119,723 research outputs found

    Plan validation and mixed-initiative planning in space operations

    Get PDF
    Bringing artificial intelligence planning and scheduling applications into the real world is a hard task that is receiving more attention every day by researchers and practitioners from many fields. In many cases, it requires the integration of several underlying techniques like planning, scheduling, constraint satisfaction, mixed-initiative planning and scheduling, temporal reasoning, knowledge representation, formal models and languages, and technological issues. Most papers included in this book are clear examples on how to integrate several of these techniques. Furthermore, the book also covers many interesting approaches in application areas ranging from industrial job shop to electronic tourism, environmental problems, virtual teaching or space missions. This book also provides powerful techniques that allow to build fully deployable applications to solve real problems and an updated review of many of the most interesting areas of application of these technologies, showing how powerful these technologies are to overcome the expresiveness and efficiency problems of real world problems

    A methodology for exploring emergence in learning communities

    Get PDF
    Learning communities are becoming increasingly complex in nature, often being used to drive multiple agendas. For example, there is an increasing move to develop learning cities which seek to draw on synergies to both improve citizen learning and skills as well as economic regeneration. Such synergy-driven learning communities, of which the learning cities are but one example, seek to utilise interaction to develop 'emergent products', be it at the individual level or the system-wide level, which could not be produced in isolation. Successfully enabling emergence is critical to their success. Designing for specific types of emergence is however difficult given the intrinsic unpredictability of complex systems. Insight into the intrinsic characteristics of these synergy-driven learning communities and how their interaction leads to emergence over time is required. This paper reports on the methodology developed to explore these highly complex learning communities. The approach adopted was to combine exploratory case studies which established the intrinsic characteristics of the learning communities with an exploration of emergence guided by a meta-level conceptual framework of emergence. This was augmented by secondary data to aid triangulation and provide rigour. As well as discussing the rationale for the adopted approach, implementation issues and the rich information set obtained are discussed using specific case examples. Findings from the investigations led to recommendations regarding future development of appropriate methods for seeding and managing such complex learning communities. The meta level framework means the approach may be readily adapted to other complex social system

    Overcoming Barriers in Supply Chain Analytics—Investigating Measures in LSCM Organizations

    Get PDF
    While supply chain analytics shows promise regarding value, benefits, and increase in performance for logistics and supply chain management (LSCM) organizations, those organizations are often either reluctant to invest or unable to achieve the returns they aspire to. This article systematically explores the barriers LSCM organizations experience in employing supply chain analytics that contribute to such reluctance and unachieved returns and measures to overcome these barriers. This article therefore aims to systemize the barriers and measures and allocate measures to barriers in order to provide organizations with directions on how to cope with their individual barriers. By using Grounded Theory through 12 in-depth interviews and Q-Methodology to synthesize the intended results, this article derives core categories for the barriers and measures, and their impacts and relationships are mapped based on empirical evidence from various actors along the supply chain. Resultingly, the article presents the core categories of barriers and measures, including their effect on different phases of the analytics solutions life cycle, the explanation of these effects, and accompanying examples. Finally, to address the intended aim of providing directions to organizations, the article provides recommendations for overcoming the identified barriers in organizations

    Assessment of apparent nonstationarity in time series of annual inflow, daily precipitation, and atmospheric circulation indices: A case study from southwest Western Australia

    Get PDF
    The southwest region of Western Australia has experienced a sustained sequence of low annual inflows to major water supply dams over the past 30 years. Until recently, the dominant interpretation of this phenomenon has been predicated on the existence of one or more sharp breaks (change or jump points), with inflows fluctuating around relatively constant levels between them. This paper revisits this interpretation. To understand the mechanisms behind the changes, we also analyze daily precipitation series at multiple sites in the vicinity and time series for several indices of regional atmospheric circulation that may be considered as drivers of regional precipitation. We focus on the winter half-year for the region (May to October) as up to 80% of annual precipitation occurs during this "season". We find that the decline in the annual inflow is in fact more consistent with a smooth declining trend than with a sequence of sharp breaks, the decline is associated with decreases both in the frequency of daily precipitation occurrence and in wet-day amounts, and the decline in regional precipitation is strongly associated with a marked decrease in moisture content in the lower troposphere, an increase in regionally averaged sea level pressure in the first half of the season, and intraseasonal changes in the regional north-south sea level pressure gradient. Overall, our approach provides an integrated understanding of the linkages between declining dam inflows, declining precipitation, and changes in regional atmospheric circulation that favor drier conditions

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    An Exploratory Study of Lecturers' Views of Out-of-class Academic Collaboration Among Students

    Full text link
    This article reports an exploratory study of lecturers' perceptions of out-of-class academic collaboration (OCAC) among students at a large Singapore university. Two types of OCAC were investigated: collaboration initiated by students, e.g., groups decide on their own to meet to prepare for exams, and collaboration required by teachers, e.g., teachers assign students to do projects in groups. Data were collected via one-on-one interviews with 18 faculty members from four faculties at the university. Findings suggest that OCAC, especially of a teacher-required kind, is fairly common at the university. Faculty members' views on factors affecting the success of OCAC are discussed for the light they might shed on practices to enhance the effectiveness of OCAC
    corecore