382 research outputs found

    ConceptScope: Organizing and Visualizing Knowledge in Documents based on Domain Ontology

    Full text link
    Current text visualization techniques typically provide overviews of document content and structure using intrinsic properties such as term frequencies, co-occurrences, and sentence structures. Such visualizations lack conceptual overviews incorporating domain-relevant knowledge, needed when examining documents such as research articles or technical reports. To address this shortcoming, we present ConceptScope, a technique that utilizes a domain ontology to represent the conceptual relationships in a document in the form of a Bubble Treemap visualization. Multiple coordinated views of document structure and concept hierarchy with text overviews further aid document analysis. ConceptScope facilitates exploration and comparison of single and multiple documents respectively. We demonstrate ConceptScope by visualizing research articles and transcripts of technical presentations in computer science. In a comparative study with DocuBurst, a popular document visualization tool, ConceptScope was found to be more informative in exploring and comparing domain-specific documents, but less so when it came to documents that spanned multiple disciplines.Comment: 19 pages, 5 figure

    Explorative Graph Visualization

    Get PDF
    Netzwerkstrukturen (Graphen) sind heutzutage weit verbreitet. Ihre Untersuchung dient dazu, ein besseres VerstĂ€ndnis ihrer Struktur und der durch sie modellierten realen Aspekte zu gewinnen. Die Exploration solcher Netzwerke wird zumeist mit Visualisierungstechniken unterstĂŒtzt. Ziel dieser Arbeit ist es, einen Überblick ĂŒber die Probleme dieser Visualisierungen zu geben und konkrete LösungsansĂ€tze aufzuzeigen. Dabei werden neue Visualisierungstechniken eingefĂŒhrt, um den Nutzen der gefĂŒhrten Diskussion fĂŒr die explorative Graphvisualisierung am konkreten Beispiel zu belegen.Network structures (graphs) have become a natural part of everyday life and their analysis helps to gain an understanding of their inherent structure and the real-world aspects thereby expressed. The exploration of graphs is largely supported and driven by visual means. The aim of this thesis is to give a comprehensive view on the problems associated with these visual means and to detail concrete solution approaches for them. Concrete visualization techniques are introduced to underline the value of this comprehensive discussion for supporting explorative graph visualization

    User-centric Visualization of Data Provenance

    Get PDF
    The need to understand and track files (and inherently, data) in cloud computing systems is in high demand. Over the past years, the use of logs and data representation using graphs have become the main method for tracking and relating information to the cloud users. While it is still in use, tracking and relating information with ‘Data Provenance’ (i.e. series of chronicles and the derivation history of data on meta-data) is the new trend for cloud users. However, there is still much room for improving representation of data activities in cloud systems for end-users. In this thesis, we propose “UVisP (User-centric Visualization of Data Provenance with Gestalt)”, a novel user-centric visualization technique for data provenance. This technique aims to facilitate the missing link between data movements in cloud computing environments and the end-users’ uncertain queries over their files’ security and life cycle within cloud systems. The proof of concept for the UVisP technique integrates D3 (an open-source visualization API) with Gestalts’ theory of perception to provide a range of user-centric visualizations. UVisP allows users to transform and visualize provenance (logs) with implicit prior knowledge of ‘Gestalts’ theory of perception.’ We presented the initial development of the UVisP technique and our results show that the integration of Gestalt and the existence of ‘perceptual key(s)’ in provenance visualization allows end-users to enhance their visualizing capabilities, extract useful knowledge and understand the visualizations better. This technique also enables end-users to develop certain methods and preferences when sighting different visualizations. For example, having the prior knowledge of Gestalt’s theory of perception and integrated with the types of visualizations offers the user-centric experience when using different visualizations. We also present significant future work that will help profile new user-centric visualizations for cloud users

    Providing effective visualizations over big linked data

    Get PDF
    The number and the size of Linked Data sources are constantly increasing. In some lucky case, the data source is equipped with a tool that guides and helps the user during the exploration of the data, but in most cases, the data are published as an RDF dump through a SPARQL endpoint that can be accessed only through SPARQL queries. Although the RDF format was designed to be processed by machines, there is a strong need for visualization and exploration tools. Data visualizations make big and small linked data easier for the human brain to understand, and visualization also makes it easier to detect patterns, trends, and outliers in groups of data. For this reason, we developed a tool called H-BOLD (Highlevel Visualization over Big Linked Open Data). H-BOLD aims to help the user exploring the content of a Linked Data by providing a high-level view of the structure of the dataset and an interactive exploration that allows users to focus on the connections and attributes of one or more classes. Moreover, it provides a visual interface for querying the endpoint that automatically generates SPARQL queries

    Augmenting citation chain aggregation with article maps

    Get PDF
    Presentation slides available at: https://www.gesis.org/fileadmin/upload/kmir2014/paper4_slides.pdfThis paper presents Voyster, an experimental system that combines citation chain aggregation (CCA) and spatial-semantic maps to support citation search. CCA uses a three-list view to represent the citation network surrounding a ‘pearl’ of known relevant articles, whereby cited and citing articles are ranked according to number of pearl relations. As the pearl grows, this overlap score provides an effective proxy for relevance. However, when the pearl is small or multi-faceted overlap ranking provides poor discrimination. To address this problem we augment the lists with a visual map, wherein articles are organized according to their content similarity. We demonstrate how the article map can help the user to make relevant choices during the early stages of the search pro-cess and also provide useful insights into the thematic structure of the local citation network

    Unipept: computational exploration of metaproteome data

    Get PDF

    Information visualization for DNA microarray data analysis: A critical review

    Get PDF
    Graphical representation may provide effective means of making sense of the complexity and sheer volume of data produced by DNA microarray experiments that monitor the expression patterns of thousands of genes simultaneously. The ability to use ldquoabstractrdquo graphical representation to draw attention to areas of interest, and more in-depth visualizations to answer focused questions, would enable biologists to move from a large amount of data to particular records they are interested in, and therefore, gain deeper insights in understanding the microarray experiment results. This paper starts by providing some background knowledge of microarray experiments, and then, explains how graphical representation can be applied in general to this problem domain, followed by exploring the role of visualization in gene expression data analysis. Having set the problem scene, the paper then examines various multivariate data visualization techniques that have been applied to microarray data analysis. These techniques are critically reviewed so that the strengths and weaknesses of each technique can be tabulated. Finally, several key problem areas as well as possible solutions to them are discussed as being a source for future work

    Measuring and improving the readability of network visualizations

    Get PDF
    Network data structures have been used extensively for modeling entities and their ties across such diverse disciplines as Computer Science, Sociology, Bioinformatics, Urban Planning, and Archeology. Analyzing networks involves understanding the complex relationships between entities as well as any attributes, statistics, or groupings associated with them. The widely used node-link visualization excels at showing the topology, attributes, and groupings simultaneously. However, many existing node-link visualizations are difficult to extract meaning from because of (1) the inherent complexity of the relationships, (2) the number of items designers try to render in limited screen space, and (3) for every network there are many potential unintelligible or even misleading visualizations. Automated layout algorithms have helped, but frequently generate ineffective visualizations even when used by expert analysts. Past work, including my own described herein, have shown there can be vast improvements in network visualizations, but no one can yet produce readable and meaningful visualizations for all networks. Since there is no single way to visualize all networks effectively, in this dissertation I investigate three complimentary strategies. First, I introduce a technique called motif simplification that leverages the repeating patterns or motifs in a network to reduce visual complexity. I replace common, high-payoff motifs with easily understandable glyphs that require less screen space, can reveal otherwise hidden relationships, and improve user performance on many network analysis tasks. Next, I present new Group-in-a-Box layouts that subdivide large, dense networks using attribute- or topology-based groupings. These layouts take group membership into account to more clearly show the ties within groups as well as the aggregate relationships between groups. Finally, I develop a set of readability metrics to measure visualization effectiveness and localize areas needing improvement. I detail optimization recommendations for specific user tasks, in addition to leveraging the readability metrics in a user-assisted layout optimization technique. This dissertation contributes an understanding of why some node-link visualizations are difficult to read, what measures of readability could help guide designers and users, and several promising strategies for improving readability which demonstrate that progress is possible. This work also opens several avenues of research, both technical and in user education

    Hierarkkisessa asiakasdatassa ajan suhteen tapahtuvien muutosten visualisointi kÀyttÀen visualisointikirjastoa Plotly Python Graphing Library

    Get PDF
    Time-dependent hierarchical data is a complex type of data that is difficult to visualize in a clear manner. It can be found in many real-life situations, for example in customer analysis, but the best practices for visualizing this type of data are not commonly known in business world. This thesis focuses on visualizing changes over time in hierarchical customer data using the Plotly Python Graphing Library and is written as an assignment for a Finnish company. The thesis consists of a literature survey and experimental part. The literature survey introduces the most common hierarchical visualization methods, and the different possible encoding techniques for adding time dimension on top of these hierarchical visualization methods. Moreover, the pros and cons of different visualization techniques and encodings are discussed about. In the experimental part of the thesis, visualization prototypes are designed using the Plotly Python Graphing Library. A company customer data set of the commissioning company is partitioned into hierarchical customer segments by a hierarchical industrial classification TOL 2008, and changes over time in a continuous variable are visualized by these segments. Two hierarchical visualization techniques: the sunburst chart and treemap, are used to create two prototype versions, and the combination of color, typography, and interaction is used to encode time dimension in these prototypes. The same prototypes are also exploited to visualize customer segments by an artificial hierarchy created by combining multiple categorical features into a hierarchical structure. The prototypes are validated in the commissioning company by arranging an end user study and expert review. Concerning the prototypes by the industrial classification: According to the end users and experts, both prototype versions are very useful and well-implemented. Among the end users, there was no significant difference in which one of these prototype versions is faster to use, but the clear majority of the respondents regarded the sunburst chart version as their favorite prototype. The two experts who participated in the expert review had different opinions on which one of the prototype versions they would select to be utilized in practice. Concerning the prototypes by the artificial hierarchy: These prototypes also received positive feedback, but the possibility to change the order of features in the hierarchy was considered as an extremely important development idea. ACM Computing Classification System (CCS): Human-Centered Computing → Visualization → Visualization Techniques Human-Centered Computing → Visualization → Empirical Studies in Visualizatio
    • 

    corecore