
Master’s thesis
Master’s Programme in Data Science

Visualizing Changes over Time in
Hierarchical Customer Data Using

the Plotly Python Graphing Library

Fanni Kovapohja

October 19, 2022

Supervisors: Professor Giulio Jacucci
Doctor Chen He

Examiners: Professor Giulio Jacucci
Doctor Chen He

University of Helsinki

ii

Faculty of Science

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki

Faculty of Science Master’s Programme in Data Science

Fanni Kovapohja

Visualizing Changes over Time in Hierarchical Customer Data Using
the Plotly Python Graphing Library

Master’s thesis October 19, 2022 98

Hierarchical visualization, information visualization, time-dependent hierarchical data, customer data

Time-dependent hierarchical data is a complex type of data that is difficult to visualize in a clear
manner. It can be found in many real-life situations, for example in customer analysis, but the best
practices for visualizing this type of data are not commonly known in business world.

This thesis focuses on visualizing changes over time in hierarchical customer data using the Plotly
Python Graphing Library and is written as an assignment for a Finnish company. The thesis consists
of a literature survey and experimental part. The literature survey introduces the most common
hierarchical visualization methods, and the different possible encoding techniques for adding time
dimension on top of these hierarchical visualization methods. Moreover, the pros and cons of
different visualization techniques and encodings are discussed about.

In the experimental part of the thesis, visualization prototypes are designed using the Plotly Python
Graphing Library. A company customer data set of the commissioning company is partitioned into
hierarchical customer segments by a hierarchical industrial classification TOL 2008, and changes
over time in a continuous variable are visualized by these segments. Two hierarchical visualiza-
tion techniques: the sunburst chart and treemap, are used to create two prototype versions, and
the combination of color, typography, and interaction is used to encode time dimension in these
prototypes. The same prototypes are also exploited to visualize customer segments by an artificial
hierarchy created by combining multiple categorical features into a hierarchical structure.

The prototypes are validated in the commissioning company by arranging an end user study and
expert review. Concerning the prototypes by the industrial classification: According to the end
users and experts, both prototype versions are very useful and well-implemented. Among the end
users, there was no significant difference in which one of these prototype versions is faster to use, but
the clear majority of the respondents regarded the sunburst chart version as their favorite prototype.
The two experts who participated in the expert review had different opinions on which one of the
prototype versions they would select to be utilized in practice. Concerning the prototypes by the
artificial hierarchy: These prototypes also received positive feedback, but the possibility to change
the order of features in the hierarchy was considered as an extremely important development idea.

ACM Computing Classification System (CCS):
Human-Centered Computing → Visualization → Visualization Techniques
Human-Centered Computing → Visualization → Empirical Studies in Visualization

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Degree programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

Contents

1 Introduction 2

2 Thesis Commission 4
2.1 Motivation . 4
2.2 Data Set of Company Customers . 5
2.3 Research Questions . 6
2.4 Methodologies . 8

3 Hierarchical Data 10
3.1 Definition of Hierarchical Data . 10
3.2 Hierarchical Customer Data . 11

4 Hierarchical Visualization Techniques 13
4.1 Explicit Methods . 15
4.2 Implicit Methods . 18

4.2.1 Adjacency Diagrams . 18
4.2.2 Enclosure Diagrams . 21

5 Visualizing Changes over Time in Hierarchical Data 26
5.1 Different Types of Changes in Hierarchical Data 26
5.2 Different Techniques for Visualizing Changes in Hierarchical Data 28

5.2.1 Color . 29
5.2.2 Typography . 31
5.2.3 Interaction . 33
5.2.4 Animation . 35
5.2.5 Small Multiples . 37

6 Designing the Experimental Visualizations 39
6.1 Domain Problem and Data . 39
6.2 Data Types and Operations . 40

6.2.1 Data Wrangling for (E1) . 42

ii

1

6.2.2 Data Wrangling for (E2) . 43
6.3 Visual Encoding and Interaction . 46

6.3.1 Requirements . 46
6.3.2 Selecting the Suitable Hierarchical Visualization Techniques 47
6.3.3 Selecting the Suitable Time Encoding Techniques 48

6.4 Final Visualization Products . 50
6.4.1 Prototypes for (E1) . 51
6.4.2 Prototypes for (E2) . 54

7 Validating the Experimental Visualizations 59
7.1 End User Study . 59

7.1.1 Structure of the End User Study 60
7.1.2 Results of the End User Study . 61

7.2 Expert Review . 64
7.2.1 Expert Review of Sunburst(E1) and Treemap(E1) 64
7.2.2 Expert Review of Sunburst(E2) and Treemap(E2) 69

8 Conclusion and Future Work 72
8.1 Conclusion of the Literature Survey . 72
8.2 Conclusion of the Experimental Part . 73
8.3 Future Work . 76

Bibliography 78

Appendix A Figures: Sunburst(E1) 82

Appendix B Figures: Treemap(E1) 86

Appendix C Figures: Sunburst(E2) 90

Appendix D Figures: Treemap(E2) 95

1. Introduction

Customer data is information about customers which can be either personal or company
customers depending on the type of the customer relationship. Regardless of whether the
customers are persons or companies, it is useful to analyze the customer data in order
to better understand the structure of the customer base and enhance customer acqui-
sition and retention strategies. However, customer data is often very complex and can
contain variables of any data type; also hierarchical variables. For instance, geograph-
ical location consisting of multiple hierarchical levels, such as country, region, and city,
is a common hierarchical variable that is usually known for both personal and company
customers. Moreover, one very essential hierarchical variable related to company cus-
tomers is industry that classifies businesses into hierarchical groupings based on similar
products or services. By utilizing a hierarchical variable, customers can be partitioned
into hierarchical customer segments that become more precise as the hierarchical level
increases. Hierarchical customer segments can also be created artificially by dividing cus-
tomers into segments by utilizing multiple categorical variables successively, for instance,
by partitioning company customers first by country and second by turnover.

When customer base is divided into hierarchical segments by exploiting a hierarchical
variable or multiple categorical variables, other features related to customers, such as
number of orders, are compared between the different customer segments. To add even
one more dimension into this scenario, it would also be interesting to know how the
number of orders has developed over time in different customer segments rather than
focusing on only one distinct time point. From the strategic point of view, it is very
useful to explore in which customer segments the trend is increasing or decreasing. In
other words, the task is to analyze changes over time in a numerical target variable by a
hierarchical explanatory variable. In this thesis, solutions to this problem are examined
by means of data visualization. The research area was given as an assignment from a
Finnish company who is interested in researching how to visualize changes over time in
an important continuous variable by hierarchical customer segments.

The research area of the thesis is relevant when considering customer data analytics
in general since it would be very useful for many businesses if there existed proven methods
to visualize target variable changes in hierarchical customer segments. Moreover, the

2

3 Chapter 1. Introduction

thesis can certainly provide a perspective on visualizing time-dependent hierarchical data
sets that are not necessarily related to customers. There is a lot of academic literature on
visualizing only hierarchical data or only time series data, but there is a relatively little
discussion on how to visualize time-dependent hierarchical data, and also for this reason
the topic is significant. One additional point that needs to be taken into account is that
the data visualizations designed to be exploited in business use have to be very clear and
uncomplicated since they are utilized for decision-making by non-technical persons. The
threat is that if the visualizations are difficult to understand, they will never be exploited
in practice. However, one of the purposes of the thesis is to encourage the utilization of
also other kind of business visualizations than only bar and pie charts in order to be able
to observe more complex relations and phenomena from data.

In the thesis work, the commissioning company requested to first conduct a com-
prehensive general-level research on the most commonly used hierarchical visualization
techniques and different possible encoding techniques for adding time dimension on top
of these hierarchical visualization techniques. The purpose of this general-level research
is to give a thorough overview of the alternative options to visualize hierarchical data
and time-dependent hierarchical data. Second step is to utilize the gathered information
in practice by designing experimental visualization prototypes visualizing changes in the
commissioning company’s hierarchical customer data set using the Plotly Python Graphing
Library [30]. Moreover, these visualization prototypes are validated in the commissioning
company by arranging an end user study and expert review.

The thesis is structured as follows: Chapter 2 describes the thesis commission and
motivation behind it, introduces the commissioning company’s customer data set that is
visualized later in the thesis, and presents research questions and methodologies of the
thesis. Chapter 3 covers the definition of hierarchical data and discusses about hierarchical
customer data. Chapter 4 presents the most prominent and commonly used hierarchical
visualization techniques and considers the advantages and disadvantages of each of them.
Chapter 5 covers the different types of changes in hierarchical data and different tech-
niques for visualizing changes in hierarchical data. Chapter 6 walks through the whole
design process of the experimental visualization prototypes created for the commission-
ing company. In Chapter 7, the experimental visualization prototypes are validated by
presenting and analyzing the results of the end user study and expert review. Finally, in
Chapter 8, the thesis is concluded and future work is discussed.

2. Thesis Commission

This master’s thesis is written as an assignment for a Finnish company. The general
problem area is to systematically examine and compare different hierarchical visualization
techniques and time encoding techniques in order to find the most suitable techniques
for visualizing changes over time in hierarchical customer data using the Plotly Python
Graphing Library [30]. This chapter describes the thesis commission and motivation
behind it. Moreover, the data set used in the experimental visualizations of the thesis is
introduced. Lastly, specific research questions and methodologies are presented.

2.1 Motivation

The commissioning company maintains a large and versatile data set of their company
customers and aims to utilize this data effectively for improving their customer insight
and making better decisions. The data exists, but the challenge is to develop proper
techniques for finding useful relations and phenomena from the vast amounts of data.
Fortunately, this is the situation in which data visualization turns out to be very beneficial.
By visualizing, large amounts of data can be condensed into a single view, and many
different feature dimensions can be displayed simultaneously by using different visual
encodings such as length, area, color, and position.

However, since there are numerous visualization layouts and techniques from which
to select, it can be difficult to know, which one to exploit in each case. Finding the
most suitable visualization techniques often requires systematic research and comparison
between all the possible options. Therefore, also the commissioning company is interested
in examining different data visualization techniques in order to find the most suitable ways
to visualize their customer data set. This research work about systematically comparing
different visualization techniques that could be exploited to visualize the customer data
set of the commissioning company is the main agenda of the thesis.

The customer data set includes a continuous variable V that is especially interesting
and followed closely in the commissioning company. All the other variables related to the
customers are categorical, and one of these categorical features is also hierarchical: Finnish
Standard Industrial Classification TOL 2008 consisting of five hierarchical levels [31]. By

4

5 Chapter 2. Thesis Commission

exploiting the categorical features, the large data set of all customers can be partitioned
into smaller customer segments which are easier to deal with.

Changes over time in the variable V are vital to monitor regularly in the com-
missioning company. Moreover, it is important to examine how the changes in V differ
among different customer segments. Actually, the visualization prototypes presented later
in the thesis aim to answer especially to this question. Customers can be divided into
segments in multiple different ways according to which common characteristics are consid-
ered at each time, but this thesis focuses primarily on visualizing the customer segments
formed by the hierarchical variable Finnish Standard Industrial Classification TOL 2008.
In addition, this thesis considers how to visualize customer segments formed by multiple
categorical features.

2.2 Data Set of Company Customers

Table 2.1: Variables in the data set of company customers.

Variable Description Data Type
Time Point Equally spaced time points Discrete

Customer ID A unique identifier for each customer Categorical,
Identifier

V The main variable of interest Continuous
Industry Finnish Standard Industrial Classifica-

tion TOL 2008 consisting of five hier-
archical levels [31]

Categorical,
Hierarchical

Business Entity The five most common business entities
of Finland

Categorical

Region The 19 regions of Finland Categorical
Size Small, medium-sized or large enterprise

by number of employees
Categorical

Turnover Seven turnover categories, for instance,
€1M - €3M

Categorical

The data set of the company customers of the commissioning company consists of the
variables introduced in Table 2.1. Each customer has an unique identifier, Customer
ID. The main variable of interest, continuous V , is updated regularly, and therefore there
exists a time series of V for each customer. The data set includes the following categorical
variables: Business Entity, Region, Size, and Turnover of a company. Moreover, the
categorical and hierarchical variable of Finnish Standard Industrial Classification TOL

6 Chapter 2. Thesis Commission

2008 is included in the data set and referred shortly as Industry. It consists of five
hierarchical levels presented in Table 2.2 with illustrative example classes.

Table 2.2: The hierarchical structure of Industry (=Finnish Standard Industrial Classifi-
cation TOL 2008 [31]).

Level Coding Example
Level I Character code R - Arts, entertainment and recreation
Level II 2-digit code 93 - Sports activities and amusement and recre-

ation activities
Level III 3-digit code 932 - Amusement and recreation activities
Level IV 4-digit code 9329 - Other amusement and recreation activities
Level V 5-digit code 93291 - Skiing centre activities

2.3 Research Questions

The research questions of the thesis are divided into two categories: general-level and
experimental research questions. The general-level research questions cover hierarchical
visualization in general, while the experimental research questions relate to specific hi-
erarchical visualization problems of the commissioning company. Answering first to the
general-level research questions forms a great base to start working with the experimental
research problems which are solved by applying the general ideas in practice. Both the
general-level and experimental research questions are listed on the next page.

The first general-level research question, (G1), strives for carrying a systematic re-
search on different hierarchical visualization techniques in order to receive a comprehensive
understanding of all the commonly used alternatives to visualize hierarchical data. Also
the pros and cons of these different visualization methods are addressed by the question
(G2). The third general-level research question, (G3), considers how time dimension could
be added on top of these hierarchical visualization techniques.

The research work concerning the general-level research questions is of significant
value for the commissioning company since they are interested in hierarchical customer
data visualization also outside of the specific experimental research problems of the thesis.
They would like to receive a comprehensive overview of the whole area of hierarchical
visualization, especially how to visualize changes over time in hierarchical data, at a
general level before focusing on the specific visualization prototypes. This way, they
can utilize the information of the thesis also in the future for solving different kinds of
hierarchical visualization problems they may encounter.

7 Chapter 2. Thesis Commission

General-level Research Questions

(G1) Which are the most prominent and commonly used hierarchical visualiza-
tion techniques?

(G2) What are the main advantages and disadvantages of these hierarchical vi-
sualization techniques?

(G3) How time dimension can be added on top of these hierarchical visualization
techniques?1

Experimental Research Questions

(E1) How changes over time in a continuous variable V could be visualized by a
hierarchical explanatory variable Industry using the Plotly Python Graph-
ing Library? In other words, how to depict simultaneously the hierarchical
structure of the explanatory variable and the development of the continu-
ous variable over time?1

(E2) How hierarchical visualization techniques could be utilized to visualize
changes over time in a continuous variable V by multiple different
categorical features using the Plotly Python Graphing Library?1

1 In (G3), (E1), and (E2), hierarchical structures are considered to remain unchanged over time.

The experimental research questions aim at visualizing the commissioning company’s
data set of company customers. More specifically, the experimental research questions
(E1) and (E2), focus on visualizing changes over time in a continuous variable V by hi-
erarchical structures. Industry is the hierarchical structure of the first research question,
and the second research question considers the hierarchical structure formed by multiple
different categorical features. A hierarchical structure divides the customers into hier-
archical customer segments that become more precise as the hierarchical level increases.
Since the topic area is very broad and challenging, the commissioning company requested
that the thesis should primarily focus on (E1) and regard (E2) as more of an additional
research question.

The purpose of the experimental visualizations is to display in a single figure how
the variable V has changed over time in the whole customer population as well as at all
the precision levels of the hierarchical customer segments. In order to create visualization
prototypes answering to the experimental research problems, both a proper hierarchical

8 Chapter 2. Thesis Commission

visualization technique and a proper time encoding technique have to be selected. The
research work conducted for the general-level research questions is exploited to make these
design decisions. There is a lot of information to be visualized, and therefore there is a
need to design proper layouts and interactions to alleviate information overload. The
visualization tool used in the thesis is the Plotly Python Graphing Library, which also
allows a user to create interactive visualizations.

2.4 Methodologies

The general-level research questions are answered to by conducting a literature survey.
The previous work about hierarchical visualization is examined thoroughly in order to
receive comprehensive answers to the questions (G1), (G2) and (G3). The extensive use
of different scientific sources offers various different perspectives of the topic area and
builds a versatile understanding around the general-level research questions. Based on
the results of this literature survey, a suitable visualization techniques are selected in order
to create visualization prototypes answering to the experimental research questions. Two
alternative visualization prototypes are designed for both experimental research questions,
(E1) and (E2), using the Plotly Python Graphing Library.

The nested model for visualization design and validation (hereinafter referred as the
nested model) introduced by Munzner [22] is utilized to design and validate the experi-
mental visualization prototypes of the thesis. The nested model consists of the following
four nested steps:

Step 1. Identifying the domain problem and data.

Step 2. Abstracting the problem into data types and operations.

Step 3. Designing visual encoding and interaction techniques.

Step 4. Creating algorithms.

Each of these steps are executed separately but the decisions made during previous steps
have an inevitable effect on the following steps [22]. A mistake made while identifying a
domain problem will reflect the final product even if all the rest of the steps are imple-
mented perfectly. Munzner presents distinct threats and validation methods considering
each individual step, and these are taken into account while designing the visualizations
of this thesis. Validation process can be divided into upstream and downstream valida-
tion according to whether the validation of a step is carried out before the following steps
are accomplished (upstream) or after all the steps are accomplished (downstream). It is
also noteworthy, that the steps can be taken iteratively by returning to refine the design

9 Chapter 2. Thesis Commission

decisions of the previous steps. In this thesis, the Step 4 is omitted since the ready-made
algorithms of the Plotly Python Graphing Library are utilized.

After the visualization prototypes are finished, an end user study and expert review
about the pros and cons of the different prototypes are arranged within the commissioning
company. This is part of the validation process of the nested model. The end user study is
meant for the end users of the visualizations, and its purpose is to measure the clarity and
real-world applicability of the prototypes. With an expert review, also more analytical
perspectives about the visualizations can be received. It is very useful to listen to both the
end users of the visualizations and the experts from the field. Finally, by exploiting the
results of the end user study and expert review, the final conclusions about the different
visualization prototypes are drawn, and possible directions for future work are discussed
about.

3. Hierarchical Data

Every visualization process begins from the profound understanding of data. Therefore,
before going deeper into hierarchical visualization, the definition and characteristics of
hierarchical data are briefly covered. After that, it is discussed about how hierarchies
relate to customer data.

3.1 Definition of Hierarchical Data

The word tree can be regarded as a synonym for hierarchy. A natural tree, consisting of the
root, branches and leaves, is used to describe a data structure in which nodes are arranged
at different levels and connected to each other by edges. At the first and highest level of a
tree, there is only one node, which is called the root. The nodes connected directly to the
root node form the second level of a tree. From each of the nodes at the second level, can
branch new nodes, which form together the third level of a tree. Analogously, unlimited
number of additional levels can be created. If node A is connected to the node B, and A

is at one level higher than B, A is called the parent of B, and B is called the child of A.
All the nodes in a tree have exactly one parent, except the root node that has no parent.
If a node has no children, it is called a leaf node, and if a node has at least one child, it
is called an interior node. The mathematical definition of a tree is ”a simple, undirected,
connected, acyclic graph” [29].

In summary, it could be said that a hierarchy is a tree-like arrangement of data
elements. Hierarchical instead is an adjective describing that something is arranged into
a hierarchy. Thus, hierarchical data refers to data that is organized into a tree structure.
As usual, in this thesis, the hierarchical level of the root node is referred as the highest
level in a hierarchy, and as moving further away from the root, the hierarchical level
becomes lower. Expressed using ordinal numbers, the root level is considered as the first
hierarchical level, and as moving further away from the root, the ordinal number of the
hierarchical level increases.

It is noteworthy that hierarchical data contains both the hierarchical structure about
the arrangement of nodes and edges, and content information about the feature (or fea-
tures) linked to the nodes [27]. Content information refers to the target variable values,

10

11 Chapter 3. Hierarchical Data

while the hierarchical structure is an explanatory structure by which the target variable
is being interpreted.

Hierarchical data can be divided into two categories according to whether the hi-
erarchy of data is natural or artificial. These may not be universal terms, but in this
thesis they are defined as follows: Natural hierarchy refers to a hierarchical structure that
originally exists in data, while artificial hierarchy is data that is artificially organized into
a hierarchical form. Examples of both types of hierarchical data are given in the next
section in the context of customer data.

3.2 Hierarchical Customer Data

Customer data often includes naturally hierarchical variables. For instance, regardless of
whether a customer is a personal customer or company customer, the geographical location
of a customer is usually known. Location is a good example of a natural hierarchy since it
consists of naturally hierarchical levels: the earth, continent, country, region, city, district.

By using a naturally hierarchical variable, customers can easily be divided into hier-
archical customer segments that allow examining customers at different precision levels.
The higher levels, such as the continent and country levels in the case of geographical
location, provide a good large-scale overview of customer base, while the lower levels,
such as regions and cities inside a single country, specify the scope into a lot more precise
and smaller set of customers. By exploiting different hierarchical visualization techniques,
this kind of hierarchy can be displayed in various interesting and useful ways. Another
example of a naturally hierarchical feature is the industry of a company customer, which
is the variable of interest in the experimental research question (E1).

Even data not including any natural hierarchies may be possible to be arranged into
a hierarchical form. Artificial hierarchies can be created, for example, by using hierarchical
clustering methods, or as its simplest, by merely organizing data into a tree format by
multiple interesting hand-picked variables. For example, in the paper [19], the personal
customer data set of a bank is arranged into a hierarchy by three hand-picked variables:
bank branch, region, and banking business. The personal customers are first divided
by bank branch, after which each bank branch is partitioned by region. Each region is
further divided by banking business, and finally, the individual customers in each banking
business are listed. Content information about the amount of money held in each account
and the income of each customer are attached to this artificial hierarchy. After being
created, the artificial hierarchy is visualized using a hierarchical visualization technique,
the treemap, in which the nested arrangement of customers encodes the structure of the
artificial hierarchy, color encodes the amount of money held in each account, and area
encodes the income of each customer. Furthermore, it is annotated in the article that the

12 Chapter 3. Hierarchical Data

structure and information content of the visualization can be modified a lot by altering
the order in which the variables are used to partition the customers, and by attaching
different features (content information) to the customers.

In the context of this thesis, for example the following three categorical features
in the commissioning company’s data set of company customers: Business Entity, Re-
gion, and Size, could be combined into a tree format by (1) partitioning customers by
Region, (2) partitioning customers in each Region additionally by Business Entity, and
(3) partitioning each customer segment formed by Region and Business Entity addition-
ally by Size. This way hierarchical customer segments that become more precise as the
hierarchical level increases from (1) to (3) are obtained. There are many customers that
belong to the same Region but certainly fewer customers that belong to the same Region,
same Business entity and same Size category. Expectedly, the main variable of interest
V could be attached to the nodes. Analogously to the paper [19], a suitable hierarchical
visualization technique could be exploited to visualize this artificial hierarchy.

Actually, to answer to the experimental research question (E2), similar steps to
the previous example need to be taken: pick sensible categorical variables from the data
set of company customers, use the selected variables in a sensible order to create an
artificial hierarchy, and after that, examine what would be the most suitable visualization
techniques for visualizing the created artificial hierarchy taking into account that time
dimension needs somehow to be added on top of the visualization.

In customer data analytics, it can be very fruitful to combine multiple variables
into an artificial hierarchy and this way generate hierarchical customer segments. Cus-
tomers can be analyzed at different precision levels, which are first coarser but become
more precise as more variables are considered simultaneously. This kind of segmentation
allows to observe the distinct effects of each variable as well as the combined effect of
all of them. A large data set becomes condensed into a form that is easier to deal with
and analyze. Moreover, artificial hierarchy can be displayed in various different ways by
utilizing different hierarchical visualization techniques.

4. Hierarchical Visualization
Techniques

In this chapter, the most prominent and commonly used techniques for visualizing hi-
erarchical data are covered in order to receive a comprehensive overview of different
alternatives for the experimental visualizations. There can also exist completely other
hierarchical visualization techniques or different variations of the techniques presented in
this chapter, but the scope of the thesis is limited only to the most prominent ones. In
other words, this chapter is a literature survey answering to the general-level research
questions (G1) and (G2). In Chapter 5, the general-level research question (G3) is an-
swered to by considering how time dimension could be added on top of the hierarchical
visualization techniques presented in this chapter.

Different hierarchical visualization techniques are applicable in different use cases, so
it is reasonable to discuss what are the special characteristics, advantages, and disadvan-
tages of different alternatives. The choice of a suitable visualization technique obviously
depends on what kind of and what size of data set is to be visualized, but it also depends
a lot on what is desired to be acquired from the visualization. There are trade-offs, for
example, (1) between the amount of presented information and the clarity of a visualiza-
tion, (2) between the clear presentation of content information and the clear presentation
of the hierarchical structure, and (3) between space-efficiency and the clear presentation
of the hierarchical structure. Furthermore, it has to be decided how much information is
displayed in a single view, and which part of the information is only possible to be seen
through interactions.

The hierarchical visualization techniques can be divided into two categories: the
explicit and implicit methods, according to how the parent-child relationships are encoded
[25]. The explicit methods clearly display the edges connecting the nodes, while the
implicit methods do not [25]. Instead, the implicit methods use the arrangement of
nodes to encode the parent-child relationships [25]. The implicit methods can further
be partitioned into the adjacency diagrams and enclosure diagrams according to whether
adjacency or containment represents the hierarchical arrangement of nodes [14]. The
most common visualization techniques from all of these categories are introduced in the

13

14 Chapter 4. Hierarchical Visualization Techniques

following sections with illustrative example figures. As a side note, there also exists map-
based hierarchical visualization techniques, such as drill down maps, regarding specifically
geographical hierarchies. However, map-based techniques are not covered in this thesis
since the data set of company customers does not contain any geographical hierarchies.

The example figures of this chapter are created using an artificially constructed data
set introduced in Table 4.1. It is easy to compare the characteristics of different visual-
ization techniques as the same data is used on the base of all the example visualizations.
Moreover, the data set is an example of a hierarchical customer data set and therefore
suits well to the topic area of the thesis. The hierarchical variable in the example data
set is Industry. In this case, only the character code F - Construction in addition to
the 2-digit and 3-digit code levels branching from it are considered. Thus, the hierarchy
consists of three levels. All the 13 nodes belonging to the hierarchy are listed in Table 4.1
with the code of Industry in the first column and name of Industry in the second. In
the third column, the hierarchical structure is revealed by presenting the parent of each
node. However, the root node F has no parent. The last column describes the values of
an imaginary numerical target variable related to the customers. The values of the target
variable sum to 9 000 000 at each hierarchical level, and these values aggregate from child
nodes up to their parent node.

Table 4.1: An artificially constructed hierarchical customer data set for the example
visualizations.

Code Name of Industry Parent Value
F Construction 9 000 000
41 Construction of buildings F 4 000 000
42 Civil engineering F 3 000 000
43 Specialised construction activities F 2 000 000
411 Development of building projects 41 3 000 000
412 Construction of residential and non-residential buildings 41 1 000 000
421 Construction of roads and railways 42 1 500 000
422 Construction of utility projects 42 1 000 000
429 Construction of other civil engineering projects 42 500 000
431 Demolition and site preparation 43 1 000 000
432 Electrical, plumbing and other construction installation

activities
43 500 000

433 Building completion and finishing 43 250 000
439 Other specialised construction activities 43 250 000

15 Chapter 4. Hierarchical Visualization Techniques

4.1 Explicit Methods

The explicit visualization methods visualize hierarchical data by encoding edges as visible
links between nodes [25]. These methods resemble a lot of a natural structure of a tree.
Generally, the strength of the explicit methods is in displaying the hierarchical structure
in a clear and intuitive manner, whereas they are usually not so appropriate for expressing
content information. The explicit methods easily become obscure if the sizes or colors of
nodes are used to encode content information [21]. Moreover, the explicit methods take a
lot of space so they are not very useful for visualizing large hierarchies [21]. Interactions,
such as drill down and up, can alleviate this problem, but not even them are sufficient if
the hierarchy is extremely large [21].

Traditional Node-link Diagram

Maybe the most intuitive way to visualize a hierarchy is to use explicit nodes and links,
and place the root node at the top and other nodes underneath it. In addition to this,
in the traditional node-link diagram (or only node-link diagram), the nodes at the same
level of a tree are at the same horizontal level in the visualization. The prefix traditional
is used to avoid confusion since sometimes all explicit visualization methods are referred
as node-link diagrams. There are various different algorithms to arrange the nodes into
this kind of tree layout, for example, Reingold-Tilford algorithm optimizes the layout in
such a way that minimum amount of space is wasted [14].

The paper [27] summarizes well the pros and cons of the traditional node-link di-
agram: It is an excellent choice to visualize small hierarchies since it is very clear and
easily understandable. However, the weakness of the traditional node-link diagram is its
inefficient use of space of which a large proportion is filled by only background. Partly
due to this, the layout is so intuitive, but on the other hand, therefore it is not suitable
for visualizing large hierarchies that would spread out over an unpractically large area.
Moreover, it is difficult to attach content information to the nodes that are quite small in
this layout, while the hierarchical structure is very clearly displayed.

An example of the traditional node-link diagram is shown in Figure 4.1. The figure
is created based on the data in Table 4.1. However, since content information is difficult
to attach to the traditional node-link diagram, only the hierarchical structure without
node values is displayed. The hierarchical structure is a lot easier and faster to perceive
from Figure 4.1 compared to just trying to interpret it from Table 4.1.

16 Chapter 4. Hierarchical Visualization Techniques

Figure 4.1: An example figure of the traditional node-link diagram. The figure is created
based on the data in Table 4.1. However, only the hierarchical structure without node
values is visualized.

Dendrogram

In another layout option, the dendrogram, explicit nodes and links are also used, and
the root node is at the top. However, instead of congruence between hierarchical levels
and horizontal levels, all the leaf nodes are put at the same horizontal level [14]. The
dendrogram is also called the cluster layout [14] and is often used in the context of
hierarchical clustering. It is quite similar to the traditional node-link diagram, so the
strengths and weaknesses are roughly mutual. Nevertheless, unlike the traditional node-
link diagram, the dendrogram always allows observing all the leaf nodes alongside each
other even if they are at different levels of a tree, which can be very useful in some use
cases.

The difference between the traditional node-link diagram and dendrogram is visu-
alized in Figure 4.2. It is the only figure in this chapter that is not created based on
the data in Table 4.1. The reason for this is that in the example data set in Table 4.1,
all the leaf nodes are at the same hierarchical level. In that exceptional case, the tradi-
tional node-link diagram and dendrogram would look exactly the same, and the difference
between them could not be visualized.

(a) Traditional node-link diagram. (b) Dendrogram.

Figure 4.2: Two different explicit layout versions of the same tree. (This is the only figure
in this chapter that is not created based on the data in Table 4.1.)

17 Chapter 4. Hierarchical Visualization Techniques

Indented Tree

Figure 4.3: An
example figure of
the indented tree.
The figure is cre-
ated based on the
data in Table 4.1.
However, only the
hierarchical struc-
ture without node
values is visualized.

The indented tree (or indented list) exploits tabular layout to visual-
ize a hierarchy. All the nodes are presented one below another, and
the nodes at the same hierarchical level of a tree are at the same
indented level in the visualization. All the levels are usually not
displayed simultaneously, but a user can navigate between different
levels through interaction capabilities. The indented tree is utilized,
for example, to visualize the structure of a Microsoft Windows File
Explorer and other similar file manager systems consisting of nested
folders and files inside them [27].

The indented tree is very common and easily interpretable but
it faces also criticism: The layout requires a massive amount of
vertical space [14]. Since all the levels are often not shown at the
same time, a user needs to transfer a lot between different levels
[27]. Furthermore, if the hierarchy is large, the hierarchical structure
is difficult to perceive [27]. For example, it can be hard to say
how many levels there are, which nodes are at the same level, and
how many nodes there are at each level [27]. On the other hand,
the article [14] points out that particular nodes can efficiently be
searched by interactive properties, node labels are smoothly and
quickly readable, and content information, for instance, file size,
can easily be attached to the nodes in a written form. Each node is
located at its own row so there is a lot of space to put text beside
the nodes. In addition, color of a node (or color of the whole row of
a node) can be used to encode the value of a target variable.

An example of the indented tree is displayed in Figure 4.3.
The figure is created based on the data in Table 4.1. However, content information is
not attached to this figure either; only the hierarchical structure without node values is
shown. Similarly to the traditional node-link diagram, also the indented tree shows the
hierarchical structure very clearly and intuitively.

Alternative Layouts

The traditional node-link diagram and dendrogram can also be oriented differently, for
example, in such a way that the root is on the left and the hierarchy expands onto the right
(instead of the top-to-bottom layout). Analogously, the indented tree can be oriented in
such a way that the nodes are arranged from left to right (instead of from top to bottom),
and the indented levels are drawn by vertical distances (instead of horizontal distances).

18 Chapter 4. Hierarchical Visualization Techniques

Furthermore, the traditional node-link diagram, dendrogram, and indented tree can
all be visualized by using polar coordinates in order to obtain the radial layout [7, 14].
Compared to the Cartesian layout, the radial layout appears more interesting and saves
space more efficiently [14]. Which one is the clearer and more practical layout, may
depend on the situation.

4.2 Implicit Methods

Instead of drawing visible links between nodes, the hierarchical structure can also be
visualized by arranging nodes either by adjacency or containment [14]. These kind of
techniques are called the implicit [25] (or space-filling [14]) methods. The paper [21]
describes the advantages of the implicit visualization methods compared to the explicit
methods: The implicit methods utilize space more efficiently than the explicit methods so
they are better suited for visualizing large hierarchies. However, also the implicit methods
can benefit from interactions if the hierarchy is very large. Furthermore, the implicit
methods are better at displaying content information by both node size and color. On
the other hand, the hierarchical structure is not as intuitive and fast to read as in the case
of the explicit methods. When comparing the explicit and implicit methods, the trade-off
between the clear presentation of content information and the clear presentation of the
hierarchical structure can be observed.

4.2.1 Adjacency Diagrams

In the adjacency diagrams, adjacency reveals the parent-child relationships. Nodes are
encoded as solid bars or arcs, and their place in the hierarchy is represented by their
position in relation to consecutive adjacency nodes [14]. The adjacency diagrams are
a compromise between the explicit methods and enclosure diagrams exploiting the con-
tainment encoding [18]. Since edges are not displayed explicitly, the adjacency diagrams
are more space-efficient than the explicit methods [18]. On the other hand, using the
enclosure encoding instead of adjacency would save even more space [18]. However, the
hierarchical structure is easier to perceive when using the adjacency diagrams [18], which
reveals the trade-off between space-efficiency and the clear presentation of the hierarchical
structure. In this work, the adjacency diagrams created by using the partition layout [14]
are only discussed about. These kind of adjacency diagrams are space-filling variants of
the traditional node-link diagram. However, the paper [14] points out that the adjacency
diagrams can also be created by using the cluster layout similarly to the dendrogram.

19 Chapter 4. Hierarchical Visualization Techniques

Icicle Chart

The icicle chart exploits solid bars adjacent to each other to visualize a hierarchy [14]. The
icicle chart can be regarded as a space-filling version of the traditional node-link diagram
(in the Cartesian coordinates) since the root is at the top and other nodes are underneath
it in such a way that the nodes at the same level of a tree are at the same horizontal level
in the visualization [14]. It is also common to rotate the layout in such a way that the
root is on the left and child nodes expand onto the right. This horizontal layout is, for
example, the default icicle chart layout of the Plotly Python Graphing Library [30].

Similarly to other implicit methods, the icicle chart is good at displaying content
information. The bar length can easily be utilized to encode the quantity of a target
variable. The value of a target variable in a parent node is usually the sum of the target
variable values in its child nodes. Thus, the length of the root node bar represents the
total sum of a target variable, and the different levels of the icicle chart reveal how the
quantities of a target variable distribute among the hierarchical structure. Another target
variable can be attached to the figure by coloring the bars.

The advantages of the icicle chart include the clear presentation of the hierarchical
structure and the easy integration of a target variable into every node from the root to

Figure 4.4: An example figure of the icicle chart. The figure is created based on the data
in Table 4.1 using the Plotly Python Graphing Library. Both the hierarchical structure
and node values are visualized in this figure as well as in all the rest of the figures in this
section dealing with the implicit methods.

20 Chapter 4. Hierarchical Visualization Techniques

leaves [9]. However, the icicle chart is not very space-efficient [9], and therefore it does
not suit for visualizing very large hierarchies. However, drill down and up interactions
can alleviate this issue to some extent.

An example of the icicle chart is displayed in Figure 4.4. The figure is created
based on the data in Table 4.1 using the Plotly Python Graphing Library. Since content
information is easier to include in the implicit methods, both the hierarchical structure
and node values are shown in this figure as well as in all the rest of the figures in this
section dealing with the implicit methods. Both the hierarchical structure and content
information are easy and fast to perceive from Figure 4.4, but the smallest leaves are
already very difficult to distinguish even though the data set is not very large.

Sunburst Chart

The sunburst chart is a radial version of the icicle chart [14]. Solid arcs adjacent to each
other are used to visualize a hierarchy [14]. The root node is at the centre, and as the
hierarchical level increases, the nodes are further away from the centre. The nodes at
the same level of a hierarchy are always as far away from the centre and altogether they
form a circle. The widths and colors of arcs can be used to encode content information
similarly to the icicle chart.

The paper [21] explains well how the sunburst chart should be interpreted and
why it is more space-efficient than the icicle chart: The quantity of a target variable is

Figure 4.5: An example figure of the sunburst chart.
The figure is created based on the data in Table 4.1
using the Plotly Python Graphing Library.

displayed by the relative width
of an arc compared to the sum
total width of all the arcs at
the same level. Therefore, in
the case of two nodes at dif-
ferent levels representing the
same quantity of a target vari-
able, the node at the lower
level is larger than the node at
the higher level. Due to this,
the sunburst chart saves more
space than the icicle chart. The
higher levels with fewer nodes
are given less space, and as the
level, and for that reason num-
ber of nodes, increases, also the
amount of space increases.

21 Chapter 4. Hierarchical Visualization Techniques

Thus, details in the lower level nodes, for example in leaf nodes, are easier to dis-
tinguish when using the sunburst chart compared to the icicle chart. On the other hand,
comparing the quantities of two nodes being at different hierarchical levels is easier with
the icicle chart, since the same length of a bar represents always the same quantity re-
gardless of a level. However, it is noteworthy that in the sunburst diagram, the width of
an arc can also be interpreted as an angle of a circular segment [38]. If angle is consid-
ered instead of width, it is not a relative measure anymore; the same angle of a circular
segment represents the same quantity at all hierarchical levels.

The paper [39] states that the advantage of the sunburst chart is its space-efficiency
combined to its ability to present the hierarchical structure very clearly. As a drawback,
the paper mentions that small slices can be difficult to distinguish. However, drill down
and up interactions can mitigate this problem, which was already mentioned in the case
of the icicle chart. The paper [9] points out that also the sunburst chart can contain a
lot of empty space despite it is regarded as more space-efficient than the icicle chart. The
paper also states that the clarity of the hierarchical structure suffers compared to the
icicle chart as the reading direction changes from top to bottom to inside out.

An example of the sunburst chart is shown in Figure 4.5. The figure is created based
on the data in Table 4.1 using the Plotly Python Graphing Library. Both the hierarchical
structure and content information are clearly displayed. Furthermore, the smallest leaves
are easier to distinguish compared to Figure 4.4 of the icicle chart even though Figure 4.5
is smaller than Figure 4.4.

4.2.2 Enclosure Diagrams

In the enclosure diagrams, containment reveals the parent-child relationships. Nodes are
encoded as rectangles or circles, and their place in the hierarchy is represented by their
position in relation to nested rectangles or circles [14]. The enclosure diagrams are the
most space-efficient method to visualize hierarchical data so they suit well for visualizing
large hierarchies [18]. However, the downside of these methods is that they do not display
the hierarchical structure as clearly as explicit methods or adjacency diagrams [18].

Treemap

The treemap, introduced for the first time in the paper [16] in 1991, encodes nodes as
nested rectangles. It is created by successively dividing the visualization space into smaller
rectangles as the level of a hierarchy increases [1]. The paper [21] explains well the
interpretation of the treemap: Each parent node is a rectangle enclosing all of its children
that are smaller rectangles. Thus, the root node is the largest and outermost rectangle
enclosing all the other nodes, whereas leaf nodes are the innermost rectangles. The area

22 Chapter 4. Hierarchical Visualization Techniques

of a rectangle usually represents the value of a target variable, and in that case, the value
of a target variable in a parent (the area of a parent) is the sum of the target variable
values in its children (the total area of its children) [21]. Actually, to be precise, the slight
paddings around nodes make the area of a parent a little larger than the the total area
of its children.

Figure 4.6: An example figure of the treemap. The fig-
ure is created based on the data in Table 4.1 using the
Plotly Python Graphing Library.

The area encoding makes
it easy to observe the mag-
nitudes of target variable val-
ues. Especially, it is effortless
to notice which nodes are large
and which nodes are small.
However, comparing the val-
ues of nodes that are almost of
the same size is not so intu-
itive, and small nodes can be-
come very difficult to distin-
guish. Since nodes fill the whole
visualization space and there is
no empty space left, the node
sizes are bigger than in the im-
plicit methods or adjacency di-
agrams. Thus, there is more
space to attach labels and content information to the nodes by exploiting encodings
such as text, color, and texture. The paper [21] points out that the treemap is very
space-efficient but it does not display the hierarchical structure very clearly. In order to
alleviate this issue, for example, padding around rectangles or saturation of rectangles
can be exploited [14].

It is also possible to transform the area and color attributes of the treemap by
functions in order to highlight different phenomena in data [33]. Inversion is one option:
instead of encoding the largest values of a target variable by the largest rectangles, the
smallest values of a target variable could be encoded by the largest rectangles [33]. Loga-
rithmic functions can also be useful [33]. These kind of transformations can obviously be
used with other visualization methods as well.

The layout of the treemap can vary a lot depending on which algorithm is used to
partition the visualization space. The quality of a treemap algorithm is usually measured
by two criteria: the aspect ratios of rectangles and the stability of the treemap [26].
The aspect ratios should be low since very thin rectangles are difficult to distinguish. The
stability of the treemap refers to how sensitive the layout is to change as the level of detail

23 Chapter 4. Hierarchical Visualization Techniques

or underlying data changes [26, 38]. As data changes in an unstable layout, the position
of a node can at worst change from the upper right corner to the lower left corner, and
the neighboring nodes can change, whereas in a stable layout the nodes are more locked
to the same position and neighbors.

The slice-and-dice algorithm is the original treemap algorithm, which results in
relatively stable layout but very high aspect ratios [32]. Squarified treemaps, using almost
square rectangles, produce low aspect ratios, and therefore better readability, but only
medium stability [14, 32]. For instance, the Plotly Python Graphing Library exploits
squarified treemaps [30]. Other treemap algorithms are also proposed but they are not
very commonly used [14].

An example of the treemap is displayed in Figure 4.6. The figure is created based
on the data in Table 4.1 using the Plotly Python Graphing Library. The layout is very
space-efficient, and as the data set is quite small in this case, the hierarchical structure is
easy to read. The node sizes display the values of a target variable in a very clear manner.

Circular Treemap

Figure 4.7: An example figure of the circular
treemap. The figure is created based on the
data in Table 4.1.

The circular treemap is a version of the
treemap that exploits nested circles instead
of nested rectangles to visualize a hierar-
chy [1]. The paper [21] explains well how
the circular treemap should be interpreted:
Each parent node is a circle enclosing all of
its children that are smaller circles. Thus,
the root node is the largest and outermost
circle, whereas leaf nodes are the inner-
most circles. The areas of circles are usu-
ally exploited to reveal the values of a tar-
get variable as in the case of the tradi-
tional treemap. However, the total area of
a parent is always bigger than the summed
area of its children, while in the traditional
treemap they are equal. Therefore, the
same area do not represent the same quan-
tity of a target variable at different levels
of a hierarchy, and areas are not comparable between different levels.

The areas of the nodes at the same hierarchical level can, however, be directly
compared since the area of a node is relative to the sum total area of all the nodes at the

24 Chapter 4. Hierarchical Visualization Techniques

same level. In the regard that inside-level size comparisons can be made but inter-level
comparisons are difficult, the sunburst chart and circular treemap are similar. The areas of
the leaf nodes can directly be compared only if they are all at the same hierarchical level.
Nevertheless, if the leaf nodes are at different hierarchical levels, the circular treemap
could also be created in such a way that the areas of the leaf nodes are relative to the sum
total area of all the leaf nodes rather than using level-wise relativeness. In this case, the
leaf node areas would directly be comparable to each other, but the areas of the nodes at
the same hierarchical level would not be. Which total area node areas are relative to (and
which node areas are directly comparable) can be a bit confusing if it is not explained.

The advantage of the circular treemap compared to the traditional treemap is the
clearer presentation of the hierarchical structure and groupings [1, 21]. This is due to
the extra space between nodes that makes the containment encoding easier to distinguish
[21]. On the other hand, this makes the circular treemap less space-efficient than the
traditional treemap.

An example of the circular treemap is shown in Figure 4.7. The figure is created
based on the data in Table 4.1. The hierarchical structure can be faster perceived than in
Figure 4.6 but at the expense of space-efficiency of the visualization. Also, the content in-
formation is clearly displayed by node areas. All the leaf nodes are at the same hierarchical
level so no problems are encountered with level-wise and leaf-wise area comparisons.

Bubble Treemap

Figure 4.8: An example figure of the bubble
treemap. The figure is created based on the
data in Table 4.1.

The bubble treemap is another treemap ver-
sion exploiting circles [21]. In the bub-
ble treemap, only leaf nodes are circles
and the rest of the hierarchical structure
is shown by nested contours that conform
the leaf node circles [21]. Thus, the bub-
ble treemap saves space compared to the
circular treemap but shows the hierarchi-
cal structure clearer than the traditional
treemap [21].

The areas of nodes can obviously be
used to encode the values of a target vari-
able. The bubble treemap is more illustra-
tive than the circular treemap in the sense
that the area of a parent node is the sum of the areas of its children with the slight
paddings. Nevertheless, the areas of the other nodes than leaf nodes can be of very dif-

25 Chapter 4. Hierarchical Visualization Techniques

ferent shapes, which make their sizes difficult to compare. Furthermore, the paper [9]
criticizes that the absence of a clear reading direction makes it difficult to compare nodes
at the same level.

An example of the bubble treemap is displayed in Figure 4.8. The figure is created
based on the data in Table 4.1. Regarding space-efficiency and the clear presentation of
the hierarchical structure Figure 4.8 is a compromise between Figure 4.6 and Figure 4.7.
By using a little larger paddings, there would also be space to add the character code and
2-digit codes of Industry into the figure, but in this case they have been omitted.

5. Visualizing Changes over Time in
Hierarchical Data

There is quite a lot of discussion and literature about different visualization techniques
for hierarchical data. However, only relatively little research has been conducted on how
to visualize changes over time in hierarchical data, which is one of the main research
problems of the thesis. In many circumstances, when a target variable is being analyzed
by a hierarchical structure, the values of a target variable are not only interesting at a
specific point in time, but in addition, it would be very useful to know how the target
variable values have developed over time. For example, it could be examined how the world
population consisting of hierarchical continent, country and city levels has changed over
time or how a stock portfolio value has grown or decreased by the hierarchical industrial
classification.

Adding time dimension on top of the pre-existing two dimensions of hierarchical
data: the hierarchical structure and content information, makes hierarchical data richer,
but on the other hand, more complicated. This type of data is difficult to visualize clearly
and without causing information overload. In this chapter, a literature survey is carried
out considering how time dimension can be added on top of the hierarchical visualization
techniques presented in Chapter 4. In other words, the general-level research question
(G3) is answered to. However, first, it is covered in which different ways hierarchical data
can change over time, and what type of changes are in the scope of this thesis.

5.1 Different Types of Changes in Hierarchical Data

Hierarchical data can change over time in multiple different ways. As already mentioned,
the values of a target variable can change, but also the hierarchical structure can change
if nodes are added or removed or if the arrangement of nodes alters. Moreover, if the
values of a target variable change, there are two different cases according to whether the
leaf node values aggregate up to the interior nodes or not [13]. For example, population
in a geographical hierarchy aggregates from children up to their parent while salaries in
an organizational chart do not.

26

27 Chapter 5. Visualizing Changes over Time in Hierarchical Data

The paper [13] points out that most of the scientific literature concerning tree com-
parison has concentrated only on changes in hierarchical structures rather than changes
in target variable values, and the limited work relating to target variable changes has
often utilized treemaps. The paper [13] is written in 2013 and the topic has gained more
attention from those days. However, visualizing changes in target variable values of a
hierarchical structure is relatively little studied topic despite its many possible practical
use cases.

The paper [13] identifies five different tree comparison types, and if these types are
only considered in the case of a changing tree (the same tree at different points in time)
rather than considering separate trees that are compared, the five tree comparison types
could be defined as follows:

Type 0. The hierarchical structure changes in such a tree whose nodes do
not contain any target variable values.

Type 1. The hierarchical structure does not change but the leaf
node values change in such a tree whose leaf node values
aggregate up to the interior nodes.

Type 2. The hierarchical structure does not change but the leaf node values
and interior node values change in such a tree whose leaf node
values do not aggregate up to the interior nodes.

Type 3. Both the hierarchical structure and the leaf node values change
in such a tree whose leaf node values aggregate up to the interior
nodes.

Type 4. The hierarchical structure, leaf node values and interior node val-
ues change in such a tree whose leaf node values do not aggregate
up to the interior nodes.

The scope of this thesis is only restricted to Type 1 changes by the request of the
commissioning company whose company customer data set encounters primarily target
variable changes and no changes in the hierarchical structures regardless of whether the
hierarchical structure of Industry (E1) or the artificial hierarchical structure created by
combining multiple categorical variables (E2) is considered. Moreover, the target variable
V aggregates from the leaf nodes up to the interior nodes.

In theory, for example, the whole industrial classification system might change,
which do not happen very often, or more likely, the commissioning company might receive
a customer from a whole new industrial class different from any of the industrial classes of
their pre-existing customers, or the commissioning company might lose their last customer

28 Chapter 5. Visualizing Changes over Time in Hierarchical Data

from a specific industrial class. In the aforementioned cases, the certain industrial class
is only represented at another but not at the other point in time. From the point of view
of the hierarchical structure of Industry, it means that a node is added or removed from
a tree. Thus, in order to process the hierarchical data set of company customers to the
fullest extent, the more complex changes of Type 3 should be dealt with. However, in
this thesis, it is assumed for the simplicity, and since it mostly holds, that the hierarchical
structures remain unchanged and only target variable values change over time.

According to the paper [13], target variable changes in a tree can be examined from
the following dimensions:

Direction of change. Has the target variable value increased,
decreased or remained the same?

Absolute change. What is the actual increase or decrease of the
target variable value using the target variable units?

Percentage change. What is the absolute change of the target
variable value in relation to the previous target variable value?

Comparing changes. Comparing the three aforementioned
change dimensions between different nodes in a tree, for exam-
ple: In which nodes the target variable value has increased or
decreased? In which nodes the target variable value has increased
or decreased more than in the others (either the absolute change
or percentage change)?

If the hierarchical structure could change, also the fifth dimension of change should
be taken into account: creating, removing or moving the nodes [13], but as already men-
tioned, in this thesis, the hierarchical structures are regarded as immutable.

5.2 Different Techniques for Visualizing Changes in
Hierarchical Data

A lot of different hierarchical visualization techniques are presented in Chapter 4. What
kind of visual encodings could be exploited to add time dimension on top of these hi-
erarchical visualization techniques, is the topic of this section. More specifically, only
Type 1 changes introduced in Section 5.1 are considered, that is, the scope is in aggre-
gated trees in which only target variable values can change and hierarchical structures
remain unchanged. The paper [12] identifies four different visual encodings that can be
used to display tree differences: color, typography, interaction, and animation. One in-

29 Chapter 5. Visualizing Changes over Time in Hierarchical Data

tuitive option is also to use small multiples, that is, a series of similar charts. Obviously,
multiple different visual encodings, such as color and typography, can also be utilized
simultaneously.

There can also exist other techniques for visualizing target variable changes in hier-
archical data, but this thesis only concentrates on the aforementioned visual encodings.
For example, the papers [8] and [17] visualize target variable changes in hierarchical data
by exploiting traditional time series type of static visualization context in which time is
on the x-axis and a target variable is on the y-axis. The paper [8] implements this by
using a streamgraph based visualization, while the paper [17] by using what they call
”temporal treemaps”.

The next subsections cover one by one how each visual encoding: color, typography,
interaction, animation, and small multiples, can be used to visualize changes over time
in hierarchical data, and what are the advantages and disadvantages of each option.
Moreover, a lot of examples are given on how the different encodings are exploited in the
academic literature.

5.2.1 Color

Color can easily be utilized to display changes in hierarchical data when using the implicit
hierarchical visualization methods: the icicle chart, sunburst chart and different treemap
variations, since in the implicit methods, node sizes are larger and there is more space
to attach color to them compared to the explicit methods with smaller node sizes. In
the case of the adjacency diagrams, the bar length (the icicle chart) or arc width (the
sunburst chart) can be used to encode the latest value of a target variable, while the color
of a bar or arc can be used to encode the change of a target variable from the previous
point in time to the latest point in time.

Accordingly, in the case of the enclosure diagrams, the area of a rectangle or circle
can be used to encode the latest value of a target variable, while the color of a rectangle
or circle can be used to encode the change from the previous value. It is also possible,
but maybe not as practical (since node sizes are smaller), to use color encoding with the
explicit hierarchical visualization methods: the traditional node-link diagram, dendro-
gram and indented tree. When using the explicit methods, for instance, typography (text
labels) could be used to encode the latest values of a target variable, and color of the
nodes could be used to encode the changes.

Color can represent either the direction of change, absolute change or percentage
change. It is a very effective encoding in giving a fast perception of in which nodes the
values have increased or decreased, and roughly what are the magnitudes of changes.
However, color cannot clearly display very subtle differences or exact numerical values.

30 Chapter 5. Visualizing Changes over Time in Hierarchical Data

Moreover, the limitation of color encoding is that a target variable value can only be
compared to a single previous value, and longer time series consisting of more than two
time points cannot be visualized.

Especially, when using intuitive color scales that are commonly associated with
decrease and increase, such as red and green or temperature color scale varying from
red to blue, color can be a very quickly perceivable encoding for visualizing changes over
time in hierarchical data. However, if necessary, color scales should be designed to be
colorblind-friendly, when, for example, red and green would not be an acceptable color
combination.

In four different scientific papers: [13], [15], [32], and [37] color encoding is used to
visualize changes in a treemap or treemap-like visualization. For example, in the paper
[13], U.S. Federal Budget is arranged into a tree format by Agencies and Bureaus in such
a way that each node of a tree contains the amount of money spent on a specific Bureau
during a fiscal year. This tree is visualized using the treemap visualization in such a way
that the area of each rectangle encodes the total dollar value indicated for a specific task,
and a continuous color scale (in combination with the exact numerical values written inside
the rectangles) encodes the percentage change from the previous year. In the color scale,
brown and yellow gradients represent decrease and green represents increase. However,
the paper criticizes the treemap for the reasons that it can only display either the absolute
change or percentage change at a time but not both, and it cannot display negative target
variable values by using area encoding.

The paper [37] introduces the visualization design on the website of SmartMoney
Map of the Market reporting stock market data about hundreds of publicly traded com-
panies. This visualization utilizes the treemap to display a hierarchical stock market data
set. Companies are classified hierarchically by sectors and industries, and their market
capitalization is revealed by the area attribute of the treemap. A continuous color scale
varying from red to green indicates the percentage change from the previous market close.
Black represents no change. Nevertheless, the paper mentions that they have an alterna-
tive color scale for colorblind people. The paper describes that the visualization is simple
but effective, and it gives a fast but comprehensive overview of a complicated data set.
Also, the paper [15] utilizes color-coded treemap in the context of stock market analysis.
They use a little different version of the treemap visualization, the treemap bar chart,
but they use analogously to the paper [37] red to green color scale to encode stock price
changes.

According to the paper [13], the approach like in SmartMoney Map of the Market
[37] is popular, but it lacks the possibility to display changes in the hierarchical structure.
Fortunately, this approach is very suitable for visualizing Type 1 changes which are in
the scope of this thesis. However, the paper [32] introduces their own version of the

31 Chapter 5. Visualizing Changes over Time in Hierarchical Data

treemap that can also display changes in the hierarchical structure (Type 3 changes):
Contrast Treemap splits each rectangle of the treemap diagonally into two triangles of
complementary colors. The color shade and hue as well as the areas of triangles represent
changes in the hierarchical structure and changes in the target variable values. The paper
[13] comments the limitations of this approach: (1) possibility to information overload
since color is used to encode two kinds of changes, (2) it is only suitable for aggregated
trees, and (3) it shows only moved nodes but not created and removed nodes.

It is also important to notice that color has three different dimensions: hue, bright-
ness (or lightness), and saturation, which can be utilized to encode different things. Quan-
titative features can effectively be encoded by exploiting different brightness levels of the
same hue and saturation [33]. If hue is constant, the color scale can be transformed into
a grey scale, which removes the problem of color deficiencies [33]. With qualitative at-
tributes, utilizing different hues while keeping brightness and saturation constant can be
useful instead [33]. It is one thing, what kind of color scales are effective in emphasizing
differences in data, and another thing, what kind of color scales are aesthetically pleasing.
In many use cases, aesthetics also have its value and should be taken into account. For
example, companies often use specific brand colors in all of their visualizations to give a
impression of consistency. In any case, it is always important to attach an explanation of
the used color scale into a visualization.

5.2.2 Typography

Changes in hierarchical data can simply be encoded by using typography, that is, text
labels. The main advantage of typography is that it can easily be attached to any hierar-
chical visualization method by just writing text labels inside or beside nodes. However,
because of their space-efficiency, the implicit hierarchical visualization methods can usu-
ally contain more text compared to the explicit methods. Through typography, the exact
numerical values can be seen. On the other hand, typography generally cannot offer a
fast but comprehensive overall understanding of data by just a glance as, for example,
color encoding can do. Nevertheless, utilizing an encoding such as color in combination
with typography, brings the good properties of both encodings together.

A good example of the simple use of typography in the context of visualizing changes
in hierarchical data is presented in the paper [13]. The paper introduces a table visualiza-
tion of hierarchical data that contains four columns: node name, node level, and absolute
and percentage changes of a target variable. The cells in the column of percentage changes
are colored using a red to green color scale to give a faster perception of which nodes have
increased or decreased. The paper notifies that the table is insufficient in displaying the
structure of the hierarchy. However, as a new development idea to the visualization, this

32 Chapter 5. Visualizing Changes over Time in Hierarchical Data

problem could be solved by exploiting the design of the indented tree: The column of the
node names could be organized into an indented tree in which the nodes at a lower level
of a tree would be at a larger indented level in the visualization, and the children of each
node would be right under their parent. Otherwise the table would remain unchanged.
This kind of table with nodes (or row names) arranged into an indented tree can both
display the structure of the hierarchy and contain limitless amount of features attached
to the nodes by just adding new columns into the table. For instance, in addition to the
change columns, the latest and previous values of a target variable could be added into
the table as their own columns.

The advantages of this kind of indented tree table visualization are its simplicity,
which is very important with non-technical end users, and its capability to show exact
numerical values of many features. One of the disadvantages of the visualization is its
inefficient use of space, which could, however, be improved by hiding the lowest levels of
the hierarchy and using drill down and up interactions. Another disadvantage of the table
is that it does not utilize the most effective visual encoding techniques for quantitative
features. The paper [20] ranks the most perceptually accurate visual encodings for the
quantitative data, and for example, length and area are higher in that ranking compared
to color saturation and hue. However, the table do not exploit length or area encodings
as the implicit hierarchical visualization methods do. All in all, the indented tree table
is a good visualization for a detailed analysis of specific nodes, but the implicit visual-
ization methods can give a better overall understanding of data. Sorting the table by a
quantitative column, could be one way to enhance the effectiveness of the visualization.

The paper [12] presents a node-link diagram that utilizes typography to visualize
absolute and percentage changes of a target variable. These two values are simply written
one below other beside each node. However, typography is not used alone to visualize
changes; in addition, absolute changes are visualized by replacing nodes with the Bullets.
The height of the Bullet reveals the amount of absolute change similarly to bar chart.
The orientation of the Bullet in combination with color hue shows whether the change
is positive or negative, and color brightness represents cardinality. The visualization can
even display which nodes are created or removed by white or black borders around the
Bullets. This visualization can show a lot of information, but it is only suitable for
relatively little hierarchies.

As in these examples, in many situations, typography is not used alone to visualize
changes in hierarchical data but in combination with another visual encoding, such as
color or height, to display the exact numerical values. In a color-coded approach, such as
the treemap visualization in SmartMoney Map of the Market [37], the exact numerical
values could be written inside the nodes if there is enough space (as made in the treemap
of the paper [13]) or in a hover tooltip, which is an interaction.

33 Chapter 5. Visualizing Changes over Time in Hierarchical Data

5.2.3 Interaction

User interaction can be exploited to display changes in hierarchical data. Interactions
are very flexible since they can be added into any hierarchical visualization method, and
they can be implemented in many different ways. Interaction can be, for instance, a
button to another visualization, filter menu, adjustable timeline, highlight option, hover
tooltip including text and charts, or drill down and up possibility. At least some minor
interactions are included almost any visualization in combination with other encodings.

The paper [33] lists three different ways to filter nodes in the treemap in order
to focus on specific features. These filtering techniques can be useful when visualizing
changes in the treemap or other hierarchical visualization methods. Nodes can be filtered
in such a way that only the nodes satisfying defined conditions are shown for a user [33].
When visualizing changes in a hierarchy, it might be useful to be able to see, for example,
only such nodes in which the value of a target variable has decreased from the previous
point in time. In addition, not showing all hierarchical levels concurrently and utilizing
drill down and up capabilities [33] can release space for attaching the changes of a target
variable somehow into the visualization. If a tree visualization can be zoomed, additional
information can become visible only after zooming. To give an example of a scalable
tree visualization, SpaceTree is a node-link diagram based tree browser enabling dynamic
rescaling of tree branches while optimizing the fit to the screen space [23]. Furthermore,
one possible filter option is to expand a specific node in order to know details of that
node [33]. Each node can be a button to another visualization or reveal a tooltip when
hovering over it. Details can include information about how the value of a target variable
has changed over time in that specific node. It can be textual information or, for example,
a time series visualization, such as the line graph about historical development.

The paper [6] presents a little different but useful interaction for the treemap. The
treemap can show at most two features at the same time via area and color encodings, but
the amount of features can be increased by utilizing interaction. The paper suggests that
a user could change the feature encoded by color using a filter, but the feature encoded
by area would remain unchanged so that the treemap layout would not change. For
example, a user could select whether color encodes absolute or percentage change. This
interaction could obviously be used with other hierarchical visualization methods as well.
In addition, one very simple interaction is to have a slider to change the time point in
a hierarchical visualization representing a single point in time. With this interaction, a
user can compare the values at different time points, but as a downside, the comparison
only relies on a user’s memory.

Treeversity2, introduced in the paper [13], is a good example of an interactive vi-
sualization tool meant for analyzing changes over time in hierarchical data. Treeversity2

34 Chapter 5. Visualizing Changes over Time in Hierarchical Data

presents a novel implicit hierarchical visualization method, StemView, that allows com-
paring tree changes between two time points at multiple hierarchical levels simultaneously.
The design of StemView is inspired by the icicle chart since the hierarchical levels are pre-
sented one below another as rows of equal sizes. At each level, the horizontal space is
filled by boxes representing the nodes, and the width of each node reveals the latest value
of a target variable. The hierarchical structure is interpreted similarly to the icicle chart.
However, StemView expands the icicle chart by dividing each level vertically into two parts
of equal size in order to also visualize absolute and percentage changes. The horizontal
line in the middle represents zero line, and the height of each node box is defined by its
percentage change from the previous value. The height is drawn upward from the zero
line if the change is positive and downward from the zero line if the change is negative.
The actual changes are encoded by color. Greens are used for decrease, and yellows and
reds for decrease, but the color scales can be altered. The created and removed nodes are
encoded by white or black borders around the boxes.

StemView is a very informative visualization since it can display simultaneously the
latest target variable values, absolute and percentage changes from the previous values
as well as created and removed nodes while revealing the structure of the hierarchy [13].
Moreover, Treeversity2 contains line graphs about the whole historical development of a
target variable in each node and a reporting tool listing outliers by typography. The line
graphs are on the left side of the display space, StemView is the largest visualization in
the middle, and interaction menu including various interactive options is on the right.

As mentioned, Treeversity2 offers a lot of interactive possibilities [13]. For instance,
a user can change line graphs into another visualization format, TimeBlocks, in order to
compare differential values. Also, StemView can be changed into a node-link diagram
based Bullet visualization presented already in the paper [12]. A user can change the
two time points being compared, and highlight particular nodes by hovering mouse over
them. In addition, hovering reveals tooltips including a lot of information about each
node. Changing the variable mappings is also possible. There are five possible value
modifiers: the actual change, the percentage change, the latest value, the previous value,
and the maximum of the latest and previous values. A user can decide how these modifiers
are encoded by color, width, height and sorting order. In summary, Treeversity2 is a very
useful tool that enables versatile data analysis possibilities by exploiting multiple views
and interactions. On the other hand, it requires a relatively lot of familiarization, it
cannot be used with very large trees, it does not have enough space for labels, and it does
not cope with real-life data sets having significant outliers [13].

As discussed in this subsection, interactions have many advantages. However, there
are also a couple of trade-offs between interactive visualizations and static visualizations
that should be taken into account. One trade-off is between the time to carry out inter-

35 Chapter 5. Visualizing Changes over Time in Hierarchical Data

actions and the space that multiple static visualizations require [40]. Interactions take
time, but without them the display space increases. On the other hand, if there are many
interactive options, going over all possible combinations can take hours [35]. Another
trade-off is between the subjectiveness which can happen as a result of interactions and
the useful outcomes of customization [35]. A user can modify the visualization intention-
ally or unintentionally in such a way that the numbers look like desired, but this might
not be the whole truth, and important things can remain unnoticed. On the other hand,
customization of a visualization can be very useful if a user knows what specific things
to look for or if the data set is very large. Because of the disadvantages relating to inter-
actions, the article [35] recommends to generally avoid interactions and utilize them only
when it is necessary and clearly improves the visualization.

5.2.4 Animation

Animation can be used to visualize changes over time in hierarchical data. In an animated
visualization, multiple static visualizations at subsequent time points are presented one
after another. Also, a transition animation shown as time point changes makes the ani-
mation smoother and easier to follow. The advantage of animation is that since only one
time point is shown at a time, time dimension does not steal space from other dimensions
of the visualization. For this reason, animation can be added on top of almost any visu-
alization technique. However, creating smooth transition animations can be a challenge.
The main disadvantage of animation is that detecting the changes in data relies only on a
user’s memory. Moreover, a user cannot watch simultaneously multiple different things in
a continuously changing view. Animation can be a very captivating technique for giving a
good overall understanding of data, but it is not very useful for exact analysis. However,
for instance, pausing and zooming interactions can alleviate this issue.

The paper [10] covers animating the treemap and discusses about the following
things that have to be taken into account in the design process: When visualizing two
different treemap representations of the same hierarchy, node areas change, and nodes
can be added or removed from the hierarchy. These changes can be analyzed by utilizing
animation. However, some areas shrink and others expand in such a way that the tran-
sition between two views can be difficult to follow. Moreover, when not-perfectly-stable
squarified treemaps are used, the algorithm often shifts some of the rectangles far from
their original place, which makes the following even more complicated. Briefly explained,
the squarified treemap algorithm arranges the rectangles in rows and columns, and with
each rectangle, the decision is made whether the rectangle will be added at the current
row or in next column (or vice versa) based on which one of the alternatives improves the
aspect ratios of the treemap [5]. Thus, rectangles can leap distractingly in an animation.

36 Chapter 5. Visualizing Changes over Time in Hierarchical Data

However, the paper [10] tries to take the aforementioned problems into account in
their animation implemented using OpenGL. They describe their transition animation
between two tree views as ”smooth”. Furthermore, they try to alleviate the problem
of leaping rectangles by alternating rows and columns of the treemap within a spiral
counterclockwise. Due to this, rectangles rotate always to the same direction and do
not leap far away from their previous location. Thus, the continuity of the animation
does not break. The animated treemap visualization in the paper [10] appears to be
very useful and convenient. However, the structure of the hierarchy is a bit difficult to
distinguish in the example figures of the paper so it could be improved, for instance, by
using larger paddings. Another option is to utilize color encoding to make the structure
of the hierarchy faster to perceive: different tree branches could be colored by different
hues, and nodes belonging to the same branch could be colored by different brightness or
saturation levels of the same hue in order to highlight nesting of rectangles.

The animated treemap of U.S. population implemented with D3.js library is also
an interesting example of an animated hierarchical visualization [3]. The visualization
animates the absolute change of U.S. population from 1790 to 1990 by regions and states.
The treemap animation is smooth and layout is stable. The whole size of the treemap
expands as the time goes by and U.S. population increases. Color encoding is used to
differentiate regions from one another. Moreover, region and state labels in combination
with exact numerical values are attached to the figure, which is very useful. It is also
possible to pause the animation. One disadvantage is that at the start of the time period,
the visualization is very small and therefore difficult to read.

Treemap algorithms that can be exploited to visualize time-dependent hierarchical
data must be stable while maintaining visual quality [36]. The paper [36] has carried
out an extensive quantitative analysis of different rectangular treemap algorithms for
time-dependent hierarchical data. They notice that the performance of the algorithm
is dependent on the used data set, and they identify four features that can be used to
classify the underlying data. They perform experimental tests on different algorithms
using different kinds of data sets in order to help users to select the optimal treemap
algorithm in each use case.

Visualizing time-dependent hierarchical data is also discussed in the paper [28]. In
fact, the paper covers multivariate hierarchical data containing one to three separate
target variables related to the hierarchy. The target variables are visualized by utilizing
3D versions of the sunburst chart and icicle chart. In these visualizations, width of an arc
or length of a bar is used to encode the first target variable, and the height of an arc or bar
the second. It is also possible to encode the third target variable using color. Changes over
time in target variables are visualized by exploiting animation. Both width (or length)
and height are interpolated over time so that the transitions between time points will

37 Chapter 5. Visualizing Changes over Time in Hierarchical Data

be smooth. Also, color transitions over time are continuous and smooth. Moreover, the
visualization includes many interactive features, for instance, a user can select between 2D
and 3D view, and between icicle and sunburst chart, turn off coloring, select only a specific
hierarchical level, select nodes up to a specific hierarchical level, and select nodes by a
target variable threshold value. A user can also examine the line chart visualizations of a
selected node. The visualizations of the paper [28] are very versatile and useful since they
can convey so much information: a multivariate hierarchy and its development over time.
Interactive features make the system very flexible and customizable. However, there is
a threat of information overload, and visualizations might appear difficult to understand
for non-technical users.

5.2.5 Small Multiples

Changes over time in hierarchical data can be visualized utilizing small multiples, that is,
a series of similar charts. Each individual chart represents only one specific point in time,
and therefore a small multiple visualization is easy to implement by using any hierarchical
visualization method. The main advantage of small multiples is that a user can analyze
the distribution of a target variable clearly at distinct time points in such a way that time
dimension does not clutter the hierarchical visualization which is often complex per se. A
user can compare the charts representing different time points, and see in which nodes the
value of a target variable has increased or decreased over time. In order to compare the
values reliably, the different charts must use same units, for instance, same area should
represent the same value (or the same percentage) of a target variable in all the charts.
On the other hand, it can also be regarded as a downside of small multiples that none
individual visualization visualizes changes per se, but the changes can only be perceived
by comparing different figures.

Another advantage of small multiples is that changes in the hierarchical structure
can easily be added to the visualization and highlighted, for instance, by using color.
The main disadvantage of the small multiples is that the display view is divided between
multiple charts, and therefore the sizes of individual charts diminish. The more charts
are shown in a single view, the smaller they have to be. For this reason, a small multiple
view is unpractical with very large hierarchies that become difficult to distinguish in a
smaller size. Nevertheless, different interactions can improve small multiples, for instance,
zooming and a possibility to select how many and which time points are shown in a view.

The paper [33] implements an experimental visualization utilizing a small multiple
view of the treemap to visualize six months of financial data of the product hierarchy. The
top-down treemap algorithm is exploited to create the figures. In the treemaps, the area
of a rectangle encodes the revenue of the products, and the color of a rectangle encodes

38 Chapter 5. Visualizing Changes over Time in Hierarchical Data

the profit. The users were able to compare positions, sizes and colors of the rectangles
between the six months. In addition, the users were given an ”animated” version of the
same visualization including a slider to change the month as an alternative visualization
scheme. The users preferred the ”animated” version based on the layout of the view,
information content and capabilities. Thus, maybe it can be concluded, that the data
set was too large to be visualized using small multiples or there were too many months
displayed in a single view. A small multiples view can easily become cluttered.

Analogously, the paper [11] exploits a small multiple view of the treemap to visualize
as much as 14 trees in a single view according to their example figure. The visualization is
meant for comparing the structures of the hierarchies rather than target variable values,
and the trees do not represent different time points but different classification versions
of the same taxonomy. Despite these differences, the visualization is a good example of
utilizing small multiples in the context of hierarchies.

BarcodeTree (BCT), introduced in the paper [18], is a visualization technique for
comparing both the structures and target variable values of multiple hierarchies by utiliz-
ing small multiples. It could be exploited to visualize time-dependent hierarchical data.
Each tree is visualized using a technique reminding of a barcode. Therefore, each tree
takes only a single row and multiple trees can be stacked vertically. Moreover, matching
nodes are in the same horizontal position which makes the comparison between different
trees easier. In BCT, each node is encoded using a rectangle, and the rectangles are
arranged horizontally side by side. There are two different versions of BCT: In BCTw,
the hierarchical level of a node is encoded by the width of a rectangle, and height and
color of a rectangle can be used to encode target variable values. In BCTh instead, the
hierarchical level of a node is encoded by the height of a rectangle, and color of a rectangle
can be used to encode target variable values.

Since the BCT visualization technique is relatively simple, it is suitable for trees
with only small amount of nodes and few hierarchical levels [18]. On the other hand, the
advantages of BCT are that a large number of trees can be presented one below other with
only small vertical distances from each other. Actually, the results of an experiment in
the paper suggest that the two versions of BCT are better for visual comparison of trees
than the icicle chart because of the smaller vertical distances between trees. Moreover, the
small multiples view includes multiple interactions that help analyzing the hierarchical
structures and comparing trees.

6. Designing the Experimental
Visualizations

Now that the literature survey answering to the general-level research questions (G1),
(G2), and (G3) has been conducted, a vast amount of information has been acquired on
different hierarchical visualization methods as well as on different techniques for adding
time dimension on top of these methods. Moreover, various example visualizations from
scientific papers visualizing target variable changes in hierarchical data have been covered.
By utilizing all this gathered information, useful and appropriate visualization prototypes
can be designed to answer to the experimental research questions (E1) and (E2). In
addition, the commissioning company can exploit all the acquired information for solving
their future hierarchical visualization problems.

In this chapter, the design process of the visualization prototypes answering to the
experimental research questions (E1) and (E2) is covered. As stated in Section 2.4, the
nested model [22] is utilized in the design and validation of these prototypes. Each step
of the nested model is addressed in its own section.

6.1 Domain Problem and Data

The first step of the nested model is to identify the domain problem and data [22], in
other words, answer to the following two questions: What are the exact problems of the
target audience, that is the end users of the visualizations, in the vocabulary used in
the commissioning company? What kind of data do the commissioning company have
for solving these problems? To begin with the first question, the definite problem area
was framed in cooperation with the commissioning company by discussing about their
ongoing projects, and what are the most important but less-researched aspects in their
customer data investigating of which would help them to understand their customers
better and improve their operations. In this discussion, the end users of the visualizations
were carefully listened to, and they validated the final problem characterization. This
upstream validation is a crucial part of the process since the main threat during the
domain problem step of the nested model is that the problems of the target audience

39

40 Chapter 6. Designing the Experimental Visualizations

become mischaracterized, which in the worst case, can eventually lead to completely
useless final product [22].

The discussion ended up to the domain problem of investigating changes in a contin-
uous variable V by the hierarchical structures: Industry in (E1) and an artificial hierarchy
formed by combining multiple categorical features in (E2). In this characterization, also
the data becomes identified, but to further specify the data, the data set of all the com-
pany customers of the commissioning company contains a time series of a continuous
V, a hierarchical variable Industry, and multiple categorical features for each company
customer. The data set is more specifically described in Section 2.2.

6.2 Data Types and Operations

The second step of the nested model is to map the domain problem and data from the
domain vocabulary into the vocabulary of information visualization [22]. In other words,
the domain problem is abstracted into data types and operations. The main threat
during this step is bad data type and operation abstraction, which inevitably leads to bad
visualizations [22], and therefore also this step was carried out carefully in cooperation
with the commissioning company. By operations, the nested model refers to abstract
tasks such as filter, search, and sort [22]. In the case of the prototypes, drill down and
up are very important operations, which emerged in the discussions with the end users of
the visualizations. The end users highlighted that they need to examine the hierarchical
data at all of its levels. The highest non-root level of the hierarchy gives a good overall
understanding of all the customers, while the lower levels enable deeper analysis on specific
customer segments. It is very useful that a visualization view can be drilled down and
up in such a way that either a larger set or smaller and more specific set of customers is
shown in a single view depending on what information needs to be acquired.

Moreover, the raw data must be abstracted into such data types that the data will
be in an appropriate form to be given as an input for the next step of the nested model:
visual encoding and interaction [22]. This includes first considering which is the sensible
form for the data, and after that, implementing the data wrangling, which, in this thesis,
was done by utilizing the Python library Pandas [24]. To explain briefly the structure of
the raw data, the data set of company customers included originally 8 different columns:
Time Point, Customer ID, the main variable of interest V, 5-digit Code of Industry,
Business Entity, Region, Size, and Turnover. The descriptions and data types of these
variables are introduced in Table 2.1.

The commissioning company instructed that for the visualization prototypes of the
thesis, it would be sensible to include only two separate time points instead of longer time
series. As the first data wrangling step, this filtering was done for the data. Two years,

41 Chapter 6. Designing the Experimental Visualizations

2020 and 2021, were decided to be compared with one another. Two separate data sets
were created in such a way that the other data set represented the data set of company
customers for the year 2020 and another for the year 2021. Thus, the Time Point column
was omitted. The two data sets included all the columns of the original data set (except
Time Point), and the name of the column V was changed to V 2020 or V 2021 according
to the year of the data set.

Two columns in the data set of 2020: Customer ID and V 2020, were merged with
the whole data set of 2021 by the common column Customer ID by including only the
Customer IDs of 2020 that also exist in 2021. In the combined data set, for the Customer
IDs that exist only in 2021 but not in 2020, the value in the column V 2020 was set
to zero. Finally, the Customer IDs that exist only in 2020 but not in 2021 were filtered
from the data set of 2020, and by including all the columns, these rows were added to the
combined data set by setting the value in the column V 2021 to zero. By this way, the
combined data set contained all Customer IDs from 2020 and 2021 regardless of whether
a Customer ID occurs only in 2020, only in 2021 or in both years. In the categorical
columns, the information from 2021 was used if it existed; otherwise the information from
2020 was used. Moreover, the two columns V 2021 and V 2020 were subtracted from one
another in order to get a new column: Difference of V. Now, a new data set, V 2020 and
2021, had been created.

Starting from that point, the data wrangling for (E1) and (E2) separated, and these
processes are presented in their own subsections. However, one more decision regarding
both experimental research questions had to be made: which one of the change dimensions
introduced in Section 5.1 would be used in the visualizations. We discussed about this
with the commissioning company and ended up choosing absolute change as the change
dimension of the prototypes. One reason behind this decision was that using absolute
changes in a hierarchical visualization contains one interesting and useful property: the
absolute changes can be aggregated by summing from the lower hierarchical levels up to
the higher hierarchical levels, and in these aggregations, the changes of the same sign
strengthen one another, while the negative and positive changes neutralize one another.
Through this property, it is possible to observe how the changes at lower level nodes
actually affect to the higher level nodes and the whole customer base. For instance,
multiple small positive changes in a lower hierarchical level can aggregate up to a large
and significant positive change in the next level higher, or a certain anomalous negative
change in a lower hierarchical level can have only a small effect on the next level higher
level if the changes in the other nodes at the same level neutralize and diminish its effect.

42 Chapter 6. Designing the Experimental Visualizations

6.2.1 Data Wrangling for (E1)

For (E1), the data set V 2020 and 2021 had to be transformed into a form containing
hierarchical customer segments by the hierarchical variable Industry. Together with the
commissioning company, we decided to omit all the other categorical variables in the data
set, and therefore, multiple columns were dropped. Only the columns Customer ID, 5-
digit Code of Industry, V 2020, V 2021, and Difference of V were selected. After this,
the data set was grouped by the column 5-digit Code of Industry in such a way that the
values in the columns V 2020, V 2021, and Difference of V were summed and the number
of different Customer IDs in 2021 was counted. This data set was named V Industry.

In order to create the hierarchical structure for the data, an additional data set
relating to Industry, named TOL 2008, had to be utilized. The commissioning company
provided this data. The data set included 10 different columns. The first column in
TOL 2008 was 5-digit Code containing all the existing 5-digit codes in the industrial
classification. The next four columns represented into which 4-digit code, 3-digit code,
2-digit code or character code class each 5-digit code belongs to. The rest five columns
contained labels for each of the code levels, for example, if the 3-digit Code column had
an entry of 932, the 3-digit Label column would have and entry of 932 - Amusement and
recreation activities.

The code columns were extracted from TOL 2008, and this data set was transformed
into a code-parent-form in which all the possible Industry codes from all the hierarchical
levels were listed one below another in the Code column, and a parent code of each code
was presented in the Parent column. For instance, the parent of the code 01110 is 0111,
and the parent of the code 0111 is 011. For the character codes, the value in the Parent
column was set to Total. A new data set, Industry Code-Parent, was created.

Own data sets considering each of the hierarchical level of Industry had to be created.
The data set D(5-digit) was created by left-merging V Industry with Industry Code-
Parent by the column 5-digit Code of Industry in V Industry and the column Code in
Industry Code-Parent. The data set D(5-digit) contained six columns: Code, Parent,
V 2020, V 2021, Difference of V, and Customer Count. The data set D(4-digit) was
created by dropping the Code column from the data set D(5-digit), and by renaming
the Parent column to Code. After this, the data set was grouped by the Code column
in such a way that the values in the columns V 2020, V 2021, Difference of V, and
Customer Count were summed. Moreover, this data set was left-merged with Industry
Code-Parent by the common column Code, and analogously to D(5-digit), the new data
set D(4-digit) contained six columns: Code, Parent, V 2020, V 2021, Difference of V, and
Customer Count. Correspondingly, D(3-digit) was aggregated from D(4-digit), D(2-digit)
from D(3-digit), and D(Character) from D(2-digit).

43 Chapter 6. Designing the Experimental Visualizations

Finally, all these five data sets having equal column names were concatenated into
a new data set named D(E1). The label columns in the original TOL 2008 data set were
organized one below another in the same order as the Code column in D(E1), and added
as a new column, Label, to D(E1) to explain the codes in the Code column. Moreover,
the total row was added into D(E1) by summing the values of all the numerical columns
in the data set D(5-digit). In that point, D(E1) was a complete data set to be visualized.
The final form of D(E1) is presented in Table 6.1.

The data set D(E1) in Table 6.1 is not the real data set of D(E1) but a completely
artificially generated example data set having similar structure to the real data set.
The values of V and Customer Count do not represent the real values of the commis-
sioning company nor are derived from them. Therefore, the distribution of customers
among different Industries can appear unrealistic, for example, a lot of customers and
a relatively large value of V from a very rare Industry class. Rather than analyzing the
real domain problem, the example data set is meant for presenting the visualization
prototypes created originally by using the real data of the commissioning company.

Table 6.1: The structure of the data set D(E1). The values of V and Customer Count are
artificially generated and do not represent the real values of the commissioning company
nor are derived from them.

Code Label Parent V 2020 V 2021 Difference
of V

Customer
Count

01110 01110 - Growing of
cereals (except rice),
leguminous crops and
oil seeds

0111 0.20 0.06 -0.14 14

· ·
U U - Activities of ex-

traterritorial organisa-
tions and bodies

Total 0.09 0.05 -0.04 1

Total Total 473.81 476.20 +2.39 5,395

6.2.2 Data Wrangling for (E2)

For (E2), the data set V 2020 and 2021 had to be transformed into a form containing
hierarchical customer segments by multiple categorical features. We discussed with the
commissioning company, which these categorical variables would be, and in which order

44 Chapter 6. Designing the Experimental Visualizations

they would be used to create the artificial hierarchy. We ended up selecting five cate-
gorical variables that were used in the following order to create the hierarchy: Region,
Size, Character Code of Industry, Turnover, and Business Entity. In other words, the
customers were first divided into customer segments by Region, these customer segments
were additionally partitioned by Size, then by Character Code of Industry, Turnover, and
finally by Business Entity.

The data set V 2020 and 2021 included the following nine columns: Customer ID,
5-digit Code of Industry, Business Entity, Region, Size, Turnover, V 2020, V 2021, and
Difference of V. Since the 5-digit code of Industry had to be replaced by the character
code, the aforementioned data set was left-merged with the two columns, 5-digit Code and
Character Code, in TOL 2008 by the common column 5-digit Code of Industry / 5-digit
Code. After this, the column 5-digit Code of Industry was dropped from the merged data
set, and the Character Code column was simply renamed to Industry.

The aforementioned data set was first grouped by all the possible combinations of
the five features: Region, Size, Industry, Turnover, and Business Entity in such a way
that the values in the columns V 2020, V 2021, and Difference of V were summed and the
number of different Customer IDs in 2021 was counted. A new column Business Entity
ID was added to the data set by combining the values of all the five features in each row,
for example, one entry in this column could be: Ahvenanmaa | Small | A | < €0.5M |
Ay. Analogously, new columns Turnover ID, Industry ID, and Size ID were added to the
data set in such a way that the respective entries would be Ahvenanmaa | Small | A | <
€0.5M (in the column Turnover ID), Ahvenanmaa | Small | A (in the column Industry
ID), and Ahvenanmaa | Small (in the column Size ID). Region did not require ID column
since it was the second highest level in the hierarchy after the root node. This data set
was named V Multiple Features.

Own data sets considering each hierarchical level in V Multiple Features had to be
created. The data set D(Business Entity) was formed by selecting only the following
seven columns from V Multiple Features: Business Entity ID, Business Entity, Turnover
ID, V 2020, V 2021, Difference of V, and Customer Count. The column Business Entity
ID was renamed to ID, Business Entity to Label, and Turnover ID to Parent. After this,
D(Turnover) was formed by selecting only the following seven columns from V Multiple
Features: Turnover ID, Turnover, Industry ID, V 2020, V 2021, Difference of V, and
Customer Count. This data set was grouped by Turnover ID in such a way that the values
in the columns V 2020, V 2021, Difference of V, and Customer Count were summed, and
from the values in the columns Turnover and Industry ID, the first values were selected
(regarding these columns, each group contained a constant value defined by a specific
Turnover ID). The column Turnover ID was renamed to ID, Turnover to Label, and
Industry ID to Parent. Analogously to D(Turnover), the data sets D(Industry), D(Size),

45 Chapter 6. Designing the Experimental Visualizations

and D(Region) were formed from the data set V Multiple Features. However, the data set
D(Region) did not contain the Parent column, but this was afterwards added to the data
set, and its value was set to Total in each row.

Finally, all these five data sets having equal column names were concatenated into a
new data set named D(E2). Moreover, the total row was added into D(E2) by summing
the values of all the numerical columns in the data set D(Business Entity). In that point,
D(E2) was a complete data set to be visualized. The final form of D(E2) is presented in
Table 6.2.

Analogously to the data set D(E1), the data set D(E2) in Table 6.2 is not the real data
set of D(E2) but a completely artificially generated example data set having similar
structure to the real data set. The values of V and Customer Count do not represent
the real values of the commissioning company nor are derived from them. Therefore, the
distribution of customers among certain variable combinations can appear unrealistic,
for example, a lot of customers and a relatively large value of V from a very rare
variable combination. Rather than analyzing the real domain problem, the example
data set is meant for presenting the visualization prototypes created originally by using
the real data of the commissioning company. Moreover, the values or value magnitudes
of V and Customer Count are not, in any sense, compatible with the data set of D(E1).

Table 6.2: The structure of the data set D(E2). The values of V and Customer Count are
artificially generated and do not represent the real values of the commissioning company
nor are derived from them.

ID Label Parent V 2020 V 2021 Difference
of V

Customer
Count

Ahvenanmaa
| Small | A
| < €0.5M |
Ay

Ay Ahvenanmaa
| Small | A |
< €0.5M

1.12 0.89 -0.23 1

· ·
Varsinais-
Suomi

Varsinais-
Suomi

Total 87,394.82 87,322.99 -71.83 4,224

Total Total 1,662,029.04 1,662,515.89 +486.85 84,480

46 Chapter 6. Designing the Experimental Visualizations

6.3 Visual Encoding and Interaction

Now that the domain problem has been characterized, the data types and operations
have been defined, and the data has been transformed into a correct form, the third,
and in this case the last, step of the nested model: designing the visual encoding and
interaction techniques [22], can be implemented. The main threat during this step is that
the used encoding and interaction techniques turn out to be ineffective at conveying the
desired information [22]. A simple upstream validation method to avoid this threat is
to justify the chosen encoding and interaction techniques [22], and therefore this section
concentrates on justifying why the different design decisions were made.

6.3.1 Requirements

I decided to create two alternative visualization prototypes answering to (E1) and utilize
these same prototypes for answering to (E2) by changing the underlying data. Therefore,
the visualization prototypes were designed in such a way that they are suitable for both
data sets: D(E1) and D(E2). Nevertheless, these data sets are very similar in many
respects so this was not an actual issue. The commissioning company requested that the
2021’s values of V in combination with the value changes from 2020 would be the two
main dimensions in the prototypes, while the 2020’s values of V and Customer Count
would only be additional details. An operational wish was drill down and up possibility
as already mentioned since showing all the five hierarchical levels in a static view would
make the visualization too cluttered. However, the commissioning company added that
at least a couple of hierarchical levels should be displayed simultaneously in a single view
without a need to drill.

In order to select the most suitable visual encodings, the characteristics of the data
sets D(E1) and D(E2) were analyzed: First, both of the hierarchies are very large since
they contain five hierarchical levels and a great number of nodes. The artificial example
data set of D(E1) contains 1,806 nodes, and the corresponding data set of D(E2) con-
tains 100,421 nodes. The real data sets of the commissioning company contain slightly
fewer nodes since some of the possible customer segments in D(E1) and D(E2) are not
represented among their customers. Especially, many of the feature combinations in the
artificial hierarchy of D(E2) are not very sensible, for instance a very large number of
employees (Size) but a minimal Turnover, so many of the 100,421 nodes were actually
omitted. Anyway, the selected visualization technique should be able to display large
hierarchies. Second, the values of V differ a lot between different nodes so the selected
visualization technique should be able to clearly display nodes of different sizes so that
also the smaller nodes can be distinguished. Third, the absolute differences can be posi-

47 Chapter 6. Designing the Experimental Visualizations

tive or negative, and the sign of a change as well as its magnitude should be apparent and
effortlessly observable in the visualization. Fourth, the values of V as well as the absolute
differences aggregate by summing as going from a lower hierarchical level up to a higher,
and the selected visualization technique should highlight this.

6.3.2 Selecting the Suitable Hierarchical Visualization Tech-
niques

The two most appropriate hierarchical visualization techniques were selected from the
alternatives presented in Chapter 4. Since the implicit visualization methods are better
in displaying content information compared to the explicit methods, only them were
considered as possible options. This was a reasonable choice since both of the hierarchies,
D(E1) and D(E2), are very large and include two target variable dimensions that have
to be encoded: 2021’s value of V and its absolute difference from the previous year. In
order to select two clearly different techniques, one adjacency diagram and one enclosure
diagram were picked. The adjacency diagrams show the structure of the hierarchy more
clearly, while the enclosure diagrams are more space-efficient. Thus, they have different
advantages that can be compared in the context of this use case.

From the two alternative adjacency diagrams: the icicle chart and sunburst chart,
the icicle chart is not as space-efficient as the sunburst chart for which reason the sunburst
chart suits better for large hierarchies. Moreover, by comparing Figures 4.4 and 4.5, it can
be noticed that the sunburst chart is better in displaying small node sizes distinguishably.
According to these criterion, the sunburst chart was selected as the first visualization
technique for the prototypes. Its angle (i.e. width) encoding suits also well for highlighting
the aggregation of data since the same angle represents the same quantity at all levels.

From the three alternative enclosure diagrams: the traditional, circular and bubble
treemap, the circular treemap does not visualize the aggregation of data very effectively by
its area encoding since the circle areas are not comparable between different hierarchical
levels. Therefore, it is left out of consideration. The traditional treemap and bubble
treemap are both very space-efficient so they suit well for large hierarchies and are able
to display also small node sizes distinguishably. Moreover, in both charts, the same
area represents the same quantity at all levels (taking into account slight paddings), and
therefore they are effective in highlighting the aggregation of data. Thus, both methods
appear to be good options. However, in the bubble treemap the areas of other nodes except
leaf nodes have vague shapes which make the areas difficult to compare with each other.
On the other hand, the bubble treemap emphasizes the structure of the hierarchy better
than the traditional treemap. In this use case, the ability to compare the target variable
values encoded by area is considered as a little more important feature than maximizing

48 Chapter 6. Designing the Experimental Visualizations

the clear hierarchical structure, and therefore the traditional treemap is selected as the
second visualization technique for the prototypes. The Plotly Python Graphing Library
utilizes squarified treemap algorithm resulting in low aspect ratios and good readability.
Nevertheless, it could also be interesting to test the bubble treemap in the future.

Based on the literature survey conducted in Section 5.2 (which is not completely
all-encompassing but contains a lot of practical examples), the treemap appears to be a
very frequently used hierarchical visualization technique when visualizing time-dependent
hierarchical data, while the sunburst chart does not appear to be as common. Therefore,
there is also an interesting aspect of comparing common and less common techniques
with each other. Examining the usability of the sunburst chart with time-dependent
hierarchical data is a relatively novel and less researched point of view. It is noteworthy
that the more used technique might not necessarily be the best one.

The arc width in the sunburst chart and the area of a rectangle in the treemap
can be used to encode the 2021’s values of V . However, if there exists a node in which
the value of V 2021 is zero, then the arc width or rectangle area also becomes zero.
This means that the node in question is not drawn in the figure at all even if it had a
non-zero value of V in 2020. Because of this limitation, the customer segments that are
only represented in 2020 but not in 2021 are not visible in the prototypes even though
these negative changes might be interesting. Anyway, after the hierarchical visualization
techniques were selected, it had to be decided which encoding techniques would be used
to encode time dimension, Difference of V, in the prototypes. This selection process is
presented in the next subsection.

6.3.3 Selecting the Suitable Time Encoding Techniques

I decided to utilize the same time encoding techniques for both prototype versions, the
sunburst chart and treemap. The most appropriate time encoding techniques were selected
from the alternatives presented in Section 5.2. The selection process began by excluding
the unsuitable techniques: Since the prototypes of the thesis are meant for specific and
exploratory data analysis rather than conveying a fast overview of the data, a more static
visualization is preferred over animation. Moreover, animation would suit better for a
little longer time series consisting of more than only two distinct time points. Thus, it
was not considered as an option in this use case. Small multiples could be exploited to
present the two separate years in their own figures side by side so that they could be
compared with each other. However, a small multiple visualization is not very effective
for large hierarchies since the separate figures can become difficult to distinguish in a
single view. In addition, the absolute differences would not be directly visible in this kind
of visualization, but they should be derived and interpreted by comparing a certain node

49 Chapter 6. Designing the Experimental Visualizations

between two figures. Therefore, the signs and magnitudes of the changes could not be
observed effortlessly. For these reasons, the small multiples view was also excluded.

After rejecting animation and small multiples, the remaining alternatives were color,
typography and interaction. I decided to combine the advantages of each them by using
them all together in the prototypes. Color was selected as the main time encoding tech-
nique since color-coded arcs and rectangles enable observing the signs and magnitudes of
the absolute changes very fast and effortlessly without cluttering the view. A red-white-
green color scale was selected because of its intuitivity and connotations with decrease
and increase. This color scale is obviously not colorblind-friendly, and a different color
scale should be selected if color deficiencies had to be taken into account. Color encoding
is also a good option for the reason that it highlights the aggregation of the absolute
changes. For instance, multiple light green nodes (small positive changes) at a lower level
of the hierarchy aggregate up to a darker green parent node (larger positive change), or
an equally weighted green (positive) node and red (negative) node neutralize each other
and aggregate up to a white (no change) parent node.

The exact color codes of the color scale were selected by adjusting the HSL color
values (hue, saturation, lightness). First, the base hues of red and green were selected: the
bright red HSL(0°, 100%, 50%) and bright green HSL(120°, 100%, 50%). The first value
with a degree sign defines the hue. The second value, 100%, means that the saturation
is at its maximum level. The third value, lightness level of 50%, corresponds to the
completely bright color without mixing any white or black into it. The lightness levels
of 0% and 100% correspond to completely black and white respectively. Rather than
utilizing only these two colors in combination with white, the gradient color scale with
five steps was designed so that the color scale could encode larger set of different values
distinguishably. If only three color steps are used, two negative or two positive nodes
might seem to be almost of the same color even if representing different magnitudes of
changes. Additional two color steps to the color scale make the magnitude differences to
distinguish more clearly. Therefore, one additional red and green were selected.

The additional red and green were added to the ends of the color scale by mixing
black to the selected bright colors. The dark red color HSL(0°, 100%, 27%) and dark
green color HSL(120°, 100%, 27%) were created from the bright colors by keeping hue
and saturation unchanged and decreasing lightness. In other words, the first version of
the gradient color scale was formed from the following colors in the following order: the
dark red HSL(0°, 100%, 27%), bright red HSL(0°, 100%, 50%), white HSL(0°, 0%, 100%),
bright green HSL(120°, 100%, 50%), and dark green HSL(120°, 100%, 27%). This color
scale was a lightness symmetric color scale since the lightness values were symmetric on the
red and green side of the color scale. However, the green side of the color scale turned out
to be a little misleading since the bright green intuitively appears to be more positive than

50 Chapter 6. Designing the Experimental Visualizations

(a) Selected color scale (b) Lightness symmetric color scale

Figure 6.1: The selected color scale (a) is compared to the lightness symmetric color scale
(b). In the lightness symmetric color scale, the bright green might intuitively appear more
positive than the dark green. The selected color scale is designed to be more intuitive in
this respect. The red scale is equal between the two figures. See also Figure 6.2.

the dark green even though it is not. For this reason, the green side of the color scale was
altered in such a way that the lightness level of the bright green was increased from 50%
to 75%, but the dark green remained unchanged. The commissioning company regarded
this new color scale as more illustrative compared to the lightness symmetric color scale
so it was selected as the color scale to be used in the prototypes. The comparison of these
alternative color scales is illustrated in Figures 6.1 and 6.2. The downside of the selected
color scale is that the greens being close to the center of the color scale are very light and
can be a little difficult to distinguish from one another.

Figure 6.2: The color of
Total represents smaller
positive change than the
color of C. The se-
lected color scale (a) en-
codes this more intu-
itively compared to the
lightness symmetric color
scale (b).

(a) (b)

As already mentioned, also typography and interaction
were utilized as additional time encoding techniques in the pro-
totypes. In order to encode more detailed information, a hover
tooltip, a combination of interaction and typography, was at-
tached to each node. The tooltip contains the label of a node
as well as the specific numerical values of V 2020, V 2021, Dif-
ference of V, and Customer Count. The advantage of tooltips
is that they can contain a lot of useful information for a de-
tailed analysis but do not require any extra space. Moreover,
drill down and up interactions were added into the prototypes
so that only a couple of hierarchical levels are displayed simul-
taneously, and the other levels can be examined by drilling.
Thanks to this interaction, the prototypes are a lot more eas-
ier to read and understand. Showing all the five hierarchical
levels simultaneously would lead to information overload.

6.4 Final Visualization Products

Based on the aforementioned justified design decisions, the visualization prototypes were
created using the Plotly Python Graphing Library. The algorithm design step of the
nested model was omitted since the ready-made algorithms of the Plotly Python Graphing

51 Chapter 6. Designing the Experimental Visualizations

Library were utilized. The final visualization products are introduced in this section.
Simultaneously, a downstream validation method of the visual encoding and interaction
step is carried out in the form of a qualitative image analysis of the final visualization
products [22].

The real data sets of the commissioning company are not used in the example figures
presented in this section nor in the appendices. Completely artificial data sets were
generated for the example figures of the thesis.

6.4.1 Prototypes for (E1)

The final two prototypes answering to the experimental research question (E1) are intro-
duced in this subsection. Both prototypes, Sunburst(E1) and Treemap(E1), visualize the
variable V in 2021 and the difference of V from 2020 to 2021 by the hierarchical variable
Industry. The initial view of the first prototype, Sunburst(E1), is presented in Figure 6.3.
Moreover, a full-page version of this figure can be found in Appendix A in Figure A.2. In
this prototype, V 2021 is encoded by arc width and Difference of V by color. Moreover,
the arcs are illustratively sorted by width. The initial view of the prototype displays the
character code level and 2-digit code level of Industry as well as the total sum in the
middle. In other words, the middle node and next two hierarchical levels branching from
it are shown in a single view.

The rest of the hierarchical levels can be examined by drilling down the hierarchy.
When a specific node is pressed, the view transforms to show the selected node in the

Figure 6.3: The initial view of Sunburst(E1) displays the character code level and 2-digit
code level of Industry as well as the total sum in the middle.

52 Chapter 6. Designing the Experimental Visualizations

Figure 6.4: The drilled view of Sunburst(E1) displays the selected 3-digit node of Industry,
432, as well as all the 4-digit and 5-digit nodes branching from it.

middle surrounded by the next two hierarchical levels branching from it. In addition, the
Plotly Python Graphing Library runs a stylish and illustrative transition animation during
drilling. Figure 6.4 presents the drilled view of Sunburst(E1). The 3-digit node 432 is
selected by drilling a few steps down from the initial view. All the 4-digit and 5-digit nodes
branching from 432 are displayed in the figure. Drilling up can be done by pressing the
middle node. Then the parent of the previous middle node becomes the new middle node
and the two surrounding hierarchical levels update. Also, a more comprehensive drilling
example of Sunburst(E1) demonstrating all the possible phases from the initial view down
to the most specific hierarchical level is presented in Appendix A in Figure A.1.

The initial view of the second prototype, Treemap(E1), is presented in Figure 6.5.
Moreover, a full-page version of this figure can be found in Appendix B in Figure B.2. In
this prototype, V 2021 is encoded by the area of a rectangle and Difference of V by color.
The initial view of the prototype displays the character code level and 2-digit code level of
Industry as well as the total sum in the largest rectangle enclosing all the other rectangles.
In other words, the outermost rectangle and next two hierarchical levels branching from
it are shown in a single view.

Analogously to Sunburst(E1), the rest of the hierarchical levels can be examined by
drilling down the hierarchy. Also for the treemap, the Plotly Python Graphing Library
has designed a beautiful transition animation for drilling. Figure 6.7 presents the drilled
view of Treemap(E1). The same node as in Figure 6.4, 432, is selected by drilling a few
steps down from the initial view. Again, all the 4-digit and 5-digit nodes branching from
432 are displayed in the figure. Drilling up can be done by either pressing the outermost

53 Chapter 6. Designing the Experimental Visualizations

Figure 6.5: The initial view of Treemap(E1) displays the character code level and 2-digit
code level of Industry as well as the total sum in the largest rectangle enclosing all the
other rectangles.

rectangle or some of the nodes in the top bar. The top bar is a very useful navigation
tool in the treemap implementation of the Plotly Python Graphing Library, but it has
unfortunately not been implemented for the sunburst chart. Also, a more comprehensive
drilling example of Treemap(E1) demonstrating all the possible phases from the initial view
down to the most specific hierarchical level is presented in Appendix B in Figure B.1.

Figure 6.6: Sunburst(E1) and
Treemap(E1) have similar hover
tooltips. This example tooltip contains
detailed information about the node
43210.

The two prototypes, Sunburst(E1) and
Treemap(E1), have similar hover tooltips. An
example tooltip in Figure 6.6 contains detailed
information about the node 43210. The back-
ground color of the tooltip is illustratively the
color of the absolute difference, and the title of
the tooltip is the node label consisting of the
Industry code and name (in this example, the
name is in Finnish). Moreover, the tooltip con-
tains the exact numerical values of V 2020, V
2021, Difference of V, and Customer Count.

As a qualitative image analysis of the figures presented in this subsection, it can
be said that both prototypes, Sunburst(E1) and Treemap(E1), answer well to the experi-
mental research question (E1). Both prototypes succeed in depicting simultaneously the
hierarchical structure of Industry and the development of V over time. The prototypes
are implemented in a very clear and effective manner, and they are easy to understand.
Even though the hierarchical structure is large, the selected space-efficient hierarchical

54 Chapter 6. Designing the Experimental Visualizations

Figure 6.7: The drilled view of Treemap(E1) displays the selected 3-digit node of Industry,
432, as well as all the 4-digit and 5-digit nodes branching from it. The selected node is
the same as in Figure 6.4.

visualization techniques in combination with drill down and up interactions prevent infor-
mation overload. The arc width and rectangle area encodings reveal very distinctly how
V 2021 is distributed among the hierarchical industrial classification. The color encoding
is very effective in displaying the signs and magnitudes of Difference of V. Furthermore,
the aggregation of the values of V 2021 and Difference of V across different hierarchical
levels is very apparent in both prototypes. Moreover, the tooltips offer very useful detailed
information. All these things considered, both prototypes appear to be very potential to
be utilized in practice. To compare the two prototypes with each other, Sunburst(E1)

displays the structure of the hierarchy a bit more clearly, but on the other hand, the
smallest nodes are easier to distinguish in Treemap(E1). In addition, navigation might be
a bit easier and faster with Treemap(E1) that contains the useful top bar navigation tool
contrary to Sunburst(E1).

6.4.2 Prototypes for (E2)

The final two prototypes answering to the experimental research question (E2) are in-
troduced in this subsection. Both prototypes, Sunburst(E2) and Treemap(E2), visualize
the variable V in 2021 and the difference of V from 2020 to 2021 by the artificial hierar-
chy formed by combining the following five features in the following order: Region, Size,
Character Code of Industry, Turnover, and Business Entity. These prototypes are other-
wise equal to Sunburst(E1) and Treemap(E1), but the underlying data has been changed.
Therefore, the encoding and interaction techniques of Sunburst(E2) and Treemap(E2) are
equal to the ones of Sunburst(E1) and Treemap(E1) respectively (see Subsection 6.4.1).

55 Chapter 6. Designing the Experimental Visualizations

Figure 6.8: The initial view of Sunburst(E2) displays the Region level of the artificial
hierarchy and the total sum in the middle.

The initial view of the first prototype, Sunburst(E2), is presented in Figure 6.8.
Moreover, a full-page version of this figure can be found in Appendix C in Figure C.2.
Analogously to Sunburst(E1), V 2021 is encoded by arc width and Difference of V by
color. The initial view of the prototype displays the Region level of the artificial hierarchy
and the total sum in the middle. Showing only one hierarchical level in addition to
the middle node instead of showing two levels as in Sunburst(E1), was decided to do
since two levels made the figure too cluttered and difficult to read for the purposes of the
commissioning company. The hierarchy of Industry is smaller than the artificial hierarchy,
and therefore showing two levels was not a problem with Sunburst(E1). Moreover, the
node labels are shorter in Sunburst(E1) and therefore do not require as much space as the
labels of Sunburst(E2). The rejected version of Sunburst(E2) with two hierarchical levels
branching from the middle node is presented for comparison in Appendix C in Figure C.3.

Drilling down and up in Sunburst(E2) work equally to Sunburst(E1). Figure 6.9
presents the drilled view of Sunburst(E2). The figure shows the customers that simul-
taneously belong to the following three categories: Keski-Suomi (Region), Small (Size),
and C (Character Code of Industry) as well as the branching Turnover classes. Also,
a more comprehensive drilling example of Sunburst(E2) demonstrating all the possible
phases from the initial view down to the most specific hierarchical level is presented in
Appendix C in Figure C.1.

The initial view of the second prototype, Treemap(E2), is presented in Figure 6.11.
Moreover, a full-page version of this figure can be found in Appendix D in Figure D.2.
Analogously to Treemap(E1), V 2021 is encoded by the area of a rectangle and Difference

56 Chapter 6. Designing the Experimental Visualizations

Figure 6.9: The drilled view of Sunburst(E2) displays the customers that simultaneously
belong to the following three categories: Keski-Suomi (Region), Small (Size), and C
(Character Code of Industry) as well as the branching Turnover classes.

of V by color. The initial view of the prototype displays the Region and Size levels of
the artificial hierarchy as well as the total sum in the largest rectangle enclosing all the
other rectangles. Displaying two hierarchical levels in addition to the outermost rectangle
was not a problem with the treemap that is a more space-efficient visualization technique
compared to the sunburst chart.

Drilling down and up in Treemap(E2) work equally to Treemap(E1). Figure 6.12
presents the drilled view of Treemap(E2). The figure shows the customers that simultane-
ously belong to the following three categories: Keski-Suomi (Region), Small (Size), and
C (Character Code of Industry) as well as the branching Turnover classes similarly to the

Figure 6.10: Sunburst(E2) and
Treemap(E2) have similar hover
tooltips. This example tooltip contains
detailed information about the node
Keski-Suomi | Small | C | €0.5M -
€1M | Oy.

Figure 6.9. However, since two hierarchical
levels are showing in addition to the outer-
most node, also the branching Business Entity
classes are visible contrary to Figure 6.9. In
addition, a more comprehensive drilling exam-
ple of Treemap(E2) demonstrating all the pos-
sible phases from the initial view down to the
most specific hierarchical level is presented in
Appendix D in Figure D.1.

The two prototypes, Sunburst(E2) and
Treemap(E2), have similar hover tooltips. The
tooltips are very similar to the ones of

57 Chapter 6. Designing the Experimental Visualizations

Sunburst(E1) and Treemap(E1): the background color of the tooltip is the color of the
absolute difference, and the tooltip contains the exact numerical values of V 2020, V
2021, Difference of V, and Customer Count. An example tooltip in Figure 6.10 contains
detailed information about the node Keski-Suomi | Small | C | €0.5M - €1M | Oy. The ti-
tle of the tooltip reveals the values of Region, Size, Character Code of Industry, Turnover,
and Business Entity that are combined to create the customer segment in question.

As a qualitative image analysis of the figures presented in this subsection, it can be
said that both prototypes, Sunburst(E2) and Treemap(E2), answer well to the experimen-
tal research question (E2). Both prototypes succeed in utilizing hierarchical visualization
techniques for visualizing changes over time in V by multiple different categorical features.
Five categorical features are combined into an artificial hierarchy after which equal visual-
izations to Sunburst(E1) and Treemap(E1) are exploited. Thus, the qualitative evaluation
of Sunburst(E1) and Treemap(E1) in the end of Subsection 6.4.1 also apply to Sunburst(E2)

and Treemap(E2) and is not unnecessarily repeated.
However, observations concerning exclusively Sunburst(E2) and Treemap(E2) can

also be made. Regarding the experimental research question (E2), the treemap succeeds in
conveying more information in a single view compared to the sunburst chart. Sunburst(E2)

displays only one hierarchical level in addition to the middle node, while Treemap(E2)

shows two hierarchical levels and the outermost node. With a very large hierarchy and
long node labels, the sunburst chart becomes more easily cluttered than the treemap,
which in this case was fixed by dropping one hierarchical level out of the sunburst chart.
Moreover, when drilling deeper down the hierarchy, it is easier to keep track of all the

Figure 6.11: The initial view of Treemap(E2) displays the Region and Size levels of the
artificial hierarchy as well as the total sum in the largest rectangle enclosing all the other
rectangles.

58 Chapter 6. Designing the Experimental Visualizations

Figure 6.12: The drilled view of Treemap(E2) displays the customers that simultaneously
belong to the following three categories: Keski-Suomi (Region), Small (Size), and C
(Character Code of Industry) as well as the branching Turnover and Business Entity
classes. The selected node Keski-Suomi | Small | C is the same as in Figure 6.9.

selected features with Treemap(E2) than Sunburst(E2) thanks to the navigation top bar
listing all the selected features. With Sunburst(E2), a user cannot tell the already selected
values of higher hierarchical levels without checking the tooltips.

When evaluating Sunburst(E2) and Treemap(E2), it should also be considered
whether creating the artificial hierarchy generally was a useful technique for combining
multiple categorical features in a single visualization or not. It appears that interpreting
the artificial hierarchies of Sunburst(E2) and Treemap(E2) is quite straightforward and
easy, and these prototypes visualize the customer segments formed by multiple features
clearly and effectively. Especially, if the chosen order of the features is reasonable in the
domain context, these kind of prototypes can be very useful. But if the features should
be possible to be combined more flexibly in different orders, these kind of prototypes can
turn out to be too focused on only one perspective.

7. Validating the Experimental
Visualizations

In this chapter, the prototypes for (E1) and (E2) presented in Section 6.4 are validated
and discussed. The validation emphasis is on the prototypes for (E1) by the request of the
commissioning company, and (E2) is treated as more of an additional research question.
In the nested model, a user study is another downstream validation method of the visual
encoding and interaction step in addition to a qualitative image analysis that was carried
out in Section 6.4 [22]. Thus, an end user study was arranged of the two prototypes for
(E1). Since the time was limited, it was not possible to arrange own user study of the
prototypes for (E2). However, the participants of the end user study also quickly tested
the prototypes for (E2) and commented them briefly.

Moreover, Munzner’s paper mentions an expert review as one possible validation
method of the visual encoding and interaction step [22]. An expert review could be
exploited as an upstream validation method during designing the visualizations, but in
this case, it was exploited as a downstream validation method. With the expert review,
more comments also regarding the prototypes for (E2) were gathered, but the questions
focused on the prototypes for (E1).

With the end user study, it was examined how non-technical business users can
exploit the visualizations, and what are their opinions about them, while with the expert
review, also more analytical opinions about the visualizations were collected. It is very
useful to listen to both the end users of the visualizations and data science experts in
order to receive reliable results of the usefulness of the visualizations.

7.1 End User Study

The end user study was meant for the end users of the visualizations, and its purpose
was to measure the clarity and real-world applicability of Sunburst(E1) and Treemap(E1).
Seven non-technical business persons from the commissioning company, who might benefit
from the prototypes as a part of their work, participated in the study. Since the number of
participants is very small, any statistically significant results cannot be received. However,

59

60 Chapter 7. Validating the Experimental Visualizations

the commissioning company is interested in learning the signals of the potential end users,
and the results of this study can be regarded as indicative of a broader user study. The
study consisted of an introduction to the topic area and prototypes, experimental user
test measuring time spent on certain tasks, and a couple of qualitative questions. After
these steps, the participants were also asked to answer to the System Usability Scale
(SUS) questionnaire [34].

7.1.1 Structure of the End User Study

The experimental user test consisted of two separate tests, one test regarding each pro-
totype. Both tests included six tasks that needed to be be answered to by exploiting the
prototype assigned for the test. The tasks were relatively complex search problems in
which a respondent needed to drill down and up in the hierarchy and compare certain
nodes either by V 2021 or Difference of V. The test questions between the two tests did
not concern the same exact nodes to avoid the learning effect, but the two tests were
designed to be as similar as possible. Before the participants started taking the actual
tests, the prototypes were introduced to them; what information is showing, how the
different encodings should be interpreted, and how do the interactions work. Moreover,
the participants took a practice test containing similar tasks to the actual tests so that
the task instructions would be clear when taking the actual tests. During the practice
test, the participants were also allowed to ask questions.

After the introduction and practice phases, the participants took the two user tests
one after another, and their time spent on each test was measured. One threat that
might corrupt the test results is that after completing the first test, the participants
are a little more experienced in taking the second test. This learning effect was tried
to be mitigated by familiarizing the participants with the tasks beforehand using the
aforementioned practice test and alternating which one of the actual tests is taken first.
Half of the respondents took first the test on Sunburst(E1), while the other half took first
the test on Treemap(E1). Since there were an odd number of respondents, actually three
people started with Sunburst(E1) and four people with Treemap(E1). The participants
were asked to complete the tests as fast as possible but avoid wrong answers.

After completing both tests, the users were asked to answer to the following qual-
itative questions: (1) Which one of the prototypes was your favorite and why? (2) If
you had to mention one property that was better in your least favorite prototype, what
would it be? I had three hypotheses regarding the experimental user test: (H1): Com-
pleting one test takes at most five minutes. (H2): The participants complete the test on
Sunburst(E1) faster the test on Treemap(E1). (H3): Sunburst(E1) is the favorite prototype
of the participants.

61 Chapter 7. Validating the Experimental Visualizations

The purpose of (H1) was to measure the complexity of the prototypes. The limit of
five minutes was estimated to be such that a user has a reasonable amount of time to read
and understand the tasks and a reasonable amount of time to search the answers from
the visualization. If many participants required more than five minutes to complete one
test, that would mean that the time spent on searching is very long, and the visualization
could be considered as overly complex and difficult to use. Instead, if the test results
supported the hypothesis and most of the participants could complete one test faster
than in five minutes, the prototype could be considered as simple enough to be utilized
in practice. The purpose of (H2) and (H3) was to compare the two prototype versions
by user performance and preference respectively. It was supposed that Sunburst(E1)

performs better and is also the favorite prototype of the participants since the sunburst
chart displays the hierarchical structure more clearly than the treemap, and this should
be an advantage in the test tasks that were related to searching certain nodes in the
hierarchy as fast as possible.

After the experimental user study, the participants completed the SUS question-
naire including 10 qualitative questions rated using a 5-step scale from Strongly agree to
Strongly disagree [34]. The purpose of SUS is to measure the usability of the designed
system, for instance software or application, and it has become a very commonly used tool
referenced in over 1300 publications [34]. The reasons why SUS was selected to be utilized
in this thesis include that it offers reliable outcomes even with small sample sizes and it
is very effective in revealing whether the system is usable or not [34]. In the SUS ques-
tionnaire, the respondents were instructed to consider the prototype version which was
their favorite. Hovewer, in many regards, the two prototype versions are identical, and
the results of SUS can be regarded as considering the shared properties of both prototype
versions and answering to the question: Is it useful to utilize these type of hierarchical
visualizations in this particular domain context? Scoring the results of SUS was imple-
mented by following the instructions of the article [4]. The answers of each respondent
were converted into a SUS score having a range of 0 to 100. However, the scores should
not be interpreted as percentages [34].

7.1.2 Results of the End User Study

The results of the experimental user test are presented in Table 7.1. The time spent
and the number of correct answers are listed for each participant regarding both tests:
the test on Sunburst(E1) and the test on Treemap(E1). Moreover, Table 7.1 contains the
information on which test was taken first, which test was completed faster, how many
seconds was the difference, and which one of the prototypes was the user’s favorite. In
the last row, average time and score are calculated for both tests.

62 Chapter 7. Validating the Experimental Visualizations

Table 7.1: The results of the experimental user test.

ID Sunburst(E1)

Time & Score
Treemap(E1)

Time & Score
First Test Faster Test Favorite

Prototype
ID1 3:01 & 6/6 2:41 & 5/6 Sunburst(E1) Treemap(E1)

(0:20 faster)
Treemap(E1)

ID2 2:29 & 6/6 3:23 & 6/6 Treemap(E1) Sunburst(E1)

(0:54 faster)
Sunburst(E1)

ID3 2:49 & 6/6 2:23 & 5/6 Sunburst(E1) Treemap(E1)

(0:26 faster)
Sunburst(E1)

ID4 2:41 & 6/6 3:30 & 6/6 Treemap(E1) Sunburst(E1)

(0:49 faster)
Sunburst(E1)

ID5 3:53 & 6/6 4:02 & 6/6 Sunburst(E1) Sunburst(E1)

(0:09 faster)
Sunburst(E1)

ID6 2:30 & 6/6 3:11 & 6/6 Treemap(E1) Sunburst(E1)

(0:41 faster)
Sunburst(E1)

ID7 4:20 & 5/6 4:24 & 6/6 Treemap(E1) Sunburst(E1)

(0:04 faster)
Sunburst(E1)

Average 3:06 & 5.86/6 3:22 & 5.71/6

This data sample clearly supports the hypothesis (H1) since all the respondents
completed both tests faster than in five minutes. Also the average time was a lot shorter
than five minutes for both tests: the average time spent on the Sunburst(E1) test was 3:06
and the average time spent on the Treemap(E1) test was 3:22. Thus, there is a relatively
strong evidence that the prototypes are simple enough to be utilized in practice.

Regarding the hypothesis (H2), it cannot be drawn any conclusions about the per-
formance differences between the two prototypes. The time difference between the faster
test and slower test is not very significant with any participant. Neither there is a sig-
nificant difference between the average times spent on the tests. Respondents made very
few mistakes on both tests. Five people completed faster the test on Sunburst(E1), while
two people completed faster the test on Treemap(E1). However, all the other participants
except one completed the second test faster than the first which implicates that the learn-
ing effect has affected the results. Thus, there is no significant support for the claim that
either one of the tests was generally completed faster than the other.

Instead, there is relatively strong support for the hypothesis (H3) since six out of
seven respondents regarded Sunburst(E1) as their favorite prototype. When these six re-
spondents were asked why Sunburst(E1) was their favorite prototype, they told the follow-
ing reasons: ”the hierarchical structure of TOL 2008 was more clearly displayed”, ”more

63 Chapter 7. Validating the Experimental Visualizations

logical structure and faster to read”, ”more logical and the different industrial classes were
easier to find”, ”easier to learn, the sizes were easier to perceive, and the visualization was
more pleasant”, ”easier to read”, and ”especially finding the right character level was eas-
ier”. When the same people were asked what would be the one property that was better
in Treemap(E1), they told the following features: ”easier return navigation”, ”the value of
V was easier to perceive from the rectangles”, ”it was easier to compare the sizes of dif-
ferent classes”, ”the nested rectangles were clear” [this comment does not really compare
the two prototype versions], and ”takes better advantage of the screen space”. The only
respondent who considered Treemap(E1) as the favorite prototype, reasoned the decision
as follows: ”maybe a little easier to use, the traveled path was more clearly displayed,
and it was more apparent whether a certain class was red or green”. This respondent
commented that one property that was better in Sunburst(E1) was the following: ”it was
easier to tell which class is larger than the other, especially at the more precise levels”.

Based on the end user feedback, the following conclusions can be made: It appears
that Sunburst(E1) was more preferred especially for the reason that it displays the hier-
archical structure more clearly, and therefore the nodes being searched are easier to find.
Sunburst(E1) was also considered as a more logical prototype and either easier or faster to
read by many respondents. The end users apparently regarded the top bar navigation tool
as one main advantage of Treemap(E1) since it offers easier return navigation and keeps
better track on the traveled path compared to Sunburst(E1). Moreover, one respondent
commented that Treemap(E1) utilizes the screen space more efficiently. It is difficult to
conclude with which prototype it is easier to perceive and compare the node sizes, since
there were comments on behalf of both prototypes. There was only one comment about
the colors, and according to this respondent, the colors were easier to perceive when using
Treemap(E1). Accordingly, there was only one respondent who commented which one of
the prototypes was visually more pleasant, and it was Sunburst(E1).

The participants had also an opportunity to leave informal comments and devel-
opment ideas about Sunburst(E1) and Treemap(E1). One respondent suggested that the
labels of the nodes at the character code level could contain the names of the industrial
classes in addition to the mere character codes since no one remembers the character code
meanings by heart. Other participant wrote that he had not seen these kind of hierarchi-
cal visualizations including drill down and up interactions before, and in his opinion, the
visualizations were implemented very well. He also added that it was easy to learn how
to use the drill down and up interactions. A couple of participants pointed out that the
tooltip implementation was a bit disturbing as it often emerged unnecessarily to fill the
screen space. Moreover, one respondent commented that it should be considered whether
all the hierarchical levels are relevant or whether the visualizations could be simplified by
removing a couple of hierarchical levels from the view.

64 Chapter 7. Validating the Experimental Visualizations

The results of SUS are promising. The average SUS score is 83.9 which can be
regarded as a very good result. If a SUS score is more than 68, it is above average [34]. The
article [2] presents different rating scales for average SUS scores. By the adjective rating
(Worst Imaginable, Poor, Ok, Good, Excellent, Best Imaginable) the average SUS score
of 83.9 receives the second best rating Excellent. By the traditional school grade scale (F,
D, C, B, A), this result receives the second best grade B, and by the acceptability scoring
(Not Acceptable, Low Marginal, High Marginal, Acceptable), the best score Acceptable.

As already mentioned, the end user study did not address the prototypes
Sunburst(E2) and Treemap(E2) due to lack of time. However, the participants quickly
tested these prototypes and commented them briefly. They considered the prototypes as
very useful and inventive. One of the participants commented that the prototypes could
definitely be utilized in practice. He thought that these visualizations succeeded very
well in combining multiple feature dimensions into a single view, which is a very useful
property in customer analysis. Another respondent regarded the prototypes as even more
useful than Sunburst(E1) and Treemap(E1).

7.2 Expert Review

Two data science experts from the commissioning company familiarized themselves with
the prototypes for (E1) and (E2) and answered to an analytical questionnaire concerning
the prototypes. The validation emphasis was on the prototypes for (E1) by the request of
the commissioning company, but also a couple of questions concerning the prototypes for
(E2) were asked. The expert review is very valuable for the commissioning company since
the experts have a very good understanding both on data science and the specific needs
of the business, and thus they are the most competent persons to review the implemen-
tation and usefulness of the visualization prototypes. The experts gave very diverse and
interesting comments on the prototypes, which could certainly be utilized when consid-
ering the choice between two alternative prototype versions or when further developing
the prototypes. Therefore, the whole expert review is documented in the following two
subsections so that the commissioning company can return to these comments also in the
future. The expert review is divided into six distinct parts by different topic areas.

7.2.1 Expert Review of Sunburst(E1) and Treemap(E1)

In this subsection, the two prototypes for (E1) are reviewed. In summary, the experts
considered the prototypes as useful and well-implemented, and thought that the selected
encoding and interaction techniques work well. In addition, they believed that non-
technical end users would learn to use the prototypes relatively fast. They had different

65 Chapter 7. Validating the Experimental Visualizations

opinions on which one of the prototype versions should be selected to be utilized in
practice. Thus, maybe it could be concluded that also subjective preferences affected the
results of this review, and there does not exist a clear answer to the question of whether
Sunburst(E1) or Treemap(E1) should be selected as a final visualization version to be
utilized in the commissioning company. However, the experts agreed that the value of V

is easier to perceive with Sunburst(E1), but Treemap(E1) is clearer and easier to use.

Part 1: Concerning the Shared Properties of Sunburst(E1) and Treemap(E1)

1. How useful for the commissioning company would it be to follow V and
changes of V over time by the hierarchy of TOL 2008?

Exp.1: In my opinion, absolutely important in terms of expanding the business. Fol-
lowing these kind of changes helps us to understand our markets, and this way
we are able to react early, for example, regarding the strategy.

Exp.2: Useful. It will definitely tell something about the attractiveness of the commis-
sioning company if in the industry X we are expanding, while in the industry
Y we are shrinking.

2. How useful exactly these kind of prototypes are for following V and
changes of V over time by the hierarchy of TOL 2008 (for example, com-
pared to a table containing the same information)?

Exp.1: An interactive visualization is almost always better than a table, in my opinion.
The largest changes cannot be highlighted as clearly in a table. Moreover, a
table often cannot respond to specific user needs.

Exp.2: Great, since the value magnitudes are more intuitively displayed compared to
a table. On the other hand, it always takes some time to get used to a new
type of visualization. But if the visualization becomes used on a regular basis,
that will not be a problem.

3. In the prototypes, the arrangement of nodes encodes the hierarchical
structure of TOL 2008, arc width or rectangle area the value of V in
2021, and color the absolute change of V from the previous year.

(a) How well do these three encoding techniques work in the imple-
mented prototypes if considering each encoding separately?

(b) How well does the combination of these three encoding techniques
into a single visualization work, or is there information overload?

(c) What is your opinion about the used color scale?

66 Chapter 7. Validating the Experimental Visualizations

Exp.1: (a) In my opinion, color is the best encoding method for depicting the changes
of V , and area or width for depicting the volume of V . I think that using these
encoding techniques for these purposes is the clearest way to visualize this data
considering users of all skill levels.
(b) I believe that a non-technical end user can become a little confused when
a single view includes this much information.
(c) The color scale is illustrative but could it be reasonable to reduce the
number of colors, for instance, to only three green tones and three red tones
in addition to white? White could represent ”No significant change”, and the
color tones could represent only significant changes. I would also be interested
to see the similar visualization with percentage changes.

Exp.2: (a) They work well.
(b) These prototypes offer very deep-level information, which is useful. How-
ever, in addition to these visualizations, simpler and more general-level visual-
izations are needed.
(c) The color scale works well.

4. (a) What is your opinion about the interactions of the prototypes (drill
down/up and tooltips)?

(b) Could the interactions somehow be improved?

Exp.1: (a) In my opinion, they work very well. This kind of implementation can re-
spond to the needs of many different users.
(b) The usability of the visualization might withstand adding a couple of fil-
ters into the view. I do not believe that the visualization would become too
cluttered.

Exp.2: (a) They work very well.
(b) There could be an info box about the existence of drilling. It could help
some of the users.

5. (a) What do you think: How clear these prototypes would be for a non-
technical end user?

(b) How quickly do you think a non-technical end user would learn to
use these prototypes?

(c) What do you think: How much support a non-technical end user
would need from a technical person when using these prototypes?

Exp.1: (a) I believe that with a few improvements the prototypes would be clear
enough for a non-techical end user.

67 Chapter 7. Validating the Experimental Visualizations

(b) I do not think there would be any problems with learning. A user might
have more problems with finding the real business needs to follow these things
and changing his/her actions based on the observations.
(c) Hardly any support, I believe.

Exp.2: (a) When a non-technical person sees these prototypes for the first time, it can
require a bit of work to understand them.
(b) I believe that everyone would learn to use the prototypes after a couple of
minutes of exploring.
(c) No support from a technical person would be needed. However, short
instructions embedded into the view could be added.

6. Can you imagine a whole different way to visualize the same information?

Exp.1: No, I cannot.

Exp.2: I cannot imagine any better way at least. Certainly, the information could be
presented in a table or hierarchical table, but the table would contain mainly
numbers the perception of which is not as intuitive as the perception of colors
or sizes.

Part 2: Comparing Sunburst(E1) and Treemap(E1)

7. (a) Is the hierarchical structure of TOL 2008 easier to perceive with
Sunburst(E1) or Treemap(E1)?

(b) Why?

Exp.1: (a) Sunburst(E1)

(b) It is easier to perceive what are the subindustries of a certain industry.
Moreover, it can easily be seen that the number of industrial classes increases
as moving to an outer circle. In the treemap version, the eye does not perceive
the structure immediately.

Exp.2: (a) Treemap(E1)

(b) It groups the industrial classes more clearly into separate boxes.

8. (a) Is the value of V in 2021 (arc width or rectangle area) easier to
perceive with Sunburst(E1) or Treemap(E1)?

(b) Why?

Exp.1: (a) Sunburst(E1)

(b) Different industrial classes can more clearly be juxtaposed when they are

68 Chapter 7. Validating the Experimental Visualizations

presented on the same ”axis”. In the treemap version, the eye has to search
the boxes from different locations.

Exp.2: (a) Sunburst(E1)

(b) There is no big difference between the two prototypes. However, comparing
the different industrial classes being at the same hierarchical level is a bit easier
with the sunburst version because the classes are closer to each other.

9. (a) Is the navigation easier with Sunburst(E1) or Treemap(E1)?

(b) Why?

Exp.1: (a) Treemap(E1)

(b) The animation is a bit clearer, and therefore it is easier to perceive inside
which box the view shifted during drilling.

Exp.2: (a) There is no difference.
(b) –

10. (a) Which one of the prototype versions, Sunburst(E1) or Treemap(E1), is
clearer and easier to use?

(b) Why?

Exp.1: (a) Treemap(E1)

(b) Equal reasons to the question 9(b).

Exp.2: (a) Treemap(E1)

(b) The lower hierarchical levels are displayed more clearly. In the sunburst
version, the lower hierarchical levels become very narrow slices.

11. (a) Which one of the prototype versions, Sunburst(E1) or Treemap(E1), is
visually more pleasant if the clarity and ease of use are not taken
into account?

(b) Why?

Exp.1: (a) Sunburst(E1)

(b) Round shapes look more modern.

Exp.2: (a) I cannot tell. Both are equally pleasant.
(b) –

12. (a) Which one of the prototype versions, Sunburst(E1) or Treemap(E1),
would you select to be utilized in practice?

69 Chapter 7. Validating the Experimental Visualizations

(b) Why?

Exp.1: (a) Sunburst(E1)

(b) It is easier to compare the values of V between different industrial classes
and the appearance is more modern.

Exp.2: (a) Treemap(E1)

(b) A slight preference towards the treemap version, but I also liked some of
the properties of the sunburst chart.

Part 3: Informal Feedback on Sunburst(E1) and Treemap(E1)

13. Would you like to give informal feedback on Sunburst(E1) or Treemap(E1)?

Exp.1: The character level industrial classes could be labeled by illustrative icons
instead of plain characters. It is easy to invent simple small icons for these
classes with the help of which a user could immediately know which character
level industry is under inspection. Without the icons a user has to check
the tooltips continuously in order to remember the selected class. No one
remembers the TOL 2008 classification by heart. I am not sure how the lower
level classes could be improved.

Exp.2: I would like to see how the sunburst chart would look like as a little larger
version so that there would be more space for the outer circles.

7.2.2 Expert Review of Sunburst(E2) and Treemap(E2)

In this subsection, the two prototypes for (E2) are reviewed. In summary, both experts
were a bit sceptic about the usefulness of the artificial hierarchy, and regarded the pos-
sibility to change the order of the features in the hierarchy as an extremely important
development idea for the prototypes. Moreover, the experts believed that the artificial
hierarchy would be more difficult to adopt by a non-technical end user compared to the
hierarchy of Industry. Again, they had different opinions on which one of the prototype
versions should be utilized in practice.

Part 4: Concerning the Shared Properties of Sunburst(E2) and Treemap(E2)

and Comparing to the Prototypes for (E1)

14. (a) How useful for the commissioning company would it be to follow
V and changes of V over time by the artificial hierarchy formed by
combining the following five features in the following order: Region,
Size, Character Code of Industry, Turnover , and Business Entity?

70 Chapter 7. Validating the Experimental Visualizations

(b) By which one of the two hierarchies, TOL 2008 or the artificial hi-
erarchy, would it be more useful to follow V and changes of V over
time?

Exp.1: (a) The commissioning company should follow the changes happening in dif-
ferent customer segments very closely. However, only following the changes is
not enough, but the reasons behind these changes should also be visualized.
After this, a user should change his/her actions based on the observations.
(b) In my opinion, the changes of V could be followed by a simpler artificial
hierarchy consisting of at most three hierarchical levels. If I had to choose
between these two models, I would start with the version of TOL 2008.

Exp.2: (a) Very useful.
(b) Both versions are useful, but with the artificial hierarchy it would be ex-
tremely handy to be able to change the order of the features.

15. (a) What do you think: Which one of the visualizations, the visualization
by TOL 2008 or the visualization by the artificial hierarchy, would
be easier to adopt by a non-technical end user?

(b) Why?

Exp.1: (a) The first one.
(b) With the artificial hierarchy, a user might think that he/she always has to
drill down to the most exact hierarchical level. Moreover, since the order of
the features in the hierarchy is predetermined, it does not necessarily respond
to the needs of all users.

Exp.2: (a) The first one.
(b) Both visualization versions are implemented similarly. However, the idea
of artificial hierarchy would require familiarization.

16. How useful exactly these kind of prototypes are for following V and
changes of V over time by the artificial hierarchy (for example, compared
to a table containing the same information)?

Exp.1: If there was a real business need to follow this kind of data, the presentation
style would be absolutely excellent. A table would not work any better.

Exp.2: Quite good but utilizing the artificial hierarchy would require familiarization
as already mentioned.

71 Chapter 7. Validating the Experimental Visualizations

Part 5: Comparing Sunburst(E2) and Treemap(E2)

17. (a) Which one of the prototype versions, Sunburst(E2) or Treemap(E2),
would you select to be utilized in practice?

(b) Why?

Exp.1: (a) Sunburst(E2)

(b) Equal reasons to the question 12(a).

Exp.2: (a) Treemap(E2)

(b) Mainly for the reason that it displays one hierarchical level more than the
sunburst chart.

Part 6: Informal Feedback on Sunburst(E2) and Treemap(E2)

18. Would you like to give informal feedback on Sunburst(E2) or Treemap(E2)?

Exp.1: It would be very useful that the order of the features in the artificial hierarchy
could be altered by a user. Then the same visualization would respond to more
use cases.

Exp.2: It would be interesting that the order of the features in the hierarchy could be
selected. However, this would mean more work at the data level.

8. Conclusion and Future Work

This thesis examined how to visualize changes over time in hierarchical customer data
using the Plotly Python Graphing Library and was written as an assignment for a Finnish
company. The motivation behind the thesis commission came from the commissioning
company’s desire to monitor changes of an important continuous variable over time by hi-
erarchical customer segments. The commissioning company was interested in researching
how this kind of complex customer data could be visualized in such a way that is clear
enough for non-technical business users.

The thesis consisted of a literature survey and experimental part. The literature
survey presented the most commonly used hierarchical visualization techniques and dif-
ferent possible encoding techniques for adding time dimension on top of these hierarchical
visualization techniques. Moreover, the pros and cons of different techniques and encod-
ings were discussed. In the experimental part, the gathered information was utilized in
practice by designing experimental visualization prototypes visualizing changes over time
in the commissioning company’s hierarchical customer data. In addition, these visualiza-
tion prototypes were validated in the commissioning company by arranging an end user
study and expert review. The conclusions of the literature survey and experimental part
are presented in their own sections. Finally, future work is discussed.

8.1 Conclusion of the Literature Survey

To conclude the findings of the literature survey: The hierarchical visualization techniques
can be divided into two categories: the explicit methods, that clearly display the edges
connecting the nodes, and the implicit methods, that do not draw visible links between
the nodes but show the structure of the hierarchy by the arrangement of nodes. The
implicit methods are more space-efficient than the explicit methods and therefore suit
better for displaying target variable values related to a hierarchy. The implicit methods
are further divided into the adjacency and enclosure diagrams according to whether the
structure of the hierarchy is encoded by adjacency or containment respectively. The enclo-
sure diagrams are more space-efficient than the adjacency diagrams, while the adjacency
diagrams display the hierarchical structure more clearly. The explicit methods discussed

72

73 Chapter 8. Conclusion and Future Work

in the thesis are the traditional node-link diagram, dendrogram, and indented tree. The
covered adjacency diagrams are the icicle chart and sunburst chart, and from the enclosure
diagrams, the treemap, circular treemap, and bubble treemap are dealt with.

Different time encoding techniques that can be added on top of a hierarchical vi-
sualization technique are color, typography, interaction, animation, and small multiples.
There can also exist other encodings, but the thesis concentrates on the aforementioned
ones. These time encoding techniques are usually utilized in combination with the implicit
hierarchical visualization methods rather than with the explicit methods since the implicit
methods are more space-efficient. To summarize the main advantages and disadvantages
of the different time encoding alternatives: Color gives a fast perception of in which nodes
the values have increased or decreased, and what are the magnitudes of changes. However,
color cannot display very subtle differences or exact numerical values. With typography
instead, exact numerical values can be perceived, but a fast overall understanding of data
cannot be obtained. Interactions are flexible, and they can be implemented in many dif-
ferent ways. With interactions, the limited display space can be expanded, but on the
other hand, if all information cannot be observed from a single view, going over all pos-
sible combinations can take a lot of time and something important might go unnoticed.
Animation can be a stylish and captivating encoding method in which time dimension
does not clutter the view. However, in animation, detecting changes in data relies com-
pletely on a user’s memory. With small multiples, a user can analyze the distribution of
a target variable at distinct time points, but the distinct figures can become very small
and difficult to distinguish as the display space is divided between them.

8.2 Conclusion of the Experimental Part

The commissioning company assigned two visualization problems to be solved in the
experimental part of the thesis using the Plotly Python Graphing Library and requested
to focus especially on the first problem and regard the second problem as more of an
additional research problem. The data used in the visualizations of the thesis was the
commissioning company’s data set of their company customers. In the visualizations,
this data was divided into hierarchical customer segments, and the changes over time
in an important continuous variable V were visualized by these segments. The first
problem was how to visualize changes over time in V by a hierarchical explanatory variable
Industry. The second problem was how to visualize changes over time in V by an artificial
hierarchy created by combining multiple categorical features. In cooperation with the
commissioning company, five categorical features related to the customers were selected
for this artificial hierarchy, and the customer base was divided into hierarchical customer
segments by utilizing these five features one after another.

74 Chapter 8. Conclusion and Future Work

Two alternative hierarchical visualization prototypes were designed for the first re-
search problem, and by changing the underlying data and making minor modifications,
the same prototypes were also utilized for the second problem. To be more precise, the
prototypes visualized the variable V in 2021 and the absolute difference of V from 2020
to 2021 by the aforementioned hierarchical structures. The commissioning company re-
quested that the selected visualization techniques should highlight how the values of V

and the absolute changes of V aggregate by summing from the lower hierarchical levels
up to the higher hierarchical levels. Another point that had to be taken into account in
the design process of the prototypes was that both the hierarchy of Industry and the arti-
ficial hierarchy were very large containing a lot of nodes and five hierarchical levels. The
visualization prototypes were designed and validated by following the Munzner’s nested
model for visualization design and validation [22].

By exploiting the results of the literature survey, the sunburst chart and treemap
were selected as the two alternative hierarchical visualization techniques for the prototypes
due to their space-efficiency and ability to highlight the aggregation of data. The arc width
in the sunburst chart and the area of a rectangle in the treemap were used to encode the
2021’s values of V . The sunburst chart displays the hierarchical structure more clearly
than the treemap, while the treemap is more space-efficient, and the purpose of the thesis
was to examine how these alternative techniques compare in practice. Moreover, based on
the literature survey of the thesis (which was not completely all-encompassing but contains
a lot of examples from scientific papers), the treemap appears to be a very frequently
used hierarchical visualization technique when visualizing time-dependent hierarchical
data, while the sunburst chart does not appear to be as common. Thus, examining the
usability of the sunburst chart in this context is relatively novel and less researched point
of view.

Equal time encoding techniques were utilized for both prototype versions, the sun-
burst chart and treemap. By exploiting the results of the literature survey, altogether
three different time encoding techniques: color, typography and interaction, were chosen
to encode the absolute changes of V from 2020 to 2021. Different encodings were used
together in order to utilize the advantages of each of them. Color was selected as the
main time encoding technique since it enables observing the signs and magnitudes of the
absolute changes very fast and effortlessly without cluttering the view. An intuitive red-
white-green color scale was utilized because its connotations with decrease and increase.
In order to encode also more detailed information into the view without taking any extra
space, a hover tooltip, a combination of interaction and typography, was attached to each
node. Each tooltip contained the node label and exact numerical values of the following
features: V in 2021, V in 2020, the difference of V from 2020 to 2021, and the number
of customers. Moreover, drill down and up interactions were added into the prototypes

75 Chapter 8. Conclusion and Future Work

so that only a couple of hierarchical levels were displayed simultaneously and information
overload was avoided.

The validation focused especially on the prototypes for the first research problem as a
request of the commissioning company. According to the end user study and expert review,
the prototypes considering the first research problem are very useful and well-implemented
in the domain context. Both the sunburst and treemap versions appear to work well in
the explorative data analysis tasks they are meant for. The number of participants in the
end user study was quite small so the study results are not statistically significant, but
the results can be considered as an indicative of a broader user study. The participants of
the end user study took separate tests on both prototype versions. The first hypothesis
stated the time under which the tests had to be taken so that the prototypes could be
proven to be clear and simple enough for non-technical end users, and that hypothesis
was clearly supported regarding both prototype versions. In addition, the following two
hypotheses were stated: the sunburst version would be faster to use and also the favorite
prototype of the users because it shows the hierarchical structure more clearly. There was
no significant evidence of which one of the prototype versions is faster to use, but the
clear majority of the respondents regarded the sunburst chart as their favorite prototype
version so the latter hypothesis was supported. The end users justified this preference
by commenting that the sunburst chart displays the hierarchical structure more clearly,
is more logical, and is easier to read. Furthermore, the results of the System Usability
Scale (SUS) questionnaire measuring the usability of the prototypes were excellent. In
SUS questionnaire, the end users were asked to consider their favorite prototype version.

The two experts who participated in the expert review gave also very positive feed-
back on the prototypes for the first research problem. They considered that the selected
encoding and interaction techniques of both prototype versions work very well. The ex-
perts agreed that the value of V is easier to perceive with the sunburst chart, but the
treemap is clearer and easier to use. However, they had different opinions on which one
of the prototype versions they would select to be utilized in practice. Because of this
disagreement and for the reason that there was no significant difference among the end
users of which one of the prototype versions is faster to use, it could be inferred that there
might not be any clear and objective answer to the question of whether the sunburst chart
or treemap works better in this use case. Subjective preferences appear to have a strong
effect on the user experience.

The end users only briefly commented on the prototypes for the second research
problem because of the lack of time in the test situation. They considered these prototypes
very useful and innovative, and reacted maybe even more positively to them compared
to the experts. The experts were a little sceptic about the usefulness of the artificial
hierarchy, but regarded the implementation very functional. They emphasized that a

76 Chapter 8. Conclusion and Future Work

possibility to change the order of the features in the artificial hierarchy is an extremely
important development idea for the prototypes.

Both the sunburst chart and treemap suit well for visualizing large hierarchies,
and also time dimension fits to the view by the combination of color, interaction, and
typography encodings. All the prototypes of the thesis turned out to be clear and simple
enough for non-technical end users. Even though the sunburst chart appears to be less
utilized than the treemap when visualizing time-dependent hierarchical data, the sunburst
chart proved to work in this use case at least equally well, or by some characteristics even
better, compared to the treemap. If a clear business need exists, the visualizations like
these prototypes could certainly be exploited when analyzing hierarchical customer data.
The commissioning company is very satisfied with the visualization prototypes of the
thesis, and will very likely utilize them in practice and further develop them. According
to the commissioning company, the information acquired from the prototypes is extremely
useful for the business, and the technical implementation is very successful.

8.3 Future Work

There are many possible directions for future work. When considering specifically the
visualization prototypes of the thesis, if the Munzner’s nested model for visualization
design and validation had been exploited in full, more time would have been needed to
validate properly the first too steps of the nested model. Validating these steps requires
examining the adoption rates of the prototypes and conducting a long-term field study
[22] for which there was not enough time during this thesis commission.

Regarding the prototype design, it would be interesting to test also other hierarchi-
cal visualization methods in addition to the sunburst chart and treemap. For instance,
one alternative for the traditional sunburst chart could be the so-called sundown chart
introduced in the paper [38]. It is a semi-circular version of the sunburst chart that suits
better to the aspect ratio of a computer screen (16:9) compared to the traditional sun-
burst chart whose aspect ratio is 1:1 [38]. As an alternative for the traditional treemap,
the bubble treemap could be experimented on since it displays the hierarchical structure
more clearly than the traditional treemap. In addition, more different kinds of color scales
could be developed and tested on without forgetting the importance of colorblind-friendly
versions.

The visualization prototypes could also be expanded by adding the customer level,
containing the individual customers, under the lowest level in the hierarchy. This could
be very useful, and take the customer analysis to the more specific level. Moreover, the
artificial hierarchy could be improved by developing interactive possibilities to tune the
structure of the artificial hierarchy: how many and which variables are utilized in the

77 Chapter 8. Conclusion and Future Work

artificial hierarchy and in which order the variables are combined to create the customer
segments. An analogous tuning interaction could be developed for changing which are
the two time points that are compared in the prototypes.

When considering the visualization of time-dependent hierarchical customer data in
general, it could be examined how longer hierarchical time series consisting of more than
only two distinct time points could be visualized in a user-friendly manner. There exists
some research on this topic but not very much from the perspective of business use or
customer analysis. One important question related to this is whether the visualization
of longer hierarchical time series is a too complicated and impractical concept for non-
technical end users or is it a potential development idea in businesses. Furthermore,
one very common type of hierarchy in customer data, geographical hierarchy, was not
discussed in this thesis work. Geographical locations are often visualized using maps,
and it would be extremely useful and interesting to examine different ways to visualize
changes over time in hierarchically structured maps, such as drill down maps.

Bibliography

[1] I. Bacher, B. M. Namee, and J. D. Kelleher. On using tree visualisation techniques to
support source code comprehension. In 2016 IEEE Working Conference on Software
Visualization (VISSOFT), pages 91–95, 2016.

[2] A. Bangor, P. Kortum, and J. Miller. Determining what individual sus scores mean:
Adding an adjective rating scale. J. Usability Stud., 4:114–123, 04 2009.

[3] M. Bostock. Animated treemap, 2019. D3. Observable. https://observablehq.
com/@d3/animated-treemap, Accessed on 12th July 2022.

[4] J. Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind., 189, November
1995.

[5] M. Bruls, K. Huizing, and J. J. van Wijk. Squarified treemaps. In W. C. de Leeuw and
R. van Liere, editors, Data Visualization 2000, pages 33–42, Vienna, 2000. Springer
Vienna.

[6] M. Burch. Interactive similarity links in treemap visualizations. In 2014 18th Inter-
national Conference on Information Visualisation, pages 34–39, 2014.

[7] M. Burch, M. Hoferlin, and D. Weiskopf. Layered timeradartrees. In 2011 15th
International Conference on Information Visualisation, pages 18–25, 2011.

[8] E. Cuenca, A. Sallaberry, F. Y. Wang, and P. Poncelet. Multistream: A multireso-
lution streamgraph approach to explore hierarchical time series. IEEE Transactions
on Visualization and Computer Graphics, 24(12):3160–3173, 2018.

[9] H. v. de Wetering, N. Klaassen, and M. Burch. Space-reclaiming icicle plots. In 2020
IEEE Pacific Visualization Symposium (PacificVis), pages 121–130, 2020.

[10] M. Ghoniem and J.-D. Fekete. Animating treemaps. In Proceedings of 18th HCIL
Symposium-Workshop on Treemap Implementations and Applications, 2001.

[11] M. Graham and J. Kennedy. Multiform views of multiple trees. In 2008 12th Inter-
national Conference Information Visualisation, pages 252–257, 2008.

78

https://observablehq.com/@d3/animated-treemap
https://observablehq.com/@d3/animated-treemap

79 Bibliography

[12] J. A. Guerra-Gómez, A. Buck-Coleman, C. Plaisant, and B. Shneiderman. Treever-
sity: Visualizing hierarchal data for value with topology changes. Proceedings of the
Digital Research Society 2012: Bangkok, 2(7):640–653, 2012.

[13] J. A. Guerra-Gómez, M. L. Pack, C. Plaisant, and B. Shneiderman. Visualizing
change over time using dynamic hierarchies: Treeversity2 and the StemView. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2566–2575, 2013.

[14] J. Heer, M. Bostock, and V. Ogievetsky. A tour through the visualization zoo.
Communications of the ACM, 53(6):59–67, June 2010.

[15] M. L. Huang, T.-H. Huang, and J. Zhang. Treemapbar: Visualizing additional di-
mensions of data in bar chart. In 2009 13th International Conference Information
Visualisation, pages 98–103, 2009.

[16] B. Johnson and B. Shneiderman. Tree-maps: a space-filling approach to the visual-
ization of hierarchical information structures. In Proceeding Visualization ’91, pages
284–291, 1991.

[17] W. Köpp and T. Weinkauf. Temporal treemaps: Static visualization of evolving
trees. IEEE Transactions on Visualization and Computer Graphics, 25(1):534–543,
2019.

[18] G. Li, Y. Zhang, Y. Dong, J. Liang, J. Zhang, J. Wang, M. J. Mcguffin, and X. Yuan.
Barcodetree: Scalable comparison of multiple hierarchies. IEEE Transactions on
Visualization and Computer Graphics, 26(1):1022–1032, 2020.

[19] K. Liu and P. Liu. Visual analysis of customer data in commercial banks. In 2009
International Conference on Business Intelligence and Financial Engineering, pages
652–655, 2009.

[20] J. Mackinlay. Automating the design of graphical presentations of relational infor-
mation. ACM Transactions on Graphics, 5(2):110–141, April 1986.

[21] A. Macquisten, A. M. Smith, and S. Johansson Fernstad. Evaluation of hierarchical
visualization for large and small hierarchies. In 2020 24th International Conference
Information Visualisation (IV), pages 166–173, 2020.

[22] T. Munzner. A nested model for visualization design and validation. IEEE Trans-
actions on Visualization and Computer Graphics, 15(6):921–928, 2009.

[23] C. Plaisant, J. Grosjean, and B. Bederson. Spacetree: supporting exploration in large
node link tree, design evolution and empirical evaluation. In IEEE Symposium on
Information Visualization, 2002. INFOVIS 2002., pages 57–64, 2002.

80 Bibliography

[24] PyData. Pandas – python data analysis library. https://pandas.pydata.org/,
Accessed on 20th July 2022.

[25] H.-J. Schulz. Treevis.net: A tree visualization reference. IEEE Computer Graphics
and Applications, 31(6):11–15, 2011.

[26] M. Sondag, B. Speckmann, and K. Verbeek. Stable treemaps via local moves. IEEE
Transactions on Visualization and Computer Graphics, 24(1):729–738, 2018.

[27] H. Song, E. Curran, and R. Sterritt. Flextree: visualising large quantities of hi-
erarchical information. In IEEE International Conference on Systems, Man and
Cybernetics, volume 7, 2002.

[28] T. Tekusova and T. Schreck. Visualizing time-dependent data in multivariate hi-
erarchic plots - design and evaluation of an economic application. In 2008 12th
International Conference Information Visualisation, pages 143–150, 2008.

[29] E. W. Weisstein. Tree. Mathworld – a wolfram web resource. https://mathworld.
wolfram.com/Tree.html, Accessed on 30th March 2022.

[30] Plotly Graphing Libraries. Plotly python open source graphing library. https://
plotly.com/python/, Accessed on 29th March 2022.

[31] Statistics Finland. Standard industrial classification TOL 2008. https://www2.
stat.fi/en/luokitukset/toimiala/toimiala_1_20080101/, Accessed on 15th
March 2022.

[32] Y. Tu and H.-W. Shen. Visualizing changes of hierarchical data using treemaps. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1286–1293, 2007.

[33] D. Turo and B. Johnson. Improving the visualization of hierarchies with treemaps:
design issues and experimentation. In Proceedings Visualization ’92, pages 124–131,
1992.

[34] Usability.com. System usability scale (SUS). https://www.usability.gov/
how-to-and-tools/methods/system-usability-scale.html, Accessed on 19th
August 2022.

[35] J. van Wijk. The value of visualization. In VIS 05. IEEE Visualization, 2005., pages
79–86, 2005.

[36] E. Vernier, M. Sondag, J. Comba, B. Speckmann, A. Telea, and K. Verbeek. Quan-
titative comparison of time-dependent treemaps. 39:393–404, 2020.

https://pandas.pydata.org/
https://mathworld.wolfram.com/Tree.html
https://mathworld.wolfram.com/Tree.html
https://plotly.com/python/
https://plotly.com/python/
https://www2.stat.fi/en/luokitukset/toimiala/toimiala_1_20080101/
https://www2.stat.fi/en/luokitukset/toimiala/toimiala_1_20080101/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

81 Bibliography

[37] M. Wattenberg. Visualizing the stock market. CHI ’99 Extended Abstracts on Human
Factors in Computing Systems, pages 188–189, 1999.

[38] L. Woodburn, Y. Yang, and K. Marriott. Interactive visualisation of hierarchical
quantitative data: An evaluation. In 2019 IEEE Visualization Conference (VIS),
pages 96–100, 2019.

[39] J. Yang, M. O. Ward, and E. A. Rundensteiner. Interring: an interactive tool for
visually navigating and manipulating hierarchical structures. In IEEE Symposium
on Information Visualization, 2002. INFOVIS 2002., pages 77–84, 2002.

[40] J. S. Yi, Y. a. Kang, J. Stasko, and J. Jacko. Toward a deeper understanding of the
role of interaction in information visualization. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1224–1231, 2007.

Appendix A. Figures: Sunburst(E1)

The real data sets of the commissioning company are not used in the example figures
presented in the appendices. Completely artificial data sets were generated for the
example figures of the thesis.

Phase 1.

Figure A.1: A comprehensive drilling example of Sunburst(E1) demonstrating all the
possible phases from the initial view down to the most specific hierarchical level. The
example path is Total - G - 47 - 477 - 4778 - 47781.

82

83 Appendix A. Figures: Sunburst(E1)

Phase 2.

Phase 3.

Figure A.1: A comprehensive drilling example of Sunburst(E1) demonstrating all the
possible phases from the initial view down to the most specific hierarchical level. The
example path is Total - G - 47 - 477 - 4778 - 47781.

84 Appendix A. Figures: Sunburst(E1)

Phase 4.

Phase 5.

Figure A.1: A comprehensive drilling example of Sunburst(E1) demonstrating all the
possible phases from the initial view down to the most specific hierarchical level. The
example path is Total - G - 47 - 477 - 4778 - 47781.

85 Appendix A. Figures: Sunburst(E1)

Figure A.2: The initial view of Sunburst(E1) as a full-page version.

Appendix B. Figures: Treemap(E1)

Phase 1.

Figure B.1: A comprehensive drilling example of Treemap(E1) demonstrating all the pos-
sible phases from the initial view down to the most specific hierarchical level. The example
path is Total - G - 47 - 477 - 4778 - 47781.

86

87 Appendix B. Figures: Treemap(E1)

Phase 2.

Phase 3.

Figure B.1: A comprehensive drilling example of Treemap(E1) demonstrating all the pos-
sible phases from the initial view down to the most specific hierarchical level. The example
path is Total - G - 47 - 477 - 4778 - 47781.

88 Appendix B. Figures: Treemap(E1)

Phase 4.

Phase 5.

Figure B.1: A comprehensive drilling example of Treemap(E1) demonstrating all the pos-
sible phases from the initial view down to the most specific hierarchical level. The example
path is Total - G - 47 - 477 - 4778 - 47781.

89 Appendix B. Figures: Treemap(E1)

Figure B.2: The initial view of Treemap(E1) as a full-page version.

Appendix C. Figures: Sunburst(E2)

Phase 1.

Figure C.1: A comprehensive drilling example of Sunburst(E2) demonstrating all the
possible phases from the initial view down to the most specific hierarchical level. The
example path is Total - Uusimaa - Small - N - <€0.5M - T:mi.

90

91 Appendix C. Figures: Sunburst(E2)

Phase 2.

Phase 3.

Figure C.1: A comprehensive drilling example of Sunburst(E2) demonstrating all the
possible phases from the initial view down to the most specific hierarchical level. The
example path is Total - Uusimaa - Small - N - <€0.5M - T:mi.

92 Appendix C. Figures: Sunburst(E2)

Phase 4.

Phase 5.

Figure C.1: A comprehensive drilling example of Sunburst(E2) demonstrating all the
possible phases from the initial view down to the most specific hierarchical level. The
example path is Total - Uusimaa - Small - N - <€0.5M - T:mi.

93 Appendix C. Figures: Sunburst(E2)

Figure C.2: The initial view of Sunburst(E2) as a full-page version.

94 Appendix C. Figures: Sunburst(E2)

Figure C.3: The rejected version of Sunburst(E2) with two hierarchical levels branching
from the middle node was too cluttered and difficult to read for the purposes of the
commissioning company.

Appendix D. Figures: Treemap(E2)

Phase 1.

Figure D.1: A comprehensive drilling example of Treemap(E2) demonstrating all the
possible phases from the initial view down to the most specific hierarchical level. The
example path is Total - Uusimaa - Small - N - <€0.5M - T:mi.

95

96 Appendix D. Figures: Treemap(E2)

Phase 2.

Phase 3.

Figure D.1: A comprehensive drilling example of Treemap(E2) demonstrating all the
possible phases from the initial view down to the most specific hierarchical level. The
example path is Total - Uusimaa - Small - N - <€0.5M - T:mi.

97 Appendix D. Figures: Treemap(E2)

Phase 4.

Phase 5.

Figure D.1: A comprehensive drilling example of Treemap(E2) demonstrating all the
possible phases from the initial view down to the most specific hierarchical level. The
example path is Total - Uusimaa - Small - N - <€0.5M - T:mi.

98 Appendix D. Figures: Treemap(E2)

Figure D.2: The initial view of Treemap(E2) as a full-page version.

	Introduction
	Thesis Commission
	Motivation
	Data Set of Company Customers
	Research Questions
	Methodologies

	Hierarchical Data
	Definition of Hierarchical Data
	Hierarchical Customer Data

	Hierarchical Visualization Techniques
	Explicit Methods
	Implicit Methods
	Adjacency Diagrams
	Enclosure Diagrams

	Visualizing Changes over Time in Hierarchical Data
	Different Types of Changes in Hierarchical Data
	Different Techniques for Visualizing Changes in Hierarchical Data
	Color
	Typography
	Interaction
	Animation
	Small Multiples

	Designing the Experimental Visualizations
	Domain Problem and Data
	Data Types and Operations
	Data Wrangling for (E1)
	Data Wrangling for (E2)

	Visual Encoding and Interaction
	Requirements
	Selecting the Suitable Hierarchical Visualization Techniques
	Selecting the Suitable Time Encoding Techniques

	Final Visualization Products
	Prototypes for (E1)
	Prototypes for (E2)

	Validating the Experimental Visualizations
	End User Study
	Structure of the End User Study
	Results of the End User Study

	Expert Review
	Expert Review of Sunburst(E1) and Treemap(E1)
	Expert Review of Sunburst(E2) and Treemap(E2)

	Conclusion and Future Work
	Conclusion of the Literature Survey
	Conclusion of the Experimental Part
	Future Work

	Bibliography
	Appendix Figures: Sunburst(E1)
	Appendix Figures: Treemap(E1)
	Appendix Figures: Sunburst(E2)
	Appendix Figures: Treemap(E2)

