953 research outputs found

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Understanding Next-Generation VR: Classifying Commodity Clusters for Immersive Virtual Reality

    Get PDF
    Commodity clusters offer the ability to deliver higher performance computer graphics at lower prices than traditional graphics supercomputers. Immersive virtual reality systems demand notoriously high computational requirements to deliver adequate real-time graphics, leading to the emergence of commodity clusters for immersive virtual reality. Such clusters deliver the graphics power needed by leveraging the combined power of several computers to meet the demands of real-time interactive immersive computer graphics.However, the field of commodity cluster-based virtual reality is still in early stages of development and the field is currently adhoc in nature and lacks order. There is no accepted means for comparing approaches and implementers are left with instinctual or trial-and-error means for selecting an approach.This paper provides a classification system that facilitates understanding not only of the nature of different clustering systems but also the interrelations between them. The system is built from a new model for generalized computer graphics applications, which is based on the flow of data through a sequence of operations over the entire context of the application. Prior models and classification systems have been too focused in context and application whereas the system described here provides a unified means for comparison of works within the field

    Multiple dataset visualization (MDV) framework for scalar volume data

    Get PDF
    Many applications require comparative analysis of multiple datasets representing different samples, conditions, time instants, or views in order to develop a better understanding of the scientific problem/system under consideration. One effective approach for such analysis is visualization of the data. In this PhD thesis, we propose an innovative multiple dataset visualization (MDV) approach in which two or more datasets of a given type are rendered concurrently in the same visualization. MDV is an important concept for the cases where it is not possible to make an inference based on one dataset, and comparisons between many datasets are required to reveal cross-correlations among them. The proposed MDV framework, which deals with some fundamental issues that arise when several datasets are visualized together, follows a multithreaded architecture consisting of three core components, data preparation/loading, visualization and rendering. The visualization module - the major focus of this study, currently deals with isosurface extraction and texture-based rendering techniques. For isosurface extraction, our all-in-memory approach keeps datasets under consideration and the corresponding geometric data in the memory. Alternatively, the only-polygons- or points-in-memory only keeps the geometric data in memory. To address the issues related to storage and computation, we develop adaptive data coherency and multiresolution schemes. The inter-dataset coherency scheme exploits the similarities among datasets to approximate the portions of isosurfaces of datasets using the isosurface of one or more reference datasets whereas the intra/inter-dataset multiresolution scheme processes the selected portions of each data volume at varying levels of resolution. The graphics hardware-accelerated approaches adopted for MDV include volume clipping, isosurface extraction and volume rendering, which use 3D textures and advanced per fragment operations. With appropriate user-defined threshold criteria, we find that various MDV techniques maintain a linear time-N relationship, improve the geometry generation and rendering time, and increase the maximum N that can be handled (N: number of datasets). Finally, we justify the effectiveness and usefulness of the proposed MDV by visualizing 3D scalar data (representing electron density distributions in magnesium oxide and magnesium silicate) from parallel quantum mechanical simulation

    Neural Free-Viewpoint Relighting for Glossy Indirect Illumination

    Full text link
    Precomputed Radiance Transfer (PRT) remains an attractive solution for real-time rendering of complex light transport effects such as glossy global illumination. After precomputation, we can relight the scene with new environment maps while changing viewpoint in real-time. However, practical PRT methods are usually limited to low-frequency spherical harmonic lighting. All-frequency techniques using wavelets are promising but have so far had little practical impact. The curse of dimensionality and much higher data requirements have typically limited them to relighting with fixed view or only direct lighting with triple product integrals. In this paper, we demonstrate a hybrid neural-wavelet PRT solution to high-frequency indirect illumination, including glossy reflection, for relighting with changing view. Specifically, we seek to represent the light transport function in the Haar wavelet basis. For global illumination, we learn the wavelet transport using a small multi-layer perceptron (MLP) applied to a feature field as a function of spatial location and wavelet index, with reflected direction and material parameters being other MLP inputs. We optimize/learn the feature field (compactly represented by a tensor decomposition) and MLP parameters from multiple images of the scene under different lighting and viewing conditions. We demonstrate real-time (512 x 512 at 24 FPS, 800 x 600 at 13 FPS) precomputed rendering of challenging scenes involving view-dependent reflections and even caustics.Comment: 13 pages, 9 figures, to appear in cgf proceedings of egsr 202

    Survey of semi-regular multiresolution models for interactive terrain rendering

    Get PDF
    Rendering high quality digital terrains at interactive rates requires carefully crafted algorithms and data structures able to balance the competing requirements of realism and frame rates, while taking into account the memory and speed limitations of the underlying graphics platform. In this survey, we analyze multiresolution approaches that exploit a certain semi-regularity of the data. These approaches have produced some of the most efficient systems to date. After providing a short background and motivation for the methods, we focus on illustrating models based on tiled blocks and nested regular grids, quadtrees and triangle bin-trees triangulations, as well as cluster-based approaches. We then discuss LOD error metrics and system-level data management aspects of interactive terrain visualization, including dynamic scene management, out-of-core data organization and compression, as well as numerical accurac

    SIMPLIFIED VOXEL BASED VISUALIZATION

    Get PDF

    Web-based visualization for 3D data in archaeology : The ADS 3D viewer

    Get PDF
    The solid geometry of archaeological deposits is fundamental to the interpretation of their chronological sequence. However, such stratigraphic sequences are generally viewed as static two-dimensional diagrammatic representations which are difficult to manipulate or to relate to real layers. The ADS 3D Viewer is a web-based resource for the management and analysis of archaeological data. The viewer was developed to take advantage of recent developments in web technology, namely the adoption of WebGL (Web Graphics Library) by current web browsers. The ADS 3D Viewer combines the potential of the 3D Heritage Online Presenter (3DHOP), a software package for the web-based visualization of 3D geometries, with the infrastructure of the Archaeology Data Service (ADS) repository, in the attempt to create a platform for the visualization and analysis of 3D data archived by the ADS. Two versions of the viewer have been developed to answer the needs of different users. The first version, the Object Level 3D Viewer, was implemented to extend the browsing capability of ADS project archives by enabling the visualization of single 3D models. The second version, the Stratigraphy 3D Viewer, is an extension which allows the exploration of a specific kind of aggregated data: the multiple layers of an archaeological stratigraphic sequence. This allows those unable to participate directly in the fieldwork to access, analyse and re-interpret the archaeological context remotely. This has the potential to transform the discipline, allowing inter-disciplinary, cross-border and ‘at-distance’ collaborative workflows, and enabling easier access to and analysis of archaeological data
    • …
    corecore