55 research outputs found

    A novel diffusion process with jumps to study an electronic-optical edge router

    No full text
    The article presents a diffusion approximation model applied to investigate the process of filling a large optical packet by smaller and coming irregularly electronic packets. The use of diffusion approximation enables us to include the general distributions of interarrival times, also the self-similarity of the input process, as well as to investigate transient states. We propose a novel diffusion process with jumps representing the end of the filling the buffer due to arrival of too large packet and we give the transient solution to this process. The model allows us to study the distribution of interdeparture times and the distribution of the space occupied in the optical packet

    An Adaptive Scheme for Admission Control in ATM Networks

    Get PDF
    This paper presents a real time front-end admission control scheme for ATM networks. A call management scheme which uses the burstiness associated with traffic sources in a heterogeneous ATM environment to effect dynamic assignment of bandwidth is presented. In the proposed scheme, call acceptance is based on an on-line evaluation of the upper bound on cell loss probability which is derived from the estimated distribution of the number of calls arriving. Using this scheme, the negotiated quality of service will be assured when there is no estimation error. The control mechanism is effective when the number of calls is large, and tolerates loose bandwidth enforcement and loose policing control. The proposed approach is very effective in the connection oriented transport of ATM networks where the decision to admit new traffic is based on thea priori knowledge of the state of the route taken by the traffic

    Performance modelling and analysis of software defined networking

    Get PDF
    Software Defined Networking (SDN) is an emerging architecture for the next-generation Internet, providing unprecedented network programmability to handle the explosive growth of Big Data driven by the popularisation of smart mobile devices and the pervasiveness of content-rich multimedia applications. In order to quantitatively investigate the performance characteristics of SDN networks, several research efforts from both simulation experiments and analytical modelling have been reported in the current literature. Among those studies, analytical modelling has demonstrated its superiority in terms of cost-effectiveness in the evaluation of large-scale networks. However, for analytical tractability and simplification, existing analytical models are derived based on the unrealistic assumptions that the network traffic follows the Poisson process which is suitable to model non-bursty text data and the data plane of SDN is modelled by one simplified Single Server Single Queue (SSSQ) system. Recent measurement studies have shown that, due to the features of heavy volume and high velocity, the multimedia big data generated by real-world multimedia applications reveals the bursty and correlated nature in the network transmission. With the aim of the capturing such features of realistic traffic patterns and obtaining a comprehensive and deeper understanding of the performance behaviour of SDN networks, this paper presents a new analytical model to investigate the performance of SDN in the presence of the bursty and correlated arrivals modelled by Markov Modulated Poisson Process (MMPP). The Quality-of-Service performance metrics in terms of the average latency and average network throughput of the SDN networks are derived based on the developed analytical model. To consider realistic multi-queue system of forwarding elements, a Priority-Queue (PQ) system is adopted to model SDN data plane. To address the challenging problem of obtaining the key performance metrics, e.g., queue length distribution of PQ system with a given service capacity, a versatile methodology extending the Empty Buffer Approximation (EBA) method is proposed to facilitate the decomposition of such a PQ system to two SSSQ systems. The validity of the proposed model is demonstrated through extensive simulation experiments. To illustrate its application, the developed model is then utilised to study the strategy of the network configuration and resource allocation in SDN networksThis work is supported by the EU FP7 “QUICK” Project (Grant NO. PIRSES-GA-2013-612652) and the National Natural Science Foundation of China (Grant NO. 61303241)

    Discrete Time Analysis of Multi-Server Queueing Systems in Material Handling and Service

    Get PDF
    In this doctoral thesis, performance parameters of multi-server queueing systems are estimated under general stochastic assumptions. We present an exact calculation method for the discrete time distribution of the number of customers in the queueing system at the arrival moment of an arbitrary customer. The waiting time distribution and the sojourn time distribution are estimated exactly, as well. For the calculation of the inter departure time distribution, we present an approximation method
    • …
    corecore