2,611 research outputs found

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator

    Get PDF
    Purpose: Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. Methods: We developed NOViSE - the first force-feedback enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom built and the behaviour of the virtual flexible endoscope is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. Results: We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES Conclusions: VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype and the initial results indicate that it provides promising foundations for further development

    Digital Fabrication Approaches for the Design and Development of Shape-Changing Displays

    Get PDF
    Interactive shape-changing displays enable dynamic representations of data and information through physically reconfigurable geometry. The actuated physical deformations of these displays can be utilised in a wide range of new application areas, such as dynamic landscape and topographical modelling, architectural design, physical telepresence and object manipulation. Traditionally, shape-changing displays have a high development cost in mechanical complexity, technical skills and time/finances required for fabrication. There is still a limited number of robust shape-changing displays that go beyond one-off prototypes. Specifically, there is limited focus on low-cost/accessible design and development approaches involving digital fabrication (e.g. 3D printing). To address this challenge, this thesis presents accessible digital fabrication approaches that support the development of shape-changing displays with a range of application examples – such as physical terrain modelling and interior design artefacts. Both laser cutting and 3D printing methods have been explored to ensure generalisability and accessibility for a range of potential users. The first design-led content generation explorations show that novice users, from the general public, can successfully design and present their own application ideas using the physical animation features of the display. By engaging with domain experts in designing shape-changing content to represent data specific to their work domains the thesis was able to demonstrate the utility of shape-changing displays beyond novel systems and describe practical use-case scenarios and applications through rapid prototyping methods. This thesis then demonstrates new ways of designing and building shape-changing displays that goes beyond current implementation examples available (e.g. pin arrays and continuous surface shape-changing displays). To achieve this, the thesis demonstrates how laser cutting and 3D printing can be utilised to rapidly fabricate deformable surfaces for shape-changing displays with embedded electronics. This thesis is concluded with a discussion of research implications and future direction for this work

    Digital fabrication of custom interactive objects with rich materials

    Get PDF
    As ubiquitous computing is becoming reality, people interact with an increasing number of computer interfaces embedded in physical objects. Today, interaction with those objects largely relies on integrated touchscreens. In contrast, humans are capable of rich interaction with physical objects and their materials through sensory feedback and dexterous manipulation skills. However, developing physical user interfaces that offer versatile interaction and leverage these capabilities is challenging. It requires novel technologies for prototyping interfaces with custom interactivity that support rich materials of everyday objects. Moreover, such technologies need to be accessible to empower a wide audience of researchers, makers, and users. This thesis investigates digital fabrication as a key technology to address these challenges. It contributes four novel design and fabrication approaches for interactive objects with rich materials. The contributions enable easy, accessible, and versatile design and fabrication of interactive objects with custom stretchability, input and output on complex geometries and diverse materials, tactile output on 3D-object geometries, and capabilities of changing their shape and material properties. Together, the contributions of this thesis advance the fields of digital fabrication, rapid prototyping, and ubiquitous computing towards the bigger goal of exploring interactive objects with rich materials as a new generation of physical interfaces.Computer werden zunehmend in Geräten integriert, mit welchen Menschen im Alltag interagieren. Heutzutage basiert diese Interaktion weitgehend auf Touchscreens. Im Kontrast dazu steht die reichhaltige Interaktion mit physischen Objekten und Materialien durch sensorisches Feedback und geschickte Manipulation. Interfaces zu entwerfen, die diese Fähigkeiten nutzen, ist allerdings problematisch. Hierfür sind Technologien zum Prototyping neuer Interfaces mit benutzerdefinierter Interaktivität und Kompatibilität mit vielfältigen Materialien erforderlich. Zudem sollten solche Technologien zugänglich sein, um ein breites Publikum zu erreichen. Diese Dissertation erforscht die digitale Fabrikation als Schlüsseltechnologie, um diese Probleme zu adressieren. Sie trägt vier neue Design- und Fabrikationsansätze für das Prototyping interaktiver Objekte mit reichhaltigen Materialien bei. Diese ermöglichen einfaches, zugängliches und vielseitiges Design und Fabrikation von interaktiven Objekten mit individueller Dehnbarkeit, Ein- und Ausgabe auf komplexen Geometrien und vielfältigen Materialien, taktiler Ausgabe auf 3D-Objektgeometrien und der Fähigkeit ihre Form und Materialeigenschaften zu ändern. Insgesamt trägt diese Dissertation zum Fortschritt der Bereiche der digitalen Fabrikation, des Rapid Prototyping und des Ubiquitous Computing in Richtung des größeren Ziels, der Exploration interaktiver Objekte mit reichhaltigen Materialien als eine neue Generation von physischen Interfaces, bei

    Robust interactive cutting based on an adaptive octree simulation mesh

    Get PDF
    We present an adaptive octree based approach for interactive cutting of deformable objects. Our technique relies on efficient refine- and node split-operations. These are sufficient to robustly represent cuts in the mechanical simulation mesh. A high-resolution surface embedded into the octree is employed to represent a cut visually. Model modification is performed in the rest state of the object, which is accomplished by back-transformation of the blade geometry. This results in an improved robustness of our approach. Further, an efficient update of the correspondences between simulation elements and surface vertices is proposed. The robustness and efficiency of our approach is underlined in test examples as well as by integrating it into a prototype surgical simulato

    Essential techniques for laparoscopic surgery simulation

    Get PDF
    Laparoscopic surgery is a complex minimum invasive operation that requires long learning curve for the new trainees to have adequate experience to become a qualified surgeon. With the development of virtual reality technology, virtual reality-based surgery simulation is playing an increasingly important role in the surgery training. The simulation of laparoscopic surgery is challenging because it involves large non-linear soft tissue deformation, frequent surgical tool interaction and complex anatomical environment. Current researches mostly focus on very specific topics (such as deformation and collision detection) rather than a consistent and efficient framework. The direct use of the existing methods cannot achieve high visual/haptic quality and a satisfactory refreshing rate at the same time, especially for complex surgery simulation. In this paper, we proposed a set of tailored key technologies for laparoscopic surgery simulation, ranging from the simulation of soft tissues with different properties, to the interactions between surgical tools and soft tissues to the rendering of complex anatomical environment. Compared with the current methods, our tailored algorithms aimed at improving the performance from accuracy, stability and efficiency perspectives. We also abstract and design a set of intuitive parameters that can provide developers with high flexibility to develop their own simulators
    • …
    corecore