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Network data structures have been used extensively for modeling entities and

their ties across such diverse disciplines as Computer Science, Sociology, Bioinfor-

matics, Urban Planning, and Archeology. Analyzing networks involves understand-

ing the complex relationships between entities as well as any attributes, statistics,

or groupings associated with them. The widely used node-link visualization excels

at showing the topology, attributes, and groupings simultaneously. However, many

existing node-link visualizations are difficult to extract meaning from because of

(1) the inherent complexity of the relationships, (2) the number of items designers

try to render in limited screen space, and (3) for every network there are many

potential unintelligible or even misleading visualizations. Automated layout algo-

rithms have helped, but frequently generate ineffective visualizations even when

used by expert analysts. Past work, including my own described herein, have

shown there can be vast improvements in network visualizations, but no one can

yet produce readable and meaningful visualizations for all networks.

Since there is no single way to visualize all networks effectively, in this disser-



tation I investigate three complimentary strategies. First, I introduce a technique

called motif simplification that leverages the repeating patterns or motifs in a

network to reduce visual complexity. I replace common, high-payoff motifs with

easily understandable glyphs that require less screen space, can reveal otherwise

hidden relationships, and improve user performance on many network analysis

tasks. Next, I present new Group-in-a-Box layouts that subdivide large, dense

networks using attribute- or topology-based groupings. These layouts take group

membership into account to more clearly show the ties within groups as well as the

aggregate relationships between groups. Finally, I develop a set of readability

metrics to measure visualization effectiveness and localize areas needing improve-

ment. I detail optimization recommendations for specific user tasks, in addition to

leveraging the readability metrics in a user-assisted layout optimization technique.

This dissertation contributes an understanding of why some node-link visualiza-

tions are difficult to read, what measures of readability could help guide designers

and users, and several promising strategies for improving readability which demon-

strate that progress is possible. This work also opens several avenues of research,

both technical and in user education.
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Chapter 1

Introduction

Networks have long been common data structures in Computer Science, but have

only recently exploded into popular culture. Publishers like the New York Times

now frequently including elaborate and interesting networks with their articles.1

Online communities like Facebook, Twitter, Flickr, MySpace, and YouTube (to

name only a handful) enjoyed enormous growth over the last few years and provide

rich datasets of interpersonal relationships, which social scientists are now fervently

exploring. Networks have also found applications in such diverse disciplines as

bioinformatics, scientometrics, urban planning, politics, and archeology.

Analysis of these datasets requires knowledge of the connectivity, clusters, and

centrality of the nodes: tasks which necessitate relationship visualizations. Sta-

tistical analysis and conventional visualization tools like bar and pie charts are

often inadequate when faced with these varied and oftentimes immense datasets.

www.visualcomplexity.com and its associated book [Lim13] provide many beauti-

ful alternative visualizations for these data which are surveyed by [Ari08; SA06],

1http://www.nytimes.com/2009/03/29/technology/internet/29face.html

1

http://www.visualcomplexity.com
http://www.nytimes.com/2009/03/29/technology/internet/29face.html
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Figure 1.1: A node-link visualization of relationships among Twitter users men-
tioning the hashtag “#WIN09”, which was used by participants at a network sci-
ence conference in September 2009. Each Twitter user is represented by a node
containing its image, and edges between users indicate follow, mention, or reply
relationships. The force-directed layout used to position the nodes highlights in-
teresting patterns of connectivity like the two large communities of researchers.
From Fig. 3.1 of the NodeXL book [HDS10, p. 33].

but one enduring technique in particular models relationships using a node-link

visualization, where nodes in the network represent entities and the links or edges

indicate ties connecting them [BMK96]. An example node-link visualization is

shown in Fig. 1.1, which displays relationships among Twitter users at the WIN09

conference and how they separate into two distinct communities of researchers.

This network of interactions between people is called a social network and the
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resulting visualization is called a sociogram by sociologists [Mor53], graph drawing

by graph theorists, and a node-link visualization by other network researchers

including myself.

Node-link visualizations have a long history, but only in the last few decades

have we seen their frequent application as a network exploration tool. For exam-

ple, Fisher, Smith, and Welser [FSW06] and Welser et al. [Wel+07] successfully

used node-link visualizations to detect common social roles in online discussion

newsgroups such as answer person and discussion person. Node-link visualizations

have also been applied to the study of relationships between political blogs dur-

ing the 2004 U.S. Presidential Election, showing the division between liberal and

conservative communities as well as their internal interactions [AG05]. A similar

large application is to map the entire Internet [CBB00]. These techniques have

made inroads into many other domains as well. Urban planners have used node-

link visualizations to understand networks of innovation (Section 5.5.2, [Dem12]),

and, similarly, scientometricians use them for measuring and analyzing scientific

publishing (Section 3.3.3, [Hen+07]). In biology and medicine, node-link visu-

alizations are used to help explore protein-protein interaction networks [Kel+03]

and to visualize patient conditions and treatments (Section 4.3.5, Section 5.5.3).

Even archeology now uses node-link visualizations for looking at the relationships

between dig sites and artifacts (Section 3.3.2, [Bru12]).
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(a) (b) (c)

Figure 1.2: Different visualizations of the same network, with (a) obscuring the
topology while (b) and (c) are more understandable with less edge crossings.

However, there are a huge array of possible layouts of the nodes and edges

in any given network, many of which can create misleading or incomprehensible

visualizations [Bra+99]. Even eight nodes can be laid out in a way that obscures

the network topology, as displayed in Fig. 1.2. In this case, edge crossings caused

by the layout make paths difficult to follow, but other problems can be caused

by nodes overlapping or edges tunneling underneath nodes without connecting to

them, to name only a few of many potential readability issues. Visualizations of

relational structures like networks are only useful to the degree they “effectively

convey information to the people that use them” [Bat+98]. What’s more, there is

no “best” layout for a network as different layouts can highlight different features

of the network being studied [BMK96]. In fact, the spatial layout of nodes in the

node-link visualization can have a profound impact on the detection of communi-

ties in the network and the perceived importance of individual actors [MBK97].
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Hence, significant thought must be given to properly laying out networks so that

network analysts will be able to understand and effectively communicate data

such as clusters in the network, the paths between them, and the importance of

individual actors.

As manual layout of nodes in the node-link visualization is incredibly time con-

suming to do well, a lot of effort has been put into developing automated network

layout algorithms. There are many layout algorithms that can be used, includ-

ing variants of the spring embedder [Ead84] such as the popular Fruchterman-

Reingold force-directed algorithm [FR91] (used in Fig. 1.1), the Prefuse gravita-

tional N-Body approach [HCL05], the Harel-Koren fast multi-scale (FMS) algo-

rithm [HK02a], the high-dimensional embedding (HDE) approach of Harel and

Koren [HK02c], the algebraic multigrid method (ACE) of Koren, Carmel, and

Harel [KCH03], and FM3 by Hachul and Jünger [HJ05]. These force-directed algo-

rithms are used frequently in practice. A 2006 census of the layout algorithms used

for the first 100 examples on visualcomplexity.com showed that over a third used

force-directed algorithms, with another third using geographic placements [SA06].

Even with these layout techniques, many existing node-link visualizations of

networks are not easily readable, or at least difficult to extract meaning from.

Several factors contribute to this problem, including that the inherently complex

relationships in large, dense networks are often difficult to perceive even with mas-

http://www.visualcomplexity.com
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Figure 1.3: An experimental comparison of six layout algorithms on the same social
network produced widely different layouts. The top row layouts performed well,
though bottom row layouts are difficult to extract meaning from. From [HJ06].

sive displays. Also, as shown in Fig. 1.3, layout algorithms can produce vastly

different results for the same network depending on the heuristics they use. The

spatial layout of a network visualization is critical to what we perceive from it,

meaning that for every network and user task there are many potential unintelligi-

ble or even misleading visualizations. Moreover, end users are completely unwilling

to experiment with layout parameters to improve the layout after the initial view

[Bar+08]. Even expert analysts who have the experience required to tweak the

layout algorithm and further optimize the layout manually can have difficulties
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with large networks. Many researchers, including myself, have shown that there

can be vast improvements in network visualizations by using alternate approaches

to layout [HK02c; HJ05], aggregation [Wat06; Dun+12a], and filtering [SD12].

However, many challenges remain.

My dissertation work contributes to this space and focuses on three compli-

mentary approaches for helping users explore network datasets. First, I introduce

a technique called motif simplification which helps users reduce visual com-

plexity by replacing repeating patterns with representative glyphs (Section 1.1).

These glyphs require less screen space, better present the core interesting parts of

the network, and improve user task performance. Second, I present new Group-

in-a-Box layouts to segment dense networks using attribute- or topology-based

groupings (Section 1.2). These group-aware layouts can better display the rela-

tionships within groups as well as between them. Finally, I develop a set of what I

term readability metrics to measure the effectiveness of node-link visualizations,

both to analyze the utility of layout algorithms but also to interactively guide user

improvement of the layout (Section 1.3). I implemented each of these techniques

in the free and open source NodeXL [Smi+10] network analyst tool, so that they

could be easily used by novice network analysts (Section 1.4). These three tech-

niques and their associated NodeXL implementations are discussed in the following

sections, which provide an overview of the chapters in this dissertation.
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Figure 1.4: Fan, connector, and clique motifs (top) and their glyphs (bottom).

1.1 Motif Simplification to Reduce Complexity

Many complex networks are littered with recurring topologic patterns or motifs,

either because of the network structure or data collection methods. Three of these

motifs are shown in the top row of Fig. 1.4. Regardless of their cause, some

frequently expressed motifs contain little information compared to the space they

occupy in the visualization. My dissertation helps address this problem with a

new technique called motif simplification, in which common repeating motifs

are replaced with compact yet meaningful glyphs. I focus on the three frequently

occurring and high-payoff motifs shown in Fig. 1.4: fans of nodes with a single

neighbor, connectors that link a set of anchor nodes, and cliques of completely

connected nodes. My research contributes efficient algorithms for motif detection,

the design of representative and combineable glyphs, as well as guidelines and an

iterative process for creating glyphs for additional motifs.
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(a) (b)

Figure 1.5: A bipartite network of Lostpedia of wiki edits (a) and a simplified
version using glyphs for fan and connector motifs (b).

I evaluated motif simplification first with several domain experts in sociology,

political science, medical informatics, and the U.S. Department of the Treasury to

understand the effectiveness of the technique for real-world analyses. I followed this

with a task-based controlled study of 36 participants analyzing networks up to 3958

nodes, which determined the magnitude of any performance differences between

using plain and simplified views. One example network from this study is shown

in Fig. 1.5, in which a network of wiki editors connected to the pages they edit is

shown in a node-link visualization with 513 nodes (left) and the simplified view with

only 17 nodes and glyphs (right). These studies showed that motif simplification

(1) reduces screen space used and layout effort, (2) can reveal hidden relationships,
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and (3) is quite beneficial for many network analysis tasks both in the time users

took and their accuracy/error. Unlike other approaches, motif simplification is

able to achieve these benefits while maintaining user awareness of the underlying

topology. Please see Chapter 4 for more details on motif simplification.

1.2 Meta-Layouts for Subdividing Networks

In contrast to motif simplification, in which functionally equivalent nodes and

edges are replaced by representative glyphs, I have also explored the use of meta-

layouts that highlight more general topology- or attribute-based groupings of the

network. These groups can be difficult to understand using the standard tools of

color, shape, or convex hulls – as evidenced by the dense, intermingled topologic

clusters shown in Fig. 1.6. In this visualization, it is difficult to understand the

size of each group, its internal structure, and its ties to other groups. My meta-

layouts are designed to make all these group features easier to discern. First, the

Midichlorian-Directed Layout is a modified force-directed layout algorithm

that reduces spring forces between nodes in separate groups. This causes groups

to spread apart and be more clearly analyzed, but at the expense of substantial

screen space required. Next, I present several Group-in-a-Box layouts that

display groups individually to more clearly show membership, topology, and inter-

group relationships. We have one such layout in NodeXL [Smi+10] that segments
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Figure 1.6: Pennsylvania innovation relationships during 1990 (main component)
collected by Christopher Scott Dempwolf. Nodes are laid out using the Harel-Koren
FMS layout [HK02a] and topologic clusters found using the Clauset-Newman-
Moore algorithm [CNM04] are shown using node color and shape. See Section 5.5.2
for more details and analyses of this network.
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(a) Standard node-link visualization (b) Treemap GIB layout

(c) Croissant-Donut GIB layout (d) Force-Directed GIB layout

Figure 1.7: The network for the board game Risk, where nodes are countries
and edges indicate legal movements. Nodes are laid out using Harel-Koren FMS
[HK02a], clustered and colored using the Clauset-Newman-Moore topologic clus-
tering algorithm [CNM04]. Inter-group edges are combined into thick meta-edges.
(a) shows the initial visualization, while the others show the three Group-in-a-Box
(GIB) layout variants. See Section 5.5.1 for more details and analysis.
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groups using aTreemap [Rod+11; SD12], which is space-filling but often separates

related groups, drawing long edges which overlap other groups unnecessarily. This

is visible in Fig. 1.7b as the crossing and overlapping meta-edges that represent

the combined inter-group edges.

I present several variants to more clearly show group relationships, each best

suited to a range of topologies. The Croissant Group-in-a-Box layout, shown

in Fig. 1.7c, puts the largest group at the top and wraps the remainder around three

sides based on their connectivity. This effectively displays large groups, though

more smaller groups are better shown using the Donut Group-in-a-Box layout

(not shown here) which places the largest group in the center and arranges others

around the perimeter. Finally, the Force-Directed Group-in-a-Box layout

(Fig. 1.7d) arranges groups based on their aggregate ties and eliminates any overlap

of their boxes. The NodeXL [Smi+10] implementation automatically picks the

best approach for the given data to better show disconnected components, few

groups, or different distributions of group sizes and connectedness. Several case

studies and experiments demonstrate that Group-in-a-Box layouts more clearly

show (1) topology within groups, (2) group membership and size, and (3) aggregate

relationships between groups. Group-in-a-Box layouts are particularly effective for

large networks, where high density and finite screen space limit effective network

visualizations. I cover my work on meta-layouts extensively in Chapter 5.
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(a) Tight layout (b) Relaxed layout

Figure 1.8: We can eliminate the node occlusion and edge tunnels that make the
central overlapping group in Fig. 1.8a so hard to understand by zooming out and
increasing the the spring lengths of the layout algorithm (Fig. 1.8b).

1.3 Measuring Network Visualization Readability

My user studies, case studies, and experiments demonstrate the utility of motif

simplification and Group-in-a-Box layouts for network visualization, but I am also

interested in improving the effectiveness of general node-link visualizations. By

quantifying the readability of a layout, we can guide analysts in making improve-

ments and feed the results in automatic layout algorithms. Past work by Purchase

and Leonard [PL96; Pur02] as well as Ware et al. [War+02] provides definitions for

several of what I call global readability metrics (also called aesthetic criteria),

which measure detrimental features like edge crossings (see Fig. 1.2) and rate the

layout as a whole. However, a single value is not enough to direct users to problem

areas of the layout, which part of my dissertation addresses by introducing local

readability metrics for individual nodes and edges. Moreover, I introduce sev-
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Figure 1.9: NodeXL showing the readability metrics dialog (foreground), the nodes
in the worksheet with edge crossing and node overlap metric columns, and visu-
alization where nodes and edges are colored red-to-black by the edge crossing
metric. The worst offenders are shown in red. The network shown represents the
legal moves in the board game Risk from Fig. 1.7a.

eral new global metrics to detect readability problems like node overlap and edges

tunneling under nodes. These readability issues are visible on the left of Fig. 1.8.

I leverage these metrics in a new method for user-assisted layout improvement,

which is shown in Fig. 1.9. My approach is to incrementally update the readability

metrics in real-time as users manipulate the layout, and provide immediate visual

feedback to users showing how they are affecting readability. As there are trade-offs
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when optimizing specific readability metrics, I include a survey of the related liter-

ature studying each of these metrics and their effect on user task performance. My

evaluations indicate that these readability metrics help users create more effective

node-link visualizations, and I plan to release both the metrics and layout improve-

ment tool as part of NodeXL [Smi+10]. This work aims to raise user awareness of

network visualization readability issues, and applying my optimization technique

will guide users in creating more effective network visualizations.

1.4 Exploration Environment

I implemented each of these three approaches in a scalable environment for network

exploration and improvement, made publicly available as part of the free and

open source NodeXL network analysis tool [Smi+10]. NodeXL is popular and

actively developed, has over 184,000 downloads, and has been taught in over 25

introductory courses on network analysis and visualization. I have been involved

with the project for five years, first running user studies and then as an advisor and

developer. By releasing my work in NodeXL, it immediately becomes available to

help the novice users who need it the most. Motif simplification is now available

and visible in the publicly shipping tool, and my Group-in-a-Box layouts will be

shortly. The readability metrics and associated interactive layout improvement

technique are implemented but hidden as they are not yet ready for public use.
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1.5 Specific Contributions

The specific contributions of this dissertation are as follows:

• Motif Simplification

– A technique for simplifying node-link visualizations by replacing com-

mon network motifs with representative glyphs,

– A set of design guidelines for these glyphs to show the motif contents

and underlying attributes,

– The design of glyphs for fans, connectors, and cliques,

– Algorithms for detecting these three motifs,

– A supporting task-based study with 36 participants, and

– A free and open source implementation as part of NodeXL.

• Meta-Layouts

– A meta-layout called the Midichlorian-Directed Layout which spreads

groups apart in a standard node-link visualization;

– A Croissant-Donut Group-in-a-Box layout that places subnetworks in

boxes arranged using a Donut or Croissant pattern, and balances space-

filling properties with showing group relationships;
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– A Force-Directed Group-in-a-Box layout that places subnetworks in

boxes arranged by their connectivity, and shows group relationships

well at the expense of additional screen space;

– A set of automatic choices that are made for the user to better show

disconnected components, few groups, or different distributions of group

sizes and connectedness;

– Supporting case studies and an experiment on Twitter networks; and

– A free and open source implementation as part of NodeXL.

• Readability Metrics

– New global readability metrics to help understand different aspects of

network visualization readability,

– Local readability metrics for individual nodes and edges to help users

identify problem areas and fix them,

– A method for user-assisted layout improvement that provides real-time

metric feedback to users in a ranked list and with a color scale,

– Implementations of readability metrics and the layout improvement

technique in SocialAction and NodeXL, and

– A survey of work on readability metrics and evaluations of their effec-

tiveness on various network analysis tasks.
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This dissertation is aimed at helping researchers, tool designers, and network

analysts. For researchers, my work demonstrates that progress is possible in im-

proving node-link visualization readability and contributes to the literature an

improved understanding of why some network visualizations are difficult to read.

For designers of network analysis tools, I detail specific techniques they can imple-

ment and give guidance as to what measures of readability could help users create

more effective visualizations. For analysts, I hope to raise awareness that the im-

ages they share or publish could be of higher quality, so that readers could extract

relevant information. Furthermore, I provide an implementation of my techniques

analysts can apply, so as to improve the utility of their network visualizations

through layout changes and meaningful aggregations. My three strategies are

complementary and applicable to many types of networks and user explorations.

The techniques can be applied separately or in combinations based on the type of

network and tasks involved, with different methods better for highlighting certain

characteristics.

1.6 Dissertation Roadmap

The remainder of this dissertation is broken into several parts. First, in Chapter 2

I discuss prior work done on network exploration, measuring readability, analyzing

motifs, meta-layouts, and visualization evaluation. Next, in Chapter 3 I detail
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the NodeXL network analysis tool [Smi+10] in which many of my dissertation

contributions are implemented, as well as several applications of network analysis

to problems in diverse domains. These applications helped guide my dissertation

research. Then, Chapter 4 covers the motif simplification approach for reducing

complexity by combining functionally equivalent nodes and edges. Moving on,

Chapter 5 describes the meta-layout and Group-in-a-Box approaches for subdi-

viding complex networks into manageable yet meaningful pieces. Chapter 6 then

discusses techniques for understanding and improving the readability of a standard

node-link network visualization. Finally, I conclude and discuss future directions

in Chapter 7. Parts of this work have already been published [DS13; SD12] or

are currently under submission [Cha+13], in addition to the many domain-specific

publications discussed in Chapter 3.



Chapter 2

Related work

2.1 Introduction

The field of network analyses and visualization is extensive. In this chapter I

provide an overview of general network visualization principles, as well as detailed

discussion of the techniques most relevant to my dissertation contributions. First,

in Section 2.2 I detail general techniques for network visualization and analysis,

including alternatives to the standard node-link visualization that have various

tradeoffs. I have chosen to focus my work on improving node-link visualizations

as they are the best visualization for understanding the overall structure of a

network and for many important path-based tasks [HF07]. Moreover, they are

incredibly widely used [Ari08; SA06] and the only network visualization available

in common analysis tools like NodeXL [Smi+09] (Section 3.2), Gephi [BHJ09],

Cytoscape [Sha+03] (Fig. 2.2), Pajek [BM98], and GUESS [Ada06].

Next, I describe the current techniques for measuring the readability of node-

link visualizations in Section 2.3. These techniques form the basis for my work on

21
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readability metrics, which I use to help users both understand and improve the

readability of their node-link visualizations. Third, in Section 2.4, I cover work

with similar goals as my motif simplification technique. This includes approaches

for aggregating, clustering, or filtering networks based on topology or attributes, in

addition to detecting frequently occurring motifs in networks. Moving on, I detail

techniques for taking groups or subnetworks into account when computing layouts

in Section 2.5 and contrast these with my Group-in-a-Box meta-layouts. Some of

my techniques I can evaluate empirically using simulations, but in many cases it is

important to put them in front of real users to determine real-world utility. I relate

common evaluation techniques for these kinds of studies in Section 2.6. Finally, I

summarize the novelty of my approaches in Section 2.7.

2.2 Network Visualization & Analysis

The area of network analysis is currently of great interest to the community, and

many systems have been developed to visualize and analyze networks. There are

several general visualization frameworks that can be extended programmatically

to create arbitrary visualizations of networks or other datasets, such as the Info-

Vis Toolkit [Fek04], Prefuse [HCL05], and JUNG [OM+03]. Traditionally, dedi-

cated network analysis tools have focused on two specific kinds of visualizations:

node-link and matrix representations. Node-link visualizations excel at showing
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Figure 2.1: The Pajek social network analysis tool [BM98] showing the main core
subgraph extracted from Internet routing data.

network topology, especially in sparse social networks. Most general-purpose and

domain-specific network analysis tools incorporate node-link visualizations, includ-

ing NodeXL [Smi+09] (Section 3.2), Gephi [BHJ09], Cytoscape [Sha+03] (Fig. 2.2),

Pajek [BM98] (Fig. 2.1), GUESS [Ada06], and SocialAction [PS06]. I focus my ef-

forts on improving the utility of node-link visualizations both because of their

effectiveness at showing overall network topology, as well as their wide usage.

Matrix representations are less frequently used, but are better suited to espe-

cially dense networks. MatrixExplorer [HF06], TimeMatrix [YEL10], and Matrix
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Figure 2.2: The Cytoscape biologic network analysis tool [Sha+03].

Zoom [AH04] are prime examples of matrix visualizations. Whether a matrix or

node-link representation is better suited for a specific network depends substan-

tially on the size and characteristics of that network. Node-link visualizations

are favored in all cases for path-finding tasks [GFC04] and both show the overall

topology of small networks quite well, but readability becomes an issue when con-

fronted with more than a few thousand nodes. Several recent tools like MatLink

[HF07] and NodeTrix [HFM07] (Fig. 2.3) have worked to integrate the matrix and

node-link representations to combine their strengths. However, the node-link vi-

sualizations I focus on remain the most widely used as well as the most effective

network overview visualization.
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Figure 2.3: NodeTrix [HFM07] showing an overview of research in information
visualization from the InfoVis ’04 contest.
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Social network datasets such as scientific collaboration networks or friendship

networks often contain multiple types of nodes and edges (i.e., heterogeneous),

and multiple attributes on nodes or edges (i.e., multivariate). In node-link visual-

izations, multiple attributes can be encoded using size, color, shape, opacity, etc

[Mac86]. In particular, [Bla+09] recently attempted to represent multiple types of

edges in node-link visualizations using texture and animation. However, it remains

challenging to identify patterns and extract trends by solely relying on these visual

encodings. My implementations in NodeXL [Smi+10] provide all these state-of-

the-art attribute encodings for the node-link visualization, excluding animation.

The motif simplification approach even shows underlying color or size informa-

tion in the representative glyph for a motif. Unfortunately, effective attribute

exploration requires alternate visualizations, like those I discuss in the following

paragraphs and Section 3.3.2.

Various hybrid network visualizations attempt to combine topology and multi-

variate data more effectively into a single visualization such as the scatter plots of

nodes connected by edges in Semantic Substrates [SA06] (Fig. 2.4) or GraphDice

[Bez+10] (Fig. 2.5). Other hybrid approaches provide a visualization of topology

on top of node aggregates, such as overlaying edges on Treemaps [Fek+03], com-

bining Treemaps with node-link visualizations [ZCM05] or matrix representations

for dense clusters within an aggregate node-link visualization [HFM07] (Fig. 2.3).
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Figure 2.4: NVSS [SA06] showing citations from two Circuit Court cases in 1991-
1993 to 19 Supreme Court cases and two other Circuit Court cases.

However, performing analysis of networks with many attributes remains a challenge

with these representations, not to mention the difficulty for network overview and

topology-based tasks.

There have been some recent attempts to specifically handle the attributes in

multivariate networks. For example, ManyNets [Fre+10] (Fig. 2.6) allows users to

partition networks according to attributes or topological properties, supporting fast

comparison of the partition statistics, though it is difficult to extract patterns and
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Figure 2.5: GraphDice [Bez+10] showing the InfoVis 2004 contest bibliographic
network. The left shows the plot matrix window and the right shows the selected
plot. The right view animates between selected plots.

Figure 2.6: ManyNets [Fre+10] displaying the distributions of various statistics
across subgraphs (rows).
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Figure 2.7: PivotGraph [Wat06] showing communication between aggregations of
men and women (columns) and various locations (rows).

to identify relationships between the attributes. In contrast, PivotGraph [Wat06]

(Fig. 2.7) aggregates nodes by attribute and indicates relationships between the

aggregates using edges. However, it does not allow users to drill-down to see the

details of the network and does not support comparing more than two attributes.

Nor does it allow multiple types of nodes or edges (heterogeneous networks).

There have been many efforts to visualize heterogeneous and multivariate net-

works. General faceted browsing systems such as FacetLens [Lee+09] can be used

on networks with multiple types of nodes and multiple attributes. Nodes are
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Figure 2.8: The main NetLens [Kan+06] interface here is showing ACM SIGCHI
conference papers on the left and authors on the right.

grouped by their attribute values (i.e., facets) and users can pivot between node

types, but only from a single node to its connected nodes. FacetLens helps users

extract patterns and trends in the node attributes, but it does not explicitly rep-

resent the relationships between nodes. NetLens [Kan+06] (Fig. 2.8) is well suited

to handle content-actor networks with two node types. It uses two coordinated

views, each containing nodes aggregated according to their attributes. Users can

explore the network by filtering in one view and pivoting from their filtered sub-

set to connected nodes in the other view. NetLens allows for complex analysis
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scenarios and extraction of trends and patterns in multivariate content-actor net-

works, but is limited to two node types at a time. Alternatively, my GraphTrail

approach, which I discuss in Section 3.3.2, supports attribute exploration across

many different node and edge types.

All these techniques I have discussed are effective for exploring networks based

on their attributes, especially for heterogeneous networks. However, none of them

are as effective as standard node-link visualizations for showing the overall topo-

logic structure of a network and for helping users perform path-based tasks. How-

ever, these visualizations can be combined with node-link diagrams in a multiple

coordinated view system [NS00; BWK00], with brushing and liking to highlight

the same data in each view. One example tool is Network Workbench [NWB06],

which provides an impressive array of statistics, modeling, scientometric, and vi-

sualization algorithms for analyzing bibliometric datasets. Unfortunately these

visualizations lack brushing and linking and are weakly integrated into the rest of

the exploration process. Examples of systems that do a better job of this include

my GraphTrail and Action Science Explorer (Sections 3.3.2 and 3.3.3).

2.3 Measuring Node-Link Visualization Readability

There is a substantial body of work aimed at developing and, more recently, em-

pirically verifying the correctness of a wide variety of readability metrics (RMs),
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Figure 2.9: Simple rule-based drawing optimizations shown in Figure 2.3.1 of
[Sug02, p. 14].
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or, as they are often called, aesthetic criteria. Sugiyama’s book [Sug02] includes

a figure showing several simple rule-based drawing optimizations, replicated here

in Fig. 2.9. Excellent overviews of RMs for general graphs can also be found in

[Bat+98; War04; Bat+94; BFN85]. RMs specific for trees and UML diagrams are

described in [WS79] and [Eic03], respectively. The first standard and numerical

definitions of many specific RMs were given by Purchase and Leonard [PL96] and

were elaborated on by Purchase [Pur02] who developed seven specific RM formulas.

These will form the basis for much of my work.

Previous work in this area primarily deals with RMs for the entire graph draw-

ing, giving, for example, a count of the total number of edge crossings. I name

such RMs for the entire drawing as global readability metrics, or global RMs,

and have developed several that are not included in the literature. Section 6.4

provides a detailed background for several global RMs, including Edge Crossing,

Edge Crossing Angle, and my new Node-Node Overlap, Node-Edge Overlap, and

Group Overlap metrics. Several other global RMs are discussed there in less detail,

though many have citations to prior work in the area. These serve as excellent

measures for how understandable the whole graph drawing is, but do not provide

the level of specificity needed to direct users to problem areas. To address this

problem, I augment several existing and my new global RMs with novel local

readability metrics for individual nodes and edges.
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Several layout algorithms try to directly satisfy readability metrics, such as

using simulated annealing to distribute nodes evenly, make edge-lengths uniform,

minimize edge-crossings, and keep nodes from coming near edges [DH96]. However,

most layout algorithms use simple heuristics instead. Moreover, no sufficiently

fast automatic layout techniques exist to leverage these metrics to create better

general node-link visualizations. Rather than try to combine these metrics in a

computationally expensive layout algorithm, I develop an assistive user feedback

technique to help users optimize their layout manually using local RM calculations.

2.4 Motif Simplification

We can reduce the visualization complexity by showing an aggregate version of the

network, based on any number of criteria. NetLens [Kan+06] (Fig. 2.8) groups

nodes by their attributes and can pivot between connected groups of two different

types, while PivotGraph [Wat06] (Fig. 2.7) uses attribute groupings but shows ties

between aggregates using arcs. One of my techniques, GraphTrail (Section 3.3.2),

combines these approaches with familiar charts, arc diagrams, and a many-to-many

pivot between several node types. However, these approaches focus on attribute

comparisons at the expense of showing topology, as I discussed in Section 2.2.

Alternatively, my motif simplification approach retains all topology information in

the overview visualization by using glyphs for specific motifs.
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Figure 2.10: Greedy graph summarization technique applied to the CRN-10k
graph. From [NRS08].

Instead of attribute aggregation, we can use a hierarchical topologic clustering

to show a topologic overview in a network of meta-nodes like ASK-GraphView

[AHK06] or van Ham & van Wijk [HW04]. Rather than letting meta-nodes over-

lap, van Ham & van Wijk used semantic fisheye views to show clusters as merg-

ing spheres. Other approaches to creating overview networks include graph sum-

marization [NRS08] (Fig. 2.10) and aggregating nodes by shared neighbor sets

[LSS12]. Liao, Shi, and Sun [LSS12] also provide a topologic clustering tool, and a

level of detail option to split meta-nodes apart to better see the underlying topol-

ogy. ManyNets [Fre+10] (Fig. 2.6) takes a different approach, showing statistical

comparisons of a network partitioned by topology, attributes, or time. These tech-

niques can show the aggregated topology of networks with hundreds of thousands

of nodes, but not the underlying topology which is important for users to under-
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stand the network structure. Often this is because of the ambiguous nature of

clustering algorithms, in contrast to the exact motif detection algorithms I de-

veloped for motif simplification. Moreover, these tools do not present aggregate

attribute information on nodes, unlike my motif glyphs.

Alternatively, we can filter to an important subset using a metric for node

importance. Skeletal images [Her+99] highlights high-metric nodes, and replaces

filtered trees with triangles that take the same space. Motif simplification, instead,

aims to reduce the space required by the network in the visualization and allow

additional layouts. Tsigkas, Thonnard, and Tzovaras [TTT12] similarly filtered a

security network of events and features on a domain-specific metric, while includ-

ing a way to aggregate the events joining a subset of features into meta-edges.

However, the aggregation is limited to ties between two feature types and obscures

the number of connecting nodes and edges.

My approach is to instead aggregate the network by the frequently occurring

motifs it contains. While the fan, connector and clique motifs I target are quite

prominent in social network datasets, there are many other motifs of interest,

especially for biologists. Motif census (counting the kinds of motifs) and analysis

is used extensively to analyze the behavior of complex biologic networks, looking

for repeated patterns that indicate underlying processes. For example, Milo et al.

[Mil+02] used an approach that finds motifs that appeared more frequently than
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Figure 2.11: An interesting motif found in the protein-protein interaction network
of S. cerevisae, a species of yeast. It appears 27,720 times, though these motifs all
overlap and share the same set of 29 nodes. From [GK07].

expected in suitably random networks. They provide an extensive chart of motifs

of three or four nodes, and describe their frequency in various biologic networks.

Also, Zhu, Gerstein, and Snyder [ZGS07] provides an overview of the use of network

motifs for analyzing biologic networks. Luscombe et al. [Lus+04] and Ye et al.

[Ye+05] both demonstrate the applications of motif analysis for understanding

biologic processes. To look for motifs larger than three or four nodes, Grochow

and Kellis [GK07] developed a technique called symmetry-breaking that quickly

finds motifs of various sizes. In applying their algorithm to the protein-protein

interaction network of S. cerevisae, a species of yeast, they discovered one motif

that appeared 27,720 times but does not appear at all in suitably created random

ensembles. This motif, shown in Fig. 2.11, is composed of various overlapping

combinations of 29 nodes that represent cellular transcription machinery. For my

three motifs, I had to develop my own algorithms to scale well to large motifs.
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Figure 2.12: In MAVIsto [KSS06], matches for a particular motif like the feed-
forward loop are laid out aligned the same direction and highlighted. The bar
chart shows how frequently particular motifs occur above expected levels.

Knowledge of the motifs present in a network can help predict behavior and the

“structural signatures” of individual entities [Wel+07], but visualizing these motifs

effectively is challenging. Huang et al. [Hua+05] detect motifs with fewer than

five nodes and draw transparent convex hulls to highlight them. Similarly, Klukas,

Schreiber, and Schwöbbermeyer [KSS06] take the matches to a chosen 3–5 node

motif and color them within the overall visualization and draw them identically

to be easily spotted (Fig. 2.12). While highlighting the motifs can help biologists
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spot the locations of particular processes, it does little to reduce the clutter of a

complex network drawing and can even reduce the readability. Instead, my motif

simplification work directly tries to reduce this clutter by replacing motifs with

representative glyphs.

In contrast to motif simplification, current approaches to reducing complex-

ity aggregate nodes based on their attributes, topology, or metrics but do not

provide visible indications on the meta-nodes showing the underlying topology.

Moreover, these algorithms usually pay little attention to the motifs present and

create a grouping with ambiguous topology. While current tools can highlight

small detected motifs, there are few techniques for providing a graphical overview

or summary of them. More importantly, I know of no approaches other than motif

simplification that leverage the motifs present to reduce the visual complexity of

the network visualization.

2.5 Meta-Layout

Much of the work on meta-layouts has focused on so-called multiscale layouts,

which attempt to take more structure of the graph into account for the layout than

plain force-directed techniques. For example, Large Graph Layout [Ada+04] iter-

atively moves down a minimum spanning tree placing children on spheres around

parents. This results in beautiful static images such as the map of the Internet in
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Figure 2.13: Large Graph Layout [Ada+04] rendering of the internal structure of
the Internet (as of 2005). From opte.org/maps

http://www.opte.org/maps/
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Fig. 2.13, though it is hard to see topology and near impossible to see attributes

at the scale of networks they tackle.

Other examples of multiscale layouts include a Cytoscape plugin by Salmela,

Nevalainen, and Aittokallio [SNA08], the Harel-Koren FMS layout [HK02a] used in

NodeXL [Smi+10], and many others (e.g., [HJ05; Wal01; Won+08; GGK04]). One

effective approach, the Lin-Log layout [Noa04], takes explicit cluster membership

into account when computing the node positions. Hachul and Jünger [HJ06] pro-

vide an experimental comparison of six multiscale layouts on various toy datasets,

such as the random grid and Sierpinski triangle shown in Fig. 2.14, as well as some

real-world ones like the social network in Fig. 2.15. These multi-scale layouts can

show the overall topology of the network well if they use enough screen space, but

this “zooming out” prevents them from displaying internal group ties clearly. None

of them, including the Lin-Log layout [Noa04] which takes clusters into account,

highlight group sizes and internal structures as well as my Group-in-a-Box layouts.

One interesting meta-layout is a modification to Treemaps that attempts to

map the boxes to known geographic locations [WD08]. These spatially ordered

Treemaps can be effective for visualizing geographic data like the London tube

network (Fig. 2.16). This could be potentially modified to use the the relative

relationships of the groups rather than the geography. However, I chose to allow

some screen space to be “wasted” to show the ties between groups more clearly
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Figure 2.14: An experimental comparison of six layout algorithms on a random
grid and Sierpinski triangle dataset, discussed in [HJ06].
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Figure 2.15: An experimental comparison of six layout algorithms on a social
network dataset produced widely different layouts. From [HJ06].

instead of using a Treemap algorithm. Another meta-layout is DICON [Cao+11]

(Fig. 2.17), which uses Treemap-like icons to represent clusters. In addition, it uses

a layout algorithm for the icons that generate similar icons for similar clusters. This

approach would potentially do well with hierarchically clustered networks instead

of a one-level hierarchy like the Group-in-a-Box layouts use, but does not display

the internal group structure nearly as well as the Group-in-a-Box layouts.

One option is to use edge bundling rather than aggregating the underlying

edges like I commonly do with my Group-in-a-Box layouts (e.g., Fig. 1.7). Since

large numbers of links that span a graph drawing can undermine readability, there

has been a strong attraction to edge bundling to reduce clutter [Hol06; Pup+11].
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Figure 2.16: Spatially ordered Treemap [WD08] of the London tube network. Sta-
tions (squares) are colored by the lines they serve.

Figure 2.17: DICON [Cao+11] showing Treemap-like icons for clusters.

Figure 2.18: Increasing strength of edge bundling going left to right. From [Hol06].
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NodeXL [Smi+10] currently supports several levels of edge bundling, and an ex-

ample of these increasing levels is shown in Fig. 2.18. The initial view is attractive,

but the bundles seem to obscure rather than highlight the strength of relationships

among the clusters. However, the option is available to users.

2.6 Evaluation

Evaluating the effectiveness of complex creativity and exploration tools can be chal-

lenging. Simple usability issues can be collected as participants express confusion

or difficulties, and can even be iteratively used to improve the system throughout

the user study [Med+02; Med+05]. I applied these techniques in the development

of my three network visualization improvement approaches. However, the scope of

the features used and the intellectual effort required for exploration render quan-

titative laboratory techniques infeasible for capturing many important aspects of

the tool usage [CC00]. For a recent overview of these techniques, see [Lam+11;

PFG08].

One way that individual tools can be analyzed and compared with others is

based on the insights into the data users find with them, where what constitutes an

insight is rigorously defined [Nor06; SND05; Sar+06]. Alternatively, Shneiderman

and Plaisant [SP06] make the argument that qualitative evaluation methods are

becoming common, accepted, and effective techniques for analyzing visual analytics
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tools. Excellent examples of these qualitative evaluation techniques for longitudinal

studies are demonstrated by [PS09; PS08a; SS06].

For my work, I predominantly use more conventional task-based studies and

experimental evaluations, as the approaches I am suggesting are more directly

comparable to the current state of the art node-link visualizations. Lee et al.

[Lee+06] provide a task taxonomy for network visualization, which I leverage in my

studies (e.g., see my evaluation of motif simplification in Section 4.5). The tasks I

chose are also used in many recent papers evaluating network visualizations [HF07;

SA06; GFC04]. Also, there is a substantial amount of work on user perception for

experimental metric-based studies, including [Pur02; War+02; Hua07b; BMK96].

However, this is beyond the scope of my work.

2.7 Summary

There are many approaches for visualizing networks, the most common being

node-link visualizations which are very effective for visualizing the overall network

topology. Unfortunately the effectiveness and perceived meaning of a node-link

visualization is highly dependent on the layout of nodes and edges. Readability

metrics exist to quantify the effectiveness of a static drawing, but do not iden-

tify specific problem locations. While several layout algorithms try to directly or

indirectly optimize for these metrics, they are often marginally effective or only
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useful for specific tasks for which they are optimized. Moreover, there are no user-

controllable layout algorithms or assisted layout techniques based on the metrics.

My work contributes new global readability metrics, as well as local readability

metrics to direct users to problem areas. I leverage these local readability met-

rics to create an interactive layout improvement technique that guides users using

visual metric feedback.

It is challenging to use node-link visualizations to analyze large, multivariate,

and/or heterogeneous networks, and one of the most effective approaches is to

use aggregation by topology or node and edge attributes. Effective aggregation is

difficult to do well while preserving the underlying aggregate topology. Aggregating

by network motifs has not been explored yet, nor has using representative glyphs for

the resulting meta-nodes. While aggregation by toplologic and attribute clustering

has been done in node-link visualizations, the resulting groups have only been used

to improve the layout of inter-group relationships. My Group-in-a-Box layouts can

show inter-group relationships, but also group size by their bounding regions as

well as internal group structure.



Chapter 3

Applied Network Visualization

3.1 Introduction

This chapter serves two purposes. First, it describes in detail NodeXL [Smi+10],

which is a free and open source network analysis tool that drops into Microsoft

Excel. I cover why I chose to implement many of my dissertation techniques as part

of NodeXL, as well as my many contributions to NodeXL’s design, development,

and evaluation (Section 3.2). Second, this chapter provides an overview of some of

my work on applying network analysis principles to various domains and real-world

problems (Section 3.3). It is from these applications that I gained an understanding

of what approaches are effective for displaying networks visually, which interaction

techniques are useful for exploring them, and what major challenges remained.

Moreover, I learned about the necessity for designing exploration tools for end

user tasks, as well as how to leverage powerful Computer Science and statistics

techniques and present the algorithmic results to users. These lessons guided my

dissertation work, and will continue to assist me in my future design challenges.

48
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Figure 3.1: The NodeXL [Smi+10] workspace. The dual pane view of network
data and metrics (left pane) with node-link visualization (right pane) provide an
integrated snapshot of statistics and visualization, along with built-in functions and
controls that support exploration and discovery. Individual worksheets separate
network analysis tasks into separate categories, closely aligned with topology and
attribute-based tasks, such as “Edges”, “Vertices” (nodes), and “Groups.” The
social network shown reflects voting patterns of U.S. senators, analyses of which
are detailed in [PS08a; PS09], as well as Sections 3.3.1 and 4.3.1.

3.2 NodeXL

NodeXL [Smi+09; HSS11; Smi+10], shown in Fig. 3.1, is a free and open source

network analysis add-in for Excel 2007/2010/2013. NodeXL is tailored to provide
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powerful features while still being easy to learn. The Excel integration allows rapid

data processing using standard formulas and macros, but NodeXL also provides

calculators for network statistics, automatic layout algorithms, visual attribute

encodings, dynamic filters, direct manipulation, coordinated views, and importers

from online social networks and common network file formats like GraphML, Pajek,

and UCINET. These importers are especially important for helping novice users

collect datasets that are of interest to them like Twitter keyword searches, their

Facebook network, or their personal email collection.

NodeXL is widely used in many disciplines and has a full-time developer as

well as a team of volunteer advisors and developers. Over 25 introductory courses

on network analysis have used NodeXL and its companion book [HSS11] as part

of their curriculum,1 due mainly to its ease of use, open source nature, and design

focus on novice users. I myself have taught several tutorials on using NodeXL for

network collection and analysis.

3.2.1 Contributions to NodeXL

I have been involved with the NodeXL project since 2008 as an advisor, developer,

and by running exploratory user studies that show that novice network analysts can

effectively explore datasets with NodeXL [Bon+09]. Moreover, many of the tech-

1nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching
%20Resources

http://nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching%20Resources
http://nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching%20Resources
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niques I present in this dissertation are implemented and made publicly available

in NodeXL. My motif simplification approach detailed in Chapter 4 is currently

shipping in NodeXL for anyone to use and build upon. Of the Group-in-a-Box

layouts I have worked on (Chapter 5), the Treemap GIB layout is already available

in NodeXL. The Croissant-Donut and Force-Directed variants have been imple-

mented and I will push them to the trunk shortly. Finally, some of my readability

metrics and the assistive layout improvement tool (Chapter 6) are implemented as

a hidden feature and may be released in the future when we can devote additional

time to readying them for public consumption.

I chose to develop my techniques within NodeXL for several reasons. First,

NodeXL is a high quality network analysis tool with a large, active, and expanding

user base. It has over 184,000 downloads and is on an increasing trajectory. More-

over, there are about 660 query results for “NodeXL” on Google Scholar, many

of which are papers applying NodeXL to network analysis challenges in various

domains. Second, given its role as a teaching tool, many NodeXL users generally

have little prior knowledge about network visualization readability. I believe that

these novice users will particularly benefit from my readability-improving tech-

niques. Moreover, the NodeXL codebase is separated into the classes necessary

for the interactive Excel template and a disjoint set of generally applicable code

that is packaged as a separate C# network analysis library. Users of this library
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have access to many of the algorithms behind my techniques without having to

do the implementations themselves. Finally, NodeXL’s free availability and open

source license encourages collaboration and provides a reference implementation

for future users interested in applying or evaluating my techniques.

3.2.2 NodeXL Interface

The basic interface of NodeXL is shown in Fig. 3.1. The left side provides several

worksheets in an Excel workbook that represents the network: one each for the

nodes, edges, groups, group members, and overall metrics. Each worksheet has

several columns, including basic information about the network like the nodes and

edges between them. Additionally, there are places to insert columns for node or

edge attributes and calculated metrics, as well as columns that control the visual

display of each network item. These include color, shape, size, label, tooltip,

display position, and the like. Any of these visual properties can be automatically

filled based on the metric or attribute columns using a special autofill dialog.

Moreover, standard Excel formulas or macros can be used for arbitrary calculations

and scales within the tool. The Excel ribbon is customized with a new tab for many

of the common operations users perform on networks, including the autofill feature.

The visualization pane shown in the right of Fig. 3.1 displays a node-link vi-

sualization based on the network in the workbook. Whenever the contents of
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the workbook is updated, the visualization pane can be refreshed using a button.

The pane also provides users with several automatic layout algorithms to arrange

the network, and any automatic or manual adjustments to the node positions are

stored in the workbook as well. Moreover, the contents of the visualization can

be filtered using a dynamic filters dialog. Additional windows can be opened for

filtering the visible network, autofilling visual property columns based on metrics

or attributes, and running automated analyses of several networks sequentially.

The worksheet view and the visualization pane are connected using brushing,

where any selection in one is reflected in the other. Clicking a node in the visual-

ization or dragging a box around several causes the associated rows to be selected

in the nodes worksheet. Likewise, any incident edges are selected in the edges

worksheet. The reverse is also true. Any nodes or edges selected in the worksheets

are highlighted in the visualization pane as well.

3.3 Applying Network Visualization to Real Problems

While much of my work has been on NodeXL [Smi+10], I have worked exten-

sively with target users from several domains on visualizing and analyzing their

real-world networks. I have been involved in network analysis projects for six

years, and I strive to solve real problems by initiating contact with domain experts

across many disciplines. I design and build visual analytics tools that have helped
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urban planners [SD12], political scientists [DS13], health care professionals, the

U.S. Treasury, and many others described below. This work has helped me gain

an understanding of the effectiveness of various visualization and interaction ap-

proaches, as well as what major research challenges remained. Moreover, it helped

me to realize the importance of keeping the end users and the tasks they wish to

accomplish in mind throughout the design process. The tasks end users wish to

perform drastically impacts the effectiveness of any chosen visualization and inter-

action techniques. Often, some of the best breakthroughs for the end users came

when I could integrate powerful Computer Science and statistical algorithms and

present the results within the visualization or a coordinated view in the tool.

3.3.1 The Importance of Network Topology and Filtering

For some network analyses users are only interested in the topology of the relation-

ships and not any additional attributes. For one such exploration, I visualized the

relationships between 750 organizations that are engaged in cancer research, aware-

ness, and outreach. The data used to create the network was collected through a

survey of these organizations by a central agency, the Cancer Information Service

(CIS) of the National Cancer Institute (NCI). Due to this selection method, the

CIS played a central role in each of the networks, connected to each of the surveyed

organizations. Many network datasets suffer from similar selection mechanisms,
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(a)

(b)

Figure 3.2: Relationships between cancer research, awareness, and outreach in DC,
MD, VA, and WV. The different colors represent each of the states in the region.
(a) shows the network with the CIS ego node circled in green, while (b) shows the
same network after removing the CIS node and laying it out again. The resulting
visualization shows the remaining group structure and connections more clearly.
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only showing the ego network of a person’s Facebook friends, related replies or

mentions on Twitter, or a set of connected web sites in a web crawl. In these sorts

of ego-centric datasets, simple filters like removing the ego of the network can sub-

stantially improve the resulting visualization. For example, Fig. 3.2 demonstrates

how removing the completely connected CIS ego node from the network for one

region can substantially improve the layout and readability of the remaining nodes,

with no loss of information.

Some networks have large numbers of nodes and edges which can obscure mean-

ingful groups or network items with interesting attribute values. Filtering can

be applied to node values to remove incidental nodes of specific types or with

low metric values, leaving only key actors. User-controlled dynamic query filters

[AWS92; WS92] have demonstrated their value in successful commercial products

that deal with multivariate data, such as Spotfire [Spo] and Tableau [Tab]. Dy-

namic query filters are even more valuable in network visualizations, where the

clutter of nodes and links can severely inhibit readability. NodeXL, discussed in

detail in Section 3.2, supports filters on node values, link values, graph metrics,

layout positions, and many other attributes.

Filtering is a well-established technique for multivariate data, as shown in scat-

tergrams, but the variety of filters in many networks means careful thought is

needed to produce effective results. Furthermore, scattergram filtering typically
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Figure 3.3: 2007 U.S. Senate voting network, showing all 4950 links. The net-
work is visualized inside the NodeXL network analysis tool as part of Excel. The
highlighted red edges show the Akaka–Allard and Akaka–Baucus ties.

leaves the remaining markers in place, but in networks, layout methods interact

with filtering, so thoughtful exploration is needed.

The power of attribute or metric filtering is shown in an example network of

U.S. Senate voting patterns from 2007.2 The similarity in voting patterns (from

0.0 to 1.0) is an attribute of each one of the 4950 links connecting the 100 Senator

nodes. The naive visualization produces a thickly connected graph (Fig. 3.3), but

filtering the similarity values to show only those with values above 0.65 produces

a revealing portrait (Fig. 3.1). The force-directed layout shows the willingness of

the three Republican Senators Snowe, Collins, and Specter (center, in red) to vote

2Data provided by Chris Wilson of Slate magazine available in the NodeXL template format
at nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching
%20Resources

http://nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching%20Resources
http://nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching%20Resources
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in support of their Democrat colleagues (top-right, in blue). One of these, Arlen

Specter, later switched his affiliation to the Democrats in 2009. However, apart

from the party groups and these moderates, not much of the network structure is

visible inside the dense party clusters. This data is further explored in Section 4.3.1.

As these filtering operations omit information from the visualization, it be-

comes important to keep track of what was omitted. While my GraphTrail ap-

proach detailed in Section 3.3.2 was designed to present the history of exploration

automatically, most network analysis tools do not give you any indication that

data has been removed. This prompted me to think about ways that nodes in

larger datasets could be automatically filtered, but displayed in such a way as to

notify the user what filtering has taken place and display the underlying node dis-

tributions. This is especially important for ego-centric datasets like social network

crawls or web crawls like discussed in Section 4.3.4, where there can be an enor-

mous amount of peripheral data that can obscure the core relationships. This line

of thought helped guide me in the creation of the fan and connector motif simplifi-

cation approaches described in Chapter 4. Similarly, in the Senate example above

the importance of edge filtering was highlighted to me. The clique motifs simplifi-

cation technique I develop in Chapter 4 is based on this kind of edge filtering, and

I even apply it to the same Senate dataset in Section 4.3.1.
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3.3.2 The Importance of Node & Edge Attributes

Some network datasets and analysis tasks require less focus on the topology and

more on the node and edge attributes. One of my studies focused on the network

of relationships formed by IP traffic on a local area network (LAN) [Blu+08].

The visualization tool we designed, NetGrok, is targeted at system administrators

monitoring the status of their LAN. While the LAN topology was important for

users to view, the topology of the connections with remote machines was less likely

to be observed in the packet capture or relevant to the users. We focused instead

on showing changes in communication patterns that could indicate malicious or

erroneous behavior on the LAN.

The approach we developed for this challenge focused on presenting aggrega-

tions of the connection attributes over time such as the bandwidth used and total

number of connections. Two of the views of NetGrok are shown in Figs. 3.4 and 3.5.

In the node-link view (Fig. 3.4), the relationships between computers on the LAN

are shown using a force-directed layout in an inner circle, while remote computers

are arranged in a hash layout based on one of their attributes: their IP address.

Connections to external computers were hidden by default due to their number

and relatively low meaning, but shown on demand. An alternate view replaced

the node-link visualization with a treemap as in Fig. 3.5, where each relationships

are similarly shown on demand.
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Figure 3.4: NetGrok’s [Blu+08] elements include a node-link visualization (upper
left), a time-line histogram (lower left), a filter panel (upper right), and details on
demand (lower right).

While individual nodes and their relationships can be of interest, in many cases

it is the groups of nodes and their aggregate relationships that are more useful to

study. One of my previous projects as an intern at Microsoft Research, called

GraphTrail [Dun+12a; RLD] (Fig. 3.6), was targeted at more general networks

and aimed to explore networks by aggregating node and edge attributes in stan-

dard charts. For example, the bars in the bar chart in Fig. 3.6 each represent an

aggregate of nodes and the arcs along the bottom show the aggregate relation-
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Figure 3.5: NetGrok’s [Blu+08] treemap layout arranges computers by the number
of connections they have and colors them by the bandwidth used. Communications
between computers are shown using highlighting on mouseover.

Figure 3.6: GraphTrail [Dun+12a] showing three views of ACM SIGCHI conference
publications, based on both the authors and their connected papers.
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Figure 3.7: A GraphTrail [Dun+12a] analysis showing two parallel exploration
paths, the top examining Georgia Tech (GT) publication and citation patterns and
the bottom comparing Microsoft Research (MS). They start at the ROOT chart
that contains all the papers in the dataset. Charts in each path are numbered in
order of creation (e.g., 1, GT2, GT3, etc.), and the user interactions are shown
with stars. The MERGED chart is the union of both branches’ results. The user
moved the mouse over the final parent link in the GT path (circled), highlighting
the chain of actions up to the root.

ships between them. Similarly, the matrix chart on the far right show aggregate

citations between authors and even to themselves along the diagonal. In addition,

GraphTrail provides a pivoting mechanism to explore connected aggregates of the

network across node types.

One of the main benefits of GraphTrail is an infinite canvas that aggregates

can be dragged to and dropped to create new charts for filtered subsets. Moreover,

data can be dragged from several charts into one target, creating the union of those

sub-networks. This intuitive data filtering is augmented with parent links, which
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indicate the source(s) of the data for each chart. On mouseover, the parent links

highlight the entire provenance of that specific data all the way back to the root

chart, in addition to a text tooltip indicating the operation performed. An example

of this exploration history view is shown in Fig. 3.7. Exposing the analysis process

in this way enables users to utilize their spatial memory while visual and textual

feedback helps them track their interactions.

I compared GraphTrail with three tools with similar goals: NetLens [Kan+06]

(Fig. 2.8), PaperLens [Lee+05], and FacetLens [Lee+09]. From this I determined

that GraphTrail could make all the findings reported for the other tools, as well as

several additional ones that were not discoverable in the others. Moreover, a three-

month field study with a team of archeologists and a lab study demonstrated that

GraphTrail improves insight discovery, analysis comprehension, exploration recall,

and sharing analyses with others. Prior to using GraphTrail, the archaeologists

had been using Cytoscape [Sha+03] to explore slices of the network with one or

two node types, and GraphTrail greatly assisted their explorations by allowing

more interactive exploration and exposing the exploration history. This approach

may be a first step on the way to asynchronous collaboration for network analysis.

Both NetGrok and GraphTrail were designed to primarily display attribute

information, with the underlying topology available on demand or in aggregate.

These two approaches are highly effective for certain tasks, such as monitoring a
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computer network (NetGrok) or exploring the attributes of a network while pre-

serving the data provenance (GraphTrail). However, neither are particularly good

at showing the overall topology and path information that would be available in a

node-link visualization. Through these projects I began to understand the breadth

of visualization techniques for networks, and that it is often difficult to build gen-

eral tools for all kinds of analysis tasks. My dissertation work has primarily focused

on helping users perform topology-based tasks, though my increased awareness of

the importance of attribute values guided the design of the motif simplification

glyphs (Chapter 4) and Group-in-a-Box aggregation techniques (Chapter 5).

3.3.3 The Importance of Statistics and Algorithms

Much of my applied work in network analysis has been in text analytics and sci-

entometrics, the science of measuring and analyzing science. My work on scien-

tometrics focuses on measuring the impact of scientific publications, patents, and

trade press articles and how they affect innovation.

One example is a study I did comparing the trajectory of three information

visualization innovations: treemaps, cone trees, and hyperbolic trees [Shn+12].

I collected and analyzed academic publications, patents, and trade press articles

over the almost two decades after the techniques were proposed. While node-link

visualizations were useful, I found that for this task line charts were a more effective
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(a)

(b)

Figure 3.8: These line charts show the impact of treemaps (TM/green), cone
trees (CT/red), and hyperbolic trees (HT/blue) in terms of trade press articles,
academic papers, and patents. (a) shows the number of publications per year by
type of publication for each innovation and (b) shows the number of citations to
papers and patents by year for each innovation. Note that the sharp fall in patent
figures in the faded area may be due to the average 32-month USPTO processing
time in 2005-2008. From [Shn+12].
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Figure 3.9: NetVisia [Gov+11b] visualization of the clustered heat map of the
degree values for the STICK business intelligence term co-occurrence data from
2005, filtered to show only nodes with degrees between 45 and 491.

network representation of what we wanted to see: changes in statistics over time.

Two examples are shown in Fig. 3.8, where the citation network is displayed as

several line charts that show aggregates of nodes and edges over time. Our paper

[Shn+12] shows additional examples using scatterplots.

I expanded these techniques to use clustered matrix diagrams for NetVisia

[Gov+11b], including clustering nodes by metrics and by topology. An example of

this is shown in Fig. 3.9 for business intelligence terms and their co-occurrences. In

this case it was both statistics and hierarchical clusters of related terms that were

of interest. These tasks were much more easily performed with line and matrix

visualizations, and reinforced my belief that tasks and statistics of interest should

guide tool and visualization design.
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Figure 3.10: After removing edges with low weight we can see the structure the
network backbone. Isolate category pairs are drawn in a ring around the main
connected component and singletons are staggered in the corners. Each node is
colored by its semantic orientation (red for negative, blue for positive) and edges
are colored by their weight, from red to blue. Node shape also codes semantic
orientation, with triangles positive and circles negative. Size codes the magnitude
the semantic orientation, with the largest nodes representing the extremes. Node
labels are shown for nodes in isolates and those in the top 20 for betweenness
centrality. From [MDD09].
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I also investigated using networks to model relationships between words or

word categories. As a way to understand the behavior of a new sentiment analysis

technique, I developed node-link visualizations of the semantic relationships be-

tween thesaurus categories [MDD09]. After algorithmically determining antonym

relationships between categories of the Macquarie Thesaurus, I was able to show

the relationships between categories of words as well as the semantic orientation of

individual categories using color Fig. 3.10. The density of this network was quite

high, with 812 nodes connected by 27,155 antonym edges, and thus necessitated

substantial filtering and labeling only the most significant nodes. An interesting

aspect of Fig. 3.10 is the large number of disconnected components in a ring around

the center, representing small groups of related thesaurus categories. Moreover,

there are many completely disconnected categories laid out in the corners of the

visualization. At the time, NodeXL [Smi+10] had no way of handling these discon-

nected nodes and this layout took an enormous amount of my time to hand-tune.

This kind of rote, manual correction helped me understand the necessity of tech-

niques for handling disconnected components, such as the Group-in-a-Box layout

algorithms I describe in Chapter 5 which would make this task automatic today.

Another project I was involved with focused on creating a literature exploration

and analysis tool called Action Science Explorer (ASE) [Dun+12b; Gov+11a].

ASE was designed to support exploring a collection of papers so as to aid users
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Figure 3.11: The main views of ASE [Dun+12b] are displayed and labeled here:
Reference Management (1–4), Citation Network Statistics & Visualization (5–6),
Citation Context (7), Multi-Document Summaries (8), and Full Text with hyper-
linked citations.

in rapidly creating summaries of unfamiliar research domains. It incorporated (1)

bibliometric lexical link mining to create a citation network for a field and context

for each citation, (2) automatic summarization techniques to extract key points

from papers, and (3) potent network analysis and visualization tools to aid in the

exploration relationships. ASE, shown in Fig. 3.11, presents the academic litera-

ture for a field using many different modalities: tables of papers, full texts, text



3.3 Applying Network Visualization to Real Problems 70

Figure 3.12: Algorithmically found communities in ASE [Dun+12b] are shown
using convex hulls in the node-link visualization. When selected, all the citation
context is shown in the top-right, along with an automatically generated summary
of the overall context (bottom-right).

summaries, and visualizations of the citation network and the groups it contains.

Each view of the underlying data is coordinated such that papers selected in one

view are highlighted in the others, providing additional metadata, text summaries,

and statistical measure rankings about them. Users can filter by rankings or via

search queries, highlighting the matching results in all views.

ASE represented a major collaboration with several experts in Natural Lan-

guage Processing, who were interested in (1) understanding the effectiveness of

their link mining and multi-document summarization approaches and (2) being

able to apply these algorithms to real tasks and present the results to users. An

example of the multi-document summaries ASE can compute is shown in Fig. 3.12
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for a selected topologic cluster of papers. Our collaborations helped them improve

the effectiveness of the summarization algorithm, as well as develop a prototype

tool that will guide developers of literature exploration systems to integrate such

Natural Language Processing techniques.

From all these collaborations I have gained an improved understanding of how

algorithms and statistics can be brought to bear on network analysis tasks. The

various attribute- and topology-based clustering algorithms especially can be used

to create the groups for my Group-in-a-Box layouts (Chapter 5). Moreover, if there

are any text associated with nodes or edges like the Tweets in a Twitter keyword

network, this text can be analyzed to present additional information to the user as

part of the group box labels or in additional coordinated views. The results of a

statistics algorithm can be shown using color coding or the like, and then displayed

in aggregate within my motif glyphs (Chapter 4).

3.4 Summary

NodeXL [Smi+10] is a free and open source Excel template for network analysis.

It provides powerful features while still being easy to learn, and avoids the pre-

processing and programming steps required by many existing tools. The Excel in-

tegration brings standard formulas and macros, but we also include calculators for

network statistics, layout algorithms, visual attribute encodings, dynamic filters,
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direct manipulation, coordinated views, and much more. NodeXL is widely used in

many disciplines and taught in over 25 introductory courses on network analysis.

I have been involved in the design, evaluation, and development of NodeXL, and

have integrated the techniques presented in this dissertation as part of the shipping

product. As my research focuses on improving network visualization readability,

it is especially beneficial for the introductory users NodeXL targets.

In addition to my work on NodeXL [Smi+10], I have been involved in the appli-

cation of network analysis and visualization techniques to problems across several

domains. In the various domains I have worked in, several different network prop-

erties have been important to display. Working with real users helps inform the

design process, as the tasks, statistics, and algorithms relevant to them dramat-

ically affect the choice of visualization and interaction techniques. In domains

where network topology was most important to show, filtering the network by at-

tributes or statistics was critical. The limitations of filtering techniques helped

guide my development of motif simplification (Chapter 4). Moreover, when show-

ing topology there is a major challenge in finding an effective and simple layout

for the nodes that avoids readability problems, while at the same time highlighting

the necessary structures for the task at hand. This provided me with motivation

to investigate the use of readability metrics for understanding these issues and

improving the layout (Chapter 6). In other cases, the attributes of the nodes or
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edges in the network were more important, and I developed specialized visualiza-

tions depending on the user tasks. While my dissertation work is focused primarily

on topology-based tasks, I gained an understanding of the importance of showing

attribute or statistics information. This informed the design of my motif simplifica-

tion glyphs and Group-in-a-Box aggregation techniques (Chapter 5). Other forays

into domains such as Natural Language Processing helped me to understand the

necessity of Group-in-a-Box layouts, even for handling simple disconnected com-

ponents. These explorations helped shape the rest of my dissertation work, as well

as my future design challenges.



Chapter 4

Motif Simplification to Reduce Complexity

4.1 Introduction

One way to reduce the complexity of node-link network visualizations is the use

of aggregation, specifically by aggregating common network structures or subnet-

works calledmotifs. Large, complex network visualizations often have large motifs

repeated throughout because of either the network structure or how the data was

collected. Regardless of their cause, some frequently occurring motifs contain little

information compared to the space they occupy in the visualization. Existing tools

may highlight certain motifs, allow users to filter them out, or replace groups of

similar nodes with meta-nodes (e.g., see Section 5.2.2 and Fig. 5.4) – but each of

these approaches has the serious limitation of obscuring the underlying topology.

Figure 4.1: From left to right: fan, connector, and clique motifs.

74
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I improve on these approaches with motif simplification, in which network

motifs are automatically replaced with compact, representative glyphs. Well-

designed glyphs have several benefits: they (1) require less screen space and layout

effort, (2) are easier to understand in the context of the network, (3) can reveal

otherwise hidden relationships, and (4) preserve as much underlying information

as possible. In this chapter I discuss three high-payoff motifs that plague network

analysts, shown in Fig. 4.1: fans, connectors, and cliques. I contribute the

design of representative and combinable glyphs for these motifs, algorithms for de-

tecting them, and a supporting task-based controlled study with 36 participants.

These techniques are all implemented and made publicly available as part of the

free and open source NodeXL network analysis tool [Smi+10].

4.1.1 Chapter Overview

Specifically, the contributions of this chapter are:

• A technique for simplifying node-link visualizations by replacing common

network motifs with representative glyphs,

• A set of design guidelines for these glyphs to show the motif contents and

underlying attributes,

• The design of glyphs for fans, connectors, and cliques,

• Algorithms for detecting these three motifs,
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• A supporting task-based study with 36 participants,

• A free and open source implementation as part of NodeXL.

Parts of this chapter have been published [DS13] as well as featured in an

overview paper on novel network analysis techniques in NodeXL [SD12]. I first

describe the basics of Motif Simplification (Section 4.2), including glyph design

(Section 4.2.1), motif detection algorithms (Section 4.2.2), and details about the

NodeXL implementation (Section 4.2.3). I next demonstrate the utility of motif

simplification in several case studies (Section 4.3), a usability study (Section 4.4),

and a controlled experiment (Section 4.5). I end with a summary in Section 4.6.

4.2 Network Motif Simplification

Many common network motifs present little meaningful information, yet can dom-

inate much of the display space and obscure interesting topology. I believe that

replacing these motifs with representative glyphs will create more effective visual-

izations as there will be far fewer nodes and edges for layout algorithms and users

to consider. I have chosen three motifs for my foray into motif simplification:

• A fan motif consists of a head node connected to leaf nodes with no

other neighbors. As there may be hundreds of leaves, replacing all the leaves

and their links to the head with a fan glyph can dramatically reduce the

network size.
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• A D-connector motif consists of functionally equivalent span nodes that

solely link a set of D anchor nodes. Replacing span nodes and their links

with a connector glyph can aid in connectivity comparisons.

• A D-clique motif consists of a set of D member nodes in which each pair

is connected by at least one link. Cliques are common in biologic or similarity

networks, where swapping for a clique glyph can highlight subgroup ties.

These motifs are prime simplification candidates for several reasons. For one,

these motifs are quite common in the network datasets I have encountered in

several disciplines. While simple to understand on their own, these motifs can

account for much of the visual complexity of a node-link visualization. The fan

motifs especially can dominate the diagram. While connector motifs usually occupy

less space than the fans, they are hard to detect and can contribute substantial

complexity. In the densest networks, such as similarity scores, overall relationships

can be hidden in a tangled hairball of overlapping clique motifs as in Fig. 4.9a.

4.2.1 Glyph Design

For each motif, careful thought must be given to how to represent the simplified

version. Arbitrary motifs can be shown as a simple meta-node (e.g.,
⊕

), possibly

with embedded images that show a small node-link visualization of the underlying

subnetwork. However, a specially designed representative glyph for a motif can
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Figure 4.2: A 2-connector motif with three simplified glyph variants: diamond,
crescent, and tapered diamond.

make it easier to understand aggregate topology and attributes with only minimal

additional visual clutter. I went through several designs for each of my motif

glyphs, some of which are discussed below.

4.2.1.1 Motif Topology

Foremost each glyph must be representative of the underlying subnetwork topology

so that the aggregate relationships in the network can still be understood. As I

aim to reduce visual clutter, I must use a small, easily-distinguishable glyph rather

than heavy-weight visualizations. An effective way to differentiate the glyphs is to

use unique shapes to identify each type, ideally that correspond to the underlying

topology.

Several example shapes for a connector motif are shown in Fig. 4.2. The dia-

mond is a straightforward representation of the outline made by the motif topology,

is discernible at scale, and has geometric properties that allow easy area scaling
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Figure 4.3: A 3-connector motif and its glyph.

and subdivision. However, they are often used with other shapes for categori-

cal attribute coding. The crescent is not, but my user study indicated that its

asymmetry was visually jarring and that it had poor edge connector properties

(Section 4.4). I finally chose a symmetric tapered diamond: unique enough to be

distinguishable and representative yet symmetric and connectable. I use the same

shape regardless of the number of anchor nodes so as to reduce the shape corpus

required (Fig. 4.3). The clique motifs were originally represented with a tapered

square to indicate the link density, but it was easily confused with the connector

motif and has since been replaced with a rounded X (Fig. 4.6). Like the connector

motif, the same shape is used for any number of clique members. For the fan

motifs, I chose a sector of a circle (Fig. 4.4), as it represented the fan of leaf nodes

commonly seen in node-link visualizations.
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Figure 4.4: Three fan motifs and two glyph variants of each.

4.2.1.2 Contained Nodes

In addition to the topology, it is helpful to show information about the nodes

contained in the motif. What information we want to show impacts the display

mechanism we choose for it. Most useful would be a count of the nodes in the motif.

This quantitative value is best expressed by position [Mac86], though in node-link

visualizations this is reserved for showing ties. The next best choices would be

length, angle, or area [Mac86]. For the fan motif, I scale the angle of the sector

linearly between 10–120◦ by the number of contained nodes, which also linearly
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Figure 4.5: Three 2-connector motifs and their glyphs.

Figure 4.6: 4-, 5-, and 6-clique motifs and their glyphs.
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scales its area (Fig. 4.4). I chose this range after tests using smaller ranges (20–90◦)

did not reveal enough size variation. The vertical alignment eases area comparisons

and eases glyph subdivision to show edge directionality or attributes. I also scale

the area of the other motifs linearly by the number of nodes (Figs. 4.5 and 4.6).

Designers of future motif glyphs should ensure the shape is still discernible at its

minimum size while not so large at its maximum to occlude edges unnecessarily.

We may also wish to show quantitative attributes or statistics of the under-

lying nodes. Showing all the values or their distribution would require complex

embedded charts or focusable tooltips. Instead, I show a function of the values

such as mean (used for these examples), sum, min, or variance. As size is reserved

for node count, we are left with the less effective color saturation, color hue, and

density/opacity [Mac86]. While these are less effective encodings, the maximum

deviation reported for quantitative tasks is only 13% [CM85]. Glyphs demonstrat-

ing these quantitative attribute or statistic encodings are shown in Figs. 4.4 to 4.6,

using the same color scale as the underlying nodes in the network. Categorical

attributes are more challenging to display without subdividing glyphs or embed-

ding visualizations, increasing the visual clutter. Finally, text attributes such as

labels would help reveal the contents of the motif. While a glyph can show a small

label, it is challenging to compute a representative one. Instead, I discuss later

how interactivity can reveal the underlying nodes.
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4.2.1.3 Connecting Edges

Nodes contained within a motif may have connecting edges, and when the motif is

simplified these edges are re-routed to link to the glyph instead. This can result in

duplicate, overlapping edges in straight-line drawings, as with the connector motif

in Fig. 4.5. As with nodes, it is useful to show the number of duplicate edges and

any attributes they may have. The edges could be drawn independently as curves

of varying arcs, stacked in slices with scaled area, or use the edge distribution

visualizations from [Mur08]; but again I strive to avoid visual clutter and show

aggregate relationships clearly.

I aggregate these duplicate edges into meta-edges, with width and thus area rep-

resenting a function of the underlying edges such as the number of edges (Figs. 4.9

to 4.11), the average of an attribute value (Figs. 4.4 and 4.5), etc. There are options

for showing categorical attributes or labels, but these require cluttered embedded

visualizations or interactivity. In some cases there are no attributes on the edges

to encode, and showing even edge count would be a redundant. One example is

the fan motif, in which the number of edges equals the already-encoded number

of leaf nodes (in an undirected network without duplicates). Example fan glyphs

without meta-edges are shown in the center column of Fig. 4.4.

Alas, glyph shape impacts how edges connect to them. Ideally, each glyph lies

along a straight line with connecting edges so paths can be traced easily. For the
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2-connector motif, a crescent would suffice if its corners were aligned along the

path (Fig. 4.2). However, for connectors with three or more anchors my users

reported that crescents make edges difficult to follow. Symmetric shapes like the

tapered diamond and rounded X are better suited for many connecting edges.

4.2.1.4 Motif Overlap

Figure 4.7: Glyphs for fan, clique, and connector motif overlap.

Often motifs are non-overlapping and easily transformed into glyphs, though

many motifs do not have this luxury. When detecting motifs I can choose a non-

overlapping set to display, but motif glyphs will be more effective at reducing

complexity when they can be combined to show overlapping motifs. The design

of any motif glyphs must thus take overlaps into account. Among my three mo-

tifs, fans are the most immune to overlap. The fan leaves have too few edges to

participate in the other motifs, though the fan head can be a connector anchor or

clique member. As a clique glyph replaces all the clique members, I must exclude

the fan head from the fan glyph to allow this combination. Similarly, a connector

anchor can be a clique member, which requires its exclusion from the connector
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glyph. Two example overlaps are shown in Fig. 4.7 and more on overlap handling

is discussed later in Section 4.2.2.4.

4.2.1.5 Glyph Interactivity

While the motif glyphs I described can be effective for simplifying a network, I

would like to make sure that they are easily understandable and investigable. One

important aspect of this is to ensure that users can switch between the original

and simplified views interactively. Users can simplify the entire network, or only

a selected subset of motifs. Likewise, users can expand the entire network to see

the original visualization, or only expand a selected glyph they are interested in

exploring. I expose the contents of each glyph with tooltips. It would be possible

to expand on this and show details for a glyph via a heavyweight focusable tooltip

that contains a chart of attribute distributions or a list of node labels.

Direct manipulation of the motif glyphs and underlying nodes is an effective

way of exploring the network. Users can adjust node or glyph placement manually,

as well as highlight incident edges or adjacent nodes through simple context menus.

Additionally, automatic layout algorithms are available for laying out the simplified

network. An ideal layout algorithm would take the shape and size of the glyphs

into account, in addition to the number of edges in any meta-edges.
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4.2.2 Motif Detection Algorithms

General motif detection can be accomplished with approaches like symmetry-

breaking [GK07], but custom algorithms are more effective for specific motifs that

can vary substantially in size. I have implemented algorithms to detect fan, con-

nector, and clique motifs of all sizes. I refer the interested reader to view and

utilize my C# source code.1 I use the terminology of a network or graph G with

a set of nodes G.nodes, and each node n has a set of adjacent nodes n.neighbors.

The size of each of these node sets, say s, is denoted as |s|.

4.2.2.1 Fan Motifs

My approach to detecting all the fan motifs in a network is detailed in Algorithm 1,

which has a run time complexity of O(|G.nodes| × average neighbor count). Av-

erage neighbor count is usually relatively small and can be considered a bounded

constant, so this technique should scale well. However, I recently came upon an al-

ternate, faster algorithm with linear time complexity shown in Algorithm 2, though

it has not yet been implemented in NodeXL and is not discussed further here.

The current algorithm (Algorithm 1) first passes through all the nodes in the

network, searching for potential fan heads. Each fan head must have two or more

neighbors to exclude the degenerate barbell case (Line 3), though this criteria could

be increased to find larger fans. For each potential fan head, I then search through
1nodexl.codeplex.com/SourceControl/changeset/view/70521#1208172

https://nodexl.codeplex.com/SourceControl/changeset/view/70521#1208172
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Algorithm 1 Fan motif detection algorithm.
Time complexity: O(|G.nodes| × average neighbor count)
1: procedure DetectFans
2: for all n ∈ G.nodes do
3: if |n.neighbors| ≥ 2 then
4: leaves ← {∅}
5: for all nbr ∈ n.neighbors do
6: if |nbr.neighbors| = 1 then
7: leaves.add(nbr)
8: if |leaves| ≥ 2 then
9: RecordFan(n, leaves)

10: end procedure

11: procedure RecordFan(head, leaves)
12: · · · . Record a given fan motif
13: end procedure

Algorithm 2 Alternate fan motif detection algorithm.
Time complexity: O(|G.nodes|)
1: procedure DetectFans
2: fans ← Map〈Node, List〈Node〉〉
3: for all n ∈ G.nodes do
4: if |n.neighbors| = 1 then
5: head ← n.neighbors[0]
6: if head /∈ fans then
7: fans[head] ← List〈Node〉
8: fans[head].add(n)
9: for all head, leaves ∈ fans do

10: if |leaves| ≥ 2 then
11: RecordFan(head, leaves)
12: end procedure

13: procedure RecordFan(head, leaves)
14: · · · . Record a given fan motif
15: end procedure
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the set of its neighbors to find any leaf nodes connected only to it (Line 5). Each

of these leaf nodes are added to the set of potential leaves. If two or more leaves

are found in the neighbor set, the fan motif is acceptable and recorded (Line 8).

The differing neighbor count criteria for head and leaf nodes in Algorithm 1

prohibits any overlapping motifs from being detected. However, please note that

I am using |n.neighbors| to show the size of the neighbor set of n, which may

differ from n’s degree if there are overlapping edges. For example, in a network

with directed edges a leaf node may have two overlapping edges connecting it

to the head node, one for each direction. Moreover, an undirected network with

several edge types may have overlapping edges of differing types. Some algorithms

for computing degree would return higher values in these cases than the actual

number of neighboring nodes.

4.2.2.2 Connector Motifs

Connectors have an dimension, denoted D, that indicates the number of anchors

it has. D can be any integer two or greater, though the frequency of the motifs

generally decreases proportional toD. My algorithm for detecting connector motifs

of all dimensions is shown in Algorithms 3 and 4, and takes parameters D-min and

D-max to indicate the range of dimensions to search for. The run time complexity

of this algorithm is also O(|G.nodes| × average neighbor count). Again, average

neighbor count can be considered a bounded constant.
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Algorithm 3 Part 1/2 of the D-Connector motif detection algorithm which finds
potential motifs and filters out invalid ones. [D-min, D-max] is the range of dimen-
sions of the connector motifs to find (the number of anchors). Time complexity:
O(|G.nodes| × average neighbor count). See also Algorithm 4.
1: procedure DetectConnectors(D-min, D-max)
2: found ← Map〈String, Connector〉
3: detectLoop:
4: for all n ∈ G.nodes do
5: if |n.neighbors| ∈ [D-min, D-max] then
6: for all nbr ∈ n.neighbors do
7: if |nbr.neighbors| < 2 then
8: continue detectLoop
9: AddSpan(n.neighbors.sorted, n, found)

10: out ← {∅}
11: used ← Map〈Node, Connector〉
12: filterLoop:
13: for all c ∈ found.values do
14: if |c.spanners| ≥ 2 then
15: for all s ∈ c.spanners do
16: if s ∈ used.keys then
17: c′ ← used[s]
18: cTotal ← |c.spanners| + |c.anchors|
19: c′Total ← |c′.spanners| + |c′.anchors|
20: if |c.spanners| > |c′.spanners| or

(|c.spanners| = |c′.spanners| and
cTotal ≥ c′total) then

21: out.remove(c′)
22: used.removeAll(c′.spanners)
23: used.removeAll(c′.anchors)
24: AddConnector(out, used, c)
25: continue filterLoop
26: AddConnector(out, used, c)
27: for all c ∈ out do
28: RecordConnector(c.anchors, c.spanners)
29: end procedure
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Algorithm 4 Part 2/2 of the D-Connector motif detection algorithm. This part
contains procedures and a class needed for Algorithm 3.
30: procedure AddSpan(anchors, spanner, found)
31: key ← string(anchors)
32: if key /∈ found then
33: found[key] ← new Connector(anchors)
34: found[key].spanners.add(spanner)
35: end procedure

36: class Connector
37: anchors ← {∅}, spanners ← {∅}
38: procedure Connector(new-anchors)
39: anchors ← new-anchors
40: end procedure
41: end class

42: procedure AddConnector(out, used, c)
43: out.add(c)
44: for all spanner ∈ c.spanners do
45: used[spanner] ← c
46: for all anchor ∈ c.anchors do
47: used[anchor] ← c
48: end procedure

49: procedure RecordConnector(anchors, spanners)
50: · · · . Record a given connector motif
51: end procedure

Connector motifs are not as straightforward to detect as fan motifs, despite the

algorithms having the same run time complexity. First, a pass is made through

all nodes searching for span nodes with sets of neighbors that could be anchors

and creating or adding to a map of keys to possible motifs. An additional pass

is required to traverse the potential motifs and remove those with only one span

node, as well as remove all but the most desirable of any overlapping motifs. I
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choose motifs to keep first by the number of spanners, then by the total number

of anchors and spanners, then arbitrarily.

The algorithm is broken into several procedures and a class to store the details

for each potential connector motif. The detect loop in the algorithm (Algorithm 3,

Line 3) passes through all nodes in the network, searching for potential span nodes.

Each span node must have between D-min and D-max neighbors, which must be

anchor nodes. I require a minimum of two span nodes for the connector motif, so

each anchor node must have two or more neighbors itself (Line 7). At least two of

the neighbors are span nodes, but the remainder can be connections to the main

network or other anchor nodes in the motif. If all the anchor nodes check out, the

span node is added to a connector motif (Algorithm 3, Line 9) using the AddSpan

procedure (Algorithm 4, Line 30). This motif can be new or an existing one with

the same set of anchors. All existing motifs are stored in a map (Algorithm 3, Line

2), using a string representation of the anchors as a key and an instance of the

Connector class (Algorithm 4, Line 36) as the associated value. This allows

speedy lookup of each potential motif given a sorted anchor set. Note that the

anchor set and its string representation must be sorted so as to avoid having motifs

with identical anchor sets but the anchors were found in a different order.

After searching for all potential span nodes, Algorithm 3 requires an additional

pass over the detected connector motifs to ensure that (1) they have two or more
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span nodes and (2) they do not overlap with other connector motifs. The filter

loop on Line 12 goes through each potential Connector instance in the map to

verify that they pass these two criteria. The first criteria, the minimum number

of span nodes, could be increased if only larger higher payoff motifs are of interest

(Line 7, 14). An example I have found that matches the second criteria, connector

motif overlap, is a ring of four nodes A−B −C −D−A isolated from the rest of

the network. In this case it is unclear whether to choose A & C or B & D as the

2-connector motif anchors, as I do not allow overlap.

As there may be other examples of overlap that need to be caught, I chose

a general overlap detection approach that compares each span node s in a motif

to all span and anchor nodes in already detected motifs (Algorithm 3, Lines 15

– 26). If there is no overlap with existing motifs, the potential Connector

c is stored (Line 26) using the AddConnector procedure (Algorithm 4, Line

42). However, if one of the span nodes s of a potential Connector c is also a

span or anchor node of an already found motif c′, I then compare their sizes. I

choose to keep the motif that has the greatest number of spanners, and if they

are equal I choose the one with more total anchors and spanners. If both values

are equal I keep the first detected. If the prior motif c′ is to be replaced, I must

first remove its spanners and anchors from the map (Algorithm 3, Lines 21–23).

After passing the minimum span count and overlap ranking checks, the detected
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connector motif c is then stored (Algorithm 3, Line 24) using the AddConnector

procedure (Algorithm 4, Line 42). As part of this, the spanners and anchors are

all added to the map of used nodes and associated with their Connector. All

this bookkeeping process prevents a potential connector motif from overlapping

with more than one that was already found. Finally, I record the remaining non-

overlapping and valid connector motifs (Algorithm 3, Line 27).

4.2.2.3 Clique Motifs

To find all cliques in the graph I use the Tomita et al. algorithm [TTT06], which has

a run time complexity of O(3|G.nodes|/3). However, this algorithm has high memory

requirements and for especially large graphs a new linear-storage algorithm by

Eppstein and Strash may be faster or required [ES11]. Unfortunately cliques in

general can have high amounts of overlap. I use a greedy heuristic that chooses

the largest non-overlapping clique motifs to keep that has a time complexity of

O(number of motifs × average motif size). This works well on the networks I have

analyzed, but may be insufficient for studying dense networks.

4.2.2.4 Resolving Motif Overlap

When computing motifs, not only can motifs of a type overlap (e.g., cliques), but in

general the various types can overlap with each other as well. While my design for

fan and connector motifs prevents ambiguous overlap and allows easy combinations



4.2 Network Motif Simplification 94

(Fig. 4.7), the choice of which cliques to simplify can impact user perception of

the network. To effectively pick a disjoint set of motifs to keep I would have to

rate each motif by desirability and solve the set packing problem, one of Karp’s 21

NP-complete problems [Kar72]. Not only is this problem computationally hard to

solve exactly, it is also difficult to approximate, hence my use of heuristics.

4.2.3 NodeXL Implementation

Figure 4.8: The standard NodeXL workspace, showing U.S. Senate voting patterns
from 2007. The left view shows the worksheets that store the network and its
attributes, while the right pane shows a node-link visualization of the network.
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I have implemented a reference implementation of my motif simplification ap-

proach and made it publicly available as part of the NodeXL network analysis

tool [Smi+10; Smi+09]. Given that many NodeXL users generally have little prior

knowledge about network visualization readability, I believe that they will partic-

ularly benefit from my interactive motif simplification techniques.

I have integrated my motif simplifications into the standard NodeXL groups

infrastructure, which stores groups using two worksheets: (1) Groups which con-

tains a row for each group and its attributes, and (2) Group Vertices where each

row maps an individual grouped node to its associated group. These worksheets

can be populated automatically in a variety of manners, including detection of

topological clusters, exact-value attribute groupings, connected components, and

now my three network motifs. The NodeXL group model allows for nodes that are

in no group at all, which is important for motif simplification as not every node in

the network is part of a motif. Note however that this group model does not allow

overlapping groups, which means that special care must be given to the definition

of what members of each motif constitute the group in the worksheets.

In the group worksheets users can interactively edit the labels, attributes, visual

encoding, and membership of specific groups; remove groups completely; or even

create custom sets of groups by editing the worksheets or visual interaction with

the node-link visualization. Moreover, automated statistics can be computed for
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each group and added to the Groups worksheet, including node & edge counts,

geodesic distances, and graph density; as well as the number of edges between

pairs of groups in a special Group Edges worksheet.

After the groups have been computed or entered into the worksheets manually,

users can display them in the visualization pane. When users select a group in the

worksheet, all its member nodes are selected in the visualization. Likewise, for any

nodes selected in the visualization users can select any groups in the worksheet

that contain them using the ribbon menu. By default, groups are shown in their

original expanded form based on the current layout algorithm, with categorical

color and shape coding so as to distinguish them from each other. However, users

can switch between the original expanded form and an alternate collapsed form

for specific selected groups or all groups. This is done using the context menu in

the visualization pane or the ribbon groups menu.

The default collapsed form for groups is a meta-node representation of the same

categorically coded shape with a plus sign inside to indicate its status (e.g.,
⊕

),

sized proportional to the number of nodes the group contains and with any asso-

ciated label next to it. However, the groups for my motifs use their representative

glyphs that were described in Section 4.2.1. When a collapsed group is selected in

the visualization pane it is also selected in the Groups worksheet, and its position

in the visualization can be adjusted with the mouse. These collapsed representa-
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tions are by default colored using the same categorical coloring as for the expanded

version so the association between views can be easily identified. Through an op-

tion in the groups menu, users can switch from the default categorical colors and

shapes to the underlying node attribute encodings the user specified. This updates

all collapsed motifs so that they show the aggregate attribute information about

the underlying nodes they represent.

4.3 Case Studies

I explored several networks of interest using motif simplification, in several cases

while helping domain experts analyze their data. Overall, motif simplification

resulted in vastly reduced network size, reducing the visual complexity faced by

the user and easing automatic and manual layout tasks.

4.3.1 U.S. Senate Voting Patterns in 2007

The power of clique motif simplification is shown in an example network of U.S.

Senate voting patterns from 2007, originally discussed in Section 3.3.1. Fig. 4.9a,

like Fig. 4.8, highlights the bridge-building nature of three Republican senators in

the middle of the visualization. However, further insights are not readily visible

in the tangled hairball of each party except, perhaps, that the two independent

senators vote with the Democrats.
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(a) 65% (b) 65% simplified

(c) 70% (d) 70% simplified

Figure 4.9: U.S. Senate 2007 co-voting network at 65% and 70% agreement cutoffs,
simplified using clique motif glyphs. Key features are visible, such as the moderate
Republican clique around McCain with “wildcards” at the periphery.
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(a) 80% (b) 80% simplified

(c) 85% (d) 85% MS

Figure 4.10: U.S. Senate 2007 co-voting network at 80% and 85% agreement cut-
offs, simplified using clique motif glyphs. The east-coast liberals and the Blue Dog
Democrats separate at 80%. We see the network decompose at higher cutoffs.
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(a) 90% (b) 90% MS

(c) 95% (d) 95% simplified

Figure 4.11: U.S. Senate 2007 co-voting network at 90% and 95% agreement cut-
offs, simplified using clique motif glyphs. We see the Republican party fragment,
with only the two senators from Georgia remaining at 95% agreement.
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After simplifying cliques, several additional features are visible (Fig. 4.9b).

There are three completely connected groups: one with 48 Democrats, the two

independents, and a Republican (Snowe); another with 42 Republicans; and a 4-

clique of Collins, Smith, McCain, and Specter. I worked with a political scientist

studying at the University of Wyoming to see if these cliques highlighted known

behavior, and, in fact, they did. The 4-clique represents moderate Republican

bridge builders that were often decisive votes, though they have stronger ties to

the Republican clique. The only Senator not in a clique is Coburn, a staunch

Republican on contentious issues but who often votes his heart.

I increased the cutoff to 0.70 and ran the layout again (Fig. 4.9c). However, the

simplified version (Fig. 4.9d) has become quite intriguing. While the Democrats

and Independents still form a 50-clique, a few members trickled out of Republi-

can cliques. Snowe returns to the middle with high connectivity with her former

Democrat clique. Collins and Specter also move to the center, replaced in the

McCain clique by Coleman and Lugar – more moderates. The corner outliers are

known wildcards that do not follow the party.

Extending this process to higher cutoffs, we begin to see party fragmentation,

led by the Republicans (Fig. 4.10). At 0.80 the network bisects (Fig. 4.10a), and

the Democrats split into three cliques and a solitary Nelson, a Blue Dog moderate

(Fig. 4.10b). The top right 4-clique is the east-coast liberals, while the left 4-
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clique are moderates. The Republicans splinter further, and by 0.95 only the two

Senators from Georgia remain (Fig. 4.11d).

All told, the political scientist was impressed that motif simplification could

highlight many of the features he was already aware of. That the simplified network

highlights these known features helps validate the design of the clique motif glyphs,

as well as the greedy heuristic for choosing which non-overlapping set of cliques to

simplify. Moreover, several new insights came from analyzing these visualizations

and then checking other sources like Wikipedia and Politico to provide additional

evidence for the pattern.

4.3.2 Lostpedia Wiki Edits

An example of overlapping motif simplification is shown in Fig. 4.12, which rep-

resent the bipartite network for the Lostpedia wiki community collected by Beth

Foss. Boxes with labels show wiki pages, linked to the colored discs representing

their associated editors. The editors are colored and sized according to two mea-

sures of their activity in the wiki. Fig. 4.12 shows the initial network, while the

Fig. 4.13 shows a simplified version. By combining fan and connector glyphs, I only

have 13 nodes to lay out and compare instead of the original 513, only 23 edges

instead of 586, and use a fraction of the screen space. While these simplifications

are not entirely necessary to understand such a small and well-arranged diagram,
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Figure 4.12: A bipartite network of Lostpedia wiki edits showing wiki pages as
boxes and their associated editors as discs.
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Figure 4.13: The Lostpedia wiki edits after being simplified using fan and connector
motif glyphs.
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they are effective at showing aggregate relationships like the large number of highly

active main page editors.

4.3.3 Ravelry Forums

Another straightforward example I investigated is shown in Fig. 4.14, which I

adapted from Fig. 9.10 of the NodeXL book [HSS11, p. 139]. Fig. 4.14a represents

the bipartite network for the Ravelry communities collected by a student in Derek

Hansen’s Communities of Practice class. Three forum nodes shown as small blue

discs are connected by the contributers posting in them, with some contributers

posting in only one forum and others posting in two. After simplifying the fan and

connector motifs present in the network, I created the representation displayed in

Fig. 4.14b. Note that the connector glyph used here is the older diamond shape.

While these simplifications are not necessary to understand such a small and well-

arranged drawing, they are easy to understand.

4.3.4 VOSON Web Crawl

A larger dataset I encountered is shown in Fig. 4.15, which I modified from the

NodeXL book, Fig. 12.9 [HSS11, p. 192]. This network of 3958 web pages and

4380 hyperlinks was collected by crawling sites connected to voson.anu.edu.au.

It is immediately evident that large fans of nodes dominate the periphery, in in

part because the NodeXL [Smi+10] implementation of the Fruchterman-Reingold

http://voson.anu.edu.au
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(a)

(b)

Figure 4.14: This network of relationships between Ravelry forums and their users
was created by a student in Derek Hansen’s Communities of Practice class. In (a),
three forums represented in blue are connected to contributers, and the contributers
are sized and colored by the number of completed projects. Edge width is based
on the number of posts by each user. This version was adapted from Fig. 9.10 of
the NodeXL book [HSS11, p. 139]. (b) shows a simplified version of this network,
where the fan and connector motifs have been replaced by representative glyphs.
The glyphs are sized by the number of nodes they replace and colored according
to the average node attribute value. Likewise, aggregate edges between glyphs are
sized and colored by the average of the edge weights of the edges they replace.
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layout [FR91] tends to draw elliptical layouts within a rectangular space. However,

the fans tend to dominate the visualization regardless of the layout. For example,

Fig. 4.16 shows the same graph using the Harel-Koren FMS layout [HK02a].

My manual calculations using Gimp showed that 21% of the screen space in

Fig. 4.15 is wasted as blank space in the corners, with 33% showing the core

network with its connector motifs, and the remaining 46% used to show the fan

motifs. Calculating only for the elliptical visualization region, approximately 58%

of the space available is used to show the fan motifs. This is a substantial amount of

area dedicated to showing a very common structure in network datasets obtained

by crawling web sites or using surveys. Moreover, these fans do not show any

information besides the rough number of nodes they contain. The fans in Fig. 4.15

vary from 17 to 852 nodes, but due to overlap this can be hard to see.

Some of the overlap between motifs and and with other nodes is not visible

in the original image, but there is substantial overlap in the bottom-right and

many of the smaller fans are spread in several directions or hidden in the interior.

Some of this is visible in Fig. 4.17, where I have colored and shaped each of the

network motifs distinctly. You can see in the bottom-right that the large light

green and dark green fans overlap substantially, while many of the smaller fans

are spread in several directions or hidden. Moreover, many of the fans overlap and

obscure other more important nodes that are not participating in any fan, such
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Figure 4.15: This drawing represents the network of web pages connected to vo-
son.anu.edu.au obtained by a web crawl. I modified it from Fig. 12.9 of the
NodeXL book [HSS11, p. 192]. A similar graph for wiki structure is shown on p.
259. The layout is done using Fruchterman-Reingold [FR91] in NodeXL, and head
nodes for the fans of singly-connected nodes are shown in blue.

http://voson.anu.edu.au
http://voson.anu.edu.au
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Figure 4.16: A web crawl starting at voson.anu.edu.au, modified from Fig. 12.9 of
the NodeXL book [HSS11, p. 192], and laid out using the Harel-Koren FMS layout
[HK02a].

http://voson.anu.edu.au
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Figure 4.17: Web crawl network with each fan and connector motif shown in a
distinct color and shape.
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Figure 4.18: Web crawl network with nodes colored by their eigenvector centrality.
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Figure 4.19: Web crawl network with fan and connector motifs simplified and
colored by underlying eigenvector centrality.

as a huge 2-connector motif with 50 purple span nodes in the bottom-right. This

2-connector motif, as well as the several others connecting parts of the web page

network together, are quite hard to detect among the clutter.

I then simplified these fan and connector motifs, going from 3958 nodes to 559

and 4380 edges to 765, creating a much less cluttered visualization (Fig. 4.19).

After simplification, it became evident that the large connector motif is the linked

the web sites for the Summer Doctoral Programme at the Oxford Internet Institute
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and the National Center for eSocial Science. Applying a layout algorithm to the

simplified network would result in a new layout that makes more effective use of the

newfound space. This visualization is much clearer at presenting (1) the size and

membership of the various fans motifs and (2) the large connector motifs connecting

pairs of fan heads. Moreover, it appears to have minimal loss of information and

visual clutter compared to the original.

4.3.5 Patient Discharge Summaries

Another complex network to which I have applied motif simplification maps the

connections between medical patients and concepts related to their care. These

concepts have been extracted from the patient discharge summaries, and include

any associated symptoms, diseases, drugs, and procedures. They were provided

by Todd Johnson, director of Biomedical Informatics at the University of Ken-

tucky. The goal in analyzing this dataset was to see if motif simplification would

help medical researchers understand overall patient trends, such as comparing the

efficacy of competing treatments for the same condition.

Dr. Johnson suggested that I investigate two medication concepts in the

anonymized network, “hops5325” and “orch7323”, where “hops” stands for Haz-

ardous or Poisonous Substance and “orch” indicates Organic Chemical. I extracted

from the overall network only those patients connected to “hops5325” and/or
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Figure 4.20: Patients related to concepts from their medical discharge reports.
This subnetwork focuses on the concepts “hops5325” and “orch7323” (orange discs)
and their associated patients (purple triangles) and concepts (blue discs). The
network is laid out using the Harel-Koren FMS layout algorithm [HK02a].
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Figure 4.21: Patients and concepts from Fig. 4.20 after applying fan and connector
motif simplification.
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“orch7323”, as well as any additional concepts associated with those patients (a

2-degree subnetwork). This resulted in 433 patients connected to 4701 concepts,

including “hops5325” and “orch7323”. Fig. 4.20 shows a node-link visualization of

this subnetwork using the Harel-Koren FMS layout [HK02a]. The two ego con-

cepts “hops5325” and “orch7323” are shown large and in orange, other concepts are

blue, and the patients are purple triangles. This initial view does not show much

structure, aside from “orch7323” being more central to the network and connected

to more of the patients. Applying motif simplification, specifically the fan and con-

nector motifs, reduces the complexity somewhat but not spectacularly (Fig. 4.21).

The exact reduction is from 5134 nodes to 2695 nodes and 439 motif glyphs, and

from 31,518 edges to 28,375 edges and meta-edges.

Now that we have the motifs, I can use them to highlight or drill down into

interesting patterns. Fig. 4.22 shows the largest fan motifs highlighted in red, where

each fan has at least 20 concepts and up to 42 for the largest. These concepts are

unique to a single patient, and the patients and their connections to the fans are

highlighted in red as well. A medical researcher may be interested in exploring these

singleton concept groups and drilling down to them or, alternatively, filtering them

out to see the more common patterns. In this case I drill down to show only those

patients and their connected concepts, displayed in Fig. 4.23 without simplification.

“hops5325” is peripheral to this network, only connected to two patients on the
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Figure 4.22: Simplified patient and concept network from Fig. 4.21 with fans of
20 or more concepts highlighted. This shows groups of concepts that are uniquely
associated with a single patient. Edges from these fans to their associated patient,
as well as the patient themselves, are highlighted too.
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Figure 4.23: Patient and concept network of only the patients connected to the
large highlighted fans from Fig. 4.22, as well as any associated concepts. The initial
“hops5325” concept is on the far right, connected to only two patients.
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Figure 4.24: Patient and concept network from Fig. 4.23 after applying motif
simplification. The connector motif which contains the initial “hops5325” concept
and three other concepts is highlighted in orange. These four concepts are only
connected to two patients.
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right. In the simplified view (Fig. 4.24), “hops5325” is in a connector motif with

three other concepts that are only connected to those two patients: “orch7268”,

“hlca5025”, and “hlca5238”. Interestingly, only one of these patients is connected

to “orch7323”. Another pattern of note is the large connector motif on the left,

which consists of 36 concepts associated with two other patients who are connected

to “orch7323”. These concepts are “aapp155”; “dsyn 2382, 2732, 2842, 3006, 3092,

3171, 3464, 3576, 3577, 3817, 3837, 3927, 4009, 4261, 4528, and 4827”; “lbpr 5981,

5990, and 6419”; “mobd 6668, 6673, 6688, 6690, and 6715”; “orch 7921, 8368, and

8369”; “patf 8787, 8818, and 8983”; “phsu9097”; and “topp 10357, 10429, and 10856”.

An alternate kind of exploration is visible in Fig. 4.25, where I have highlighted

connectors of concepts connected to at least 20 patients. These small connectors

consist of two or more concepts that occur with many patients in the exact same

way, but the connectors each have different sets of the 433 patients as anchors.

The true power of motif simplification becomes evident when I drill down to

only show the patients connected to four specific concepts. I chose our original

“hops3525” and “orch7323”, as well as two other Hazardous or Poisonous Sub-

stances: “hops5323” and “hops5324”. The node-link visualization of these rela-

tionships is partially understandable (Fig. 4.26), but after applying motif simpli-

fication the aggregate patient relationships between the concepts are much more

clear (Fig. 4.26). Note that here the motifs consist of patients, not concepts.
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Figure 4.25: Patients and concepts from the original simplified view in Fig. 4.21.
Connector motifs of concepts connected to at least 20 patients are highlighted.
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Figure 4.26: Patients and concepts from Fig. 4.20, after drilling down to only those
patients connected to our original “hops3525” and “orch7323”, as well as two other
Hazardous or Poisonous Substances: “hops5323” and “hops5324”.
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Figure 4.27: A simplified view of the patients and concepts in Fig. 4.26, which
highlights the aggregate patient relationships between the concepts.

It is immediately visible that two patients are connected to all four concepts

and one patient is shared between only the “hops” concepts. Another 7 patients

connect “orch7323” and “hops5325” while 67 connect “hops5323”, “hops5324”, and

“orch7323”. Of course, 339 patients only have “orch7323” as a concept while only

17 are only connected to “hops5325”.

Overall, I believe that motif simplification can definitely help medical researchers

understand the relationships between patients and a small number of concepts, as

in Fig. 4.27. For larger datasets with thousands of concepts, the motifs seem to

highlight particularly unusual connections like large groups of concepts associated

with one patient or a few patients. To understand these relationships in detail, the

motifs can be used to drill down to the relevant parts of the network. For additional

analyses of this network using Group-in-a-Box layouts, see Section 5.5.3.
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4.3.6 Larger Networks

I analyzed several other large networks not pictured here. One was a network of

innovation and funding ties with 7124 nodes and 16,109 edges. Another showed

acquisitions of JP Morgan Chase, with 5766 nodes and 6752 edges. Both were

visualized interactively with no performance issues, and had drastic reductions in

complexity with motif simplification.

4.4 Initial Usability Study

I invited four individuals from our lab to use the motif simplification techniques

inside NodeXL in order to understand any usability issues and general ease of use.

I asked them to analyze three networks: Lostpedia wiki edits (Section 4.3.2), the

VOSON web crawl (Section 4.3.4), and a network of innovation in Pennsylvania

used as a Group-in-a-Box layout case study (Section 5.5.2). These participants

had varying backgrounds, including Computer Science, Information Studies, and

Economics. They also had varying education, including a recent undergraduate

student, two graduate students, and a professor. All had little or no experience

with NodeXL and none with motif simplification.

After an initial hands-on training session I invited participants to explore the

networks and recorded anything they had difficulty with or mentioned. Their

explorations ranged from 45–60 minutes. Overall they were excited by the motif
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simplifications, and were especially eager to change to the simplified version in

the VOSON example. One of them stated about the original VOSON view, “I’m

overwhelmed, ... this is like one of those vision tests at the eye doctor”, but when

asked to switch to the simplified view emphatically stated, “Yes please!”. Asked

afterward about her overall impression of motif simplification, one participant said,

“I like it because it makes more sense. For specific nodes it is easier to look at

the spreadsheet side”. No participant detected the bottom-right connector motif

hidden in the VOSON fan motifs, but did immediately in the simplified view.

There were several issues the participants encountered. First, they wanted to

simplify all repeating patterns they saw, not just my defined motifs. One even did

the simplification manually using standard meta-nodes. Next, they were unsure

about the design of the crescent connector motif used at the time. They did not

understand why edges connected to the arch in several places instead of only the

corners, and had difficulty comparing connector glyph size exactly. A few even

confused the connector glyphs with overlapping or odd fan glyphs. I revised my

glyph design based on this feedback to more effectively allow these analyses, as

discussed in Section 4.2.1.1.

In spite of these challenges, participants strongly appreciated the benefits of

simplifying complex networks and expressed enthusiasm for integration of the

glyphs in node-link visualizations. By replacing the common repeating motifs
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with representative glyphs, many nuances of the network are revealed. When one

participant was looking for relationships, she stated, “I could only look at two at a

time”. This seems to indicate that the simplified view will help users understand

larger relationships in the network, as glyphs allow comparisons of larger subsets

of the network and reduce the number of analyses.

4.5 Controlled Experiment

The usability testing guided any necessary interface revisions. Then, I ran a con-

trolled experiment to determine the effect motif simplification has on user perfor-

mance across several common network visualization tasks.

4.5.1 Tasks

I chose a varied set of tasks relating to topology, attributes, and overviews from a

taxonomy [Lee+06], which demonstrates how all complex tasks can be seen as a

series of low-level tasks. These tasks are also used in many recent papers evaluating

network visualizations [HF07; SA06; GFC04]. I asked:

1. About how many nodes are in the network?

2. Which individual node would we remove to disconnect the most nodes from

the main network?
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3. Which is the largest ( fan | connector | clique ) motif and how many nodes

does it contain?

4. Which node has the label “XXX”? (where XXX was a name or number)

5. What is the length of the shortest path between the two highlighted nodes?

6. Which of the two highlighted nodes has more neighbors?

7. How many common neighbors are shared by the two highlighted nodes?

8. Which of two pairs of nodes has more common neighbors?

4.5.2 Data

Current random network generators do not produce realistic data [HF07], which

I confirmed trying to generate several networks with similar characteristics. Thus

I chose to use three interesting networks produced by actual users solving their

own problems. Lostpedia wiki edits (Section 4.3.2), U.S Senate voting patterns

(Section 4.3.1), and the VOSON web crawl (Section 4.3.4).

4.5.3 Participants

I began with a pilot study with two participants from my lab, in which the tutorial

and format of the questions were refined. I then recruited 36 students from my

university (19 males, 17 females) using mailing lists and in-class announcements.

The participants were mostly graduate students, half from Computer Science and
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the balance from eight other departments. 9 had used network visualization tools

and an overlapping 9 had seen motif simplification, though none had used it. As

I could not generate sufficiently varied datasets with similar properties, I used a

between subjects design. I randomly divided participants into two groups which

had similar distributions of gender, department, grade level, and experience.

4.5.4 Procedure

Each 45-minute session began with 5-10 minutes of training on the tool and for the

specific tasks, followed by about 35 minutes for answering a total of 31 questions

across the three networks and eight tasks. Each participant received the same

order of questions and visualizations. The control group was provided with an

interactive node-link visualization in which they could select nodes along with

their incident edges, as well as move the nodes. The treatment group received

a simplified version of each new visualization, with additional interactive tooltips

and the ability to expand and collapse the motifs. Each visualization is presented

consistently, originally computed using the Harel-Koren FMS layout [HK02a].

As in [GFC04; HF07], users were given one minute to answer each question,

told to answer as quickly and accurately as possible, and that they could skip if

they could not answer a question. The evaluator spoke each question, gave the

participant time to ask for clarification, then revealed the next visualization in turn
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and began the timer. Participants were told how well they performed at the end

of the study. Users were given $10 plus a $15 bonus for the fastest, most accurate

participant in each group.

4.5.5 Analysis

The recorded data was analyzed in several ways. As is common with response

time data, the response times were not normally distributed so were normalized

using a log transformation. The two groups were then compared using a t-test.

Answers to questions consisted of a categorical answer (a specific item), which was

recorded correct or not, and/or an integer answer. For questions with categorical

answers, the groups were compared with Fisher’s exact test instead of the chi-

square test as none of the statistically significant group-by-correct matrices had

expected values of five or higher in all four cells. For numeric answers I computed

error = (answer − truth)/truth, skipping any questions that had an incorrect

categorical answer the integer answer depended on, and compared error across

groups using a t-test.

4.5.6 Results

Here I report only the statistically significant findings, though all the analyses are

shown in Figs. 4.28 to 4.35. I expect overview tasks like identifying the maximal

motif of a type would be easier with the less visual complexity of a simplified
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Figure 4.28: Bar charts showing performance for Task 1: “About how many nodes
are in the network?” The left chart shows the time spent answering the question
while the right chart shows the error in the node count estimate. In this chart, and
in the following ones, error bars indicate one standard deviation and asterisks show
the level of significance of the statistical test (‘*’, ‘**’, and ‘**’ denote p<0.10, 0.05,
and 0.01 respectively). Negative numbers, if present, show the number of users
that skipped the question or ran out of time.

Figure 4.29: Bar charts showing performance for Task 2: “Which individual node
would we remove to disconnect the most nodes from the main network?” The left
chart shows the time spent while the right chart shows the accuracy at selecting
the correct node.
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(a) Time spent finding the largest motif.

(b) Accuracy at selecting the largest motif.

(c) Error in estimating the size of the largest motif.

Figure 4.30: Bar charts showing performance for Task 3: “Which is the largest
( fan | connector | clique ) motif and how many nodes does it contain?” The left
charts show the results for fans, the middle for connectors, and the right for cliques.
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(a) Time spent finding a label.

(b) Accuracy at finding the label.

Figure 4.31: Bar charts showing performance for Task 4: “Which node has the
label “XXX”? (where XXX was a name or number)” The left charts are for plainly
visible nodes, while the right show labels hidden inside a simplified glyph.
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Figure 4.32: Bar charts showing performance for Task 5: “What is the length of
the shortest path between the two highlighted nodes?” The left chart shows the
time spent while the right chart shows the error at estimating path length.

Figure 4.33: Bar charts showing performance for Task 6: “Which of the two high-
lighted nodes has more neighbors?” The left chart shows the time spent while the
right chart shows the accuracy at selecting the correct node.
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Figure 4.34: Bar charts showing performance for Task 7: “ How many common
neighbors are shared by the two highlighted nodes?” The left chart shows the time
spent while the right chart shows the error in the shared neighbor count estimate.

Figure 4.35: Bar charts showing performance for Task 8: “Which of two pairs of
nodes has more common neighbors?” The left chart shows the time spent while
the right chart shows the accuracy at selecting the correct pair of nodes.
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network. This was true for all three motifs across all three networks (Fig. 4.30).

Cliques, the epitomical clusters, were found in the two networks they occurred in

faster (p<0.01, -20.82s), more accurately (p<0.01, 92% vs. 23.5%), and with fewer

people giving up (3 vs. 0). Moreover, in the Senate network there was higher

accuracy in size estimates (p<0.05, 0% vs. -28% error), which could be true for

the web network but I could not measure it as not one control participant detected

the maximal 5-clique. Fans were found in both the networks they occurred in

faster (p<0.01, mean -7.77s) and their size was approximated more closely (p<0.01,

2% vs. -62% error). In the large web network the maximal fan was also found

more frequently (p<0.01, 95% vs. 35%). Connectors were detected in both their

networks faster as well (p<0.01, mean -17.13s). In the web network the largest

connector was found more frequently (p<0.01, 79% vs. 6%), and in the wiki

network its size was estimated more precisely (p<0.1, -5% vs. -17% error).

These results show that using glyphs for motifs makes the motifs easier to detect

and measure, but how does simplifying motifs affect the rest of the network? I

hypothesized that estimating the number of nodes would be easier in the simplified,

interactive view. As Fig. 4.28 shows, my participants could indeed gauge the size of

all three networks with significantly more accuracy (p<0.01, -8% vs. -47% error),

but for the wiki and web networks users took longer to do so (p<0.01, 21.82s).

How about finding a specific node by its label? Logically reducing the number of
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visual items makes finding a label easier. My results in Fig. 4.31 show that finding

labels that are not in motifs is significantly faster (p<0.01, -19.93s), they are found

more frequently except in the Senate case (p<0.01, 97.5% vs. 14.5%), and fewer

users give up or run out of time (12 did on the plain wiki and web networks). I

only saw worse search time for labels in motifs for the Senate clique case (p<0.05,

15.29s), with no significant differences in accuracy.

What about topology-based tasks? It seems that with fewer items on the

screen tracing edges would be easier. For some questions it did turn out better,

like finding the node to cut (Fig. 4.29) in the web network correctly (p<0.05, 53%

vs. 18%) and the accuracy of the shortest path length (Fig. 4.32) between two

clique members in the Senate network (p<0.05, -7% vs. 22% error). For others

topology questions, the results were mixed to poor. Shortest path length time and

accuracy (Fig. 4.32) worsened in the web network (p<0.1, 10.06s & 20% vs. 1%

error). Comparing the number of neighbors (Fig. 4.33) was slower on the wiki

(p<0.01, 10.89s) and senate (p<0.05, 9.26s) networks, and the choice accuracy

dropped for the senate (p<0.1, 53% vs. 82%) and web (p<0.1, 68% vs 76%).

Lastly, the shared neighbor count tasks (Fig. 4.34) were slower in the web network

(p<0.01, 11.73s), and reduced accuracy in the wiki network (p<0.1, -21% vs. -

10%). There were no significant differences in the task to find which of two pairs

of nodes has more common neighbors (Fig. 4.35).
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4.5.7 Discussion

Overall it appears that motif simplification is beneficial for many analysis tasks.

Naturally identifying maximal motifs is faster, more accurate, and I can estimate

their sizes more accurately when I have glyphs and interaction. Counting nodes

in the network turned out to be slower, but more accurate when using the glyphs.

Finding unsimplified labels became much quicker, while simplified labels were only

slower in one case. Finally, it seems like topology-based tasks are a mixed bag.

Finding cut nodes is more accurate, but path-based tasks were better and worse in

different circumstances. Comparing the number of neighbors and shared neighbors

turned out slower and less accurate in a few cases, while counting them was more

error-prone.

I have already implemented additional features to increase user performance

on topologic tasks. When I ran the study I did not yet use the sized meta-edges

that are shown in Figs. 4.9 to 4.11. With this simple modification, I believe we

can show much of the aggregate connectivity. However, user education is likely the

most promising way to improve the glyph performance. Many participants had

difficulty understanding the topology inside the collapsed glyphs.

It is important to note that the participants generally had little to no experience

with network analysis, nor did they necessarily have any interest in or knowledge of

the networks they were analyzing. Despite these limitations, I found significantly
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better task performance with the simplified view in many cases. With more than

the 5-10 minutes of training provided in this study, user performance would likely

improve on many of the tasks.

4.6 Summary

Analyzing networks involves understanding the complex relationships between en-

tities, as well as any attributes they may have. The widely used node-link visual-

izations excel at this task, but many are difficult to extract meaning from because

of the inherent complexity of the relationships and limited screen space. To help

address this problem I introduce a technique calledmotif simplification, in which

common patterns of nodes and links are replaced with compact and meaningful

glyphs. Well-designed glyphs have several benefits: they (1) require less screen

space and layout effort, (2) are easier to understand in the context of the network,

(3) can reveal otherwise hidden relationships, and (4) preserve as much underlying

information as possible. I tackle three frequently occurring and high-payoff mo-

tifs: fans of nodes with a single neighbor, connectors that link a set of anchor

nodes, and cliques of completely connected nodes. I contribute design guidelines

for motif glyphs; example glyphs for the fan, connector, and clique motifs; and

algorithms for detecting these motifs. I have also developed a free and open source

reference implementation, made publicly available as part of NodeXL [Smi+10].
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With case studies and a controlled study I demonstrate the effectiveness of

motif simplification as well as areas to focus on for improving glyph design. Motif

simplification can result in substantial reductions in visual complexity, allowing

easier understanding and manipulation of large network visualizations. There are

several avenues for exploration opened up by this work, including additional glyphs

for other common motif types, algorithms and glyphs for fuzzy motifs, and methods

for showing edge directionality within glyphs. Now that motif simplification is

available to all users of NodeXL, my hope is that it becomes commonly used as a

first step when dealing with large, complex networks. It is particularly suited for

simplifying data collected in an egocentric fashion, such as web spiders and crawls

of social media websites.



Chapter 5

Meta-Layouts for Subdividing Networks

5.1 Introduction

Visualizing a network’s topology in a node-link visualization can be useful for seeing

its overall structure and tracking individual relationships or paths. However, with

large, dense networks it can be challenging for a user to understand this structure

due to the high number of edges and the resulting visual clutter. The large num-

ber of edge crossings and tightly packed nodes in visualizations of these networks

can be difficult for the human eye to comprehend, though automated techniques

can aid understanding. Various automatic techniques can algorithmically group

related nodes together based on (1) the topology of the network [CNM04; WT07;

GN02], (2) any attributes the nodes have [Llo82], or (3) some combination of both

[Nav+09]. Topologic clustering finds groups of nodes such that the connections

within groups (referred to as the intra-group edges) are tighter than those between

groups (called the inter-group edges). Another popular method is to group the

nodes based on some common attribute such as geographical location or interests,

140
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Figure 5.1: Co-appearance network in Les Misérables, originally
compiled by Knuth [Knu93] and made into an edge list by New-
man and Girvan [NG04]. Available in the NodeXL format from
nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching%20Resources

or a clustering of several attributes. As the nodes in a community tend to behave

similarly or share characteristics, it can be useful to study individual communities.

Regardless of the source of a grouping, a persistent problem is that of displaying

the results of a grouping in the network visualization. Displaying the groups using

node color or shape alone (like in Fig. 5.1) can be challenging, especially if the

groups are intermingled in a complex network visualization (e.g., Fig. 5.32). As the

network layout does not take group membership into account when placing nodes,

it can cause groups to be occluded within the visualization and loss of information

http://nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching%20Resources


5.1 Introduction 142

about the structure of clusters and their relationships [Rod+11]. Meta-nodes can

show aggregate relationships, but hide the internal structure of the groups.

One approach showing these groups in the layout is to try to visually separate

groups of nodes in the final visualization, such as in the Lin-Log layout [Noa04].

However, it is hard to understand the relationships between groups in these layouts

and these visualizations use much more screen space than regular force-directed

layouts. Moreover, force-directed layouts in general and these types of group-aware

layouts in particular require substantial parameter adjustment to work across a

range of datasets [Bar+08]. It can be challenging to balance the various forces

acting on nodes, especially as the networks increase in size. Furthermore, as noted

by Barsky et al. [Bar+08] when working with immunologists, domain experts using

network analysis tools can be completely unwilling to tweak layout parameters in

order to obtain the best visualization.

I present several new approaches for showing node groupings using meta-

layouts, which take take an underlying grouping into account when placing nodes

in the node-link visualization. The first, the Midichlorian-Directed Layout, is

a modified force-directed layout that varies attractive forces between nodes based

on group membership. Next, rather than using node-link visualizations and force-

directed layouts of network topology alone, I describe several Group-in-a-Box

meta-layouts that augment topology visualizations with the group memberships
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Figure 5.2: Co-appearance network in Les Misérables from Fig. 5.1, after using the
squarified Treemap Group-in-a-Box layout. Each box shows a cluster found using
the Wakita-Tsurumi algorithm [WT07]. Inter-group edges are hidden to better
show internal cluster topology. This visualization highlights the structure of each
group, such as the Javert & Fantine cluster and the Thenardier cluster.

of the underlying nodes. These Group-in-a-Box layouts draw a separate box for

each group, sized according to the number of nodes in the group. The subnetwork

the group represents is then laid out within the box, independent of the rest of the

network. An example Group-in-a-Box layout for the Les Misérables co-appearance

network from Fig. 5.1 is shown in Fig. 5.2.

I detail three Group-in-a-Box (GIB) layouts, each with a unique way of laying

out the group boxes. First, I describe the squarified Treemap GIB layout,

created by my colleagues on the NodeXL team [Rod+11]. Next, I move to the two
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Croissant-Donut GIB layouts: the Donut, which places the most connected

group in the center of the visualization and wraps the other group boxes around

it in a space-filling manner, and the Croissant, which places the most connected

group in the top of the visualization and similarly wraps the other group boxes

around it. The Croissant-Donut layouts were created in conjunction with three

graduate students I mentored for a course project [Cha+13]. Finally, I discuss a

Force-Directed GIB layout I created which arranges the group boxes based on

the aggregate connections between groups. I algorithmically choose which Group-

in-a-Box layout to use depending on the disconnected components present in the

visualization, number of groups, and distribution of group sizes. I evaluate these

Group-in-a-Box layouts through several case studies and an empirical study of

309 of Twitter scrapes, which demonstrates the effectiveness and trade-offs of the

various layouts. These Group-in-a-Box layouts have several benefits: (1) they

optimize the layout of relationships within groups, (2) they highlight aggregate

relationships between groups, and (3) it is easier to see group membership and

size. These layouts are publicly available as part of NodeXL [Smi+10].

5.1.1 Chapter Overview

Specifically, the contributions of this chapter are:

• A meta-layout called the Midichlorian-Directed Layout which spreads groups
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apart in a standard node-link visualization;

• A Croissant-Donut Group-in-a-Box layout that places subnetworks in boxes

arranged using a Donut or Croissant pattern, and balances space-filling prop-

erties with showing group relationships;

• A Force-Directed Group-in-a-Box layout that places subnetworks in boxes

arranged by their connectivity, and shows group relationships well at the

expense of additional screen space;

• A set of automatic choices that are made for the user to better show discon-

nected components, few groups, or different distributions of group sizes and

connectedness;

• Supporting case studies and an experiment on Twitter networks; and

• A free and open source implementation as part of NodeXL.

Parts of this chapter have been published in an overview paper on novel network

analysis techniques in NodeXL [SD12] or are under submission [Cha+13]. I first

discuss various automatic techniques for grouping the nodes in the network that

I will be able to leverage in my meta-layouts (Section 5.2). Next, I cover my

preliminary work on Midichlorian-Directed Layouts in Section 5.3, then move on

to the three Group-in-a-Box layouts in Section 5.4. I then describe evaluations of

the Group-in-a-Box approach using case studies (Section 5.5) and an experimental

study on 309 Twitter scrapes (Section 5.6). I end by summarizing in Section 5.7.
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5.2 Grouping Techniques

Before my meta-layouts can be applied, we first have to create meaningful group-

ings of the nodes in the network. Various automatic techniques can algorithmically

group related nodes together based on (1) the topology of the network, (2) any

attributes the nodes have, or (3) some combination of both. The choice of which

technique to use for grouping the nodes depends on the target analysis task.

5.2.1 Clustering to Identify Structural Components

Understanding the complexity of human anatomy is often facilitated by decompos-

ing into subsystems such as circulatory, muscular, skeleton, neural, digestive, etc.

These decompositions favor functional structures over physical adjacency. Since

networks represent complex phenomena, clustering by connectivity into functional

subsystems often proves to be beneficial. An example of this topologic cluster-

ing is shown in Fig. 5.1, which displays the network of characters in Les Misérables.

This co-appearance network shows the relatedness among characters. Edge thick-

ness shows the number of scenes in which pairs of characters appear, while node

size shows the number of scenes for each character. Nodes are colored based on

their automatically detected topologic clusters. Clustering is often used as an ex-

ploratory data analysis method to discover unexpected inclusions within a known

cluster, unexpected separation into other clusters, or surprising clusters.
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There are many topology-based clustering techniques, usually directed at find-

ing groups of nodes that are more tightly connected with each other than with

nodes outside the group. NodeXL implements the Clauset-Newman-Moore [CNM04],

Wakita-Tsurumi [WT07], and Girvan-Newman [GN02] clustering algorithms, which

all result in mutually exclusive cluster membership. The NodeXL implementations

currently work only on undirected graphs, but additions to support directed and

weighted graphs are planned. The effectiveness of such clusterings can be deter-

mined using metrics such as modularity [NG04], which is roughly the number of

edges within groups minus the expected number in an equivalent random network.

However, verifying the quality of a clustering outcome is often hampered by the

lack of a ground truth.

5.2.2 Grouping to Find Attribute Relationships

Instead of highlighting individual structural features like topologic clustering, at-

tribute aggregation can display overall topology and attribute patterns. Nodes

may represent people, places, documents, or roles, which are readily understand-

able in small networks. However, with thousands or millions of nodes, analysts

may gain insights by replacing nodes of a common type with a single group node,

e.g. author nodes in a scientific citation network might be grouped by their cur-

rent institution into a single node for each institution. This node could be sized by
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the number of authors, thereby showing the productive institutions and revealing

the degree of collaboration across institutions. Simplifying a million-node author

network into a 3000 node institution network removes information, but reveals

important patterns.

Attribute-based node aggregation has been leveraged by several tools to un-

derstand overall relationships at the expense of showing the underlying topology

explicitly. PivotGraph [Wat06] groups nodes based on the intersection of a pair of

attributes, and arranges the meta-node for each group on a grid with each attribute

as an axis. Aggregate links between groups are shown with arcs. Similarly, my

GraphTrail (Section 3.3.2) groups nodes by attribute into standard charts, where

the groups can be further filtered, merged, or used to pivot to connected groups

of other node types. One advantage of this aggregation is a dramatic reduction

in screen space required, a fact leveraged by GraphTrail to show the exploration

history directly integrated into the network analysis canvas. Identical value group-

ing can be used to show the relationships between semantic groups as well as the

relationships within them, for example with semantic substrates [SA06].

NodeXL allows grouping nodes into meta-nodes by their attributes. As an

example, Fig. 5.3 shows U.S. Senate co-voting patterns. Nodes are colored by the

party affiliation attribute: red for Republicans, blue for Democrats, and orange

for independents. Fig. 5.4 shows the same network with senators grouped by their
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Figure 5.3: The U.S. Senate co-voting network for 2007 in shown here, with nodes
for individual senators colored by their parties (blue Democrats, red Republi-
cans, orange Independents), sized by betweenness centrality, and laid out using
Furuchterman-Reingold [FR91]. Edges tie senators together and are weighted by
their percent of voting agreement. Only those edges with at least 50% agreement
are shown.
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Figure 5.4: 2007 U.S. Senators grouped by their regional affiliation into meta-
nodes. Aggregate meta-edges show the number of senators between the two groups
that vote the same way on bills at least 50% of the time. Collapsed from the
network in Fig. 5.3.

regional affiliations into meta-nodes. Grouping multiple nodes into a single meta-

node can produce measurable improvements in readability.

5.2.3 Advanced and Combined Approaches

Additional ways to group nodes by their attributes include the ubiquitous k-means

clustering algorithm [Llo82], which can be used to cluster nodes by similar attribute

values or sets of attribute values. This provides ways to create “fuzzy” groups

with related, but not identical, node attributes. Another approach called VI-Cut

[Nav+09] combines hierarchical clustering with topologic clustering. Navlakha et
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al. use node attributes to create attribute-driven cuts of a hierarchical topology

clustering, specifically focusing on biologic networks and predicting operational

taxonomic units based on hierarchy of sequences and annotations. NodeXL does

not currently support non-exact attribute clustering, but the results of these algo-

rithms can be easily copied into the groups worksheets.

5.3 Midichlorian-Directed Layout

The first meta-layout I developed is a modified force-directed layout that takes

group membership into account when computing forces between nodes, reducing

the spring forces between nodes in separate groups. This approach is called the

Midichlorian-Directed Layout (MDL), in reference to how individuals in the

fictional Star Wars universe have varying levels of Force sensitivity depending on

their midichlorian count. To paraphrase Darth Vader, “The Force is strong with

this [cluster].” This approach was developed in conjunction with Darya Filippova.1

Our motivation for creating such a layout is that our current techniques for

showing group membership, like displaying convex hulls on a node-link visualiza-

tion, can be challenging to interpret. Figs. 5.5 and 5.6 show how challenging this

can be with even simplified biologic networks. The network in these images is the

the human protein interaction network obtained from the HPRD database, simpli-

1http://www.cs.cmu.edu/~dfilippo/

http://www.cs.cmu.edu/~dfilippo/
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Figure 5.5: Graph summarization of the human protein interaction network from
the HPRD database drawn with the Prefuse Force-Directed Layout with a global
anti-gravity coefficient of 9×10−6.
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Figure 5.6: Same summarized human protein interaction network as Fig. 5.5, but
clustered using Newman’s heuristic with convex hulls surrounding each cluster.
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fied using graph summarization [NRS08] down to 3312 nodes and 4746 edges. The

groups shown with convex hulls in Fig. 5.6 are computed using Newman’s fast com-

munity finding heuristic [New04]. Notice how the substantial occlusion among the

clusters prevents getting an accurate cluster count and limits the viewer’s ability

to see relationships between them.

We based our approach for showing group membership more clearly on the

interactive Force-Directed Layout provided by Prefuse [HCL05], which is a physics

simulation with three main forces:

1. Nodes exert anti-gravity on each other to enforce spacing following an inverse

square law. This is computed using the efficient O(n log(n)) time approxi-

mation of the gravitational n-body problem of [BH86] which uses a quad tree

to find accurate local interactions while aggregating body masses.

2. Edges are modeled by springs that pull connected nodes together with glob-

ally constant spring coefficients and length.

3. Drag forces for nodes similar to air resistance are used to prevent oscillations.

At each timestep the forces are updated and the new node position and velocity

is calculated by integrating over the timestep with the 4th-order Runge-Kutta

method or, optionally, the faster but less accurate Euler Forward Method. Both

of these integration techniques are described in [Pre+93].
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Algorithm 5 Force-directed layout algorithm
addSpringForces()
addRepulsiveForces()
for every node u do

for every node v do
calculateForce()
integrateForce() //Runge-Kutta integration
assignPosition(v)

Algorithm 6 addSpringForces() function used in MDL
for every node u do

for every node v do
if u,v are connected then

if u,v in the same community then
a = sharedNeighbors(u,v)
k = a * 10; //tighten the spring

else
k = a / 10; //relax the spring

Our modified algorithm was inspired by the Vizster layout algorithm [HB05].

In Vizster, the edge spring coefficient between the adjacent nodes varied based on

the minimum degree of the two nodes incident on that edge (see Algorithm 5).

This way nodes with few neighbors are drawn closely together while nodes with

many neighbors are spaced farther apart to improve readability. We preserved this

behavior, but with smaller weight on the node degree since our primary goal was

to highlight group membership.

The Vizster algorithm [HB05] did not explicitly use the community structure

which resulted in overlapping communities, as seen in Fig. 5.7. Instead of let-

ting the minimum node degree derive the community structure in the network,
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Figure 5.7: Same summarized, clustered human protein interaction network as
Fig. 5.6, but using a global anti-gravity coefficient of 9×10−5 and zoomed in on
the main connected component. Clusters are separated somewhat using the Vizster
meta-layout modification to the Prefuse force-directed layout, resulting in less clus-
ter overlap.
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we decided to exploit the community information as produced by the Newman’s

heuristic [HB05]. For each pair of nodes that shared a cluster, we increased the

spring coefficient to bring the nodes together. Likewise, for each pair of nodes in

different clusters we decreased the spring coefficient and let the nodes drift apart.

We wanted to control how close the nodes within the cluster got so we made the

edge spring coefficient proportional to the number of neighbors shared by the u,v.

This addition decreases convergence time and brings the densely interconnected

nodes together. Our algorithm is shown in Algorithm 6.

NodeXL was still in early development when this work was conducted. Instead,

we implemented the Midichlorian-Directed Layout in SocialAction [PS06; PS08a;

PS08b]. We chose SocialAction because of it’s ability to handle online, interactive,

and animated layouts through its use of the Prefuse toolkit [HCL05]. In order to

easily compare the effects of various force-directed layouts, we wanted to be able

to dynamically change layouts and layout parameters while preserving the mental

map [Mis+95] users had of the network. Preserving this mental map is important

so users can understand changes to the network [MB04; PHG07]. We implemented

a GUI to enable these interactive layout algorithm switches and animating between

them.

Fig. 5.7 shows the result of applying the Vizster SocNet layout [HB05], which

provides some spacing between clusters but not enough for everything to be read-
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Figure 5.8: Same summarized, clustered human protein interaction network as
Fig. 5.7, with clusters separated further using the Midichlorian-Directed Layout.
The internal structure of these clusters is more visible, as well as the inter-cluster
relationships.
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able. Contrast this with MDL in Fig. 5.8, which has almost no cluster occlusion

and in which the connections between clusters are clearly visible. Moreover, us-

ing the GUI to switch layouts and the animated group separation allows users

to see the effect of the grouping immediately, supplementing any convex hulls or

color/shape coding.

However, the MDL approach leaves a lot to be desired. It is still challenging to

see the aggregate relationships between groups and their relative sizes. Moreover,

the large screen space required for laying out the groups separately severely limits

how much detail can be seen.

5.4 Group-in-a-Box Meta-Layouts

Modified layout algorithms are not enough to help analysts see groups or clusters

in the network clearly. Instead, we on the NodeXL team have chosen to show each

group individually in its own region of the screen, bounded by a box sized according

to the number of nodes it contains, and laid out on its own. These Group-in-a-

Box layouts reveal internal group relationships, make clear which nodes are part of

which groups and how many nodes a group contains, and with effective positioning

of the boxes can show aggregate relationships between groups.

I discuss three Group-in-a-Box (GIB) approaches that have different trade-

offs in how space-filling they are and how well they show relationships between
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groups. The first is the Treemap GIB Layout, which completely fills the screen

space with roughly square boxes. Next, I detail the Croissant-Donut GIB lay-

out, which comes in two variants for networks with varying group characteristics:

the Donut and the Croissant. The Croissant-Donut layouts use most of the

screen space, while showing group relationships more clearly than the Treemap

layout. Finally, present a Force-Directed GIB layout that arranges boxes by

the group relationships, highlighting the group connectivity at the expense of addi-

tional screen space. These layouts are implemented in NodeXL [Smi+10] and can

be selected by the user depending on the network they are trying to analyze and

their visualization goals. Moreover, I automatically select the most effective layout

for the user based on a set of criteria about the network and group structure.

5.4.1 Treemap Layout

The Treemap Group-in-a-Box layout [Rod+11] subdivides the available screen

space using a treemap [Shn92; JS91]. Shneiderman [Shn92] employed a slice and

dice method for representing hierarchical information in a space-filling manner,

which could result in boxes with high aspect ratios. Instead, the NodeXL team

uses the squarified treemap approach of [BHJVW00] which maintains a low

aspect ratio for the boxes. The boxes created by the Treemap layout have area

proportional to the number of nodes they contain. For our purposes, it is impor-
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Figure 5.9: 2007 U.S. Senators grouped by their regional affiliation. From
[Rod+11]. See Section 4.3.1 for more on this dataset.

tant to keep a low aspect ratio because narrow boxes would not be as effective

at displaying the structure of the group laid out inside it, in addition to being

difficult to see their area and thus understand the number of nodes they contain.

While NodeXL does not currently support hierarchical grouping, the Treemap GIB

layout could be easily extended to visualize nested clusters.

Fig. 5.9 provides an example of this approach, where the 2007 U.S. Senate

co-voting network is segmented into five geographic regions the senators represent

(an attribute-based grouping). See Section 4.3.1 for more on this dataset. The
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cross-region edges are hidden in this example. We can see that the South region

has the most Senators, while the Pacific is the fewest. Moreover, we can clearly

see the internal structure of the groups, such as the general division of each region

into the Democrats on one side and the Republicans on the other. In each region,

we can also see any moderates that bridge the parties, such as Collins, Snowe, and

Specter in the Northeast region.

However, the use of a Treemap layout for the boxes can end up placing highly

connected clusters in different regions of the screen, with any connecting edges

being drawn across the intermediate clusters (see Section 5.5 for examples). It can

be hard to discern whether these long edges connect to nodes in the intermediate

clusters, or are merely drawn overlapping. This ambiguity, in addition to the added

clutter of these long ties, makes it difficult to analyze the relationships between

clusters and draw meaningful conclusion. Our other layouts take the aggregate

group relationships into account when determining where to place the boxes, so as

to alleviate this issue.

5.4.2 Croissant-Donut Layout

The Croissant-Donut Group-in-a-Box layout [Cha+13] my students and I devel-

oped tries to balance the space-filling attributes of the Treemap GIB layout with

showing more of the underlying relationships between groups. The layout takes the
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overall group relationships into account when choosing where to place the group

boxes. We came up with two complementary approaches, the Donut and the

Croissant, each targeted at representing specific types of networks. We choose

between these two approaches automatically depending on network and group

properties (see Section 5.4.5 for more details). For these algorithms, we will be

making use of a per-group metric we call connectedness, defined as the number

of other groups a group is connected to.

5.4.2.1 Donut Layout

The Donut layout begins by placing the most connected group in the center of the

screen. The other groups can be arranged either by their size to reduce wasted

space or by their aggregate connections to other groups, so highly connected groups

are adjacent. In this discussion I will use the latter, where groups are wrapped

around the periphery in decreasing order of their connectedness.

The area occupied by each group is calculated as:

area(Group)=alpha∗screen_area∗|Group.nodes|/|Graph.nodes|

where Group.nodes refers to the nodes in the group, Graph.nodes refers to

the nodes in the entire network, and alpha is the initial space-filling factor, which

starts at alpha = 1.0. Note in Fig. 5.10 the area of each group, proportional to

the number of nodes it contains, does not necessarily decrease as connectedness

decreases.



5.4 Group-in-a-Box Meta-Layouts 164

Figure 5.10: The basic principle behind the Donut variant of the Croissant-Donut
layout is to place the most connected group in the center of the screen, then placing
the other groups around its perimeter based on their connectedness (number of
other groups they are connected to).

This process for the Donut GIB layout is illustrated in Fig. 5.10 for a network

with 7 groups, listed on the left in decreasing order of connectedness. The steps

are marked in sequential order as Steps (i) to (viii). The figure also shows which

groups remain to be placed at the bottom of each step. Initially in Step (i), we

place G1 the most connected group at the center with an aspect ratio proportional

to that of the screen. This is represented as a blue box in Step (ii), also known as

the “donut hole”. Placing G1 divides the screen into two horizontal (H1 and H2)

and two vertical (V1 and V2) empty boxes. The remaining groups will be arranged

in these boxes alternating in the sequence H1, H2, V1, V2.

Since we only know the areas and not the dimensions of the groups, we use the

orientation of the empty boxes to determine the group’s width or height. While

placing a group in a horizontal empty box, we set its height to be same as that of
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the horizontal empty box. Its width is then determined by dividing its area by the

height. Using the dimensions calculated above, the group is finally placed in the

horizontal empty space box aligned with the empty box’s left side. For example,

in Fig. 5.10, Step (ii) has a horizontal empty box labeled H1. The result of placing

a group, G2, in H1 is shown in Step (iii) creating a new smaller H1 in (iii). It is

easy to see that G2 and H1 of Step (ii) have same heights and they have a common

left edge. Similarly, while placing a group in a vertical free box, we set its width

to be same as that of the empty box and its height is determined using its width

and area. The group and the vertical empty box share the top edges of the empty

box. See placement of G4 in V1 in Steps (iv) and (v) of Fig. 5.10 for an example.

After placing G1, we place the next group, G2, in H1; followed by G3 in H2,

G4 in V1 and G5 in V2 (Steps (ii) to (vi)). Step (vi) shows that we have G6 and

G7 left. So starting again at H1, we place G6 in H1 (Step(vii)). We then try to

place G7 in H2, but H2 had no space left. So, we move on to V1 and place G7

there (Step (viii)). No groups remain to be placed at Step (viii).

The method proposed above is not space filling which might result in a situation

where the algorithm still has some groups to place on the screen but none of the

empty boxes are big enough. In such a situation, we restart the algorithm with

alpha = 0.9∗previous_alpha and repeat this process until all the groups get

placed on the screen.
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Figure 5.11: The basic principle behind the Croissant variant of the Croissant-
Donut layout is to place the most connected group in the top of the screen, then
place the other groups around the other three sides based on their connectedness
(number of other groups they are connected to).

5.4.2.2 Croissant Layout

As in the Donut layout, the Croissant layout sorts groups in decreasing order

of connectedness and computes initial areas that can be decreased iteratively if

needed. The box placement is similar, but instead of placing the most connected

group at the center of the visualization, it is positioned at the top forming the

“croissant hole” shown in Fig. 5.11. The rest of the groups are placed around

the remaining three sides, in one horizontal and two vertical empty boxes instead

of two each, namely H2, V1 and V2 (Step (ii)). Groups are placed around G1

alternating in the sequence H2, V1 and V2 (Steps (iii) to (viii)).
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Figure 5.12: A Donut-favoring network & groups, shown in the Treemap layout.

Figure 5.13: A Donut-favoring network & groups, shown in the Donut layout.
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Figure 5.14: A Croissant-favoring network & groups, shown in the Treemap layout.

Figure 5.15: A Croissant-favoring network & groups, shown in the Croissant layout.
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5.4.2.3 Comparing the Donut and Croissant Variants

In general, the Donut variant of the Croissant-Donut layout is more effective when

there are lots of small groups in the network. However, when the network contains

one or two big clusters and a few small clusters, it can result in a lot of wasted

space. In those cases, the Croissant layout performs better. We choose between

these two approaches automatically depending on network and group properties

(see Section 5.4.5 for more details).

Figs. 5.12 to 5.15 illustrate these approaches for two separate networks in com-

parison with the Treemap GIB layout, using combined meta-edges in place of the

original inter-group edges. One caveat here is that many of the smallest groups

have been filtered out in the Croissant-Donut versions as they do not show large

numbers of small groups effectively. The first two figures show a network that is

more suitable for the Donut layout, originally in a Treemap (Fig. 5.12) and then

the same network in the Donut layout (Fig. 5.13). The meta-edges connecting

groups in the Treemap layout suffer from an abundance of overlaps and crossings,

especially near highly-connected groups like G3 and G5. However, the Donut lay-

out positions these groups so that there are no crossings near the center of groups,

with the remaining crossings around the group edges much easier to follow. The

next two figures show a network that is more appropriate for the Croissant layout,

first in a Treemap (Fig. 5.14) then in the Croissant layout (Fig. 5.15). Again, we
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Figure 5.16: The Force-Directed GIB layout explicitly positions groups based on
their aggregate connections, showing group relationships clearly at the expense of
additional screen space.

see excessive overlap and crossings near the center of G2 that limit readability,

while the Croissant layout version of almost completely eliminates the problem.

While this approach does well at balancing a space-filling layout with showing

the ties between groups, my Force-Directed Layout (described in the next section)

chooses to use more white space to show those ties more clearly. These trade-offs

are empirically verified in Section 5.6.

5.4.3 Force-Directed Layout

The Force-Directed Group-in-a-Box layout is my approach for explicitly showing

the inter-group relationships in the visualization. The boxes are positioned using

a standard force-directed layout run on the aggregate network, where the nodes

represent entire groups and the edges between them represent the aggregate con-

nections between a pair of groups. The overall concept is illustrated in Fig. 5.16.
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I then draw the group boxes on this initial layout centered at the group node’s

position, followed by a step to remove the overlap created by all these boxes. This

layout has the benefit of clearly showing the aggregate topology, but at the cost of

more wasted screen space. However, this problem can be reduced by using effective

overlap-reduction techniques that minimize the additional screen space required.

5.4.3.1 Initial Configuration

The first step of the force-directed group-in-a-box layout is setting how much of

the screen space to use to show groups initially. Groups are represented using

squares, sized according to the number of nodes they contain. My experiments

with setting the initial space-filling factor ranging from 20% to 100% point to a

general trade-off between how space-filling the resulting visualization is and how

well the final group positions represent the actual group relationships. For more

details on this trade-off, see Section 5.4.3.3.

5.4.3.2 Generate Initial Group Box Positions

The first task is to position the groups according to their connectivity with each

other. I create a new network showing the group relationships, with one meta-

node for each group and a combined meta-edge joining connected groups. Then

I compute a set of initial node positions using NodeXL’s implementation of the

Harel-Koren fast multi-scale (FMS) layout [HK02a].
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I chose to use the Harel-Koren FMS layout [HK02a] because it was implemented

in NodeXL already, was sufficiently fast, and produced good results. However,

future implementers may wish to use faster or more effective layout algorithms.

According to experimental evaluations of several best-of-breed layout algorithms

carried out by Hachul and Jünger [HJ06; HJ07], two good choices would be the

high-dimensional embedding (HDE) approach of Harel and Koren [HK02c] or the

algebraic multigrid method (ACE) of Koren, Carmel, and Harel [KCH03]. Hachul

and Jünger report that HDE, followed by ACE, was the fastest algorithm for many

test cases. However, if these layouts produce ineffective visualizations Hachul and

Jünger suggest using their FM3 algorithm [HJ05; Hac05] to get comparable or

better results while still having a reasonable run time. The FM3 layout may be

complex to implement, and was the focus of Stefan Hachul’s dissertation [Hac05].

My current implementation using the Harel-Koren FMS layout [HK02a] does

not use meta-edge weight when calculating the layout. While this technique has

proven effective in the examples I have explored, I would suggest that future im-

plementers use this meta-edge weight as part of the layout algorithm to pull more

strongly connected groups closer together and separate poorly connected groups

further. The HDE algorithm [HK02c] can be modified for visualizing weighted

networks [Hac05, p.22], and both ACE [KCH03] and FM3 [HJ05; Hac05] can be

applied to weighted networks.
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Another issue is that NodeXL’s implementation of the Harel-Koren FMS layout

[HK02a] does not presently handle multiple disconnected components well, and

lays them out individually in the same regions. Thus, care should be taken to

ensure to apply the force-directed Group-in-a-Box layout only on networks without

disconnected components or isolates. See Section 5.4.5 for a general solution to

the disconnected component problem.

5.4.3.3 Remove Group Box Overlap

After the initial group box positions are determined, I have to contend with the

fact that the layout algorithm is unaware of the group boxes. If I draw each box

centered at its position from the layout algorithm I get a visualization like Fig. 5.17

with substantial amount of box overlap. This initial overlap can be reduced by

using smaller boxes, but at a significant cost in wasted space. Instead, I try to

eliminate the overlaps while retaining as much of the structural information from

the layout as possible and minimizing additional area required. Naturally, worse

overlap in the initial visualization leads to a less effective resulting layout.

While the problem of creating a minimum-area layout adjustment is NP-complete,

there are several effective node-node overlap removal algorithms that can be applied

to these group boxes. I use the PRoxImity Stress Model (PRISM) algorithm of

Gansner and Hu [GH09], which iteratively computes box overlap along the edges of

a Delaunay triangulation and adjusts those edge lengths accordingly to remove the
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Figure 5.17: Group box positions after running the Harel-Koren FMS layout
[HK02a] on the group relationship network of innovations in Pennsylvania (see
Section 5.5.2 for dataset details). Edges between groups are hidden.
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Figure 5.18: An original network visualization (left), the same visualization after
removing node-node overlap with the PRISM algorithm [GN98] (center), and after
removing node-node overlap with the solve_VPSC algorithm [DMS06; DMS07].
solve_VPSC maintains orthogonal ordering but can result in highly skewed visu-
alizations. From [GH09].

overlap. According to Gansner and Hu’s evaluations, the PRISM approach scales

up well to large networks while maintaining a good tradeoff between preserving

the network shape and limiting the area required by the adjusted visualization.

Several other alternatives exist, though they have various problems with scal-

ing up or preserving the network shape. For example, the scan line approach of

Dwyer, Marriott, and Stuckey; Dwyer, Marriott, and Stuckey [DMS06; DMS07]

is a quadratic programming algorithm removes overlaps and maintains orthogonal
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Figure 5.19: An original network visualization (left), the same visualization after
removing node-node overlap with the PRISM algorithm [GN98] (center), and after
removing node-node overlap with the solve_VPSC algorithm [DMS06; DMS07].
solve_VPSC maintains orthogonal ordering but can result in highly skewed visu-
alizations. From [GH09].
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ordering. However, the visualization can become highly skewed as you can see in

the right side of Figs. 5.18 and 5.19. For details on many other node-node overlap

removal techniques see Section 6.4.1.

The effects of the box removal algorithm are illustrated in for a large network

with an initial space-filling factor of 20% (Fig. 5.20) and 50% (Fig. 5.21). In these

two figures, the initial positions for each group chosen by the layout algorithm

(Section 5.4.3.2) are shown using colored circles, squares, diamonds, and triangles.

The boxes, however, are drawn centered around their final non-overlapping posi-

tions. For groups with substantial movement, I have drawn a red line connecting

the initial position shape to the center of the final box position. As the layout al-

gorithm does not take the box size into account, there can be a substantial amount

of adjustment required to reach the final positions. In Fig. 5.20, where the initial

space-filling factor was 20% of the screen, there is relatively little movement and

the groups retain their relative positions to each other, except for a few crossing

movements in the bottom-left. On the other hand, in Fig. 5.21 where the initial

space-filling factor is 50%, I see much more group movement.

In general, the the box overlap removal algorithm keeps the relative positions

of the groups intact, but there can be large groups that get shoved out to the

periphery with a high initial space-filling factor. This layout is more space-filling,

but at the expense of obscuring some of the group relationship information. This
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Figure 5.20: Network and groups from Fig. 5.17, using a different initial set of
positions from the Harel-Koren FMS layout [HK02a] and after adjusting box posi-
tions using the PRISM overlap removal technique [GH09]. In this case I chose an
initial space-filling factor of 20%. The red lines map the original group positions,
represented by colored shapes, to the final box positions. There is generally little
movement.
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Figure 5.21: Network and groups from Fig. 5.17, using a different initial set of
positions from the Harel-Koren FMS layout [HK02a] and after adjusting box posi-
tions using the PRISM overlap removal technique [GH09]. In this case I chose an
initial space-filling factor of 50%. The red lines map the original group positions,
represented by colored shapes, to the final box positions. There is a substantial
amount of movement, and while most of it preserves group relationships the largest
groups get shoved to the periphery.
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problem could potentially be alleviated by reducing the amount of overlap removed

in each iteration of the algorithm, allowing the large groups to slowly push small

ones out of the way instead of shoving past them to the periphery. This parameter

is referred to as smax in [GH09] and must be larger than 1.0. I am currently using

their suggested default value smax = 1.5, but experimentation could be useful.

5.4.3.4 Finalize the Layout

I do have the initial space-filling factor which sets how much of the screen to use

to display boxes, but because the box overlap removal technique usually needs to

adjust the boxes outward the final screen space required can increase. If the layout

has expanded outside of the available screen space, I then scale the new layout to

fit in in the available space. Each box is scaled down using the ratio of the layout

space required to the screen space, maintaining its aspect ratio.

As most layout algorithms, including the one I chose, use non-deterministic

heuristics to place the nodes, it is possible to get a poor initial layout. For ex-

ample, all the nodes can be placed on a diagonal line or the like. In those cases,

the resulting visualization after overlap removal preserves that diagonal line and

requires a significant amount of screen space. As with general force-directed lay-

outs, the user can choose to run the layout again (or several times) to get the most

effective force-directed group-in-a-box layout.
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5.4.4 Showing Edges Between Groups

After running a Group-in-a-Box layout, we have an option as to how to show inter-

group edges. NodeXL [Smi+10] currently supports three techniques: showing the

actual underlying edges, hiding them completely, or replacing all the edges between

each pair of groups with a meta-edge sized proportional to the number of edges

it represents. These options are shown in Fig. 5.22, as well as many other images

in this chapter. In addition to straight-line edges, NodeXL can draw curved or

bundled edges that may reduce complexity (e.g., Fig. 5.31). However, because the

group in each box is laid out independently of the rest of the network, showing

the underlying edges explicitly often results in additional edge crossings and other

poor layout characteristics. Depending on the user’s target analysis tasks, using

the combined meta-edges or hiding edges completely can be more effective.

5.4.5 Dividing the Problem

We now have three Group-in-a-Box layouts at our disposal: Treemap, Croissant-

Donut, and Force-Directed. Users can choose the variant most suitable to their

task using the Layout Options dialog in NodeXL Fig. 5.23, depending on whether

they wish to have a highly space-filling layout (Treemap), one that highlights

group relationships (Force-Directed), or somewhere in between (Croissant-Donut).

However, the onus is not entirely on the user to pick the best layout for their
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Figure 5.22: Three ways to show edges between groups in a Group-in-a-Box layout.
From top to bottom: show all underlying edges, hide all underlying edges, and use
aggregate meta-edges.
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Figure 5.23: The NodeXL Group-in-a-Box user interface. The right graph pane
shows a Force-Directed Group-in-a-Box layout of the Risk network, which is de-
scribed further in Section 5.5.1. The left Edges worksheet shows some of the edges
connecting the nodes in the network. The Layout Options dialog in the foreground
allows users to select their desired Group-in-a-Box layout, the size of group boxes,
how to treat inter-group edges, and whether to use a separate grid layout for groups
with few edges instead of the chosen main layout.
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network. I make several choices for the user algorithmically, so as to reduce novice

user difficulties and speed up the analysis process.

5.4.5.1 Disconnected Components

First, I find any disconnected components in the network and lay each component

out individually in a rectangular screen region using the Treemap Group-in-a-

Box layout by default. This ensures that disconnected parts of the network are

not drawn on top of each other, as most layout algorithms assume a single con-

nected component. Moreover, the Treemap layout more effectively subdivides the

screen space for the various group sizes, compared to NodeXL’s current option of

putting components below a certain size in small same-sized boxes at the bottom

of the screen. This also is more space-filling than the approach used by Cytoscape

[Sha+03], which lays the components out individually, sorts the components by

screen space used, and stripes them in rows where each row is as tall as its tallest

component (Fig. 5.24). After the top-level component Treemap layout, if the user

is using a regular Group-in-a-Box layout, each component’s region will be further

subdivided using the chosen algorithm if it contains any groups. This can result in

a two-level Treemap, where the top level divides the network by components and

the second divides components by any groups present in the groups worksheet.

Alternatively, a Force-Directed or Croissant-Donut Group-in-a-Box layout can be

used for the second level.
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Figure 5.24: The Cytoscape biologic network analysis tool [Sha+03], currently
showing the human protein interaction network after applying graph summariza-
tion [NRS08]. Disconnected components are laid out individually, sorted by screen
space used, and striped into rows with each row height set by the tallest compo-
nent. This can waste substantial screen space when components have drastically
different sizes.
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Figure 5.25: Three simple groups in the NodeXL squarified treemap layout demon-
strating how window aspect ratio can cause three groups to be laid out in a row.

5.4.5.2 Number of Groups

The second automatic layout choice deals with the number of groups present in a

component. If there is only one group (the complete subnetwork), no Group-in-a-

Box layout is used. If there are two groups, I choose the Treemap layout to divide

the space in half proportionally. For three or more groups, I use the user’s selected

Group-in-a-Box layout. Ideally, a squarified Treemap layout would allow perfect

representation of relationships between three groups without edges unnecessarily

crossing group boundaries. However, high aspect ratio layout spaces like those

possible when resizing the NodeXL graph pane can result in poor Treemap layouts

for showing three-way relationships (Fig. 5.25).
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5.4.5.3 Distribution of Group Sizes

Between the two variants of the Croissant-Donut Group-in-a-Box layout, the Donut

should be preferred when there are many small groups in the network. Alterna-

tively, if there are one or two big clusters and a few small clusters the Croissant

layout will provide a more space-filling layout. We have defined a measure calledG-

skewness to measure this property, defined as the fraction of the network’s nodes

present in the two groups with the highest connectedness (see Section 5.4.2)

for a definition of connectedness). We have empirically determined cutoffs of G-

skewness that we use to automatically choose the Donut or the Croissant variant

depending on this group structure:

• Case1: |Groups| ≤ 3 and G-skewness < 0.1 – Use the Treemap layout

• Case2: |Groups| > 3 and 0.1 ≤G-skewness ≤ 0.45 – Use the Donut layout

• Case3: |Groups| > 3 and G-skewness > 0.45 – Use the Croissant layout

5.5 Case Studies

I explored several real-world networks with the three Group-in-a-Box layouts to

determine their effectiveness. Examples of these case studies are detailed below.

Two of these studies in particular involved extensive collaboration with domain

experts to solve real-world problems: the innovation network in Section 5.5.2 and

the medical informatics network in Section 5.5.3.
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Figure 5.26: The box and board for the game Risk. The board consists of 42
countries in six continents. From boardgamegeek.com/image/1466865/risk

5.5.1 Continent-Holding Strategies in Risk

One small network that may be meaningful to a broad audience (of geeks at least)

is that of the board game Risk. Risk is a turn-based strategy war game from

Hasbro, originally released in 1957. The game is played on a political map of Earth

with forty-two countries grouped into six continents. On their turn, users collect

armies based on the countries and continents they occupy, then attempt to capture

countries adjacent to the ones they occupy with combat a matter of attrition

http://www.boardgamegeek.com/image/1466865/risk
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resolved via dice rolling. The game board and pieces are shown in Fig. 5.26.

I created a network from the game board, where nodes represent countries and

edges between them indicate valid movements across country borders.

This network is shown in Fig. 5.27, where the nodes are laid out using the

Harel-Koren FMS layout [HK02a] and clustered/colored using Clauset-Newman-

Moore [CNM04]. From this visualization we can see the expected segmentation

into continents, which are generally more insular, with specific routes to other con-

tinents. For example, we can see the red South America on the left, the light green

Australia in the bottom-right, and dark green North America at the top. Holding

these three continents can be quite beneficial, as they provide troop bonuses and

have limited access. However, we can see in the center that the purple cluster

is a combination of Europe and Africa, or EuroAfrica. These two continents are

so tightly connected along the Mediterranean that they are considered as one by

Clauset-Newman-Moore, indicating correctly that they are harder to hold. More-

over, we see the Middle East is clustered into the bottom-right of EuroAfrica,

although it is part of light-blue Asia in the game. As any Risk aficionado or “The

Princess Bride” fan can tell you, “never get involved in a land war in Asia” – and

this clustering result indicates one of the reasons why!

I also looked at this network using the three Group-in-a-Box layouts, and the

results are shown in Figs. 5.28 to 5.30. As expected, the Treemap GIB layout
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Figure 5.27: The network for the board game Risk, where nodes are countries
and edges indicate valid movements. Nodes are laid out using Harel-Koren FMS
[HK02a], clustered and colored using Clauset-Newman-Moore [CNM04].
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Figure 5.28: Risk network from Fig. 5.27, shown using the Treemap GIB layout
with combined inter-group edges.
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Figure 5.29: Risk network from Fig. 5.27, shown using the Croissant variant of the
Croissant-Donut GIB layout with combined inter-group edges.
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Figure 5.30: Risk network from Fig. 5.27, shown using the Force-Directed GIB
layout with combined inter-group edges. The initial space-filling factor is 20%.
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(Fig. 5.28) uses the space exceptionally well while maintaining small aspect ratios

for the group boxes. The structure of each cluster is far more readable than in the

original node-link visualization (Fig. 5.27). The combined inter-group edges show

the strength of connection between purple EuroAfrica and light blue Asia – further

solidifying our concerns about holding them in the game. The rest of the groups

are only joined by a single route of attack. However, we can see the unfortunate

placement of red South America next to light green Australia and light blue Asia

– neither of which it as any connection to.

Moving to the Croissant-Donut GIB layout, we see that this network was as-

signed the Croissant variant (Fig. 5.29). There is some wasted space along the

periphery, and the group box aspect ratios are worse than in the Treemap GIB

layout (Fig. 5.28). On the plus side, light green Australia is only next to light

blue Asia, its sole tie to the world, and red South America is by purple EuroAfrica

which it connects to. South America also has a tie to dark green North America

on the left, but is unfortunately placed on the other side of the visualization.

Finally, we look at the network using the Force-Directed GIB layout with an

initial space-filling factor of 20%, shown in Fig. 5.30. Because of the reduced

group box size, the labels are smaller and group internal structure is less readable.

However, the ties between clusters are now explicitly clear based on their locations

and the lack of meta-edge crossings or overlaps.
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Overall, this case study illustrates the trade-offs inherent in the the three tech-

niques while at the same time highlighting effective strategies for the game Risk.

Clusters of countries and their internal legal movements are most clear using the

Treemap GIB layout, while the Force-Directed GIB layout highlights the move-

ments possible between the clusters. The Croissant-Donut GIB layout strikes a

balance between these two extremes.

5.5.2 Finding Regional Innovation Clusters

One of the goals of urban planners is to understand the relationships behind inno-

vation and how the ties between organizations, individuals, and funding agencies

affect growth. Christopher Scott Dempwolf,2 a researcher in the School of Architec-

ture, Planning and Preservation at the University of Maryland, has been working

to model innovation based on patent ties, federal and state funding, and physical

locations. I introduced Dempwolf to NodeXL and helped guide several of his net-

work analyses, including one of Pennsylvania innovations in 1990. He was keen on

detecting technology and talent clusters which could be positively influenced. The

network he collected included patent ties, federal funding from SBIR/STTR, and

state funding via the DCED and Ben Franklin Technology Partners.

An initial visualization of this network is shown in Fig. 5.31, which uses the

Harel-Koren FMS layout [HK02a], link bundling, and categorical coloring for node

2http://www.terpconnect.umd.edu/~dempy

http://www.terpconnect.umd.edu/~dempy
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Figure 5.31: Pennsylvania innovation relationships during 1990 (main component)
collected by Christopher Scott Dempwolf. Nodes are laid out using the Harel-
Koren FMS layout [HK02a] and I used link bundling as well as categorical coloring
for node and link types. Gray nodes represent inventors; orange are firms; red
are federal agencies; royal blue are PA DCED / Ben Franklin agencies; lime are
universities. Red ties (lines) are SBIR / STTR funding; purple ties are patent re-
lationships; aqua ties are state funding; blue ties are explicit relationships between
patents; light green ties are technology-based relationships.
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and link types. While quite beautiful, this visualization is not particularly effective.

Some large structures are easily distinguishable, like the cauliflower-shaped groups

of gray inventors and a few large orange enterprises. However, the overall structures

and relationships are hard to interpret.

Dempwolf was interested in technology and talent clusters, so to try to pick

these features out of this large network I applied the Clauset-Newman-Moore clus-

tering algorithm [CNM04]. The algorithm finds clusters of nodes that link to

each other more frequently than outside the cluster, which, in this case, represents

clusters of entities with similarities in patented technology. With a node-link visu-

alization alone it can be challenging to see group membership, size, and aggregate

relationships using solely the standard color or shape coding as in Fig. 5.32. I

applied the Treemap GIB layout to make these features explicitly visible by laying

out each detected cluster individually (Fig. 5.33).

In analyzing this visualization, we discovered many expected clusters around

specific Pennsylvania counties and local enterprises. For example, the bottom-left

cluster of Fig. 5.33 is the Pittsburgh metro area, containing the orange Westing-

house Electric. The Pittsburgh cluster is highly connected (via faint, small links)

to the Montgomery county cluster to its right, another large metro area. An

unexpected exception to the location grouping is the top-left pharmaceutical and

medical cluster, composed of several companies, universities, HHS, and an interest-
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Figure 5.32: The innovation network from Fig. 5.31, with clusters found using the
Clauset-Newman-Moore algorithm [CNM04] shown using node color and shape.
Because of the dense, intermingled clusters it is difficult to understand the network
and cluster structure. In this figure the edges are shown as straight lines.
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Figure 5.33: The innovation network from Fig. 5.31, with nodes grouped into boxes
by the clusters found using the Clauset-Newman-Moore algorithm [CNM04], laid
out using the Treemap GIB layout sized by their degree, and arranged inside
boxes using the Harel-Koren FMS layout [HK02a]. Edge opacity is based on the
tie strength and edges are bundled.
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Figure 5.34: The visualization from Fig. 5.33 after replacing inter-group edges with
meta-edges that represent the aggregate relationships between each pair of groups.

ing arrangement of inventors in several connected fans. Dempwolf was completely

unaware of this cluster, which was immediately visible with the Treemap GIB

layout. These sorts of meaningful structures were mostly hidden in the original

visualization (Fig. 5.31).
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Figure 5.35: The visualization from Fig. 5.33 after hiding inter-group edges.
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Figure 5.36: The visualization from Fig. 5.33 after hiding inter-group edges and
filtering to only the largest groups.

However, the Treemap GIB layout can place highly connected groups of nodes

far apart in the treemap, such as the two adjacent counties in Fig. 5.33 that are

placed in the top-right and bottom-left corners. This makes it difficult to see

aggregate relationships, with the edges stretched across many other groups they

are not connected to. I attempted to show these aggregate relationships explicitly

using a single aggregate edge between groups instead of the plethora of small ones,

but the results were not encouraging (Fig. 5.34). In this example, there are too

many connections between the various groups to be able to discern individual



5.5 Case Studies 203

ones. I hid all inter-group edges entirely (Fig. 5.35), which showed internal group

structure more clearly, then drilled down to only the largest groups in the network

to create Fig. 5.36. This kind of filtered, labeled visualization would be especially

good for presenting the results.

Of course, I wanted to see how the other Group-in-a-Box variants handled this

large, complex network. When I used the Fitted-Rectangles layout, our algorithms

chose to use the Donut variant (Fig. 5.37). We can see the largest groups and their

connections fairly well, but edges cross unrelated groups in some cases and many

of the boxes have high aspect ratios. The smallest groups, which are shown as

slices in the corners, have extremely high aspect ratios and should be filtered out.

Alternatively, we could explore a combination with the Treemap GIB approach

that subdivides corners when aspect ratios become to high.

My Force-Directed GIB approach, on the other hand, retains very good aspect

ratios for the groups (Fig. 5.38). Moreover, the most tightly connected groups are

placed near each other with the edges generally overlapping few other boxes. How-

ever, some of the largest groups are pushed to the periphery and thus their edges

are drawn across unrelated groups. Some parameter tweaking may be necessary

in the overlap reduction algorithm to avoid this. Also, there is much more wasted

screen space than the Treemap GIB layout (Fig. 5.33) and the Croissant-Donut

Donut GIB layout (Fig. 5.37).
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Figure 5.37: The visualization from Fig. 5.33, but using the Croissant-Donut Donut
GIB layout instead of the Treemap. Inter-group edges are visible and straight.
While we can see some of the groups well, many of the smaller groups in the
corners have high aspect ratios.
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Figure 5.38: The visualization from Fig. 5.33, but using the Force-Directed GIB
layout instead of the Treemap. Inter-group edges are visible and straight. All the
groups have low aspect ratios, and aggregate connections between the large groups
are more visible. The initial space-filling factor is 50%.
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All told, Dempwolf found that these clusters accurately represented specific eco-

nomic development opportunities that could be influenced to increase employment.

According to him, “This approach gives you a list of firms to go talk to and specific

things to talk with them about. It also identifies specific talent clusters. These

are things that traditional industry cluster analysis has never done.” More details

of Dempwolf’s use of NodeXL for identifying high-priority economic development

targets are available in his slide deck3, as well as his dissertation [Dem12].

5.5.3 Patient Discharge Summaries

I also applied the three Group-in-a-Box meta-layouts to the network of patients and

concepts from their discharge reports, originally discussed in Section 4.3.5 as a case

study for motif simplification (Chapter 4). After applying the Clauset-Newman-

Moore topologic clustering algorithm [CNM04] to the network from Fig. 4.20, the

standard color-coding approach produced the visualization shown in Fig. 5.39. The

many densely connected clusters here are difficult to interpret. Note that standard

clustering algorithms may not be as effective for analyzing networks with multiple

node types, like this one of patients and concepts.

The Group-in-a-Box layouts, on the other hand, nicely segment these clusters.

First, the Treemap GIB layout shown in Fig. 5.40 enables us to see the internal

structure of each cluster. We have large clusters around our two egos in the net-

3http://portal.sliderocket.com/ATWBE/Using-SNA-to-find-and-manage-RICs

http://portal.sliderocket.com/ATWBE/Using-SNA-to-find-and-manage-RICs
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Figure 5.39: Patients and concepts related to the “hops5325” and “orch7323” med-
ications from Fig. 4.20. Nodes are grouped using the Clauset-Newman-Moore
topologic clustering algorithm [CNM04] and colored accordingly.
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Figure 5.40: Patients, concepts, and clusters from Fig. 5.39, shown in the Treemap
Group-in-a-Box layout. Our ego concepts, “hops5325” and “orch7323”, are shown
in orange in the largest clusters.
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work, the concepts “hops5325” and “orch7323” shown in orange. There is another

large cluster to the top-right, as well as several smaller ones. Each of these clusters

consist of several patients and a range of concepts associated with them. However,

the Treemap layout prevents us from seeing the ties between clusters easily.

The Croissant-Donut layout, in this case choosing the Croissant variant, is

shown in Fig. 5.41. This layout does somewhat better at removing the overlap

of the meta-edges between groups though has worse aspect ratios for the group

boxes. The pure Force-Directed approach, shown in Fig. 5.42, does even better at

showing the group ties and maintains square group boxes, though group internal

structure is a bit less discernable than in the Treemap layout.

One interesting combination is to use one of the Group-in-a-Box layouts with

the motif simplification techniques I presented in Chapter 4. I combined the node

positions given by the Force-Directed GIB layout with the simplified motif glyphs,

resulting in the visualization in Fig. 5.43. Due to technical limitations in the imple-

mentation, these approaches are not completely complimentary. For example, the

edges between groups are shown and the group boxes have disappeared. However,

the group and node positions are maintained. We can see which groups have large

fan and connector motifs of similar concepts and could drill into them on a per-

group basis. Future development, especially the inclusion of hierarchical or nested

groups in NodeXL, could enable more effective combinations of these approaches.
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Figure 5.41: Patients, concepts, and clusters from Fig. 5.39, shown in the Croissant-
Donut Group-in-a-Box layout. In this case the Croissant variant was chosen au-
tomatically. Our ego concepts, “hops5325” and “orch7323”, are shown in orange in
the largest clusters.
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Figure 5.42: Patients, concepts, and clusters from Fig. 5.39, shown in the Force-
Directed Group-in-a-Box layout. Our ego concepts, “hops5325” and “orch7323”,
are shown in orange in the largest clusters. The initial space-filling factor is 50%.
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Figure 5.43: Patients, concepts, and clusters from Fig. 5.39, shown in the Force-
Directed Group-in-a-Box layout but without the group boxes. The underlying
edges are visible. The motif simplification technique from Chapter 4 is applied as
well.
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5.6 Experimental Results

In this section I compare the performance of the proposed Group-in-a-Box methods

with the baseline ST-GIB on 309 Twitter networks downloaded from the NodeXL

Graph Gallery [Smi+13]. I also describe an initial user study that was conducted

to compare the usefulness of such GIB approaches. These studies were conducted

by my students and me [Cha+13].

5.6.1 Pilot Study

The meta-layout methods proposed in this dissertation are based on the assump-

tion that the existing ST-GIB layout is not good enough for understanding inter-

group relations and that there is a need for methods that consider inter-group

edges while arranging groups. To validate this hypothesis, we conducted an initial

user study to compare the CD-GIB approach with the ST-GIB approach.

We recruited 9 participants who self reported that they have dealt with network

data previously. The experiment followed a within subjects design, where subjects

were given a set of tasks and asked to use the ST-GIB and the CD-GIB layouts to

answer questions. The order of experimental conditions was counterbalanced by

alternating the order in which the two layouts were presented. The tasks presented

to the users were derived from questions that may arise about a network with

regards to the relationship between the various groups. The tasks asked users to
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count the number of outgoing combined edges from a list of groups, to find the

group which had the maximum number of adjacent groups, to find the number of

groups connected to a list of pair of groups, and to ascertain whether there was an

edge between a series of pairs of groups. Following each task, users were asked to

rate each layout on a scale from 0 to 9 based on the the layout’s usefulness.

Based on this experiment, CD-GIB received an average score of 6.94±1.47 and

the ST-GIB layout received an average score of 4.61 ± 1.59. These results were

encouraging as they demonstrated a need for better layout algorithms that would

assist the user in understanding the relationships in a network better.

5.6.2 Readability Measures

Our initial evaluations of manually analyzing the results of the three algorithms

were encouraging. However, for a more robust and formal evaluation, we quantify

the usefulness of the a GIB method on the basis of the following network readability

metrics. A good layout would occupy as much of the screen space as possible; have a

Mean Group-Box Aspect Ratio close to 1.0 for a clearer intra-cluster visualization;

and have a low Edge-Box-Overlap for a better inter-cluster visualization.

5.6.2.1 Edge-Box-Overlap(G)

Discernibility of inter-group edges depends on a number of factors. Most of these

factors become critically important for particularly long edges which run from one
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end of the screen to another. Visually following a long edge from source group-

box to destination group-box can be cognitively challenging especially if the edge

overlaps with several other group boxes ‘on its way’.

Therefore, for a given inter-group edge, e, of a network or graph, G, we de-

fine the edge overlap, Overlap(G, e), as the count of the number of group boxes

(excluding the source and the destination group boxes) which intersect with the

edge. A group box and an edge are said to be intersecting if the edge intersects

with at least one of the four boundaries of the group box. For example, the edge

overlap for the combined inter-group edge connecting G4 and G7 in Fig. 5.13 is 2

because it intersects boxes G1 and G2. Total Edge-Box-Overlap for the network,

G, is then defined as:

Edge-Box-Overlap(G) =

∑
e∈E Overlap(G, e)× we

Max−Overlap(G)
(5.1)

where

• E =Set of all inter-group edges in the network G

• we =Weight of an edge, e

When the inter-group edges are ‘combined’ in nature (see Section 5.4.4), we as-

sume a straight line between the centers of the concerned groups and compute

Overlap(G, e) using this straight line to represent the inter-group edge, e. Edge-
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Box-Overlap(G) is then computed by aggregating Overlap(G, e) for all the com-

bined inter-group edges in the network, G. Here, the weight of a combined inter-

group edge is simply the sum of weights of the constituent inter-group edges.

For the sake of comparison, for a given network, we compute an upper bound

to the Overlap, Max−Overlap(G), as IE × (N − 2), where IE = Total number

of inter-group edges times and N=Total number of groups in the network and use

it to normalize the observed overlap.

5.6.2.2 Screen Space wasted

In the current problem setting, the size and shape of the screen, where the group

boxes have to be arranged, is predetermined. The layout algorithms should, there-

fore, attempt to use as much of this space as possible. The space filling property

is important because a layout which wastes more space basically assigns smaller

areas to the group boxes (than a space-filling layout) and thus compromises on

the clarity of intra-group cluster visualization. For example, the visualization in

Fig. 5.30 is less space filling than that in Fig. 5.29. This happens because it assigns

lesser screen area to group-boxes and so visualization of intra-group contents of,

say EuroAfrica, is more difficult in Fig. 5.30 than in Fig. 5.29.

‘Screen Space wasted’ is defined as the percentage of screen space that was not

occupied by any of the group boxes. Since the focus of this paper is arrangement

of group boxes and not the nodes within the group, any white space inside a group
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box is not considered as ‘wasted’. Note, of course, that we are not truly wasting

the space: we are often using to show aggregate topology.

5.6.2.3 Mean Group-Box Aspect Ratio

As mentioned earlier, thin elongated rectangles make analyzing their content diffi-

cult and so it is desirable for a GIB approach to produce ‘squarified’ group boxes

that have aspect ratios closer to 1.0. Also, in the three GIB approaches compared

here, a group’s area is representative of its size. A typical user could exploit this

property to compare group sizes based on their areas. Since visually comparing

sizes of squares is easier than comparing sizes of rectangles, a better GIB algorithm

should produce group boxes that are more ‘square’ in shape.

Given a clustered network laid out using a GIB approach, we measure this

property using a mean of aspect ratios of the group boxes. Defining aspect ratio

of a box as the ratio of its width and height, the Mean Group-Box Aspect Ratio

can be expressed as:

Mean Group-Box Aspect Ratio =

∑N
i=1 ai
N

(5.2)

where

• ai = aspect ratio of the ith group

• N = Total number of groups in the network
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5.6.2.4 Time taken

This is defined as the time taken to layout the clustered network using the method

under consideration, as determined by code surrounding the algorithm.

5.6.3 Dataset

We compared the performance of Squarified-Treemap, Croissant-Donut and Force-

Directed GIBs on 309 Twitter networks. The networks each show the results of a

search for tweets matching a certain word or hashtag. The nodes are Twitter users

and the edges are created between any two users who mention, retweet, or reply to

each other. These networks were collected by Marc Smith from Connected Action

Consulting4 and are published on the NodeXL Graph Gallery [Smi+13].

Table 5.1 describes some overall network metrics for the networks in our dataset.

Since reporting values for individual networks was not feasible, I detail the mean,

standard deviation, minimum, maximum and median values. All the networks

were preprocessed to contain only the largest connected component, and the table

reports its statistics. This was done to avoid the numerous uninteresting discon-

nected singleton groups that exist in many social network datasets. The networks

were then clustered using the Clauset-Newman-Moore algorithm [CNM04].

4http://www.connectedaction.net/

http://www.connectedaction.net/
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Network Property Mean±Standard Deviation Minimum Maximum Median
Total number of Nodes 547.30±271.54 12.00 1462.00 541.00
Total number of Edges 7820.80±7982.11 30.00 40352.00 5438.00

Network Density (×10−2) 1.25±1.24 0.07 9.04 0.83
Network Modularity 0.27±0.03 0.15 0.38 0.27

Average Geodesic Distance 3.04±0.69 1.72 7.31 3.00
Total number of Groups 11.38±5.42 2.00 30.00 10.00

Average Group size 52.52±35.34 4.00 236.50 43.38
Total number of inter-group edges 1630.83±2315.98 2.00 14858.00 898.00

Table 5.1: Overall network properties for the networks in our dataset.

Property/Measure ST-GIB CD-GIB FD-GIB CD-GIB Experiments
Donut always Croissant always

Edge-Box-Overlap (×10−2) 5.42 5.12 1.77 5.36 5.31
Screen Space Wasted 0.00 2.04 58.72 17.50 2.03

Time taken 811.00 744.00 951.00 765.00 739.00
Mean Group-Box Aspect Ratio 1.05 2.06 1.00 3.47 2.04

Table 5.2: Performance comparison of the two proposed approaches: CD-GIB and FD-GIB with the baseline
ST-GIB layout. All figures reported above are median values computed for the complete dataset.
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5.6.4 Results

Each network in our dataset, after clustering, were laid out using each of the

three GIB layouts and the various performance measures described above were

computed. The aspect ratio of the screen was kept at 1.0 for all experiments and the

inter-group edges were combined. After arranging the boxes on the screen space,

the nodes belonging to individual groups were laid out within the corresponding

group box using the Harel and Koren FMS layout [HK01].

Table 5.2 presents the results of our experiments. For a given readability mea-

sure, the highlighed cells represent the best performing method among the three

GIB approaches. The columns titled ‘Donut always’ and ‘Croissant always’ present

intermediate results corresponding to the two layout possibilities for the CD-GIB

method (Section 5.4.2). The actual results for the CD-GIB layout are listed in

the column titled ‘CD-GIB’ after automatically selecting the appropriate layout

as described in Section 5.4.5.3. I also performed Student’s t-tests on these results

and discuss the statistically significant (p<0.01) differences between treatments.

From Table 5.2, we can see that the FD-GIB leads to very little edge-box-

overlap (1.77 × 10−2) followed by CD-GIB (5.12 × 10−2), while ST-GIB leads to

maximum overlap of 5.42 × 10−2. The statistical test revealed that the values

obtained for FD-GIB were significantly different from others. However, the reduced

overlap comes at the cost of an increased amount of space wasted. FD-GIB wastes
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almost 59% of the screen space while ST-GIB wastes no space at all because of the

use of highly space-filling treemap algorithm for laying out the group boxes. The

space wasted by CD-GIB is 2% which is comparable to that of ST-GIB because

like ST-GIB CD-GIB tries to ‘pack’ boxes next to each other. On the other hand,

FD-GIB, lays out the boxes using one of the force-directed layouts which are not

space-filling by nature. With regards to space wasted, all three methods were

significantly different from each other according to the t-test results. The table

also compares the three methods based on the time taken in milliseconds to lay

out the complete network after clustering. We see that the time taken for all

three methods are comparable with CD-GIB being the fastest (744ms); ST-GIB

slightly slower with 811ms and FD-GIB taking 951ms. According to the t-test, the

performance of FD-GIB was significantly different from others.

Finally, Table 5.2 compares the three methods based on the aspect ratio of

their group boxes. Since each network contains several group boxes each with a

different aspect ratio, we compute Mean Group-Box Aspect Ratio as defined above

and compare the median values over the complete dataset. We see that the aspect

ratio for ST-GIB and FD-GIB are almost 1.0 and the difference between them was

not statistically significant. However, group boxes in CD-GIB approach suffer from

poor aspect ratio (median value of 2.06) which was worse than that of FD-GIB

and ST-GIB and this result was statistically significant. CD-GIB leads to poor
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aspect ratio because unlike ST-GIB and FD-GIB, this approach does not try to

produce squarified rectangles. It instead determines one dimension of the group

boxes using the corresponding dimension of the free-space boxes (in which it is

being placed) available around the ‘donut hole’ or the ‘croissant hole’. Most of the

free-space boxes are huge rectangles of white space. Hence, if the group contains

small number of nodes, its area would be small, but one of its dimensions would be

same as the dimension of the free-space box leading to thin elongated rectangles.

Table 5.2 also contains an intermediate result of comparing Donut and Crois-

sant layouts on the same dataset. For this experiment, disregarding the paradigm

presented in Section 5.4.5.3, all networks in the dataset were laid out using the

Donut layout and the Croissant Layout separately. As seen from the table, the

performances of Donut and Croissant are close in terms of overlap and time taken.

Croissant outperforms Donut slightly in term of time taken while Donut beats

Croissant for the overlap measure. For the other two measures, Croissant is sta-

tistically significantly better than Donut for screen wastage and group-box aspect

ratio. However, comparing these columns with the ‘CD-GIB’ column, which is ob-

tained by selecting either Donut or Croissant layout for each network based on our

paradigm, we see that CD-GIB seems to be benefiting from the strength of both

the alternatives. This justifies our use of the paradigm for Donut vs. Croissant

selection heuristic.
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5.7 Summary

This chapter discusses meta-layouts, which leverage disjoint node groupings in

order to dissect a network into more manageable, yet meaningful subnetworks

that are displayed individually. The first meta-layout, called the Midichlorian-

Directed Layout, uses a standard force-directed layout algorithm that has been

modified so that groups are less strongly attracted to each other. Thus, the groups

in the network float apart and are more easily understood in isolation. However,

this approach requires substantial screen space and in dense areas of the network

groups can still overlap. This makes it difficult to measure group sizes and their

aggregate relationships. Moreover, the high scaling required means that individual

nodes are challenging to see, much less read the labels of.

To improve on this situation we developed threeGroup-in-a-Box (GIB) lay-

outs that segment a network using the results of a topologic clustering or attribute

grouping. Each group is laid out individually in a rectangular region of the screen,

and we size each region according to the number of nodes it contains. The first

layout, the Treemap GIB layout created by the NodeXL team [Rod+11], uses a

squarified treemap algorithm [BHJVW00] to subdivide the screen space into group

boxes with low aspect ratios, as shown in Fig. 5.9. The layout is completely space-

filling, but can cause edge readability problems when large groups are positioned

at opposite corners as in the innovation network in Fig. 5.33.
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The second layout, the Croissant-Donut GIB Layout, maintains much of

the space-filling property of the Treemap but can show the group relationships

more clearly. It comes in two variants: the Donut and the Croissant. In the

Donut variant, the most connected group is placed in the center of the visualization

and other groups are wrapped around its periphery (Fig. 5.13). Alternatively, the

Croissant variant puts the most connected group at the top and places the other

groups around its three sides (Fig. 5.15). The Donut layout is more effective at

showing many small groups, while the Croissant is better for a few large groups.

Our code chooses which of the two to use automatically depending on the distri-

bution of group sizes. The Croissant-Donut layouts fill most of the visualization

space while showing relationships more clearly, but aspect ratios can get especially

high for small groups.

Finally, I developed a Force-Directed GIB Layout that positions groups

according to their aggregate relationships, followed by an overlap removal step

that ensures the boxes do not intersect (Fig. 5.30). The overlap removal algorithm

maintains the relative positions of groups while minimizing the additional space

required. The resulting visualization requires a substantial amount of screen space,

but uses the extra space to clearly show the relationships between groups. At the

same time, the low aspect ratios of the group boxes helps offset their smaller size

for showing internal group structure.
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We have also developed a few ways to automatically choose which to use de-

pending on the network and group properties. By nesting the Group-in-a-Box

layouts I can handle disconnected components better than other approaches. More-

over, for certain numbers of groups and distributions of group sizes I pick the best

layout for the user. Finally, I present several case studies and an experimental

study to help validate the effectiveness of these layout techniques.

Each of these Group-in-a-Box layouts have been implemented and made pub-

licly available in NodeXL [Smi+10]. While the Croissant-Donut and Force-Directed

GIB approaches have only recently been added, the Treemap layout has been avail-

able since 2010 and is used extensively by users. Looking at the NodeXL Graph

Gallery [Smi+13], most of the visualizations presented and almost all of those by

Marc Smith (from Connected Action Consulting and leader of the NodeXL project)

use the Treemap GIB layout. Dr. Smith intends to transition to the Force-Directed

approach immediately for his work. This demonstrates the utility of these tech-

niques for segmenting real networks into manageable, meaningful pieces – especially

in web environments where display space is limited and overviews are particularly

useful. Moreover, the improved defaults for placing disconnected components will

help all users of NodeXL, which has been downloaded more than 166,000 times

and is used extensively for introductory network analysis courses.



Chapter 6

Measuring Network Visualization Readability

6.1 Introduction

The results of applying force-directed layout algorithms can vary greatly depending

on the size and topology of the network, and the layout generated is highly depen-

dent on the algorithm used. Each algorithm attempts to find an optimal layout of

the network, often according to a set of readability metrics (RMs) or heuris-

tics. Readability metrics are measures of how understandable the network drawing

is, based on artifacts such as the number of edge crossings or overlapping nodes in

the drawing [DS09]. Traditionally these RMs have been called aesthetic crite-

ria [PL96; Pur02], though several recent papers describe network visualizations in

terms of readability instead of aesthetics ([GFC04; HBF08; Bon+09]). I call them

readability metrics because of the ambiguity implied by the word “aesthetic”. I am

not concerned as much with how visually pleasing a particular network drawing is;

instead I am interested in how well it communicates the underlying data. However,

some of the most informative visualizations are also the most beautiful.

226
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(a) (b) (c)

Figure 6.1: Different visualizations of the same network with many (a), few (b),
and no (c) edge crossings.

Optimizing the layout for specific readability metrics, or RMs, can lead to much

more understandable drawings. For example, Figs. 6.1 and 6.2 show how reducing

edge crossings can lead to more straightforward representations. Optimizing for

RMs has been shown to promote many common analysis tasks, though it does not

guarantee the resulting drawing is understandable. The particular RMs that the

layout algorithms optimize intentionally or indirectly through heuristics may not

be the correct ones for the tasks users are trying to accomplish. There are often

substantial trade-offs in task performance when different RMs are optimized, and

can result in ineffective, unintelligible, or even misleading drawings. For example,

after reducing the number of edge crossings in a large drawing the spatial layout

is oftentimes substantially distorted, and it can alter a viewer’s perception of the

importance and centrality of individual nodes (see Section 6.2 and Fig. 6.6d for an

example of this effect).
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(a) (b)

Figure 6.2: In the Planarity online game (www.planarity.net), users start with a
planar network: one that can be embedded in two dimensions using straight edges
with no crossings. Given a random network layout like (a) users try to manually
eliminate crossings. The goal is to create a planar drawing like (b), which is the
same network run through NodeXL’s [Smi+10] Harel-Koren FMS layout [HK02a].

Additionally, as the optimization of many RMs is NP-hard [Bat+98], these

techniques often produce suboptimal network drawings. The International Sym-

posium on Graph Drawing has met annually for two decades working to improve

automated network layout algorithms and RMs, among other things, but I believe

that state of the art automated layout algorithms alone are insufficient to con-

sistently produce understandable network drawings. Additional post-processing

algorithms can improve the layout, but are limited in how much they can modify

the layout. The layout algorithms available to end users depends on the network

analysis tool being used, and post-processing techniques are rarely included and

have difficulties with evolving networks.

http://www.planarity.net
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Users can be made aware of the common problems RMs measure, or even

quantitative values for RMs to optimize manually. However, current RMs only

provide overall measures for the drawing without any means for focusing user

attention on the problem areas. Users are not provided with any indication of where

to start their manual improvements and how effective they have been. Seasoned

network analysts develop an ingrained understanding of proper layout techniques

and will adjust the spatial layout accordingly, but novice users are left to fend for

themselves. Even expert users have difficulty applying their layout techniques to

networks over a few hundred nodes. Furthermore, users may not be aware of the

optimization trade-offs of particular metrics and how it affects task performance.

Part of my dissertation work was to develop new readability metrics to mea-

sure the effectiveness of node-link visualizations, including a set of novel node

& edge readability metrics that provide more localized identification of where

improvement is needed. As there are trade-offs when optimizing readability met-

rics, I provide a survey of the related literature studying these trade-offs and the

effect of specific metrics on user task performance. I also provide the design and

implementation of an interactive optimization technique that provides users with

visual metric feedback, helping them optimizing their drawings. This work aims to

raise user awareness of network visualization readability issues, and applying these

techniques will guide users in creating more effective node-link visualizations.
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Instead of focusing only on purely automated network layout, I advocate raising

user awareness of the importance of readability metrics for their network drawings

and providing users with computer-assisted layout manipulation tools. Taking

up where the automated layout leaves off, my tool gives users real-time feedback

as to how their movement of nodes affect the RMs and provide local placement

suggestions for the RMs users wish to optimize. I believe that this approach will

provide users, and network analysts in particular, tools and guidelines that will

allow them to create more understandable network drawings that more accurately

highlight features of interest like communities within social networks.

To enable this I detail several new readability metrics on a [0,1] continuous

scale. Additionally, I define novel node & edge readability metrics to pro-

vide more localized identification of where improvement is needed. The metrics

can be used by a user to motivate improvement of the network drawing, either

by hand, through immediate feedback techniques, or automatic improvement by

feeding RM results back into a layout algorithm. I describe the trade-offs inherent

in optimizing individual metrics as well as recommended metric optimizations for

particular tasks. Several of the RMs and the interactive improvement techniques

are implemented in SocialAction, a research network analysis tool that combines

statistics with network analysis [PS06; PS08a; PS08b]. I have also begun inte-

grating the metrics and improvement technique in NodeXL [Smi+10], a network
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analysis template for Excel 2007/2010/2013, in order to direct users towards poor

areas of the drawing and provide real-time readability metric feedback as users

manipulate nodes and edges. The interaction functionality includes ranking and

highlighting of nodes and edges by their metrics.

6.1.1 Chapter Overview

Specifically, the contributions of this chapter are:

• New global readability metrics to help understand different aspects of net-

work visualization readability,

• Local readability metrics for individual nodes and edges to help users identify

problem areas and fix them,

• A method for user-assisted layout improvement that provides real-time met-

ric feedback to users in a ranked list and with a color scale,

• Implementations of readability metrics and the layout improvement tech-

nique in SocialAction and NodeXL, and

• A survey of work on readability metrics and evaluations of their effectiveness

on various network analysis tasks.

This chapter is divided into several sections as follows. First, I describe the

idea behind the user-assisted layout improvement technique and the SocialAction
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implementation in Section 6.2. This includes two case studies of the effectiveness

of the approach. Next, I cover the NodeXL implementation in Section 6.3. Then I

go into detail about specific readability metrics in Section 6.4 including a survey of

their history and evaluations of their effectiveness. Finally I conclude in Section 6.5.

6.2 Readability Metrics in SocialAction

Several readability metrics (RMs) exist that measure the suitability of a network

drawing as a whole, providing a single quantitative measure for the entire drawing.

While these metrics can aid users in understanding that there is a problem, they

do not highlight where the problems are occurring. To do so, we can provide

additional attributes for both nodes and edges in the network that describe how

these individual components affect the global understanding. I call these node

readability metrics and edge readability metrics, or node RMs and edge

RMs for short. This is an extension of the idea of individual node and edge

metrics espoused in [HMM00]. Several of my metrics are detailed in Section 6.4,

along with their individual motivations, including: node-node overlap, edge

crossing, and node-edge overlap.

I have implemented a prototype of the RM framework inside of SocialAction, a

tool that uses attribute ranking and multiple coordinated views to help users sys-

tematically explore various statistical measures for social network analysis [PS06;
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PS08a; PS08b]. In SocialAction, users can rank nodes and edges using ordered

lists of the chosen attribute and simultaneously visually code the node-edge draw-

ing using the ranking. Nodes remain in their original positions as users change

the ranked attributes, which prevents the users from losing their mental map of

the network. By combining multiple coordinated views with rapid transitions be-

tween statistical social network analysis measures and additional node and edge

attribute rankings, SocialAction affords network analysts a quick understanding of

the network properties. Extreme-valued nodes and edges are highlighted particu-

larly effectively through the combination of ranked lists and visual coding.

I leveraged this attribute ranking system by incorporating preliminary node

and edge RMs into SocialAction as node and edge attributes. Like any statistical

measure or additional attributes in the dataset, users can now rank nodes and

edges based on their individual RMs, highlighting problem areas in the network

drawing. This allows them to rapidly flip between RM rankings and identify areas

that would benefit from hand-tuning of the layout.

Users can then utilize the interactive features of SocialAction which allow them

to drag nodes or groups of nodes to new positions, attempting to manually op-

timize the RMs. Node and edge RMs are computed in real-time for the nodes

being dragged, and many global RMs can be selectively updated with these local

computations to shortcut the computational complexity a complete recalculation
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Figure 6.3: SocialAction with the integrated Network Drawing Readability Metric
framework rapidly shows problem areas in the network drawing highlighted in
red and listed in a ranked table. It is currently showing a subset of the reply
relationships within the Alberta Politics discussion newsgroup, and the network
drawing has been optimized for the node occlusion and edge tunnel readability
metrics. The steps in SocialAction’s Systematic Yet Flexible framework are shown
along the top. The Network Readability panel (middle-left) shows node or edge
readability metrics as well as global ones. The Rank Nodes panel at the far left
ranks nodes by the edge crossing readability metric and provides the color scale
for the Network pane.

requires. This allows users to see how their movement of nodes affects both global

and node RMs simultaneously, both in a Network Readability panel as well as

real-time updating of the ranked list and color scale of the node-edge drawing.

Moreover, users can switch between individual RMs and statistical measures while

maintaining the same network layout and preserving any hand tuning they have

already accomplished.

Fig. 6.3 shows the SocialAction interface displaying a node-link visualization of

reply relationships within a subset the Alberta Politics discussion newsgroup for
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which the node occlusion and edge tunnel readability metrics have been minimized.

Across the top are the steps in SocialAction’s Systematic Yet Flexible framework,

which allows for a guided and all-encompassing while still flexible approach to social

network analysis, along with the Attribute Nodes panel for categorical coloring

and the Network Readability panel (shown along the middle-left). The Network

Readability panel shows the node or edge readability metrics for the selected items,

as well as global readability metrics. The Rank Nodes panel (far left) shows a

ranking of nodes by the edge crossing readability metric in decreasing order, with

a filtering slider at the bottom. The large Network panel shows the node-edge

drawing with color coding of nodes by their ranking in the Rank Nodes panel,

with nodes having many edge crossings colored bright red. These are candidates

for movement or resizing to reduce the number of edge crossings.

6.2.1 Case Study: Alberta Politics Newsgroup

The following figures demonstrate manual optimization of a network drawing. Un-

derneath each figure are counts for the number of node occlusions (NO), edge

tunnels (ET), and edge crossings (EC). Counts can usually be made available as

tooltips, but for the RMs to be useful they must be independent of the network

size, and are thus scaled to the continuous range from [0,1]. This requirement is

made evident from the global count of 2954 edge crossings in the Alberta Politics
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discussion group network. Also note that figures which show a progression of draw-

ings being optimized for a RM may change color scale, as the worst nodes become

better. This relative scale is better at highlighting maximal existing metric values.

Users can manipulate their drawings in order to minimize node occlusion using

the node RM for it as a guide (Fig. 6.4). Coloring is scaled by the node RM, with

bright red drawing user attention to areas of high occlusion. By relaxing the layout

slider in SocialAction we can eliminate node occlusion entirely for this subset of

the Alberta Politics dataset (Figs. 6.4a, 6.4b and 6.4d). This increases the default

spring length used by the layout algorithm, allowing clusters of nodes to spread

out and resulting in a larger drawing. Some networks, especially dense ones, may

require manual tweaking. Another way to minimize occlusion is to reduce the size

of labels. One way is to move from a full label to a distinctive yet concise one

(Figs. 6.4c and 6.4e, though numeric ones are difficult to remember). Other ways

include minimizing text margins in the nodes or font size.

To reduce the number of edge tunnels in the drawing, users can rank and color

by the node RM for local edge tunnels. Figs. 6.5a and 6.5b show a user removing

edge tunnels by tuning node placement. This is easier for loosely connected nodes

but can be difficult in dense areas. To reduce edge tunnels, we may have to

increase the number of edge crossings. For manually tweaking the position of

poorly connected nodes the local edge tunnel RM seems more useful. However,



6.2 Readability Metrics in SocialAction 237

(a) NO:14, ET:70,
EC:180

(b) NO:4, ET:26, EC:159 (c) NO:1, ET:25,
EC:180

(d) NO:0, ET:14, EC:157 (e) NO:0, ET:12, EC:159

Figure 6.4: Ranking and coloring with the node occlusion node RM shows areas
of high occlusion in red. To reduce occlusion we can relax the layout by increasing
default spring lengths ((a), (b), (d)). Note that this is not the same as merely
increasing the size of the drawing: the adjustment of the parameters of the layout
algorithm results in a somewhat different layout as well. We can also use shorter
unique, trimmed, or simplified labels ((c) & (e)), in addition to hand-tuning node
position as a final step. Note that color scales may change between figures as the
worst nodes become better. Counts listed are node occlusion (NO), edge tunnels
(ET), and edge crossings (EC).



6.2 Readability Metrics in SocialAction 238

(a) NO:0,ET:14,EC:157 (b) NO:0,ET:0,EC:155

Figure 6.5: Using the node RM for edge tunnels, users can see areas with edge
tunnels in red (a) and manually adjust the layout to remove them (b).

the triggered edge tunnel RM is better suited for moving highly connected nodes as

it shows the effect a node has on its region of the drawing. As with node occlusion,

one way of reducing edge tunnels is to shrink nodes.

Similarly, Figs. 6.6b to 6.6d show a user removing edge crossings using the node

RM for it. This is often a harder RM to minimize, as it is not always obvious how

moving a node will eventually affect the total count. The process often involves

trial and error, as well as multiple passes through each region of the drawing.

Moreover, most social networks are not planar networks and can’t be represented

without edge crossings. One of the easiest approaches is to pull tightly connected

nodes near the edge farther out as in Fig. 6.6c, so that less central nodes can be

placed between its connected edges. This has the unfortunate effect of significantly
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(a) Edge crossing NO:0,ET:0,EC:155 (b) Edge crossings removed (1/3)
NO:0,ET:0,EC:114

(c) Edge crossings removed (2/3)
NO:0,ET:0,EC:90

(d) Edge crossings removed (3/3)
NO:0,ET:0,EC:85

Figure 6.6: Likewise, the node RM for edge crossings shows users areas with lots of
crossings (a) and lets them hand tune the layout to reduce them ((b)–(d)). Fig. 6.1
gives a prime example for how minimizing edge crossings can greatly improve the
readability of a drawing. Unfortunately, minimizing the number of edge crossings
for less structured networks often results in an asymmetric drawing like (d) in which
the centrality and angular resolution of many nodes is reduced, decreasing their
perceived importance. For larger, less structured networks a balance must be struck
between the number of edge crossings and the impact of further minimization on
the spatial layout of the drawing. Note that color scales may change between
figures as the worst nodes become better. Metrics listed are node occlusion (NO),
edge tunnels (ET), and edge crossings (EC).
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worsening the angular resolution and spatial layout RMs, which can make the node

seem less important or central than it is.

Improving individual RMs can be beneficial for other RMs as well, though often

there are tradeoffs between them users may have to weigh. Which RMs should be

improved thus depends on what users are trying to convey with their drawings.

Thus, it is imperative that users of network drawing software be made aware of

which RMs their layout algorithms attempt to optimize and the effects various

layout techniques have on how much of the underlying data is effectively conveyed.

6.2.2 Case Study: New Testament Name Co-Occurrence

In 2008 The New York Times published a node-link visualization of the co-occurrence

of names appearing in the New Testament,1 shown in Fig. 6.7a. It used a force-

directed layout drawn by IBM’s ManyEyes tool.2 While interesting, I believed that

the drawing had substantial readability problems that could be improved by using

my metrics.

After loading the same dataset into SocialAction, the default force-directed

layout rendered a quite similar drawing (Fig. 6.7b). After applying topological

clustering using Newman’s fast heuristic [New04] and showing the clusters using

convex hulls, much of the underlying structure could be discerned. I further im-

1http://www.nytimes.com/imagepages/2008/08/31/business/31novelCA02ready.html
2http://www-958.ibm.com/software/data/cognos/manyeyes/

http://www.nytimes.com/imagepages/2008/08/31/business/31novelCA02ready.html
http://www-958.ibm.com/software/data/cognos/manyeyes/


6.2 Readability Metrics in SocialAction 241

(a) (b) NO:23,ET:283,EC:2104

(c) NO:0,ET:154,EC:2032

Figure 6.7: Name co-appearance network from the New Testament. (a) is the orig-
inal New York Times/ManyEyes visualization, while (b) shows the same network
in SocialAction [PS06]. (c) shows the clusters found by Newman’s fast heuristic
[New04] using convex hulls, and I optimized the layout using the node-node overlap
and edge crossing metrics.
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proved on this layout by optimizing for the node-node overlap and edge crossing

metrics, resulting in the drawing in Fig. 6.7c.

One advantage of this new drawing (Fig. 6.7c) is that the separate clusters

of individuals are much easier to discern than in the original drawing. It is also

much easier to understand pivotal relationships that bridge the groups, like Peter.

Moreover, there are no overlapping labels, though the zoom is lower. The main

disadvantage of this drawing is in the kind of visceral reaction people may have to

the movement of the Jesus node towards the periphery, with its group of connected

singletons in the top left. Studies have shown that reducing the angular resolution

of high-importance nodes like Jesus do not significantly impact task performance,

however these kinds of modifications can substantially impact user perception of

less important nodes.

6.3 Readability Metrics in NodeXL

I have begun implementing the readability metrics and automatic improvement

technique inside NodeXL [Smi+10]. Fig. 6.8 shows the NodeXL interface with the

readability metrics dialog in the foreground. The dialog allows the user to select

which global, node, and edge metrics to calculate. Then the user can calculate the

metrics on demand and optionally have NodeXL continue updating the metrics

incrementally as the user manipulates the node-link visualization in the graph
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Figure 6.8: NodeXL showing the readability metrics dialog box (foreground), the
nodes in the worksheet with their associated edge crossing and node overlap metric
columns, and the graph pane where nodes and edges are colored by the edge
crossing metric on a red-black scale. Nodes causing the most edge crossings are
colored in bright red, as are edges with the most crossings. The network shown
represents the legal moves in the board game Risk (see Section 5.5.1 for details).

pane on the right. On the left side we can see the node worksheet, which has two

additional columns populated for the calculated edge crossing and node overlap

metrics. In this case, the edge crossing metric column has been used to color the

nodes on a red-black scale to highlight nodes that cause edge crossing problems.

Similarly, the edge worksheet (not visible) has column for edge crossings as well

which was used to color the edges in the node-link visualization. With these tools
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the user can immediately find the problem areas and make manual improvement

with real-time color feedback.

6.4 Specific Readability Metrics

This section discusses several specific readability metrics (RMs), including the

motivation for their use and the formulas I have created to quantify them. For more

background and an introduction to my approach, see Sections 6.1 and 6.2. The

following sections each deal with a specific metric I considered, and Section 6.4.18

gives a brief overview of additional RMs that I have not yet implemented but

appear valuable.

As per [Pur02], each RM is scaled appropriately to a continuous scale from

[0,1] where 1 indicates the positive maximum of the RM. This allows us to assign

graph readability requirements to particular drawings based on the content and

information we want the impart. For example, a journal may recommend 0% node

occlusion, <2% edge tunneling, and <5% edge crossing to publish a node-link

visualization, while having different suggestions for UML diagrams or other kinds

of graphs. However, there are many useful graph drawings that violate these limits

and they should not be eliminated based solely on the RMs.

In these formulas I use a notation similar to that of [Pur02], where the graph has

n nodes and m edges, indexed using subscripts. Using a technique called bends
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promotion [Pur02], we can convert a polyline edge into several new straight line

edges denoted m′ and replace the bends in the edges with new nodes denoted n′.

6.4.1 Node-Node Overlap ℵn

Euclid defined a point as that which has no part. Historically, graph layout algo-

rithms were designed around these abstract graphs [LE02], with nodes taking

up little or no space [WS79; Mis+95; LEN05]. However, practical graphs like

sociograms or UML diagrams represent nodes using text, shapes, colors, pictures,

and size [LE02]. Classical algorithms can thus frequently result in nodes with

non-zero width and height overlapping one another in the graph drawing.

This node-node overlap, also called overplotting, is contrary to accepted

graph readability guidelines [Sug02], including those for trees [WS79] and UML

diagrams [Eic03]. Moreover, areas of the drawing with high occlusion make it very

difficult for the viewer to get an accurate count of the number of individual nodes

in a cluster to get a sense of its scale. These problems can be reduced somewhat,

but not entirely, through the use of a halo or fog effect around nodes to help

distinguish them from each other.

Many force-directed layout algorithms include node-node repulsive forces or

equivalent constructs, including variants of the spring embedder [Ead84] such

the popular Fruchterman-Reingold force-directed algorithm [FR91] and more scal-
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able gravitational N-Body approaches like provided by Prefuse [HCL05] using

the Barnes-Hut force calculation algorithm [BH86]. However, force-directed ap-

proaches cannot usually guarantee all overlaps will be removed while the area and

shape of the drawing are preserved because they rely on overly large repulsive

forces or post-processing [GH09]. One notable exception is [HK02b].

There have also been many algorithms developed for removing node-node over-

laps using post-processing after an initial layout algorithm. These include variants

of the force-scan method [EL92; Mis+95; LE02; Hay+02; HL03; LEN05], con-

strained optimization [Mar+03; DMS06; DMS07], and force-directed approaches

[LMR98; GN98; Hua+07]. One of the most effective approaches appears to be the

PRoxImity Stress Model (PRISM) algorithm of Gansner and Hu [GH09], which is

discussed in detail in Section 5.4.3.3 in the context of removing group box over-

lap in a Group-in-a-Box layout and compared to Dwyer, Marriott, and Stuckey’s

solve_VPSC algorithm [DMS06; DMS07].

One option proposed by Li, Eades, and Nikolov [LEN05] is varying the edge

lengths in a standard force-directed layout. While this preserves the orthogonal

ordering well, it has scaling issues and can require excessive space [GH09]. An al-

ternative is the Voronoi cluster busting algorithm of Lyons, Meijer, and Rappaport

[LMR98] and used by Gansner and North [GN98] for their layout. This algorithm

iteratively forms a Voronoi diagram for the layout and moves nodes to the center
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(a) Tight layout (b) Relaxed layout

Figure 6.9: We can eliminate the node occlusion that makes the central overlapping
group in Fig. 6.9a so hard to understand by zooming out and increasing the the
spring lengths of the layout algorithm (Fig. 6.9b).

of their Voronoi cells. This roughly maintains the network shape, but loses much

of the layout structure and again expands to take up a lot of screen space [GH09].

Another interesting approach by Imamichi et al. [Ima+09] for 3D visualizations

assumes labels extend from spherical nodes, models these masses with a set of

spheres, and solves the sphere packing problem. This allows for arbitrary rotation

and translation, but is not as suitable to 2D rectangles.

Despite two decades of research into algorithms for node-node overlap removal,

most widely used network visualization tools fail to properly reduce occlusion.

Examples include Pajek [BM98], a common social network analysis tool, as well as

our NodeXL [Smi+10]. In a recent user study [HHE06c] the authors had to hand

tune the diagrams produced by Pajek to avoid occlusion. Fig. 6.9 shows how node

occlusion can be eliminated by zooming out and increasing default spring lengths,

at the cost of decreasing perceived clustering.



6.4 Specific Readability Metrics 248

Node Occlusion Readability Metrics: I am not aware of any suitable ex-

isting readability metrics for node occlusion. I suggest a global RM proportional

to the number of uniquely distinguishable items in the graph drawing, where an

item can be either a node or a connected mass of overlapping nodes. On a con-

tinuous scale from 0 to 1, 1 indicates that every node is uniquely distinguishable

from its neighbors (possibly including a spacing requirement) and 0 indicates that

all nodes in the graph drawing are overlapping, creating one large connected mass.

Similarly, a node RM can be proportional to the ratio of the node’s representation

area (possibly including a spacing requirement) that is obscured by other nodes.

Naturally there is no edge RM for node occlusion, however node occlusion is usu-

ally grouped in the literature with edge tunneling (Section 6.4.8), which provides

additional RMs.

6.4.2 Global Readability Metric ℵn

a = area

(
n⋃

j=1

bounds(nj)

)
(6.1)

amax =
n∑

j=1

area(bounds(nj)) (6.2)

ℵn =
a

amax
(6.3)
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6.4.3 Node Readability Metric ℵnj∈N
n

The regularized intersection of rectangles P and Q, denoted P ∩∗ Q, is the

closure of the interior of the standard intersection P ∩Q. Regularization is used to

remove lower-dimensional “dangling” components (for instance, lines in 2D draw-

ings) [Mou04].

aj = area

(
n⋃

k=1

bounds(nj) ∩∗ bounds(nk)

)
(6.4)

ℵnj
n = 1− aj

area(bounds(nj))
(6.5)

6.4.4 Edge Crossing ℵc

The number of edge crossings or intersections is the most widely accepted RM

in the literature. In 1953, Moreno [Mor53] wrote, “The fewer the number of lines

crossing, the better the sociogram." Edge crossings is listed as an important general

RM in many books on graph drawing, including [Bat+98; Sug02; War04], as well

as for automated UML diagram layout [Eic03]. As with the Node-Node Overlap

metric, the effect of edge crossings can be somewhat mitigated with a halo, fog,

or border effect around the edges to help distinguish them from each other. Sub-

stantial work has also been done in the design of graph drawing algorithms that

specifically reduce the number of edge crossings, such as [STT81; ES90; FR91;

CP96; DH96; Mut97].
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Purchase’s seminal RM comparison user study identified edge crossings as hav-

ing the greatest impact on human understanding of general graphs of the five

RMs she studied [Pur97]. This finding has been empirically validated in [PCJ96;

Pur98; PCA02]. These studies focus on edge tracing tasks like finding the length

of the shortest path between two nodes, though use a global count of the num-

ber of edge crossings. [War+02] suggests the number of edge crossings along the

relevant edges is more important than a global measure. Additional evidence for

the importance of edge crossing comes from [KA02], which deals with visualizing

ordered sets. Moreover, user preference studies identify minimizing edge cross-

ings as the most important RM for UML diagrams [PAC02; PCA02] as well as

for node-link visualizations [HHE06a], and when given the option of improving on

an initial force-directed or random layout, users created graph drawings with 60%

fewer edge crossings on average [HR08]. [KA02] theorizes that crossed lines could

be salient properties which distract the user’s visual system from the relationships

the drawing was designed to convey.

However, [Mut97] suggests that allowing some edge crossings can sometimes re-

sult in more readable graph drawings and recent literature points to restricting edge

crossing angles being almost as effective as reducing edge crossings (Section 6.4.9).

Furthermore, recent research on node-link visualizations comparing edge tracing

tasks like finding groups to node importance tasks indicates that while reducing
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edge crossings improves edge tracing task performance and user preference, it has

little effect on node importance tasks [HHE06b; HHE05; HHE07]. This was further

verified in eye tracking studies [Hua06; Hua07b; HEH08]. They postulate that this

indicates the effects of edge crossings can vary depending on the situation. Fur-

ther discussion of the cognitive load imposed by edge crossings quantified using

eye tracking is in [K0̈4; HHE06c; Hua07a; HEH08]. Fig. 6.1 demonstrates how

reducing edge crossings can lead to a much more understandable drawing.

6.4.5 Global Readability Metric ℵc

I take from [Pur02] the global RM for edge crossings (ℵc) based on c, the number

of pairwise edge crossings in the drawing. Scaling by an approximate upper bound

for the number of crossings in the drawing, I can produce a metric over [0, 1].

call =
m′∑
i=1

(i− 1) =
m′(m′ − 1)

2
(6.6)

cimpossible =
1

2

n′∑
j=1

deg(nj)(deg(nj)− 1) (6.7)

cmx = call − cimpossible (6.8)

ℵc = 1−


c

cmx
if cmx > 0

0 otherwise
(6.9)



6.4 Specific Readability Metrics 252

Here, deg(nj) is the degree of node nj. First, I calculate call, the number of

crossings if every pair of edges intersect. Of those, I remove cimpossible, the impos-

sible intersections of edges connected to the same node in a straight-line drawing.

This leaves us with cmx, a (probably high) upper bound to the number of crossings

in the drawing. Scaling c by cmx and subtracting from 1 I get the global RM for

edge crossings ℵc. I can report all c crossings of m′ edges in O(m′ logm′ + c) time

and O(m′) space [Mul91] rather than testing all cmx pairs. cmx can be computed in

O(n′) time, though only needs to be calculated once. If the graph topology is dy-

namically changing, only those nodes with modified degree (∆n′) need to be used

to recalculate cimpossible in O(∆n′) time and the added or removed edges must be

fed back into the calculation of c. Similarly, if the layout is dynamically changing,

then c must be updated for all edges whose location has changed. See [Mou04]

for a discussion of various algorithms for line segment intersection reporting. The

ability to use precomputed results to only test the modified edges for intersec-

tions naturally depends on the choice of algorithm, though some like [Mul91] are

iterative and seem particularly suited for the addition of new edges.

6.4.6 Edge Readability Metric ℵei∈Ecei

My edge RM for edge crossings (ℵei∈Ecei ) is defined for any edge ei based on the

number of pairwise edge crossings cei between it and any other edge in the drawing.
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Scaling as before, I can produce a metric over [0, 1]. With this metric I can identify

the edges with the most crossings in the drawing.

ceiall = m′ − 1 (6.10)

ceiimpossible = deg(src(ei)) + deg(tar(ei))− 2 (6.11)

ceimx = ceiall − c
ei
impossible (6.12)

= m′ − deg(src(ei))− deg(tar(ei)) + 1 (6.13)

ℵei∈Ecei = 1−


cei

c
ei
mx

if ceimx > 0

0 otherwise
(6.14)

ceiall is the number of edges ei could intersect in the drawing, of which I can

remove the impossible intersections ceiimpossible. Edges that have the same source

or target node as ei (src(ei) and tar(ei), respectively) cannot intersect ei in a

straight-line drawing. Thus I have ceimx, an upper bound to the number of edges

crossing ei. Scaling cei by ceimx and subtracting from 1 I get the edge RM for edge

crossings.

6.4.7 Node Readability Metric ℵnj∈N
cnj

My node RM for edge crossings (ℵnj∈N
cnj ) is defined for any node nj based on cnj ,

the sum of the number of crossings its connected edges have (triggered crossings).
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Again, I scale to a continuous metric scale of [0, 1]. This allows us to identify the

nodes whose positions are the cause of many edge crossings.

cnj =
∑

ei∈edges(nj)

cei (6.15)

cnj
mx =

∑
ei∈edges(nj)

ceimx (6.16)

=
∑

ei∈edges(nj)

m′ + 1− deg(src(ei))− deg(tar(ei)) (6.17)

=
∑

ei∈edges(nj)

m′ + 1− deg(nj)− deg(adj(nj, ei)) (6.18)

= deg(nj)(m
′ + 1− deg(nj)) (6.19)

−
∑

ei∈edges(nj)

deg(adj(nj, ei)) (6.20)

ℵnj∈N
cnj = 1−


cnj

c
nj
mx

if cnj
mx > 0

0 otherwise
(6.21)

Here edges(nj) is the set of all edges connected to node nj. I define an upper

bound to the number of edge crossings of connected edges cnj
mx as the sum of the

individual edge upper bounds ceimx from the edge RM. For all connected edges, I can

pick the current node nj as either the source or the target, and use the adjacent

node along edge ei, denoted adj(nj, ei), as the other. As deg(nj) = |edges(nj)|, I

get the formula for cnj
mx. Again scaling cnj by cnj

mx and subtracting from 1 I get the
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(a) Original layout (b) After removing
edge tunnels

Figure 6.10: In Fig. 6.10a it is difficult to tell which edges connect to which nodes
because of the number of edge tunnels. By zooming out and hand tuning the
layout (Fig. 6.10b) we can completely eliminate edge tunnels (but not crossings).

node RM for edge crossings.

6.4.8 Edge Tunnel

There is little literature dealing with nodes occluding edges and vice versa, and it is

often lumped together with node occlusion (Section 6.4.1). Because of the limited

definitions available for this RM, I will call the specific case of a node occluding an

edge an edge tunnel. The reverse can be called an edge bridge, but as many

modern graph drawing tools (e.g. SocialAction [PS06], NodeXL [Smi+10]) draw

nodes with higher priority than edges I am ignoring this case.

Both cases are accounted for by the simulated annealing graph drawing algo-

rithm from [DH96], which incorporates the distance between every node and edge

in a fine-tuning step. [Sug02] calls avoiding edge tunnels a basic rule, and for

UML diagrams, [Eic03] specifies that nodes should not be too close to edges un-
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less they are connected or a more important RM forces their proximity. However,

many algorithms do not take this into account, including [LEN05] and the com-

monly used Fruchterman-Reingold algorithm [FR91]. Even tools using algorithms

that remove edge tunnels are not guaranteed to do so. The excellent user study

[War+02] used 200 generated graph drawings with 42 nodes each, of which the

results from 7 graph drawings had to be excluded from the final analysis because

of unexpected edge tunnels that implied nonexistent connections. The standard

users of graph drawing tools are more likely to overlook such problems than RM

researchers. Fig. 6.10 shows how zooming out and hand tuning a layout to reduce

edge tunnels allows for a much clearer picture of the network topology.

Edge Tunnel Readability Metrics: The global RM for edge tunnels can be

built upon the global RM for edge crossings (Section 6.4.4), comparing the number

of edge tunnels in the graph drawing to an appropriate upper bound. A simple

edge RM is thus an appropriate scale of the number of edge tunnels that edge

has. Local edge tunnels is defined as a node RM for the number of edges that

tunnel under that node. An second node RM for triggered edge tunnels, the

edge tunnels of all edges connected to that node, can be specified in terms of the

combined edge RMs for those edges.
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(a) Original layout (b) After making edge
crossings more perpen-
dicular

Figure 6.11: In edge tracing tasks such as finding the length of the shortest path
between the bottom right and top left nodes in Fig. 6.11a, increasing the edge
crossing angles approaching 90 degrees (Fig. 6.11b) improves user path finding
performance.

6.4.9 Edge Crossing Angle ℵeca

The impact of edge crossing angles was first introduced as a global RM by

[War+02], which is based on a neurophysiological view of the user. Ware et al.

claim rapid early-stage neural processing causes certain features to “pop out” to

users, and that these neurons are coarsely tuned when examining angles, roughly

between +/- 30 degrees. Though they did not find the impact of edge crossing an-

gles to be significant, they did find that another angular measure, path continuity,

was. This neurophysiological view supplies an explanation for the results of [HE05;

Hua06; Hua07b; Hua07a; HHE08], which use an eye tracking user study to verify

that the angle of edge crossings has a significant impact on user response time for

edge tracing tasks. Moreover, response time significantly decreased as the cross-
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ing angle tended towards 90%, though tended to level off or even slightly increase

beyond 70%. This is attibuted to extra back-and-forth eye movements around ac-

cute crossings. However, as the size of the graph increases creating longer searching

paths, the impact of even near-perpendicular crossings can build up and become

significant [Hua07b]. See Fig. 6.11 for a demonstration of how more perpendicular

edge crossing angles promote path finding tasks.

Edge Crossing Angle Readability Metrics: I believe the global RM for

angular resolutioncan be modified to incorporate the average deviation of edge

crossing angles from the ideal angle of ∼70 degrees instead. [War+02] uses the av-

erage cosine crossing angle as their global RM metric, and my planned experiments

with these metrics may suggest that modification as well. The associated edge RM

follows simply by removing the sum over all nodes and the relevant scaling. The

node RM is somewhat harder to define, though it can be based on the combining

the edge RMs for the node’s connected edges.

6.4.10 Angular Resolution (min) ℵarm

The angular resolution RM refers to the minimum or average angle formed by all

the edges incident to an individual node. This section discusses both but defines

the minimum metric. [STT81] and [For+93] dealt with this early on, and [Pur02]

defines a minimum angle metric called ℵm. [Pur97] found this metric had no effect
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on path finding tasks, but it was found significant for recognizing actor status by

[HHE06b].

6.4.11 Global Readability Metric ℵarm

d =
1

n

n∑
j=1

dnj (6.22)

=
1

n

n∑
j=1

∣∣∣∣ϑj − θjmin

ϑj

∣∣∣∣ (6.23)

ℵarm = 1− d (6.24)

6.4.12 Node Readability Metric ℵnj∈N
arm

dnj =

∣∣∣∣ϑj − θjmin

ϑj

∣∣∣∣ (6.25)

ϑj =
360◦

deg(vj)
(6.26)

ℵnj
arm = 1− dnj (6.27)

6.4.13 Angular Resolution (avg) ℵara

This metric is similar to the minimum angular resolution RM discussed in Sec-

tion 6.4.10 and is described there.
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6.4.14 Global Readability Metric ℵara

d =
1

n

n∑
j=1

dnj (6.28)

=
1

n

n∑
j=1

 1

deg(nj)

deg(nj)∑
i=1

∣∣∣∣ϑj − θi,(i+1)%deg(nj)

ϑj

∣∣∣∣
 (6.29)

ℵara = 1− d (6.30)

6.4.15 Node Readability Metric ℵnj∈N
ara

dnj =
1

deg(nj)

deg(nj)∑
i=1

∣∣∣∣ϑj − θi,(i+1)%deg(nj)

ϑj

∣∣∣∣ (6.31)

ℵnj
arm = 1− dnj (6.32)

where ϑj is the same as in Section 6.4.10.

6.4.16 Visualization Coverage Metric ℵvc

The visualization coverage or ink metric denoted ℵvc is my attempt to quantify

the amount of screen space used by the visual items in a visualization compared to

the entire space available. It is formulated as the area occupied by all visual items

divided by the area of the screen space. The objective of this metric is to measure

the amount of theoretically available screen space, so as to quantify the reduction
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in in ink presented to the user after filtering (Section 3.3.1) or motif simplification

(Chapter 4). It can also measure the reduction in ink by using aggregate edges (or

no edges) between groups in the Group-in-a-Box layouts (Chapter 5).

Here I use a notation of a network or graph G with |G.nodes| nodes and

|G.edges| edges and a network visualization V (G). Each individual node n ∈

G.nodes and edge e ∈ G.edges is indexed using subscripts (e.g., ni, ej). For any

node, edge, or visualization k, bounds(k) indicates a bounding shape b for that

item in the visualization, and area(b) denotes the area of that bounding shape.

The visualization coverage metric ℵvc is defined as follows:

bn =
⋃

n∈G.nodes

bounds(n) (6.33)

be =
⋃

e∈G.edges

bounds(e) (6.34)

a = area(bn ∪ be) (6.35)

namax = argmax
ni∈G.nodes

area(bounds(ni)) (6.36)

eamax = argmax
ej∈G.edges

area(bounds(ej)) (6.37)

a∆ = max(namax, eamax) (6.38)
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amax = area(bounds(V (G))) (6.39)

ℵvc =
a− a∆

amax

(6.40)

First, a union is computed of all the node bounding shapes and edge bounding

shapes in the visualization, including all meta-nodes and meta-edges. In order

for the metric to have a range of [0, 1], this area a must have the maximum node

or edge area a∆ subtracted from it. This quantity is then divided by the total

visualization area.

6.4.17 Group Overlap

In Algorithm 7, I describe an algorithm for counting the number of overlaps be-

tween groups (sets) of nodes in the network and the remaining nodes. It first

computes a convex hull for each group, then finds the number of nodes outside

the group that overlap with the convex hull. The objective is to measure how the

original layout of the group affects users’ perceptions of group membership, and

how an alternate layouts improve on these perceptions. This measure is applicable

to both motif simplification (Chapter 4) and meta-layout (Chapter 5).

I believe that convex hulls are more appropriate for this measure than alterna-

tives like concave hulls because (1) convex hulls more accurately model the way

users perceive regions of the network, and (2) it is more efficient to find inter-
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Algorithm 7 Calculate the number of group-node overlaps for each group
1: groups = set of all groups, where each group is a set of points (xi, yi)
2: hullCounts = [];
3: for all g ∈ groups do
4: count = 0
5: hull = grahamScan(g)
6: for all node ∈ G.nodes | node /∈ g do
7: if intersects(hull, node) then
8: count = count+ 1

9: hullCounts.add(count)
return hullCounts

sections between convex polygons than simple polygons [Mou04]. Additionally,

colored convex hulls are often used to show network group structure (e.g., [PS06]).

Two functions are called in Algorithm 7 which we assume are defined elsewhere.

The first, grahamScan(S), is the Graham scan algorithm3 for computing a convex

hull of a finite set of points in O(n log n) time, where n is the number of points

(nodes), in this case |g|. The second, intersects(a, b), computes the intersection of

two convex polygons in O(log n) time, where n is the count of the nodes in a and

b [DK83; Mou04].

The time complexity of Algorithm 7 is derived below, where |nodej| is the

number of sides of the polygon representing a particular node nodej. The other

uses of |s| indicate the size of the enclosed set s. E.g., |gi| is the number of nodes

3http://en.wikipedia.org/wiki/Graham_scan

http://en.wikipedia.org/wiki/Graham_scan
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in the set gi.

time = timea + timeb (6.41)

timea =

|groups|∑
i=1

|gi| log |gi|, where gi ∈ groups (6.42)

timeb = |groups||nodes| log(max
i

(| hull(gi)|) + max
j

(|nodej|)) (6.43)

As ∀i, | hull(gi)| ≤ |gi| ≤ maxi(|gi|) ≤ |nodes|, and as maxj(|nodej|) is a con-

stant for the highest degree polygon used as a node shape,

timea ≤ |groups|max
i

(|gi|) log max
i

(|gi|) (6.44)

≤ |groups||nodes| log max
i

(|gi|) (6.45)

timeb = O(|groups||nodes| log max
i

(|gi|)) (6.46)

time = O(|groups||nodes| log max
i

(|gi|) (6.47)

Thus, the time complexity of Algorithm 7 is given in Eq. (6.47). As |groups| ≤

|nodes| and maxi(|gi|) ≤ |nodes|, another (much worse) upper bound would be

|nodes|2 log |nodes|.
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6.4.18 Additional Readability Metrics

There are many potential RMs that can be taken into account to produce effective

graph drawings, and each impacts how understandable the final product is and

how successfully it imparts the author’s message. Many that I am investigating

for standardization and inclusion in my framework are briefly discussed below.

Node Size: The size of nodes in the graph drawing can significantly affect

node occlusion, edge tunneling, and the ability of users to see shapes and colors

as well as read labels. I suggest outlining four size constraints depending on the

amount of information to be displayed. Displaying the location of the node only

requires representing a point, while adding properties like color and shape to in-

dicate additional attributes requires more space to be identifiable. Nodes must be

even larger yet in order to display meaningful text labels within the node, which

are dealt with more in the following two RMs.

Node Label Distinctiveness: In many graph drawings node labels must

be truncated to limit node occlusion and edge tunneling. As it is important to

have uniquely identifiable and meaningful labels, users should attempt to remove

common prefixes (e.g. “Department of” in an organization network). A RM for

assessing the distinctiveness of individual labels in the drawing would draw atten-

tion to these problems, but must be flexible enough to accommodate unexpected

prefixes. A potential solution might be found through the use of suffix trees.
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Text Legibility: Similarly, the text must be sized and formatted appropriately

so that it is readable in the final drawing. If this is not possible, the text should

be removed to reduce node occlusion, edge tunneling, and the size of the graph. A

common measure for this is the angle subtended by the text from the users point

of view, though this may be difficult to translate into a RM.

Node Color & Shape Variance: As users have substantial difficulty in-

terpreting a graph drawing using too many distinct shapes or colors to represent

attributes, a RM should be defined that indicates the difficulty of keeping those

combinations in memory. This might limit the publication of drawings with exces-

sive shape and color coding.

Edge Bends: [ES90] stated that edges in a graph drawing should be as

straight as possible. While the examples here deal with only straight-line drawings,

edges with bends can be very useful for some types of graphs like UML diagrams.

[Pur02] defines a RM for edge bends, while [Pur97] found that they have an impact

on path finding tasks.

Path Continuity: How continuous a path is is inversely related to the number

and size of its bends. [War+02] defines continuation at a node as “the angular

deviation from a straight line of the two edges on the shortest path which emanate

from the node.” The sum of these deviations provides the basis for a path continuity

RM. Their user study found path continuity to be significant for path finding tasks.
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Geometric-path tendency: A path between two nodes in a graph drawing

can “become harder to follow when many branches of the path go toward the target

node” [Hua07b]. This is known as the geometric path tendency. Though a RM is

not obvious, developing one may result in graph drawings better suited for edge

tracing tasks.

Orthogonality: [Pur02] defines a RM for orthogonality using measures for

the extent nodes and edges in the graph drawing follow the points and lines of an

imaginary Cartesian grid. Orthogonality is important for some kinds of drawings,

especially those of UML class diagrams [PAC02] and other hierarchical structures.

However, it is unimportant and can even be misleading for node-link visualizations,

as by placing nodes along imaginary lines the visualization implies to viewers that

horizontally or vertically adjusted nodes are related [KA02]. Node and edge RMs

for orthogonality would likely be of limited use.

Symmetry: [LNS85] observed that a graph drawing is “good” when it displays

as many symmetries as possible. This was verified by [Pur97] and a RM for axial

symmetry is provided by [Pur02]. Like for orthogonality, node and edge RMs for

symmetry are of limited value.

Spatial Layout & Grouping: The spatial layout of nodes in a graph drawing

has a substantial impact on the ability of users to ascertain the importance of actors

in the network as well as identifying groups or communities of them [MBK97]. A
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RM for this might compare how effectively the visual grouping of nodes in the

graph drawing conveys groupings found via a community algorithm that operates

only on the structure of the graph.

Edge Length: The most common algorithms for node-link visualization layout

are the many variations of the spring embedder [Ead84], which attempt to reduce

the variance of intra-node distances in the graph drawing. However, [HR08] found

that users prefer to space clusters of nodes proportional to number of connecting

edges between them. This might lend credence to a RM that analyzes the strength

of relationships between clusters and compares that to the actual visible separation,

though optimizing the RM would be difficult when using spring or force based

layout algorithms.

Path Branches: The number of edges branching from shortest paths within

the graph drawing can also have an affect on path finding tasks [War+02]. A global

RM might compute the number of branches along each shortest path in the graph

drawing as a measure of the general difficulty of edge tracing tasks.

6.5 Summary

My user studies, case studies, and experiments demonstrate the utility of motif

simplification and Group-in-a-Box layouts for network visualization, but I am also

interested in improving the effectiveness of general node-link visualizations. By
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quantifying the readability of a layout we can guide analysts in making improve-

ments and in the future feed the results in automatic layout algorithms. Past

work provides definitions for several global readability metrics, which measure

detrimental features like edge crossings and rate the layout as a whole. However,

a single value is not enough to direct users to problem areas of the layout, which I

address by introducing local readability metrics for individual nodes and edges.

Moreover, I introduce several new global metrics to detect readability problems like

node-node overlap and edges tunneling under nodes (node-edge overlap).

I leverage these metrics in a new method for user-assisted layout improvement.

By computing the metrics in real-time as users manipulate the layout, I provide

immediate visual feedback to users as they optimize their visualization, showing

how they are affecting readability. As there are trade-offs when optimizing specific

readability metrics, I include a survey of the related literature studying each of

these metrics and their effect on user task performance. My evaluations indicate

that these readability metrics help users create more effective node-link visual-

izations, and I plan to release both the metrics and layout improvement tool as

part of NodeXL [Smi+10]. These metrics and the improvement technique were

additionally implemented as part of SocialAction [PS06; PS08a; PS08b], though I

have not made this code publicly available due to the research prototype nature

of SocialAction.
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This work aims to raise user awareness of network visualization readability

issues, and applying my optimization technique will guide users in creating more

effective network visualizations. I believe that many currently published networks

could be substantially improved with a few modest refinements based on these

readability metrics. While no set of requirements can fully capture all effective

network drawings, I believe that applying select RMs for the task at hand will

improve most network authors’ output. These principles will need refinement to

deal with large networks where node aggregation, edge bundles, and cluster markers

may be necessary to allow users to make scalable comparisons.



Chapter 7

Conclusion and Future Directions

7.1 Conclusion

My dissertation contributes techniques for understanding and improving the read-

ability of node-link network visualizations. First, I present motif simplification,

a technique for reducing the complexity of node-link visualizations. With motif

simplification, common repeating network motifs are replaced with easily under-

standable motif glyphs that require less space, are easier to understand, and reveal

hidden relationships. While users must learn the visual language of motifs and

glyphs, there is a dramatic payoff in the usability and readability of the visualiza-

tion. I contribute design guidelines for motif glyphs; designs of glyphs to replace

the high-payoff fan, connector, and clique motifs common in networks; as well as

algorithms to identify these motifs. I have also developed a free and open source

reference implementation, made publicly available as part of NodeXL [Smi+10],

and I present results from a controlled study of 36 participants that demonstrates

the benefit of motif simplification for many common network analysis tasks.

271
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An important part of network analysis is understanding the community struc-

tures that are present, and highlighting these features can provide immediate in-

sights during an exploration. Standard approaches for showing communities using

color, shape, convex hulls, or layout algorithms do not sufficiently expose commu-

nity membership, internal structure, and inter-community relationships. I address

this problem with three meta-layouts that subdivide complex networks based on

their community structure. The first, the Midichlorian-Directed Layout, uses a

force-directed layout to visually separate clusters. The other two Group-in-a-Box

(GIB) layouts display each community laid out individually within its own box,

sized according to the number of nodes therein. The Fitted-Rectangles GIB layout

arranges the boxes to optimize the space used while still showing inter-community

relationships. The Force-Directed GIB layout, alternatively, arranges community

boxes based on their aggregate ties at the cost of additional space. My implemen-

tation in NodeXL [Smi+10] automatically chooses the most appropriate Group-in-

a-Box layout to best show disconnected components and different numbers or sizes

of communities. Several case studies and an experimental study of 309 Twitter

networks demonstrate the utility of the proposed layouts, especially for presenting

the aggregate relationships between communities.

Third, my dissertation contributes a set of global and local readability metrics

to help users understand and improve their node-link network visualizations. The
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global metrics can be used to evaluate the effectiveness of a particular layout of the

node-link visualization. Additionally, the local metrics are implemented within the

analysis tool to help users identify problem areas in the visualization using color

coding, and the metrics and associated colors are updated in real time as users

manipulate the visualization. This provides them with immediate feedback as to

how they are affecting the visualization’s readability. The basics of this technique

are implemented in NodeXL [Smi+10] and SocialAction [PS06], another tool for

network analysis. This work provides an improved understanding of node-link

visualization readability, the trade-offs when optimizing for specific tasks, and

techniques users can use to improve their visualization. My hope is that it will

encourage developers to take network visualization readability into account when

designing analysis tools, as well as help educate users about these issues.

The three techniques I present can be used together or individually to help cre-

ate more effective visualizations, especially for novice users. For example, a user

could apply a Group-in-a-Box layout to highlight the clusters in the network, which

are then laid out individually using motif simplification. The user could then use

the interactive readability metric improvement tool to optimize the layout for pre-

sentation. The reference implementation of these techniques in NodeXL [Smi+10]

will be particularly useful for novice users, as NodeXL is frequently used for teach-

ing introductory courses on network analysis. It is my hope that these strategies for
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improving visualizations of large, complex networks will demonstrate that progress

is possible, and will provide several starting points for other researchers exploring

additional ways to visualize networks.

7.2 Future Directions

This dissertation opens up several interesting avenues of research on node-link

network visualizations. Below I detail specific opportunities for leveraging my work

on motif simplification, Group-in-a-Box meta-layouts, and readability metrics to

handle even larger and more complex datasets.

7.2.1 Motif Simplification

My studies indicate that motif simplification is an effective way of reducing node-

link visualization complexity, but it does pose several challenges and opens up

many avenues for future work. These include better education amd explanation of

the motifs and their associated glyphs, but also additional techniques for showing

more of the underlying network information and scaling to larger datasets. At

the cost of having larger and more complex glyphs, additional details like directed

edges, approximate topology, and node attribute distributions can be exposed.
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7.2.1.1 Visual Complexity and Education

The visual complexity of multiple glyphs can require time for users to understand

and train their eyes/mind to recognize them. As such, I have tried to keep the

visual lexicon as small as possible, for example by using the same connector motif

glyph for any number of anchors instead of creating many variants (Fig. 4.3). I

also made several changes after the initial pilot study to improve user perception,

including changing the crescent connector motif glyph to a more effective tapered

diamond glyph (Fig. 4.2). However, my task-based study showed that users had

still had difficulties with topology-based tasks when using motif simplification (Sec-

tion 4.5). Part of this can possibly be attributed to the loss of edge information

that occurred before I started using sized meta-edges between motifs (e.g., Figs. 4.9

to 4.11), which I have not yet tested.

I believe the main issue, though was that participants were only given a few

minutes to understand the basics of node-link network diagrams as well as any

translations between motifs and their associated glyphs. While participants had

a legend available to them throughout the study, it did not seem to be enough

to ensure users understood the translations. User education is likely the most

promising way to improve the glyph performance, either through additional pre-

liminary training or time spent using the techniques and becoming comfortable

with the translations. Currently in NodeXL there may be the extra effort required
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to learn the motif concepts and interpret the glyphs, which may deter some users,

but simplification is a user choice which can be reversed at any time.

Another option would be to use more heavyweight glyphs that expose more of

the underlying information to the user. Several of these approaches are discussed

below for showing edge directionality, approximate motifs, arbitrary motifs, and

attribute distributions. However, I have tried to strike a balance between showing

the underlying information and maintaining a small visual lexicon, as well as keep-

ing glyphs small and understandable at a distance. Heavyweight glyphs expose

more, but at a substantial cost of visual clutter and space required.

7.2.1.2 Edge Directionality

Many networks have the added complexity of edge directionality, which is impor-

tant for some tasks like determining information flow and trust analysis. For tasks

on directed networks like path-finding, the underlying edge directionality needs

to be taken into account in the glyph design so as to show these flows. I began

working on this problem and developed an effective technique for subdividing fan

glyphs without requiring any labels or annotations to show directionality. An ex-

ample of this is shown in Fig. 7.1, with extra arrows around the edges that are not

part of the glyphs.

The example directed fan motif in Fig. 7.1 is divided into three representatively

sized sectors, each representing a different directionality of edges: towards the
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Figure 7.1: Examples of how to show edge directionality in a fan motif glyph. The
arrows around the fans are not part of the glyph, and are only presented here to
highlight which sector corresponds to which direction of edges.

head node, towards leaf nodes, or in both directions (reciprocated ties). The

directionality of each sector can be shown with small arrows inside the sectors, but

this requires a much larger glyph to be readable at a distance. Instead, I chose

to arrange the sectors at different angles around the head node. The left glyph in

Fig. 7.1 shows only edges pointing in one direction and that are not reciprocated.

Both sectors are aligned vertically, with the incoming edge sector growing clockwise

from vertical and the outgoing sector growing counter-clockwise from vertical. If

only one direction of edges exist, say those pointing from the head to leaves, only

that sector would be drawn. This technique for growing the sectors in different

directions from vertical makes the directionality of the edges immediately clear,

without requiring labels.

If there are reciprocated edges I propose the right glyph in Fig. 7.1. In this glyph

there is a third sector for the reciprocated edges in the center, which grows evenly
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Figure 7.2: Variants of the directed fan motif glyph with different numbers leaf
nodes and number of directed edges in each of the three types (from head, to head,
and reciprocated).

in both directions from vertical. Then, instead of the solo-directed edges growing

from vertical they grow from the edge of the central glyph. If there are no edges in

one of the three sectors, it is not drawn at all and there is no extra border, again

maintaining the directionality information solely in vertical alignment. Several

variants for different configurations of edges are shown in Fig. 7.2. With this design

the original size information of the fan glyph can be retained and directionality

shown, all without labels.

This kind of subdivided design worked well for the fan glyphs, but is not as easy

for things like the connector and clique motifs. Connectors are especially difficult
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because they can have virtually any number of anchors, and thus combinations of

edge directionalities. While a 2-Connector will have 32 = 9 different combinations

of edges (in-in, in-out, in-reciprocated, etc.), a 3-Connector will have 33 = 27 and

a 4-Connector 34 = 81. When we get to the 70-Connector that showed up in the

medical records example (Section 4.3.5), there are 2.5×1033 different combinations

to show! It seems like displaying all the potential flows through a connector will

be challenging. Instead, each meta-edge can be subdivided into three proportion-

ally sized parts to show some of the directionality information. However, at this

point we are creating a new heavyweight encoding for every glyph and it becomes

difficult to keep the visual lexicon small, which is why I decided not to pursue this

route. Cliques could be somewhat easier, but would likely require embedding a

flow visualization or asymmetric adjacency matrix inside the motif glyph. This

would be similar to the approach presented by NodeTrix [HFM07].

7.2.1.3 Approximate Topology

One of the best ways to scale up motif simplification to larger networks is to use

approximate topology for the simplification instead of requiring exact motifs. We

then return to the problem of displaying this ambiguity to the user, the basis for

the exact motif simplification approach in the first place. Moreover, we have the

problem of detecting these “fuzzy” motifs or functionally equivalent bits of the

network. Almost-cliques are perhaps the most studied motif of the bunch and are
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used as the basis for some clustering algorithms. Instead of showing the present

edges in an almost-clique like normal, it could be better to instead show the absence

of specific edges in the motif. These absences can be represented as light cuts across

a regular polygon glyph that shows a complete clique. Alternatively, an adjacency

matrix can be embedded in the clique glyph, again either showing the underlying

edges (as in NodeTrix [HFM07]) or showing their absence.

Fan and connector motifs are perhaps a bit trickier to show. The presence

of additional edges in a fan motif, connecting the leaf nodes, or in a connector

motif, linking the span nodes, could be shown using various styles or textures for

the glyph components. For example, connections between the fan leaves could be

shown with a curved outer line for the sector like in the basic glyph, but when there

are no connections that sector has a jagged appearance. One approach for finding

“fuzzy” fan motifs would be to look for any trees in the network, which could be

detected by iteratively applying the linear time algorithm detailed in Algorithm 2.

These trees would have to be simplified into a staggered glyph to show the depth

of its various parts, and in that case maintaining the area scaling to show node

count would be difficult.

7.2.1.4 Arbitrary Motifs

A similar problem is how to detect and represent arbitrary motifs for the user.

These motifs can be user-specified, like those of known interest to biologists, or
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automatically generated using motif census tools. See Section 2.4 for an extensive

discussion of motif census techniques, as well as the current state-of-the-art tech-

niques for displaying the resulting motifs. Current motif census and visualization

approaches are used in bioinformatics, but only find small motifs with little sim-

plification payoff and do not create truly simplified displays. The main problem

to solve would be automatically generating effective and distinguishable glyphs.

Motif simplification would be more generally applicable if we can develop a tech-

nique for detecting new kinds of motifs automatically and suggesting ones that will

have a high payoff if simplified. A motif census tool could be created that makes

recommendations for specific motif simplifications to target based on readability

metrics for the original and reduced visualizations. One heavyweight display ap-

proach would be to embed small node-link visualizations of some representative

topology inside the meta-nodes. The latest version of Cytoscape [Sha+03] will

now show an exact subnetwork visualization inside a meta-node, but it would be

better to automatically create a small, representative version to display.

7.2.1.5 Attribute Distributions

The current motif glyphs show a single aggregate measure of the underlying node

attributes, such as their average, on the same color scale as used for the nodes.

While this provides some information, it is not enough to identify unusual outliers

or distributions of attribute values. With a more heavyweight glyph, this distri-
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bution could be shown with small box-and-whisker charts or the like. Perhaps a

bit simpler would be to use proportionally sized stripes of color to show categori-

cal attributes or bins of attributes. Alternatively, the glyph could be subdivided

into distinct sized sections for each attribute bin. While these approaches would

highlight underlying attributes better, they do come at a substantial cost of screen

space and visual complexity.

7.2.1.6 Overlap Handling

While the underlying topology of an individual motif is unambiguous, in some

cases the choice of which motifs to simplify can lead to different overviews. The

fan and connector motifs prevent ambiguous overlap, but clique motifs can overlap

each other substantially. I use a heuristic that picks the largest non-overlapping

clique to simplify. A more effective, but computationally hard, approach would

be to rate each motif by desirability and find the optimal set of motifs by solving

the NP-complete set-packing problem [Kar72]. This could result in overall better

simplifications, as well as more confidence in having meaningful results.

7.2.1.7 Layout Algorithms

One of the common results of motif simplification is having the simplified network

be rather dense. Most layout heuristics do not handle dense networks as well

as sparse ones, though it is computationally easier than running on the original



7.2 Future Directions 283

network. Moreover, especially with the heavyweight glyphs I discuss above, it

becomes important to take the glyph size and shape into account. We could apply

an overlap removal post-processing step as in Section 5.4.3.3, but it is better to take

the node size and shape into account in the layout algorithm. This algorithm should

also take the aggregate strength of any meta-edges into account to ensure that

things like tightly linked anchors of a connector motif are brought close together.

7.2.1.8 Interaction Techniques

An interesting interactive technique that could be leveraged is semantic zooming,

where more details are revealed as the user zooms in on the network. Similar to

Google Maps, features are revealed only when they do not add undue complexity

to the display. Instead of expanding and collapsing glyphs on demand, glyphs

would be expanded automatically when there is enough screen space available to

present them well. This could be combined with “fuzzy” summarization [NRS08] or

backbone-generation [Won+08] techniques to get further reductions in complexity,

at the cost of losing some information about the topology. All these overview ap-

proaches would be especially effective for web-based network visualizations, which

have a space premium and significant performance issues with even small networks.
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7.2.2 Group-in-a-Box Layouts

The Group-in-a-Box layouts I have discussed could benefit from several improve-

ments. First, better automatic parameter selection and layout choice techniques

could get users to good results faster without trial and error. Moreover, better

layout algorithms could be applied to get the initial group positions. Finally, ad-

ditional interaction techniques could let users explore the groups in the network

individually.

7.2.2.1 Automatic Parameter Selection

Currently, the initial space-filling factor used in the Force-Directed Group-in-a-

Box layout (Section 5.4.3.1) is hard-coded in NodeXL at 50%. A more effective

approach might iteratively lower that value if the box overlap removal step caused

too much movement of the group boxes. Alternatively, the layout could run several

times to correct for mistakes like the groups being placed in poor positions initially,

which can cause substantial overlap or degenerate cases like a single line.

7.2.2.2 Layout Algorithm Improvements

The layout algorithm I currently use for the Force-Directed Group-in-a-Box layout

is the Harel-Koren FMS layout [HK02a]. One problem with the implementation

is that it does not take the aggregate meta-edge strength into account yet when

positioning the group boxes, an issue I plan to address as soon as I have time. A
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more substantial step would be to try this approach using other effective layout

algorithms like the high-dimensional embedding (HDE) approach of Harel and

Koren [HK02c] or the algebraic multigrid method (ACE) of Koren, Carmel, and

Harel [KCH03]. The FM3 algorithm [HJ05; Hac05] seems to produce particularly

good results, but may be slower and difficult to implement. HDE, ACE, and FM3

should all be able to utilize the meta-edge weight between groups.

7.2.2.3 Evaluation

My students and I are currently conducting an empirical evaluation of the Group-

in-a-Box layouts on thousands of Twitter scrapes (Section 5.6), but more work is

definitely needed to quantify how useful these meta-layouts are. Additional task-

based studies could help quantify the benefits of the Group-in-a-Box approach and

any potential pitfalls that have not been exposed through my case studies and

explorations.

7.2.2.4 Automatic Layout Choice

In some cases, I choose which Group-in-a-Box layout to use based on the number

of connected components, groups, and certain group properties (Section 5.4.5).

Despite this, it would be good to extend this work to completely automate the

Group-in-a-Box layout choice. One way to do this would be to run each layout,

quantify its utility using readability metrics, and choose the best one. Alter-
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natively, studies like our empirical analysis of Group-in-a-Box layouts on Twitter

networks may provide sufficient data to automatically choose the best layout based

on network and group statistics. Similarly, the best clustering algorithm for a net-

work could be found by comparing how effective each clustering algorithm is when

the results are displayed in the Force-Directed Group-in-a-Box layout. This would

be quantified by using the readability metrics.

7.2.2.5 Interaction Techniques

Instead of displaying all the groups on the screen at the same time, interactive

techniques could help users drill into particular groups. The original Treemap tool1

and now Spotfire [Spo] allow users to drill into a Treemap interactively, showing

only one box on a level. This same kind of interactive drill-down can be applied to

any of the Group-in-a-Box layouts, and would be especially effective for hierarchical

clusterings. An alternate technique like continuously variable zoom [Dil+94] would

let users see one group in more of the screen space, while minimizing other groups

to take up less space.

7.2.3 Readability Metrics

There are several ways forward for work on the readability metrics. Initially, there

is a need for local node and edge versions of current global metrics that I did

1http://www.cs.umd.edu/hcil/treemap/

http://www.cs.umd.edu/hcil/treemap/
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not cover as part of my work. As more metrics are developed, they should be

evaluated for user task performance and integrated into a visual taxonomy for the

user, which can then be used to help users choose the metrics to optimize. These

optimizations could be done manually with color-coding assistance like I do now,

but also using a snap-to-local-maxima or fully automatic approach.

7.2.3.1 Additional Local Metrics

There are many existing global readability metrics that I have not created local

node and edge versions for, many of which are these are listed in Section 6.4.18.

The development of additional local metrics would provide users with more ways

to understand the effectiveness of their node-link visualizations, as well as ways to

improve those visualizations. While there are many studies looking at the utility

of metrics like edge crossings (Section 6.4.4), many metrics are not as well studied.

With any new metrics, it becomes important to quantify how well it maps to user

task performance.

7.2.3.2 Metric-Task Taxonomy and User Interface

It would be useful to document the results of new metric studies, as well as the large

corpus of studies I detail in Section 6.4, in a metric-by-task taxonomy that can be

presented visually to the user. While NodeXL will currently let users select which

metrics to optimize, the user may not be aware of which metrics they should use
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for particular tasks. This taxonomy interface would let users select a path-finding

task, for example, and be given the appropriate metrics to optimize.

7.2.3.3 Automatic Metric Optimization

Once a metric-by-task user interface exists, we can then enable the user to select

several of the relevant metrics to optimize. While my current implementations

only show the user highlighting for one metric at a time, we could create a linear

or weighted combination of the metrics to display. More interestingly, we could

feed this combined metric into a snap-to-local-maxima tool, or even an automatic

layout algorithm that finds the perfect layout for that user-defined energy function.

Simulated annealing [Met+53; KGV83] may be a good approach for a fully

automated layout. Simulated annealing is an optimization strategy originating

in statistical mechanics [Met+53] that has since been rewritten more generally

[KGV83], and can be applied to many classical combinatorial problems. Surveys

of the method and uses of simulated annealing can be found in [Haj85; Joh+91;

JP87; LA87]. Earlier work has used simulated annealing for network layouts with a

hard-coded energy function, based on metrics such as evenly-spaced nodes, uniform

edge lengths, edge crossings, edge tunnels [DH96] or even to show group members

proximally [Bar+08]. We could build on this to optimize the user-defined energy

function that was created using the metric-by-task user interface. The running

time of this approach would likely be slow (O(N2E)), with memory required about
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O(max(N2, E2)), but would produce “perfect” layouts for a given set of metrics.

7.3 Summary

Network data structures have been used extensively in recent years for modeling

entities and their ties for many diverse disciplines. Analyzing networks involves

understanding the complex relationships between entities as well as any attributes,

statistics, or groupings associated with them. The omnipresent node-link visual-

ization excels at showing network topology and features simultaneously, but many

node-link visualizations are not easily readable or difficult to extract meaning from

because of inherent network complexity or size. Moreover, for every network there

are many potential unintelligible or even misleading visualizations.

In this dissertation I discuss strategies to help users create more effective node-

link visualizations, all implemented in the NodeXL network analysis tool [Smi+10].

I first introduce a technique called motif simplification that leverages the repeating

patterns or motifs in a network to reduce visual complexity and increase readabil-

ity. I then discuss meta-layout algorithms that take attribute- or topology-based

groupings into account, so as to more clearly show the ties within groups and

the aggregate relationships between groups. Finally, I detail readability metrics

to quantify the effectiveness of node-link visualizations, localize areas needing im-

provement, and be fed into assistive layout tools.
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Each of these thrusts of my work opens up new avenues of research on network

visualization. The motif simplification work can be expanded to show additional

topology and attribute information, as well as arbitrary patterns in the network.

My Group-in-a-Box layouts would benefit from advanced layout algorithms, in

addition to automatic parameter and layout selection techniques. Finally, future

work could develop local node and edge readability metrics for existing global

metrics, and implement a visual metric-by-task taxonomy tool that would feed

into automatic layout algorithms.
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