randomization plays an important role in

achieving these detection results because it acts as a data augmenter (the randomization generates
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several canonical instruction sequences from a given Android app through the permutation of the

methods code) during the training phase.

#Samples General (F1 %) Confidence (F1 %)
10k 95.34 97.88
20k 96.17 98.01
50k 96.50 98.10
70k 96.76 98.11
100k 97.04 98.17

Table 7.13: PetaDroid Mega-Scale Detection Performance

7.5.2 Scalable Automatic Adaptation

In this experiment, we put the automatic adaptation feature on mega scale test using 5.5 million

samples from AndroZoo dataset (2013-2016) on 25 training epochs (every three months). We initi-

ate PetaDroid on only 25k build dataset collected between 2013−Jan−01 and 2013−Jan−31.

PetaDroid rebuilds new CNN ensemble for each three month samples by retraining on Xbuild(t) =

Xbuild(t−1) ∩Xextend.

Before Update (F1 %) After Update (F1 %)
Update Epoch General Confidence General Confidence
2013-01-31 / / / /
2013-04-30 96.02 98.43 99.01 99.71
2013-07-31 94.52 96.12 97.95 99.56
2013-10-31 94.42 97.37 97.03 99.56
2014-01-31 83.45 92.74 95.45 99.37
2014-04-30 90.48 96.21 94.15 99.43
2014-07-31 86.98 95.79 91.53 99.11
2014-10-31 92.32 98.47 93.11 99.00
2015-01-31 91.57 97.72 90.91 99.18
2015-04-30 91.31 98.55 92.72 99.09
2015-07-31 88.16 97.46 88.90 98.99
2015-10-31 73.82 87.45 83.44 97.57
2016-01-31 78.59 90.92 85.11 96.26
2016-04-30 84.78 95.44 86.38 98.33
2016-07-31 71.39 88.08 80.27 93.54
2016-10-31 78.31 85.79 79.68 90.75

Table 7.14: Autonomous Adaptation on Mega-Scale Dataset

In Table 7.14, we report the general and confidence performance before and after updating

PetaDroid CNN ensemble on an extended build dataset. The automatic adaption feature achieves

very good results. The general and confidence-based performance in terms of F1 score vary between

71.39−96.02% and 85.79−98.55%, respectively. These performance results increase considerably

(90.75 − 99.71% F1-score) after revising the previous detection decisions using an updated CNN
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ensemble using a new Xextend on each epoch.

7.6 Summary

In this chapter, we presented PetaDroid, an Android malware detection, and family cluster-

ing framework for large scale deployments. PetaDroid employs supervised machine learning, an

ensemble of convolutional neural networks on top of Inst2Vec features, to fingerprint Android ma-

licious apps accurately. Furthermore, PetaDroid uses unsupervised machine learning, precisely

DBScan clustering on top of InstNGram2Vec and deep auto-encoders features, to cluster highly

similar malicious apps into their most likely malware family groups. In PetaDroid, we introduced

fragment-based detection, in which we randomize the macro-action of Android APIs while keep-

ing the inner order of methods’ sequences. Fragment randomization acts as a data augmentation

mechanism during the training and strengthens detection robustness against common obfuscation

techniques during deployment. Also, we introduced the automatic adaption technique that leverages

confidence-based decision making to build a new CNN ensemble on confidence detection sam-

ples. The adaptation technique automatically enhances PetaDroid time resiliency. We conducted a

thorough evaluation of different reference datasets and various settings. PetaDroid achieved high

detection (98-99% F1-score) and family clustering (96% cluster homogeneity) performance. Our

comparative study between PetaDroid and MaMaDroid [148, 158] shows that PetaDroid out-

performs state-of-the-art solutions on various settings. We evaluate PetaDroid on a market scale

Android dataset, over 100TB of data and 9.7 million samples.

In the next chapter, we apply the learned techniques from Android malware fingerprinting and

detection on an entirely different platform and malware type, namely ransomware. The goal is to

check the applicability of the elaborated techniques on general malware.
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Chapter 8

Ransomware Hybrid Fingerprinting

8.1 Overview

In this chapter, we present SwiftR, a novel ransomware fingerprinting framework for ran-

somware. SwiftR employs the elaborated methods, techniques, and tools in the previous chapters

to detect ransomware. Ransomware attacks have recently seen a dramatic increase. In February

2015, TeslaCrypt [37] ransomware targeted online gaming and collected over 75k$. In May 2015,

Fusob [57], one of the major mobile ransomware, gathered ransoms from half of the infected de-

vices. Tox [30] is the first ransomware-as-a-service (RaaS) kit that was published in May 2015.

Later, in September 2015, Chimera [50] was identified as the first ransomware that threatens system

owners by leaking encrypted data. In February 2016, Locky [14] attacked hospitals in Hollywood,

collecting 17k$. Then, in April 2016, the first version of Petya [49], delivered via Dropbox cloud

storage, was discovered. A more advanced version of Petya [31] has been identified in June 2017,

which exploits a modified EternalBlue exploit [43] for spreading over the Internet. In May 2017,

WannaCry [32] infected over 300 thousand systems in over 150 countries. In October 2017, Bad

Rabbit [16] targeted Ukraine’s Ministry of Infrastructure and Kiev’s public transportation system.

In March 2018 [42], the city of Atlanta was crippled for six days after being hit by a ransomware

that targeted the IT services of the city. Also, since its appearance in August 2018, Ryuk [59]

ransomware, has attacked many organizations around the world.

We identify the following problems:
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P1: Most of the available ransomware detection solutions employ dynamic analysis as a source

of fingerprinting features. Dynamic analysis [90, 134] provides an effective way to fingerprint

ransomware, but it suffers from the fact that most of the execution paths of the analyzed sample

are not covered by anti-sandboxing techniques. Furthermore, it is a time-consuming task, espe-

cially given the large number of ransomware and malware that are collected on a daily basis [8, 9].

However, these gaps could be narrowed by leveraging a hybrid analysis, whereby both static and

dynamic analysis are employed. Although static analysis is known for not being resilient against

code obfuscations, hybrid analysis can inherit the strengths of both static and dynamic analysis,

which increases resiliency against detection evasion, and hence improves the effectiveness and the

efficiency of ransomware detection.

P2: When employing conventional machine learning, human intervention is required in terms of

feature engineering to manually select the relevant features for malware detection. However, this

issue can be addressed by adopting a deep learning approach, which avoids the process of hand-

crafted feature engineering by learning a set of features automatically. This will help in improving

the automation process of building and deploying malware detection systems.

P3: The state-of-the-art malware detection (including ransomware detection) solutions are limited

to a specific platform. However, the diversity of architectures and platforms highlights the need for

cross-platform and heterogeneous architecture malware/ransomware detection. This portability is a

requirement in case of static analysis due to the presence of different architectures. Also, given the

variety of platforms, dynamic analysis produces different types of behavioral analysis reports. This

also requires portable detection in order to handle the variety in report types.

P4: Most of the existing solutions focus on ransomware detection. They extract security features to

distinguish between ransomware and benign code. However, less importance is given to other de-

tection tasks: (1) segregation between ransomware and other malware (that we will call attribution),

and ransomware family attribution. Malware attribution is the task of differentiating ransomware

from other malware. Family attribution assigns the detected ransomware to known ransomware

family. These different aspects provide granular intelligence for better security-oriented decision

making.
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Motivated by the aforementioned problems, we propose in this chapter, SwiftR, which rep-

resents a novel framework for ransomware, malware, and family fingerprinting using raw hybrid

features. The proposed framework allows to detect ransomware, distinguish them from general

malware, and infer their ransomware family with high accuracy across different architectures, com-

pilers, and operating platforms. SwiftR is composed of two novel maliciousness fingerprinting

stages: static SwiftR, and dynamic SwiftR. Static SwiftR is the first stage of SwiftR framework

that leverages the static analysis features extracted from the Intermediate Representation (IR). Dy-

namic SwiftR is the second stage of SwiftR framework. Dynamic SwiftR is triggered when the

Static SwiftR stage provides a low probability confidence. We execute the sample in a sandboxing

environment (platform-dependent) and collect the behavioral analysis reports.

8.1.1 Threat Model

We position SwiftR as a ransomware detection system that relies on both static and dynamic

analyses. Therefore, SwiftR inherits the strengths of both analyses. Static SwiftR provides high

code coverage and exploration of the execution paths. More importantly, Static SwiftR provides

swift ransomware detection due to the efficiency of the stages (feature extraction, feature represen-

tation, neural network detection) in the detection pipeline. Dynamic SwiftR is the second stage

in SwiftR framework, and enhances the resiliency of the system to sophisticated binary packing

[123, 149] and code obfuscations. We employ flat implicit features such as IR VEX operation em-

bedding sequence that provides resiliency to code transformation, as presented in Asm2vec [100].

Furthermore, relying on a neural network helps in discovering hidden and powerful features to iden-

tify ransomware that is more resilient to obfuscation [100], compared to manual engineered features.

Despite the previous obfuscation mitigation measures, Static SwiftR is not immune against sophis-

ticated packing and obfuscation techniques. In this regard, Dynamic SwiftR allows to bridge such

a gap in the case where Static SwiftR generates low confidence results.
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8.1.2 Static SwiftR

Crypto-ransomware has distinguishable behaviors compared to benign binaries and general mal-

ware. This is due to the heavy usage of cryptographic primitives to encrypt the victim’s files. Fur-

thermore, specific ransomware families leverage known vulnerabilities to spread to other machines

in the network. For example, WannaCry family [43] exploits the EternalBlue vulnerability to infect

other local machines. These symptoms have particular fingerprints in the ransomware binary and its

assembly. For example, WannaCry samples use a combination of RSA and AES encryption algo-

rithms. Windows Crypto API is used for RSA encryption and random key generation [15]. Besides,

a third-party implementation of AES is statically linked within some variants of WannaCry family

[15].

8.1.3 Dynamic SwiftR

The execution of a binary sample (or app) produces textual reports, whether in a controlled

environment (software sandbox) or a real environment. The reports, which are sequences of state-

ments are the result of the app events, and this depends on the granularity provided by the execution

environment. Furthermore, each report statement represents a sequence of words that gives a more

granular description of the actual app event. From a security perspective, malware behaviors are

summarized in the execution report, which is a sequence of statements, and each statement is a

sequence of words. We argue that ransomware has distinguishable behaviors from general malware

and benign apps, and this characteristic is translated into words in the behavioral report.

8.1.4 SwiftR Neural Network

Ransomware mitigation solutions based on dynamic analysis such as those in [93, 134] are

based on manual feature engineering. These features depend on a specific platform and cannot be

generalized to other platforms and architectures. Also, such an approach is not keeping up with

the pace of change in ransomware and general malware. In contrast, we use raw representations

of labeled samples and machine learning techniques in order to extract and filter relevant security

features during the training phase. In this chapter, we employ deep learning techniques for the
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ransomware fingerprinting. This enables automatic feature engineering through the use of the multi-

layer Neural Network (NN) in Static (Section 8.4.2) and Dynamic (Section 8.4.3) SwiftR. Our

deep learning approach achieves the highest detection rates without the need for manual security

practitioner intervention for feature engineering. We only need to represent the ransomware and

non-ransomware samples in their raw sequences format. The neural network will do the automatic

feature engineering during the training phase. In Static SwiftR, neural networks with embedding

sequences show high resiliency to obfuscations compared to manual feature engineering techniques

[100]. In Dynamic SwiftR, we feed dynamic analysis reports into an LSTM neural network in order

to perform cross-sandboxing ransomware fingerprinting.

8.2 Methodology

SwiftR methodology involves the composition of Static and Dynamic SwiftR.

8.2.1 Static SwiftR Approach
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Figure 8.1: Static SwiftR Overview

Static SwiftR, as shown in Figure 8.1, tackles the static side of binary samples such as the

assembly code. It provides a portable ransomware detection capability by employing portable and

raw features extracted from the assembly code intermediate representation and the sample binary

content. SwiftR Static detection process starts by taking a packed binary and unpacking it using
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unpacking tools (provided by a third-party security company). Static SwiftR leverages the binary

and the underlying assembly static contents to fingerprint ransomware.

Static Implicit Features

As illustrated in Figure 8.1, SwiftR extracts VEX IR operations embedding sequences and the

function invocation embedding sequences from the assembly content. We produce the embeddings,

by employing state-of-the-art word embedding techniques based on word2vec [153]. The latter

considers co-occurrences in the sequences. The intuition is that items that frequently co-occur will

have “embeddings” with smaller distance between them, and vice versa. Previous works [100],

[132], [193] show the effectiveness of using word embedding techniques, such as word2vec, to

fingerprint obfuscated apps in general and specifically malware in particular. From the sample

binary content, SwiftR produces the entropy matrix of the whole binary. Previous works [146],

[156], [62] show the resiliency of the binary entropy to various obfuscation techniques. Implicit

static features will be described in more detail in the next sections.

Static Neural Network Architecture

The previous static features are raw and implicit. We aim to automatically extract explicit and

latent features from ransomware samples using deep learning techniques. For this purpose, we

design a hierarchical neural network based on different neural network architectures such as con-

volution neural network (CNN) [113] and Multi-Layer Perceptron (MLP) [113]. Each raw feature

type is an input for one neural network block (as depicted in Figure 8.1), which acts as an automatic

feature engineering component. All these neural networks are connected to an MLP that serves

as a decision maker. We call our custom architecture a Hierarchical Neural Network (HNN). This

terminology is our proper name for the proposed NN architecture and it is not related to other neural

network architectures with similar names in the literature. The output of HNN represents probability

vectors. As shown in Figure 8.1, each component in sDp captures the likelihood class for a sample,

i.e., ransomware, other general malware, or benign binary. Also, HNN outputs ransomware fam-

ily probability sFp distribution of known ransomware families. Last, HNN outputs the confidence

probability sCp that measures the confidence in the decision made by the static system.
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Static Training and Decision Making

Static SwiftR is a supervised multi-task neural network. We train an HNN on a training dataset

to maximize the probability of correctly labeling the samples. Each sample in the training dataset

has three label categories: First, we have the detection label that can be either ransomware, other

malware, or benign binary executable. Second, we have the ransomware family label that is ascribed

to the sample (one or more ransomware families depending on its characteristics). Third, we have

another label that we call the confidence label, which indicates the capability of static SwiftR to

correctly identify the class of the binary sample. The intention is to train an HNN on highly-

obfuscated, encrypted, packed samples (ransomware, other malware, and benign) to output a low-

confidence probability sCp. Otherwise, the HNN will output a high sCp, which indicates that

SwiftR achieves classification with high confidence. As such, Static SwiftR provides measurable

insight on the capability of static analysis to accurately fingerprint the class of given binary samples.

During deployment, we first ensure that sCp > sCth (where sCth is the confidence threshold) and

if so, we use the resulting sDp and sFp as detection and family attribution results. Instead, if the

confidence threshold is not met, we resort to Dynamic SwiftR for further analysis.

8.2.2 Dynamic SwiftR Approach

Dynamic SwiftR, as shown in Figure 8.2, focuses on the behavioral reports produced during

samples execution in a controlled environment (sandboxing) or in a runtime environment (user ma-

chine). It is important to mention that Dynamic SwiftR is portable system as it relies on automatic

engineering of relevant security features without the intervention of a security expert. Actually, Dy-

namic SwiftR is built on top of Natural Language Processing (NLP) modeling and recurrent neural

network techniques - specifically LSTM [117]. The key idea is to model a behavioral report, in a

manner that is agnostic to the execution environment, as a Sequence of Words (SoW), where the

features are the words of the reports. As such, we employ LSTM based neural network to auto-

matically discover relevant security features from a report’s sequence of words that can fingerprint

ransomware.
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Figure 8.2: Dynamic SwiftR Overview

Producing Behavioral Reports

Dynamic SwiftR Framework starts from a behavioral report, which is serialized from the exe-

cution in a controlled environment, as the sample is running. We consider two primary sources for

such reports based on the environment type. First, we collect reports, in a controlled system, from

a software sandbox environment [189], where we execute a binary program, a malware or a benign

executable. Second, we could collect as well behavioral reports from a production system in the

form of runtime logs of running programs.

Dynamic Implicit Features

Dynamic SwiftR uses word-centric features to fingerprint ransomware. A behavioral report is

converted to a sequence of words with minimal preprocessing, such as removing special characters

and splitting sentences. Afterward, we map the sequence of words to the sequence of embeddings

using state-of-the-art word embedding techniques such as word2vec [153] as presented in Section

8.2.1.

Dynamic Neural Network Architecture

Dynamic SwiftR uses an RNN to achieve the classification task. In a similar manner to Static

SwiftR, it outputs dCp, dDp, dFp, confidence, detection, and family probability distributions. Our

RNN architecture is based on an LSTM model [117], which will be described, in details, in the next

sections.
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Training and Decision Making

Similar to Static SwiftR (Section 8.2.1), we train Dynamic SwiftR neural network on labeled

behavioral reports (training set). Each report is labeled as described in Section 8.2.1. We leverage

the serialized report as a word embedding sequence to provide the probability vectors dCp, dDp,

dFp, which are confidence, decision and family probability vectors. Dynamic SwiftR produces its

final decision when dCp > dCth, where dCth is our confidence threshold, even before the execution

ends. For dDp and dFp, the decision, during the deployment process, is the same as in Static SwiftR

(Section 8.2.1).

8.2.3 SwiftR Detection Strategy

SwiftR adopts two strategies to handle the outcome of its static and dynamic components. First,

in the parallel strategy, SwiftR produces probability distributions for both components. We average

the likelihood probabilities. The highest probability decides the class of the sample. Second, in the

serial strategy, SwiftR produces outcomes from its static component. Based on the confidence in the

probability distributions, under a certain threshold, we decide to invoke or not Dynamic SwiftR. The

parallel strategy is convenient when there is a minimal overhead in producing behavioral reports. For

example, in a production environment, the system runs the binary program anyway, and produces

reports to check for abnormal behaviors.

8.3 Implicit Features

In this section, we describe the features used by SwiftR to fingerprint ransomware. We use

the implicit terminology because the designed features are raw, and the neural network needs to

learn explicit security features for fingerprinting purposes. We design the feature representation that

retains the maximum information about the sample.

8.3.1 Implicit Static Features

We divide the static features into binary content and assembly content features.
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Binary Content Features

In the binary content, we treat the binary sample surface as a sequence of bytes. The goal is to

compute the bytes entropy of different regions of the binary sample.

Byte Entropy Matrix. The Byte Entropy Matrix (BEM) is a raw representation that summarizes

the binary content of a given sample. We deal with a fixed-size format. As such, BEM is a 4096×

4096 matrix, and we keep maximum information for the fingerprinting tasks. We need a small

matrix because this representation will be the input to a Convolutional Neural Network (CNN). As

presented in Algorithm 10, we commence the computation of BEM by dividing the binary sample

into 212 = 4096 binary regions. We calculate byte 4-grams of each binary region and represent it

as a fixed-size vector (212) using the feature-hashing technique [173]. We argue that the amount

of information proportionally increases with the number of regions. For each region, we apply the

feature-hashing technique (or hashing trick) [173], followed by L2 normalization on the computed

byte 4-grams of a given region. The output is the byte entropy matrix, with a uniform size (212×212),

for an arbitrary size sample. However, the size of BEM is still too large and it is sparse, which could

influence the efficiency of the fingerprinting process.

Algorithm 10: Compute the Binary Entropy Matrix
Input : BSeq: Bytes Sequence
Output: BEM : Bytes Entropy Matrix

begin
BEM ← Matrix(row=4096, col=4096);
BSlen← size(BSeq);
RegSize← size(BSeq)/4096;

foreach idx ∈ [0..4096] do

rest← size(BSeq[RegSize+ idx,BSlen]);

if rest >= RegSize then
BinReg ← BSeq[idx,RegSize+ idx];

else
BinReg ← BSeq[idx,BSlen];

end
BinNGrams← Get4grams(BinReg)

ByteFreqV ec← Vector(size=4096);

EntropyV ec← FHash(BinNGrams);
EntropyV ec← L2Norm(EntropyV ec);

BEM [idx, :]← EntropyV ec;

end

return BEM ;
end
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Compressed BEM. In this step, we compress further the BEM into an 256×256 matrix and obtain

a Compressed BEM (CBEM). SwiftR simply leverages Principal Component Analysis (PCA) to

reduce the size of the BEM to make the detection faster. Our approach relies on applying PCA to

BEM in the training and deployment as depicted in Algorithm 11.

Algorithm 11: BEM Compression
Input : BEM : Bytes Entropy Matrix
Output: CBEM : Compressed BEM
begin

compress← PCA(components=256);
sBEM ← Reshape(BEM, (65536, 256));
CBEM ← compress(sBEM);
return CBEM ;

end

CBEM Visualization: In order to show the relevance of using CBEM in ransomware finger-

printing, we visualize the CBEM of the samples from our dataset. Figure 8.3 depicts the samples’

CBEM after applying the Whittaker-Shannon interpolation1. The first row (i.e., Figures 8.3(a),

8.3(b), 8.3(c)) shows the samples’ CBEM from the benign dataset whose MD5 values start with

a943d, 98687, and 8139f. Similarly, other malware are shown in the second row (i.e., Figures

8.3(d), 8.3(e), 8.3(f)), WannaCry samples are shown in the third row (i.e., Figures 8.3(g), 8.3(h),

8.3(i)), and TeslaCrypt samples are shown in Figures 8.3(j), 8.3(k), 8.3(l). The aforementioned

figures show distinguishable patterns among the categories of samples. Visually, we are in a posi-

tion to cluster the samples into categories. In particular, we clearly distinguish the WannaCry’s and

TeslaCrypt’s patterns.

Assembly Intermediate Representation Content

In this section, we focus on the assembly content of the samples. The assembly is the result

of the disassembly operation on the binary sample. Afterwards, we lift the architecture specific

assembly to an intermediate representation. In our case, we choose VEX IR [35] due its simplicity

and the availability of open-source tools to process it, such as Angr [34].

Assembly Feature Sequences. The process of extracting static features from assembly is pre-

sented in Figure 8.4. SwiftR disassembles the program into architecture-specific assembly. Next,
1http://bit.ly/2sPmlIp
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Figure 8.3: CBEM Visualization using Sinc Interpolation

we lift it to intermediate representation, which is architecture-independent. Finally, we extract fea-

ture sequences.

Word2Vec

00 -> user32.dll→isiconic
01 -> gdi32.dll->savedc
02 -> gdi32.dll→createfontindir
03 -> kernel32.dll→getacp
 ...
22 -> gdi32.dll→getstockobject
23 -> kernel32.dll→getacp
 ...
50 -> gdi32.dll->getdevicecaps
51 -> gdi32.dll->savedc

00 -> Iex_Get 
01 -> Iex_Binop 
02 -> Iex_RdTmp
  ... 
21 -> Iex_Get 
22 -> Iex_Binop 
  ...
45 -> Iex_RdTmp 
46 -> Iex_Const
  ...

VEX
 Operations

0x401131: mov byte ptr [eax], ah
0x401133: out dx, al
0x401134: cmc
0x401135: cmpsb byte ptr [esi], byte ptr es:[edi]
0x401136: sbb dword ptr [ecx + 0x542707], ebx
0x40113c: out 0xab, eax
0x40113e: sbb dword ptr [eax - 0x2d3feaf7], ebp
0x401144: or dh, byte ptr [edx - 0x58]
0x401147: imul ebp, edx, 0x1815d300
0x40114d: xor bh, byte ptr [ecx + 0x8979167]
0x401153: jp 0x401131

ASM

00 | ------ IMark(0x401131, 2, 0) 
01 | t0 = GET:I32(eax)
02 | t33 = GET:I8(ah)
03 | STle(t0) = t33
04 | PUT(eip) = 0x00401133
05 | ------ IMark(0x401133, 1, 0) 
06 | t35 = GET:I16(dx)
 ...
46 | t57 = Xor32(t10,t49)
47 | PUT(cc_dep2) = t57
48 | PUT(cc_ndep) = t49
49 | PUT(eip) = 0x0040113c
  ...
53 | ------ IMark(0x40113e, 6, 0) 
54 | t59 = Add32(t0,0x1509)
55 | t18 = LDle:I32(t59)
56 | t17 = GET:I32(ebp) VEX IR

Function
Control Flow Graph

VEX Operation 
Embedding Sequence

API Function 
Embedding Sequence

VEX Intermediate 
Representation

Architecture Specific Assembly
API Function Sequence 

VEX Operatio Sequence 

Figure 8.4: Implicit Static Feature Generation Process

VEX Operation Sequence: From VEX IR, SwiftR employs raw VEX operations as represen-

tation of program semantics. We argue that this raw sequence will preserve the essential information

to fingerprint ransomware from other types. SwiftR puts the burden of automatic feature engineer-

ing on neural networks to discover granular features. As shown in Figure 8.4, we keep the order

in the VEX operations sequence by concatenating operations of basic blocks at the function level.
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Afterwards, we concatenate the sequences associated with functions to produce one sequence for

the entire sample.

API Function Invocation Sequence: As shown in Figure 8.7, we leverage function invocations

because they reflect the called Application Programming Interfaces (API) by a program during

the execution. For example, the usage of cryptographic primitives is an essential part of crypto-

ransomware. Similarly, we keep the order of function invocations sequence starting from the basic

blocks to the functions, and finally the program.

Sequence Visualization: We visualize sequences to check the similarities between samples.

Figure 8.6 depicts the discrete VEX operation (the operation is replaced with a unique identification

number) and a sequence of a hundred operations in bar charts. The height of each bar represents the

numerical identification of the VEX operation. It is noticeable that sequences are very similar in the

case of WannaCry samples (i.e., Figures 8.6(g), 8.6(h), 8.6(i)), as well as in the case of TeslaCrypt

samples (i.e., Figures 8.6(j), 8.6(k), 8.6(l). On the other hand, the sequences of benign samples are

different. In the case of other malware (i.e., Figures 8.6(d), 8.6(e), 8.6(f)), the sample sequences

are not similar but they have more common parts compared to the benign sequences (i.e., Figures

8.6(a), 8.6(b), 8.6(c)). Figure 8.5 shows the chart of a complete sequence that SwiftR will leverage

to fingerprint ransomware.

Figure 8.5: Full Opcode Sequence of TeslaCrypt (ec65d) Sample

Assembly Embedding Sequences. Word embedding techniques, such as word2vec [153] and

GloVe [159], are extensively used in state-of-the-art natural language processing solutions to map

words to embeddings. In cyber security, embedding techniques show high effectiveness in code

identification. For example, Asm2Vec [100] uses an extension of word2vec embedding technique

for function identification. The authors show the resiliency of embedding techniques to code ob-

fuscation. Other proposals, such as [132, 193], employ embeddings for malware detection. SwiftR

leverages word2vec [153] embedding technique to map feature sequences to embedding sequences.
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Figure 8.6: VEX Operation Sequences (100 Operations)

8.3.2 Implicit Dynamic Features

In this section, we detail the implicit dynamic features. The following properties represent

the design goals of SwiftR implicit dynamic features: (1) agnostic to execution environment, (2)

automatic feature engineering, and (3) minimal preprocessing. The extraction processing starts from

a behavioral report in its textual format and ends with a behavioral embedding sequence. Figure 8.7

depicts the SwiftR process to generate implicit dynamic features.

<open_key~key="HKE
Y_LOCAL_MACHINE\
Software\Microsoft\
Windows
NT\CurrentVersion\
AppCompatFlags\
Layers"/> 
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Microsoft Windows NT 
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Figure 8.7: Implicit Dynamic Feature Generation Process
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Sequence of Words (SoW)

SwiftR produces a sequence of words from a behavioral report with minimal preprocessing. We

simply split the text of the report into words on spaces and special characters as shown in Figure

8.7. The result is a sequence of words that follows the order in the original report. In contrast with

bag of words (BoW) [128], unique words may repeat in SoW model.

Behavioral Embeddings Sequence

Similarly to static sequences (Section 8.3.1), we use word2vec [153] to map sequences of words

to embeddings. Each word is mapped to one embedding. The word embedding (word2vec) is trained

separately in unsupervised manner as it will be described in Section 8.4.1.

8.3.3 Deep and Conventional Learning for Implicit Features

For automatic pattern recognition from the previous implicit features, SwiftR employs Neural

Networks (NNs), such as Convolutional NNs (CNNs) and Recurrent NNs (RNNs). In contrast

to Conventional Machine Learning (CML) techniques, such as Support Vector Machines (SVMs),

SwiftR NN provides the following advantages: (i) Automatic Feature Engineering: Implicit or raw

features need more processing to produce features for CML pipeline. This requires manual feature

selection, which is time-consuming. In particular, to tackle the exponential growth of new malware

with new features, which slows cycling through building models, SwiftR NN provides automatic

feature engineering from raw feature representation. (ii) Heterogeneous Content: CML requires the

merger and fusion of features from different contents into a single feature vector. In contrast, SwiftR

NN keeps the raw features form the different contents which allows building generic models. (iii)

Temporal Information: CML ignores the temporal and spatial relationship of our raw features by

merging and selecting the feature. As shown in Figure 8.5, VEX IR operations’ values are important

as well as the order between the operations.

199



8.4 SwiftR Neural Network Architecture

In this section, we present the neural network architectures of SwiftR. First, we describe SwiftR

word embedding model, which produces our implicit feature embeddings. Next, we present SwiftR

neural network architectures and their training for static and dynamic features.

8.4.1 SwiftR Word Embedding

SwiftR word embedding model is the key component to produce our so-called implicit features.

Word2vec (as presented in Chapter 7)employs a vector space model to represent a report’s words in a

continuous vector space where words with similar semantics are mapped closely in the space. From

a security perspective, we want to map our features (word identifiers, VEX operations, function

invocations, and behavioral report words) to continuous vectors where their semantics is translated

into a distance in the vector space.

8.4.2 Static SwiftR Neural Network

In the previous sections, we discussed the generation of multiple implicit features: (1) binary

CBEM, (2) VEX embedding sequence, and (3) function embedding sequence. Feature (1) is a

256× 256 matrix, while Features (2) and (3) are sequences of embeddings. Due to the diversity of

the content types and their feature representations, we build our specific neural network architecture

since existing architectures do not fit our use case. We rely on existing neural network models,

such as CNNs and MLPs (Multi-Layer Prceptron), as basic blocks to build SwiftR hierarchical

architecture. The key idea is that each implicit feature has its NN model as presented in Figure 8.1.

This is the first stage, which plays the role of the automatic feature engineering component. In order

to learn from Feature (1), SwiftR employs the architecture detailed in Table 8.1, which is inspired

by the VGG model [174], an important neural network structure for image classification. In order

to learn from Feature (2) and Feature (3), we endow SwiftR with a CNN model that is inspired by

the model proposed in [138], which is designed to learn from embedding sequences. Our sequence

model is presented in Table 8.2.

The second stage plays the role of the decision making component, as depicted in Figure 8.1.
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# Layers Options
1 Conv Filter=128, Kernel=(3,3), Stride=(1,1),

Zero-Padding, Activation=ReLU
B1 2 BNorm BatchNormalization

3 MaxPooling Kernel=(2,2), Stride=(2,2), Zero-Padding
4 Conv Filter=128, Kernel=(3,3), Stride=(1,1),

Zero-Padding, Activation=ReLU
B2 5 BNorm BatchNormalization

6 MaxPooling Kernel=(2,2), Stride=(2,2), Zero-Padding
7 Conv Filter=128, Kernel=(3,3), Stride=(1,1),

Zero-Padding, Activation=ReLU
B3 8 BNorm BatchNormalization

9 MaxPooling Kernel=(2,2), Stride=(2,2), Zero-Padding
10 MaxPooling Global Max Pooling

B4 11 FC #Output=512, Activation=ReLU
12 BNorm BatchNormalization

Table 8.1: CBFM Neural Network (CBFM NN)

# Layers Options
1 Conv Filter=128, Kernel=(3,K), Stride=1, Zero-

Padding, Activation=ReLU
B1 2 BNorm BatchNormalization

3 MaxPooling Global Max Pooling
B2 4 FC #Output=512, Activation=ReLU

5 BNorm BatchNormalization

Table 8.2: Sequence Neural Network

# Layers Options
B1 1 FC #Output=512 , Activation=ReLU

2 BNorm BatchNormalization
B2 3 FC #Output=512, Activation=ReLU

4 BNorm BatchNormalization
B3 5 FC #Output=512, Activation=ReLU

6 BNorm BatchNormalization
B4 7 FC #Output=512, Activation=ReL

8 BNorm BatchNormalization
B5 9 FC #Output=512, Activation=ReLU

10 BNorm BatchNormalization
B6 11 FC #Neurons={sCp, sDp, sFp}, Activa-

tion=Sigmoid
1 The number of malware families in the training dataset.

Table 8.3: Decision Neural Network (DNN)

The decision making NN is presented in Table 8.3. The composition of the aforementioned stages

delineates the hierarchical NN architecture of Static SwiftR.

8.4.3 Dynamic SwiftR Neural Network

In previous sections, we discussed how SwiftR is producing behavioral embedding sequences

from the textual content of behavioral reports. In order to recognize ransomware patterns from these

raw sequences, we employ the neural network model illustrated in Table 8.4. The aforementioned
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model is based on the supervised RNN model for ransomware fingerprinting. This model is in-

spired by advanced natural language processing systems, where LSTM (Long Short Term Memory)

[117] is a core component. The intuition behind choosing LSTM, and recurrent neural networks,

in general, is the aim to capture the information of sequential words in dynamic analysis reports.

LSTM is known to learn from long sequences and retain information about the relation between the

sequence items, even on relatively long sequences. This information allows to increase the accuracy

of malware detection in the context of dynamic analysis.

In this context, σ is the sigmoid function, ct is the cell state at time t, ht is the hidden state at

time t, ht−1 is the hidden state of the layer at time t− 1 or the initial hidden state at time 0, and it,

ft, gt, ot are the input, forget, cell, and output gates, respectively [117].

# Layers Options
B1 1 LSTM Hidden=128

2 Dropout=0.2 Dropout Regularization
B2 3 FC #Neurons={sCp, sDp, sFp}, Activa-

tion=Sigmoid

Table 8.4: Dynamic SwiftR Neural Network

8.4.4 SwiftR Training

We abstract SwiftR neural network architectures to the following functions:

StaticNN (xstatic) = ỳ (27)

DynamicNN (xdyn) = ỳ (28)

Where ỳ is the output based on a fingerprinting task. The training dataset is a list of tuples

⟨(x0, y0), (x1, y1), · · · , (xm, ym)⟩, where xi → ⟨vexi, apii, CBEMi, reporti⟩ and yi is a label.

The training objective is to make (̀yi) ≈ yi and (̀yi) ≈ yi for our training dataset and the aim

is to generalize to other examples outside the training dataset. Formally, we define our objective

functions, Jstatic(θstatic) and Jdynamic(θdynamic), with θstatic and θdyn being the parameters to

learn using gradient-based optimization algorithm [113]:
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J(θstatic) =
1

2m

m∑︂
i=1

(StaticNN (xi; θ(xi))− yi)
2 (29)

J(θdyn) =
1

2m

m∑︂
i=1

(DynNN(xi; θ(xi))− yi)
2 (30)

To this end, we search for θ parameters that minimize objective functions J(θ). For this reason,

we leverage the gradient descent optimization algorithm [113] to find the arguments of the minimal

J(θ) by iteratively updating θ until convergence:

θj = θj − α
∂J(θ)

∂θ
(31)

In Equation 31, α is the learning rate. In all our training, we use α = 3E − 4 from Adam

[139], an adaptive learning rate for gradient descent optimization algorithm. The chosen learning

rate comes from different experiments.

8.5 Evaluation Dataset

The evaluation dataset is composed of ransomware, benign applications, and general malware

samples. The total size of the evaluation dataset is 41.3k samples collected over the last six years

from the different categories, as shown in Table 8.5.

Category # Samples Date
Ransomware 10.3k 05-2012 to 09-2017
Bengin 10k 09-2011 to 11-2017
Malware 20k 01-2014 to 05-2017
Total 40.3k 09-2011 to 11-2017

Table 8.5: Evaluation Dataset

The ransomware evaluation dataset is the backbone of our dataset. It is composed of twelve

ransomware families with 10.3k samples in total, as depicted in Table 8.7. The process of collecting

the dataset starts from RansomwareTracker 2 from which we get the malware hashes along with
2https://ransomwaretracker.abuse.ch
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their ransomware families. The families and hash mappings have been confirmed and corrected

manually for some samples using reports from VirusTotal 3. The latter provides the family names

given by the vendors. Furthermore, we leverage VirusTotal to download the actual samples. The

diversity of ransomware families increases the robustness of the evaluation process. In addition to

family diversity, our dataset of ransomware samples is temporally distributed over the period 2012

to 2017, as shown in Figure 8.8. Our time ground-truth is based on the VirusTotal first date analysis.

The time distribution is another factor that is used to enhance the evaluation.

Family #Sample
01 allaple 4506
02 virut 3676
03 nabucur 2005
04 mira 1376
05 sality 1043
06 sivis 1009
07 shodi 932
08 ramnit 496
09 luiha 368
10 vobfus 332
11 ipamor 320
12 loadmoney 317
13 upatre 237
14 bayrob 211
15 neshta 172
16 unruy 166
17 autoit 159
18 valla 158

Family #
19 madang 144
20 chir 126
21 delf 123
22 zbot 120
23 fynloski 111
24 matsnu 110
25 reveton 100
26 kryptik 95
27 cutwail 82
28 fasong 82
29 daws 80
30 urelas 74
31 swrort 73
32 skyper 70
33 expiro 62
34 jadtre 58
35 nitol 52
36 alman 50

Total

Family #
37 gepys 47
38 buzus 46
39 picsys 45
40 jeefo 44
41 kuluoz 44
42 kolabc 39
43 zaccess 36
44 encpk 35
45 pondfull 34
46 fesber 33
47 waski 31
48 rebhip 29
49 slugin 29
50 zegost 29
51 ardamax 28
52 ircbot 28
53 wonton 28
54 nimnul 23

20000

Family #
55 resdro 23
56 sirefef 22
57 waledac 22
58 fakeav 21
59 koutodoor 20
60 tempedreve 18
61 mabezat 17
62 looked 17
63 magania 15
64 winwebsec 15
65 viking 14
66 tufik 12
67 nuqel 12
68 simbot 12
69 geral 11
70 wauchos 7
71 blakamba 7
72 floxif 7

Table 8.6: Malware Dataset Families Distribution
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Figure 8.8: Ransomware Dataset Families Distribution Overtime

The benign dataset needs to represent various categories of benign applications in terms of app

usage. The latter refers to the purpose of the application such as media, utilities, web browsers, etc.

For the above factors, we leverage Ninite4, an automatic app installation to setup all categories of
3https://www.virustotal.com
4https://ninite.com/
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# Family #Sample
01 teslacrypt 5185
02 locky 2522
03 cerber 1006
04 cryptowall 690
05 wannacry 383
06 sage 348

Total

# Family #Sample
07 ctb-locker 83
08 torrentloc 43
09 paycrypt 22
10 dmalocker 8
11 petya 3
12 padcrypt 1

10294

Table 8.7: Ransomware Families Distribution

apps form a Firefox web browser to a Blender 3D modeling tool. The collection ends up with 10k

benign samples distributed in terms of application and time, as presented in Table 8.5.

The general malware dataset contains 20k malware samples that are collected from over 70

general malware families, as presented in Table 8.6. The family-related ground-truth is provided by

a third-party security vendor (ThreatTrack Security5). We explicitly choose to have over 70 malware

families in the malware dataset to reflect the diverse families of malware.

8.6 Effectiveness Evaluation

In this section, we report on the effectiveness results of SwiftR. We assess the effectiveness of

SwiftR framework under different cross validation settings. We consider three evaluation metrics:

(1) F1-Score, (2) Area Under the ROC curve (AUC), and (3) False positive rate (FPR).

8.6.1 Evaluation Process

We use K-fold cross-validation to validate the detection results; in particular, we employ 10, 5,

and 3-fold cross-validation. The reason behind using multiple K ∈ {10, 5, 3}, is to check SwiftR

performance under different dataset scales and to provide more confidence. For a given K-fold,

we divide the evaluation dataset into K portions; K − 1 portions are for the training, and the last

one is for the testing. We repeat this process for K times. The final performance result is the

average of the K results. We repeat the experiment ten times for each K-fold setting. The final

results represent average and standard deviation values of the individual experimentation across the

K-folds. Furthermore, the evaluation dataset as a whole will serve as the training dataset for SwiftR

models in the production case study (Section 8.7).
5https://tinyurl.com/ydaovjkz
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8.6.2 Evaluation Checklist

We aim to answer the following questions: (1) How accurately can SwiftR distinguish ran-

somware from benign and malware samples, and attribute such samples to a known ransomware

family? (2) Can SwiftR framework be generalized to detect temporal unknown samples and un-

known families? To answer the above questions, we arrange SwiftR evaluation into the following

evaluation tasks:

• Ransomware Detection: This is the task in which SwiftR differentiates between benign and

ransomware samples (Section 8.6.3).

• Ransomware Attribution: This is the task where we assess the ransomware attribution perfor-

mance of SwiftR in recognizing ransomware from other malware samples (Section 8.6.4).

• Ransomware Family Attribution: In this task, we measure the ability of SwiftR to attribute a

given ransomware sample to its actual ransomware family (Section 8.6.5).

• Detection of Unknown Family: This task answers whether SwiftR detection task could distin-

guish ransomware samples from an unknown ransomware family, and from benign samples

even though this family is not part of the training dataset (Section 8.6.6).

• Detection of Unknown Sample (Time): In this task, we check the detection performance of

unknown ransomware by taking into account the temporal distribution of the samples. As

such, we train using samples from year x and assess the detection performance of samples

from year x+ 1 (Section 8.6.6).

8.6.3 Ransomware Detection

In this section, we focus on the detection performance of SwiftR. Basically, given a binary

program, SwiftR detects whether it is ransomware or benign application.

# Fold F1-Score(%) AUC (%) FPR (%)
10 98.75± 1.43 99.23± 1.56 0.88± 0.27
5 97.54± 2.33 98.85± 1.69 1.15± 0.65
3 97.59± 1.38 98.89± 0.71 1.74± 0.87

Table 8.8: Detection Results Summary
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Figure 8.9: Detection ROC Curves

The detection results of SwiftR are summarized in Table 8.8. In each cross-validation setting,

Table 8.8 shows the average F1-score (threshold 0.5), AUC (Area Under the Curve), and FPR (False

Positive Rate) along with the standard deviation. As presented in Table 8.8, SwiftR shows high

detection performance of SwiftR with low FPR.

In this section, we answer the question related to the detection performance. We provide a

complete answer for the detection capability of SwiftR as part of a production test, as presented in

Section 8.7.

8.6.4 Ransomware Attribution

In this section, we assess the performance of SwiftR on segregating ransomware from general

malware. In essence, given a malware sample, SwiftR discriminates if it is ransomware or general

malware. We assume in this use case that SwiftR is deployed on a filtering environment where there

is more general malware than ransomware. In this context, the attribution capability of SwiftR helps

to filter ransomware samples.

# Fold F1 (%) AUC (%) FPR (%)
10 96.72± 01.56 97.22± 01.75 2.11± 01.24
5 96.98± 01.15 97.89± 02.83 2.02± 01.56
3 96.11± 01.33 96.89± 01.15 2.49± 01.45

Table 8.9: Attribution Results Summary

Table 8.9 depicts a summary of the attribution performance results under the different cross-

validation settings in terms of F1-score, false positive rate (FPR) (threshold t = 0.5), and AUC
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Figure 8.10: Attribution ROC Curves

averages and their standard deviations. As shown in Table 8.9, SwiftR has a high performance in

the attribution task. However, one can note that SwiftR attribution performance is slightly less than

its detection performance results. In other words, SwiftR can better segregate between ransomware

and benign samples than it does between general malware and ransomware samples. There is a

logic behind this observation since general malware and ransomware share maliciousness behaviors,

which are translated into a static content and dynamic behaviors. The shared maliciousness makes

SwiftR attribution more difficult task than the detection where there is little sharing between benign

and ransomware samples. In the next section, we check the effectiveness of SwiftR in ransomware

family attribution.

8.6.5 Ransomware Family Attribution

In this section, we evaluate SwiftR with respect to the ransomware family attribution task, which

is related to the other tasks of SwiftR (Section 8.6.3 and 8.6.4). In other words, after SwiftR dis-

covers a given sample to be ransomware, we are looking for its ransomware family. In contrast

to previous tasks, SwiftR family attribution has many decision outputs according to the number of

targeted families. In our case, we have six families (Locky, TeslaCrypt, Cerber, CryptoWall, Wan-

naCry, Sage) from the top ones in our evaluation dataset. We gather the rest of the samples in a

separate category, named Unknown. In machine learning terminology, the detection tasks represent

a binary classification problem (only two classes); the family attribution task is a multi-classification

problem. The problem of ransomware family attribution is harder than the previous tasks: (i) There
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Figure 8.11: Family Attribution Confusion Matrices

are many ransomware families to consider. (ii) Compared to attribution (Section 8.6.4), the simi-

larity between samples of different ransomware families is quite high, which makes the segregation

task more challenging. (iii) It is hard to consider unknown families, beyond the ones in the training

dataset.

# Fold F1-Score (%) Precision (%) Recall (%)
10 93.58± 02.46 94.94± 03.66 92.73± 05.56
5 94.51± 03.24 95.47± 02.00 93.79± 01.22
3 92.91± 03.85 95.16± 05.06 91.60± 07.63

Table 8.10: Family Attribution Results Summary

Table 8.10 summarizes the performance results of SwiftR family attribution under the different

K-fold cross-validation setups, K ∈ {10, 5, 3}. As shown in Figure 8.10, SwiftR displays a high

performance under different evaluation settings; the F1-score is above 90% in the 10, 5, and 3-fold

cross-validation setups. Due to the difficulty of the task, we consider these results as very good

because the baseline model (random decision) has about 17% (100% / 7) (number of families +

Unknown Class), but we obtain about 94%. The detailed results are presented as confusion matrices

in Figures 8.11(a), 8.11(b), 8.11(c). In the next section, we discuss the performance of SwiftR on

time-based and family-based unknown samples.

8.6.6 Unknown Samples Fingerprinting

In this section, we present the evaluation results of SwiftR against unknown samples. Here, we

address two particular cases of unknown samples, namely: (i) time-based unknown samples and (ii)

family-based unknown samples, as will be presented in the rest of the section.
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Time Scenario

In this scenario, we evaluate the resiliency of SwiftR against time changes. In other words, we

check the time resiliency of SwiftR detection and attribution. We formulate this scenario based on

the following question: How good will be the performance of SwiftR in the next year if we train it

on samples of the current year?

Setup. The setup process starts by dividing the evaluation dataset into training and testing sets,

based on the timestamps of the samples. For malware/ransomware, the timestamps represent the first

detection time for a given malware or ransomware sample. Our ground truth comes from VirusTotal

reports by considering the first seen field. For benign samples, we rely on the release date of the

software. This results in a training set of samples only from 2016 (ransomware, malware, and

benign samples) while the testing set consists of samples only from 2017; where we ignore samples

of other years due to a severe unbalancing.

Results. Figure 8.12 shows the performance of the SwiftR models trained on 2016 dataset and

tested against the 2017 dataset. The figure shows the performance of SwiftR in the attribution task,

where it achieves an average of 92% F1-score for many experiments. Attribution performance is

comparable to the results presented in Section 8.6.4. On the other hand, SwiftR obtains 93% F1-

score in the detection task, which is also similar to the results presented in Section 8.6.3. Overall,

SwiftR performs well and shows its time-resiliency.
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Figure 8.12: Time Resiliency Results
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Family Scenario

In this scenario, we check the resiliency of SwiftR against new ransomware family. In particular,

we address the following question: How would SwiftR perform against samples from unknown ran-

somware families when we train it on other families, in the case of the detection and the attribution

tasks?

Setup. The setup of this evaluation involves splitting the ransomware dataset by family as pre-

sented in Table 8.7. We evaluate each ransomware family separately. Thus, we train the model on

all the evaluation datasets for a given task, and we exclude one ransomware family samples, which

we use for the testing and reporting of the effectiveness of SwiftR on unknown ransomware fami-

lies. We conduct the training/testing for all top six ransomware families (TeslaCrypt, Locky, Cerber,

CryptoWall, WannaCry, Sage) for detection and attribution tasks.

Results. Figure 8.13 presents the average detection performance in terms of F1-score, along with

its standard deviation, under threshold t = 0.5. SwiftR shows a high detection performance for most

of the ransomware families by achieving over 90% F1-score. The exception was WannaCry family,

where SwiftR achieves 82% F1-score. Also, the error bar in Figure 8.13 is tight for most families’

evaluation, which corresponds to very similar F1-scores for most experiments. Figure 8.14 shows

the attribution performance with respect to the F1-score. Compared to the detection task, SwiftR

attribution has lower F1-score results. Similarly, the exception is WannaCry family where SwiftR

achieves 82% F1-score.
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Figure 8.13: Ransomware Detection Result
Unknown Family

TeslaCrypt Locky Cerber
CryptoWallWannaCry Sage

0

20

40

60

80

100

F1
-S

co
re

 %

Figure 8.14: Malware Attribution Result
Unknown Family
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8.6.7 Efficiency Evaluation

In this section, we report the efficiency results of SwiftR in terms of runtime.

Setup

The efficiency evaluation setup starts by randomly selecting 500 samples from the evaluation

dataset. We divide SwiftR process pipeline into three phases: (i) Disassembly/Lifting: SwiftR

produces the assembly of the sample. We use Angr [34] for disassembly and lifting. Dynamic

analysis runtime is not reported because it is constant (about 10 minutes). (ii) Implicit Features

Representation Phase: SwiftR produces static and dynamic features and embedding sequences.

(iii) Decision Phase: SwiftR decides on a given sample. In this evaluation, we measure the runtime

for each sample for each phase separately and for each hardware. Notice that runtime measurement

is performed only for a single thread running on the CPU.
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Figure 8.16: Raw Feature Representation
Runtime

Results

Figure 8.15, 8.16, and 8.17 depict the efficiency results of SwiftR framework for the disassem-

bly/lifting, feature representation, and decision phases respectively. Although there is an enormous

difference between the evaluation machines regarding the specifications, their results are compara-

ble for the disassembly and the feature representation phases. There is a logic behind this result

with respect to the CPU and GPU server since the previous phases do not rely on GPU for compu-

tation and the servers have identical specification excluding the GPU. For the server, the maximum
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Phase GPU Server CPU Server Laptop
ASM/Lift 3.454± 4.591s 3.454± 4.591s 5.196± 7.045s
Raw Feature 3.018± 4.032s 3.018± 4.032s 6.658± 9.519s
Decision 0.004± 0.001s 0.017± 0.003s 0.373± 0.047s
Runtime 6.475± 8.624s 6.488± 8.626s 12.22± 16.62s

Table 8.11: Runtime in the Different Analysis Phases

(minimum) time for the disassembly and the representation was 60 and 38 (0.92 and 0.03) seconds

respectively. However, there is a difference in the decision time, where the GPU option in the server

is about four times faster than the CPU option.
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Figure 8.17: Decision Runtime

In the laptop machine, the disassembly and the representation phases show a comparable result

to the servers because the servers are only using a single thread/core implementation. The difference

will be more significant if SwiftR leverages all of the server’s resources. Table 8.11 shows the

average efficiency results of the SwiftR phases on the different machines.

8.7 Production Case Study

The evaluation in the previous sections (Section 8.6 and 8.6.7) shows the effectiveness and the

efficiency of SwiftR in various fingerprinting tasks. However, in this section, we deploy SwiftR in

a production setting to be evaluated against a large number of wild samples. This section reports

the production performance of SwiftR at detection and attribution task. First, we describe the pro-

duction setup and how we collected the performance results (Section 8.7.2 and 8.7.1). Second, we

present the samples collected during production. Finally, we report the production results.
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8.7.1 Setup

The overall process of the production starts by building the neural network model set of SwiftR.

We train our neural networks on the whole evaluation dataset to produce deployment-ready models

for SwiftR tasks, where we keep traces of the training performance. We measure the performance

serially as we receive samples from various sources. We train multiple SwiftR instances to check

the variety of results.

8.7.2 Wild Samples

During this case study period (six months), we progressively received as a feed from Threat-

Track Security and other sources, a large number of samples of ransomware, benign binaries, and

general malware. Table 8.13 summaries the amount of samples in each category.

8.7.3 Results

We report the production results in terms of F1-score, FPR, and AUC metrics (average ± stan-

dard deviation). We first note that the overall performance decreases in production compared to

the evaluation (Section 8.6.3) in both fingerprinting tasks. In the detection task, SwiftR achieves

93.66±4.76% F1-score on the case study samples; whereas in the evaluation it reaches 97.75±2%

F1-score (10-fold cross-validation). In other words, the performance drops by about 4% in F1-score

metric. Interestingly, SwiftR detection has a small false positive rate 0.99±0.34%, and it is less than

the one reported in the evaluation 1.00± .75%. On the other hand, the SwiftR attribution achieves

91.81±3.25% F1-score whereas the performance in the evaluation reached 94.72±04.56% F1-score

(10-fold cross-validation); thus, it drops by about 3% in F1-score. Besides, the false positive rate in

the case study is 1.63±3.33%, which is surprisingly lower than the evaluation one of 2.44±1.84%.

To sum up, the case study shows that the overall performance slightly drops, but the performance is

still acceptable.

# Scenario F1-Score(%) FPR(%) AUC(%)
Detection 93.66± 4.76 1.93± 3.34 95.17± 5.64
Attribution 91.81± 3.25 1.63± 3.33 92.67± 8.50

Table 8.12: SwiftR Performance during Study Case
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Category # Samples
Ransomware 38k
Benign 45k
Malware 100k
Total 183k

Table 8.13: Production Samples Statistics

8.8 Summary

In this chapter, we presented a novel framework for ransomware fingerprinting named SwiftR.

To the best of our knowledge, SwiftR is the first automatic ransomware detection solution that

relies on hybrid analysis, and that leverages deep learning techniques for ransomware mitigation.

SwiftR relies on novel implicit features as input to the SwiftR neural networks for automatic fea-

ture engineering during decision making. SwiftR utility comes from its various usage scenarios:

(i) Ransomware detection: Here SwiftR discriminates ransomware from the benign sample, the

corresponding evaluation showing that SwiftR achieves 98% F1-score. (ii) Ransomware attribu-

tion: Here, SwiftR aims to distinguish between ransomware and general malware; it achieves a

96% F1-score. (iii) Ransomware family attribution: SwiftR attributes a given ransomware sample

to its family; in this setting, it achieves a 95% F1-score. SwiftR prototype has been deployed for

production usage where it was tested on more than 183k samples of general malware, benign, and

ransomware samples. In the production case study, SwiftR showed a good performance with some

drop compared to the evaluation results.
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Chapter 9

Conclusion

9.1 Concluding Remarks

Software applications are at the core of many everyday life-depending services across a broad

spectrum of devices, from mobile phones to transportation and medical equipment. At the heart of

the rapid growth in software technologies, the development of mobile apps enhances both economic

and social interactions. Mobile apps running on smart devices are nowadays ubiquitous due to their

convenience. For instance, users can presently use apps as Google pay service to purchase products

online and to make payments in retail stores. However, the growth of the mobile market apps has

increased the concerns about the security of the apps. Android [27] is widely adopted mobile OS

in smart devices, especially in the emerging Internet of Things (IoT) world through Android Thing

[58], an Android-based IoT system.

Unfortunately, significant amounts of malicious software or malware, which are developed for a

variety of purposes, aim at disrupting the well being of existing systems across many software plat-

forms and hardware architectures. For example, 1, 548, 129 and 2, 333, 777 new Android malware

were discovered [6] in 2014 and respectively 2015. Nowadays, the number of malware samples

reaches into millions per month, and it is growing exponentially over time.

In this context, it is a desideratum to elaborate a scalable, robust, and accurate framework that

tackles two specific problems: (i) Malware detection - distinguishing malicious from benign appli-

cations, and (ii) malware family attribution - assigning malware samples to known families.
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This thesis is dedicated to tackling Android malware fingerprinting, detection and family attri-

bution, at a large scale by proposing a series of frameworks and techniques to detect and attribute

Android malware samples. Android malware detection was the main objective of our elaborated

frameworks and systems. However, the core techniques and methods employed by these systems

have potential application to general malware fingerprinting. The elaborated frameworks demon-

strated very competitive Android malware fingerprinting results surpassing state-of-the-art solutions

available at the time of writing this thesis. More specifically, we have presented the following con-

tributions in this thesis:

• APK-DNA (Chapter 3): We elaborated a versatile approximate fingerprint [133] to capture

the maximum information from the static content of an Android malware sample.

• Cypider (Chapter 3): We proposed a scalable malware clustering technique [130] leveraging

APK-DNA approximate fingerprints along with graph partitioning techniques.

• DySign (Chapter 4): We designed and developed a platform-agnostic Android malware fin-

gerprinting approach [128, 129] based on natural language processing techniques and dy-

namic analysis reports.

• MalDy (Chapter 4): We elaborated a supervised machine learning approach [125, 127] for

malware detection on top of DySign fingerprints using dynamic analysis features.

• ToGather (Chapter 5): We proposed a cyber-infrastructure detector [124, 126] for Android

malware in the cyber-space starting from network information of Android malware as well as

static and dynamic analyses.

• MalDozer (Chapter 6): We proposed a portable and automatic Android malware detection

and family attribution framework [69, 131, 132] that relies on sequences classification using

deep learning techniques.

• PetaDroid (Chapter 7): We proposed a novel framework for Android malware detection that

enhances the resiliency to code transformation and common obfuscation methods by input

randomization. Also, we leveraged confidence-based detection to build new machine learning

detection models that are able to adapt to new benign and malicious apps.
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• SwiftR (Chapter 8): We proposed a ransomware fingerprinting framework based on inter-

mediate code representation and demonstrated that SwiftR achieves high detection rates on

different ransomware families.

9.2 Learned Lessons

We summarize in the following the main lessons that have been learned in this thesis:

• Representation learning enables scalability: Throughout this thesis, we learned that repre-

sentation learning is at the core of malware automatic feature engineering. In our context,

representation learning is an automatic and a data-driven process for generating malware em-

beddings. For example, the use of the word embedding (word2vec) technique helps learning

the underlying semantics in an unsupervised manner. Existing large malware corpuses and un-

supervised representation learning techniques help generating precise malware embeddings.

More importantly, the precision of embeddings increases with the size of the malware corpus.

• Natural language processing is a key: In this thesis, we learned the usefulness of leveraging

NLP abstractions in malware code analysis. Virtually, most NLP techniques used to segregate

and analyze natural language are usable in the context of malware fingerprinting and detec-

tion. We believe that NLP abstractions and techniques are key for modern malware detection.

• Machine learning is crucial: We learned in this thesis that machine learning techniques are

essential in elaborating advanced malware detection solutions. All existing state-of-the-art

malware detection solutions rely nowadays on machine learning as a workhorse to finger-

print malware. Deep learning techniques have the edge over classical ones due to automatic

discovery and filtering of relevant malware features from raw malware content.

• Obfuscation learning is possible: Throughout this thesis, we discovered the possibility to

automatically learn obfuscation pattern through supervised techniques. Providing obfuscated

malware samples to the training process allows learning common obfuscation methods while

improving the overall generalization of the produced models.
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9.3 Future Research Directions

In the following, we discuss potential future research directions:

• Obfuscation on other platforms: Throughout this thesis, we evaluate the proposed Android

malware detection frameworks on different obfuscation techniques. Our frameworks show

high detection performance on obfuscated Android malware. However, there is a need to

evaluat our obfuscation resilient techniques on other platforms’ obfuscated samples.

• Tackling advanced obfuscations techniques: In the context of this thesis, we carry out our

evaluations on common obfuscation and code transformation techniques. As a future research

direction, we could investigate the robustness of the proposed frameworks and techniques on

advanced obfuscation techniques that employ heavy code transformation such as control flow

flattening.

• Additional deep learning techniques: In this thesis, we employ different machine/deep learn-

ing techniques to fingerprint and detect Android malware. Exploring additional deep learning

techniques can provide an important future direction for malware detection in general.

• Network traffic features: Throughout this thesis, we mainly employ dynamic and static analy-

ses features to fingerprint Android malware. As a future research direction, we aim at engag-

ing network traffic inspection as another source of features for Android malware detection.
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