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Preface
Het dankwoord, het begin van een boek, maar toch ook
een beetje het einde. De meest gelezen pagina’s van een
doctoraat. Maar waarom eigenlijk? Een van de weinige
stukjes tekst in dit boek waar een glimp kan worden
opgevangen van de man of vrouw achter het doctoraat? De
enige pagina’s die begrijpbaar zijn voor iedereen? Omdat
het boek er meestal mee begint en men daarna afhaakt? Of
toch gewoon uit zou ik vermeld worden-nieuwsgierigheid?

Als doctorandus zijn dit misschien wel de moeilijkste pagi-
na’s om te schrijven. Je bent het beu en wil het boek naar de
drukker sturen, maar tegelijk wil je niemand vergeten te be-
danken, wat origineel uit de hoek komen en als het even
kan ook wat grappig zijn. Ik doe zoals elke goede infor-
maticus die vast zit met een probleem: Google openen.
“How to write an original preface”, “Top 10 acknowledge-
ments”, “Auto generate acknowledgements”, “Origin of Lorem
Ipsum”, …. Weinig resultaat, maar zoals vaak wel twee uur
tijd verspild op Wikipedia. Wist je trouwens dat de olifant,
kangoeroe, en zeekoe de enige zoogdieren zijn die meerdere
keren van gebit wisselen tijdens hun leven?

Leuke dankwoorden beginnen vaak met het bedanken van
belangrijke personen die slechts indirect een grote invloed
gehad hebben. Bij deze wens ik de Oromo te bedanken
voor het ontdekken van de koffie (wist je trouwens dat het
woord coffee van koffie komt, en niet andersom), Alan Tur-
ing voor zijn werk in de theoretische informatica (en miss-
chien wel de allereerste bioinformaticus?), en professor
Frank De Clerck die alles triviaal deed lijken. Ook schrij-
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vende voorbeelden, merci Douglas Adams en Steven Mof-
fat, en een sarcastische bedanking mogen uiteraard niet
ontbreken. Bedankt aan mijn vroegere wiskundeleerkracht
Dorine “informatica aan de unief dat zal niet lukken, en
burgerlijk ingenieur zeker niet” Claeys.

Laat ik nu toch ook maar de mensen bedanken die er echt
toe deden. In de eerste plaats denk ik dan aan mijn promo-
tor Peter Dawyndt zonder wie dit doctoraat niet mogelijk
was. Niettegenstaande proteomics voor ons beide onbekend
terrein was aan het begin van dit project, zijn we er toch in
geslaagd om op relatief korte termijn een mooie tool te ont-
wikkelen die ook effectief gebruikt wordt. Dit ook dankzij
Peter Vandamme en Bart Devreese die ons, zeker in het be-
gin, met veel geduld wegwijs gemaakt hebben in de
uitdagingen en noden in dit toch wel complexe veld.

Eveneens een dikke merci aan de thesisstudenten die ik de
afgelopen jaren begeleid heb: Toon, Tom, Felix, Kevin en
Stijn. Jullie werk was een meerwaarde voor het project.
Daarnaast hebben vele anderen, direct of indirect, bijgedra-
gen aan het succes van Unipept. Bedankt Griet, Maarten,
Lieven, Jens, Cizar, Henning en Lennart.

Leve ook het chatkanaal en de leden van de studenten-
vereniging Zeus WPI. Jullie expertise, tips, en feedback
waren van onschatbare waarde en hebben me uren tijd be-
spaard. Jullie afleiding en interessante discussies hebben me
dan weer uren tijd gekost.

Uiteraard wil ik ook mijn vakgroep TWIST bedanken die
de werkdagen de moeite waard maakten dankzij de dis-
cussies in de koffiepauzes, de spelletjes- en K3-avonden, de
filosofische gesprekken over mayonaise van de Aldi tijdens
de restolunches en zo veel meer. Gaande van gedeelde in-
teresses in Doctor Who, Zelda, Star Wars, Age of Em-
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pires, dino’s en gekleurde bollen, over het leegspuiten van
flessen cava en circulaire vergaderingen, tot het samen
begeleiden van vakken, jullie verdienen het allemaal om
hier vermeld te worden. Toch zou ik er graag enkele
mensen uitpikken die er al van bij het begin bij waren. Een
dikke merci aan mede-Tardisbouwer Davy, kousencon-
troleur Virginie, en alwetende Nico.

Jaren geleden belandde ik als 16-jarige op Home
Boudewijn. Ik had toen nooit kunnen dromen in welke
fantastische omgeving ik zou terecht komen. Tijdens de
blok in de bar blijven slapen, illegaal netwerkkabels op het
dak leggen, SABAM aan de deur zetten, frigo’s uitkuisen
met zoutzuur, het zijn maar enkele stoten die we uitgehaald
hebben en de basis voor een vriendschap die nu, vele jaren
later, nog verder blijft duren. Bedankt allemaal en dat er
nog veel Ardennenreisjes mogen volgen. In het bijzonder
nog een extra bedankje aan PhD-buddies Simon en Bert
die altijd klaar stonden met advies en een luisterend oor
waren als het even te veel werd.

Als laatste ook een grote dankjewel aan mijn grootste sup-
porters, mijn familie. Jullie waren er altijd voor me, ook
toen mijn eerste bachelor niet van een leien dakje liep, ik
soms wat slechtgezind was tijdens de examens, of als ik
weer eens in het weekend moest werken. Merci, mama, pa-
pa, Pieter, Koen, levende knuffelbeesten Twix, Boris, Jules,
en uiteraard ook Cath. Bedankt voor alles.

Het dankwoord, het einde van een werk, maar toch ook een
beetje een begin.
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Summary
Microorganisms drive most of the chemical transforma-
tions crucial to sustaining life on Earth. Their ability to in-
habit almost every environmental niche proves they possess
an incredible diversity of physiological capabilities. Howev-
er, little is known about the majority of the millions of mi-
crobial species that are predicted to exists, given that we are
able to grow only an estimated 1% of these organisms un-
der lab conditions. The emerging disciplines of metage-
nomics and metaproteomics take advantage of the current
generation of sequencing technologies to recover genetic
material and active proteins directly from environmental
samples. These new approaches provide us with a “new kind
of microscope” that is revolutionizing our understanding of
the diversity and ecology of environmental communities.
However, the computational and statistical tools to analyze
metagenomics and metaproteomics data are clearly lagging
behind the developments in sequencing technology.

In this thesis, we present an online web portal called
Unipept that combines advanced algorithms, novel statisti-
cal methods and interactive visualizations for the analysis of
metagenomics and metaproteomics data sets. It will equip
the new microscope with more powerful lenses, enabling
researchers to better zoom in on who is living in complex
environmental communities, what they are doing there and
how they are doing it.

The first introductory chapter is aimed at bringing comput-
er scientists up to speed with the necessary biochemical and
(micro)biological background. Next, we present the
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Unipept web application as a tool for the diversity analysis
of complex metaproteome samples. Chapter 3 builds on
that by introducing two new ways to access the analysis
tools offered by Unipept: a web-based API and a set of
command line tools.

Chapter 4 covers the peptidome analysis part of the
Unipept ecosystem. The Unique Peptide Finder is intro-
duced as a new way to discover unique peptides that can be
used as biomarkers in targeted metaproteomics, while Pep-
tidome Clustering can be used to investigate the relatedness
of organisms. These two tools are built on the same founda-
tions using advanced JavaScript features to offer interactive
visualizations and high-performance client-side calcula-
tions.

Chapter 5 tells the story of Unipept from a computer scien-
tist’s point of view. The chapter reconstructs the develop-
ment timeline of Unipept including the technical design
choices and failed experiments.

The last chapter explores ongoing and potential future ex-
tensions to Unipept, including a new metagenomics
pipeline, the addition of functional analysis features, and
additions to the Unique Peptide Finder.

SUMMARY
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Samenvatting
Micro-organismen zijn verantwoordelijk voor de meeste
chemische transformaties die cruciaal zijn voor het behoud
van het leven op Aarde. Hun vermogen om op bijna elke
plaats op Aarde, hoe extreem ook, aanwezig te zijn, bewijst
dat ze een ongelooflijke diversiteit aan fysiologische mo-
gelijkheden bezitten. Er is echter weinig bekend over de
meerderheid van de miljoenen soorten bacteriën die veron-
dersteld worden te bestaan. We zijn namelijk in staat om
naar schatting slechts 1% van alle bestaande bacteriën te
kweken in laboratoriumomstandigheden. De opkomende
metagenomics en metaproteomics disciplines kunnen ge-
bruik maken van de huidige generatie sequeneringstech-
nologie om genetisch materiaal en actieve eiwitten recht-
streeks te bepalen vanuit omgevingsstalen. Deze nieuwe be-
naderingen bieden ons een “nieuw soort microscoop” die
een revolutie teweeg brengt in ons inzicht in de diversiteit
en ecologie van microbiële ecosystemen. De computa-
tionele en statistische tools om de grote hoeveelheden
metagenomics en metaproteomics gegevens te analyseren
blijven echter duidelijk achter op de snelle ontwikkelingen
op vlak van sequeneringstechnologie.

In deze thesis stellen we de webapplicatie Unipept voor.
Deze applicatie combineert geavanceerde algoritmen,
nieuwe statistische methoden en interactieve visualisaties
om metagenomics en metaproteomics data te analyseren.
Unipept rust onze figuurlijke microscoop uit met nieuwe
krachtige lenzen die onderzoekers toelaten om dieper in te
zoomen op welke organismen aanwezig zijn in complexe
ecosystemen, wat ze er doen en hoe ze dat doen.
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Het eerste inleidende hoofdstuk probeert om informatici de
nodige biochemische en (micro)biologische kennis bij te
brengen om de rest van het onderzoek te begrijpen. Vervol-
gens introduceren we Unipept als een tool om de biodiver-
siteit van complexe omgevingsstalen te analyseren. Het
derde hoofdstuk bouwt hierop verder door twee alternatieve
manieren voor te stellen om toegang te krijgen tot de analy-
seresultaten van Unipept: een API en een commandolijn-
toepassing.

Hoofdstuk 4 behandelt het peptidoomanalyseluik van
Unipept. De Unique Peptide Finder is een nieuwe manier
om unieke peptiden te ontdekken die kunnen gebruikt
worden als biomerkers in targeted metaproteomics. De Pep-
tidome Clustering toepassing kan gebruikt worden om de
verwantschap tussen organismen te onderzoeken. Deze
twee toepassingen gebruiken een gemeenschappelijke tech-
nische basis die steunt op geavanceerde JavaScript functies
die een performante toepassing met interactieve visual-
isaties toelaten.

Hoofdstuk 5 vertelt het verhaal van Unipept vanuit het
standpunt van een informaticus. Dit hoofdstuk recon-
strueert de geschiedenis van de ontwikkeling van Unipept
met aandacht voor de technische keuzes en mislukte expe-
rimenten.

Het laatste hoofdstuk beschrijft toekomstige uitbreidingen
van Unipept. Voorbeelden hiervan zijn een nieuwe pipeline
om metagenomics data te verwerken, de mogelijkheid om
naast de biodiversiteit ook de functies van de eiwitten in
kaart te brengen en enkele uitbreidingen op de Unique Pep-
tide Finder.

SAMENVATTING
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Chapter 1

Proteomics for computer
scientists

Biology can be a daunting subject for computer scientists.
As people who are used to everything being deterministic
and logical, the real world can be disappointingly unpre-
dictable. Biological lingo and jargon can also be a real bar-
rier in the communication between computer scientists and
biologists. This chapters aims to be a gentle introduction in
the (micro)biology and biochemistry that is needed to un-
derstand this thesis.
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1.1 Life on Earth

A good starting point to explain what life is, would be to
start with its origin. Unfortunately, this origin of life is not
something we know for sure. The origin of life is an active
research area that tries to form a hypothesis that takes into
account the biological, chemical as well as geophysical as-
pects.

Spontaneous generation
Before the nineteenth century, it was generally believed
that life could generate spontaneously out of non-living

This theory is known as
spontaneous generation.

matter (Balme, 1962). Maggots, for example, could arise
from dead flesh and crocodiles could form from logs rotting
at the bottom of a pond according to the Greek philoso-
pher Aristotle. During the seventeenth century, it gradually
became clear that this belief was false and the theory that
each living organism comes from a pre-existing living or-
ganism was adopted for visible organisms.

At the time, there was a strong suspicion of the existence of
organisms that aren’t visible to the naked eye. In 1676,
Antoni van Leeuwenhoek was the first to observe these mi-
croorganisms using a self-made microscope (Figure 1.1;
Gest (2004)). The origin of these organisms was not clear
and it wasn’t until 1859, when Louis Pasteur did a series of
famous experiments (Figure 1.2) that proved that microbial
life couldn’t spontaneously originate from a sterile nutrient
broth, that the theory of spontaneous generation was refut-
ed (Schwartz, 2001).

1. PROTEOMICS FOR COMPUTER SCIENTISTS
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Figure 1.1 Drawing from 1756 by English naturalist Henry Baker of mi-
croscopes owned by Antoni van Leeuwenhoek.

With spontaneous generation off the table, it took several
years before a new theory was formulated. In 1924,
Alexander Oparin speculated that the presence of oxygen in
the atmosphere prevents the formation of the organic mol-
ecules that serve as building blocks for the evolution of life.
This led Oparin to conclude that although spontaneous
generation is not possible under the current circumstances,
it did occur at least once a very long time ago when atmos-
pheric oxygen was sparse. He argued that in an oxygen-less
environment, a mix of organic compounds could indeed
form by means of sunlight. These molecules could then
cluster into more complex droplets by merging and split-
ting. This led to a sort of basic chemical evolutionary pres-
sure that favors integrity (Oparin, 1953). Even today,
Oparin’s theory is still used as a starting point for many ori-
gin of life theories.

LIFE ON EARTH
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Figure 1.2 Schematic of the experimental setup used by Louis Pasteur
in his experiments on alleged spontaneous generation as published in
Mémoire sur les corpuscules organisés qui existent dans l’atmosphère: exa-
men de la doctrine des générations spontanées (Pasteur, 1862).

Evolutionary timeline
To better understand its origin, it is worth taking a look at
the oldest known life forms. One of the earliest evidences
of life is found in the form of stromatolites (Garwood,

Stromatolite literally
means layered rock.

2012). Stromatolites are solid, rock-like structures that are
formed by cyanobacteria, a type of aquatic bacteria that ob-
tains energy through photosynthesis. Cyanobacteria can
form colonies and capture sediments using a sticky, mucus-
like surface layer. These sediments can react with water to
form a thin layer of limestone. Over time, the limestone ac-
cumulates and forms a stromatolite (Riding, 1999). The
earliest of these geological formations that contain pre-
sumed fossilized cyanobacteria date to over 3.5 billion years
ago (Schopf et al., 2002). At that time, there was almost no
free oxygen in Earth’s atmosphere. By producing oxygen as
a byproduct of converting carbon dioxide and water into
sugar during photosynthesis, cyanobacteria contributed sig-
nificantly to the oxygenation of the atmosphere. This led to

1. PROTEOMICS FOR COMPUTER SCIENTISTS
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the Great Oxygenation Event some 2.5 billion years ago
(Flannery and Walter, 2012).

1.8 billion years ago, the first eukaryotic cells start to appear
(Knoll et al., 2006). These are still unicellular organisms,
but unlike prokaryotes, they contain cell organelles (such as
a nucleus and mitochondria) enclosed by membranes.
These organisms probably originated from several prokary-
otic cells engulfing each other. Until then, the reproduction
of eukaryotic organisms happened asexually through mito-
sis in which a cell divides into two genetically identical
cells. Around 1.2 billion years ago, eukaryotic cells started
to also reproduce sexually through meiosis (Bernstein and
Bernstein, 2012). In meiosis, cell division produces daugh-
ter cells each containing half the genetic material of the
parent cell. Two of these haploid cells can then fuse to cre-
ate a new cell that contains the combined genetic material
(Figure 1.3).

According to Butterfield (2000), sexual reproduction was
critical for the success of the eukaryotes because it allowed
for complex multicellularity. The first multicellular organ-
ism is believed to have originated more than 800 million
years ago. 50 million years later, the first protozoa emerged,
a group of unicellular eukaryotic organisms that exhibit ad-
vanced behavior such as motility and predation.

LIFE ON EARTH
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Figure 1.3 Comparison between the different cell reproduction strate-
gies. Binary fission is used by all prokaryotes and results into two identi-
cal parts. Mitosis and meiosis are cell division techniques used by eu-
karyotes with mitosis producing identical diploid cells and meiosis pro-
duces haploid cells. Image by the CK-12 Foundation under the CC BY-NC
3.0 license.

An interesting side effect of the rising atmospheric oxygen
levels, is that high in the atmosphere, the oxygen molecules
started interacting with each other under influence of the
sun’s ultraviolet (UV) radiation to form ozone molecules.
Around 600 million years ago, a thin layer of ozone had
built up around the Earth, protecting it from irradiation by
the sun’s UV light. Until then, life was limited to water, but

1. PROTEOMICS FOR COMPUTER SCIENTISTS
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the reduced radiation allowed for the colonization of the
land (Battistuzzi, Feijao, and Hedges, 2004).

The combination of these events led to a period of in-
creased evolutionary speed known as the Cambrian explo-
sion. Starting around 580 million years ago for a period of
70 to 80 million years, the rate of diversification accelerated
significantly (Marshall, 2006). Most of the major animal
phyla appeared during that period such as jellyfish, crus-
taceans, arachnids, worms, etc. This period of rapid evolu-
tion was followed by the nascence of the first vertebrates
(485 million years ago), the first primitive plants (434 mil-
lion years ago), the first spiders and scorpions (420 million
years ago), the first tetrapod on land (395 million years ago)
and the first dinosaurs (225 million years ago; Lowe
(2013)).

This event is known as
the Cretaceous-

Paleogene extinction
event.

A massive comet impact some 66 million years ago had cat-
astrophic effects on life on Earth: over 75 percent of all ex-
isting animal species was wiped out including all non-avian
dinosaurs (Renne et al., 2013; Jablonski and Chaloner,
1994). The change in the environment and the eradication
of many dominant groups let other organisms take their
place. An example of this is the elimination of dinosaurs in
favor of the mammals. One of these new types of mammals
were the primates (60 million years ago) out of which the
great apes (hominids; 18 million years ago) and eventually
the humans (Homo; 2.5 million years ago) and modern hu-
mans (Homo sapiens; 250 000 years ago) formed (Goodman
et al., 1998).

LIFE ON EARTH
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Figure 1.4 Timeline showing the history of life on Earth.

1.2 Taxonomy

Life on Earth is extremely varied, even more so than one
would initially think. The group of beetles, for example, is
incredibly diverse with over 400 000 species and gigantic
compared to the number of mammals of which only 5 500
are known (Hammond, 1992). The number of described
species easily exceeds 1 million and it is estimated that we
have only managed to document a small fraction. Estimates
for the total number of species range from 5 million to over
100 million. A recent statistical analysis estimates that the
total number of non-bacterial species is 8.7 million (Mora
et al., 2011).

1. PROTEOMICS FOR COMPUTER SCIENTISTS
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Aristotle (384–322 BC) was one of the first to start naming
and organizing living organisms (Mayr, 1982). He used a
simple system with two groups: plants and animals. Organ-
isms were put into classes based on their physical appear-
ance and shape. This branch of science of naming and clas-
sifying organisms is called taxonomy and was relatively un-
eventful for the next 2000 years.

Linnaean taxonomy
It wasn’t until Carl Linnaeus (1707–1778), that taxonomy
broke new ground. With the publication of the Systema
Naturæ (Linnaeus, 1758), he introduced a standardized
naming system for organisms. Next to a new naming sys-
tem, he also introduced a new hierarchical classification
system. In his taxonomy, there are three kingdoms (plants,
animals, and minerals) that are each divided into several
classes (Figure 1.5). These classes are then subdivided fur-
ther in orders, families, genera, and species, each having
their own name. The name of a species consists of two parts
of which the first part refers to the parent genus. Although
his system had numerous flaws, minerals can hardly be
called living organisms and his class of vermes was a grab
bag of organisms fitting nowhere else, the basic ideas of the
Linnaean system are still used in today’s systems.

TAXONOMY
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Figure 1.5 The classification of animals in the classes of quadrupedia
(mammals), aves (birds), amphibia (amphibians), pisces (fish), insecta
(insects) and vermes (“animals of slow motion, soft substance, able to
increase their bulk and restore parts which have been destroyed, ex-
tremely tenacious of life, and the inhabitants of moist places.”) as de-
scribed in the Systema Naturæ (Linnaeus, 1758).

Evolutionary taxonomy
Towards the end of the eighteenth century, the idea formed
to translate the Linnaean taxonomy, a system that produced
systematic lists, into a tree-like organization of plants and

When we talk about an-
cestors in the rest of this
thesis, such as in Lowest

Common Ancestor, we
mean a higher node in
the taxonomy tree and

not an evolutionary
ancestor.

animals. After the publication of Charles Darwin’s theory
of evolution in On the Origin of Species (Darwin, 1859), it
gradually became accepted that classification should reflect
Darwin’s principle of common descent. The ensuing evolu-
tionary taxonomy resulted in the generation of a tree of life
that also included known fossil groups. The recent advent
of DNA sequencing and analysis completed the transition
from a taxonomy based entirely on morphology to one
based on phylogeny, i.e., evolutionary history.

1. PROTEOMICS FOR COMPUTER SCIENTISTS
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These recent advances don’t mean that there is a single, offi-
cial taxonomy containing all species. On the contrary, each
domain has its own classification system. The Angiosperm
Phylogeny Group III system (Bremer et al., 2009), for ex-
ample, is used for flowering plants and the List of Prokary-
otic names with Standing in Nomenclature (LPSN) by Eu-
zéby (1997) is the authority for prokaryotes. In our applica-
tion, we don’t wish to limit ourselves to a single domain,
which is why we use the NCBI Taxonomy database (Feder-
hen, 2012). The NCBI Taxonomy is a nomenclature and
classification repository that contains organism names and
taxonomic lineages for all sequences in the databases of the
International Nucleotide Sequence Database Collaboration
(INSDC). Since the data used in our application also origi-
nates from INSDC databases, cross-references are ubiqui-
tous.

1.3 Molecular building blocks

Although life on Earth is incredibly diverse, all organisms
share fundamental molecular mechanisms. In almost all or-
ganisms, the basic unit of energy is adenosine triphosphate
(ATP), structural and functional roles are fulfilled by pro-
teins, and DNA (and RNA) carries the genetic informa-
tion. In this section, we will take a closer look at the latter
two.

DNA
Deoxyribonucleic acid, or DNA, is a molecule that contains
most of the genetic information that is needed for the de-
velopment and functioning of all living organisms. The

Each of our chromo-
somes is a single DNA

molecule.

molecule consists of a long chain of many nucleotides. As
can be seen in Figure 1.6, each nucleotide is composed of
three main parts: a phosphate group, a 5-carbon sugar (de-
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oxyribose) and one of four nitrogen-containing bases: ade-
nine (A), thymine (T), cytosine (C) or guanine (G). Since
the phosphate group and sugar are the same for every nu-
cleotide, a DNA molecule can be described by the sequence
of its bases.

Figure 1.6 The structure of a DNA molecule. Two complementing
strands form a double helix structure. Each nucleotide consists of a de-
oxyribose sugar and a phosphate group at the outside of the helix and a
nitrogen-containing base at the inside. The two complementing bases
are joined with hydrogen bonds. Image by the CK-12 Foundation under
the CC BY-NC 3.0 license.
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In 1962, James Watson and Francis Crick (Figure 1.8) to-
gether with Maurice Wilkins won the Nobel Prize in Phys-
iology or Medicine for their discovery of the molecular
structure of DNA. Nine years before, they, together with
Rosalind Franklin (Figure 1.7), determined that DNA is
made of two strands of nucleotides that form a double helix
(Watson and Crick, 1953). The nucleotides in the two-
stranded spiral have their sugar and phosphate groups on
the outside and their bases connecting on the inside. Not
all bases can connect with each other: adenine always binds
with thymine and cytosine always binds with guanine. This
means that if one of the two strands is known, the comple-
mentary strand can be determined. For example, if the se-
quence of a strand contains acctgtc, the complementary
section will be tggacag.

Figure 1.7 “Photograph 51”: X-ray diffraction image of crystallized DNA
taken by Rosalind Franklin in 1953. The fuzzy X in the middle of the mol-
ecule indicates a helical structure.
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Figure 1.8 James Watson and Francis Crick posing next to their double
helix model in 1953. Photo taken by Antony Barrington Brown.

In eukaryotes, such as humans, DNA occurs in linear chro-
mosomes while in most prokaryotes, such as bacteria, DNA
occurs in circular chromosomes. All the chromosomes in
the cell of an organism make up its genome. The size of the
genome varies enormously across the tree of life. Viruses,
for example, typically have a genome size of a few thousand
base pairs (Fiers et al., 1976), the human genome has 3.2
billion base pairs spread across 46 chromosomes (Venter et
al., 2001) and some plants have a genome of over 150 bil-
lion base pairs (Pellicer, Fay, and Leitch, 2010).
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The genetic information itself is contained within genes. A
gene is a part of the chromosome that encodes for a protein
or a functional RNA. Not all of the DNA of an organism is
part of a gene. In prokaryotes, 80-90% of the genome con-
sists of coding DNA (Koonin and Wolf, 2010), but in eu-
karyotes this is many times lower. In humans, for example,
over 98% of the genome is non-coding (Elgar and Vavouri,
2008). This non-coding DNA used to be called junk DNA,
but recent research has shown that at least part of the non-
coding DNA is biochemically active and performs regula-
tory functions (Pennisi, 2012).

Gene expression
When a protein is made based on the information from a
gene, we say that the gene is expressed. During the tran-
scription phase of gene expression, a copy of the DNA se-
quence is made by RNA polymerase, creating messenger
RNA. The protein-coding region of the messenger RNA is
then translated into a protein (Figure 1.9).

Ribonucleic acid (RNA) and DNA are both nucleic acids
and share a lot of properties. Both are assembled as a chain
of nucleotides, but unlike DNA, RNA mostly occurs as a
single-strand. They both have the same phosphate group,

As the name suggests,
DNA uses deoxyribose,

RNA uses ribose.

but differ in sugar component and possible bases. In DNA,
the complementing base of adenine is thymine, whereas in
RNA, it is uracil (U).

Other types include
small nuclear RNA and
small interfering RNA.

Many types of RNA exist with the messenger RNA
(mRNA), ribosomal RNA (rRNA) and transport RNA
(tRNA) playing an important role in gene expression. The
transcription phase starts by an RNA polymerase enzyme
binding to the DNA molecule and opening up the double
helix. The RNA polymerase then begins mRNA synthesis
by matching bases that complement the DNA strand. If
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the DNA sequence is atccga, for example, the resulting
mRNA sequence will be uaggcu. Once transcription is
finished, the constructed mRNA is released in the cell.

Figure 1.9 Overview of gene expression in eukaryotes. DNA is first tran-
scribed to messenger RNA in the nucleus. After transport out of the nu-
cleus, protein synthesis begins with the help of a ribosome and trans-
port RNA by translating nucleotide triplets to amino acids.

In the next phase, the mRNA binds to one of the ribo-
somes in the cell. A ribosome is a cell organelle that is re-
sponsible for translating the mRNA into a protein and con-
sists of two subunits that are made from rRNA and pro-
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teins. The small subunit binds to the mRNA and reads the
sequence. Each nucleotide triplet of the mRNA sequence is
called a codon and can bind to a single type of transport
RNA holding an amino acid. The large ribosomal subunit
binds to the tRNA and connects the attached amino acid to
the growing protein chain. The type of amino acid that is
attached to the tRNA depends on the sequence of the
codon binding site and is uniquely defined (Figure 1.10).
This way, once the mRNA is bound to the ribosome, there
is only a single protein translation possible.

Proteins
Proteins are large molecules that perform many different
functions in living organisms. They can serve as enzyme,
have a structural function, or even transport other mole-
cules. As mentioned in the previous section, the building
blocks of proteins are amino acids. There are 20 naturally
occurring amino acids, each having a three-letter and a
one-letter abbreviation (Table 1.1). The one-letter abbrevi-
ations are also sometimes called the protein alphabet and
are generally used to describe the sequence of the amino
acids of a protein. Since proteins are formed by chains of
amino acids, the order of them uniquely describes the pro-
tein. Shorter chains of amino acids are called peptides. The
proteome is the set of all proteins that are expressed by an
organism.
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Figure 1.10 An RNA codon table showing the mapping from three-
letter RNA codons to amino acids. For example, the RNA codon AAC en-
codes the amino acid asparagine that is abbreviated as Asn or N. Differ-
ent codons can result in the same amino acid, for example leucine has
six possible codons, while tryptophan only has one.
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Table 1.1 Overview of the standard amino acids with long abbreviation,
short abbreviation and molecular weight. Notice that leucine and
isoleucine have the same weight.

AMINO ACID
LONG
ABBREVIATION

SHORT
ABBREVIATION

AVERAGE
MOLECULAR MASS

Alanine Ala A 89.09 Da

Arginine Arg R 174.20 Da

Asparagine Asn N 132.12 Da

Aspartic acid Asp D 133.10 Da

Cysteine Cys C 121.15 Da

Glutamic acid Glu E 147.13 Da

Glutamine Gln Q 146.15 Da

Glycine Gly G 75.07 Da

Histidine His H 155.16 Da

Isoleucine Ile I 131.17 Da

Leucine Leu L 131.17 Da

Lysine Lys K 146.19 Da

Methionine Met M 149.21 Da

Phenylalanine Phe F 165.19 Da

Proline Pro P 115.13 Da

Serine Ser S 105.09 Da

Threonine Thr T 119.12 Da

Tryptophan Trp W 204.23 Da

Tyrosine Tyr Y 181.19 Da

Valine Val V 117.15 Da

1.4 Metaproteomics

Proteomics is the large-scale study and analysis of proteins.
The detection of specific proteins typically happens in two

Examples of immunoas-
say techniques are

ELISA and Western blot.

ways: using immunoassays and using mass spectrometry.
The techniques using immunoassays use specific antibodies
that bind to the target protein to detect and quantify that
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protein. Mass spectrometry on the other hand, is a more
general technique that uses the mass of fragmentized ions
to determine the chemical composition of a sample.

Mass spectrometry
Mass spectrometry consists of three main parts: ionization,
mass analysis and ion detection (Figure 1.11). During the
ionization phase, a part of the sample is converted to ions.
This means that the molecules are charged and fragmented
by an ion source. Many different types of ion sources can be
used depending on the type of sample that is subject to
analysis. Two commonly used techniques for biological
samples are electrospray ionization (ESI; Fenn et al.
(1989)) and matrix-assisted laser desorption/ionization
(MALDI; Tanaka et al. (1988)).

Next, the ions are selected from the sample and directed
through the mass analyzer. This component uses electrical
and/or magnetic fields to separate the ions based on their
molecular mass and charge, or more specific, their mass-to-
charge ratio. Again, many types of mass analyzers exist
with time-of-flight (TOF) and Orbitrap (Hu et al., 2005)
being common techniques. The combination of the used
ion source and mass analyzer determines the configuration
of a mass spectrometer. Common configurations often get
their own name, for example, MALDI-TOF indicates that
a MALDI ion source was used in combination with a TOF
analyzer.
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Figure 1.11 Schematic overview of a mass spectrometer showing the
ionization, mass analysis (magnet) and detector. Although this schemat-
ic gives a good idea about the internal process, the depicted (sector) in-
strument is not well suited for proteomics.

The separation of the ions makes it possible to detect how
many ions of each mass-to-charge ratio (m/z) are present.
This is what happens in the last phase by a detector produc-
ing a mass spectrum (Figure 1.12). This spectrum shows
the number of detections and thus the relative abundance
of ions for each mass-to-charge ratio.
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Figure 1.12 Example of a recorded mass spectrum. The horizontal axis
shows the recorded m/z range and the vertical axis shows the relative
number of detections for each ratio.

Proteomics
When using mass spectrometry for proteomics, several ex-
perimental techniques (e.g., top-down proteomics, bottom-
up proteomics, targeted proteomics, etc.) can be used de-
pending on the goal of the experiment. In this introduction
we will focus on the bottom-up approach, where proteins
are first split into smaller peptides before administering
them to the mass spectrometer. Cleaving a protein in small-

A proteolytic enzyme is
also called a protease.

er peptides is done by adding a special, proteolytic, enzyme
to the protein sample.

One of the most used proteases is trypsin (Vandermarliere,
Mueller, and Martens, 2013), an enzyme that is found in
the digestive system of humans and many other vertebrates
where it helps to digest proteins in food. Trypsin cleaves

Although generally ac-
cepted, the proline ex-
ception is increasingly

being questioned.

peptide chains at very specific places namely when encoun-
tering the amino acids lysine (K) or arginine (R), except
when they are bound to proline (P). The resulting peptides
are called tryptic peptides. The effect of trypsin on a protein
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can easily be simulated in silico. This comes down to split-
ting the protein sequence after every K or R except when
followed by a P, for example using a regular expression like
s/([KR])([^P])/\1\n\2/g. Unfortunately, trypsin some-
times fails to split the protein at a cleavage site. This is
called a missed cleavage and most analysis software takes
account this possibility.

Next, one or more mass spectrometry (MS) steps are used
to analyze the peptide mixture. When two MS steps are
used, this is called tandem mass spectrometry (MS/MS;
Figure 1.13). Before the first MS phase, the peptides are
ionized using an ionization technique that causes little frag-
mentation, for example ESI or MALDI. Next, the ions are
separated and ions of a particular mass-to-charge ratio are
selected. In the second phase, the selected ions are frag-
mented, for example using collision-induced dissociation
(CID). The resulting fragments are then again separated by
mass-to-charge ratio and detected resulting in a mass spec-
trum.

Figure 1.13 Schematic overview of tandem mass spectrometry. In the
first phase, the peptides are ionized (for example, using ESI or MALDI)
and separated. In the second phase, ions of a particular mass-to-charge
ratio are selected and fragmented using collision-induced dissociation
(CID). Image by Hannes Röst under the CC BY-SA 3.0 license.

The next challenge is converting the many measured spectra
to usable information such as peptide sequences. Two ap-
proaches can be used for this conversion: database search-
ing and de novo sequencing. De novo sequencing uses ad-
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vanced algorithms to determine the sequence directly from
the spectrum. This allows the discovery of peptides that
were never seen before, but the technique is time consum-
ing and has a low accuracy (Pevtsov et al., 2006). Database
searching is a simpler technique that is more commonly
used. As the name implies, database searching starts from a
protein database, for example UniProt, and performs an in
silico trypsin digest on the proteins. For each of the result-
ing tryptic peptides, a theoretical mass spectrum is calculat-
ed. These predicted spectra are then compared to the
recorded spectrum and the sequence of the best matching
spectrum is returned as the result. Many tools implement
database searching, for example Mascot (Hirosawa et al.,
1993), Sequest (Eng, McCormack, and Yates, 1994),
X!Tandem (Craig and Beavis, 2003) or OMSSA (Geer et
al., 2004).

Metaproteomics
Because an entire com-
munity is examined in-
stead of an individual,

metaproteomics is also
sometimes called com-

munity proteomics.

When the protein contents of an environmental sample is
analyzed, this is called metaproteomics. The origin of such
samples ranges from waste water treatment plants to the
human gut. While the procedure looks similar to the one
described in the previous section, shotgun metaproteomics
is a relatively new technique that developed in the last
decade (Wilmes and Bond, 2004; Herbst et al., 2016). Be-
cause the origin of the proteins is not limited to a single
species or well defined set of organisms, metaproteomics is
a lot more challenging.
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Figure 1.14 Example of a shotgun metaproteomics workflow used to
identify proteins in environmental samples. Image taken from Hettich et
al. (2013).

In classic proteomics, proteins are first separated and select-
ed using two-dimensional gel electrophoresis (2DE) before
trypsin is added to digest the proteins into tryptic peptides.
In metaproteomics, we want to get a complete picture of
the sample and analyze as many proteins as possible. Be-
cause of this, the 2DE step is usually skipped and trypsin is
added in the sample preparation step (Figure 1.14). During
sample preparation, the proteins are extracted from the cells
in the sample. Protein extraction in complex samples is very
challenging and the method used is dependent on the ori-
gin of the sample. Next, the tryptic peptides are separated
using liquid chromatographic methods, for example high-
performance liquid chromatography (HPLC), before start-
ing the MS/MS phase.

Converting the obtained spectra to peptide sequences and
ultimately proteins is also a lot more challenging in meta-
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proteomics. Because the number of possible organisms and
thus proteins is a lot bigger, the database on which a search
is performed is very important and must be carefully select-
ed (Tanca et al., 2013). Other issues that impede the cor-
rect identification of proteins is the fact that distinct pep-
tides can generate the same spectrum (leucine and
isoleucine have the same mass, for example) and that some
peptides are shared by many proteins.

Nevertheless, the field of metaproteomics has seen enor-
mous progress in the last ten years (Figure 1.15). Where
the technique initially only worked for relatively simple acid
mine drainage samples, it is now routinely applied to ex-
tremely complex environments such as the human gut.

Figure 1.15 Overview of the milestones in metaproteomics research
over the last ten years. Unipept is mentioned as bioinformatics improve-
ment for the easy phylogenetic analysis of metaproteomic data. Image
adapted from Herbst et al. (2016)
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1.5 Unipept

Unipept, the subject of this thesis, is a tool to help analyze
the outcome of metaproteomics experiments. More specifi-

Although identified pro-
teins are usually the de-
sired result of an MS ex-

periment, we take a
step back and start from

the peptides.

cally, it takes the identified peptides as input and gives an
overview of the biodiversity as output. This happens by ex-
actly matching the peptides to the protein sequences in the
UniProt database and aggregating the resulting associated
organisms to a consensus taxon. Since UniProt contains
over 60 million protein entries and a typical metaproteom-
ics experiment yields thousands of identified peptides, sig-
nificant time was spent to optimize the database and algo-
rithms. This resulted in a web application that can analyze a
sample containing thousands of identified peptides in mere
seconds while presenting the results using rich and interac-
tive visualizations.

In the next chapter, we present the Unipept web applica-
tion as a tool for the diversity analysis of complex metapro-
teome samples. Chapter 3 builds on that by introducing
two new ways to access the analysis tools offered by
Unipept: a web-based API and a set of command line
tools.

Chapter 4 covers the peptidome analysis part of the
Unipept ecosystem. The Unique Peptide Finder is intro-
duced as a new way to discover unique peptides that can be
used as biomarkers in targeted metaproteomics, while Pep-
tidome Clustering can be used to investigate the relatedness
of organisms. These two tools are built on the same founda-
tions using advanced JavaScript features to offer interactive
visualizations and high-performance client-side calcula-
tions.

Chapter 5 tells the story of Unipept from a computer scien-
tist’s point of view. The chapter reconstructs the develop-
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ment timeline of Unipept including the technical design
choices and failed experiments.

The last chapter explores ongoing and potential future ex-
tensions to Unipept, including a new metagenomics
pipeline, the addition of functional analysis features, and
additions to the Unique Peptide Finder.
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Chapter 2

Metaproteomics biodiversity
analysis

The initial objective of Unipept was to improve the biodi-
versity analysis of metaproteomics experiments. This was
achieved not only by providing more accurate and faster re-
sults, but also by presenting the results with interactive vi-
sualizations in a user-friendly approach focused on non-
technical users.

This chapter contains the initial Unipept article published
in the Journal of Proteome Research in 2012, an update ar-
ticle published in Proteomics in 2015 and a short overview
of the new features that were added since the last publica-
tion.
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2.1 Unipept: Tryptic peptide-based biodiversity
analysis of metaproteome samples

Abstract — The Unipept web application (http://unipept
.ugent.be) supports biodiversity analysis of large and com-
plex metaproteome samples using tryptic peptide informa-
tion obtained from shotgun MS/MS experiments. Its un-
derlying index structure is designed to quickly retrieve all
occurrences of a tryptic peptide in UniProt entries. Taxon-
specificity of the tryptic peptide is successively derived from
these occurrences using a novel lowest common ancestor
approach that is robust against taxonomic misarrange-
ments, misidentifications, and inaccuracies. Not taking into
account this identification noise would otherwise result in
drastic loss of information. Dynamic treemaps visualize the
biodiversity of metaproteome samples, which eases the ex-
ploration of samples with highly complex compositions.
The potential of Unipept to gain novel insights into the
biodiversity of a sample is evaluated by reanalyzing publicly
available metaproteome data sets taken from the bacterial
phyllosphere and the human gut.

2.1.1 Introduction

The introduction of high throughput sequencing methods
allowed to determine the diversity, phylogeny, and genomic
repertoire of complex microbial communities such as the
human gut microbiome. Recently, the Metahit consortium
released metagenomic sequence information showing ap-
proximately 1 000 different species commonly found in fe-
cal samples, on average accounting for half a million genes
in addition to the human genome (Qin et al., 2010). While

This section contains a
verbatim copy of the re-

search article by
Mesuere et al. (2012) as

published in the Journal
of Proteome Research.
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metagenomics provides a wealth of information on the
global gene content, understanding the actual functional
contribution to nutrient conversion or immune system de-
velopment of individual genes or organisms requires func-
tional genomics tools.

High quality multidimensional liquid chromatography in
combination with shotgun tandem mass spectrometric
methods are currently implemented to reveal the protein
complement of the metagenome, providing information of
the core functional components (Verberkmoes et al., 2009;
Kolmeder et al., 2012). In a typical single species proteomic
experiment, protein identification from shotgun MS/MS
data of tryptic peptides relies on matching the spectra to in
silico calculated spectral information from proteins predict-
ed from isolate or metagenomic databases. Therefore, tryp-
tic digests and fragmentation ions on all protein sequences
available for this organism are simulated. In the worst case,
protein identification can be based on cross-species identifi-
cation, typically using a close homologue.

In metaproteomics approaches, MS/MS based identifica-
tion is hampered by several aspects. A first problem is the
limited coverage of the curated protein databases, e.g.,
UniProtKB/Swiss-Prot (Boeckmann et al., 2003). Ideally, a
protein complement of a synthetic metagenomic database
containing sequences from different metagenomics experi-
ments covering a wide range of organisms expected in the
environment of interest could be created. Metagenomic
databases however are exponentially increasing, and naive
six-frame translation and protein prediction would lead to a
high false discovery rate or low protein identification effi-
ciency. Rooijers et al. (2011) countered this problem by im-
plementing an iterative workflow combining the use of a
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defined synthetic metagenome and a non-annotated meta-
genome repository.

A more specific problem towards functional analysis of the
metaproteome is the lack of connectivity of the tryptic pep-
tides and the organism of origin. Many tryptic peptide se-
quences are conserved over different bacterial taxa and are
therefore not-informative to describe the taxonomic diver-
sity or functional properties of the sample. Askenazi,
Marto, and Linial (2010) developed the Pep2Pro web ser-
vice to identify taxon-specific peptides. However, they used
a restricted definition of taxon-specificity by only retaining
peptides unique to a single taxon as defined in the NCBI
taxonomy. In this paper, we present Unipept (http://
unipept.ugent.be), a web application that supports biodi-
versity analysis of large and complex metaproteome samples
using tryptic peptide information obtained from shotgun
MS/MS experiments. Its underlying index structure is de-
signed to quickly retrieve all occurrences of a tryptic pep-
tide in UniProt entries. Taxon-specificity of the tryptic
peptide is successively derived from these occurrences using
a novel lowest common ancestor approach that is robust
against taxonomic misarrangements, misidentifications, and
inaccuracies. Not taking into account this identification
noise would otherwise result in drastic loss of information.
Dynamic treemaps visualize the biodiversity of metapro-
teome samples, which eases the exploration of samples with
highly complex compositions. The potential of Unipept to
gain novel insights into the biodiversity of a sample is eval-
uated by reanalyzing publicly available environmental
metaproteome data sets from phyllosphere bacteria
(Delmotte et al., 2009) and the human gut (Verberkmoes et
al., 2009).

The taxon-specificity of
peptides is discussed in

more detail in Chapter
4.
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2.1.2 Materials and methods

2.1.2.1 Database construction

Unipept uses a MySQL database as its storage backbone.
The database is populated using a custom data processing
pipeline written in the Java programming language. This
pipeline integrates the NCBI Taxonomy Database
(Wheeler et al., 2004) with the UniProt Knowledgebase
(UniProtKB; Wu et al. (2006)). The complete NCBI Tax-
onomy Database is fetched from the NCBI FTP server.
While processing the downloaded database, only those
records with a name class containing “scientific name” are
retained, accounting for about 882 000 records. Unipept
mainly relies on the hierarchical structure of the NCBI tax-
onomy and the rank information it assigns to the different
nodes. Careful use of indexes provides fast access to the
necessary taxonomic information. As a second data source,
Unipept uses the XML version of the UniProt Knowledge-
base. UniProtKB consists of two parts, Swiss-Prot and

The size of the UniProt
database is discussed in

more detail in Sec-
tion 5.2.10.

TrEMBL, containing more than 17 million protein entries,
including proteins from complete and reference proteomes.
The Java pipeline iterates over all protein entries and per-
forms an in silico trypsin digest on every protein. The indi-
vidual peptides are added to the Unipept database, together
with additional metadata from the UniProt entry such as
organism information and various cross references. Using
UniProt release 2012_07, this establishes a comprehensive
catalogue of over 250 million tryptic peptides.

Because Unipept was developed to work with mass spec-
trometry data as input, two additional extensions to the da-
ta integration pipeline were made. First, peptides with a
length smaller than five or greater than fifty amino acids are
discarded. This is done because most mass spectrometers
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have a limited mass range and small peptides are difficult to
distinguish by mass alone (Eidhammer et al., 2007). In ad-
dition, a lower limit of five amino acids has no real impact
on biodiversity analysis, since shorter peptides are generally
found in the genome of organisms across all kingdoms of
life. The second extension takes into account the difficulties
to discern the isobaric amino acids isoleucine (I) and
leucine (L). Therefore, a duplicate version of every tryptic
peptide is stored in which the difference between I and L is
ignored. When running queries on Unipept, users can de-
cide whether differentiating between I and L is relevant or
not.

2.1.2.2 Web application

To allow ubiquitous access to the Unipept database, a web
based front-end was developed using Ruby on Rails (RoR),
which is accessible at http://unipept.ugent.be. RoR is a web
application framework for the Ruby programming lan-
guage, which allows rapid prototyping and has built-in sup-
port for the creation of RESTful web services. The applica-
tion consists of two basic functionalities: a peptide-based
taxonomic identification and a multi-peptide dynamic di-
versity treemap analysis.

2.1.2.3 Single peptide analysis

With single peptide analysis, users submit a single tryptic
peptide with potential missed cleavages. Individual tryptic
peptides can be 5 to 50 residues long. The application re-
sponds with a list of all UniProt entries wherein the peptide
was found. For every UniProt entry in this result set, the
complete taxonomic lineage is derived from the NCBI tax-
onomy. These lineages are successively used to compute the
common lineage of the peptide as the lowest common an-

Single peptide analysis
was since renamed to

tryptic peptide analysis.

2. METAPROTEOMICS BIODIVERSITY ANALYSIS

34

http://unipept.ugent.be


cestor (LCA) of the organisms. The resulting information is
presented as a comprehensible table that contains all
matched UniProt entries and visualized using an interactive
JavaScript tree view that bundles all taxonomic lineages.
The peptide analysis page displayed by Unipept also con-
tains a hyperlink that allows to directly BLAST the peptide
against a series of NCBI hosted databases.

Figure 2.1 Tree view bundling the complete taxonomic lineages of all
UniProt entries whose protein sequence contains the tryptic peptide
ELTSLVDGPLSGEVK. Figure shows taxonomic lineages before cleanup pro-
cedures are in effect, resulting in invalid species nodes (marked with
thick border) Clostridiales bacterium 1_7_47FAA (NCBI taxon ID 457421)
and Ruminococcus sp. 5_1_39BFAA (NCBI taxon ID 457412) showing up
in the tree. The phylum Firmicutes is the lowest common ancestor (LCA)
of all taxonomic lineages taken from the UniProt entries in which the
peptide was found. A dynamic version of this tree view is included in the
web application, as the number of levels and nodes bundled in a tree
might grow large for peptides that are universally found over multiple
different lineages. Take into account that due to gaps in the hierarchical
structure of the NCBI taxonomy, taxonomic levels are not always proper-
ly aligned in the tree view.
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Figure 2.2 Table showing complete taxonomic lineages of all UniProt
entries whose protein sequence contains the tryptic peptide ELTSLVDG-
PLSGEVK. Each row represents the complete taxonomic lineage of a sin-
gle UniProt entry. First column contains the name extracted from the
UniProt entry, followed by columns representing valid taxonomic ranks
ordered from superkingdom on the left to forma on the right. Only
ranks used in the complete lineages of the entries in which the peptide
was found are displayed as columns in the table. To ease the interpreta-
tion of the table, rows are ordered according to the taxonomic names in
the taxonomic rank columns (evaluated from left to right) and cells con-
taining the same taxonomic name are marked with the same color code
per column. The table shows taxonomic lineages before cleanup proce-
dures are in effect, resulting in invalid species nodes (marked with thick
border) Clostridium bacterium 1_7_47FAA (NCBI taxon ID 457421) and
Ruminococcus sp. 5_1_39BFAA (NCBI taxon ID 457412) showing up in the
table.

When single peptide analysis is applied, for example, to the
tryptic peptide eltslvdgplsgevk (http://unipept.ugent.be
/sequences/eltslvdgplsgevk/equateIL), it results in the
lineage tree depicted in Figure 2.1 and the lineage table
shown in Figure 2.2. These results show that the peptide
was found in 17 UniProt entries, covering 12 different
species (10 after taxonomic cleanup; see below) and 8 dif-
ferent genera. In particular, the peptide was found twice in
the Clostridium saccharolyticum WM1 genome, in both
copies of the duplicated tal2 gene (UniProt entries
D9R9N2 and D9R6P3). Note that not all UniProt entries
from the result set were identified up to the species level.
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All UniProt entries in which the peptide was found have a
common phylum (Firmicutes), which was computed as the
LCA of taxonomic identifications mentioned in the
UniProt entries.

Table 2.1 Overview of the benchmark datasets used. The first dataset
consists of two samples of the human gut microbiota of twins from a
study by Verberkmoes et al. (2009). The second dataset includes six
samples of aerial plant surfaces of soybean (Glycine max), clover (Trifoli-
um repens) and Arabidopsis thaliana from a study by Delmotte et al.
(2009). The first two columns contain the name of the dataset and their
origin followed by columns containing the number of peptides included
in the dataset, the number of peptides after filtering, the number of
peptides after filtering duplicates when equating isoleucine and leucine
and the number of peptides found by Unipept while filtering duplicates
and equating isoleucine and leucine.

NAME
SAMPLED
ENVIRONMENT # PEPTIDES

# PEPTIDES AFTER
DEDUPLICATION

# PEPTIDES AFTER
DEDUPLICATION

AND I=L
# UNIPEPT

MATCHES

sample 7 human gut 3 895 1 854 1 809 1 771

sample 8 human gut 5 447 2 704 2 644 2 555

A. thaliana phyllosphere 10 019 2 930 2 914 2 397

Clover 1a phyllosphere 8 418 2 913 2 901 2 264

Clover 1b phyllosphere 9 636 2 591 2 581 1 935

Clover 2 phyllosphere 1 862 645 643 600

Soybean 1 phyllosphere 15 140 5 151 5 134 4 758

Soybean 2 phyllosphere 19 493 3 583 3 572 2 740

The LCA of a set of taxonomic identifications is computed
by constructing a lineage table in which the rows represent
the complete taxonomic lineage of a single UniProt entry.
The columns represent valid taxonomic ranks, ordered from
superkingdom on the left to forma on the right. Subse-
quently, the columns are scanned from left to right and the
rightmost column where every row has the same value is
called the LCA. Figure 2.2 shows the lineage table for the
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example tryptic peptide, in which the phylum column
clearly is the rightmost column containing equal values.
This naive approach of scanning the lineage table suffers
from two major problems, both of which have been ad-
dressed in the application.

A first confounding factor is that some intermediate taxo-
nomic levels might be missing in the complete lineage of a
taxon in the NCBI taxonomic hierarchy, resulting in gaps
within some of the columns of the lineage table. This is ex-
emplified by the complete lineage of the species Gemella
haemolysans (Figure 2.2), which was not assigned to a valid
family. If a gap would be treated as a separate value in the
LCA scan, poor identification results would be obtained for
LCAs with the rank of species and genus where a better
classification is often possible. If instead gaps would be
completely ignored, problems would arise at higher taxo-
nomic levels in cases where only some of the lineages have
values for a certain level. A hybrid solution was chosen in
which gaps are treated as separate values, except at the
species and the genus levels. The outcome of this heuristic
approach is in line with what could be intuitively expected
from an LCA algorithm. In effect, taxonomic lineages of
UniProt entries that have not been identified up to the
species or genus levels are discarded if the peptide occurs in
another UniProt entry that has an identification that is
more specific. This avoids that very specific identifications
(e.g., at the species level) in UniProt would be masked by
less specific identifications (e.g., at the family level) in de-
termining the common lineage for a given peptide.

A second and more substantial problem impeding accurate
identification of the common lineage of a given peptide is
the quality of the NCBI taxonomy on the one hand, and
inaccurate or incorrect taxonomic identifications in UniProt
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entries on the other hand. This combination of taxonomic
misarrangements, misidentifications, and inaccuracies can
result in drastic loss of information. If a single peptide oc-
curs in 6 bacteria identified as belonging to the same
species and 1 organism classified as Unidentified bacteria
(NCBI taxon ID 77133; rank species), the LCA of the
peptide would be set to Bacteria (rank superkingdom) in-
stead of the more fine-grained species name. To counter
this problem, taxonomic nodes that occur in the NCBI tax-
onomy but have no official taxonomic status are heuristical-
ly invalidated based on a set of regular expressions. For ex-
ample, taxonomic nodes containing words like “uncul-

This blacklist was later
expanded to include

names like “metagen-
ome”, “sample”, and “li-

brary”.

tured”, “unspecified” or “undetermined” in their name are
marked as invalid in the database. In addition, species
nodes with names containing a number are invalidated. As
a result of this procedure, taxonomic nodes like Uncultured
cyanobacterium (NCBI taxon ID 1211), Environmental sam-
ples (NCBI taxon ID 1166701) and Ruminococcus sp.
5_1_39BFAA (NCBI taxon ID 457412) are ignored while
calculating the LCA, but their higher taxonomic nodes are
retained in the procedure if they are not invalidated them-
selves. This results in the invalidation of about 382 000 of
the 882 000 taxonomic nodes (42%) in the Unipept data-
base. Almost all of these invalidations (374 000 or 98%) oc-
curred at the species level, reducing the number of valid
species nodes to 314 000 or 46% of the original amount.
The thick boxes in Figure 2.1 and Figure 2.2 show the ef-
fect of this taxonomic cleanup for the tryptic peptide elt-
slvdgplsgevk that was already used as an example above.
The cleanup procedure will remove the artificial species
nodes labeled Clostridium bacterium 1_7_47FAA (NCBI
taxon ID 457421) and Ruminococcus sp. 5_1_39BFAA
(NCBI taxon ID 457412), both from the tree view and the
lineage table.
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As another improvement in the identification pipeline, sin-
gle peptide analysis of Unipept also deals with missed
cleavages in the peptides fed to the pipeline by intersecting
the result sets of the UniProt entries in which the individ-
ual tryptic peptides are found. By doing so, miscleavage
support builds upon the same tryptic peptide index of the
Unipept database with some additional post processing.
This incurs a minimal performance overhead and no addi-
tional memory requirements. For example, if an in silico
trypsin digest is performed on the peptide eltslvdgpls-
gevkatttdaegmlaegr, the resulting two subpeptides
eltslvdgplsgevk and atttdaegmlaegr respectively
have an LCA of Firmicutes (phylum) and Clostridiales (or-
der). The single peptide analysis pipeline of Unipept how-
ever intersects the result sets of the subpeptides before
computing the LCA, and identifies the original peptide as
specific to the species Pseudoramibacter alactolyticus. This is
an accuracy improvement of several taxonomic ranks, and is
in line with the result one would come up with after a more
time consuming BLAST search. Because of the way missed
cleavage support is implemented, Unipept incurs no limita-
tion on the number of missed cleavages provided that at
least one tryptic subpeptide has a minimal length of five.

2.1.2.4 Multi-peptide analysis

Unipept contains features to help analyze lists of tryptic
peptides, e.g., extracted from an environmental sample.
These features build on the algorithms of single peptide
analysis as discussed in the previous section. Because
missed cleavage support has a negative impact on the per-
formance of the analysis due to the fact that only the LCAs
of tryptic peptides are cached, users have the option to per-
form an alternative treatment of miscleaved peptides. In the
alternative approach, an additional preprocessing step takes

The implementation of
the advanced missed
cleavage handling is

covered in Section 5.2.3.

Multi-peptide analysis
was since renamed to

metaproteomics
analysis.
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place during which an in silico trypsin digest is performed
on every peptide fed to the pipeline. This trypsin digest
splits peptides with missed cleavages and computes the
LCA of each individual subpeptide. This alternative is a
faster but less accurate approach to deal with missed cleav-
ages. Apart from choosing which approach is used to han-
dle missed cleavages, users also have the option to filter out
duplicate peptides or to equate isoleucine and leucine.

Figure 2.3 Treemap visualizing bacterial diversity in human gut
metaproteome sample 7 as determined by Verberkmoes et al. (2009).
Multi-peptide analysis performed with deduplicated peptides and
equating isoleucine (I) and leucine (L). Unipept displays a dynamic ver-
sion of this treemap that allows zooming in and out to areas of interest,
in order to gain further insight in the complex composition of the diver-
sity in the sample.

In a consecutive step of the processing pipeline, the LCA of
every tryptic peptide that was submitted is calculated as de-
scribed in the section on single peptide analysis. These
LCAs are then bundled internally into a frequency table
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and visualized using an interactive treemap (Figure 2.3).
This treemap intuitively combines a multilayer histogram-
like graphical representation with hierarchical data. Every
square in the treemap corresponds to a taxonomic node in
the NCBI taxonomy. The size of the square is proportional
to the number of peptides having that taxonomic node as
their LCA. Squares are tiled hierarchically according to
their occurrence in the taxonomic lineages. Color codes
correspond to the different taxonomic ranks. This way, users
can see at a glance which organisms are present in a
metaproteome sample and to what extent. To allow better
exploration of the diversity of complex samples, users can
dynamically zoom in to an area of interest by clicking on a
node (e.g., Bacteria or Clostridiales) or zoom out by right
clicking the treemap. As a result, the treemap is restricted
to the list of peptides from the sample that are specific to
the level that is displayed. To further aid the exploration of
the biodiversity composition of the sample, hovering the
mouse over a taxonomic node pops up a pie chart showing
a quantification of the occurrences of the child nodes in the
sample. All taxa found as LCAs of peptides in the sample
are also shown in a hierarchical outline that follows the
NCBI taxonomy. This hierarchical outline is dynamically
updated as users navigate the treemap above it. By clicking
on a taxonomic node in the hierarchy, two lists of sample
peptides associated with that taxon are shown: a list of pep-
tides that have the taxon as their LCA, and a list of pep-
tides whose LCA is the taxon or one of its descendants in
the NCBI taxonomy. The number of peptides in both lists
also appear in between brackets after each taxon name in
the treemap and the hierarchical outline.

Below the treemap display, Unipept lists all tryptic peptides
from the sample that were not found in any protein se-
quence in UniProt. These mismatched peptides are provid-

2. METAPROTEOMICS BIODIVERSITY ANALYSIS

42



ed with a hyperlink to BLAST them against a series of
NCBI hosted databases.

The multi-peptide analysis results can be exported to a Mi-
crosoft Excel compatible CSV file. For their convenience,
users can also assign names to searches in order to easily
recognize results when running multiple analyses in differ-
ent browser windows.

2.1.2.5 Hardware and performance

Unipept runs on a virtual Debian machine with a dedicated
2.6 GHz Intel Xeon hexacore processor and 24 GB of
memory. The database uses MySQL 5.5 as a database man-
agement system in combination with the InnoDB storage
engine. On this machine, the construction and indexing of
the entire database takes about one week. Because of this
long construction time, the implementation of a smart up-

The time to construct
the database from

scratch was eventually
reduced to just 7 hours.

date mechanism is planned. Updating the database instead
of building it up from scratch every time will allow to in-
corporate monthly UniProt updates without considerable
downtime. The total size of the resulting database is 82 GB
with 39 GB used for data and 43 GB used for indexes. To
improve performance of the application, a lot of time was
spent on optimizing the database schema and selecting the
right indexes. An even higher level of performance could be
achieved by increasing the server memory so the full data-

The LCA of every pep-
tide is now automatical-
ly computed while con-
structing the database.

base, or at least the index, fits into memory. The bottleneck
of the web application is the computation of the LCA of
every peptide searched during multi-peptide analysis. To
address this bottleneck, the LCA of a peptide is only com-
puted once, the first time it is needed. After calculation, the
LCA is cached into the database so it can easily be re-
trieved the next time without the need for recalculation.

The current server is
dual-CPU 2.6 GHz Intel
Xeon octacore proces-

sor with 128 GB of
memory.
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2.1.2.6 Benchmark datasets

To evaluate the potential of Unipept to gain novel insights
into the biodiversity of a sample, two publicly available
datasets were reanalyzed (Table 2.1). The first dataset con-
sists of two samples of the human gut microbiota of twins
from a study by (Verberkmoes et al., 2009). Of these two
samples, 97.6% and 96.5% of the tryptic peptides could be
matched by Unipept. The second dataset includes six sam-
ples of aerial plant surfaces of soybean (Glycine max), clover
(Trifolium repens) and Arabidopsis thaliana from a study by
Delmotte et al. (2009). Of these phyllosphere samples, be-
tween 75% and 93% of the tryptic peptides could be
matched by Unipept. The benchmark datasets are readily
available from the Unipept website and can be directly ana-
lyzed from there.

2.1.3 Results and discussion

2.1.3.1 Accuracy of peptide-based biodiversity analysis

Due to the more conserved nature of protein sequences,
peptide-based identification is generally more reliable than
DNA-based identification. For the same reason, tryptic
peptides can be matched against a reference database using
exact string matching algorithms. These are much faster
than the inexact string matching algorithms that are com-
monly used to match DNA sequences against a reference
database and more accurate than most heuristic implemen-
tations for inexact string matching (like BLAST).
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Figure 2.4 Identification depth of UniProt entries after cleanup of NCBI
taxonomy.

However, other crucial factors that affect both peptide-
based and DNA-based identification are coverage and
quality of the diversity information in the reference data-
base. In case of the Unipept database, accuracy of the iden-
tification strongly depends on the reliability of the hierar-
chical structure of the NCBI taxonomy and the correctness
and accuracy of the identifications included in the UniProt
entries. However, many UniProt entries are linked to nodes
in the NCBI taxonomy that either have no rank or have no
valid status. Both cases often correspond to artificial taxo-
nomic nodes that in theory should not be included in the
taxonomy, but are merely added as placeholders upon sub-
mission in case no valid taxa are appropriate or to specify
organism-level identification. The Unipept analysis pipeline
therefore contains noise filtering procedures to safeguard
sound biodiversity analysis of metaproteome sample data.
These include cleaning the NCBI taxonomy by rendering
some taxonomic nodes invalid, ignoring nodes that are in-
valid or have no rank and masking less accurate identifica-
tions when covered by more accurate identifications during
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the LCA scanning procedure. After cleanup of the NCBI
taxonomy and taking the first valid rank in the lineage to
which the UniProt entries were assigned (ignoring lineage
nodes that are invalid or have no rank), 84.42% of the
UniProt entries are identified at the species level, 7.19% at
the genus level, 6.25% at subspecies level, 0.83% at the or-
der level and 0.57% at the superkingdom level (Figure 2.4;
occurrences of all other levels fall below 0.5%).

Figure 2.5 Distribution of LCA taxonomic ranks computed for all tryptic
peptides extracted from UniProt entries before (top) and after (bottom)
taxonomic cleanup. Histogram restricted to most frequently observed
LCA taxonomic ranks.

The individual effects of the three noise filtering procedures
interfere with one another during the computation of the
LCAs of the peptides. The impact of noise filtering is
therefore most easily seen from individual cases as exempli-
fied in the materials and methods section. However, in or-
der to get a global impression of the impact of noise filter-
ing, we can observe the shifts in the taxonomic ranks of the
LCAs as they are computed for all tryptic peptides in the
Unipept database before and after cleanup. A histogram of
this taxonomic rank distribution is shown in Figure 2.5.
The most striking observation is that over 80% of the tryp-
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tic peptides are seemingly species-specific, which would
confirm the hypothesis that tryptic peptides can be used to
make accurate identifications at the species level. Making a
final claim on this, however, is too strong as the observation
is somewhat blurred by an under-sampling of biodiversity
in the UniProt database. Many known taxa have no or a
low number of organisms being sequenced in UniProt, and
for those organisms that have been sequenced usually only a
small fraction of the proteome is available. We can only ob-
serve that a large fraction of the peptides only occurs in one
or a few protein sequences in UniProt, without confirma-
tion that they do not occur in organisms that have not been
(completely) sequenced.

A second notable observation from Figure 2.5 is the 6 per-
centage points drop in species-specific identifications after
NCBI taxonomy cleanup and an equivalent rise in genus-
specific identifications. This might seem counterintuitive at
first, as the main goal of cleaning up was to achieve better
identifications. However, better should be interpreted as
more realistic in this case, not necessarily as more accurate
in the sense of identifications at more specific taxonomic
ranks. A twofold explanation of this species/genus shift can
be made. 98% of the taxonomic nodes from the NCBI tax-
onomy that have been invalidated are artificial nodes at the
species level. Combined with the observation that most
peptides only occur in a single UniProt entry, this results in
an LCA at the genus level instead of at the (invalidated)
species level. It requires peptides to occur in multiple
UniProt entries for one of the intended effects of taxonom-
ic cleanup, namely more fine-grained identifications, to
possibly show some effect. As peptides that have more
abundant occurrences in UniProt are far less frequent in the
complete Unipept database, the shift of LCA identifica-
tions from less accurate to more accurate taxonomic ranks is
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occluded in the histogram of Figure 2.5. However, the ef-
fect becomes much more prominent if we observe the shift
in LCA taxonomic ranks before and after cleanup for pep-
tides identified from the human gut metaproteome sample
7 as determined by Verberkmoes et al. (2009). This is ex-
plained by the fact that peptides identified from an envi-
ronmental sample are biased towards peptides that are more
abundant in the reference database. It also underscores the
importance of filtering the identification noise during the
biodiversity analysis of metaproteome samples.

2.1.3.2 Comparison with Pep2Pro

The complete peptide dictionary Pep2Pro (Askenazi,
Marto, and Linial, 2010) offers several web services for
metaproteome analysis that somewhat resemble features of-
fered by Unipept. Both systems precompute peptide index-
es from UniProt, where Pep2Pro uses a restricted index
built from clusters in the UniRef100 database (in essence, a
deduplicated version of UniProtKB). Each system also
builds separate indexes that either consider leucine and
isoleucine as distinct or equal residues. However, there are
some important differences between both systems that have
considerable implications on the results of the proteome
analysis.

Pep2Pro uses a hash table to index all 6-mers extracted
from UniRef100 protein sequences. This provides flexibility
to find exact matches for all peptides, but requires multiple
steps to exactly match peptides from their decomposed
6-mers. On the other hand, Unipept restrictively extracts
tryptic peptides having 5 to 50 residues from UniProt en-
tries, to build an index that can find exact matches in a sin-
gle step. As a result, single peptide matching is considerably
faster in Unipept compared to Pep2Pro, but is restricted to

The Pep2Pro application
has since been depre-

cated in favor of the PIR
Peptide Match Service

(Chen et al., 2013).
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tryptic peptides only. The index construction strategy of
Unipept is motivated by the observation that trypsin is the
most commonly used protease in metaproteome studies. As
such, flexibility was traded for a dramatic increase in per-
formance, which results in a much faster response time.

Unipept takes a completely different angle in handling
taxon-specificity when performing peptide-based biodiver-
sity analysis, compared to Pep2Pro. The metaproteome
analysis tool offered by Pep2Pro only retains peptides that
are matched with UniRef entries having the same NCBI
taxon identifier, without making any distinction between
the taxonomic ranks of these NCBI taxa. Usually, these so-
called unique peptides only form a minor fraction of most
peptides identified from metaproteome samples (between
4.1% and 14.1% in the Verberkmoes and Delmotte data
sets). As such, a majority of the information content gets
lost in the biodiversity analysis.

The tryptic peptide epgslgeplyldvattlr is considered
non-unique by Pep2Pro as it was found in one protein se-
quence of the bacterial species Eubacterium eligens and three
protein sequences of the bacterial species E. rectale. It is
therefore ignored in the biodiversity analysis. Note that
even if this peptide was not found in the E. eligens protein,
Pep2Pro would still not have considered it to be specific for
the species E. rectale. This due to the fact that the three cor-
responding E. rectale UniProt entries are assigned a separate
NCBI taxon identifier without a taxonomic rank, referring
to the individual bacterial strains that were sequenced.
Considering these artificial NCBI records as separate taxa
really makes no sense. The observation that the tryptic pep-
tide epgslgeplyldvattlr is specific to the genus Eubac-
terium is still considered valuable information by Unipept.
Taxon-specificity is therefore computed using a cleaned up
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version of the NCBI taxonomy as a guidance hierarchy
during the LCA scanning procedure. As a result, Unipept
uses the most granular information it can derive from pep-
tide matches during its biodiversity analysis. This does not
necessarily need to be restricted to species-specificity, as it
still gives valuable insights if the taxonomic information
derived from all tryptic peptides identified from a metapro-
teome sample are bundled into a treemap visualization.

2.1.3.3 Microbiological evaluation

Reanalysis of sample 7 from the Verberkmoes et al. (2009)
study yielded 1 292 bacteria-specific peptides among which
peptides from Bifidobacteriaceae (224 specific peptides of
which 39 could be assigned to B. adolescentis and 11 to B.
longum), Bacteroides (162 specific peptides of which 3
could be assigned to B. fragilis and 9 to B. thetaiotaomicron)
and Clostridiales (377 specific peptides of which 79 could
be assigned to the Ruminococcaceae family with Ru-
minococcus [42 specific peptides] and Faecalibacterium [30
specific peptides] as predominant genera) were most preva-
lent. Similarly, reanalysis of sample 8 from the
Verberkmoes et al. (2009) study yielded 2 114 bacteria-
specific peptides among which again peptides from Bifi-
dobacteriaceae, Bacteroides, and Clostridiales were pre-
dominant. Compared to the application of the Pep2Pro
software (Askenazi, Marto, and Linial, 2010), this provides
us with a much larger list of species-specific peptides com-
bined with peptides that are specific for higher taxonomic
ranks, which corresponds more accurately to the expected
bacterial diversity in the human gut microbiome. It also
confirms that members of the Bacteroides, Bifidobacteri-
um, and Clostridiales are metabolically dominant in the
human gut ecosystem (Verberkmoes et al., 2009), allows to
assign enzymes and thus metabolic functions to individual
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microbial species and reveals shared metabolic potential in
higher taxonomic categories. It also confirms that the mi-
crobiome of the subject from which sample 8 was taken
comprised a very high number of peptides specific to the
species Eubacterium rectale (Askenazi, Marto, and Linial,
2010).

2.1.3.4 Future developments

The Unipept web application presented here is a novel ap-
proach to peptide-based biodiversity analysis. The LCA al-
gorithm has the significant advantage, when compared to
the Pep2Pro tool, of using noise filtering algorithms to pro-
vide the most accurate results. Restricting the scope of the
application to tryptic peptides also allows for a highly opti-
mized index yielding excellent performance. To the best of
our knowledge, no index structures exist that are both suffi-
ciently fast and memory efficient to allow exact substring
matching of generic peptides over all UniProt entries. Fur-
ther research is planned to have Unipept support proteases
other than trypsin, without dramatic loss of performance.
In addition to being fast, the application is also easy to use
and presents the results in a visually appealing way. Now
that the basic infrastructure is put in place, additional sup-
port for the comparison of multiple samples is planned.
Further improvements will also include support for func-
tional analysis of metaproteome samples by adding the
functional annotations of the Gene Ontology project
(Ashburner et al., 2000) to the Unipept database.
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2.2 The Unipept metaproteomics analysis pipeline

Abstract — Unipept, available at http://unipept.ugent.be,
is a web application that offers a user friendly way to ex-
plore the biodiversity of complex metaproteome samples by
providing interactive visualizations. In this article, the up-
dates and changes to Unipept since its initial release are
presented. This includes the addition of interactive sunburst
and treeview visualizations to the multi-peptide analysis,
the foundations of an API and a command line interface,
updated data sources and the open-sourcing of the entire
application under the MIT license.

2.2.1 Introduction

Unipept (http://unipept.ugent.be) integrates a fast index of
tryptic peptides built from UniProt Knowledgebase
(UniProtKB; The UniProt Consortium (2014)) entries with
cleaned up information from the NCBI Taxonomy Data-
base (Federhen, 2012) to allow for biodiversity analysis of
metaproteome samples. Users can submit tryptic peptides
obtained from shotgun MS/MS experiments to which the
application responds with a list of all UniProt entries con-
taining that peptide. The NCBI Taxonomy Database is
used to compute the complete taxonomic lineage of every
UniProt entry in the result set. Subsequently, these lineages
are combined to compute the common lineage of the sub-
mitted peptide. Of this common lineage, the most specific
taxonomic node is determined as the lowest common an-
cestor (LCA) using a robust LCA scanning algorithm. The
resulting information is visualized using an interactive
JavaScript treeview that bundles all taxonomic lineages, ac-
companied by a comprehensible table that contains all
matched UniProt entries.

This section contains a
verbatim copy of the

application note by
Mesuere et al. (2015) as

published in
Proteomics.
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Figure 2.6 The treemap visualization available in Unipept when running
a multi-peptide analysis on sample 7 as determined by Verberkmoes et
al. (2009), zoomed in on Bacteria.

Users can also submit a list of tryptic peptides. In this case,
the LCA is calculated for every submitted peptide as de-
scribed above. These LCAs are then bundled into a fre-
quency table and visualized on the results page using an in-
teractive treemap (Figure 2.6). This treemap displays hier-
archical data in a multilayer histogram-like graphical repre-
sentation. The squares in the treemap each correspond to a
taxonomic node in the NCBI taxonomy, with their size
proportional to the number of peptides having that taxo-
nomic node as their LCA. The cleaned up hierarchy of the
NCBI Taxonomy is used to tile the squares according to
their occurrence in the taxonomic lineages. These squares
are color coded according to their taxonomic ranks. This
graphical representation allows users to see at a glance
which organisms are present in a metaproteome sample and
to what extent. The treemap is interactive and can be ma-
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nipulated by clicking on individual nodes. This makes it
possible for users to zoom in to an area of interest (e.g.,
Bacteria or Firmicutes).

Figure 2.7 Bar chart showing experimental data from Tanca et al. (2013)
with the number of correct taxonomic assignments at the family, genus,
and species level from the lab assembled 9MM sample using the NCBI-
BFV database. The amount of incorrect identifications are 6%, 10%, and
15% respectively for Unipept, and 9%, 18%, and 34% for MEGAN.

Since its release in 2012 (Mesuere et al., 2012), the
Unipept application was praised for its ease of use and great
data visualizations (Tanca et al., 2013; Kolmeder and Vos,
2014; Seifert et al., 2013). The Unipept LCA approach was
compared with the commonly used taxonomic analysis in
MEGAN (Huson et al., 2011) by Tanca et al. (2013).
Unipept consistently outperformed MEGAN by a factor of
three on both the family, genus, and species level with only
half the number of misassignments (Figure 2.7). In this ar-
ticle we present some of the improvements and new fea-
tures of Unipept since its original publication.
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2.2.2 What’s new

Sunburst
With complex samples containing a diverse range of taxa,
the treemap (Figure 2.6) representation quickly becomes
cluttered which makes it hard to get a clear insight into the
results. To resolve this problem, a new sunburst visualiza-
tion (Andrews and Heidegger, 1998) was built into
Unipept (Figure 2.8) using the D3.js framework (Bostock,
Ogievetsky, and Heer, 2011). The sunburst diagram dis-
plays the same data as the treemap, but as an interactive
multi-level pie chart. The center of this pie chart represents
the root node with several concentric rings around it. These
rings are divided into slices representing the child nodes in
the taxonomic hierarchy of the aligning more central slice.
The size of the slices corresponds to the number of peptides
having an LCA equal to that taxonomic node or any of its
children.

The sunburst diagram provides a more comprehensive view
by displaying only four levels at a time. Users can see more

In a later version, bread-
crumbs were added to

allow users to keep
track of their position in

the phylogenetic tree.

levels by clicking on a slice of interest. The node that was
clicked then becomes the center of the sunburst and the
four levels below it are displayed. By clicking on the center
of the sunburst, users can zoom out one level. By hovering
the mouse over a slice, a tooltip is displayed with more in-
formation about the taxonomic node associated with that
slice and the number of peptides belonging to that taxo-
nomic node or any of its children.
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Figure 2.8 The newly added sunburst visualization available in Unipept
when running a multi-peptide analysis on sample 7 as determined by
Verberkmoes et al. (2009), zoomed in on Bacteria with default colors.

By default, the colors of the slices are algorithmically
grouped to indicate taxonomic clusters. This is done by first
assigning a random color from a list of hand picked colors
to all of the leaf nodes. The colors of the parent nodes are
then recursively calculated by taking the average of the col-
ors of the first two children in the hue-saturation-lightness
(HSL) color space. If a node only has a single child, a
slightly darker tint of the child color is taken. Although
this method of assigning colors is visually pleasing, it is
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hard to compare sunbursts of several analyses because the
colors of the slices depend on the composition of the result
set. For this reason, a second coloring option was added to
Unipept, which uses a hash function to calculate the color
based on the taxonomic data. A hash function is a mathe-
matical function that can be used to convert arbitrary data,
in this case the name and rank of taxonomic node, to a
strict output format, in this case a color value. By using this
approach, a taxonomic node is always colored the same way,
regardless of the sample. An example of the comparison of
two analyses using the hash-based coloring is shown in
Figure 2.9 and Figure 2.10.

Figure 2.9 Sunburst diagram visualizing the bacterial diversity in hu-
man gut metaproteome sample 7 as determined by Verberkmoes et al.
(2009). The diagrams use a fixed color scheme allowing easy compari-
son of the composition of different samples.
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Figure 2.10 Sunburst diagram visualizing the bacterial diversity in hu-
man gut metaproteome sample 8 as determined by Verberkmoes et al.
(2009). The diagrams use a fixed color scheme allowing easy compari-
son of the composition of different samples.

Treeview
A third way of visualizing the results of a multi-peptide
analysis in Unipept is by using an advanced treeview (Fig-
ure 2.11). Although the default treeview is great for the vi-
sualization of hierarchical data, it falls short for showing
the weights (i.e., the number of peptides) associated with
the nodes and branches. To overcome this problem, the
concept of a Sankey diagram (Riehmann, Hanfler, and
Froehlich, 2005) was applied to the treeview. The size of a
node now corresponds to the number of peptides associated
with that node or any of its children and the width of each
branch corresponds to the size of the destination node. As a
result, the diameter of each node equals the sum of the
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width of all outgoing links, supplemented with a propor-
tional share for the number of peptides associated with the
node itself. Each of the superkingdoms is assigned a color
in which the corresponding nodes and branches are drawn.

Figure 2.11 The newly added advanced treeview visualization available
in Unipept when running a multi-peptide analysis on sample 7 as deter-
mined by Verberkmoes et al. (2009), rescaled on Bacteria.

When the graph initially loads, the root and 2 levels of
children are shown. Clicking on a node allows users to ex-
pand and collapse the children of that node. In addition,
scrolling the mouse invokes a zooming behavior, and drag-
ging lets the graph be repositioned.

The root initially corresponds to 100% of the peptides and
is drawn at full size. By right clicking a node of interest, the
graph is rescaled to focus on that node. The clicked node is
now drawn at full size and all of its children are scaled ac-
cordingly. The nodes and branches that are not part of the
active subtree are dimmed by drawing them with a thin
gray line. Figure 2.11 shows an example of the treeview, fo-
cused on Bacteria.

As with the sunburst and treemap visualization, a tooltip
with more information is shown when the user hovers over
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a node. Finally, a full-screen mode and the option to export
the visualization as a PNG or SVG image were also added.

API
The Unipept API and

command line interface
are discussed in more

detail in Chapter 3.

The web-based peptide analysis tools in Unipept are a great
fit for exploring the biodiversity of a single sample. Howev-
er, using the website can be cumbersome when multiple
datasets need to be analyzed. To address these issues, all of
the peptide analysis functionality (except the visualizations)
are also available as a web service. Using this Unipept API,
a command line interface to Unipept was implemented in
Ruby that allows batch analysis of samples and opens up
new ways to include the Unipept functionality in a process-
ing pipeline.

Peptidome-based analysis
The tryptic peptidome is the complete set of (tryptic) pep-
tides encoded in the genome of an organism. Unipept now
provides fast and flexible analysis tools for identifying the
unique peptidome of a given taxon and for clustering
whole-genomes based on their peptidome content.

A first tool, the unique peptide finder, computes the unique
peptidome for a selected set of RefSeq whole-genome se-
quences. This unique peptidome consists of all tryptic pep-
tides that are contained in all of the selected genomes, but
in none of the UniProt entries belonging to taxa outside
those of the selected genomes, making these peptides
taxon-specific. Unique peptide sets can be downloaded and
used in targeted proteomics experiments.

Peptidome-based clustering computes the UPGMA clus-
tering of a selected set of RefSeq whole-genome sequences
based on their peptidome content. Pairwise similarities are
computed as the fraction of the size of the intersection over

The unique peptide
finder is discussed in

more detail in Sec-
tion 4.1.

Peptidome-based clus-
tering is discussed in

more detail in Sec-
tion 4.2.
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the size of the union of both peptidomes. The results are vi-
sualized by a similarity matrix and a phylogenetic tree and
can be exported in the Newick and CSV format.

Website changes
Since usability is a key feature of Unipept, the entire web-
site was redesigned based on several usability studies. A lot
of attention was spent on providing an optimal user experi-
ence and interaction design. The open source Bootstrap
project was used for basic user interface components such
as buttons, tabs, and popups and all graphics and visualiza-
tions were optimized to take advantage of high-DPI dis-
plays.

Another addition to Unipept is an improved export func-
tionality. In addition to the PNG format, Unipept is now
also able to export all vector-based visualizations in the
SVG file format. Furthermore, CSV exports and copy to
clipboard-buttons were added where appropriate for textual
results.

The Unipept Multi-peptide Analysis now also directly in-
terfaces with PRIDE (Vizcaíno et al., 2013) to allow a
one-click analysis of data deposited in the PRIDE archive.
Users can simply enter the ID of any PRIDE experiment
and click the “Load Dataset” button. Unipept subsequently
fetches the data and preloads the search form for further
analysis.

Open source
The source code and documentation of the current and all
previous Unipept releases have been made available on
GitHub at http://GitHub.com/unipept/unipept. All code is
licensed under the permissive MIT license. By open sourc-
ing Unipept, we provide optimal transparency on how our
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algorithms work and invite other researchers to contribute
to Unipept. Additionally, the source code of individual
components (e.g., the visualizations) may be extracted for
use in other projects. Another advantage of making all code
available, is that research groups may set up their own
Unipept server. Setting up a local Unipept server provides a
solution for researchers who are not entitled to send out
proprietary data to public, third party services. Running a
local server also limits the dependency on external re-
sources, which was a stumbling block for several users to
include Unipept in their workflow.

2.2.3 Statistics

The initial Unipept release was based on UniProt 2012_07
containing 17 million protein entries. Unipept 2.3 is based
on UniProt 2014_05 containing 56.5 million protein en-
tries. In 22 months, the amount of data in UniProt more
than tripled and Unipept now contains information on over
a billion peptides. The number of distinct tryptic peptides
went up from 250 million to 402 million. Unipept now also
parses additional protein metadata such as EC numbers
(Bairoch, 2000) and Gene Ontology (Ashburner et al.,
2000) annotations and displays this information on the sin-
gle peptide analysis results page. The increase in data
caused the size of the Unipept database to grow from 81
GB (39 GB data, 42 GB index) to 188 GB (91 GB data,
97 GB index). The exponential growth in data poses some
challenges for the future regarding data processing and
storage. An incremental update strategy, next to the use of

The next data process-
ing pipeline used a
Berkeley DB-based

solution to speed up
parsing.

high performance key-value stores such as Berkeley DB
(Olson, Bostic, and Seltzer, 1999) or in memory databases
like VoltDB (Stonebraker and Weisberg, 2013), might offer
some solutions to reduce the time needed to parse UniProt.
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The analysis on the Unipept website is not negatively af-
fected by the growing data, on the contrary, the results be-
come increasingly more accurate.

Unipept uses the NCBI Taxonomy as its reference taxono-
my database. The taxonomic information in Unipept is only
updated when a new UniProt version is parsed. These up-
dates sometimes introduce erroneous taxa such as the
species “metagenomes” (NCBI taxon ID 256318). By adjust-
ing the invalidation algorithms, the impact of such taxa can
be reduced, but this requires manual inspection with each
update.

The number of Unipept users is growing each month, with
over a thousand users in June 2014. In total, 4000 multi-
peptide and 3000 single peptide analyses were performed,
accounting for 81 million processed peptides.

2.3 Recent additions

After the publication in Proteomics (Mesuere et al., 2015),
we didn’t stop adding new features to the diversity analysis
in Unipept. On a data level, the biggest update was the im-
plementation of a new data processing pipeline as already
mentioned in the previous section. The new pipeline can
process UniProt in under 7 hours as opposed to almost 3
months for the previous one. This enables us to incorporate
the monthly UniProt updates in a timely manner. The
UniProt version that is used by Unipept is now also dis-
played in the footer of each page.

The Tryptic Peptide Analysis was expanded with a few mi-
nor changes. The treeview that was introduced in the
Metaproteome Analysis was open sourced on GitHub
(https://github.com/unipept/unipept-visualizations) as a
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stand-alone visualization. This allowed us to replace the ex-
isting tree visualization in the Tryptic Peptide Analysis
with our own new treeview. Additionally, the table display-
ing all UniProt matches was supplemented with the name
of the proteins, an open in UniProt button and a copy to clip-
board button.

The visualizations of the Metaproteome Analysis under-
went bigger changes. The treemap was entirely rewritten
using D3, allowing more customization such as the addi-
tion of a breadcrumb bar. Major parts of the sunburst graph
were also rewritten and an enhanced breadcrumbs bar was
added to the visualization. The fairly new treeview gained a
shift-click option that expands all children of the clicked
node. Additionally, a few bugs were fixed improving the
layout of the graph and eliminating overlapping nodes.
These improvements allowed for a new full screen mode
that enables fast switching between all three visualizations.
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Chapter 3

The Unipept API and
command line tools

The Unipept website is an excellent tool for biodiversity
analysis of metaproteomics samples. One disadvantage for
large-scale data processing is that all analysis must be run
manually on the website. For high-throughput studies, this
manual approach is not viable. With this in mind, we de-
veloped an API and a set of command line tools to expose
the Unipept analysis features for use in automated pipelines
and other applications.

In this chapter, we first describe the Unipept API by means
of the application note published in Bioinformatics
(Mesuere et al., 2016b) and then give an overview of the
command line tools with two detailed case studies.
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3.1 Unipept web services for metaproteomics
analysis

Abstract — Unipept is an open source web application that
is designed for metaproteomics analysis with a focus on in-
teractive data-visualization. It is underpinned by a fast in-
dex built from UniProtKB and the NCBI taxonomy that
enables quick retrieval of all UniProt entries in which a giv-
en tryptic peptide occurs. Unipept version 2.4 introduced
web services that provide programmatic access to the meta-
proteomics analysis features. This enables integration of
Unipept functionality in custom applications and data pro-
cessing pipelines. The web services are freely available at
http://api.unipept.ugent.be and are open sourced under the
MIT license.

3.1.1 Introduction

Unipept is a web application for biodiversity analysis of
complex metaproteomics samples (Mesuere et al., 2012).
The application is powered by a fast index built from
UniProtKB (The Uniprot Consortium, 2015) and a cleaned
up version of the NCBI taxonomy (Federhen, 2012). This
index enables quick retrieval of all UniProt entries in which
a given tryptic peptide occurs. Using the taxonomic anno-
tations of UniProt entries, Unipept also returns the com-
plete set of organisms in which a given peptide occurs. This
set of organisms is then processed using a Lowest Common
Ancestor (LCA) algorithm to determine the taxonomic
specificity of the peptide. All results are presented in clear
overview tables and in an interactive treeview.

This section contains a
verbatim copy of the

application note by
Mesuere et al. (2016b)

as published in
Bioinformatics.
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Fast computation of LCAs for given lists of peptides also
enables interactive biodiversity analysis of metaproteomics
data sets. The biodiversity in complex samples can then be
inspected using multiple interactive visualizations such as a
treeview (Figure 3.1), a sunburst view (Figure 3.2) and a
treemap (Figure 3.3). All visualizations on the Unipept
website can be saved as publication-grade graphics, and all
analysis results can be exported as Microsoft Excel-
compatible CSV files.

Figure 3.1 Interactive treeview visualization that shows the tree of the
matched taxa resulting from a Tryptic Peptide Analysis on the tryptic
peptide AEAHIK.

To guarantee optimal performance and correctness, the
Unipept project pursues excellence regarding best practices
for modern web application development. One example of
this is automatic correctness testing by over 1000 tests after
each code change. The entire application including the web
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services is open source and licensed under the terms of the
MIT license. The source code can be found at http://
GitHub.com/unipept/unipept.

In this article, we present the latest addition to the Unipept
toolbox: a set of web services that expose the Unipept
analysis functions for use in other applications and data
processing pipelines.

Figure 3.2 Example of the interactive sunburst visualization in Unipept.
The graph shows the result of the marine sample dataset available on
the Unipept website.
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Figure 3.3 Example of the interactive treemap in Unipept. The graph
shows the result of the Arabidopsis thaliana phyllosphere sample
dataset available on the Unipept website.

3.1.2 Methods

Unipept version 2.4 introduced the Unipept web services.
These web services allow access to all Unipept peptide
analysis features through a RESTful API. This means that
all communication with the web services can be done using
simple stateless HTTP requests, to which the server an-
swers in JSON. JSON is an open standard for transmitting
data that is both human readable and has wide support in
developer tools and programming languages.

In the next sections, we discuss the available API functions
by drawing parallels between usage of the Unipept website
and the Unipept API. Figure 3.4 displays a schematic
overview of the included functions, along with the expected
input and output. The full documentation can be found at
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http://api.unipept.ugent.be. Next to the documentation,
the website also offers an interactive API explorer (Fig-
ure 3.5) where API requests can be composed and tested
with just a few clicks.

Figure 3.4 General outline of the Unipept workflow for taxonomic iden-
tification of tryptic peptides. For a given tryptic peptide, all UniProt en-
tries having an exact match of the peptide in the protein sequence are
found. Unipept then computes the lowest common ancestor (LCA) of
the taxonomic annotations extracted from the matched UniProt entries,
based on a cleaned up version of the NCBI Taxonomy. All intermediate
results are shown for the sample tryptic peptide ENFVY[IL]AK (isoleucine
and leucine equated), leading to an LCA in the phylum Streptophyta. Ar-
rows at the bottom show which processing steps are available as func-
tions in the Unipept API.

pept2prot
The fundamental component in the Tryptic Peptide Analy-
sis feature of Unipept is fast retrieval of all UniProt entries
in which a given tryptic peptide occurs. All subsequent cal-
culations are based on this result, and therefore the data-
base indexes are heavily optimized to return the result as
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fast as possible. When doing a Tryptic Peptide analysis in
the web interface, the set of all matching UniProt entries is
listed on the Protein Matches tab.

Its web service counterpart, pept2prot, takes a single
tryptic peptide as input and returns the list of all UniProt
entries containing the given tryptic peptide. By default, for
each entry, the UniProt accession number, protein name
and associated NCBI taxon ID are returned. Optionally,
users can also request additional information fields such as
the name of the organism associated with the UniProt en-
try, a list of cross-referenced EC numbers (Bairoch, 2000)
and a list of cross-referenced GO terms (The Gene Ontol-
ogy Consortium, 2014). Users can also choose to equate
the isobaric amino acids isoleucine (I) and leucine (L) when
matching peptides to proteins, a typical option for mass
spectrometry-related queries. Batch retrieval of multiple
peptides at once is also supported.

pept2taxa
After matching the UniProt entries, Unipept uses the
cross-referenced NCBI taxon IDs to compile a set of or-
ganisms in which the queried peptide occurs. These organ-
isms are then mapped to their taxonomic lineages using a
cleaned up version of the NCBI taxonomy database. Using
the web interface, the list of organisms along with their lin-
eage can be found in the Lineage Table tab and an interac-
tive visualization is available in the Lineage Tree tab (Fig-
ure 3.1).
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Figure 3.5 Screenshot of the API explorer, available on the documenta-
tion page of each of the Unipept API functions. By using the form, all of
the API features can be easily tested within a web browser. After clicking
the “Try it!” button, the resulting query string and response are shown.
The figure shows the output for the pept2lca method used on the tryp-
tic peptides AAAMSMIPTSTGAAK and AIVAYTQTGATVHR with the option to
equate isoleucine and leucine when matching peptides to proteins. The
LCA for AAAMSMIPTSTGAAK is the superkingdom Bacteria, the LCA for
AIVAYTQTGATVHR is the species Bifidobacterium longum.

Similarly, the API function pept2taxa takes a tryptic pep-
tide as input and returns the set of organisms associated
with the UniProt entries containing the given tryptic pep-
tide. By default, the taxon ID, name, and rank are returned
for each of the matched organisms. Optionally, the full lin-
eage of each organism can be requested as a sequence of
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taxon IDs and/or taxon names. Batch requests and equat-
ing isoleucine and leucine are also supported.

pept2lca
The matched organisms from the previous section are then
used to calculate the taxonomic lowest common ancestor
(LCA). Simply put, the LCA is the most specific taxonom-
ic rank that all matched organisms have in common. How-
ever, the algorithm used by Unipept has several advance-
ments to better cope with taxonomic noise and misclassifi-

Newer versions of the
invalidation script also
contain exceptions for

viruses.

cations (Mesuere et al., 2012). One of these improvements
is the invalidation of taxonomic nodes that provide little in-
formational values, such as those containing words like
“uncultured”, “unspecified” or “undetermined” in their
name. Invalidated taxa are ignored during LCA calculation
and mapped to their first valid ancestor. These invalidated
taxa would otherwise result in a drastic loss of information
when used for LCA calculation. Another example is map-
ping strain-specific taxon IDs to their first valid parent tax-
on to counter the, now abandoned, practice of creating
strain-level taxon IDs (Federhen et al., 2014).

Correspondingly, the pept2lca function returns the LCA
(taxon ID, name, and rank) for a given tryptic peptide. Op-
tionally, the full lineage (IDs and/or names) can be request-
ed and both equating isoleucine and leucine and batch re-
quests are supported. The LCAs for all tryptic peptides are
precalculated and stored in the database. Therefore, the
peptide matching steps can be skipped for the pept2lca
function, resulting in improved performance.

taxa2lca
The Unipept LCA algorithm can also be used outside a
proteomics context by using the taxa2lca function. This
API function takes a list of NCBI taxon IDs and calculates
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their LCA by using the advanced algorithm as applied by
Unipept. The result is returned by listing the taxon ID,
name, and rank of the LCA. Additional lineage informa-
tion is also available upon request. Note that the pept2lca
function can be mimicked by chaining the pept2taxa and
taxa2lca functions. This is however not recommended, as
pept2lca makes use of precomputed data and is therefore
several orders of magnitude faster.

taxonomy
The taxonomy function provides access to the cleaned up
version of the NCBI taxonomy as used by Unipept. This
function can be used, for example, to compute more de-
tailed statistics about taxon hits or implement alternative
aggregation strategies next to the LCA computation as
used by Unipept. The function takes one or more taxon IDs
as input and returns the name and rank for each of the giv-
en IDs. Optionally, the full lineage can also be returned.

3.1.3 Results

The Unipept project consists of two main parts: a collection
of scripts to construct the database and the web application.
The first part of the database construction, the code to
parse UniProt, was recently updated to use Berkeley DB
(Olson, Bostic, and Seltzer, 1999), a high performance key
value store, to store intermediate results. This resulted in an
enormous boost in parsing speed: where the old parser took
over 30 days to parse UniProt, the new approach using
Berkeley DB does the job in under 10 hours. The second
part of the database construction is the precalculation of the
LCAs of all the peptides in the database. The old Ruby
code was rewritten in Java and computation time was re-
duced from over four weeks to just 15 minutes with the
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help of some new Java 8 features. The combination of these
advancements allows us to consistently offer analysis results
based on the latest UniProt release. The second part of
Unipept is a Ruby on Rails web application that uses
JavaScript for all client side interactions. All data visualiza-
tions (Mesuere et al., 2015) are made in-house with the
D3.js JavaScript library (Bostock, Ogievetsky, and Heer,
2011).

The GalaxyP project already takes advantage of the new
Unipept web services to integrate Unipept functionality in-
to the Galaxy Framework ( Jagtap et al., 2015). Exact
matching of peptides to UniProt entries is also implement-
ed by the Peptide Match application (Chen et al., 2013) of
the Protein Information Resource (PIR). Where Unipept is
restricted for use with tryptic peptides, Peptide Match has
no such limitation. However, the advantage of accepting all
peptides comes at the cost of reduced performance. For a
test set of 500 tryptic peptides, the Unipept pept2prot
function returned all matching UniProt entries in 1.5 sec-
onds whereas Peptide Match took over 33 minutes. Since
(meta)proteomics experiments almost exclusively use
trypsin to digest proteins, resulting in a list of tryptic pep-
tides, this is a reasonable compromise (Olsen, Ong, and
Mann, 2004). All functions of the Unipept API are
tweaked for optimal performance and usable for high
throughput data analysis. The pept2lca function (no
counterpart in PIR), can process over 10 000 peptides per
second. For this reason, the information fields that are re-
turned by default are limited to the subset of available fields
that can be returned without performance penalty.
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3.2 The Unipept command line tools

The Unipept API provides a good starting point for inte-
grating Unipept functionality in other applications and
pipelines. It is however not a ready-made solution that can
be used without additional programming. To counter this,
we developed a set of user-friendly command line tools that
are essentially wrappers around the API. In this section, we
first give an overview of the Unipept command line tools
and their advantages over the API and then demonstrate
their usage in two detailed case studies.

3.2.1 The Unipept gem

The Unipept command line tools provide a command line
interface to the Unipept web services along with a few utili-
ty commands for handling proteins using the command
line. All tools support fasta and plain text input, multiple
output formats (csv, xml, and json) and parallel web re-
quests for improved performance. Just as with the Unipept
web application, we followed the coding best practices and
the entire code base is covered with unit and integration
tests. All code is open source under the MIT License and
available on GitHub in a separate unipept-cli repository
at https://GitHub.com/unipept/unipept-cli.

Installation
The Unipept command line tools are written in Ruby, so to
use them, Ruby needs to be installed on your system. We
recommend using Ruby 2.2, but all versions since Ruby
1.9.3, as well as JRuby are supported. We made the com-
mand line tools available as a Ruby gem. A gem is a pack-
aged version of the code that can be used in combination
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with the RubyGems package manager. This means it can
easily be installed with a single command:

$ gem install unipept

Fetching: unipept-1.1.0.gem (100%)

Successfully installed unipept-1.1.0

Parsing documentation for unipept-1.1.0

Installing ri documentation for unipept-1.1.0

Done installing documentation for unipept after 0 seconds

1 gem installed

After successful installation, the unipept command should
be available. To check if the gem was installed correctly, run
unipept --version. This should print the version num-
ber:

$ unipept --version

1.1.0

Updating to the newest version of the command line tools
is equally simple using the gem update unipept com-
mand. Each of the commands also has a built-in help func-
tion that can be displayed using the --help argument.

$ unipept --help

NAME

unipept - Command line interface to Unipept web services.

USAGE

unipept subcommand [options]

DESCRIPTION

The unipept subcommands are command line wrappers around the Unipept web

services.

Subcommands that start with pept expect a list of tryptic peptides as

input. Subcommands that start with tax expect a list of NCBI Taxonomy

Identifiers as input. Input is passed

- as separate command line arguments

- in a text file that is passed as an argument to the -i option

- to standard input
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The command will give priority to the first way the input is passed, in

the order as listed above. Text files and standard input should have one

tryptic peptide or one NCBI Taxonomy Identifier per line.

COMMANDS

config Set configuration options.

help show help

pept2lca Fetch taxonomic lowest common ancestor of UniProt entries

that match tryptic peptides.

pept2prot Fetch UniProt entries that match tryptic peptides.

pept2taxa Fetch taxa of UniProt entries that match tryptic peptides.

taxa2lca Compute taxonomic lowest common ancestor for given list of

taxa.

taxonomy Fetch taxonomic information from Unipept Taxonomy.

OPTIONS

-f --format=<value>        define the output format (available: json,

csv, xml) (default: csv)

-h --help show help for this command

--host=<value>          specify the server running the Unipept web

service

-i --input=<value>         read input from file

-o --output=<value>        write output to file

-q --quiet disable service messages

-v --version displays the version

Commands
The Unipept command line tools consist of four main com-
mands: uniprot, prot2pept, peptfilter, and unipept.

The uniprot command is a utility to easily fetch protein
information from UniProt. It takes one or more UniProt
accession numbers and returns the corresponding UniProt
entry for each of the accession numbers as output. This in-
formation is fetched by using the UniProt web services.

$ uniprot C6JD41 Q06JG4

MTLVPLGDRVVLKQVEAEETTKSGIVLPGQAQEKPQQAEVVAVGPGGVVDGKEVKMEVAVGDKVIYSKYSGT

EVKMDGTEYIIVKQNDILAIVK

MFTNSIKNLIIYLMPLMVTLMLLSVSFVDAGKKPSGPNPGGNN
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prot2pept is a utility to perform an in silico trypsin digest
on protein sequences. The command takes one or more
protein sequences as input and returns the digested pep-
tides as output. This command runs entirely locally and
doesn’t connect to any server.

$ echo "LGAARPLGAGLAKVIGAGIGIGK" | prot2pept

LGAARPLGAGLAK

VIGAGIGIGK

The peptfilter command also runs entirely client-side
and can be used to filter a list of peptides that satisfy a giv-
en set of criteria. By default, peptides with length between
5 and 50 are retained, but other criteria can be specified.
The length filter can be changed by using the --minlen
and --maxlen parameters. Peptides can also be filtered
based on whether or not they lack or contain certain amino
acids. This can be done with the --lacks and --contains

parameters.

$ cat input.txt

AAR

AALTER

$ cat input.txt | peptfilter

AALTER

The unipept command has several subcommands:
pept2lca, pept2taxa, pept2prot, taxa2lca, and
taxonomy. Each of them corresponds to the equally named
API call and has several options that are equivalent with
the corresponding API parameters. A comprehensive de-
scription of these calls and parameters can be found in Sec-
tion 3.1.2 of this chapter, examples of their usage can be
found in the case studies in Section 3.2.2 and Section 3.2.3.
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Input and output formats
One of the benefits of using the command line tools is sup-
port for multiple input and output formats. All commands
accept input from command line arguments, a file, or stan-
dard input. Output can be written to standard output or to a
file. Where the API always uses json as output format, the
command line tools offer support for json, xml, and csv.
Additionally, the --select option allows you to control
which fields are returned. A list of fields can be specified by
a comma-separated list, or by using multiple --select op-
tions. The *-symbol can be used as a wildcard for field
names. For example, --select peptide,taxon* will re-
turn the peptide field and all fields starting with taxon.

The commands also support input (from any source) in
fasta(-like) format. This format consists of a fasta header (a
line starting with a >-symbol), followed by one or more
lines containing, for example, one peptide each. When this
format is detected, the output will automatically include an
extra information field in the output containing the corre-
sponding fasta header.

$ cat input.txt

> header 1

AALTER

MDGTEYIIVK

> header 2

AALTER

$ unipept pept2lca --input input.txt

fasta_header,peptide,taxon_id,taxon_name,taxon_rank

> header 1,AALTER,1,root,no rank

> header 1,MDGTEYIIVK,1263,Ruminococcus,genus

> header 2,AALTER,1,root,no rank

Request optimizations
Internally, the command line tools query the Unipept API
for each of the unipept subcommands. Making one http-
request at a time for each of the input values would cause a
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significant overhead and poor performance. This problem
was tackled in two ways. A first solution is batching multi-
ple input values per request. The batch size was determined
experimentally and lies between 10 and 1000 values per re-
quest, depending on the subcommand and the amount of
extra information that is requested.

A second solution is doing multiple parallel requests at a
time to make optimal use of the multiple CPU cores of the
client and server. This fix improves performance significant-
ly, but has an unexpected side effect: because multiple re-
quests are sent at a time, we don’t know in what order they
will be completed. To make sure that the order of the input
and output values are the same, we had to include a non-
trivial reordering algorithm to restore the order without
consuming lots of memory.

3.2.2 Case study: analysis of a tryptic peptide

For a first case study, let’s say that we have determined the
mass spectrum of a tryptic peptide, that was identified as
the peptide enfvyiak using database searches (Mascot
(Perkins et al., 1999), Sequest (Eng, McCormack, and
Yates, 1994), X!Tandem (Craig and Beavis, 2003)) or de
novo identification (PEAKS (Ma et al., 2003)). As an ex-
ample, we show how this tryptic peptide can be taxonomi-
cally assigned to the phylum Streptophyta. As a starter, we
can use the unipept pept2prot command to fetch all
UniProt proteins indexed by Unipept that contain the pep-
tide.

Matching proteins
The following interactive session shows that UniProt con-
tains 19 proteins that contain the tryptic peptide enfvyi-
ak. Note that the first command passes the tryptic peptide
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as an argument to the unipept pept2prot command. In
case no tryptic peptide is passed as an argument, the com-
mand reads a tryptic peptide from standard input as illus-
trated by the second command. Throughout this case study
we will preferentially pass tryptic peptides as an argument
to the unipept pept2prot command, but the command
works the same way irrespective of how the tryptic peptide
is fed to the command.

$ unipept pept2prot ENFVYIAK

peptide,uniprot_id,protein_name,taxon_id

ENFVYIAK,C6TH93,Casparian strip membrane protein 4,3847

ENFVYIAK,P42654,14-3-3-like protein B,3906

ENFVYIAK,Q96453,14-3-3-like protein D,3847

...

$ echo "ENFVYIAK" | unipept pept2prot

peptide,uniprot_id,protein_name,taxon_id

ENFVYIAK,C6TH93,Casparian strip membrane protein 4,3847

ENFVYIAK,P42654,14-3-3-like protein B,3906

ENFVYIAK,Q96453,14-3-3-like protein D,3847

...

By default, the output is generated in csv-format (comma-
separated values). Apart from the query peptide (peptide),
the output contains two GUIDs (globally unique identifiers):
i) the UniProt Accession Number (uniprot_id) that refers
to the protein record in the UniProt database that contains
the tryptic peptide and ii) the NCBI Taxonomy Identifier
(taxon_id) assigned to the UniProt protein record that
refers to a record in the NCBI Taxonomy Database
(Acland et al., 2014; Benson et al., 2013). The latter de-
scribes a taxon in the hierarchical classification of cellular
organisms, being the taxon from which the protein was ex-
tracted. The output also contains the name of each protein
(protein_name).
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Leucine & isoleucine
In peptide sequencing experiments involving a single step
tandem mass acquisition, leucine (L) and isoleucine (I) are
indistinguishable because both are characterized by a 113
Da mass difference from the other peptide fragments in the
MS-MS spectrum. In general, there are 2n I=L variants for
each tryptic peptide that contains n residues that are either
leucine or isoleucine. Therefore, all subcommands of the
unipept command that are based on matching given pep-
tides against UniProt proteins support the -e/--equate
option. Exact matching makes no distinction between I

and L when this option is activated.

$ unipept pept2prot -e ENFVYIAK

peptide,uniprot_id,protein_name,taxon_id

ENFVYIAK,C6TH93,Casparian strip membrane protein 4,3847

ENFVYIAK,P42654,14-3-3-like protein B,3906

ENFVYIAK,Q96453,14-3-3-like protein D,3847

ENFVYIAK,G7LIR4,Uncharacterized protein,3880

...

Note that the Unipept database has two separate index
structures to match tryptic peptides against UniProt protein
records: one that is used to exactly match tryptic peptides
against UniProt protein records and one that is used to ex-
actly match all I=L variants of a given tryptic peptide. As a
result, matching all I=L variants of the tryptic peptide en-
fvyiak can be done in a single step, without any perfor-
mance loss.

Metadata
Apart from a fast index that maps tryptic peptides onto the
UniProt entries of proteins that contain the peptide, the
Unipept database contains minimal information about the
proteins that was extracted from the UniProt entries. This
includes information about the taxon from which the pro-
tein was sequenced (taxon_id and taxon_name) and a de-
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scription of the cellular functions the protein is involved in
(ec_references and go_references). Taxonomic infor-
mation is described using a GUID that refers to a record in
the NCBI Taxonomy Database (Acland et al., 2014; Ben-
son et al., 2013). Functional information is described using
GUIDs that refer to records from the Enzyme Commission
classification (EC; Bairoch (2000)) and the Gene Ontology
(GO; Ashburner et al. (2000)). The generated output con-
tains this additional information if the -a/--all option of
the unipept command is used. The following example is
representative in the sense that the taxonomic information
about proteins is generally more accurate and complete
than the information about known functions of the pro-
teins.

$ unipept pept2prot -e -a ENFVYIAK

peptide,uniprot_id,protein_name,taxon_id,taxon_name,ec_references,go_ref

erences,refseq_ids,refseq_protein_ids,insdc_ids,insdc_protein_ids

ENFVYIAK,C6TH93,Casparian strip membrane protein 4,3847,Glycine max,,GO:

0016021 GO:0005886 GO:0071555,NM_001255156.1,NP_001242085.1,BT097011,A

CU21195.1

ENFVYIAK,P42654,14-3-3-like protein B,3906,Vicia faba,,,,,Z48505,CAA8841

6.1

ENFVYIAK,Q96453,14-3-3-like protein D,3847,Glycine max,,,NM_001250136.1,

NP_001237065.1,U70536,AAB09583.1

ENFVYIAK,G7LIR4,Uncharacterized protein,3880,Medicago truncatula,,,XM_00

3629715.1,XP_003629763.1,CM001224 BT141273,AET04239.2 AFK41067.1

...

Because Unipept uses a separate peptide index in which I

and L are equated, Unipept cannot directly resolve what
specific I=L variant (or variants) of a tryptic peptide are
contained in a protein sequence. However, the Unipept
command line tools contain the uniprot command that
calls the UniProt web services. This can be used, for exam-
ple, to retrieve all protein sequences for a given list of
UniProt Accession Numbers. The following example also
illustrates the -s/--select option of the unipept com-
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mand, that can be used to include only a selected list of in-
formation fields in the generated output. Note that we add
a series of additional processing steps to the result of the
uniprot command, that only put the contained I=L vari-
ants in capitals (the remaining residues are converted into
lower case) and truncate the protein sequences after a fixed
number of residues.

$ unipept pept2prot -e ENFVYIAK -s uniprot_id | tail -n+2 | \

uniprot | tr 'A-Z' 'a-z' | sed 's/enfvy[il]ak/\U&\E/' | \

sed -E 's/(.{60}).*/\1.../'

maaskdrENFVYIAKlaeqaeryeemvesmknvanldveltveerkkgvaildfilrlga...

mastkdrENFVYIAKlaeqaeryeemvdsmknvanldveltieernllsvgyknvigarr...

mtaskdrENFVYIAKlaeqaeryeemvesmknvanldveltveernllsvgyknvigarr...

mastkerENFVYIAKlaeqaeryeemveamknvakldveltveernllsvgyknvvgahr...

mdkdrENFVYIAKlaeqaerydemvdamkkvanldveltveernllsvgyknvigarras...

...

The uniprot command can not only be used to fetch pro-
tein sequences from the UniProt database, but also all
metadata that is available about the protein in UniProt.
This can be done by passing a specific format to the
-f/--format option of the uniprot command: csv (de-
fault value), fasta, xml, text, rdf or gff. As an example,
the following session fetches the first three proteins from
UniProt that contain an I=L variant of the tryptic peptide
enfvyiak. These proteins are returned in FASTA format.

$ unipept pept2prot -e ENFVYIAK -s uniprot_id | tail -n+2 | \

head -3 | uniprot -f fasta

>sp|C6TH93|CASP4_SOYBN Casparian strip membrane protein 4 OS=Glycine max PE=2 SV=1

MAASKDRENFVYIAKLAEQAERYEEMVESMKNVANLDVELTVEERKKGVAILDFILRLGA

ITSALGAAATMATSDETLPFFTQFFQFEASYDSFSTFQFFVIAMAFVGGYLVLSLPFSIV

TIIRPHAAGPRLFLIILDTVFLTLATSSAAAATAIVYLAHNGNQDSNWLAICNQFGDFCQ

EISGAVVASFVAVVLFVLLIVMCAVALRNH

>sp|P42654|1433B_VICFA 14-3-3-like protein B OS=Vicia faba PE=2 SV=1

MASTKDRENFVYIAKLAEQAERYEEMVDSMKNVANLDVELTIEERNLLSVGYKNVIGARR

ASWRILSSIEQKEESKGNDVNAKRIKEYRHKVETELSNICIDVMRVIDEHLIPSAAAGES

TVFYYKMKGDYYRYLAEFKTGNEKKEAGDQSMKAYESATTAAEAELPPTHPIRLGLALNF

SVFYYEILNSPERACHLAKQAFDEAISELDTLNEESYKDSTLIMQLLRDNLTLWTSDIPE
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DGEDSQKANGTAKFGGGDDAE

...

Lowest common ancestor
Based on the taxonomic annotations contained in the
UniProt entries that match a given tryptic peptide, the
tryptic peptide can be assigned taxonomically. To do so,
Unipept makes use of an algorithm that computes the low-
est common ancestor (LCA) of all taxa in which the peptide
was found. The implementation of this algorithm in
Unipept is robust against taxonomic misarrangements,
misidentifications, and inaccuracies. Unipept computes the
LCA based on the Unipept Taxonomy, a cleaned up version
of the NCBI Taxonomy that heuristically invalidates some
“unnatural” taxa from the original database based on a set
of regular expressions. Not taking into account this identifi-
cation noise would otherwise result in drastic loss of infor-
mation.

Apart from the LCA algorithm implemented by Unipept,
it is also possible to come up with alternative aggregation
scenarios that are implemented client side based on the
NCBI Taxonomy Identifiers that are associated with the
matched UniProt protein records. Scenarios that are based
on the Unipept Taxonomy can be implemented by using
the unipept pept2taxa command that outputs all taxa
associated with the UniProt proteins that contain a given
tryptic peptide.

$ unipept pept2taxa -e ENFVYIAK

peptide,taxon_id,taxon_name,taxon_rank

ENFVYIAK,2711,Citrus sinensis,species

ENFVYIAK,3760,Prunus persica,species

ENFVYIAK,3827,Cicer arietinum,species

ENFVYIAK,3847,Glycine max,species

...
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Using the -a option in combination with the unipept
pept2taxa command includes the complete lineages (re-
sulting after the cleanup done by Unipept) of the taxa in
the generated output.

$ unipept pept2taxa -e -a ENFVYIAK

peptide,taxon_id,taxon_name,taxon_rank,superkingdom_id,superkingdom_name,kingdom_id,kingdom_name,subkingdom_id,subkingdom_name,superphylum_id,superphylum_name,phylum_id,phylum_name,subphylum_id,subphylum_name,superclass_id,superclass_name,class_id,class_name,subclass_id,subclass_name,infraclass_id,infraclass_name,superorder_id,superorder_name,order_id,order_name,suborder_id,suborder_name,infraorder_id,infraorder_name,parvorder_id,parvorder_name,superfamily_id,superfamily_name,family_id,family_name,subfamily_id,subfamily_name,tribe_id,tribe_name,subtribe_id,subtribe_name,genus_id,genus_name,subgenus_id,subgenus_name,species_group_id,species_group_name,species_subgroup_id,species_subgroup_name,species_id,species_name,subspecies_id,subspecies_name,varietas_id,varietas_name,forma_id,forma_name

ENFVYIAK,2711,Citrus sinensis,species,2759,Eukaryota,33090,Viridiplantae,,,,,35493,Streptophyta,,,,,,,71275,rosids,,,,,41937,Sapindales,,,,,,,,,23513,Rutaceae,,,,,,,2706,Citrus,,,,,,,2711,Citrus sinensis,,,,,,

ENFVYIAK,3760,Prunus persica,species,2759,Eukaryota,33090,Viridiplantae,,,,,35493,Streptophyta,,,,,,,71275,rosids,,,,,3744,Rosales,,,,,,,,,3745,Rosaceae,171637,Maloideae,,,,,3754,Prunus,,,,,,,3760,Prunus persica,,,,,,

ENFVYIAK,3827,Cicer arietinum,species,2759,Eukaryota,33090,Viridiplantae,,,,,35493,Streptophyta,,,,,,,71275,rosids,,,,,72025,Fabales,,,,,,,,,3803,Fabaceae,3814,Papilionoideae,163722,Cicereae,,,3826,Cicer,,,,,,,3827,Cicer arietinum,,,,,,

ENFVYIAK,3847,Glycine max,species,2759,Eukaryota,33090,Viridiplantae,,,,,35493,Streptophyta,,,,,,,71275,rosids,,,,,72025,Fabales,,,,,,,,,3803,Fabaceae,3814,Papilionoideae,163735,Phaseoleae,,,3846,Glycine,1462606,Soja,,,,,3847,Glycine max,,,,,,

...

This output corresponds to the tree structure that appears at
the left of Figure 3.4 or the tree drawn in the Lineage tree
tab on the page that shows the results of a Tryptic Peptide
Analysis in the Unipept web interface. Note that the tryptic
peptide enfvyiak was only found in a peach protein
(Prunus persica), whereas its I=L variant was found in pro-
teins of a species of wild banana (Musa acuminata subsp.
malaccensis) and in different members of the flowering
plants including chick pea (Cicer arietinum), broad bean
(Vicia faba), soybean (Glycine max), common bean (Phaseo-
lus vulgaris), barrel medic (Medicago truncatula), orange
(Citrus sinensis), clementine (Citrus clementina) and com-
mon grape vine (Vitis vinifera).

The Unipept implementation of the LCA algorithm can be
applied on a given tryptic peptide using the unipept
pept2lca command. Using the -e option will again have
an influence on the LCA computation for the tryptic pep-
tide enfvyiak. After all, the LCA will be computed for all
taxa associated with proteins in which the tryptic peptide
(or one of its I=L variants) was found.

$ unipept pept2lca ENFVYIAK

peptide,taxon_id,taxon_name,taxon_rank

ENFVYIAK,35493,Streptophyta,phylum
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$ unipept pept2lca ENFVYLAK

peptide,taxon_id,taxon_name,taxon_rank

ENFVYLAK,3760,Prunus persica,species

$ unipept pept2lca -e ENFVYLAK

peptide,taxon_id,taxon_name,taxon_rank

ENFVYLAK,35493,Streptophyta,phylum

The correctness of the computed LCAs can be checked
based on the taxonomic hierarchy shown in Figure 3.4.

3.2.3 Case study: analysis of a metaproteomics
data set

As a demonstration of the Unipept CLI, this second case
study shows how it can be used to get insight into the bio-
diversity within one of the faecal samples from a gut micro-
biome study (Verberkmoes et al., 2009). The sample was
taken from a female that is part of a healthy monozygotic
twin pair born in 1951 that was invited to take part in a
larger double-blinded study. Details of this individual with
respect to diet, antibiotic usage, and so on are described by
Dicksved et al. (2008) (individual 6a in this study, sample 7
in the study of Verberkmoes et al. (2009)). The most im-
portant thing that we learn from the available information
in the questionnaire that this individual has filled up, is that
she had gastroenteritis at the time the sample was taken
and that her twin sister (individual 6b in the study of
Dicksved et al. (2008), sample 7 in the study of
Verberkmoes et al. (2009)) had taken non-steroidal anti-
inflammatory drugs during the past 12 months before the
time of sampling. The data can be downloaded from the
website of the study and is also available as a demo data set
on the Unipept website.
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Duplicate peptides
Say that we stored the list of tryptic peptides that were ex-
tracted from sample 7 in the study of Verberkmoes et al.
(2009) in the text file sample7.dat. The file contains a list
of all tryptic peptides, each on a separate line. The follow-
ing session shows that this file contains a list of 3 983 tryp-
tic peptides (2 065 unique peptides) that could be identified
in the faecal sample using shotgun metaproteomics.

$ head -n5 sample7.dat

SGIVLPGQAQEKPQQAEVVAVGPGGVVDGK

SGIVLPGQAQEKPQQAEVVAVGPGGVVDGK

SGIVLPGQAQEKPQQAEVVAVGPGGVVDGKEVK

MEVAVGDKVIYSK

MDGTEYIIVK

$ wc -l sample7.dat

3983 sample7.dat

$ sort -u sample7.dat | wc -l

2065

The first thing that strikes the eye is that a mass spectrome-
ter might pick up multiple copies of the same tryptic pep-
tide from an environmental sample. Depending on the fact
whether or not we can draw quantitative conclusion on the
number of different identifications of a particular peptide
(apart from identification, the quantification of proteins in
an environmental sample is an important research theme
(Seifert et al., 2013; Kolmeder and Vos, 2014)), we might
decide to deduplicate the peptides before they are analyzed
further using the Unipept CLI. This decision has an impact
on the analysis results, but deduplication also results in im-
proved performance since it avoids duplicate work.

Non-tryptic peptides
What might be less obvious at first sight, is that the pep-
tides on lines 3 and 4 in the text file sample7.dat actually
aren’t tryptic peptides, but the composition of two tryptic
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peptides. This is a consequence of the fact that cleavage of
proteins using trypsin is not always perfect, leading to some
proteins that aren’t cleaved properly. Such composed tryptic
peptides are called missed cleavages. The index structure un-
derpinning Unipept only indexes tryptic peptides that re-
sult from an in silico trypsin digest of the proteins in
UniProt, so that missed cleavages cannot be matched di-
rectly by Unipept.

To cope with this problem, we can start to check if the pep-
tides resulting from a shotgun metaproteomics experiment
need to be cleaved further before making taxonomic identi-
fications using Unipept. Performing an in silico trypsin di-
gest can be done using the prot2pept command from the
Unipept CLI. This command is executed purely client side,
and thus is provided as a standalone command and not as a
subcommand of the unipept command.

$ sed -ne '4{p;q}' sample7.dat

MEVAVGDKVIYSK

$ sed -ne '4{p;q}' sample7.dat | prot2pept

MEVAVGDK

VIYSK

Lowest common ancestor
Once a peptide is broken into multiple tryptic peptides, the
lowest common ancestor can be computed for each tryptic
peptide using the unipept pept2lca command. Next to
accepting tryptic peptides as arguments, the command can
also read one ore more tryptic peptides from standard input
if no arguments were passed. Each tryptic peptide should
be on a separate line when using standard input.

$ unipept pept2lca -e SGIVLPGQAQEKPQQAEVVAVGPGGVVDGK MDGTEYIIVK

peptide,taxon_id,taxon_name,taxon_rank

SGIVLPGQAQEKPQQAEVVAVGPGGVVDGK,1263,Ruminococcus,genus

MDGTEYIIVK,1263,Ruminococcus,genus

$ sed -ne '3{p;q}' sample7.dat
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SGIVLPGQAQEKPQQAEVVAVGPGGVVDGKEVK

$ sed -ne '3{p;q}' sample7.dat | unipept pept2lca -e

$ sed -ne '3{p;q}' sample7.dat | prot2pept

SGIVLPGQAQEKPQQAEVVAVGPGGVVDGK

EVK

$ sed -ne '3{p;q}' sample7.dat | prot2pept | unipept pept2lca -e

peptide,taxon_id,taxon_name,taxon_rank

SGIVLPGQAQEKPQQAEVVAVGPGGVVDGK,1263,Ruminococcus,genus

Unipept only indexes tryptic peptides extracted from
UniProt sequences that have a length between 5 and 50
amino acids (boundaries included). This choice was driven
by the detection limits of most common mass spectrome-
ters. As a result, an additional time saver is to search for
tryptic peptides that have less than 5 of more than 50
amino acids, because Unipept will never find protein
matches for these peptides. The peptfilter command
from the Unipept CLI can be used to filter out peptides
that are too short or too long prior to the taxonomic identi-
fication step. By default, it filters out all peptides for which
it is known in advance that Unipept will find no matches.

$ sed -ne '3{p;q}' sample7.dat | prot2pept | peptfilter | \

unipept pept2lca -e

peptide,taxon_id,taxon_name,taxon_rank

SGIVLPGQAQEKPQQAEVVAVGPGGVVDGK,1263,Ruminococcus,genus

All commands of the Unipept CLI follow the input/output
paradigm of the Unix command line, so that they be
chained together seamlessly. This way, for example, we can
determine the LCAs for the first six peptides of sample 7
by combining the previous processing steps: split missed
cleavages, filter out peptides that are too short or too long,
equate leucine (residue L) and isoleucine (residue I), and
deduplicate the tryptic peptides.

$ head -n6 sample7.dat | prot2pept | peptfilter | tr I L | sort -u

GLTAALEAADAMTK

MDGTEYLLVK
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MEVAVGDK

SGLVLPGQAQEKPQQAEVVAVGPGGVVDGK

VLYSK

$ head -n6 sample7.dat | prot2pept | peptfilter | tr I L | sort -u | \

unipept pept2lca -e

peptide,taxon_id,taxon_name,taxon_rank

GLTAALEAADAMTK,186802,Clostridiales,order

MDGTEYLLVK,1263,Ruminococcus,genus

MEVAVGDK,1263,Ruminococcus,genus

SGLVLPGQAQEKPQQAEVVAVGPGGVVDGK,1263,Ruminococcus,genus

VLYSK,1,root,no rank

Website comparison
The biodiversity in sample 7 from the study of Verberkmoes
et al. (2009) can be easily computed and visualized using
the Metagenomics Analysis feature of the Unipept web
site. All it takes is to paste the list of peptides that were
identified from an environmental sample in a text area, se-
lect the appropriate search options, and to click the Search
button to launch the identification process.

In the session that is shown in Figure 3.6, we have indicat-
ed that no distinction should be made between leucine (L)
and isoleucine (I), that the peptides must be deduplicate
prior to the actual biodiversity analysis, and that the results
must be exported in csv format (comma separated values).
Breaking up the missed cleavages happens by default. In
addition, the option Advanced missed cleavage handling
can be activated to indicate that the results should be ag-
gregated as a post-processing step (not selected in this ex-
ample).

The same result can be obtained using the following combi-
nation of commands from the Unipept CLI. The timing
gives an impression of the performance of Unipept to com-
pute the LCAs for all 2005 unique tryptic peptides extract-
ed from sample 7. It indicates that part of the processing is
parallelized, and that the majority of the processing time is
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consumed by exchanging data between the client and the
Unipept server and the server-side processing of the data.

$ prot2pept < sample7.dat | peptfilter | tr I L | sort -u | wc -l

2005

$ time prot2pept < sample7.dat | peptfilter | tr I L | sort -u | \

unipept pept2lca -e > sample7.csv

real    0m0.329s

user    0m0.465s

sys     0m0.038s

$ head -n6 sample7.csv

peptide,taxon_id,taxon_name,taxon_rank

AAALNLVPNSTGAAK,2,Bacteria,superkingdom

AAALNTLAHSTGAAK,1678,Bifidobacterium,genus

AAALNTLPHSTGAAK,1678,Bifidobacterium,genus

AAAMSMLPTSTGAAK,2,Bacteria,superkingdom

AAANESFGYNEDELVSSDLVGMR,186802,Clostridiales,order

For those that are not familiar with IO redirection, the
unipept command also supports the -i/--input option
to read the peptides from the file that is passed as an argu-
ment and the -o/--output option to store the results in a
file that is passed as an argument.

$ unipept pept2lca --input sample7.dat --output sample7.csv

$ head -n6 sample7.csv

peptide,taxon_id,taxon_name,taxon_rank

AAALNLVPNSTGAAK,2,Bacteria,superkingdom

AAALNTLAHSTGAAK,1678,Bifidobacterium,genus

AAALNTLPHSTGAAK,1678,Bifidobacterium,genus

AAAMSMLPTSTGAAK,2,Bacteria,superkingdom

AAANESFGYNEDELVSSDLVGMR,186802,Clostridiales,order
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Figure 3.6 Processing of sample 7 from the study of Verberkmoes et al.
(2009) using the Metaproteomics Analysis feature of the Unipept web
site.

If needed, the unipept pept2lca command can be used in
combination with the -a option to fetch the complete lin-
eages for all LCAs according to the Unipept Taxonomy.
Figure 3.7 shows the hierarchical classification of the taxa
that could be identified in sample 7. A similar tree view can
be found in the Treeview tab on the page showing the re-
sults of a Metaproteomics analysis in the Unipept web in-
terface.
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Figure 3.7 Screenshot of an interactive tree view that shows the results
of the biodiversity analysis of sample 7, a metaproteomics data set from
the study of Verberkmoes et al. (2009).
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Chapter 4

Peptidome analysis

This chapter describes the Unique Peptide Finder, a tool for
finding taxon-specific peptides that can be used as bio-
markers for targeted proteomics. Together with the Pep-
tidome Similarity feature, a tool for comparing the similari-
ty of proteomes, the Unique Peptide Finder forms the Pep-
tidome Analysis part of the Unipept web application.
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4.1 The unique peptidome: taxon-specific tryptic
peptides as biomarkers for targeted
metaproteomics

Abstract — The unique peptide finder (http://unipept
.ugent.be/peptidefinder) is an interactive web application to
quickly hunt for tryptic peptides that are unique to a partic-
ular species, genus or any other taxon. Biodiversity within
the target taxon is represented by a set of proteomes select-
ed from a monthly updated list of complete and non-
redundant UniProt proteomes, supplemented with propri-
etary proteomes loaded into persistent local browser stor-
age. The software computes and visualizes pan and core
peptidomes as unions and intersections of tryptic peptides
occurring in the selected proteomes. In addition, it also
computes and displays unique peptidomes as the set of all
tryptic peptides that occur in all selected proteomes but not
in any UniProt record not assigned to the target taxon. As a
result, the unique peptides can serve as robust biomarkers
for the target taxon, e.g., in targeted metaproteomics stud-
ies. Computations are extremely fast since they are under-
pinned by the Unipept database, the Lowest Common An-
cestor algorithm implemented in Unipept and modern web
technologies that facilitate in-browser data storage and par-
allel processing.

4.1.1 Introduction

The proteomics field is recently moving into more targeted
approaches driven by key technologies such as Multiple Re-
action Monitoring (Pan et al., 2012; Huttenhain et al.,

This section contains a
verbatim copy of the re-

search article by
Mesuere et al. (2016a) as

submitted to Pro-
teomics.
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2012). The idea is to program triple quadrupole-like instru-
ments to quantitatively determine predefined molecules by
setting them to detect precursor ion masses and predefined
MS/MS derived fragments. Target peptides can be selected
according to a wide range of criteria such as their protein-
specificity to screen for the presence/absence of certain pro-
teins in proteomics studies or their taxon-specificity to
screen for the presence/absence of certain taxa in metapro-
teomics studies. With protein profiling providing assays
closer to activated functions, such metaproteome-wide as-
sociation studies have the potential to become an important
tool in environmental studies and modern medicine, and
could answer major yet unmet environmental and clinical
needs ( Juste et al., 2014).

In this paper we present the Unique Peptide Finder, an
open source web application that enables the discovery of
tryptic peptides that can be used as robust taxon-specific
biomarkers. The software package is an integrated compo-
nent of the Unipept ecosystem (Mesuere et al., 2012;
Mesuere et al., 2015) and only takes a few milliseconds to
compute all tryptic peptides that are not found in any
known protein outside the target taxon and are shared by a
sample of proteomes that represent the diversity within the
target taxon. This set of tryptic peptides is called the unique
peptidome and is visualized in a chart that also displays
peptidome sizes and the core and pan peptidomes that give
similar insights as the pan and core genomes (Medini et al.,
2005) but on a peptide level. Due to the focus on modern
web technologies and extremely fast and parallel data pro-
cessing the chart is highly interactive: including, removing,
and rearranging proteomes results in almost instant recalcu-
lation of the unique peptidome. Both the data visualiza-
tions and the obtained sets of peptidomes can be easily ex-
ported for further processing.
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4.1.2 Web application

The backend of the Unique Peptide Finder is powered by a
database that is rebuilt monthly using a completely auto-
mated pipeline. It contains all tryptic peptides extracted
from the protein records in the UniProt Knowledgebase
(Wu et al., 2006), along with taxonomic information ex-
tracted from the NCBI Taxonomy database (Wheeler et
al., 2004). These data sources are processed according to the
procedures described in (Mesuere et al., 2012), resulting in
an index of tryptic peptides having a length between 5 and
50 amino acids and precomputed lowest common ancestors
that represent their taxonomic distribution. The construc-
tion pipeline also preprocesses and integrates the list of all
complete and non-redundant proteomes as published on
the UniProt website. The resulting database provides quick
retrieval of the set of tryptic peptides of all UniProt pro-
teomes and the taxon-specificity of these tryptic peptides.

The web application itself was built using modern web
technologies such as JavaScript (ES2015), HTML5, and
CSS3. The D3.js library (Bostock, Ogievetsky, and Heer,
2011) was used to implement the interactive visualizations.
Fetching sets of tryptic peptides for selected proteomes is
the only step in the biomarker analysis that requires com-
munication with the web server that runs the Ruby on Rails
backend of Unipept. All other data processing is done
client side using JavaScript workers. These workers run as a
separate background processes to guarantee that the appli-
cation remains responsive while the proteomes are being
processed. Workers can request data from the database by
doing asynchronous requests to the web server. Upon re-
ceiving such a request, the web server queries the database
and sends the data back to the worker using the JSON
( JavaScript Object Notation) format. The combination of
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these technologies results in a high performance, interactive
web application with compelling visualizations without the
need to install any software. The only requirement is a
modern browser and an Internet connection.

The user interface of the Unique Peptide Finder is domi-
nated by a large chart at the top of the page. Proteomes can
be included, removed or rearranged using control elements
underneath the chart or by direct interaction with the chart
itself. The “Analyzed proteomes” at the right-hand side lists
all proteomes currently included in the analysis. The “Pro-
teome library” at the left-hand side lists all available pro-
teomes: complete and non-redundant proteomes published
by UniProt (“UniProt proteomes”) and proteomes loaded
into persistent local browser storage (“My proteomes”). The
“UniProt proteomes” library currently contains over 10 000
proteomes and is updated monthly with each new UniProt
release. Additional proteomes can be added to the “My
proteomes” library by loading multi-fasta files that each
contain the protein sequences of a single proteome.
Processed file contents are persistently stored in the browser
so that they can be reused across intermittent sessions and
are never stored on the Unipept server so that confidentiali-
ty of proprietary proteomes is never compromised. Pro-
teomes are listed on pages of 50 hits and can be filtered on
taxonomic rank, type strain status (Federhen et al., 2014),
reference status (as assigned by UniProt) and name (Fig-
ure 4.1). Plus-buttons can be clicked to include all or indi-
vidual proteomes to the analysis.
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Figure 4.1 Screenshot of the proteome library with the UniProt pro-
teomes filtered on Eubacterium rectale. The first hit is marked as a refer-
ence proteome by UniProt. The second hit is marked as a type strain by
NCBI. Taxonomic breadcrumbs show class, order, genus, and species to
which the proteomes were assigned. Clicking any of the breadcrumbs
activates the corresponding taxon as a new taxonomic filter. Plus icons
on the right can be clicked to include all or individual proteomes to the
analysis.

4.1.3 Analysis

Each proteome included in the analysis is converted into its
corresponding (tryptic) peptidome: the set of all (tryptic)
peptides encoded in the proteome of the organism. The
name of the first proteome included appears at the leftmost
side of the chart’s x-axis and a grey data point represents its
peptidome size (the number of peptides in its peptidome).
When a new proteome gets included in the analysis it ap-
pears at the rightmost side of the chart, with three addi-
tional data points representing sizes of the pan, core, and
unique peptidomes of all proteomes that have been includ-
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ed in the analysis so far. The pan peptidome (blue data point)
is the union of all these peptidomes and the core peptidome
(orange data point) is their intersection. Peptides in the
core peptidome occur in all proteomes included so far, but
might also occur in proteomes of other taxa. To be useful as
biomarkers for targeted metaproteomics, the core pep-
tidome is further reduced by removing all peptides occur-
ring in UniProt records that are not assigned to the target
taxon. The target taxon is automatically computed as the
lowest common taxonomic ancestor of all proteomes in-
cluded in the analysis, using the Lowest Common Ances-
tor (LCA) algorithm implemented in Unipept (Mesuere et
al., 2012). This reduced set is called the unique peptidome
and is represented by a green data point.

All unions and intersections are computed solely from data
already available in the browser. Determining unique pep-
tidomes is more compute-intensive and requires knowledge
about the taxon-specificity of tryptic peptides that is only
available in the backend database. Their computations can
be speeded up by carefully avoiding unnecessary computa-
tions and relying on precomputed lowest common taxo-
nomic ancestors for all tryptic peptides in the Unipept
database. Exact sizes of peptidomes are shown in a tooltip
that appears when hovering over the data points in the
chart (Figure 4.2). Clicking a data point displays a popup
that provides options to remove the corresponding pro-
teome from the analysis or download any of the four lists of
peptides related to that proteome. This allows further data
analysis or filtering of the unique peptidome (e.g., based on
sequence length, peptide sequence, presence of amino acids
that are prone to chemical modification, etc.) using special-
ized software for targeted (meta)proteomics such as Skyline
(MacLean et al., 2010).
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Figure 4.2 Chart displaying sizes of peptidomes (gray), pan peptidomes
(blue), core peptidomes (orange) and unique peptidomes (green) for 32
Acinetobacter baumannii proteomes available in the UniProt proteomes
library. The core peptidome of A. baumannii stabilizes gradually with
23 579 tryptic peptides occurring in all proteomes included in the analy-
sis. Of these common peptides, 1 134 peptides in the unique peptidome
are found to be specific for A. baumannii. The smaller peptidome size of
A. baumannii SDF is no error in the application or reference database,
but the result of a genome that is 20% reduced (Fournier et al., 2006).

Since pan, core, and unique peptidomes of a particular pro-
teome are always computed based on the proteomes to its
left in the chart, the order of proteomes included in the
analysis matters. Proteomes can be easily rearranged by
simply dragging them to the desired location in the chart or
the “Analyzed proteomes” table. The latter also provides a
couple of automatic rearrangement heuristics (e.g., alpha-
betically, on peptidome size, etc.). Removing proteomes is
equally easy by dragging proteomes to the trash can on the
chart, or by clicking the corresponding trash icon in the
“Analyzed proteomes” table. Pan, core, and unique pep-
tidomes that are affected after inclusions, removals or re-
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arrangements are instantly recalculated and size updates are
animated in the chart. The chart supports fullscreen mode
that also provides all manipulations needed for biomarker
analysis.

4.1.4 Discussion

The rightmost unique peptidome in the chart theoretically
represents robust taxon-specific biomarkers for metaproteo-
mics analysis, since it contains tryptic peptides that occur in
all the proteomes included in the analysis and not in a sin-
gle UniProt record that is not assigned to the target taxon.
In practice, however, sensitivity of the biomarkers depends
on completeness of the included proteomes and how well
they sample diversity within the target taxon. Their speci-
ficity depends on how well the global protein space has
been sampled in the UniProt database. In addition, the
analysis also depends on the correctness of the taxonomic
annotations of the proteomes and UniProt entries. The val-
ue of the Unique Peptide Finder and some potential pitfalls
are further discussed in the context of two case studies.

In a first case study we determined the unique peptidome
of Acinetobacter baumannii. For this bacterial species, all 32
proteomes available in the “UniProt proteomes” library
were included in the analysis. The proteome A. baumannii
161/07 (UniProt Proteome UP000034216) with the largest
peptidome size was chosen as the leftmost peptidome in
the chart and the other proteomes were automatically sort-
ed using the “optimize pan and core peptidome” heuristic
(Figure 4.2). The resulting chart displays a steadily increas-
ing pan peptidome (blue line), with an average of around
5 000 proteome-specific peptides and an average peptidome
size of around 70 000. The core peptidome (orange line)
levels off after a handful of proteomes, with a total of
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23 579 tryptic peptides shared by all included proteomes.
Of these shared peptides 1 134 do not occur in any species
other than A. baumannii. As this unique peptidome (green
line) contains peptides that are both common and unique
to A. baumannii, it can be used to detect the occurrence of
the species in metaproteome data sets.

The fact that biomarker analysis always relies on correct
taxonomic assignments is illustrated by the misclassified
proteome A. baumannii 6411 (UniProt Proteome UP-
000031110) that was deliberately excluded from the above
analysis. Using the Peptidome Clustering application (an-
other tool from the Unipept ecosystem that is available on-
line, unpublished) to cluster this proteome with available
type strain proteomes of the genus Acinetobacter, shows that
the proteome correctly classifies in the species Acinetobacter
nosocomialis. As a result of this misclassification the Unique
Peptide Finder discovers almost no unique peptides for the
species for A. nosocomialis. Most of its actual unique pep-
tides also occur in the proteome that was incorrectly classi-
fied as A. baumannii, so that the tool does not consider
them to be specific to A. nosocomialis. The upside is that the
Unique Peptide Finder in combination with the Peptidome
Clustering tool allows to easily spot such misclassifications,
after which they can be reported to curators of the under-
pinning information sources (in this case UniProt).

In a second case study we looked at potential biomarkers
for Bacillus anthracis, a bacterial species that is hard to iden-
tify because of its relatedness with Bacillus cereus. For this
species, the 3 proteomes available in the “UniProt pro-
teomes” library were included in the analysis, together with
proteomes of 24 other B. anthracis assemblies that were
downloaded from the NCBI website (Table 4.1) and loaded
into the “My proteomes” library. The resulting chart (Fig-
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ure 4.3) displays a core peptidome containing 50 724 pep-
tides, of which 878 are specific to B. anthracis. These unique
peptides can be used to discern B. anthracis from B. cereus
and any other species. When we revisit the 11 B. anthracis
biomarkers proposed by Chenau et al. (2014), we first ob-
serve that only 8 of them are true tryptic peptides. These 8
peptides are indeed found in B. anthracis proteomes and not
in any Bacillus cereus proteome. However, 3 of these pep-
tides are also found in non-Bacillus cereus proteomes: lvg-
gvavik in a range of other bacteria, ildqsadk in several
Firmicutes and vctitgr in a Turicibacter sanguinis pro-
teome. This can be easily verified using the Tryptic Peptide
Analysis tool in Unipept. Only one of the 8 tryptic peptides
(wllrpedpnyvlik) was common to all 27 B. anthracis pro-
teomes we analyzed in this case study.

4.1.5 Conclusion

The Unique Peptide Finder is a user-friendly and high per-
formance web application to find robust taxon-specific bio-
markers for use in targeted metaproteomics studies. Bio-
marker analysis can combine a selection of UniProt pro-
teomes and proprietary proteomes that are persistently
stored in the browser. The tool is built using modern web
technologies that provide parallel non-blocking computa-
tions, interactive visualizations and export functionality.
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Table 4.1 Overview of the Bacillus anthracis assemblies used to analyze
the B. anthracis peptidome. The order of the assemblies corresponds to
the order of the proteomes in Figure 4.3

ASSEMBLY NAME ASSEMBLY ACCESSION NUMBER

Bacillus anthracis 52-G GCA_000559005.1

Bacillus anthracis CZC5 GCA_000534935.1

Bacillus anthracis (strain CDC 684 / NRRL 3495) GCA_000021445.1

Bacillus anthracis str. Vollum GCA_000742895.1

Bacillus anthracis str. Turkey32 GCA_000833275.1

Bacillus anthracis str. Sterne GCA_000832635.1

Bacillus anthracis str. V770-NP-1R GCA_000832785.1

Bacillus anthracis 9080-G GCA_000558985.1

Bacillus anthracis 8903-G GCA_000558965.1

Bacillus anthracis (strain A0248) GCA_000022865.1

Bacillus anthracis str. Carbosap GCA_000732465.1

Bacillus anthracis str. A16 GCA_000512835.1

Bacillus anthracis str. SVA11 GCA_000583105.1

Bacillus anthracis Tsiankovskii-I GCA_000181675.2

Bacillus anthracis str. A0174 GCA_000182055.1

Bacillus anthracis str. A0193 GCA_000181915.1

Bacillus anthracis str. A0389 GCA_000219895.1

Bacillus anthracis str. A0488 GCA_000181835.1

Bacillus anthracis str. A0465 GCA_000181995.1

Bacillus anthracis str. A0442 GCA_000181935.1

Bacillus anthracis str. BF1 GCA_000295695.1

Bacillus anthracis str. A16R GCA_000512775.1

Bacillus anthracis str. UR-1 GCA_000292565.1

Bacillus anthracis str. 95014 GCA_000585275.1
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Figure 4.3 Chart displaying sizes of peptidomes (gray), core pep-
tidomes (orange) and unique peptidomes (green) for 3 B. anthracis pro-
teomes available in the “UniProt proteomes” library and 24 B. anthracis
proteomes downloaded from the NCBI website. These 27 proteomes
have 50 724 tryptic peptides in common (core peptidome), of which
878 are specific to B. anthracis (unique peptidome). Sizes of the pan
peptidomes were hidden in the visualization to improve legibility of the
chart.

4.2 Peptidome clustering

Using the foundations of the Unique Peptide Finder (Sec-
tion 4.1), the Peptidome Clustering feature allows users to
calculate and visualize a similarity matrix for a set of pro-
teomes. The proteomes, both the ones from UniProt as well
as custom proteomes, can be selected using the same user
interface as the Unique Peptide Finder. The similarity be-
tween two proteomes is determined by looking at the num-
ber of peptides they share in their respective peptidomes.
Additionally, the hierarchical clustering method UPGMA
is used to cluster the proteomes and generate a phylogenet-
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ic tree that is aligned with the similarity matrix (Fig-
UPGMA stands for Un-

weighted Pair Group
Method with Arithmetic

Mean.

ure 4.4). Each of the bifurcations of the phylogenetic tree
contains a small circular button that enables users to swap
the position of the two branches as well as the correspond-
ing rows and columns of the similarity matrix. As with all
Unipept visualizations, the image can be easily exported to
both png and svg formats. The source data of the similarity
matrix can be exported as a csv file containing all similarity
values and the phylogenetic tree can be exported in the
Newick tree format.

Figure 4.4 Peptidome clustering of all 15 Bacillus anthracis proteomes
and the 4 Bacillus cereus reference proteomes of UniProt using the
“union” similarity measure. The species B. anthracis and B. cereus are
considered very related and hard to distinguish, but the Unipept Pep-
tidome Clustering shows a clear distinction between them.
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Similarity measures
The similarity measure used by the Peptidome Clustering is
based on the ratio of peptides that two proteomes have in
common. The nominator of this fraction is thus the number
of peptides that both have in common, or the size of the
intersection of the two sets of peptides. For the value of the
denominator, the application offers five options: “Union” is
the default option and uses the size of the union of the two
sets. This is the recommended option for comparing multi-
ple strains of a single species or closely related species and
will always result in the lowest similarity values of the avail-
able options. The “Minimum” setting uses the minimum of
the size of the two sets and will result in the highest simi-
larity of the five options. This setting is recommended for
comparing separate species. The three other options, “Max-
imum”, “Average”, and “Ochiai” will result in similarity val-
ues that fall between the previous two and will respectively
use the maximum, average or square root of the product of
the size of the two peptide sets.

Performance
All similarity calculations are done client-side in the web
browser of the user, so the entire peptidome (i.e., the set of
tryptic peptides) of each of the proteomes in the analysis
needs to be downloaded. Downloading the actual se-
quences would take too much time, so another solution was
needed. Since we only want to know if a peptide is present
in two sets, the actual sequences are not needed, only some-
thing to uniquely identify them. These identifiers were
found in the form of the primary keys used in the underly-
ing Unipept database. Using these id’s has two advantages:
they are integers and thus smaller than the sequences them-
selves and they are faster to retrieve from the database. Us-
ing integers also allowed us to perform an additional en-
coding step know as delta encoding to further reduce the
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Delta encoding is ex-
plained in more detail in

Section 5.2.11.

size. Delta encoding transmits the differences between suc-
cessive values instead of the values themselves. Because our
list of integers is sorted, this encoding step results in small-
er values and thus a smaller download size. Finally, all data
is compressed by the web server using gzip. Gzip is a com-
pression algorithm that is widely supported and built-in in-
to most browsers. The combination of these processing
steps allowed us to reduce the download size significantly.
For a typical Escherichia coli genome, the size was reduced
from 1.4 MB for the original peptide sequences to only 63
KB, a spectacular reduction of over 20 times.

To efficiently calculate similarities, we need to be able to
quickly compute the union and intersection of sets. Unfor-
tunately, JavaScript has no reliable implementation of the
set data type. We had to find an alternative, but sadly none
of the set implementations we tried met our performance
requirements. Eventually, we used a different strategy and
went with simple arrays of the integer identifiers described
in the previous paragraph. When these arrays contain sort-
ed integers, it is possible to efficiently calculate the union or
intersection of them by simply synchronously iterating over
them a single time. Because we don’t need the union and
intersection itself but only their sizes, we can deduce both
sizes by only calculating one of the two and combining it
with the already known sizes of the peptidomes. Exploiting
the symmetry of the similarity matrix further reduces the
computation time by half to under a millisecond per simi-
larity. Calculating the entire similarity matrix for 33 Acine-
tobacter baumannii genomes takes around 180 milliseconds.
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Chapter 5

A short history of Unipept

This chapter tells the story of Unipept from a developer’s
point of view. The first section deals with Unipept before it
was a web application. Section two goes into detail about
the individual versions of the Unipept web application. The
last section handles the Unipept command line tools.
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5.1 Before the web application

The first attempt at creating a tool for peptide analysis was
a stand-alone application written in Java. The data source
for this application was the set of complete bacterial RefSeq
genomes. First, all files containing the proteomes were
downloaded in the GenBank flat file format. These files
were then fed through our data processing pipeline. The
processing consisted of parsing the files using BioJava (Prlić
et al., 2012)and performing an in-silico trypsin digest on
the protein sequences. We then only store peptides that
have a length between 5 and 50 amino acids (boundaries
included). This choice was driven by the detection limits of
most common mass spectrometers.

Storing the data
Unlike in a normal trie,

in a patricia trie, parent
nodes having only a sin-

gle child are collapsed
into a single node. This
reduces the size of the

data structure, especial-
ly in sparse trees.

Initially, the peptides were stored using a patricia trie. A
trie, or prefix tree, is a data structure where an ordered tree
is used to efficiently search for keys (in our case tryptic pep-
tides) and retrieve the associated values (in our case taxon
id’s). While information retrieval is very fast, this approach
has two major problems: the entire dataset must fit into
memory to achieve optimal performance and it’s not
straightforward to both reliably and efficiently store the da-
ta structure to disk. This effectively means that all source
data must be reprocessed every time the program is run.

Both problems were solved by storing the data in a
MySQL database instead of a patricia trie. By default,
MySQL uses the hard drive to store data and only uses
memory for temporary tables and caches. This not only al-
lowed us to process the source data once and have perma-
nent access afterwards, but also enabled more flexible data
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access through the use of SQL queries. The downsides are
slightly slower data access and fairly slower index construc-
tion.

At that time, there were 1 190 complete bacterial RefSeq
genomes spanning 860 species. Using the MySQL data-
base, it took 21 hours to parse these genomes and create the
index. This resulted in a database of 7 GB of which half
was used for indexes. The database contained information
on 34.4 million distinct peptides that each occurred in 1.57
genomes on average. 90.7% of all peptides only occurred
within a single species, 5.8% occurred within two species.

Figure 5.1 The initial PeptideInfo Java application, when searching for
the peptide AAALAYAK. The peptide was found in 3 of the 4 Staphylococ-
cus aureus genomes and in a Staphylococcus pasteuri genome. Note that
the database only contained a test set of 8 genomes at the moment of
the screenshot.

Exploring the data
After creating a fast index mapping peptides on taxonomic
nodes, there are two research questions that emerge: in
which species does a given peptide occur, and which pep-

This PeptideInfo appli-
cation later evolved into
the Unipept tryptic pep-

tide analysis.

tides only occur within a given species. To answer the first
question, a Java application with a graphical user interface
was created. As shown in Figure 5.1, the user could enter a
tryptic peptide in the text area, click the search button and
a report was generated listing all species in which the pep-
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tide was found. The application also listed the number of
genomes in which the peptide was found in case multiple
genomes of a species were available.

The second question, which peptides can be used to
uniquely identify a certain species, was harder to answer.
The database was not optimized for this and the queries
took too long to wrap everything into a desktop applica-

A solution to this ques-
tion was later provided
by the Unipept unique

peptide finder.

tion. Instead, a collection of scripts and queries was created
to explore the potential of the data. Figure 5.2 shows the
promising results of such analysis on the available genomes
of Staphylococcus aureus subsp. aureus, Clostridium botulinum
and Campylobacter. These results show that there is a large
number of species-specific peptides and a surprisingly low
number of genus-specific peptides. This means that there is
a great potential to use tryptic peptides as a way to identify
organisms.

Because there was an immediate need for a tool to help an-
alyze the gut microbiota of patients with cystic fibrosis for a
joint research project (Debyser et al., 2016), we decided to
first further develop the PeptideInfo application.
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Figure 5.2 A poster presenting the results of the precursor of Unipept at
the 4th International Symposium on Proteome Analysis in Antwerp, Bel-
gium in December 2010.
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5.2 The Unipept web application

After creating a database-backed mapping from peptide se-
quences to organisms, the use of Java for the client applica-
tion was reevaluated. The main advantages were familiarity
with the programming language, good performance and, at

Users would also have
to set up a local data-

base, still requiring
platform-specific solu-

tions.

least theoretically, cross-platformness. This was offset by
drawbacks such as the need for installation of the applica-
tion, the difficulty to distribute updates and the need to run
your own database as a user. Because the target audience of
Unipept is non-technical users and we had an agile devel-
opment style in mind, the disadvantages outweighed the
benefits.

5.2.1 Unipept version 0.1 – 0.4

Unipept version 0.1
Released on

February 3, 2011.
In the end, we chose to rebuild the client as a web applica-
tion using the Ruby on Rails framework (Figure 5.3). The
main reason to choose for a web application was the low
threshold for users to start using the application and the
ease with which new versions can be deployed. This client-
server architecture also completely shifts the technical bur-
den away from the user. The choice for Ruby on Rails was a
bit of a risk since we had no previous experience with it,
but the framework looked promising and was becoming
popular very fast.
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Figure 5.3 The homepage of version 0.1 of the Unipept web applica-
tion.

Unipept version 0.1 was a straightforward reimplementa-
tion of the existing PeptideInfo tool. As can be seen in Fig-
ure 5.3 and Figure 5.4, the user could submit a tryptic pep-
tide in a search form to which the application responded
with an overview in which species the peptide was found.
The only noteworthy change to the old application was the
inclusion of not only the complete RefSeq genomes, but al-
so the draft genomes.

Figure 5.4 Web-based reimplementation of the PeptideInfo tool. The
analysis for the peptide AAALAYAK is shown.

Unipept version 0.2
Released on

May 26, 2011.
After reaching feature parity with the Java client in version
0.1, work began on adding new features. Where the initial
single peptide search only listed the species in which a

THE UNIPEPT WEB APPLICATION

119



peptide was found, version 0.2 introduced the concept of
The LCA is discussed in

more detail in Sec-
tion 2.1.2.3.

the lowest common ancestor (LCA). To efficiently calculate
the LCA, the complete lineage of every organism is need-
ed. Until then, the hierarchical information of the taxono-
my tree was not easily accessible. Each of the records in the
taxonomy table represented a single taxonomic node con-
taining, among other things, the taxon id of its parent. To

With ancestor, we mean
all parent nodes in the

taxonomic tree, not
evolutionary ancestors.

retrieve all ancestors of a given organism, we needed to re-
cursively query the database for the parent node until we
reached the root. A solution to this problem was to calcu-
late the lineage for each organism during database con-

Unfortunately, it turned
out that the unnamed
ranks also contain im-

portant information, es-
pecially in plants.

struction, and then store that path to root in a dedicated
table. To accommodate for a variable number of ancestors,
a fixed structure was used, using only the so-called named
ranks. This pre-calculated table containing the 28 possible
ancestors for every organism made it possible to efficiently
calculate LCAs.

This lineage data was used to improve the single peptide
analysis page (Figure 5.5). Instead of simply listing the
species in which the peptide was found, it now shows all
organisms, the common lineage of these organisms and the
lowest common ancestor. The result is also visualized by
drawing a simple treeview of the relevant section of the tax-
onomy tree.
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Figure 5.5 Result page of the single peptide analysis in Unipept version
0.2 for peptide EVAEAAQEK.

The next main feature of Unipept became the multi-
peptide analysis (Figure 5.6). This feature allowed a user to
submit a list of tryptic peptides from a metaproteomics ex-
periment instead of just a single peptide. Listing all occur-
rences for each tryptic peptide would produce a long and
cluttered list of information. Instead, only the LCA of each
of the submitted peptides was used. These results were ag-
gregated per taxonomic node into some kind of hierarchical
frequency table. Clicking on a node in this table revealed
the peptides associated with that taxonomic node. The
same information was displayed as in interactive treemap
using the JavaScript InfoVis Toolkit (http://philogb
.GitHub.io/jit/), a JavaScript visualization framework.
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Figure 5.6 Result page of the multi-peptide analysis in Unipept version
0.2. The page shows the result of the analysis of Sample 7 as defined by
Verberkmoes et al. (2009).

Unipept version 0.3
Released on

July 18, 2011
For Unipept version 0.3, we changed our protein data
source from the RefSeq genomes to the UniProt Knowl-
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edgebase (Wu et al., 2006). UniProtKB consists of two
parts, Swiss-Prot and TrEMBL, containing millions of
protein entries, including proteins from complete and refer-
ence proteomes. Our Java pipeline iterates over the xml

We implemented a SAX
parser because of its

streaming property and
the huge size of our da-

ta file.

version of UniProt to extract the protein entries and addi-
tional metadata such as organism information and various
cross references. These additional data are stored in an up-
dated database schema. Switching from RefSeq to UniProt
not only yielded more protein data, but also richer annota-
tions.

From a user’s point of view, there were two small additions
in Unipept 0.3. The list of organisms in which the tryptic
peptides occurs (Figure 5.5) was replaced by a table. This
table not only includes the organism name of the matched
UniProt entry, but also the complete lineage of that organ-
ism (Figure 5.7). The second addition was that of a list of
all peptides that could not be matched by Unipept on the
multi-peptide analysis result page. These peptides are ac-
companied by a link to immediately start a BLASTp search
for them.

Figure 5.7 The lineage table that was added in the single peptide analy-
sis result page in Unipept version 0.3

Unipept version 0.4
Released on
May 3, 2012.

Until Unipept 0.4, we always replaced all occurrences of
isoleucine (I) by leucine (L) during initial processing.
While this makes sense for proteomics data, it makes it im-
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Isoleucine and leucine
are isobaric amino acids

and therefore hard to
tell apart in MS experi-

ments.

possible to optionally discern between them in a search be-
cause that data simply is not present in the database. One
could of course store the original sequence in the database
and make the substitution at runtime, but this would have
a, potentially severe, negative performance impact. When
searching for a peptide with x Is or Ls, we would have to
combine the result of searching for all possible I/L-
combinations, meaning 2x sequences. Instead, we chose to
both store the original sequence and the “equated” version.
This way, we can offer the user the choice if he wants to
differentiate between I and L or not. The only disadvantage
is the doubled storage space that is needed to store the se-
quence and its index in the database.

A second database change in version 0.4 was the caching of
the LCA calculation. Individual LCA calculation is quite
fast due to the table-based lineage approach, but when per-
forming a multi-peptide search, calculating the LCA for
each of the potentially thousands of input peptides can take
some time. Since the LCA doesn’t change if the rest of the
data isn’t changed, it makes sense to store the result after

Later versions of
Unipept pre-compute
the LCA for each pep-

tide as part of the pars-
ing step.

it’s been calculated the first time. Because we now give the
user the choice of equating isoleucine and leucine and be-
cause this influences the outcome of the LCA, a value for
both settings must be stored separately. Note that this is the
first time that the rails application writes something to the
database. Until now, only read access was needed.

Another change to the database in Unipept 0.4 was the
The reasons for and ef-
fects of the taxonomy

cleanup are discussed in
Section 2.1.2.3.

need to store the validity of taxa. This was done by adding
an extra column to the taxa table containing a binary value.
While suitable for checking the validity of a single taxon,
this solution was not sufficient for an efficient LCA calcu-
lation which only uses data from the lineage table. There-
fore, the taxon validity data had to be included in the lin-
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eage table in a way that invalid taxa could easily be ignored
during LCA calculation. Our solution was to multiply the
invalid taxon id’s by -1 before storing them in the lineage
table. Although this solution looks like a kludge, it has
many benefits: it’s easy to ignore these taxa during LCA
calculation by ignoring negative taxon id’s, it’s possible to
discern between invalid taxa and missing values, it has a
minimal performance impact and it’s possible to retrieve
the original taxon id by simply taking its absolute value.
The invalidation itself is done during the initial parsing.

In the competitive field of bioinformatics, it’s important to
make the threshold to start using your application as low as
possible. Being a web application already eliminates a cum-
bersome installation step and providing easy access to test
data further lowers the barrier. We selected three diverse
metaproteomics projects and added one-click access to their
data to the Unipept home page (Figure 5.8). Other new
features introduced in version 0.4 include the addition of a
CSV export option and the display of the full organism
names in the single peptide analysis results table instead of
the taxon id’s.
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Figure 5.8 Home page of Unipept 0.4 showing additional documenta-
tion and the availability sample datasets.

5.2.2 Unipept version 1.0

Released on
May 29, 2012.

After the release of Unipept 0.4, everything was prepared
to release the first production-ready version. This means
that the main focus was on bug fixes, layout tweaks and
more documentation. The only new feature was the inclu-
sion of the sunburst graph, a new visualization that had
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been in development for a while but wasn’t ready yet for re-
lease with Unipept 0.4.

During the development of version 1.0, Ghent University
GitHub Enterprise is a
self-hosted version of

the public GitHub.com
website.

deployed GitHub Enterprise. This allowed all students and
researchers to create an unlimited number of (private)
repositories to manage their programming projects free of
charge. Since the Unipept team was very much in favor of
offering GitHub Enterprise as a university-wide repository
hosting service, we immediately switched over as a pilot
user. This switch resulted in a more professional develop-
ment approach and the adoption of several best-practices.

The flow branching model
The most profound change was the adoption of the flow
branching model (Figure 5.9) instead of working on a sin-
gle branch. Flow uses two core branches: develop and
master. All new development work should happen on
develop, while master always reflects a production-ready
state. Once enough work is done on develop to justify a
new release, the branch is merged into master, a version
tag is created and the new version can be deployed on the
production servers.

Next to these two core branches, two types of temporary,
supporting branches are used: feature branches and hotfix
branches. As the name implies, feature branches are used to
experiment and develop new features without interfering
with other development. They always start by branching of
develop and are merged back into develop when the fea-
ture is finished. A hotfix branch is used to fix a critical bug
in the current production version. When such bug is dis-
covered, a new branch is started from master, the bug gets
fixed and the hotfix branch gets merged into both master

and develop resulting in a new release.
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The flow branching model also suggests using release
branches before creating a new release and merging
changes into master. This release branch can be used for
final testing, documentation generation, last-minute bug
fixes and other release-oriented tasks without interrupting
continuing work on develop. Because Unipept develop-
ment is mostly a one-man operation, this type of branch
was not really useful for us.

Issues, pull requests & releases
The flow guidelines note that feature branches typically on-
ly exist in developer repos and are only pushed to the main
repository when the feature is finished. This is not some-
thing we agree with, on the contrary, we encourage pushing
feature branches as early as possible to be able to create a
pull request. A pull request was originally meant to be a
way to submit modifications to an open source project. On
GitHub, any branch can be used to create a pull request.
This creates some sort of timeline view of the branch, con-
taining all commits and comments chronologically. In the
Unipept repository, we use these discussion views to docu-
ment the development of the feature by commenting with
motivations for design choices, benchmark results, screen-

The pull requests and
changelog are what

made this reconstruc-
tion of the Unipept his-

tory possible.

shots, task lists, etc. Other benefits of using pull requests
over simple branches are that they can be labeled, are
searchable and can be linked to. Branches also eventually
get deleted, pull requests are never deleted, only closed or
merged.
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Figure 5.9 Schematic overview of the flow branching model. Image cre-
ated by Vincent Driessen
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Another GitHub feature that helped the management of
The Unipept repository

used over 500 issues for
around 3000 commits.

the project is the extensive use of issues. Issues is the central
bug tracker of GitHub that can be used for bug reports, but
also to keep track of ideas for features and other tasks. Each
issue gets assigned an incremental numeric identifier after
creation. This id can then be used to reference the respec-
tive issue in commit messages and throughout the GitHub
website. Just like pull requests, issues can also be labeled
and assigned to milestones. We always create milestones for
the next several Unipept versions and by assigning issues to
them, we create a coarse roadmap. This way, the list of all
open issues for the next milestone release can serve as a to-
do list. When all issues for a milestone are closed (or
moved to the next milestone), a new Unipept version is re-
leased. The list of closed issues for that milestone can then
be used to create a changelog. From version 1.0, this
changelog is published on both GitHub and the Unipept
website.

After a new version is released, it must also be deployed on
the Unipept production servers. To automate this process
and minimize downtime, we use a tool called Capistrano
(http://capistranorb.com/). Capistrano uses our GitHub
repository to automatically download the latest version of
the code to the server, it updates the dependencies and
takes care of asset generation. By default, our Capistrano
configuration deploys the master branch on production
machines and the develop branch on our test servers.

D3.js
The only new feature in Unipept 1.0 is the inclusion of a
new type of visualization: the sunburst graph (Figure 5.10).
The sunburst is an interactive multi-level pie chart where
the center represents the root node with several concentric
rings around it. These rings are divided into slices repre-
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senting the nodes in the taxonomy and are aligned accord-
ing to their hierarchical relation. The size of the slices cor-
responds to the number of peptides having an LCA equal
to that taxonomic node or any of its children.

Figure 5.10 Part of the results page of the multi-peptide analysis in
Unipept 1.0 showing the newly added sunburst diagram.
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D3 is short for Data-
Driven Documents.

The sunburst graph was implemented using D3.js (Bostock,
Ogievetsky, and Heer, 2011), a JavaScript framework to
create dynamic, interactive data visualizations in web
browsers. D3 doesn’t come with pre-built charts and visual-
izations, but requires you to build them yourself. To help
with this, it includes several helper methods such as func-
tions to draw axes, map data from a domain to a different
range, or calculate complex layouts. The main drawback of
D3 is its steep learning curve, but once you’ve got it figured
out, you have ultimate control over the design, animations,
and interactions of your visualization.

DOM stands for Docu-
ment Object Model, a

convention for working
with elements in HTML

and XML documents.

The main idea of D3 is to bind data to the DOM of a web
page and then use that data to apply data-driven transfor-
mations. For example, you could represent a dataset as a set
of circles, where a categorical property of each data point
controls the color of the circle, a nominal property controls
its radius and another its position. When new data be-
comes available, the bound data can be updated and the
corresponding transformations can adapt the visualization
using an animated transition. While D3 is mostly used in
combination with SVG graphics, it works with any HTML
element.

For the sunburst graph, the input is a hierarchical JSON
The sunburst data for-

mat is similar to the
treemap format, but is
generated separately.

Both formats are unified
in Unipept 2.5.

object generated by the Ruby on Rails middleware. Each
node object contains information on a single taxonomic
node, such as name, rank, and number of associated pep-
tides, and a list of children. These children are its taxonom-
ic descendants and are also node objects. This hierarchical
data structure is processed by the D3 partition layout algo-
rithm to convert the hierarchical data and the number of
peptides to a set of x- and y-coordinates. These coordinates
are then used as angles and radii to draw the diagram using
SVG elements.
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5.2.3 Unipept version 1.1 – 1.5

Unipept 1.0 can be seen as a minimum viable product; it
contained all basic features that are needed to be a useful
research tool, but not much more. This is also reflected by
the fact that the first Unipept article (Mesuere et al., 2012)
was based on that version. Its release was followed by a
number of smaller updates over the next 6 months. With
the exception of support for missed cleavages, no major
new features were added. Instead, the focus was on improv-
ing the existing application by paying more attention to de-
sign, usability, and performance.

Unipept version 1.1
Released on

June 18, 2012.
The most visible change of Unipept 1.1 was the reworked
design (Figure 5.11). The navigation on the left was
dropped in favor of a smaller navigation bar in the header
of each page. Since a fixed-width page design was used, this
left more space for the actual content, something that was
especially beneficial for the visualizations. Another change
was the addition of news items to inform users of new fea-
tures and database updates. A news box was added to the
home page in which the latest news item was shown.

From a technical point of view, the biggest change was the
update from rails 3.0 to rails 3.2. This update introduced
the rails asset pipeline in Unipept. The asset pipeline is a
framework to manage CSS and JavaScript resources in a
web application. Concretely, this means that when deploy-
ing your application to a production environment, your as-
sets are “compiled”. During this compilation step, all CSS
files of your application are bundled into a single file whilst
removing unnecessary white-space. Similarly, all JavaScript
files are bundled into one file which is then minified. As
the name implies, minification tries to make the input file
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as small as possible by removing white-space and com-
ments, and by renaming variables and functions to shorter
names. The advantage of using the asset pipeline is that as a
developer, you can use as many files as you want to organize
your code without suffering from the related impact on per-
formance.

Figure 5.11 The home page of Unipept 1.1.

Unipept version 1.2
Released on
July 9, 2012.

Unipept 1.2 contained no visible changes and solely fo-
cused on performance improvements. As mentioned in a
previous side note, both the treemap and sunburst visual-
izations use a JSON object as their data source. These two
similar JSON objects are first created as a single Ruby root
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node object that contains all data for the two visualizations.
Since the desired output format is slightly different for
both, they must be generated separately which involves a

The initial root object is
essentially deep copied

by serialization.

few back and forth conversion to the JSON format. These
conversion steps accounted for a majority of the 2500 ms
page load time. Swapping out the default Ruby JSON pars-
er for OJ, a JSON parser optimized for speed, reduced
loading time to only 500 ms.

A second set of performance improvements consisted of
optimizing all queries for performance and applying eager
loading where possible. Eager loading is a Ruby on Rails
mechanism where associated records are loaded in as few
queries as possible. For example, retrieving all UniProt en-
tries in which a given peptide occurs can be done in a single
query. If we afterwards want to fetch information on the

This is called the N+1
query problem: doing

one initial query + one
for each of the N associ-

ations.

associated taxonomy records, we need one query per
UniProt entry. If we know in advance that we will need the
taxonomy data, we can use eager loading to fetch that data
while doing the initial query using only a single extra query.

Unipept version 1.3
Released on

August 27, 2012.
Unipept 1.3 further tweaked the user interface of the web-
site by using Twitter Bootstrap (Figure 5.12). Bootstrap is a

The project is no longer
associated with Twitter
and is now called Boot-

strap.

popular, open source front-end framework to create web
applications. It contains HTML and CSS templates, for
example for typography, icons, forms, etc., and a number of
JavaScript powered components such as modal dialogs and
tooltips. The main benefit of using Bootstrap is that it
speeds up front-end development because of its ready-made
components that don’t require any additional styling to cre-
ate an ok-looking, but somewhat generic, web page.
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Figure 5.12 The home page of Unipept 1.3, the first release to use Boot-
strap.

A second focus area of Unipept 1.3 was to improve the us-
ability of the visualizations by implementing a fullscreen
mode and by allowing users to export the visualizations as
an image. The Fullscreen API in browsers is a living stan-
dard which means that it is still in active development and
not a finalized standard. As a result, it’s impossible for
browsers to adhere to the standard since there is none. All
major browsers do have their own implementation of a
fullscreen API, but unfortunately they are not mutually
compatible and incompatible with the latest draft of the
spec. To reliably implement fullscreen support, we had to
write our own mini API containing the necessary functions
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as a compatibility layer. This compatibility layer then called
different internal functions depending on which browser
(version) was used. The downside of this approach is that to
maintain compatibility, we had to keep an eye on browsers
changing their implementation.

At the time, Unipept contained two types of visualizations:
the treeview and treemap are based on the canvas element,
while the sunburst uses the svg element. Exporting them as
images required a different approach for each. The solution
for the canvas visualizations was very simple: the canvas
API contains a toDataURL-method that returns the con-
tents of the canvas as an image. The svg API has no similar
alternative and required a server-side solution. When the
user clicks the save image button, the content of the svg ele-

ImageMagick is a set of
command line utilities

for manipulating im-
ages.

ment gets sent to the server. There, ImageMagick is then
called to rasterize the vector graphic and the resulting im-
age gets Base64 encoded and sent back to the client as a
data-url. Although these two procedures are very different
in nature, they happen invisible to the user.

Unipept version 1.4
Released on

October 11, 2012.
Unipept 1.4 was released as a response to some of the re-
view remarks of the initial Unipept article (Mesuere et al.,
2012). Up until now, our processing pipeline only stored
peptides with a length between 8 and 50 amino acids. At
the request of one of the reviewers, this was expanded to a
length between 5 and 50. Other than an increased database
size, this had no implications on the application.

A second request was the addition of missed cleavage han-
dling. When trypsin is added to a protein sample, it hasn’t
got a 100% success rate. Sometimes it misses a cleavage
site, resulting in peptides consisting of two or more tryptic
parts. Since Unipept only keeps an index of tryptic pep-
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tides, these composite peptides cannot be found using
Unipept. A pragmatic solution to this is to do an in-silico
tryptic digest after the peptide has been submitted to
Unipept and to search for the two or more separate parts.
This technique has no negative performance impact and
will never produce incorrect results since the matched pep-
tides were genuinely present in the sample. It is however
not the most accurate solution, because we don’t take into
account the fact that the separate parts of the peptide are
adjacent in the same protein.

The easiest solution to this would be to not only store tryp-
tic peptides, but also peptides with one or more missed
cleavages. The big drawback is that the database size would
grow exponentially, depending on how many missed cleav-
ages we wanted to support. Since this is not desirable, we
came up with a better solution which we call advanced
missed cleavage handling. We still do an in silico digest of
the submitted peptide, but instead of returning the various
parts as separate peptides, we recombine the results. Since
the separate parts occur in the same peptide, we only want
UniProt entries where each of the parts occur. The first step
in the recombination is thus to take the intersection of the
sets of matched UniProt entries for the separate peptide
parts. We now have a reduced set of UniProt entries that
potentially contain our composite peptide. The second step
is to account for the locality since the separate parts occur
adjacently. We do this by performing a full text search on
the composite peptide in each of the protein sequences of
the reduced set of UniProt entries and only retaining those
entries with a match. The LCA for the composite peptide is
then calculated as normally from the remaining UniProt
entries. The biggest downside of this approach is that it
takes some time to do the extra calculations, which is why
the advanced missed cleavage handling is disabled by de-
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fault. The big advantage is that it works for any number of
missed cleavages.

Unipept version 1.5
Released on

March 15, 2013.
The main feature of Unipept 1.5 was support for loading
datasets from PRIDE, a public data repository for pro-

PRIDE stands for PRo-
teomics IDEntifications.

teomics data. When a user enters the id of a PRIDE exper-
iment into the Unipept website, the Unipept server fetches
the corresponding dataset from PRIDE using BioMart and
then sends the peptides back to the user. Data access
through BioMart proved very cumbersome and unnecessary
difficult. To request data using the BioMart API, one must
construct an xml file containing the desired input and out-
put using a special tool. The generated file must then be
URL-encoded and added to the request-URL as a parame-
ter. The PRIDE BioMart was retired in November 2014
and replaced by the much more user-friendly PRIDE web
services. Support for these web services was added in
Unipept 2.4.2.

5.2.4 Unipept version 2.0

Released on
October 29, 2013.

Where Unipept 1.0 can be seen as a minimal version of
Unipept, Unipept 1.5 is a more complete version. Now that
the dust has settled and the code base has stabilized, it was
a good time to review some of the implementation choices
and refactor the code. From Unipept 2.0 onwards we aimed
for bigger releases, every four to six months, containing at
least one big new feature. The big feature of Unipept 2.0
was the addition of the unique peptide finder.

Spring cleaning
Ruby on Rails is a web application framework using the
Model-View-Controller (MVC) principle. MVC is a soft-
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ware pattern for implementing user interfaces that is tradi-
tionally used in desktop applications. In this pattern, the
application consists of three kinds of components with
well-defined interactions between them. A model is used to
store data, a controller manipulates the data in the model
and a view displays the data of the models. In web applica-
tions, the MVC pattern is implemented by letting (a
method of ) the controller handle incoming requests. The
controller can then use models to process the request and
prepare data for use in the view. This view consists of a
template that gets rendered as a response, for example an
HTML page. Models are generally supported by an object-
relational mapping (ORM), a system to connect the objects
of an application to tables in a relational database. This
ORM allows easy access to the properties and relationships
of objects in an application that are stored in a database,
without writing SQL statements.

In previous versions of Unipept, models were underused
and most of the logic was present in the controllers. Addi-
tionally, the logic contained lots of SQL queries. To im-
prove the reuse of code, much of the business logic was

A principle that is know
as fat models, thin con-

trollers.

shifted from the controllers to the models in Unipept 2.0.
The numerous queries were eliminated by making use of
the ORM features of Ruby on Rails. These improvements
reduce the number of code adjustments that are needed
when, for example, the database schema changes.

A database change in Unipept 2.0 is the added support for
the storage of additional UniProt cross references. Until
then, only NCBI and EMBL cross references were stored.
These were expanded with EC numbers (Bairoch et al.,
2005) and Gene Ontology annotations (Ashburner et al.,
2000) with the purpose of adding a functional analysis
component to Unipept. A second change was the addition
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of information about the completed RefSeq genomes. This
was done by adding a single table containing the mapping
from BioProject identifiers to the existing UniProt cross
references.

Unique peptide finder
See Section 4.1 for more

information on the
unique proteome.

The unique peptide finder (Figure 5.13) introduced in
Unipept 2.0 is the biggest new feature in Unipept history.
The associated pull request consists of almost 300 commits
spanning a ten-month period. The initial idea for this fea-
ture was to replicate something like the microbial core and
pan-genome (Medini et al., 2005), but based on the pep-
tide contents of the genomes. Computationally, this comes
down to computing unions and intersections for a list of
sets, each containing 50 000 to 150 000 short strings.
Performance-wise, doing these calculations server-side
makes sense. The data is locally accessible from the data-
base, set operations in Ruby are relatively performant and
only the results need to be transmitted over the network to
the user. The downside is that when embedded in an inter-
active web application, we would have to give up some flex-
ibility because adding a new genome to the analysis would
mean that all previous calculations need to be redone. This
is because keeping track of the state of every user on the
server is not feasible.
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Figure 5.13 The unique peptide finder as introduced in Unipept 2.0.
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Shifting all calculations client-side would allow for a more
interactive application but involved some challenges: the
complete contents of all selected genomes must be trans-

Support for sets was
added in ES2015, an up-

dated JavaScript stan-
dard finalized in June

2015.

ferred to the user, JavaScript has no built-in Set data type,
and JavaScript is single-threaded meaning that the browser
becomes unresponsive during computations. The absence of
a real set forced us to think out of the box to efficiently im-
plement the union and intersection operations. We ulti-
mately decided to use arrays instead and to iterate over
them to determine the common elements. If both arrays are
sorted, this can be done in a single pass in O(n + m) time
where n and m are the length of the arrays. This is compa-
rable to the theoretical complexity of the operations if both
were sets instead of sorted arrays. The sorting comes at no
extra cost because this is how the entries are returned by the
database.

This implementation made us realize that the actual peptide
contents of each genome is not needed in the browser to
calculate the unions and intersections. Something to
uniquely identify the peptides is all that is necessary and
the primary keys of the sequences database table perfectly
fit the bill. The switch from using the actual peptides to us-
ing their numerical identifiers had several benefits. Because
integers take up much less space than strings, the problem
of transferring the genomes from the server to the client
was mostly solved: the integer representation is only 150
KB in size for a single bacterial genome. This reduced size
benefit is also applicable to the memory needed to store the
genomes in the user’s browser. A third benefit is that com-
paring integers is more efficient than strings, making the
solution even faster.

With the first two challenges solved, the only remaining is-
sue was the single-threadedness of JavaScript. All
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JavaScript code on a web page executes in a single thread
which means that for example, the page can’t react to but-
ton clicks while another calculation is going on. The
JavaScript engine keeps a queue of all work that needs to be
done and only starts working on the next item when the
previous work is finished. To achieve the perception of a

Jank is any perceived
stutter while using an
application and has a

negative impact on the
user experience.

smooth, jank free application, a JavaScript developer must
make sure that the workloads added to the queue are suffi-
ciently small. Rendering a fluent animation requires a con-
stant frame rate of 60 frames per second or one frame per
16 ms. This means that while an animation is playing, you
must make sure that all scheduled work can be executed in
under 16 ms or the next frame will be late, resulting in
jank. Another example is the responsiveness of the applica-
tion when interacting with user interface elements. User ex-
perience research shows that users expect a response from
direct manipulation within 100 ms (Miller, 1968). This
means that any calculations that are needed to respond to
the click of a button must be done within that time budget.

Performing all required calculations within the given time
budgets would mean setting up an advanced scheduling
system to split up the work. Such solution would rapidly
become a complex, hard to maintain, and therefore unde-
sirable affair. Modern browsers offer an alternative solution
in the form of web workers. Web workers are a mechanism
in which JavaScript code can be run in a background
thread. Although it might look like it, this is no real multi-
threading. The code running in the web worker runs entire-
ly separate from the main JavaScript thread and has no ac-
cess to the DOM or shared memory access. The only way
to communicate between the worker thread and the main
thread is by using a simple message passing system. In our
case, the time-consuming computations can easily be sepa-
rated from the rest of the application and communication
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between both parts is minimal which makes web workers
an appropriate solution.

Single-page application
Once all back-end problems were solved, the design of the
application itself could be finalized. The unique peptide
finder was designed as a single-page application. This
means that the web page behaves as a traditional desktop
application without reloading the page or using any page
navigations. The user interface itself consists of three main
parts: a collapsible tree view containing all available
genomes, a table containing all genomes that were added to
the analysis and the pan-core graph itself. All three compo-
nents use D3 to generate HTML and SVG elements.

The collapsible tree to add genomes to the application is
generated from a JSON object that is part of the initial
page load. The nested JSON object is converted to a nested
unordered list using D3, and CSS is applied to make it look
like a Windows explorer-like collapsible tree. The collaps-
ing behavior and the possibility to filter the tree is added by
custom JavaScript code. The tree was created as a stand-
alone component to make reuse possible; something that
was done in Unipept 2.1 where the tree in multi-peptide
analysis results page was replaced by this implementation.

The table containing all genomes added to the analysis
functions both as view and controller. D3 is used to gener-
ate the HTML table and to keep it synchronized with the
internal status and order. Genomes can be added to the

jQuery UI is a set of user
interface interactions,

effects, and widgets
built on top of the

jQuery.

table by dragging them from the tree to the table with the
help of jQuery UI. The same library is used to enable the
reordering of genomes by drag and drop. The internal state
of the application is kept in a single object containing all
metadata that’s shared with the pan-core graph.
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The pan-core graph itself is an SVG element containing
D3-generated content. The data shown in the graph is a
combination of the metadata from the table and the pan
and core data points that are calculated from the web work-
er. Next to visualizing the data, the graph can also be used
to control the visualization. Drag and drop can be used to
reorder and remove the genomes, and clicking on a data
point shows a dialog containing more information and the
option to download the corresponding data.

Data flow
When adding a new genome to the analysis, it immediately
gets added to the table with a loading status. The web work-
er then gets notified that a new genome was added and
asynchronously requests the corresponding peptide data
from the web server. The server answers the web worker
with a gzip-compressed list of sorted integers in the JSON
format. The web worker converts this list to a JavaScript ar-
ray, stores it in an internal data object and starts calculating
the union and intersection based on the previous state. The
size of these two new sets are then sent back to the main
JavaScript thread. In the main thread the new data is used
to add new data points to the graph and the genome status
is set to done. The flow for reordering the genomes is simi-
lar, except that no new data needs to be requested from the
server.

After all queued genomes are loaded, the graph requests the
web worker to load the unique peptide data. The web work-
er sends the server a list of all core peptides in the analysis,
together with the taxon id’s of all genomes in the analysis.
The server calculates the LCA of these taxon id’s and filters
the list of peptides for those having the same LCA. The fil-
tered list is then sent back to the web worker, which for-
wards the size of the received list to the main thread. The
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main thread then uses this information as new data points
in the graph. The server needs the LCA for each of the
submitted peptides to be able to filter on this value. Be-
cause the typical genome size is between 50 000 and
150 000 peptides, it’s not feasible to calculate all LCAs on
the fly. To solve this problem, the LCA for all peptides in
the database is precomputed after constructing the database
by making use of the LCA caching functionality introduced
in Unipept 0.4. Unfortunately, this increases the already
long time needed to process a new UniProt version with a
few weeks.

5.2.5 Unipept version 2.1

Released on
December 23, 2013.

Unipept 2.1 was the smallest release in the Unipept 2 re-
lease series. Apart from the redesigned home page (Fig-
ure 5.14), it contained few new user-facing features. From a
technical point of view, there are only two improvements
worth mentioning: an improved file download flow and the
refactoring of all unique peptide finder JavaScript code.

Triggering file downloads
Initiating a file download on a web page is harder than it
seems, especially if the data is only present locally in the
user’s browser. Let’s say we’ve got a JavaScript array con-
taining a list of peptides and we want to let the user store

Chrome started work on
a FileSystem API, but

the project was aban-
doned because of the

lack of interest from
other browser vendors.

these peptides on his computer. There is no straightforward
way to write this data to a file on the user’s file system using
JavaScript only. The main reason for this is that in modern
browsers JavaScript code gets executed in a sandbox which
has no access to the local file system. The only reliable way
to trigger a file download that works in all browsers is by
doing a server roundtrip. With this strategy, the desired
contents of the file is added to a hidden form on the page.
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After triggering the form submission, the contents get sent
to the server which then sends back the exact same data to
the user. The server also sets the disposition header of
the response to attachment. When the user’s browser de-
tects this header, it will trigger a file download dialog in-
stead of rendering the response.

Figure 5.14 The new home page layout as introduced in Unipept 2.1.

The downside of this approach is that sending all data to
the server and back can take some time. According to
Miller (1968), if a computer response takes longer than a
second, some kind of confirmation or progress should be
displayed to reassure the user. It is easy to display a notifica-
tion that the file download is being prepared, but much
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harder to know when said notification can be removed. Be-
cause the download is triggered by an HTTP request, it’s
impossible to get direct status information on that request
and thus on the status of the download. Our workaround

A random number that
is used for similar pur-

poses is also called a
nonce.

sends a random number to the server along with the con-
tents of the file. The server uses this number to set a cookie
with a predefined name and the random number as its val-
ue. Meanwhile, the client-side JavaScript code keeps
checking the list of cookies at a regular interval after the re-
quest was sent. Since the cookie only gets set when the
server starts responding, we can remove the notification
once the cookie with the correct value is detected.

JavaScript objects
To support the upcoming peptidome similarity feature,
there was a need to refactor the Unipept peptide finder
JavaScript code. The existing unique peptide finder code
was located in a huge file that already contained over 1300
lines of code. Adding the peptidome similarity code to that
same file was certainly not recommended. Until now, all in-
ternal functions were namespaced by wrapping them in a
parent function that was executed on page load. Simply us-
ing another file would also create a new namespace, thus
limiting the possible interactions between the two features.
Because the two features share a lot of code, we embraced a
more object oriented approach. JavaScript uses a prototypal
inheritance model instead of a class-based model and has
poor support for information hiding, which is why we de-
signed our own class-like structure (Listing 5.1). This cus-
tom structure supports creating new objects with both pub-
lic and private methods. All existing peptidome similarity
code was refactored to adhere to the new structure and was
split into separate files for each component. The possibility
to create public and private methods allowed for a better
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design by defining a public API and hiding all internal
methods.

Listing 5.1 The class-like JavaScript structure used by Unipept.

/**

* Some comments about this class

*

* @param <String> name This is a string variable

*/

var constructMyClass = function constructMyClass(name) {

/*************** Private variables ***************/

// the object to which we will add all public methods

var that = {};

// a private variable

var privateVariable = name;

// a jquery variable

var $jqueryVar = $("#someSelector");

/*************** Private methods ***************/

/**

* Initializes method to set up the object.

* Something constructor-like that gets called

* at the end of the construct function

*/

function init() {

// set up some stuff

privateMethod();

that.publicMethod();

}

/**

* This is a private method

*

* @param <Integer> i A magic number!

*/

function privateMethod(i) {

// Do something

}
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/*************** Public methods ***************/

/**

* This is a public method that gets exported with

* the created object

*/

that.publicMethod = function publicMethod() {

// do something

};

// initialize the object

init();

// return the object

return that;

};

5.2.6 Unipept version 2.2

Released on
June 6, 2014.

Unipept 2.2 introduced the peptidome clustering feature
(Figure 5.15) and the possibility to add your own local
genomes to the analysis. The user interface of the unique
peptide finder was fine-tuned and a new coloring option
was added to the sunburst visualization. The previous
method selects the colors for the leaves by randomly pick-

The colors of the par-
ents are calculated by
taking the average of

their first two children
in de HSL color space.

ing them from a predefined list of colors and recursively de-
termines matching colors for the parents. This results in a
visually pleasing graphic, but the result is somewhat arbi-
trary. A small change in the dataset can result in a drastical-
ly different visual result. This is annoying when trying to
compare the sunburst visualization of two datasets. The
new coloring option calculates a hash of each of the taxon
names in the dataset and uses that to deterministically as-
sign a color to the corresponding leaves. This means that a
certain taxonomic node will always have the same color, in-
dependent of the dataset.
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Figure 5.15 The peptidome clustering feature as introduced in Unipept
2.2.

Peptidome clustering
The peptidome clustering feature uses the peptidome con-
tents of the genomes to calculate pairwise similarities. The
similarity between two genomes is the number of peptides
they have in common divided by the total number op pep-
tides or, in other words, the size of the intersection divided
by the size of the union of the two sets of peptides. These
similarities are then used to perform a hierarchical cluster-

UPGMA stands for Un-
weighted Pair Group

Method with Arithmetic
Mean.

ing using UPGMA. The output of the clustering algorithm
is then used to construct a phylogenetic tree. Both the tree
and similarity matrix are rendered using D3 as a single vi-
sualization. This means that the branches of the phyloge-
netic tree are aligned with the squares in the similarity ma-
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trix, and that clicking on a fork in the tree swaps both the
branches and the corresponding rows and columns in the
matrix.

Calculating the similarities is relatively fast (under 50 ms
per pair), but because the number of pairs grows quadrati-
cally with the number of genomes in the analysis, the simi-
larity calculation can’t be done in the main JavaScript
thread without interfering with the user experience. All
necessary data is already present in the web worker of the
unique peptide finder, so it was an obvious choice to add
the code for the similarity calculation to the same worker.
The similarity metric uses both the union and the intersec-
tion of the input sets, but because only the sizes are needed
and not the actual contents, the calculation can be opti-
mized. First, the intersection is calculated by iterating over
the two sorted arrays containing the id’s of the peptides in
the input sets and counting the number of common pep-
tides. The size of the union is then derived by taking the
sum of the size of the input sets and subtracting the size of
the intersection.

My genomes
The second new big feature of Unipept 2.2 is the possibility
to add genomes that are not (yet) in a public repository
(Figure 5.16). This is done by allowing users to add a fasta
file from their local hard drive containing all proteins of a
genome. Because this is potentially confidential data, we
store everything in the user’s browser and not on the
Unipept servers. A cross-browser method to achieve this is
by using localStorage, a JavaScript API for persistent data
storage. Unfortunately, storage is limited to 5 MB in most
browsers, without a way to increase this. A later version of
Unipept worked around this limitation by switching from
localStorage to indexedDB if supported by the browser.
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Internally, the genomes added by the user and the genomes
derived from BioProjects are handled very similarly. The
only difference is that instead of fetching the peptide con-
tents from the server, localStorage is accessed. To do so ef-
ficiently, the locally stored genomes must be stored in the
format as if they were returned from the server, meaning
using their peptide id’s. The conversion from a fasta file to a
list of id’s happens when adding the genome. To minimize
the impact on the rest of the application, a separate web
worker is used.

Figure 5.16 The form to add locally stored genomes to the peptidome
analysis.

5.2.7 Unipept version 2.3

Released on
August 2, 2014.

Unipept 2.3 introduced a new data visualization to the
multi-peptide analysis. Next to the existing sunburst and

The new treeview is dis-
cussed in more detail in

Section 2.2.2.

treemap, an interactive treeview (Figure 5.17) was added.
The treeview is written in D3 and is a combination of a
classic tree visualization and a Sankey diagram. This means
that the size of the nodes and the width of the edges be-
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tween them correspond to the number of matches for these
nodes. Another change is the improved single peptide
analysis page. External links to PRIDE and PeptideAtlas
and cross references with EC numbers and GO terms were
added to the table containing all UniProt matches.

Figure 5.17 The new treeview on the multi-peptide analysis page,
added in Unipept 2.3.

Copy to clipboard
An oft-requested feature was better support for data export
out of Unipept. Although some pages already offered file
exports, copying something to the clipboard is often more
convenient. Because of the structure of the html pages it is
not always possible to do this manually. For example, when
the data is presented in a tabular form, it’s impossible to
manually select a single column and copy only that data. In
this case, some sort of button to copy the contents of the
column to the clipboard would solve the problem. Unfortu-
nately, it’s almost impossible to reliably access the clipboard
across all browsers without external aid. We chose to use
ZeroClipboard (http://zeroclipboard.org/), a library that
provides clipboard access using an invisible Adobe Flash
movie using a JavaScript interface. This library allows to
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programmatically copy any contents to the user’s clipboard,
enabling buttons such as the one in Figure 5.18.

Figure 5.18 Example of the new copy to clipboard button using Zero-
Clipboard in Unipept 2.3.

My genomes revisited
The initial version of My Genomes introduced in Unipept
2.2 was fully functional, but had some restrictions that lim-
ited its usefulness. The main obstacle was the limited stor-
age space of 5 MB that’s imposed by the use of localStor-
age. A solution for this limitation was to switch to In-
dexedDB, a standard for storing data in the browser using
local databases. Because IndexedDB is not supported by all

IndexedDB is supported
by Chrome, Firefox, and

Internet Explorer
(>=10). Unfortunately,

the Safari implementa-
tion is riddled with

bugs.

browsers, the old localStorage implementation is used as a
fall back. The elimination of the size restrictions allowed us
to fix a second problem with the initial implementation: the
dependency on a single UniProt version. When parsing
UniProt, peptides get assigned an id incrementally. This
means that when parsing two versions of UniProt, a certain
peptide will almost certainly get different id in the two ver-
sions. Because we only stored the sequence id’s for the pep-
tides in the user-submitted fasta file, the uploaded genomes
became invalid when we updated the underlying UniProt
database. To fix this, we now also store the original fasta
file using IndexedDB. When the page detects that Unipept
uses a newer version of UniProt, all stored genomes get up-
dated.
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A consequence of unrestricted storage space is that a user
potentially wants to add many custom genomes. Adding
them one by one is a cumbersome process, which is why
Unipept 2.3 added the option to add many files at once. In
this case, the files are processed sequentially by the worker
and a progress indicator is shown. The filenames are used as
placeholder genome names and can later be edited.

5.2.8 Unipept version 2.4

Released on
October 7, 2014.

Unipept 2.4 adds an API with accompanying documenta-
tion to Unipept enabling the use of the LCA functionality
in other tools and applications. Internally, all code was pro-
vided with tests and a rewrite of the UniProt processing
pipeline was started with an improved LCA pre-
computation step.

Multi-peptide analysis was renamed to metaproteomics
analysis and a reset button was added to all visualizations.
Single peptide analysis was renamed to tryptic peptide
analysis and the results page was restructured. The old tree-
view was replaced by the one introduced in Unipept 2.3
(Figure 5.19).

API
More information about
the API from a function-

al point of view can be
found in Chapter 3.

To allow access to the Unipept peptide analysis features
from within other applications, we created a simple REST-
ful API. The API contains five methods (pept2prot,
pept2taxa, pept2lca, taxa2lca, and taxonomy) that can
be accessed using HTTP POST or GET requests. The re-
sults are always returned in the JSON format. The API was
designed with performance in mind, so by default, only a
minimal number of fields are returned for each result. More
information fields can be retrieved by explicitly asking for
them when sending the request.
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Figure 5.19 The restructured tryptic peptide analysis page in Unipept
2.4.

The API comes with extensive documentation pages where
every available method is explained in detailed. All possible
input options and output fields are listed, along with several
examples per method. Each documentation page also con-
tains an interactive API explorer to compose requests and
immediately see the results (Figure 5.20).
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Figure 5.20 Screenshot of the API explorer, available on the documen-
tation page of each of the Unipept API functions.

Tests
Unipept aims to comply to as many software development
best practices as possible. A major shortcoming to this was
the lack of automated tests. Unipept 2.4 remedies this
problem by adding over 900 tests and achieving a 100% test
coverage for the Ruby on Rails part of the application.
While this means that every single line of Ruby code is ex-
ecuted during testing, it doesn’t imply that every line is ac-
tually tested.

Testing support is deeply integrated in Rails by the inclu-
The included framework

is actually called TestU-
nit, a rails-specific flavor

of Minitest.

sion of a testing environment. This environment allows to
specify separate settings for use during testing, for example
a dedicated testing database. Furthermore, the testing
framework Minitest is included since version 1.9. The
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Minitest framework offers support for different types of
tests and a way to actually run the tests.

All models are covered by unit tests, a way to test individual
units of code. Because most models interact with the data-
base, a separate test database is used. The data in this data-
base is not actual data, but mock data specifically construct-
ed for the tests. This mock data is specified in separate files
called fixtures and is loaded into the database before every
test is executed. The purpose of this is to create a known
and fixed environment in which the tests can run so that
the results are repeatable.

The code in the controllers is not as easily isolated as the
code in the models. The controllers depend on many exter-
nal elements and are therefore harder to test using unit
tests. A different approach is to use integration tests. In in-
tegration tests, several modules are tested as a group, usual-
ly after testing the individual modules using unit tests.
When performing an integration test on a controller, a web
request is simulated and the output of the controller is
compared with the expected output.

A third part of our testing strategy involves running Rubo-
Cop. RuboCop is a static code analyzer for Ruby that
checks the code for offenses against the Ruby Style Guide.
While it may seem that this only affects the appearance of
the code, it also prevents errors due to sloppiness.

Having tests is of no use if you never run them, which is
why we use Travis, a continuous integration service with
GitHub integration. Whenever a commit gets pushed to
GitHub, Travis fetches the code, runs all tests and posts the
outcome of the tests in the pull request where the code was
pushed. This helps guarantee that faulty code never gets de-
ployed in production. The outcome of all tests is publicly
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available at https://travis-ci.org/unipept/unipept and can be
used as a quality label for the code base.

Computing the LCAs in Java
The LCAs for all peptides in the database were precomput-
ed by iterating over all peptides and calculating their LCA
using the Ruby on Rails middleware. This is done for both
the original peptide and the version where isoleucine and
leucine were equated. Because the middleware fetched the
information for each peptide separately, several database
queries were executed per peptide, resulting in terrible per-
formance. The total runtime of the LCA calculation using
the middleware was three weeks for each of the two vari-
ants.

Unipept 2.4 includes a reimplementation of the LCA cal-
culation code in Java. This code works directly in the gener-
ated tsv output files of the processing pipeline and has no
interaction with the database. By keeping the lineage of all
taxa in memory and making extensive use of the Java 8
Stream API, the new LCA calculation code is several or-
ders of magnitude faster and runs in 30 minutes total for
both variants. Profiling the Java code learns that almost all
time is spent in reading and parsing the input files. This
means that the algorithm can’t be optimized any further.
Another benefit is that because the code no longer makes
use of the middleware and the database, it’s much easier to
integrate it in the data processing pipeline and to run it on
a separate server.

5.2.9 Unipept version 2.5

Released on
February 25, 2015.

Unipept 2.5 focused on improving the metaproteomics
analysis visualizations. Until now, the sunburst and tree-
view graphs were created using D3.js and the treemap using
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the JavaScript InfoVis Toolkit ( JIT,
http://philogb.GitHub.io/jit/). This meant that the treemap
was much more restricted in customizing the visualization
and in adding new features. Another drawback is that the
two sets of visualizations use a similar but slightly different
input format. This means that the source data must be sent
to the client twice, once for JIT and once for D3. Unipept
2.5 introduces a treemap replacement that is written using

By dropping JIT, the
JavaScript code base

was reduced by 500 KB.

D3. This change allowed us to drop the JIT dependency
from Unipept, unify the input format and pave the way for
new treemap features.

A D3 treemap
Although D3 doesn’t include ready made visualizations, it
does have a few built-in layout algorithms. These algo-
rithms encapsulate the process of converting input data to a
set of shapes and/or positions. This output can then be used
to create a graph. One of the built-in algorithms can be
used to create a treemap from a hierarchical JSON object.
When using this layout algorithm, a heuristic tries to recur-
sively lay out rectangles associated with the input nodes.
The algorithm used by D3 is superior to the one used by
JIT, resulting in a better match between the size of the rec-
tangles and the number of peptides associated with a node.

A second improvement is the addition of breadcrumbs at
the top of the visualization (Figure 5.21). When a user
zooms in by clicking on a node, these breadcrumbs show
the path from the root till where the user zoomed in. This
navigational aid allows the user to keep track of their loca-
tion within the taxonomy tree. Clicking on one of the
breadcrumbs results in zooming out to that level immedi-
ately, whereas previously, zooming out happened only a lev-
el at a time.
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Figure 5.21 The new D3-based treemap introduced in Unipept 2.5. The
visualization uses an improved layout algorithm to determine the size of
the rectangles and includes breadcrumbs as a navigation bar.

Full screen mode
Apart from rewriting the treemap visualization using D3,
the other visualizations were also refactored to make use of
the JavaScript object style that was introduced in Unipept
2.1. As a consequence, the graphs became more modular
and more flexible to work with. A direct result of this in-
creased flexibility is a new full screen mode (Figure 5.22).
Previously, full screen mode only showed a single visualiza-
tion at a time without any other features. The new full
screen mode lets users switch between visualizations and
gives access to all export and display settings.
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Figure 5.22 Full screen mode of the Multi-peptide analysis visualiza-
tions demonstrating the new breadcrumbs of the sunburst graph.

The spaciousness of full screen mode and the treemap
breadcrumbs provided the inspiration to also add bread-
crumbs to the sunburst (Figure 5.23). A one-dimensional
list of links works fine for the treemap, but doesn’t fit the
bold and circular sunburst. Instead, the circular theme was
extended in the breadcrumbs by adding small pie charts
showing the fraction of peptides at that level. The colors of
the pie charts are the same as the ones used in the corre-
sponding slices of the sunburst, creating an additional con-
textual link.
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Figure 5.23 Breadcrumbs of the sunburst visualization. Next to being a
navigational aid, the miniature pie charts in the sunburst breadcrumbs
also provide quantitative information.

5.2.10 Unipept version 3.0

Released on
July 31, 2015.

Unipept 3.0 is the biggest Unipept release yet with major
rewrites in both the back and front end and many new fea-
tures. At the back end, the entire UniProt parsing pipeline
was rewritten to make it several orders of magnitude faster.
The entire website was redesigned based on Google’s Mate-
rial Design guidelines (http://www.google.com/design/spec
/material-design). The unique peptide finder and pep-
tidome clustering page was given a major update and the
Unipept command line tools and accompanying documen-
tation were released.
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Figure 5.24 Redesigned home page of Unipept 3.0, based on the
Google Material Design guidelines.

Introducing Material Design
Until now, the Unipept page layout was based on the cor-
porate design of Ghent University. This aging design was
already heavily adapted to accommodate the needs of a
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modern web application. We chose to redesign the entire
application based on Google’s Material Design guidelines
(Figure 5.24). These guidelines define a set of rules and
principles to which applications must adhere to, leaving
plenty of room for customization. These principles include
using cards, depth, and padding to group information and
using animations as a way to reinforce the user’s actions.

The redesign was seized to rethink and improve all pages of
the application. Special attention went to the removal of
clutter and the simplification of the application. A prime
example of this is the tryptic peptide analysis search page
(Figure 5.25). The page now focusses on purpose of the
page, being the search form, and the long help text was
rewritten and split into three clear chunks.

Proteome Analysis 2.0
Both the unique peptide finder and the peptidome similari-
ty feature need a way to define complete genomes and to
select all corresponding UniProt entries. In the past, Bio-
Projects were used for this because each BioProject corre-
sponded with a single sequenced genome. More recently
however, this relation changed as a single BioProject ID
can be used for a multi-species and multi-isolate project
(Tatusova et al., 2015). As suggested by Tatusova et al.
(2015), in Unipept 3.0 we started using Assemblies instead.
By using the GenBank accession numbers associated with
the assembly sequences, we can easily map them to UniProt
entries for use in the application.

THE UNIPEPT WEB APPLICATION

167



Figure 5.25 Compilation showing the old (Unipept 2.5) and redesigned
(Unipept 3.0) tryptic peptide analysis page. The top navigation bar now
shows the current page, the search form is front and center and the
copy was improved.

By using the assemblies, which also include incomplete
genomes, the list of available genomes grew considerably to
over 7 500. This had performance implications on the tree
that was used to add genomes to the analysis. The initial
rendering time of the selection tree grew to over 10 sec-
onds, which is unacceptable. A new solution was found in
using a filterable list, showing only 50 results per page (Fig-
ure 5.26). The improved search settings include options to
target specific taxonomic ranks, filter on assembly level
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(e.g., complete or scaffold), filter on complete or partial
genomes and to only display type strains.

Figure 5.26 The proteome library showing a new way of selecting pro-
teomes by using a filterable list instead of hierarchical lists. All complete
genomes of the Acholeplasma genus are shown.

The idea of adding more functionality to the full screen
mode of the metaproteomics analysis was also applied on
the proteome analysis. While in full screen, users can now
switch between the unique peptide finder and the pep-
tidome similarity and can even add new proteomes to the
analysis. Another improvement to the proteome analysis is
the automatic recovery of the analysis state of the previous
visit to the page. To eliminate the risk of getting caught in
a restoration/crash loop, the same state is only restored
once.
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Modern JavaScript
While rewriting big parts of the peptidome analysis feature,
the opportunity was seized to introduce a few new
JavaScript features in the Unipept code base. These features

ES2015 was previously
called ECMAScript 6 or

ES6.

are all part of ECMAScript 2015, a new JavaScript lan-
guage specification that was standardized in June 2015. Be-
cause not all browsers support these features yet, Unipept
only uses functionality that can be mimicked by using poly-
fills. A polyfill is a piece of code that can be used to repli-
cate a functionality that the browser doesn’t support native-
ly. An example of an ES2015 feature that is used in
Unipept 3.0 are the new Map and Set data structures.

A second example of a new ES2015 feature that is used in
Unipept are Promises. Traditionally, JavaScript program-
mers make liberal use of callbacks to handle the results of
asynchronous functions. Callbacks are functions that are
supplied by the programmer when calling an, often asyn-
chronous, function and are typically executed by that func-

This problem is called
inversion of control.

tion when the result is available. The problem with this ap-
proach is that after calling the initial function, the pro-
grammer has lost control over the subsequent program
flow. Additionally, callbacks seem to be contagious and
have the nature to propagate through the source code, re-
sulting in a phenomenon called callback hell. Most of these
problems can be solved using Promises, a way to refer to
the result of operations that aren’t available yet, but will be
in the near future.

All JavaScript code in Unipept that used callbacks for asyn-
chronous functions was rewritten to make use of Promises.
The peptidome analysis page makes heavy use of JavaScript
Workers and therefore callbacks. The switch to Promises
drastically reduced the complexity of this code and made
the program flow much more transparent.
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The Unipept command line tools
After an API was added in Unipept 2.4, work began on a
Unipept command line interface (CLI) tool to easily inte-
grate Unipept functionality in batch processing scripts. A
major part in creating the tool was providing ample docu-
mentation about its usage. This documentation was includ-
ed in Unipept 3.0 and was created in analogy to the API
documentation. Each of the included commands have their
own documentation page listing all available input and out-
put options and a few examples. Additionally, the docu-
mentation includes two detailed case studies: the taxonomic
analysis of a tryptic peptide and of a metaproteomics
dataset. More information about the command line tool it-
self can be found in Section 3.2.

A file-based UniProt parser
In Unipept 2.4, the LCA calculation was reimplemented to
use a file-based approach instead of the database. This re-
sulted in such a huge performance improvement that the
entire processing pipeline was rewritten using the same
ideas. Instead of directly writing the data to the database,
the individual parsing steps now generated tab separated
value (TSV) files that can easily be imported into the data-
base afterwards. The entire pipeline can be executed by run-
ning a single makefile that runs and combines the various
processing steps.

For all but one table, this was a straightforward conversion.
Because these tables are only written to during processing,
it required minimal changes to the code. The sequences
table is the exception here because we both read from and
write to this table in the processing step. More specifically,
before a sequence is added to the “database” we first want
to check if it was not previously added, and if this is the
case, with which identifier. To solve this problem, we used

THE UNIPEPT WEB APPLICATION

171



Berkeley DB to store the sequence-identifier mapping dur-
ing processing. Berkeley DB is a high-performance soft-
ware library to store key-value pairs. Berkeley DB will keep
as much data in memory as possible and will use the hard
drive as a fallback option when memory is exhausted.

The performance improvements of this reimplementation
are similar to those achieved with the new LCA approach.
Parsing the entire UniProt database can now be done in
under 12 hours compared to over four weeks with the old
approach. This allows us to provide more timely updates to
the Unipept database. Another attempt to reduce the num-
ber of lookup operations by making use of bloom filters did
not result in any significant performance improvements.

UniProt redundancy removal
Over the course of 2014, the size of the UniProt database
more than doubled from 45 million entries to over 90 mil-
lion (Figure 5.27). The UniProt team attributes this expo-
nential growth to the high number of redundant bacterial
genomes. As an example, they show that UniProt contains
4 000 proteomes for Staphylococcus aureus, accounting for 10
million UniProt entries. In order to deal with this drastic
data growth, they implemented a redundancy removal pro-
cedure. The procedure removes redundant UniProt entries
by identifying similar bacterial genomes. As a result, the
size of the UniProt database decreased from 92 million en-
tries to just 47 million.
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Figure 5.27 A graph showing the growth rate of the UniProt database.
Its size was approaching 100 million entries in early 2015 after which a
redundancy removal was implemented.

Although this redundancy removal has nothing to do with
changes in Unipept 3.0, it was the first Unipept version
that was impacted by this reduction in source data. As ex-
pected and verified by spot checks, the impact on the Tryp-
tic Peptide Analysis and Metaproteomics Analysis was
minimal. Because only redundant entries were removed,
there is enough data left to reliably assign peptides to taxa.
The Unique Peptide Finder and Peptidome Clustering on
the other hand, were seriously affected by the change in
UniProt. To properly function, these features rely on the
presence of multiple genomes/proteomes per species. The
more data is available, the better these features work. The
removal of half of the database thus had a severe negative
impact on the usefulness of the peptidome analysis. We
therefore regret the decision of the UniProt team to throw
away half of their data.

5.2.11 Unipept version 3.1

Released on
December 11, 2015.

To counter the problems caused by the UniProt redundancy
removal, we once again switched our data source for the
Peptidome Analysis in Unipept 3.1. Using the assembly
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data proved increasingly unreliable and caused several in-
complete proteomes to show up in our list of proteomes. In
our search for an alternative, we reevaluated the use of the
proteomes as published on the UniProt website. We con-
sidered using these proteomes before, because they are
guaranteed to be complete. The reason for not using them
earlier was that they only contained few proteomes per
species, something essential for the Peptidome Analysis.
This issue was remedied in more recent UniProt releases
when more proteomes became available. An overview of
the number of available proteomes for a few key species can
be seen in Table 5.1. Because the previous rewrite was done
with flexibility of the underlying data in mind, the change
from assemblies to UniProt proteomes required relatively
few code changes.

Table 5.1 Number of proteomes for which Unipept has data for both
the old (complete assemblies) and the new (UniProt complete non-
redundant proteomes) data source. Both the total number of proteomes
and the number of proteomes for five key species are shown. The
UniProt numbers are taken from the 2015.11 release.

ORGANISM NUMBER OF ASSEMBLIES NUMBER OF UNIPROT PROTEOMES

Acinetobacter baumannii 16 31

Escherichia coli 61 151

Staphylococcus aureus 22 20

Bacillus cereus 16 107

Lactococcus lactis 13 18

Total 7 715 10 638

Delta encoding
A second focus of Unipept 3.1 was performance improve-
ments of the Peptidome Analysis. One of the things that
happen constantly when using this feature is downloading
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More information in
these id’s can be found

in Section 5.2.4.

proteomes from the Unipept server. Although sending pep-
tide id’s instead of the full sequences already saves us some
space and thus download time, we can do better. When
sending the id’s to the browser, these integers are actually
sent as text (i.e., as separate digits) and not as a number.
This means that for example the number 123 456 takes up
six times more space than the number 3. Sending shorter,
lower numbers would thus mean sending less data.

One way to achieve this is by performing a delta encoding
on the id’s before sending them. With delta encoding, in-
stead of sending the numbers themselves, we send the
arithmetic difference between the actual value and the value
of the previous element in the list. For example, the list
[101,102,104,105,110,111] would get sent as
[101,1,2,1,5,1], a 40% reduction in characters. Because
we don’t have any negative id’s, this results in lower num-
bers by definition and because our initial list is sorted, we
achieve a maximal reduction in size. The client can easily
reconstruct the original list by simply incrementing a tem-
porary variable with the received values.

Applying delta encoding on the sequence id’s had a few
other unexpected benefits. When data gets sent from a web
server to a browser, most of the time the data is compressed
using gzip compression. This compression technique works
best if there are a lot of repeating values in the data, some-
thing that is certainly the case with our delta-encoded id’s.
Especially when taking into account that because of the
way the id’s are assigned during database construction,
there’s a high chance of having sequential id’s in a pro-
teome. As can be seen in Table 5.2, applying delta encod-
ing reduces the proteome size (and download time) by a
factor of three. Consequently, the space needed to store a
cached version of our proteomes is also reduced by the same
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amount, just as the time the browser needs to convert the
received ( JSON) response to a list of integers.

Table 5.2 The size of a proteome of Brassica napus (rapeseed), Homo
sapiens (human), Escherichia coli and Acinetobacter baumannii after vari-
ous encoding and compression steps. Sequence size shows the size of
the proteome if the actual sequences are used, id size if the sequences
are represented by their id (in textual form), encoded id size if the se-
quence id’s are delta encoded and compressed size after applying gzip
compression on the delta encoded result.

ORGANISM # PEPTIDES SEQUENCE SIZE ID SIZE Δ ENCODED SIZE COMPRESSED SIZE

B. napus 1 257 794 20.7 MB 11.8 MB 3.00 MB 835 KB

H. sapiens 722 407 11.5 MB 5.8 MB 1.60 MB 395 KB

E. coli 84 126 1.4 MB 0.7 MB 0.21 MB 63 KB

A. baumannii 69 723 1.1 MB 0.6 MB 0.19 MB 68 KB
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Chapter 6

The future of Unipept

This chapter explores possible future extensions to the
Unipept platform. Four of them are discussed in detail: the
possibility to use Unipept for shotgun metagenomics
datasets, the addition of a functional analysis next to the
current diversity analysis, the addition of a statistically-
sound comparative analysis and improved filtering of
unique peptides for targeted metaproteomics.
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6.1 From metagenomics to metaproteomics
(and back again)

Consider the problem of taxonomically assigning a DNA
read resulting from a shotgun metagenomics experiment.
The initial step in this process, shared by all current
metagenomics analysis tools, is to perform inexact match-
ing (e.g., Blast (Altschul et al., 1990), BLAT (Kent, 2002),
USearch (Edgar, 2010)) of the DNA read against a refer-
ence database and to retain only those hits that are consid-
ered sufficiently similar. Some tools only consider the best
match and assign the DNA read based on the taxonomic
annotation of that match in the reference database (Se-
shadri et al., 2007). Other tools consider multiple matches
(e.g., a fixed number of best matches or all matches that
meet certain cutoff criteria) and use an aggregation strategy
to reduce the taxonomic annotation of those matches in the
reference database into a consensus taxonomic assignment
of the DNA read (Huson et al., 2007; Meyer et al., 2008;
Luo, Rodriguez-R, and Konstantinidis, 2014). Pep2Pro
(Askenazi, Marto, and Linial, 2010), for example, only
makes a taxonomic assignment if all retained matches share
the same taxonomic annotation in the reference database.
This is particularly bad since it strongly depends on the
sampling bias of the reference database and favors domi-
nant taxa.

A far better approach that is generally recommended in re-
view papers, is to compute the lowest common ancestor
(LCA) of all retained matches (Bazinet and Cummings,
2012; Mande, Mohammed, and Ghosh, 2012). However,
such a strategy should be implemented carefully, as the
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NCBI Taxonomy for example contains a large number of
“false” taxa (strain-level assignments; Federhen et al.
(2014)) that should be discarded before applying the LCA
procedure, and the procedure should also be robust against
“false” taxonomic annotations in the reference databases. To
avoid “false” reference sequences, databases are often com-
piled from a list of whole-genome sequences, reducing the
taxonomic identification space to only those taxa whose
complete genome was sequenced, or from a list of quality
controlled 16S rRNA sequences, ignoring the majority of
DNA reads that do not contain 16S rRNA fragments and
reducing the taxonomic identification space to the prokary-
otes (Hunter et al., 2014).

A shotgun metagenomics pipeline
The Unipept platform could be extended with a shotgun
metagenomics analysis pipeline that solves the taxonomic
assignment of DNA reads following a radically different
approach. Because Unipept was originally designed for
shotgun metaproteomics analysis, the metagenomics prob-
lem could be translated into a series of metaproteomics
problems. These can be solved using existing Unipept func-
tionality and the results can be mapped back into the
metagenomics context.

Figure 6.1 outlines how this approach can be implemented.
Instead of directly matching a DNA read against the se-
quences in a reference database, we start by predicting pro-
tein coding genes on the DNA read. This can be done us-
ing software packages like FragGeneScan (Rho, Tang, and
Ye, 2010) or its multi-threaded variant FragGeneScan+
(Kim et al., 2015), which is particularly interesting since it
makes use of a hidden Markov model that allows to i) find
genes that are only partially covered in the DNA read, ii)
correct read errors induced by current NGS technologies
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and iii) predict the translation table that needs to be used to
translate the nucleotide sequence into a protein sequence.

Figure 6.1 General outline of the strategies for taxonomic identification
of a DNA read by directly predicting gene fragments on the DNA read,
breaking up the partial proteins into tryptic peptides and finding all
proteins having exact matches with the tryptic peptides. In a next step,
a consensus taxonomic assignment can be computed from (1) the pro-
teins having multiple peptide hits, (2) the taxa having multiple peptide
hits, or (3) the taxonomic assignments for the individual peptides.

Assembly of partial peptide fragments into more complete
protein sequences using the LCA short peptide assembler
(Yang and Yooseph, 2013) is an optional post-processing
step, which is in contrast with more traditional approaches
that start with assembly of DNA reads, followed by gene
prediction (Nielsen et al., 2014). This approach is far more
accurate than using nucleotide assembly-based strategies
followed by gene prediction. Following this strategy, we es-
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sentially transform the metagenomics problem into a meta-
proteomics problem that can already be solved by Unipept.

The predicted (partial) protein sequences are digested in sil-
ico into a series of tryptic peptides that are individually
identified taxonomically using the Unipept LCA procedure
(Figure 3.4; Figure 6.1, 3a). Unipept uses exact matching
to map peptides to proteins in UniProt, which is not only
faster than the inexact matching procedures that are used
traditionally but also avoids the need for cutoff criteria: the
LCA is computed based on all exact matches.

Although it might seem that the Unipept approach will be
less accurate because inexact (DNA) matching is less strin-
gent than exact (protein) matching, Tanca et al. (2013)
have shown in a controlled experiment that Unipept has
three to five times more correct identifications compared to
MEGAN (Huson et al. (2007); which also implements an
LCA approach but based on Blast matches), with more
than half the number of incorrect identifications. In addi-
tion, since Unipept precomputes the LCA for all tryptic
peptides extracted from the UniProt database, this step in
the identification process is extremely fast.

Aggregation
Although the taxonomic identification process could stop at
this point by simply pooling all individual peptide-based
identifications for all DNA reads in a shotgun metage-
nomics data set, this approach would ignore an important
piece of information: all tryptic peptides derived from the
same DNA read come from the same organism. This is
where metagenomics has an advantage over metaproteom-
ics, because we can perform an additional aggregation step
that bundles the individual peptide-based identifications
into a single consensus identification for the DNA read
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(Figure 6.1, 3b), which can be more accurate (e.g., less spe-
cific identifications are overruled by more specific identifi-
cations) and more robust against incorrect identifications
(e.g., less supported identifications are pruned). Such an
aggregation essentially transforms the metaproteomics
identifications back into a consensus metagenomics identi-
fication. The individual peptide-based identifications could
for example be aggregated by again computing their LCA
(note that these LCA computations cannot be precomput-
ed). Wood and Salzberg (2014) propose another aggrega-
tion technique based on determining the maximal root-to-
leaf (RTL) path of all individual identifications in the taxo-
nomic tree.

Both of the above approaches are based on the idea that ag-
gregation at this step should reduce a series of individual
taxonomic assignments into a single taxonomic assignment.
However, it is statistically more sensitive to postpone such a
crisp reduction until later stages (where the overall biodi-
versity distribution of the whole sample is analyzed and vi-
sualized) and to apply more fuzzy reductions at this stage
that represent the aggregated biodiversity as a weighted hi-
erarchical distribution.

One possible approach is illustrated in Figure 6.2. Instead
of reducing the weighted hierarchical distribution formed
by the individual taxonomic assignments to a single taxo-
nomic node (for example by taking the lowest node with
weight 1 in the LCA approach, or selecting the leaf node
with the highest weight in the RTL approach), we may
represent the taxonomic assignment of a single DNA read
(or protein) as a weighted tree. These weighted trees can
then be aggregated for all DNA reads sequenced from the
sample by adding the weights of the corresponding nodes
in the hierarchy and divide these weights by the number of
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hierarchies merged (i.e., normalization over all proteins or
DNA reads). This essentially computes the root-to-node
(RTN) path for every node in the tree (in contrast to com-
puting the path only for the leafs with the RTL approach).
As an end result, the biodiversity distribution of a particular
sample is represented as a weighted tree instead of a count
table (or tree), which is just a generalization that can equal-
ly well be analyzed and visualized. A proof-of-concept of
this workflow has already been implemented in collabora-
tion with the EBI Metagenomics team, showing very accu-
rate identifications that are not restricted to the prokaryotes
as with most of the other metagenomics pipelines. This ba-
sic implementation already sequentially processes 12 mil-
lion reads in under an hour.

Starting from a DNA read that is broken into a series of
tryptic peptides, another aggregation approach is to map
each peptide onto its matching proteins (Figure 6.1, 1a)
and aggregate the taxonomic annotation only from those
proteins that match all or a minimal number of the pep-
tides from the query protein (Figure 6.1, 1b), e.g., using the
Unipept LCA approach. A variant thereof is to map each
peptide onto the taxonomic annotations of all its matching
proteins (Figure 6.1, 2a) and only aggregate the taxonomic
annotations that were matches for all or a minimal number
of the peptides from the query protein or DNA read (Fig-
ure 6.1, 2b), e.g., using the Unipept LCA approach. This
will probably lead to more accurate results compared to the
previous approaches, but at the cost of a much longer com-
puting time because some universal peptides will be found
in large numbers of proteins and/or taxa.
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Figure 6.2 Weighted hierarchical distribution algorithm: (1) assign (nor-
malized) weights to taxa based on number of individual (peptide) iden-
tifications, (2) take into account the hierarchical structure by distributing
the weight of a parent node among the identified leaf nodes of its sub-
tree (optional); distribution of parent weights may or may not take into
account weights already assigned to leafs, (3) normalize weights across
the entire tree (each protein identification is assigned the same weight),
(4) take into account the hierarchical structure by computing parent
weights as the sum of their child weights (optional).

k-mer index
Apart from in silico splitting a (partial) protein into (non-
overlapping) tryptic peptides, the protein may also be split
into (overlapping) k-mers. This approach has been intro-
duced in KRAKEN (Wood and Salzberg, 2014). The same
aggregation strategies that were discussed for peptide-based
identifications can also be applied onto the k-mers. Note
however that KRAKEN introduces bias by not correcting
for identifications derived from overlapping k-mers, which
can be easily remedied by normalizing the identifications

6. THE FUTURE OF UNIPEPT

184



per protein residue. It is expected that identification based
on overlapping k-mers will increase accuracy compared to
peptide-based identification (which is only motivated in a
metagenomics context by the fact that Unipept already has
fast peptide-based indexes for usage in a metaproteomics
context), but at the cost of a higher memory footprint to
store the index and a performance penalty because the
number of overlapping k-mers is higher than the number
of non-overlapping tryptic peptides.

Preliminary results
A prototype based on the Unipept command line tools is
already available. The prototype takes two fastq files con-
taining paired-end reads as input and tries to map a taxon
to each of the reads as output. The pipeline consists of four
basic steps.

1. Merge the reads of the two fastq files into a single fasta file.
This is done using basic Unix command line tools.

2. Run FragGeneScan+ to convert the reads into protein frag-
ments.

3. Split the protein fragments into tryptic peptides and calcu-
late the LCA for each of the peptides using the Unipept
command line tools.

4. Aggregate the results of the individual peptides per read in-
to a single identification for each read using a custom
python script.

As a first test, we ran the pipeline on simulated reads from
a mix of four organisms (Escherichia coli, Plasmodium falci-
parum, Shigella dysenteriae, and Human immunodeficiency
virus). Our prototype was able to process 2 times 9 million
100 base pair (bp) reads in 15 minutes, or 1.2 million 100
bp reads per minute. This is in the same range as Kraken in
normal operation, which can process 1.3 million 100 bp
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reads per minute. Additionally, the prototype managed to
identify all of the species that were present in the simulated
sample. A small fraction of the reads, however, was misclas-
sified as organisms that are very abundant in UniProt, but
of which no close relatives were present in the original sam-
ple.

Further investigation showed that many of the short pep-
tides were responsible for the misclassified reads by acci-
dentally mapping to sequences in UniProt. In an effort to
filter these erroneous peptides using machine learning, a
random forest was trained using peptide length and amino
acid composition as main features.

Table 6.1 Comparison of the performance of the classifiers as tested by
Wood and Salzberg (2014) with the prototype of the Unipept metage-
nomics pipeline (with and without filtering). The filtering, as implement-
ed by the random forest, increases the precision dramatically without
reducing sensitivity. The speed and precision of Unipept is comparable
to Kraken, but the sensitivity is many times lower.

CLASSIFIER PRECISION SENSITIVITY SPEED (READS/MIN)

Naïve Bayes Classifier 97.64% 97.64% 7

PhymmBL 96.11% 96.11% 76

PhymmBL (conf. > 0.65) 99.08% 95.45% 76

Megablast w/ best hit 96.93% 93.67% 4 511

Kraken 99.90% 91.25% 1 307 161

MiniKraken (Kraken w/ 4GB DB) 99.95% 65.87% 1 441 476

MetaPhlAn n/a n/a 370 770

Unipept 73.69% 17.66% ~1 200 000

Unipept with filtering 96.10% 17.38% ~1 200 000

To test the effectiveness of the filter, we ran the benchmark
that was used in Wood and Salzberg (2014) to compare
Kraken with other tools. As can be seen in Table 6.1, the
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filter managed to increase the precision dramatically from
73.69% to 96.10% without further reducing the (admittedly
low) sensitivity. The overall speed of the Unipept pipeline is
already comparable to Kraken and could even be improved
by using a local index instead of relying on the remote web
server.

The low sensitivity has a few diverse reasons. The second
step in the pipeline is predicting proteins using FragGe-
neScan. Although FragGeneScan is one of the best tools
for the job, only 85% of the input reads gets a prediction.
This low prediction level results in an immediate 15% loss
in sensitivity. There are two main reasons for this: not all
DNA is coding and read errors may prevent a reliable
translation. This is a disadvantage of working in the protein
space for which there is no easy solution. A second source
of sensitivity loss is the depth of identification. The result
table (Table 6.1) only looks at the sensitivity for identifica-
tions made at the genus level or better, which is only about
half of the reads that are identified by Unipept. Of the oth-
er half that was identified at a less specific taxonomic level,
only 0.07% was incorrect. A third reason are the read errors
in the source data. The reads in the benchmark are 100 bp
reads with high sequencing error (2.1% SNP rate, 1.1% in-
del rate). Because Unipept uses exact matching, a single er-
ror can have the effect that Unipept can’t identify a single
peptide in a read and therefore can’t identify the read at all.
Switching from tryptic peptides to k-mers will probably
have a positive effect on the second and third case and im-
prove sensitivity.

Conclusion
The Unipept toolbox can thus be expanded with a metage-
nomics pipeline for the taxonomic identification of DNA
reads from shotgun metagenomics data sets (at least with
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the existing and novel strategies discussed above), expand-
ing the scope of the platform from metaproteomics to
metagenomics. For this, a benchmark study can be per-
formed to compare the speed of execution, storage require-
ments and accuracy of the different strategies (including the
traditional identification approaches implemented in other
metagenomics tools), using real and simulated shotgun
metagenome data. A reasonable target seems that Unipept
should be able to accurately identify at least 1 million
500bp DNA reads per minute, where other packages take
hours to perform the same computations. This would en-
able us, in collaboration with the EBI Metagenomics team,
to re-analyze all metagenomics samples from the EBI
Metagenomics Archive at regular time interval (e.g.,
monthly). At present, each data set submitted to this
archive is analyzed only once at the time of submission,
where reference databases grow at an exponential rate lead-
ing to less under-sampled biodiversity.

Current NGS technologies allow metagenomes to be se-
quenced much deeper than metaproteomes, which can pro-
vide a more detailed insight into the complex biodiversity
of the samples. Combined metagenomes and metapro-
teomes of the same sample will also allow to link the func-
tional potential encoded in genomes to expression levels
measured in the sample, and to associate differential func-
tional expressions with shifts in the biodiversity. Moreover,
to obtain optimal identification of the peptides resulting
from metaproteomics experiments, most studies currently
match peptides against shotgun metagenomics data sets
from the same samples (Erickson et al., 2012; Kolmeder
and Vos, 2014).
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6.2 Functional analysis of metaproteomics data

At the heart of Unipept lies an index structure for fast
mapping of tryptic peptides onto all UniProt protein se-
quences having exact substring matches (Figure 3.4). The
taxonomic and functional annotations on matched UniProt
entries can be used to infer taxonomic and functional as-
signments for the individual peptides from metaproteomics
experiments using the Tryptic Peptide Analysis feature of
Unipept (http://unipept.ugent.be/search/single). The Shot-
gun Metaproteomics Analysis Pipeline (http://unipept
.ugent.be/datasets) of Unipept currently supports stream-
lined identification, analysis, and visualization of all pep-
tides from a metaproteomics experiment, and as described
in Section 6.1 this pipeline can be extended for biodiversity
analysis of shotgun metagenomics experiments. This diver-
sity analysis could be extended with a statistical data analy-
sis and visualization framework for functional analysis of
metagenomics and metaproteomics experiments.

Aggregation strategies
The traditional approach for functional analysis of shotgun
metagenomics/metaproteomics data sets provided by cur-
rent tools is to represent functional ontology annotations
(e.g., Gene Ontology, GO; Ashburner et al. (2000)) as
charts that are often zoomable per ontological level, or to
map Enzyme Commission (EC; Bairoch (2000)) numbers
onto metabolic pathways such as those provided by the Ky-
oto Encyclopedia of Genes and Genomes (KEGG; Kane-
hisa and Goto (2000)).

The implementation of this kind of functional and meta-
bolic pathway analysis tools in Unipept will be quite
straightforward, as fast peptide-to-protein matching is al-
ready part of the Unipept kernel, functional assignments of
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all UniProt entries are already parsed in the Unipept data-
base, and Unipept already has implemented flexible and in-
teractive visualizations that can be reused for basic func-
tional analysis. However, although many metagenomics
and metaproteomics papers base their discussion of the
functional complement of environmental samples on GO
pie charts and/or metabolic pathway expression levels, we
dare to claim that such visualizations usually do not provide
deep biological insight. We therefore see an implementa-
tion of the basis functional analysis tools only as a stepping
stone for the functional analysis framework of Unipept,
that can both be made more accurate by taking advantage
of aggregation strategies as outlined in Section 6.1 and can
lead to in-depth comparative functional analysis (discussed
in Section 6.3).

The aggregation strategies for taxonomic assignments as
discussed in Section 6.1 cannot directly be applied for the
aggregation of multiple GO assignments (e.g., taken from
all proteins matching a peptide sequence, or taken from all
individual peptides in a (partial) protein predicted on a
DNA read), as GO is structured as a directed acyclic graph
(DAG) rather than a tree (hierarchy). Additionally, a single
reference protein may have multiple GO annotations in
contrast to a single taxonomic assignment. However, the
weighted hierarchical distribution algorithm discussed in
Section 6.1 (of which the LCA and maximal RTL algo-
rithms are special cases) can be extended into a weighted
DAG distribution algorithm (Figure 6.3). In this case, top-
down redistribution of the weight of a parent node (step 2
in the hierarchical algorithm) might have multiple contri-
butions to the same leaf node as a consequence of multiple
parallel node-to-leaf paths. Bottom-up progression of leaf
weights (step 4 in the hierarchical algorithm) might have to
split a child weight over multiple parent nodes.
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Figure 6.3 Example of applying the weighted DAG distribution algo-
rithm, showing the initial frequencies of GO term annotations of all
UniProt proteins that match the tryptic peptides SSWWAHVEMGPPDPIL-
GVTEAYK or DTNSK (left) and the result after redistributing the weights
top-down and bottom-up (right).

This is a generalization of the aggregation strategy imple-
mented in the commercial software package Blast2GO
(Conesa et al., 2005), from which we can use the idea to in-
corporate Evidence Code weights to promote the assign-
ment of functional annotations with experimental evidence
and penalize electronic annotations or low traceability. The
latter is important, since it has been predicted that 13-15%
of the functional annotations in reference databases contain
database propagation errors (Brenner, 1999).

Similar to the algorithm described in Section 6.1, we can
avoid using Blast by relying on the Unipept index. As with
the LCAs of taxonomic assignments, aggregation of func-
tional assignments of the proteins matching a tryptic pep-
tide can be precomputed for all peptides extracted from
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UniProt and cached in the Unipept database to increase
performance of downstream analysis. One of the challenges
will be to come up with fast implementations of functional
aggregation strategies for metaproteomics and metage-
nomics data sets, and to benchmark the performance and
accuracy of the different alternatives along the lines of the
taxonomic benchmark outlined in Section 6.1.

Applications
This Unipept extension can be applied for the functional
and metabolic pathway analysis of the metagenomics and
metagenomics data sets, for example data sets generated
from the faecal samples of CF patients and their healthy
siblings (Debyser et al., 2016). The most pronounced obser-
vation in diseases associated with gut dysbiosis (inflamma-
tory bowel disease, colon cancer) is a substantial decrease of
“health promoting” species such as Faecalibacterium praus-
nitzii. This was also observed in our cross-sectional shotgun
metaproteomics analysis of faecal samples from CF patients
(Debyser et al., 2016).

These organisms are typical producers of butyrate, a key
metabolite used as energy source by colonocytes that has
anti-inflammatory properties. It therefore seems like a logi-
cal conclusion that dysbiosis is associated with a lack of bu-
tyrate production. However, systematic analysis has shown
recently that more bacteria have butyrate-producing path-
ways than was previously anticipated, and that these organ-
isms show high abundance (up to 40%) in stool samples of
healthy individuals investigated by the HMP consortium
(Vital, Howe, and Tiedje, 2014). Causal inferences be-
tween depletion of certain taxa and observed functional
shifts should therefore be drawn carefully.
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As metaproteomics provides direct abundance measure-
ments of the enzymes involved in metabolic pathways, this
gives a better reflection of the potential changes in bio-
chemical pathways. The functional extensions of Unipept
could therefore be applied for the analysis of shotgun meta-
proteomics data sets that were previously generated from
the faecal samples of CF patients and their unaffected sib-
lings. This then could answer the question whether dysbio-
sis indeed results in a loss of enzymes associated with bu-
tyrate production. Other interesting questions regarding
functional changes due to dysbiosis in CF patients include
a potential raise in expression of antibiotic resistance genes,
mucin degrading extracellular glycosidases, and increased
abundance of proteins involved in inflammatory pathways
at level of host proteins.

6.3 Comparative analysis of metaproteomics data

Recent review papers about the current state-of-the-art in
metaproteomics praise Unipept for the performance and
accuracy of its taxonomic identification pipeline, and also
for its interactive visualization framework that helps to ex-
plore the biodiversity in complex environmental samples
(Seifert et al., 2013; Kolmeder and Vos, 2014). However,
most environmental studies do not merely apply metage-
nomics and metaproteomics to gain insight in the taxo-
nomic, functional, and metabolic composition of individual
samples, but rather want to investigate observed composi-
tional shifts between multiple samples.

In general, there are two types of environmental studies.
Cross-sectional studies investigate samples collected from
distinct environmental niches at one specific point in time
or under a time-independence assumption in order to ob-
serve causal effects of one or more environmental factors
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upon sample composition. Longitudinal studies involve re-
peated observations of the same environmental niche over a
period of time to study shifts in sample composition that
may be correlated to certain temporal events.

A comparative analysis framework
Unipept could be expanded to include a framework for sta-
tistical analysis and data visualization of multiple metage-
nomics or metaproteomics data sets from cross-sectional
and longitudinal studies (Mehlan et al., 2013; Wang et al.,
2015). As showcased by Unipept, such a statistical analysis
and data visualization toolbox nowadays can be implement-
ed as a highly responsive client application hosted in a web
browser using the latest web technologies. In particular,
when making use of the latest HTML5 technologies in-
cluding Web Workers for parallel processing and Local
Storage for browser caching, as well as JavaScript libraries
including D3.js for interactive data manipulation and visu-
alization.

This framework could allow third-party developers to reuse
individual components in their own applications. This will
allow the statistical analysis and data visualization frame-
work to be used as a standalone client application that en-
ables users to upload multi-sample contingency tables that
were processed by metagenomics or metaproteomics
pipelines (e.g., in the Biological Observation Matrix
(BIOM) format (McDonald et al. (2012)) which is an in-
teroperable format supported by all major pipelines) or to
embed the framework in other web applications.

The framework could support basic visualizations such as
pie charts, (stacked) bar charts and heat maps, but also
more elaborate statistical and visualization approaches for
comparative analysis such as Lefse (Segata et al., 2011) for
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differential taxonomic and functional analysis and UniFrac
(Lozupone and Knight, 2005) to calculate distances be-
tween organismal communities using phylogenetic infor-
mation.

In contrast to the existing MetaSee framework (Song et al.,
2012), such framework should be implemented according
to the Model-View-Controller (MVC) design pattern. This
pattern allows to store the data only once (model), with the
possibility of adding interactive operations (controllers) to
navigate the data visualizations (views). As such, additional
components can be plugged into the framework as inde-
pendent controllers or viewers. This will require the defini-
tion of a standard data representation layer (tabular, tree or
(directed acyclic) graph data structures) and a standard data
manipulation interface. For example, many metagenomics
tools visualize the biodiversity in a sample not as a tree
(which may include simply too much information), but
sliced at a specific taxonomic rank (e.g., as a pie chart at the
phylum level). From the MVC perspective, this slice opera-
tion is not implemented as a static conversion from a tree
format to a tabular format but as a dynamic view of the tree
as a table, which allows more dynamic visualizations that
navigate top-down and bottom-up in the tree. Moreover,
the same controller can be applied to all sample data sets at
once, allowing interactive comparative visualizations.

Prototype
An initial prototype of a comparative functional analysis
tool has already been implemented and can be seen in Fig-
ure 6.4. In its current implementation, aggregated func-
tional assignments of the tryptic peptides of one or two
samples are mapped onto KEGG pathways using the EC
numbers that are cross-referenced in UniProt. Here, the
pathways are heuristically ranked on interestingness, based
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on the number of differentially expressed enzymatic reac-
tions.

Figure 6.4 Prototype for comparative functional analysis in Unipept us-
ing EC numbers mapped on KEGG pathways.

The prototype requires a number of extension before it can
be added to an official Unipept release. First of all, as dis-
cussed in Section 6.2, the functional assignments could
equally well be based on the DNA reads from metage-
nomics samples. The prototype can also be extended to
support cross-sectional studies that want to compare the
functional shifts between multiple samples from two dis-
tinct environmental niches.
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Instead of the current ranking algorithm, a more statistical-
ly sound method should be implemented. Examples are the
statistical framework for differentially expressed proteins as
implemented in MetaStats (White, Nagarajan, and Pop,
2009) and its extension MetaPath (Liu and Pop, 2011),
which allows much more granular detection of subpathways
that are globally over or under expressed between subpopu-
lations. The current third-party implementation of these
tools is quite slow, but it seems that a fast reimplementation
might be achievable.

Another goal could be to allow integrated taxonomic and
functional analysis. Current metagenomics and metapro-
teomics tools implement taxonomic and functional analysis
merely as separate pipelines, whereas biological comparison
between the samples would greatly benefit from statistical
tools and visualization aids that intertwine both viewpoints.
As taxonomic and functional assignments are made for the
individual peptides (metaproteomics) or DNA reads
(metagenomics), they establish a complex graph (network)
where both pieces of the puzzle come together. However,
tools for visualizing metabolic pathways as KEGG or iPath
(Yamada et al., 2011) do not provide additional annotations
to highlight “who is doing what” in the environment. Hav-
ing integrated visualizations and graph-based statistical
tools would allow to search for functional changes beyond
what can be explained by a mere shift in populations, and
vice versa, to search for shifts in populations that do not re-
sult in functional changes.

6.4 Targeted metaproteomics

The proteomics field is recently moving into more targeted
approaches to address specific biological questions. Typical-
ly, this involves Single or Multiple Reaction Monitoring
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(SRM/MRM; Pan et al. (2012)) employing triple
quadrupole-like instruments to monitor protein specific
tryptic fragments, focusing on a combined set of the pre-
cursor ion masses and their MS/MS derived fragments
(transitions). Target peptides can be selected according to a
wide range of criteria such as their protein-specificity to
screen for the presence/absence of certain proteins in pro-
teomics studies. Absolute quantification is achieved by pro-
viding complementary isotope labeled peptide standards
and the approach is increasingly used in clinical biomarker
analysis.

A growing number of human or animal diseases are associ-
ated with perturbation of the microbiota naturally residing
in the skin or gut of the host. The presence/absence of rep-
resentatives of specific bacterial genera affects the host con-
dition, and therefore combining host and microbiota bio-
markers could be useful in diagnostics in diseases such as
Inflammatory Bowel Disease, diabetes or cystic fibrosis,
and in microbial contamination detection in food safety.
However, selection of suitable peptide markers for these
bacteria requires taxon-specificity. With protein profiling
providing assays closer to activated functions,
metaproteome-wide association studies have the potential
to become an important tool in environmental, clinical, and
food studies ( Juste et al., 2014).

The Unique Peptide Finder (http://unipept.ugent.be/pep-
tidefinder; Mesuere et al. (2016a)) of Unipept already al-
lows to determine the unique tryptic peptides (the so-called
unique peptidomes) of a certain species or pool of species
(represented by a selection of available whole-genome se-
quences). These are the peptides present in all of the select-
ed genome sequences but are found nowhere else outside
the species of the selected genomes (actually the LCA of all
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taxonomic annotations of the selected genomes). These
peptides are therefore ideal biomarkers. However, the
Unique Peptide Finder typically yields over a thousand
unique peptides for a species and not all of them are equally
suitable for MRM analysis. Parameters such as, peptide
length, presence of amino acids that are prone to chemical
modification, and even the cost to produce synthetic pep-
tides for method optimization or stable isotope labeled
peptides as internal standards are additional criteria that
need to be taken into account. Because the Unique Peptide
Finder returns hundreds of potentially useful peptides, we
can afford to use strict filters to only retain the most suit-
able peptide targets.

Several computational tools have however, been built to
help select the most suitable peptides. These tools each
consider a specific property of the peptide in question: in-
formativeness, presence, ionization, and fragmentation. In-
formativeness is crucial, because a unique sequence is not a
sufficient condition to ensure unambiguous assignment of
the detected mass spectrometry signal to a given peptide,
and thence a protein and a species. For this, the recorded
signal itself must be unique. Two existing tools can already
compute these peptide properties: SigPep (Helsens et al.,
2012) and SRMCollider (Rost, Malmstrom, and Aeber-
sold, 2012). SigPep is currently undergoing an extension to
take advantage of accurate retention time prediction from
ELUDE (Moruz et al., 2012) as well. This can be further
optimized using optimal gradient choices (Bertsch et al.,
2010). Presence of a peptide in the sample after digestion is
of course affected by presence of the parent protein, but is
also strongly affected by the propensity of trypsin (the lead-
ing protease in proteomics; Vandermarliere, Mueller, and
Martens (2013)) to cleave this peptide from the protein.
Here too, predictors exist, as reviewed in (Kelchtermans et
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al., 2014), with the optimal predictor so far being CP-DT
(Fannes et al., 2013). Interestingly, CP-DT also provides a
good estimate of the probability of ionization for a given
peptide. Finally, the fragmentation pattern that will result
from a given peptide can now also be predicted with high
accuracy, both for CID as well as HCD fragmentation
(Degroeve, Maddelein, and Martens, 2015).

The addition of these predictions will help reduce the large
number of possible MRM peptide targets obtained from
the Unique Peptide Finder, by allowing the user to imme-
diately select the most promising set of peptides. As a re-
sult, users will be able to move from query to actual MRM
assay much more efficiently.
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