3,973 research outputs found

    Realtime Fewshot Portrait Stylization Based On Geometric Alignment

    Full text link
    This paper presents a portrait stylization method designed for real-time mobile applications with limited style examples available. Previous learning based stylization methods suffer from the geometric and semantic gaps between portrait domain and style domain, which obstacles the style information to be correctly transferred to the portrait images, leading to poor stylization quality. Based on the geometric prior of human facial attributions, we propose to utilize geometric alignment to tackle this issue. Firstly, we apply Thin-Plate-Spline (TPS) on feature maps in the generator network and also directly to style images in pixel space, generating aligned portrait-style image pairs with identical landmarks, which closes the geometric gaps between two domains. Secondly, adversarial learning maps the textures and colors of portrait images to the style domain. Finally, geometric aware cycle consistency preserves the content and identity information unchanged, and deformation invariant constraint suppresses artifacts and distortions. Qualitative and quantitative comparison validate our method outperforms existing methods, and experiments proof our method could be trained with limited style examples (100 or less) in real-time (more than 40 FPS) on mobile devices. Ablation study demonstrates the effectiveness of each component in the framework.Comment: 10 pages, 10 figure

    Towards photo watercolorization with artistic verisimilitude

    Get PDF
    published_or_final_versio

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Multi-Sensory Interaction for Blind and Visually Impaired People

    Get PDF
    This book conveyed the visual elements of artwork to the visually impaired through various sensory elements to open a new perspective for appreciating visual artwork. In addition, the technique of expressing a color code by integrating patterns, temperatures, scents, music, and vibrations was explored, and future research topics were presented. A holistic experience using multi-sensory interaction acquired by people with visual impairment was provided to convey the meaning and contents of the work through rich multi-sensory appreciation. A method that allows people with visual impairments to engage in artwork using a variety of senses, including touch, temperature, tactile pattern, and sound, helps them to appreciate artwork at a deeper level than can be achieved with hearing or touch alone. The development of such art appreciation aids for the visually impaired will ultimately improve their cultural enjoyment and strengthen their access to culture and the arts. The development of this new concept aids ultimately expands opportunities for the non-visually impaired as well as the visually impaired to enjoy works of art and breaks down the boundaries between the disabled and the non-disabled in the field of culture and arts through continuous efforts to enhance accessibility. In addition, the developed multi-sensory expression and delivery tool can be used as an educational tool to increase product and artwork accessibility and usability through multi-modal interaction. Training the multi-sensory experiences introduced in this book may lead to more vivid visual imageries or seeing with the mind’s eye

    Semantically-enhanced recommendations in cultural heritage

    Get PDF
    In the Web 2.0 environment, institutes and organizations are starting to open up their previously isolated and heterogeneous collections in order to provide visitors with maximal access. Semantic Web technologies act as instrumental in integrating these rich collections of metadata by defining ontologies which accommodate different representation schemata and inconsistent naming conventions over the various vocabularies. Facing the large amount of metadata with complex semantic structures, it is becoming more and more important to support visitors with a proper selection and presentation of information. In this context, the Dutch Science Foundation (NWO) funded the Cultural Heritage Information Personalization (CHIP) project in early 2005, as part of the Continuous Access to Cultural Heritage (CATCH) program in the Netherlands. It is a collaborative project between the Rijksmuseum Amsterdam, the Eindhoven University of Technology and the Telematica Instituut. The problem statement that guides the research of this thesis is as follows: Can we support visitors with personalized access to semantically-enriched collections? To study this question, we chose cultural heritage (museums) as an application domain, and the semantically rich background knowledge about the museum collection provides a basis to our research. On top of it, we deployed user modeling and recommendation technologies in order to provide personalized services for museum visitors. Our main contributions are: (i) we developed an interactive rating dialog of artworks and art concepts for a quick instantiation of the CHIP user model, which is built as a specialization of FOAF and mapped to an existing event model ontology SEM; (ii) we proposed a hybrid recommendation algorithm, combining both explicit and implicit relations from the semantic structure of the collection. On the presentation level, we developed three tools for end-users: Art Recommender, Tour Wizard and Mobile Tour Guide. Following a user-centered design cycle, we performed a series of evaluations with museum visitors to test the effectiveness of recommendations using the rating dialog, different ways to build an optimal user model and the prediction accuracy of the hybrid algorithm. Chapter 1 introduces the research questions, our approaches and the outline of this thesis. Chapter 2 gives an overview of our work at the first stage. It includes (i) the semantic enrichment of the Rijksmuseum collection, which is mapped to three Getty vocabularies (ULAN, AAT, TGN) and the Iconclass thesaurus; (ii) the minimal user model ontology defined as a specialization of FOAF, which only stores user ratings at that time, (iii) the first implementation of the content-based recommendation algorithm in our first tool, the CHIP Art Recommender. Chapter 3 presents two other tools: Tour Wizard and Mobile Tour Guide. Based on the user's ratings, the Web-based Tour Wizard recommends museum tours consisting of recommended artworks that are currently available for museum exhibitions. The Mobile Tour Guide converts recommended tours to mobile devices (e.g. PDA) that can be used in the physical museum space. To connect users' various interactions with these tools, we made a conversion of the online user model stored in RDF into XML format which the mobile guide can parse, and in this way we keep the online and on-site user models dynamically synchronized. Chapter 4 presents the second generation of the Mobile Tour Guide with a real time routing system on different mobile devices (e.g. iPod). Compared with the first generation, it can adapt museum tours based on the user's ratings artworks and concepts, her/his current location in the physical museum and the coordinates of the artworks and rooms in the museum. In addition, we mapped the CHIP user model to an existing event model ontology SEM. Besides ratings, it can store additional user activities, such as following a tour and viewing artworks. Chapter 5 identifies a number of semantic relations within one vocabulary (e.g. a concept has a broader/narrower concept) and across multiple vocabularies (e.g. an artist is associated to an art style). We applied all these relations as well as the basic artwork features in content-based recommendations and compared all of them in terms of usefulness. This investigation also enables us to look at the combined use of artwork features and semantic relations in sequence and derive user navigation patterns. Chapter 6 defines the task of personalized recommendations and decomposes the task into a number of inference steps for ontology-based recommender systems, from a perspective of knowledge engineering. We proposed a hybrid approach combining both explicit and implicit recommendations. The explicit relations include artworks features and semantic relations with preliminary weights which are derived from the evaluation in Chapter 5. The implicit relations are built between art concepts based on instance-based ontology matching. Chapter 7 gives an example of reusing user interaction data generated by one application into another one for providing cross-application recommendations. In this example, user tagging about cultural events, gathered by iCITY, is used to enrich the user model for generating content-based recommendations in the CHIP Art Recommender. To realize full tagging interoperability, we investigated the problems that arise in mapping user tags to domain ontologies, and proposed additional mechanisms, such as the use of SKOS matching operators to deal with the possible mis-alignment of tags and domain-specific ontologies. We summarized to what extent the problem statement and each of the research questions are answered in Chapter 8. We also discussed a number of limitations in our research and looked ahead at what may follow as future work

    Video based dynamic scene analysis and multi-style abstraction.

    Get PDF
    Tao, Chenjun.Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.Includes bibliographical references (leaves 89-97).Abstracts in English and Chinese.Abstract --- p.iAcknowledgements --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Window-oriented Retargeting --- p.1Chapter 1.2 --- Abstraction Rendering --- p.4Chapter 1.3 --- Thesis Outline --- p.6Chapter 2 --- Related Work --- p.7Chapter 2.1 --- Video Migration --- p.8Chapter 2.2 --- Video Synopsis --- p.9Chapter 2.3 --- Periodic Motion --- p.14Chapter 2.4 --- Video Tracking --- p.14Chapter 2.5 --- Video Stabilization --- p.15Chapter 2.6 --- Video Completion --- p.20Chapter 3 --- Active Window Oriented Video Retargeting --- p.21Chapter 3.1 --- System Model --- p.21Chapter 3.1.1 --- Foreground Extraction --- p.23Chapter 3.1.2 --- Optimizing Active Windows --- p.27Chapter 3.1.3 --- Initialization --- p.29Chapter 3.2 --- Experiments --- p.32Chapter 3.3 --- Summary --- p.37Chapter 4 --- Multi-Style Abstract Image Rendering --- p.39Chapter 4.1 --- Abstract Images --- p.39Chapter 4.2 --- Multi-Style Abstract Image Rendering --- p.42Chapter 4.2.1 --- Multi-style Processing --- p.45Chapter 4.2.2 --- Layer-based Rendering --- p.46Chapter 4.2.3 --- Abstraction --- p.47Chapter 4.3 --- Experimental Results --- p.49Chapter 4.4 --- Summary --- p.56Chapter 5 --- Interactive Abstract Videos --- p.58Chapter 5.1 --- Abstract Videos --- p.58Chapter 5.2 --- Multi-Style Abstract Video --- p.59Chapter 5.2.1 --- Abstract Images --- p.60Chapter 5.2.2 --- Video Morphing --- p.65Chapter 5.2.3 --- Interactive System --- p.69Chapter 5.3 --- Interactive Videos --- p.76Chapter 5.4 --- Summary --- p.77Chapter 6 --- Conclusions --- p.81Chapter A --- List of Publications --- p.83Chapter B --- Optical flow --- p.84Chapter C --- Belief Propagation --- p.86Bibliography --- p.8

    Designing a face detection CAPTCHA

    Get PDF
    Completely Automated Tests for Telling Computers and Humans Apart (CAPTCHAs) are quickly becoming a standard for security in every online interface that could be the subject to spam or other exploitation. The majority of today\u27s CAPTCHA technologies rely on text-based images, which present the user with a string of distorted characters and asks the user to type out the characters. The problem with CAPTCHAs is that they are often difficult to solve and can generally be successfully defeated using techniques such as segmentation and optical character recognition. We introduce an image face recognition based CAPTCHA which presents the user with a series of distorted images and the question of deciding which of these images contain a human face. The user is required to click on all presented face images in order to successfully pass the CAPTCHA. The concept relies on the strength of the human ability to detect a face even amongst heavy distortion as well as the inaccuracies and short-comings of face recognition software. The CAPTCHA application was designed with a web interface and deployed on West Virginia University\u27s Computer Science 101 attendance website. To test the success of the CAPTCHA, data for human success rates was compared alongside facial recognition software which attempted to solve the CAPTCHA. The results of the data gathered during testing not only prove the feasibility of face recognition based CAPTCHAs in general, but also provide valuable data regarding human versus computer recognition rates under varying types of image distortion
    • 

    corecore