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Scope and purpose

Queueing theory is an important subject in computers and operations research. Buffers/queues

are used, e.g. in telecommunication networks, to store information that cannot be transmitted

instantaneously. The study of the buffer behavior is important since network performance is

directly related to it. Queues with a priority scheduling discipline are an important subject in

queueing theory. As a result, these type of queues are thoroughly studied in the past, especially

in continuous time. In discrete-time queueing models on the other hand, this type of queues is

not as widely studied. Discrete-time queueing models are suitable for the performance evalua-

tion of Asynchronous Transfer Mode (ATM) switches. In ATM, different types of traffic need

different Quality of Service (QoS) standards. The delay characteristics of delay-sensitive traffic

(e.g., voice) are more stringent than those of delay-insensitive traffic (e.g., data). We can thus

give priority to delay-sensitive traffic over delay-insensitive traffic, thus trying to reduce the
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delay of the delay-sensitive traffic. This paper studies the impact of a priority scheduling on

the buffer characteristics.

Abstract

In this paper, we consider a discrete-time queueing system with head-of-line (HOL) pri-

ority. First, we will give some general results on a GI-1-1 queue with priority scheduling. In

particular, we will derive expressions for the Probability Generating Function of the system

contents and the cell delay. Some performance measures (such as mean, variance and approx-

imate tail distributions) of these quantities will be derived, and used to illustrate the impact

and significance of priority scheduling in an ATM output queueing switch.
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1 Introduction

In recent years, there has been much interest in ATM as a promising technology for transport

of high-bandwidth applications. Especially its well-defined QoS guarantee makes it extremely

suitable for multimedia applications. Different types of traffic need different QoS standards. For

real-time applications, it is important that mean delay and delay-jitter are not too large, while for

non real-time applications, the Cell Loss Ratio (CLR) is the restrictive quantity.

In general, one can distinguish two priority categories, which will be referred to as Delay priority

and Loss priority. Delay priority scheduling tries to reduce the delay of delay-sensitive traffic (such

as voice). This is done by using a more sophisticated type of scheduling than the simple FIFO

scheduling. Priority is given to delay-sensitive traffic over delay-insensitive traffic. Several types

of Delay priority (or cell scheduling) schemes (such as Weighted-Round-Robin (WRR), Weighted-

Fair-Queueing(WFQ)) have been proposed and analyzed for ATM applications, each with their

own specific algorithmic and computational complexity (see e.g. [11] and the references therein).

On the other hand, Loss priority schemes attempt to reduce the cell loss of loss-sensitive traffic

(such as data). Again, various types of Loss priority (or cell discarding) strategies for ATM (such

as Push-Out Buffer (POB), Partial Buffer Sharing (PBS)) have been presented in the literature

(see e.g. [19]). An overview of both types of priority can be found in [1].

In this paper, we will focus on the effect of HOL (or non-preemptive) Delay priority scheduling.

We assume that delay-sensitive traffic has absolute priority over delay-insensitive traffic, i.e., when

a server becomes idle, a cell of delay-sensitive traffic, when available, will always be scheduled next.

This is the most drastic type of Delay priority scheduling, but also the easiest one to implement.

In the existing literature, there have been a number of contributions with respect to this priority

scheme. In [10,12–18], HOL priority queues have been analyzed with a wide variety of arrival and

service time distributions.

In this paper, we use an analysis based on generating functions for assessing the performance

of ATM buffers with a priority scheduling discipline. From these generating functions, we can

then easily calculate expressions for some interesting performance measures, such as mean value,
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variance and approximations for the tail distribution of the buffer contents and cell delay. These

closed-form expressions require virtually no computational effort at all, and are well-suited for

evaluating the impact of the various system parameters on the overall performance. We will

also show that our results can be applied to the case of an ATM output-queueing switch with

HOL priority scheduling. There have been a number of contributions with respect to switches

with output queueing, in the case of a single traffic type and a FIFO scheduling discipline, such

as [4, 5, 9].

The contribution of this paper concerns the model that is considered, the solution technique

that is used, as well as the results that are generated. First, as far as the model is concerned,

the main difference with the articles involved with HOL priority queues listed above is that, for

the case of a multiclass output-queueing switch, the arrival processes of the different types of

cells are not mutually independent. Therefore the different classes can not be analyzed separately

(i.e., as a model with server interruptions for low priority cells as demonstrated in section 5),

which complicates the analysis. Secondly, we want to show that a generating-functions solution

method is extremely suitable for analyzing this type of buffers with a priority scheduling discipline,

whereas existing models are mainly based on matrix-analytic methods. Finally, determining the

tail behavior of the buffer contents and cell delay is one of the main contributions of the paper.

Although these are important quantities in the evaluation of QoS of high- and low-priority cell

streams, this has received only few attention up to now. We will also show that the distribution of

the buffer contents and cell delay of low priority cells not necessarily has a geometric asymptotic

behavior.

The outline is as follows. First, we consider a single queue with a general arrival distribution.

In the following section, we will introduce the mathematical model. In section 3 and 4 we will

analyze the steady-state system contents and cell delay. In section 5, we discuss the results derived

in the former sections and we calculate the moments of the system contents and cell delay in section

6. We study the tail behavior of the system contents and cell delay in section 7. We apply the

obtained results to an output queueing switch with Bernoulli arrivals, and discuss the impact of a
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HOL priority scheduling discipline in section 8. Some conclusions are formulated in section 9.

2 Mathematical model

We consider a discrete-time single-server queueing system with infinite buffer space. Time is

assumed to be slotted, where 1 slot equals the transmission time of a cell. There are 2 types of

traffic arriving in the system, namely cells of class-1 and cells of class-2. We denote the number

of arrivals of class-j during slot k by aj,k (j = 1, 2). Both types of cell arrivals are assumed to be

i.i.d. from slot-to-slot and are characterized by the joint probability mass function (pmf) a(m, n),

a(m, n) , Prob[a1,k = m, a2,k = n],

and joint probability generating function (pgf) A(z1, z2),

A(z1, z2) , E[z
a1,k

1 z
a2,k

2 ].

Notice that the number of cell arrivals from different classes (within a slot) can be correlated.

Further, we denote the total number of arriving cells during slot k by aT,k , a1,k + a2,k and its

pgf is defined as AT (z) , E[zaT,k ] = A(z, z). In the same way, we define the marginal pgf’s of

the number of arrivals from class-1 and class-2 during a slot by A1(z) , E[za1,k ] = A(z, 1) and

A2(z) , E[za2,k ] = A(1, z) respectively. We furthermore denote the arrival rate of class-j (j = 1, 2)

by λj = A′

j(1) and the total arrival rate by λT = A′

T (1) = A′

1(1) + A′

2(1). The system has one

server that provides the transmission of cells, at a rate of 1 cell per slot. We assume a stable

system, i.e., λT < 1.

Newly arriving cells can enter service at the beginning of the slot following their arrival slot

at the earliest. Class-1 cells are assumed to have priority over class-2 cells, and within one class

the service discipline is FCFS. Due to the priority scheduling mechanism, it is as if class-1 cells

are stored in front of class-2 cells in the queue. So, if there are any class-1 cells in the queue at

the beginning of a slot, the one with the longest waiting time will be served next. If, on the other
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hand, no class-1 cells are present in the queue at the beginning of a particular slot, the class-2 cell

with the longest waiting time, if any, will be served.

3 System contents

In this section, we concentrate on the effect of the HOL priority scheduling discipline on the

probability generating function of the steady-state system contents, which represents the number

of cells in the buffer. This was already done in [13] - for a more general queueing system - but it

is useful to give the analysis in our special case. We denote the system contents of class-j at the

beginning of slot k by uj,k (j = 1, 2) and the total system contents at the beginning of slot k by

uT,k. Furthermore, we denote the joint pgf of u1,k and u2,k by Uk(z1, z2), i.e.,

Uk(z1, z2) , E[z
u1,k

1 z
u2,k

2 ].

The system contents of both types of cells is characterized by the following system equations:

u1,k+1 = [u1,k − 1]+ + a1,k;

u2,k+1 =















[u2,k − 1]+ + a2,k if u1,k = 0

u2,k + a2,k if u1,k > 0,

where [.]+ denotes the maximum of the argument and 0. The first equation follows from the

observation that class-1 cells are not influenced by class-2 cells. A class-2 cell on the other hand can

only be served, if there are no class-1 cells in the system. This leads to the second equation. Using

these system equations, we can form the following relation between Uk+1(z1, z2) and Uk(z1, z2)

Uk+1(z1, z2) = A(z1, z2)
z2Uk(z1, z2) + (z1 − z2)Uk(0, z2) + z1(z2 − 1)Uk(0, 0)

z1z2
. (1)
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Since we are interested in the steady-state distribution of the system contents, we define U(z1, z2)

as

U(z1, z2) , lim
k→∞

Uk(z1, z2).

Applying this limit in equation (1), we find the following expression for U(z1, z2),

U(z1, z2) = A(z1, z2)
(z1 − z2)U(0, z2) + z1(z2 − 1)U(0, 0)

z2(z1 − A(z1, z2))
. (2)

There are two quantities yet to be determined in the right hand side of equation (2), namely

the function U(0, z2) and the constant U(0, 0). Applying Rouché’s theorem, it can be proven

that for a given value of z2 (|z2| ≤ 1), the equation z1 = A(z1, z2) has one solution in the unit

circle for z1, which will be denoted by Y (z2) in the remainder, and which is implicitly defined by

Y (z) , A(Y (z), z). Since Y (z2) is a zero of the denominator of the right hand side of (2) and since

a generating function remains finite in the unit circle, Y (z2) must be a zero of the numerator too.

We thus find

U(0, z2) = U(0, 0)
Y (z2)(z2 − 1)

z2 − Y (z2)
.

Substituting this result in equation (2) yields

U(z1, z2) = U(0, 0)
A(z1, z2)(z2 − 1)

z2 − Y (z2)

z1 − Y (z2)

z1 − A(z1, z2)
. (3)

U(0, 0) can be found by applying the normalization condition U(1, 1) = 1. Using de l’ Hopital’s

rule gives the expected result for the probability of having an empty system: U(0, 0) = 1 − λT .

From equation (3), we easily obtain an expression for the pgf UT (z) describing the total system

contents

UT (z) , lim
k→∞

E [zuT,k ] = U(z, z)

= (1 − λT )
AT (z)(z − 1)

z − AT (z)
. (4)
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We can also calculate the pgf Uj(z) (j = 1, 2) of the system contents of class-j, namely

U1(z) , lim
k→∞

E [zu1,k ] = U(z, 1)

= (1 − λ1)
A1(z)(z − 1)

z − A1(z)
, (5)

U2(z) , lim
k→∞

E [zu2,k ] = U(1, z)

= (1 − λT )
A2(z)(z − 1)

z − Y (z)

1 − Y (z)

1 − A2(z)
. (6)

We will discuss these results in section 5.

4 Cell delay

The cell delay is defined as the total amount of time that a cell spends in the system, i.e., the

number of slots between the end of the cell’s arrival slot and the end of its departure slot. In this

section, we will derive expressions for the pgf’s of the cell delay of both classes.

We can analyze the cell delay of class-1 cells as if they are the only type of cells in the system.

This is e.g. done in [3] and the pgf of the cell delay of class-1 cells is given by

D1(z) =
1 − λ1

λ1

z(A1(z) − 1)

z − A1(z)
. (7)

The analysis of the cell delay of a class-2 cell is more complicated. Consider a logical equivalent

queueing system where all high priority cells are stored in front of the class-2 cells, and let us tag

an arbitrary class-2 cell that arrives in the system. The amount of time it spends in the system

equals

d2 =

[uT,k−1]++f2,k
∑

j=1

v0
j + 1, (8)

where slot k is assumed to be the arrival slot of the tagged cell, f2,k is defined as the total number

of cells that arrive during the arrival slot of the tagged cell, but which have to be served before

it, and v0
j represents the number of slots it takes for the tagged cell to move one position ahead
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in the queue, e.g., from position j to position j − 1 (see Figure 1). In case of FIFO scheduling, v0
j

would equal 1. For HOL priority scheduling, this is not necessarily the case, since new class-1 cells

can arrive while the tagged cell is waiting in the queue and these class-1 cells have to be served

before the tagged cell. More specific, assume that the tagged cell is stored in the j-th position in

the queue at the beginning of the l-th slot (0 < j ≤ [uT,k − 1]+ + f2,k). If no class-1 cells arrive

during slot l, v0
j equals 1. If a1,l (> 0) class-1 cells arrive during this slot on the other hand, the

tagged cell will move back to position j + a1,l − 1 in the queue at the beginning of slot l + 1, since

these class-1 cells have to be served before all class-2 cells, and thus before the tagged one (Figure

1). If we then define v1
j,i (j ≤ i ≤ j + a1,l − 1) as the number of slots it takes the tagged cell to go

from position i to position i − 1, it is clear that v0
j can be calculated as follows,

v0
j =

a1,l−1
∑

i=0

v1
j,j+i + 1. (9)

[Figure 1 about here.]

Now, one can easily see that all v0
j and v1

j,i form a set of mutually independent random variables

since they depend on the number of class-1 cell arrivals during different slots. From a stochastic

point-of-view, these are i.i.d. variables and, as a result, are characterized by the same pgf V (z).

From equation (9), it can be seen that V (z) satisfies

V (z) = zA1(V (z)). (10)

Furthermore, f2,k is the sum of all the class-1 cells that arrive during the same slot as the tagged

one, and of the class-2 cells that have arrived before it during its arrival slot. The pgf of f2,k can

be calculated taking into account that an arbitrary tagged cell is more likely to arrive in a larger

bulk (e.g. [3]), yielding

F2(z) =
AT (z) − A1(z)

λ2(z − 1)
. (11)

Using equations (4) and (11) in the z-transform of equation (8) eventually gives us the steady-state
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pgf of d2, i.e.,

D2(z) =
1 − λT

λ2

z(AT (V (z)) − A1(V (z)))

V (z) − AT (V (z))
, (12)

where V (z) is implicitly determined by equation (10).

5 Discussion of the results and special relations

In this section, we will discuss some of the results from the former sections. First, we notice

that the pgf of the total system contents (equation (4)) is the same as for a single class system with

an identical cell arrival process described by AT (z). Indeed, since the service time is deterministic

and equal to 1 slot for the two classes, the scheduling has no impact on the total system contents.

Second, we see that the system contents of class-1 cells (equation (5)) is not influenced by

class-2 cells and furthermore that its pgf has the same structure as UT (z). This is of course due

to the HOL priority scheduling. For class-1 cells, it seems as if no class-2 cells are present in the

system. Consequently, since the scheduling is FIFO within class-1, U1(z) and D1(z) fulfill the

following relation (see [20]):

U1(z) = 1 − λ1 + λ1D1(z).

It is easily verified that indeed (5) and (7) satisfy this equation.

In the special case that the number of arrivals of class-1 and class-2 cells are uncorrelated, i.e.

A(z1, z2) = A1(z1)A2(z2), we can calculate the system contents of class-2 cells in an alternative

way. Since class-2 cells can only be served when there are no class-1 cells in the system, we can

model the system, with respect to class-2 cells, in terms of a system with server interruptions. The

server is blocked for class-2 cells if there are class-1 cells waiting to be sent, and it is available if

there are none. We can then calculate the pgf of the duration of busy and idle period of class-1

cells, i.e., the time period during which there are class-1 cells in the system (i.e., u1 > 0) and the

time period during which there are no such cells (i.e., u1 = 0), respectively. It is easily verified
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that the duration of the idle period is geometrically distributed, i.e., its pgf is given by

I(z) =
(1 − A1(0))z

1 − A1(0)z
. (13)

The calculation of the busy period is a bit more involved, and can be found in [3] for a general

service time distribution. In case of deterministic service times of one slot, it is implicitly given by

the following formula:

B(z) =
A1(z((1 − A1(0))B(z) + A1(0))) − A1(0)

1 − A1(0)
. (14)

Note that the lengths of consecutive busy and idle periods are statistically independent. It is

clear that when the system is busy with respect to class-1 cells, it is blocked for class-2 cells.

Therefore, with respect to class-2 cells, the system can be modelled as a single-server buffer with

server interruptions, for which the lengths of consecutive available and blocked periods are i.i.d.

and their respective pgf’s are given by equation (13) and (14). Such a queueing system has already

been analyzed in [2]. Translating the results from this analysis to our case, the pgf of the system

contents of class-2 cells becomes

U2(z) = (1 − λT )
A2(z)(z − 1)

z − X(z)

1 − X(z)

1 − A2(z)
, (15)

with

X(z) = A1(X(z))A2(z).

Equations (6) and (15) lead to the same result for U2(z), when X(z) = Y (z). This is the case

when the number of class-1 and class-2 arrivals during a slot are uncorrelated.

11



6 Calculation of moments

The functions Y (z) and V (z), defined in sections 3 and 4, can only be explicitly found in case

of some simple arrival processes. Their derivatives for z = 1, necessary to calculate the moments

of the system contents and the cell delay, on the contrary, can be calculated in closed-form. For

example, the first derivatives are given by

Y ′(1) =
λ2

1 − λ1
, V ′(1) =

1

1 − λ1
.

Let us define λij as

λij ,
∂2A(z1, z2)

∂zi∂zj

∣

∣

∣

∣

∣

z1=z2=1

,

with i, j = 1, 2. Now we can calculate the mean values of the system contents and cell delay of

both classes by taking the first derivative of the respective pgf’s for z = 1. We find

E[uT ] = λT +
A′′

T (1)

2(1 − λT )
, (16)

for the mean value of total system contents,

E[u1] = λ1 +
λ11

2(1 − λ1)
, (17)

for the mean system contents of class-1 cells and

E[u2] = λ2 +
2λ12 + λ22

2(1 − λT )
+

λ2λ11

2(1 − λT )(1 − λ1)
, (18)

for the mean system contents of class-2 cells. It is easily verified that equations (16), (17) and (18)

satisfy E[uT ] = E[u1] + E[u2].

Furthermore, from equations (7) and (12), we derive the following expressions

E[d1] = 1 +
λ11

2λ1(1 − λ1)
, (19)
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and

E[d2] = 1 +
2λ12 + λ22

2λ2(1 − λT )
+

λ11

2(1 − λT )(1 − λ1)
, (20)

for the mean cell delay of a class-1 and a class-2 cell respectively. We can see from equations (17)

- (20) that Little’s law E[uj ] = λjE[dj ] (j = 1, 2) is fulfilled for both classes, as expected.

In a similar way, expressions for the variance of system contents and cell delay and some

interesting correlation coefficients can be calculated by taking the appropriate derivatives of the

respective generating functions as well. The expressions are nevertheless too exhaustive, but we

will show them in some figures in section 8.

7 Tail behavior

Not only the moments of the system contents and cell delay are important, but also, and

especially, the tail distribution of these quantities, which are often used to impose statistical bounds

on the guaranteed QoS for both classes.

From the generating functions of the total system contents, and of the system contents and cell

delay of class-1 and class-2 cells derived in sections 3 and 4, approximations of the tail probabilities

can be derived using complex contour integration and residue theory. The procedure to find the

corresponding probability mass function of a pgf, frequently used in the following of this section,

is generally described in Appendix 1.

In order to determine the asymptotic behavior of the tail distribution, the dominant singularity

of the respective generating functions is important. In e.g. [6] (wherein a single-class ATM queue

with a FIFO scheduling discipline is analyzed), it is proven that the dominant singularity lies on

the positive real axis and is larger than 1.

First we concentrate on the total system contents. Provided that the pgf AT (z) exhibits no

long-tail behavior, which is assumed to be the case here, the dominant singularity zT of UT (z) is

a zero of z −AT (z) and this singularity is a single pole. In the neighbourhood of this pole, we can
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approximate UT (z) by

UT (z) ≈ KT

zT − z
, (21)

where KT can be found by substituting z = zT in (21). Using residue theory, the tail probability

is easily found to yield

Prob[uT = n] ≈ (1 − λT )
zT − 1

A′

T (zT ) − 1
z−n
T , (22)

for large enough n. The system contents of class-1 cells has an identical tail behavior:

Prob[u1 = n] ≈ (1 − λ1)
zH − 1

A′

1(zH) − 1
z−n
H , (23)

for large enough n, with zH the dominant singularity on the positive real axis of U1(z), i.e., zH is

a zero of z − A1(z).

The tail behavior of the system contents of class-2 cells is a bit more involved, since it is not a

priori clear what the dominant singularity is of U2(z). This is due to the occurance of the function

Y (z) in (6), which is only implicitly defined. First we take a closer look at that function Y (z).

The first derivative of Y (z) is given by

Y ′(z) =
A(2)(Y (z), z)

1 − A(1)(Y (z), z)
, (24)

with A(j)(z1, z2) ,
∂A(z1, z2)

∂zj
(j = 1, 2). Consequently, Y (z) has a singularity, denoted as zB ,

where the denominator of Y ′(z) becomes 0, i.e., A(1)(Y (zB), zB) = 1. Since Y (z) remains finite

in the neighborhood of zB , this singularity is not a simple pole. Applying the results from [7] one

can show that in the neighbourhood of zB , Y (z) is approximately given by

Y (z) ≈ Y (zB) − KY

√
zB − z, (25)

with KY =

√

2A(2)(Y (zB), zB)

A(11)(Y (zB), zB)
, which can be found by taking the limit z → zB of (25). A(ij)(z1, z2)

is defined as
∂2A(z1, z2)

∂zi∂zj
(for i, j = 1, 2). From equation (25) it becomes obvious that zB is a square-
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root branch point of Y (z). Y (z) has thus two real solutions when z < zB (the solution we are

interested in is the one where Y (z) < 1, if z < 1), which coincide at zB , and has no real solution

when z > zB . zB is then of course also a branch point of U2(z). A second potential singularity zL

of U2(z) on the real axis is given by the positive zero of the denominator z − Y (z), and is easily

proven to be equal to zT , if zL exists.

The tail behavior of the system contents of class-2 cells is thus characterized by zT or zB ,

depending on which is the dominant (i.e., smallest) singularity. Three types of tail behavior may

thus occur, namely when zL = zT < zB , zL = zT = zB and zL does not exist. In those three cases,

U2(z) can be approximated in the neighbourhood of its dominant singularity by:

U2(z) ≈











































K
(1)
2

zT − z
if zL = zT < zB

K
(2)
2√

zB − z
if zL = zT = zB

U2(zB) − K
(3)
2

√
zB − z if zL does not exist,

where the constants K
(i)
2 (i = 1, 2, 3) can be found by investigating the behavior of U2(z) in the

neighborhood of this dominant singularity. Using residue theory, we find the tail probabilities for

the three possible cases:

Prob[u2 = n] ≈











































(1 − λT )
A2(zT )(zT − 1)2

zT (A2(zT ) − 1)(Y ′(zT ) − 1)
z−n
T

1 − λT

KY

√

1

zBπ

A2(zB)(zB − 1)2

A2(zB) − 1
n−1/2z−n

B

(1 − λT )KY

2

√

zB

π

A2(zB)(zB − 1)2

(A2(zB) − 1)(zB − Y (zB))2
n−3/2z−n

B ,

(26)

for large enough n, if zL = zT < zB , if zL = zT = zB , and if zL does not exist respectively.

The first expression constitutes a typical geometric tail behavior, the third expression is a typical

non-geometric tail behavior and the second expression gives a transition between geometric and

non-geometric tail behavior. The latter two expressions are found from the approximations of the

generating functions by using the Theorem from Appendix 2 (which is a theorem stated in [8]).
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Let us now consider the cell delay. The dominant singularity of D1(z) is the same as the one

of U1(z), and we can thus approximate the tail behavior of the delay of class-1 cells by

Prob[d1 = n] ≈ (1 − λ1)

λ1

zH − 1

A′

1(zH) − 1
z−n
H , (27)

for large enough n. The tail behavior of the delay of class-2 cells is again a bit more involved

because of the appearance of the function V (z) in (12), which is only implicitly known. The first

derivative of V (z) is given by

V ′(z) =
A1(V (z))

1 − zA′

1(V (z))
, (28)

which, similar as before, indicates that V (z) also has a square root branch point ẑB , with ẑBA′

1(V (ẑB)) =

1. In the neighbourhood of ẑB , V (z) is approximately given by

V (z) ≈ V (ẑB) − KV

√

ẑB − z, (29)

with KV =

√

2A1(V (ẑB))

ẑBA′′

1(V (ẑB))
. A second singularity of D2(z) is given by the dominant zero ẑL of

V (z) − AT (V (z)) on the real axis and is easily proven to equal
zT

A1(zT )
, if ẑL exists.

So, D2(z) can be approximated in the neighbourhood of his dominant singularity by:

D2(z) ≈



















































K̂
(1)
2

zT

A1(zT )
− z

if ẑL =
zT

A1(zT )
< ẑB

K̂
(2)
2√

ẑB − z
if ẑL =

zT

A1(zT )
= ẑB

D2(ẑB) − K̂
(3)
2

√
ẑB − z if ẑL does not exist,

where the constants K̂
(i)
2 (i = 1, 2, 3) can be found by investigating D2(z) in the neighborhood of

its dominant singularity. By using residue theory once again, the asymptotic behavior of D2(z) is
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given by

Prob[d2 = n] ≈



















































1 − λT

λ2

(zT − A1(zT ))(A1(zT ) − zT A′

1(zT ))

(A1(zT ))2(A′

T (zT ) − 1)

(

zT

A1(zT )

)

−n

1 − λT

λ2KV

√
ẑBπ

ẑBAT (V (ẑB)) − V (ẑB)

A′

T (V (ẑB)) − 1
n−1/2ẑ−n

B

(1 − λT )KV

2λ2

√

π/ẑB

(ẑB − 1)(V (ẑB)A′

T (V (ẑB)) − AT (V (ẑB)))

(V (ẑB) − AT (V (ẑB)))2
n−3/2ẑ−n

B ,

(30)

if ẑL =
zT

A1(zT )
< ẑB , if ẑL =

zT

A1(zT )
= ẑB , and if ẑL does not exist respectively. The first

expression has a typical geometric tail behavior, the third expression has a typical non-geometric

tail behavior and the second expression gives a transition between geometric and non-geometric

tail behavior.

A quantity of practical interest is the probability that a cell has a delay that exceeds a bound

D. We find

Prob[d1 > D] ≈ Prob[d1 = D + 1]ẑH

ẑH − 1
, (31)

for the probability that the delay of a class-1 cell is larger than a bound D. This can be found

by summing equation (27) for all appropriate values of n. Analogously, we can calculate the

probability that a class-2 cell exceeds a bound D by summing equation (30) for the appropriate

values of n. We find

Prob[d2 > D] ≈











































Prob[d2 = D + 1]ẑL

ẑL − 1
if ẑL =

zT

A1(zT )
< ẑB

Prob[d2 = D + 1]ẑB

ẑB − 1
if ẑL =

zT

A1(zT )
= ẑB

Prob[d2 = D + 1]ẑB

ẑB − 1
if ẑL does not exist,

where we used the approximation that
∞
∑

n=D+1

n−az−n ≈ (D + 1)−a
∞
∑

n=D+1

z−n, with a = 1/2 or

3/2 and which holds for large enough D. Some similar expressions can be found for the probability

that the system contents exceeds a certain bound.
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Since the results obtained in this section are approximate (due to the dominant pole approx-

imative method), the question remains if the expressions are accurate. From the analysis in [6],

it follows that the approximation of the tail probabilities, obtained through the dominant pole

method, are better when the dominant pole is more dominant (i.e., the higher the moduli of the

other poles, the better the quality of the approximation) and when we go further in the tail of

the distribution (i.e., when coefficient n in (22)-(23), (26)-(27) and (30) is higher). We will show

in section 8 that the approximate results for the tail probabilities obtained in this section are

satisfactory.

8 Application

In this section, we apply our results from the former sections to an ATM output-queueing

switch. We consider a non-blocking output-queueing switch with N inlets and N outlets (Figure

2). We assume two types of traffic. Traffic of class-1 is delay-sensitive (for instance voice) and

traffic of class-2 is assumed to be delay-insensitive (for instance data). We investigate the effect of

HOL priority scheduling, as presented in the former of this paper.

[Figure 2 about here.]

The cell arrivals on each inlet are assumed to be i.i.d., and generated by a Bernoulli process

with arrival rate λT . An arriving cell is assumed to be of class-j with probability λj/λT (j = 1, 2)

(λ1 + λ2 = λT ). The incoming cells are then routed to the output queue corresponding to their

destination, in an independent and uniform way. Therefore, the output queues behave identically

and we can concentrate on the analysis of 1 output queue. In view of the previous, the arrivals

of both types of cells to an output queue are generated according to a two-dimensional binomial

process. It is fully characterized by the following joint pgf

A(z1, z2) = (1 − λ1

N
(1 − z1) −

λ2

N
(1 − z2))

N . (32)
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Obviously, the number of class-1 and class-2 arrivals at an output queue during a slot are correlated.

This is simply demonstrated by the following observation: when m class-1 cells arrive at the tagged

queue during a slot (0 ≤ m ≤ N), the maximum number of class-2 arrivals during the same slot is

limited by N −m. We note that for N going to infinity, the above expression becomes a product of

two generating functions of Poisson distributions with means λ1 and λ2 respectively, and as a result,

the arrival process becomes uncorrelated for both classes. In the following, we will investigate the

effect of priority scheduling on some performance measures, such as mean value and variance of

system contents and cell delay. We will, when possible, compare with a FIFO scheduling discipline

to show the advantages and disadvantages of a priority scheduling discipline. In the remaining of

this section, we assume a 16x16 switch (N = 16). We define α as the fraction of class-1 arrivals in

the overall traffic mix (i.e., α = λ1/λT ).

In Figures 3 and 4, mean value and variance of the system contents of class-1 and class-2 cells

is shown as a function of the total arrival rate, when α = 0.25, 0.5 and 0.75 respectively. We

have also shown the mean value and variance of the system contents for α = 0.5 when a FIFO

scheduling discipline is applied. These can be easily calculated because - in the special case of

the arrival process characterized by (32) - the joint pgf of the system contents of both classes is

given by UT (αz1 +(1−α)z2) when a FIFO scheduling discipline is applied. One can easily see the

influence of priority scheduling: the mean, as well as the variance of the number of class-1 cells

in the system is severely reduced by the HOL priority scheduling; the opposite holds for class-2

cells. In addition, it also becomes apparent that increasing the fraction of high priority cells in

the overall mix increases the amount of high priority traffic while decreasing the amount of low

priority traffic in the buffer. Finally, it is also clear that the impact of priority scheduling is more

important if the load is high.

[Figure 3 about here.]

[Figure 4 about here.]

In Figure 5, the correlation coefficient ρu1u2
, which quantifies the correlation between the

number of class-1 and class-2 cells in the system during a slot, is shown as a function of the total
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arrival rate for α = 0.25, 0.5 and 0.75. We see that ρu1u2
increases when the fraction of class-1 cells

increases (for a given total load). This can easily be understood by the priority scheduling. The

influence of class-1 cells on class-2 cells will become more important, when the fraction of class-1

cells increases. A second observation is that ρu1u2
is (slightly) negative when the total load is

small, but becomes positive when the total load is large. The reason for this are two counteracting

mechanisms. The first one is the switch structure. When more class-1 cells arrive at the switch,

there will be less class-2 cells arriving at the same time (since the amount of inlets is limited),

and vice versa. This negative correlation between cell arrivals of the two priority classes during

a slot shows for small values of λT . For these parameter values, there is virtually no queueing

and the buffer behavior is mainly determined by the number of arrivals during a single slot. The

second influence is priority scheduling. As λT (and λ1) further increases, more and more cells are

being queued, and the presence of high priority cells starts to seriously hinder the transmission

of low priority cells, thereby leading to a positive correlation between u1 and u2. Finally, when

λT approaches 1, the total system contents (and the number of class-2 cells) approaches infinity,

due to the system becoming unstable. As a result ρu1u2
approaches 0. We have also shown the

correlation coefficient for α = 0.5, when a FIFO scheduling is applied. We see that the correlation

coefficient in this case is always larger than when a priority scheduling discipline is applied. Since

the system contents of both classes becomes infinite when λT approaches 1, ρu1u2
approaches 1.

[Figure 5 about here.]

Figures 6 and 7 show the mean value and the variance of the cell delay as a function of the

total load for α = 0.25, 0.5 and 0.75. In order to compare with FIFO scheduling, we have also

shown the mean value and variance of the cell delay in that case. The cell delay is then of course

the same for class-1 and class-2 cells (independent of α), and can thus be calculated as if there

is only one class arriving according to an arrival process with pgf A(z, z). This has already been

analyzed, e.g., in [5] for the special case of a multiserver output-queueing switch. We observe that

the influence of HOL priority scheduling is quite large. Mean delay and delay-jitter of class-1 cells

reduces considerably compared to FIFO scheduling. The price to pay is of course a bigger mean
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delay and delay-jitter for class-2 cells. If this kind of traffic is not delay-sensitive, this is not too big

a problem. Nevertheless, in a buffer with limited storage, an appropriate Loss priority scheme will

have to be applied in order to avoid excessive cell loss of class-2 cells. Also note that it follows from

these figures that increasing the fraction of high priority cells in the overall traffic mix, increases

the delay of high and low priority cells.

[Figure 6 about here.]

[Figure 7 about here.]

We have shown in section 7, that the tails of class-2 system contents and cell delay can have

3 types of behavior, depending on which singularity of the respective pgf’s is dominant. In case

of the output queueing switch considered in this section, Figure 8 shows for which combination

of class-1 and class-2 arrival rates the transition type behavior occurs for the system contents

and cell delay, i.e., for which combination of arrival rates the regular pole and the branch point

coincide. Above the curves, the tail behavior is geometric, while below the curves the tail behavior

is typically non-geometric. Note that in the area above the linear line (defined by λ1 + λ2 = 1) in

Figure 8, the total load is larger than 1, and as a result, the system becomes unstable.

[Figure 8 about here.]

Figures 9 and 10 show the tail behavior of the system contents and cell delay of class-1 and

class-2 cells if λ1 = 0.4 and λ2 = 0.1 (non-geometric behavior), approximately 0.21 (transition

type behavior) and 0.4 (geometric behavior) respectively. Tail behavior of system contents and

cell delay of class-1 cells is of course the same for the three cases, since the arrival process of

class-1 cells does not change. We have our approximations also compared with simulation results

(marks in the figures). The figures show that the approximations for the class-1, the geometric

and transition type tail behavior of system contents and delay is very good in these cases. The

approximations of the tails of the non-geometric case are not as good, but still satisfactory. The

approximations of the tails are not good in all cases though, as is shown in Figures 11 and 12.

In these Figures, the tail probabilities of the system contents and cell delay of class-2 cells is
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shown, with the parameters of the transition type behavior of the previous examples (λ1 = 0.4 and

λ2 = 0.21). We have shown the three types of behavior, i.e., the tail behavior just before you have

the transition from non-geometrical to geometrical tail behavior, the transition type tail behavior

itself, and the tail behavior just after the transition. These tail probabilities should be very near to

each other, but the Figures show this is not the case. The incorrectness of the geometrical and non-

geometrical approximations is due to the single-pole approximations. If both singularities lie near

to each other, which is the case near the transition from non-geometric to geometric behavior, a

single-pole approximation is clearly not good enough. More accurate approximations are necessary

in those cases, but this lies outside the scope of this paper.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

To conclude this section, we analyse the following case-study. Consider two traffic classes

generating cells that arrive in a common multiplexer buffer where they are temporarily stored before

transmission. The cell arrival process of both classes is described by a joint pgf given by expression

(32). For both classes, their respective cell delay must satisfy the constraint Prob[dj > Tj ] < 10−Xj ,

i.e., the fraction of cells of class-j that have a delay larger than the treshold Tj may not exceed

10−Xj , where Tj and Xj depend on the application under consideration. It is assumed that class-1

cells are delay-sensitive, implying that they are given priority over class-2 packets (and T1 < T2,

since it makes no sense to have a higher delay treshold for delay-sensitive traffic). Class-2 traffic may

be loss-sensitive, and the amount of packets that is rejected due to a delay treshold being exceeded

must be sufficiently small. Therefore, in the remainder we will set X2 = 9 and X1 ≡ X (where the

latter may be varied). It is clear that the performance of both traffic classes, in particular their

delay characteristics, can be studied using the results derived throughout this paper.
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The question we wish to answer is the following: what is the maximal load (denoted by ρT,max),

as a function of the traffic mix α, that still fulfils the two constraints? In Figure 13, we show the

maximal load as a funtion of α when T1 = 10, T2 = 100 and X = 1, .., 9. The constraint for

the delay of class-2 cells is the same for all X, i.e., Prob[d2 > 100] < 10−9. For X < 6, we

see that this constraint is the decisive one. We notice that the maximal load suddenly lowers a

reasonable amount when α reaches approximately 0.7. At this point, the tail behavior changes

from geometric to non-geometric tail behavior. The sudden change near 0.7 is probably due to

the lack of accurateness in the tail behavior of the class-2 delay near the transition (as discussed

earlier). Near this value for α, the maximal load we find is thus not that accurate, but one can see

that the incorrectness is in the order of a few percentages. For higher X, the constraint for the

delay of the high-priority traffic becomes decisive for high α, i.e. when more class-1 cells arrive.

In Figure 14, we show ρT,max as a funtion of α when X = 4, T2 = 100 and T1 ≥ 3. The constraint

for the delay of class-2 cells is again the same for all T1. For T1 > 7, we see that this constraint

is the decisive one. For lower T1, the constraint for the delay of the high priority traffic becomes

decisive for high α, i.e. when more class-1 cells arrive. Finally, in Figure 15, the maximum load as

a function of α is shown, when X = 4, T1 = 10 and several values of T2. For low T2, the constraint

for the low priority traffic is always the most stringent, while for T2 > 150, the constraint for the

high priority traffic is decisive for high α. The behavior depicted in these three figures can be

explained as follows. For α = 0, the traffic mix consists of low-priority packets only, and ρT,max

is relatively high, depending on the value of T2. As α increases, ρT,max gradually decreases (but

is still determined by T2) since the growing fraction of high-priority packets causes the mean low-

priority packet delay to rise. Then, as α further increases, a transition point is reached, which is

defined as the value of α and ρT for which Prob[d1 > T1] = 10−X and Prob[d2 > T2] = 10−9.

Beyond this transition point, the bounding set by T1 becomes predominant, and ρT,max further

decreases due to the ever increasing presence of high-priority packets in the traffic mix. These

figures show that the maximum allowable load can strongly depend on the delay boundaries T1

and T2 set on the high- and low-priority packet delays, and the traffic mix α.
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[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

9 Conclusions

In this paper, we analyzed a queueing system with a HOL priority scheduling discipline. A

generating-functions-approach was adopted, which led to closed-form expressions of performance

measures, such as mean and variance of the system contents and cell delay, and the correlation

coefficient of the system contents of both types of cells, that are easy to evaluate. Furthermore,

the tail behavior of system contents and cell delay is studied. We have shown that non-geometric

tails can occur for system contents and cell delay of the low priority traffic. The model included

possible correlation between the number of arrivals of the two cell types during a slot. Therefore,

the results could be used to evaluate the performance of a prioritized output-queueing switch with

Bernoulli arrivals.
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Appendix 1 : Calculation of the Probability Mass Function

Given a generating function X(z) ,
∞
∑

n=0
x(n)zn, the question is how to find an explicit, practi-

cally usable expression for its corresponding pmf x(n). From the definition of X(z) it follows that

x(n) is the coefficient of zn in the expansion of X(z) about z = 0, or equivalently the coefficient

of z−1 in the expansion of z−1−nX(z) about z = 0. x(n) is thus by definition the residue of the

function z−1−nX(z) in the point z = 0. Since z = 0 is an n-multiple pole of z−1−nX(z), calculating

24



the residue in z = 0 is nearly impossible for large n (since evaluating the residue in an n-multiple

pole requires n derivations). Using the residue theorem of Cauchy however, it is proven that

x(n) = Resz=0[X(z)z−1−n]

=
1

2πi

∮

C1

X(z)z−1−ndz −
m

∑

j=0

Resz=zj
X(z)z−1−n

with i =
√
−1, C1 a contour with infinite radius and zj the poles of X(z). The contour integral in

the former expression is normally easy to calculate (in most cases the term equals zero). If we are

only interested in the expression of x(n) for large n, the sum of residues can be approximated by

the residue in the dominant pole of X(z) (the approximation is exact for n → ∞). As a result, an

easy, practically usable formula to calculate approximate tail probabilities is obtained.

Appendix 2 : Inversion of (1 − z)α

Theorem 1 Assume that, with the sole exception of the singularity z = 1,

F (z) ,

∞
∑

n=1

f(n)zn,

is analytic in the domain

∆ = {z : |z| ≤ 1 + η, |Arg(z − 1)| ≥ θ},

in which η is a positive real number and 0 < θ < π/2. Assume further that as z tends to 1 in ∆,

F (z) = K(1 − z)α,

with α /∈ N. Then, as n → ∞,

f(n) =
K

Γ(−α)
n−α−1.

25



References

[1] Bae JJ, Suda T. Survey of traffic control schemes and protocols in ATM networks. Proceedings

of the IEEE 1991; 79(2):170-189.

[2] Bruneel H. Analysis of buffer behaviour for an integrated voice-data system. Electronics Letters

1983;19(2):72-74.

[3] Bruneel H, Kim BG. Discrete-time models for communication systems including ATM. Kluwer

Academic Publishers, Boston, 1993.

[4] Bruneel H, Steyaert B. Buffer requirements for ATM switches with multiserver output queues.

Electronics Letters 1991;27(8):671-672.

[5] Bruneel H, Steyaert B, Desmet E, Petit GH. An analytical technique for the derivation of the

delay performance of ATM switches with multiserver output queues. International Journal of

Digital and Analog Communication Systems 1992;5:193-201.

[6] Bruneel H, Steyaert B, Desmet E, Petit GH. Analytic derivation of tail probabilities for queue

lengths and waiting times in ATM multiserver queues. European Journal of Operational Re-

search 1994;76(3):563-572.

[7] Drmota M. Systems of functional equations. Random Structures & Algorithms 1997;10(1-

2):103-124.

[8] Flajolet P, Odlyzko A. Singularity analysis of generating functions. SIAM Journal on discrete

mathematics 1990;3(2):216-240.

[9] Hluchyj MG, Karol MJ. Queueing in high-performance packet switching. IEEE Journal on

Selected Areas in Communications 1988;6(9):1587-1597.

[10] Khamisy A, Sidi M. Discrete-time priority queues with two-state Markov Modulated arrivals.

Stochastic Models 1992;8(2):337-357.

26



[11] Liu KY, Petr DW, Frost VS, Zhu HB, Braun C, Edwards WL. Design and analysis of a

bandwidth management framework for ATM-based broadband ISDN. IEEE Communications

Magazine 1997;35(5):138-145.

[12] Rubin I, Tsai ZH. Message delay analysis of multiclass priority TDMA, FDMA, and discrete-

time queueing systems. IEEE Transactions on Information Theory 1989;35(3):637-647.

[13] Sidi M, Segall A. Structured priority queueing systems with applications to packet-radio net-

works. Performance Evaluation 1983;3(4):265-275.

[14] Stanford DA. Interdeparture-time distributions in the non-preemptive priority
∑

Mi/Gi/1

queue. Performance Evaluation 1991;12(1):43-60.

[15] Sugahara A, Takine T, Takahashi Y, Hasegawa T. Analysis of a nonpreemptive priority queue

with SPP arrivals of high class. Performance Evaluation 1995;21(3):215-238.

[16] Takahashi Y, Hashida O. Delay analysis of discrete-time priority queue with structured inputs.

Queueing Systems 1991;8(2):149-164.

[17] Takine T, Sengupta B, Hasegawa T. An analysis of a discrete-time queue for broadband ISDN

with priorities among traffic classes. IEEE Transactions on Communications 1994;42(2-4):1837-

1845.

[18] Takine T. A nonpreemptive priority MAP/G/1 queue with two classes of customers. Journal

of Operations Research Society of Japan 1996;39(2):266-290.

[19] Van Mieghem P, Steyaert B, Petit GH. Performance of cell loss priority management schemes

in a single server queue. International Journal of Communication Systems 1997;10(4):161-180.

[20] Xiong Y, Bruneel H. Buffer contents and delay for statistical multiplexers with fixed-length

packet-train arrivals. Performance Evaluation 1993;17(1):31-42.

27



List of Figures

1 The queueing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 An NxN output queueing switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Mean value of system contents versus the total arrival rate . . . . . . . . . . . . . . 31
4 Variance of system contents versus the total arrival rate . . . . . . . . . . . . . . . 32
5 Correlation of system contents versus the total arrival rate . . . . . . . . . . . . . . 33
6 Mean value of cell delays versus the total arrival rate . . . . . . . . . . . . . . . . . 34
7 Variance of cell delays versus the total arrival rate . . . . . . . . . . . . . . . . . . 35
8 Regions for tail behavior as a function of the arrival rates of both classes . . . . . . 36
9 Tail behavior of the high and low priority system contents for some combinations of

class-1 and class-2 arrival rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10 Tail behavior of the high and low priority cell delay for some combinations of class-1

and class-2 arrival rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11 Tail behavior of the low priority system contents near the transition from non-

geometrical to geometrical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12 Tail behavior of the low priority cell delay near the transition from non-geometrical

to geometrical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
13 Maximum load versus the fraction of class-1 arrivals for several values of X . . . . 41
14 Maximum load versus the fraction of class-1 arrivals for several values of T1 . . . . 42
15 Maximum load versus the fraction of class-1 arrivals for several values of T2 . . . . 43

28



Figure 1: The queueing system
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Figure 2: An NxN output queueing switch
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Figure 3: Mean value of system contents versus the total arrival rate
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class-1 and class-2 arrival rates
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Figure 10: Tail behavior of the high and low priority cell delay for some combinations of class-1
and class-2 arrival rates

38



1e-40

1e-35

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 20 40 60 80 100

n

non-geo
trans
geo

Figure 11: Tail behavior of the low priority system contents near the transition from non-
geometrical to geometrical
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Figure 12: Tail behavior of the low priority cell delay near the transition from non-geometrical to
geometrical
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Figure 13: Maximum load versus the fraction of class-1 arrivals for several values of X
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Figure 14: Maximum load versus the fraction of class-1 arrivals for several values of T1
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Figure 15: Maximum load versus the fraction of class-1 arrivals for several values of T2
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