Precomputed Radiance Transfer (PRT) remains an attractive solution for
real-time rendering of complex light transport effects such as glossy global
illumination. After precomputation, we can relight the scene with new
environment maps while changing viewpoint in real-time. However, practical PRT
methods are usually limited to low-frequency spherical harmonic lighting.
All-frequency techniques using wavelets are promising but have so far had
little practical impact. The curse of dimensionality and much higher data
requirements have typically limited them to relighting with fixed view or only
direct lighting with triple product integrals. In this paper, we demonstrate a
hybrid neural-wavelet PRT solution to high-frequency indirect illumination,
including glossy reflection, for relighting with changing view. Specifically,
we seek to represent the light transport function in the Haar wavelet basis.
For global illumination, we learn the wavelet transport using a small
multi-layer perceptron (MLP) applied to a feature field as a function of
spatial location and wavelet index, with reflected direction and material
parameters being other MLP inputs. We optimize/learn the feature field
(compactly represented by a tensor decomposition) and MLP parameters from
multiple images of the scene under different lighting and viewing conditions.
We demonstrate real-time (512 x 512 at 24 FPS, 800 x 600 at 13 FPS) precomputed
rendering of challenging scenes involving view-dependent reflections and even
caustics.Comment: 13 pages, 9 figures, to appear in cgf proceedings of egsr 202