108 research outputs found

    A method for Measuring Contact Points in Human–Object Interaction Utilizing Infrared Cameras

    Get PDF
    This article presents a novel method for measuring contact points in human-object interaction. Research in multiple prehension-related fields, e.g., action planning, affordance, motor function, ergonomics, and robotic grasping, benefits from accurate and precise measurements of contact points between a subject's hands and objects. During interaction, the subject's hands occlude the contact points, which poses a major challenge for direct optical measurement methods. Our method solves the occlusion problem by exploiting thermal energy transfer from the subject's hand to the object surface during interaction. After the interaction, we measure the heat emitted by the object surface with four high-resolution infrared cameras surrounding the object. A computer-vision algorithm detects the areas in the infrared images where the subject's fingers have touched the object. A structured light 3D scanner produces a point cloud of the scene, which enables the localization of the object in relation to the infrared cameras. We then use the localization result to project the detected contact points from the infrared camera images to the surface of the 3D model of the object. Data collection with this method is fast, unobtrusive, contactless, markerless, and automated. The method enables accurate measurement of contact points in non-trivially complex objects. Furthermore, the method is extendable to measuring surface contact areas, or patches, instead of contact points. In this article, we present the method and sample grasp measurement results with publicly available objects.Peer reviewe

    3D environment mapping using the Kinect V2 and path planning based on RRT algorithms

    Get PDF
    This paper describes a 3D path planning system that is able to provide a solution trajectory for the automatic control of a robot. The proposed system uses a point cloud obtained from the robot workspace, with a Kinect V2 sensor to identify the interest regions and the obstacles of the environment. Our proposal includes a collision-free path planner based on the Rapidly-exploring Random Trees variant (RRT*), for a safe and optimal navigation of robots in 3D spaces. Results on RGB-D segmentation and recognition, point cloud processing, and comparisons between different RRT* algorithms, are presented.Peer ReviewedPostprint (published version

    Autonomous Underwater Intervention: Experimental Results of the MARIS Project

    Get PDF
    open11noopenSimetti, E. ;Wanderlingh, F. ;Torelli, S. ;Bibuli, M. ;Odetti, A. ;Bruzzone, G. ; Lodi Rizzini, D. ;Aleotti, J. ;Palli, G. ;Moriello, L. ;Scarcia, U.Simetti, E.; Wanderlingh, F.; Torelli, S.; Bibuli, M.; Odetti, Angelo; Bruzzone, G.; Lodi Rizzini, D.; Aleotti, J.; Palli, G.; Moriello, L.; Scarcia, U

    Advanced Feedback Linearization Control for Tiltrotor UAVs: Gait Plan, Controller Design, and Stability Analysis

    Full text link
    Three challenges, however, can hinder the application of Feedback Linearization: over-intensive control signals, singular decoupling matrix, and saturation. Activating any of these three issues can challenge the stability proof. To solve these three challenges, first, this research proposed the drone gait plan. The gait plan was initially used to figure out the control problems in quadruped (four-legged) robots; applying this approach, accompanied by Feedback Linearization, the quality of the control signals was enhanced. Then, we proposed the concept of unacceptable attitude curves, which are not allowed for the tiltrotor to travel to. The Two Color Map Theorem was subsequently established to enlarge the supported attitude for the tiltrotor. These theories were employed in the tiltrotor tracking problem with different references. Notable improvements in the control signals were witnessed in the tiltrotor simulator. Finally, we explored the control theory, the stability proof of the novel mobile robot (tilt vehicle) stabilized by Feedback Linearization with saturation. Instead of adopting the tiltrotor model, which is over-complicated, we designed a conceptual mobile robot (tilt-car) to analyze the stability proof. The stability proof (stable in the sense of Lyapunov) was found for a mobile robot (tilt vehicle) controlled by Feedback Linearization with saturation for the first time. The success tracking result with the promising control signals in the tiltrotor simulator demonstrates the advances of our control method. Also, the Lyapunov candidate and the tracking result in the mobile robot (tilt-car) simulator confirm our deductions of the stability proof. These results reveal that these three challenges in Feedback Linearization are solved, to some extents.Comment: Doctoral Thesis at The University of Toky

    Artificial Vision Algorithms for Socially Assistive Robot Applications: A Review of the Literature

    Get PDF
    Today, computer vision algorithms are very important for different fields and applications, such as closed-circuit television security, health status monitoring, and recognizing a specific person or object and robotics. Regarding this topic, the present paper deals with a recent review of the literature on computer vision algorithms (recognition and tracking of faces, bodies, and objects) oriented towards socially assistive robot applications. The performance, frames per second (FPS) processing speed, and hardware implemented to run the algorithms are highlighted by comparing the available solutions. Moreover, this paper provides general information for researchers interested in knowing which vision algorithms are available, enabling them to select the one that is most suitable to include in their robotic system applicationsBeca Conacyt Doctorado No de CVU: 64683

    Remote operation of CeCi social robot

    Get PDF
    This paper presents a validation methodology for a remote system with its objective focused on a social robot. The research process starts with the customization of an application for smartphones, achieving a simple method of connection and attachment to the robot. This customization allows remote operation of the robot’s movements and an additional level of autonomy for the displacements in previously known locations. One of several teleoperations methods is the direct teleoperations method, which is used in master–slave control mode via a wireless network. Next, the article focuses on proposing a validation methodology for social robot applications design. Under this approach, two tests are performed to validate the designed application. The first one seeks to find the response speed of the communication between the robot and the mobile device wherein 10 devices with different characteristics and capabilities are used. This test is critical since a delay outside the allowable range invalidates the use of the application. The second test measures the application’s usability through a user survey, which allows for determining the preferences that people may have when using this type of application. This second test is essential to consider the overall acceptability of the social robot.Peer ReviewedPostprint (published version

    A Hybrid Active Filter Using the Backstepping Controller for Harmonic Current Compensation

    Get PDF
    This document presents a new hybrid combination of filters using passive and active elements because of the generalization in the use of non-linear loads that generate harmonics directly affecting the symmetry of energy transmission systems that influence the functioning of the electricity grid and, consequently, the deterioration of power quality. In this context, active power filters represent one of the best solutions for improving power quality and compensating harmonic currents to get a symmetrical waveform. In addition, given the importance and occupation of the transmission network, it is necessary to control the stability of the system. Traditionally, passive filters were used to improve energy quality, but they have endured problems such as resonance, fixed remuneration, etc. In order to mitigate these problems, a hybrid HAPF active power filter is proposed combining a parallel active filter and a passive filter controlled by a backstepping algorithm strategy. This control strategy is compared with two other methods, namely the classical PI control, and the fuzzy logic control in order to verify the effectiveness and the level of symmetry of the backstepping controller proposed for the HAPF. The proposed backstepping controller inspires the notion of stability in Lyapunov’s sense. This work is carried out to improve the performance of the HAPF by the backstepping command. It perfectly compensates the harmonics according to standards. The results of simulations performed under the Matlab/Simulink environment show the efficiency and robustness of the proposed backstepping controller applied on HAPF, compared to other control methods. The HAPF with the backstepping controller shows a significant decrease in the THD harmonic distortion rate
    • …
    corecore