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[1] The southwest region of Western Australia has experienced a sustained sequence of
low annual inflows to major water supply dams over the past 30 years. Until recently,
the dominant interpretation of this phenomenon has been predicated on the existence of
one or more sharp breaks (change or jump points), with inflows fluctuating around
relatively constant levels between them. This paper revisits this interpretation. To
understand the mechanisms behind the changes, we also analyze daily precipitation series
at multiple sites in the vicinity and time series for several indices of regional atmospheric
circulation that may be considered as drivers of regional precipitation. We focus on the
winter half‐year for the region (May to October) as up to 80% of annual precipitation
occurs during this “season”. We find that the decline in the annual inflow is in fact
more consistent with a smooth declining trend than with a sequence of sharp breaks, the
decline is associated with decreases both in the frequency of daily precipitation occurrence
and in wet‐day amounts, and the decline in regional precipitation is strongly associated
with a marked decrease in moisture content in the lower troposphere, an increase in
regionally averaged sea level pressure in the first half of the season, and intraseasonal
changes in the regional north‐south sea level pressure gradient. Overall, our approach
provides an integrated understanding of the linkages between declining dam inflows,
declining precipitation, and changes in regional atmospheric circulation that favor
drier conditions.
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1. Introduction

[2] Surface water management systems have customarily
been designed and operated under the assumption of statis-
tical stationarity of inflow series. That is, the probability
distribution of observations does not change with time and
hence the statistics of future inflow series will replicate those
of the past. Milly et al. [2008] argue that stationarity should
no longer serve as the basis for water resources risk assess-
ment and planning given the growing evidence of hydrocli-
matic change. Recent studies reporting nonstationarity include
those byMauget [2003], Kahya and Kalayci [2004], Stewart
et al. [2005], Dixon et al. [2006], Zheng et al. [2007], Adam
and Lettenmaier [2008], Burn et al. [2008], and Miller and
Piechota [2008].

[3] Southern Australia is experiencing an extended period
of drought, with southwest Western Australia (SWA) in a
state of hydrological drought since the mid‐1970s [Power
et al., 2005; Bates et al., 2008; Murphy and Timbal, 2008].
The decline in aggregated annual inflows to the 11 major
dams of the Integrated Water Supply Scheme (IWSS) in
SWA is illustrated in Figure 1. Historically, the dominant
interpretation of this inflow series has been predicated on
the existence of one or more change points, with inflows
fluctuating around relatively constant levels between them
[see, e.g., IPCC, 2007, Figure 11.3]. Detection of change
points is often based on statistical hypothesis testing tech-
niques such as those reviewed by Jarušková [1997]. Other
approaches to the assessment of nonstationarity in hydrologi-
cal time series include techniques such as linear regression
and nonparametric tests to establish or refute the existence of
trends in individual series [see, e.g., Kundzewicz and Robson,
2004]. However, all of these techniques are necessarily lim-
ited in the understanding that they can deliver: they may
provide evidence of nonstationarity, but they do not pro-
vide insight into the causal mechanisms responsible. More-
over, they rely on simplifying assumptions that are often
unrealistic. For example, for most standard trend tests and
change point detection techniques the null hypothesis is
that the observations are independent and identically distrib-
uted [Kendall and Ord, 1990, section 2.1; Jarušková, 1997,
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section 4]. The rejection of such a hypothesis implies that
the observations are either dependent or have different dis-
tributions (or both), but it does not follow that a trend or
change point is present. One could imagine testing for a
change point in a series with a linear trend: given enough
data, any such test will correctly reject the null hypothesis,
but it would be wrong to infer that the series contains an
abrupt break. The effective use of test procedures therefore
relies on the ability to construct null hypotheses in such a
way that if they are rejected, the alternative of interest pro-
vides the most plausible explanation. Broadly speaking,
there are two ways to achieve this: use either an appropri-
ately designed experiment to collect the data or more sophis-
ticated statistical methods. In environmental applications,
designed experiments are rarely feasible except when com-
puter models are used to generate data (see section 4.2.3
below for an example); therefore more sophisticated
methods are needed.
[4] In this paper we use a suite of modern, model‐based

statistical approaches to build an explicit representation of
the changes in water availability and the associated cli-
matic drivers in SWA. This empirical approach provides
insight into potential causal pathways from changes in
regional atmospheric circulation to changes in at‐site daily
precipitation (occurrence and amounts), and from at‐site
daily precipitation to dam inflow. In section 2 we briefly
describe the study area, review previous research, and pres-
ent our approach. The data and methods used are described
in sections 3 and 4, respectively. Results are presented in
section 5, where we demonstrate that the IWSS inflow data
are in fact more consistent with a smooth declining trend
than with a sequence of sharp breaks, and we subsequently
seek to understand the climatic drivers of this trend by
analyzing daily time series of at‐site precipitation and several
indices of regional atmospheric circulation (of demonstrated
relevance to regional precipitation) for the period from the

middle of the 20th century to the present. Finally, a discussion
and our findings are given in section 6.

2. Study Area, and Previous and Present
Research

2.1. Physical and Climatic Setting

[5] SWA extends approximately from 30° to 35°S and
from 115° to 120°E (Figure 2). It is bounded by the Indian
Ocean to the west and the Southern Ocean to the south. A
320 km escarpment runs parallel to and some 25–50 km from
the coast with rain shadow effects eastward. The average
and maximum heights of the escarpment are about 300 and
582 m at Mount Cooke (32°25′S, 116°18′E), respectively.
[6] The region experiences a Mediterranean climate with

hot dry summers and mild wet winters. During autumn
(March to May) the subtropical belt of high pressure moves
northward, and it lies almost outside the region during
winter (June to August). Owing to the breakup of the belt
into anticyclonic cells, the prevailing winds are anticlock-
wise, with moist westerly flow during winter. The winds
attain greater speeds than in similar latitudes in the Northern
Hemisphere due to the low orography of the region [Gentilli,
1972]. During winter the mean track of low pressure sys-
tems is always south of the region and moves away to the
southeast. Thus precipitation decreases from west to east and
from south to north [see, e.g., Bates et al., 2008, Figure 3].
For the 30 daily precipitation stations depicted in Figure 2,
the percentage of annual precipitation that falls in the
winter half‐year (May to October) varies from 66% to 86%:
25 stations have percentages greater than 71%. Two fun-
damental types of winter half‐year precipitation have been
identified [Wright, 1974]: continuous precipitation due to
uplift in the midtroposphere associated with surface winds
north of west (dominant in May to July), and showers asso-
ciated with convection in a moist unstable airstream from
between west and southwest that are enhanced by topography
and coastal convergence (dominant in August to October).
Precipitation of the first type is closely related to the inten-
sity of the westerlies, but precipitation for the second type is
not similarly related to atmospheric circulation features.
[7] Climate change has been evident since the 1970s.

Annual mean temperatures have increased at the rate of
+0.15°C decade−1, with increases occurring in all seasons
except summer, where the rate of change is −0.1°C decade−1.
Simultaneously, there has been a reduction in winter half‐
year precipitation, particularly for May to July, where the
mean precipitation for 1975–2004 is about 14% less than
that for the mid‐1900s to 1974. Another notable feature is
the absence of very wet years since the mid‐1970s [Bates
et al., 2008].

2.2. Integrated Water Supply Scheme (IWSS)

[8] The IWSS supplies water for 1.5 million people in the
city of Perth (31°57′S, 115°52′E) and surrounding areas.
The IWSS extends more than 600 km east‐west and 200 km
north‐south. Despite the extensive use of demand manage-
ment strategies, substantial investment has been required due
to reductions in annual inflows and groundwater recharge
coupled with population growth. Between 1996 and 2006,
the Water Corporation (which provides water, sewerage,

Figure 1. Aggregated annual inflow series for 11 major
dams in the Integrated Water Supply Scheme (IWSS). Water
year is May to April.
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and drainage services to 97% of Western Australia’s
population) invested $A921 million in source development
for the IWSS. At the start of 2007, the water supply to the
IWSS was derived from 11 main dams (Figure 2) with total
storage capacities ranging between 2 and 138 GL, 136
groundwater bores located in confined and unconfined
aquifers underlying the northern metropolitan area, and a
new 45 GL yr−1 seawater desalination plant.

2.3. Related Studies

[9] There are now several articles related to the observed
precipitation decline in SWA. IOCI [2002] and Bates et al.
[2008] discuss the issue broadly, although the latter also
discusses the impacts of the research outcomes on policy
development across Australia. Key findings from these
previous studies include the following: (1) winter precipi-
tation has declined by about 15%–20% [Hennessy et al.,
1999; IOCI, 2002; Smith, 2004]; (2) declines in the num-
ber of wet days and precipitation amounts in extreme
events are evident [IOCI, 1999; Y. Li et al., 2005]; (3) most
of the precipitation decline is confined to the first half of the
winter half‐year (May to July) [IOCI, 2002; Bates et al.,
2008]; (4) there is a statistically significant inverse rela-
tionship between regional to near global scale mean sea
level pressure (SLP) and winter precipitation on interannual
to decadal time scales [Allan and Haylock, 1993; Ansell et al.,
2000; F. Li et al., 2005]; (5) while the strength of the direct
linkage between the precipitation decline and changes in sea
surface temperatures (SSTs) is less prominent, SSTs affect
regional precipitation primarily through their relationship
with SLP [Ansell et al., 2000; Smith et al., 2000; F. Li et al.,
2005; England et al., 2006]; (6) an increase in SLP in winter

and decreasing trends in atmospheric moisture in winter and
spring are important in explaining the precipitation decline
[Charles et al., 1999b; Bates et al., 2001; Timbal, 2004]; (7)
while average SLP has increased across the region, the
frequency and intensity of troughs associated with wet
conditions has declined markedly since the mid‐1970s, and
this is responsible for almost half the reduction in observed
precipitation from 1958–1975 to 1976–2003 [Simmonds and
Keay, 2000; Hope et al., 2006]; (8) since the mid‐1970s
there has been a 20% reduction in the strength of the sub-
tropical jet over Australia, a reduction in the intensity of
cyclogenesis across southern Australia, and a southward
deflection of some storms [Frederiksen and Frederiksen,
2007]; (9) the precise attribution of the precipitation decline
to natural forcing and anthropogenic factors such as increas-
ing atmospheric concentrations of trace greenhouse gases,
land clearing, and changes in forest and forest fire manage-
ment remains elusive [IOCI, 2002; Cai et al., 2005; Timbal
et al., 2006; Bates et al., 2008].

2.4. Contribution and Approach

[10] This paper differs from previous works on observed
precipitation and inflow declines in SWA in four major
respects: (1) our analysis introduces a comprehensive
methodological framework consisting of a suite of modern,
model‐based statistical techniques, with due attention to the
underlying assumptions; (2) considerable attention is focused
directly on the annual inflow series for the IWSS, and
on precipitation changes in the vicinity of its main dams;
(3) a stochastic downscaling model is used to provide a
synoptic weather‐typing scheme that relates spatial patterns
in daily precipitation occurrence to a more comprehensive
set of indices of regional‐scale atmospheric circulation
(“atmospheric predictors”) and subsequently to determine the
role of these indices, individually and in combination, in
explaining changes in weather type frequencies; (4) rather than
using exploratory analysis and simple linear trends, we
provide a formal and rigorous analysis of the temporal
changes in seasonality as well as interannual variations in
precipitation, atmospheric predictors, and weather types.
[11] Figure 3 illustrates the data and methods used. Three

data sets are examined: the annual inflow series for the
IWSS dams (section 3.1); daily precipitation occurrence
and wet‐day amount series (section 3.2); atmospheric pre-
dictor series derived from data provided by the National
Centers for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR) Reanal-
ysis project (section 3.3). Trend detection and estimation
were carried out using a suite of parametric (sections 4.1.1–
4.1.3) and nonparametric (section 4.1.4) regression techni-
ques. Subsequently, a stochastic downscaling model (the
nonhomogeneous Markov model, NHMM) was used to
provide an explicit, objective, and quantitative representa-
tion of the linkage between indices of regional atmospheric
circulation and daily precipitation occurrence at multiple
sites (section 4.2.1). A useful by‐product of the NHMM is
an objective weather typing that links the atmospheric pre-
dictors (section 4.2.2) to a finite number of spatial patterns
of daily precipitation occurrence. The frequencies of the
resulting weather types (or “states”) were subjected to trend
analysis using local linear regression (LLR), as was the
annual inflow series for the IWSS. Finally, to investigate the

Figure 2. Map of study area. Dots denote locations of
major dams in the IWSS and numerals denote the 30 daily
precipitation gauges used by Charles et al. [1999a, 1999b,
2004] and Bates et al. [2001]. Crosses denote grid points for
atmospheric circulation data. “C”, “E”, “N”, “S”, and “W”
denote central, east, north, south, and west grid points.
Dashed box indicates the subregion (roughly 150 × 100 km2)
over which the at‐site precipitation analysis is performed.
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roles of the different atmospheric circulation indices in
controlling trends in weather state frequencies, a factorial
experiment was carried out in which different configurations
of the indices were used to drive NHMM simulations
(section 4.2.3).

3. Description of Data

3.1. Annual Inflow Series

[12] We used aggregated annual inflow data for the main
IWSS dams for the period 1911–2007. Following local
convention, the water year is May to April and is designated
by the calendar year in which it starts. The inflow series
extends further back in time than the existence of most
IWSS dams: only two dams were operational in 1911. Thus
inflows prior to the 1950s were largely reconstructed using a
precipitation‐runoff model and precipitation data from a
network of gauges having limited coverage. The remainder
of the series was derived from gauging station data or
estimated using a water balance method for the short periods
when stations were nonoperational. The inflow series from
the 1950s to the present is regarded as reliable (C. Jeevaraj,
personal communication, 2009).

3.2. At‐Site Precipitation

[13] The locations of the 30 stations used in previous
downscaling studies are shown in Figure 2 [see, e.g., Charles
et al., 1999a, 1999b, 2004; Bates et al., 2001]. The stations
have reasonably complete high‐quality records from 1958
onward, although not all stations were operational through-
out this period. They provide a nearly uniform spatial cov-
erage of the region and hence the opportunity to characterize
synoptic‐scale precipitation structures.
[14] Long‐term, high‐quality precipitation records in the

vicinity of the main IWSS dams are scant. We used daily
precipitation series for the winter half‐year recorded at sta-
tions 4, 11, 12, and 15 in Figure 2 and seven additional
stations within the dashed box shown in Figure 2 (locations

not shown for clarity) to characterize precipitation trends.
The record lengths at some of the additional stations are
shorter than those for the first group (the shortest runs from
1974 to 2002), and two contained a relatively large number
(around 15%) of missing observations.
[15] The data from most stations are recorded to a nom-

inal resolution of 0.1 mm; however, there is a strong pref-
erence to record even‐numbered decimal digits. Differences
in recording resolution can lead to spurious trends that are
detectable by the methods used below [Yang et al., 2006].
To avoid this, the data were rounded to a resolution of
0.2 mm for the analyses reported in section 5.2. Moreover, at
some sites, changes in recording practice from 2001 onward
have led to the underrecording of nonzero values at week-
ends. The effect of this is to exaggerate drying trends in the
records. To eliminate this effect, all post‐2000 weekend
observations from the affected sites, as well as a few other
suspect observations, were discarded from our analyses. For
consistency with the previous studies noted above, any day
with a recorded precipitation amount less than 0.3 mm was
considered “dry.”

3.3. NCEP/NCAR Reanalysis

[16] We use data from the NCEP/NCAR Reanalysis
project [Kistler et al., 2001] for the period 1958–2007.
Data are available from 1948 onward. However, the earliest
decade is generally considered less reliable due to a scarcity
of upper‐air observations in the Southern Hemisphere. The
data are 6 hourly and interpolated to a 2.5° latitude‐
longitude grid. We used the data at 1200 UT on the basis that
they are close to the midpoint of the daily precipitation
recording period for the study region (2400–0100 UT).
[17] Variables in the reanalysis are classified into four

categories [Kalnay et al., 1996; Kistler et al., 2001], from
the most reliable (type “A”) to the least reliable (type “D”).
We used four type “A” variables (SLP, geopotential heights
at 500 and 850 hPa, and air temperature at 850 hPa) and one
type “B” variable (specific humidity at 850 hPa, which was

Figure 3. Data flow diagram for the analysis. Arrows depict data flow lines, parallelograms depict input
data, rectangles depict computational steps, and ovals depict end results. ANOVA, analysis of variance;
GLM, generalized linear model; LLR, local linear regression; M‐VM, joint mean‐variance model;
NHMM, nonhomogeneous hidden Markov model.
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used to estimate dew point temperature at that level). The
atmospheric fields were interpolated onto the 2.25° latitude
by 3.75° longitude grid used in previous downscaling studies
(Figure 2).

4. Methods

4.1. Regression Techniques

[18] To understand the climatic mechanisms responsible
for the clear trend in Figure 1, the first step is to quantify the
nature of this trend, along with trends in precipitation and
indices of regional‐scale atmospheric circulation. Regres-
sion techniques are a natural tool for this purpose.
4.1.1. Multiple Linear Regression (MLR)
[19] When analyzing an individual series Y1,…, YT, the

starting point for the methods considered herein is the linear
trend model:

Yt ¼ �t þ "t ; ð1Þ

where mt = b0 + b1t (the “trend function”) is a linear func-
tion of the time index t and the “errors” ("t) form a sequence
of independent, normally distributed random variables with
zero mean and a common variance. For the analysis of envi-
ronmental time series at subannual time resolution, however,
such a model is rarely adequate: most series exhibit season-
ality and autocorrelation, for example, as well as potential
relationships with other variables of interest. Such features
can be accommodated straightforwardly in the regression

framework by writing mt = b0 +
Pp

j¼1
bjxjt, so that the expected

value of Yt is now a linear function of several covariates, of
which one might be t. Seasonality can be incorporated via
covariates defined as sine and cosine functions representing
the annual cycle and, if necessary, its harmonics. Autocorre-
lation can be accounted for either by specifying an appropriate
time series structure for "t or by including an appropriate
number of lagged values Yt−1, Yt−2,… as extra covariates in the
model. The latter approach suffers from the disadvantage that
interpretation of model coefficients can be complicated when
lagged values are included [e.g. Greene, 2003, section 19.4].
However, it offers increased flexibility in other aspects. One
such aspect is the possibility of modeling interactions
involving the lagged values: in a regression model, two cov-
ariates are said to interact if one of them modulates the effect
of the other or, equivalently, if the regression coefficient of one
of them can be written as a function of the other. This can be
accommodated by adding an extra term, involving the product
of the interacting covariates, to the model [Chandler and
Wheater, 2002, section 3.2]. Interactions involving lagged
values imply that the autocorrelation structure, which at fine
time scales reflects the dynamics of the underlying processes,
changes in response to other variables; interactions between
the time index and seasonal covariates suggest that the sea-
sonal cycle is changing over time.
4.1.2. Generalized Linear Models (GLMs)
[20] A key assumption of the linear regression model is

that the observations are normally distributed given the
covariates. We find that this assumption is reasonable for the
logarithms of the dam inflow series considered in this paper,
and for the atmospheric predictors. However, the distribu-
tion of precipitation at a daily time scale is far from normal,

so that other techniques are required to analyze precipitation
records. GLMs extend the linear regression model by allow-
ing multiple nonnormal response variables and covariates,
and hence provide the required flexibility. For the analysis
of an individual series, a GLM specifies a distribution for
Yt with mean mt, linked to a vector xt of covariates via an
equation of the form

g �tð Þ ¼ �0 þ
Xp

j¼1

�jxjt; ð2Þ

for some monotonic function g(·), known as the link func-
tion. Note that the standard linear regression model can be
regarded as a GLM in which the link function g(·) is taken
as the identity and the distribution of the {Yt} is normal
with constant variance. Seasonality and interactions can be
represented in the same way as before. In general, however,
autocorrelation is most easily dealt with by including lagged
values Yt−1, Yt−2,… as extra covariates, possibly after appro-
priate transformation. Estimation of the coefficients b0,…, bp
is usually carried out using maximum likelihood, which has
the potential to detect weak and complex signals in noisy
records such as daily precipitation sequences [see, e.g.,
Chandler and Wheater, 2002]. If required, the importance of
several terms in a model can be assessed simultaneously by
comparing the log likelihoods of models with and without
the terms of interest, providing the models have been fitted
to the same data. This procedure is referred to as likelihood
ratio testing [Davison, 2003, section 4.5].
[21] If a GLM is to be fitted simultaneously to data from

several sites as in our precipitation analyses, in general it is
necessary to include covariates accounting for systematic
regional variation; for example, precipitation occurrence
may be altitude dependent. Such structure is often difficult
to parameterize, in which case it may be modeled via an
appropriate orthogonal basis representation [see Chandler,
2005]. In addition, it is necessary to account for intersite
correlation. We have done this by fitting models as though
sites are independent and then making appropriate adjust-
ments to the standard errors of coefficient estimates [see
Chandler, 2005], as well as to likelihood ratio test statistics
[Chandler and Bate, 2007].
[22] Following Coe and Stern [1982] the probability pst of

precipitation at site s on day t is modeled using logistic
regression, as

log pst= 1� pstð Þ½ � ¼ �0 þ
Xp

j¼1

�jx
jð Þ

st ; ð3Þ

where the
�
xst
( j)
�
are the corresponding covariate values. If

site s experiences rain on day t, the nonzero precipitation
amount is taken to be gamma distributed with mean mst,
such that

log�st ¼ �0 þ
Xp

j¼1

�j�
jð Þ

st ; ð4Þ

where now the
�
xst
( j)
�
are covariate values and the {gj} are

coefficients. The gamma distributions are all assumed to
have a common shape parameter, n, say. Throughout the
work described below, we use a range of diagnostics to
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check the assumptions underlying our GLMs; for details of
these diagnostics, see Chandler and Wheater [2002].
4.1.3. Joint Mean‐Variance Models (M‐VMs)
[23] From an exploratory analysis (not shown) of the

atmospheric drivers considered in this paper, the assumption
of normality seems reasonable, but there is seasonal struc-
ture in the variance. This cannot be handled directly using
the methods discussed so far; however, the variance struc-
ture is of some interest, particularly if a formal analysis
indicates systematic long‐term changes in the variability of
one or more drivers. The situation can be dealt with using a
joint mean‐variance model under the assumption of nor-
mality, as described by Yang et al. [2006], for example.
Such models consist essentially of a pair of linked GLMs
describing the mean and variance structure, respectively.
Fitting is again carried out using maximum likelihood, and
the usual procedures are available for comparing and
checking models and for testing hypotheses. Care is
required, however, if the normality assumption fails,
because this is required for accurate inference about the
factors driving changes in variability.
4.1.4. Local Linear Regression (LLR)
[24] In the techniques described above, it has been

assumed implicitly that any temporal trends can be re-
presented adequately by incorporating the time index t as a
covariate. For most of the analyses reported below, this
yields a perfectly acceptable, albeit sometimes approximate,
summary of overall change. However, analysis of the
aggregated inflow series requires more care given the im-
plications of different trend scenarios for water resource
management [see, e.g., Brennan, 2008]. In view of this, for
the inflow analysis we have adopted a nonparametric
approach which imposes minimal assumptions on the nature
of the trend function and hence allows the data to “speak for
themselves” as far as possible. Several such approaches are
possible; we have used local linear regression [Bowman and
Azzalini, 1997], as implemented via the “sm” library in the
R programming environment [Bowman and Azzalini, 2007].
In this framework, the trend function mt in (1) is assumed
only to be smooth in the first instance, although the errors
("t) are assumed to be independent and normal with zero
mean and constant variance. Smoothness implies that the
trend function can be approximated by a straight line in the
neighborhood of any time point t: mt ≈ mt + bt(t − t), say.
Estimates of the coefficients mt, bt are found by solving the
weighted least squares problem:

min
�� ;��

XT

t¼1

Yt � �� � �� t � �ð Þ½ �2w t � � ; hð Þ; ð5Þ

where the weight function w(·; h) is the normal probability
density function with mean 0 and standard deviation h so
that observations distant from t are downweighted. The
estimate of mt is then taken as an estimate of the underlying
trend at time t. This procedure is repeated over a range of
values of t, to build up a complete picture of the estimated
trend function. The quantity h in (5) must be chosen by the
user: it is known as the smoothing parameter or bandwidth,
as it controls the smoothness of the resulting trend esti-
mate. It is expressed in the same units as t. The sm library
offers three different automatic methods for the selection
of h: cross validation (hcv), an approximate degrees of

freedom criterion (hdf), and a corrected Akaike informa-
tion criterion (haicc) [Bowman and Azzalini, 1997; Hurvich
et al., 1998]. We compared the results from all of these to
ensure that our conclusions are not sensitive to the precise
choice of h. In addition, residual checks were carried out
to check the assumptions of normality, constant variance,
and independence.
[25] A key issue is whether the fitted regression curve

represents a real long‐term trend or whether it can be
attributed to random variation. This can be addressed by
testing the null hypothesis H0: mt = m (i.e., the null model of
a constant mean) against the alternative H1 that the mean
changes over time (i.e., that a genuine trend is present).
Another null hypothesis that is perhaps of more interest is
H0: mt = b0 + b1t. Acceptance of this hypothesis indicates
that any trend is represented reasonably by a linear function.
Rejection indicates that the mean changes nonlinearly over
time. The sm library contains routines, based on procedures
described in detail in Bowman and Azzalini [1997], that
enable formal tests of either hypothesis. The tests are con-
structed from pseudo‐likelihood ratio statistics of the form
F = (RSS0 − RSS1)/RSS1, where RSSi denotes the residual
sum of squares under hypothesis Hi (i = 0, 1). For the null
hypothesis of no change, RSS0 is the sum of squared de-
viations from the mean of the observations; for the hypoth-
esis of a linear trend, it is the sum of squared residuals from
the least‐squares trend line; and in both cases RSS1 is the
sum of squared residuals from the local linear regression fit.
Under the null hypothesis, the observed significance level
(p‐value) for the test can be obtained from the quantiles of
a scaled and shifted chi‐square distribution. A plot of the
p‐value as a function of the bandwidth h is referred to as a
significance trace, and it assesses the sensitivity of the test
results to the choice of h. So‐called variability bands
indicating the size of two standard errors above and below
�̂t can also be constructed, to provide an informal assess-
ment of uncertainty in the estimated trend function.
[26] The local linear regression methodology has also

been extended by Bowman et al. [2006], to allow for the
possibility of discontinuities in the regression function. This
is particularly relevant here, given that conflicting inter-
pretations of the trend in inflows can have substantial im-
plications for water infrastructure planning [Brennan, 2008].
The nonparametric approach allows us to evaluate the evi-
dence for discontinuities in a data‐driven way, without
imposing assumptions (such as linearity) on the nature of
any smooth underlying regression function: we are trying
to be as objective as possible. Moreover, the approach
acknowledges that a series may contain both discontinuities
and a smooth trend, which is a substantial advantage over
standard techniques for discontinuity detection that implicitly
assume that any long‐term change must be due to a discon-
tinuity (see section 1 above). The possibility that a series
contains only discontinuities and no additional trend is, of
course, not ruled out: in this case, the “smooth trend” is just a
constant function.
[27] The essence of the Bowman et al. [2006] disconti-

nuity test is as follows: denoting by t a potential time at
which a discontinuity may have occurred, two smooth esti-
mates of the regression function at t are obtained. The first
is obtained from observations before t, and the second is
obtained from observations afterward. A large difference
between the two estimates indicates a discontinuity at t.
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To test the null hypothesis that the trend function is smooth
throughout (i.e., that no discontinuities are present), a test
statistic is constructed as a sum of squared standardized
differences between left and right estimators of the regression
function at a grid of t values spanning the entire series. Here
we have used the grid t 2 {5.5, 6.5,…, T − 4.5}, where T is
the series length: this ensures that at least five observations
are available from which to estimate the regression function
on each side of every candidate discontinuity location. Large
values of this test statistic provide strong evidence against
the null hypothesis and hence suggest that one or more
discontinuities are present, and p‐values can be calculated
under the assumption of independent normal errors with zero
mean and constant variance. As before, a significance trace
can be constructed to assess the sensitivity of the results to the
choice of bandwidth.

4.2. Stochastic Downscaling

[28] The second step in our analysis uses an NHMM to
characterize the linkage between indices of regional atmo-
spheric circulation and precipitation occurrence. Here we
briefly describe the model and its use to explore the way in
which atmospheric predictors have combined to produce
changes in precipitation regimes.
4.2.1. Model Description
[29] The NHMM has been chosen for this analysis

because it has been subjected to an extensive series of tests
and applications in SWA over the past decade [see, e.g.,
Bates et al., 1998, 2001; Charles et al., 1999a, 1999b, 2004,
2007]. It is particularly noteworthy that a NHMM fitted to
the winter half‐years in the period 1978–1992 is able to
reproduce several interannual to interdecadal at‐site pre-
cipitation occurrence statistics for the wetter epoch from
1958 to 1977 and the drier epoch from 1993 to 2007
[Charles et al., 2007]. The model structure and assumptions
therefore seem robust to marked changes in regional atmo-
spheric circulation over the study period.
[30] The NHMM relates synoptic‐scale, atmospheric cir-

culation variables to multisite daily precipitation occurrence
via a finite number N of “hidden” (unobserved) weather
states [Charles et al., 1999a, 1999b; Hughes et al., 1999].
For day t, let Rt = {Rt

(1),…, Rt
(n)} denote the precipitation

occurrence pattern at n stations, with observed values
r = {rt

(1),…, rt
(n)} where rt

(i) = 1 if precipitation occurs at
station i and 0 otherwise. Moreover, let St denote the unob-
served weather state and Xt denote a vector of atmo-
spheric circulation data (atmospheric predictors). In the
analyses below, we used centered predictors obtained by
subtracting long‐term means from the reanalysis series of
interest.
[31] The NHMM is based on two assumptions:

P RtjST1 ;Rt�1
1 ;XT

1

� � ¼ P RtjStð Þ; ð6aÞ

P StjSt�1
1 ;XT

1

� � ¼ P StjSt�1;Xtð Þ; ð6bÞ

where the notation X1
T means all values of Xt from day 1 to

day T (similarly for S1
T). Thus, the precipitation occurrence

pattern on a given day is conditioned on the weather state for
that day and the daily weather state sequence forms a first‐
order Markov process. The process is nonhomogeneous as

the transition probabilities depend on Xt and hence vary
from day to day. A particular NHMM is defined by models
for the precipitation occurrence distribution, P(Rt∣St),
and the weather state transition matrix, P(St∣St−1, Xt). Para-
meterizations forP(Rt∣St) andP(St∣St−1,Xt), andmodel fitting
procedures, are detailed by Charles et al. [1999a]. Weather
state and daily precipitation occurrence sequences are gen-
erated using the procedure described by Hughes and Guttorp
[1994, Appendix 2].
4.2.2. Atmospheric Predictors
[32] In this study we consider the NHMM fitted by Bates

et al. [2001] to the NCEP/NCAR Reanalysis and daily
precipitation data from the 30 precipitation stations depicted
in Figure 2 for the winter half‐years in the period 1978–
1992. This model has six distinct and physically realistic
weather states and uses four atmospheric predictors: (1) the
mean of SLP over five grid points in Figure 2 [(N + W + C +
E + S)/5], hereafter referred to as MSLP; (2) north‐south
SLP gradient (PG) across four grid points [(N + NW)/2 −
(S + SW)/2]; (3) dew point temperature depression at 850 hPa
(a measure of how close the atmosphere is to saturation at
850 hPa), defined by DTD = T850 − Td

850, where T850 and
Td
850 respectively denote the 850 hPa air temperature (K)

and dew point temperature (K) at grid point C; (4) the
first variate derived from a canonical correlation analysis
of precipitation occurrence residuals [Bates et al., 2001],
which is defined approximately by

CV1 � 0:04z MSLPð Þ � 0:05z GPH500
� �

þ 0:02 z PGEWð Þ þ z DGPHð Þ þ z DTDð Þ½ �; ð7Þ

where z(·) denotes a standardized variable with mean zero
and unit variance, GPH500 is the mean 500 hPa geopo-
tential height (m), DGPH is the 850–500 hPa thickness
(the difference in geopotential height between the 850 and
500 hPa levels) at grid point C, and PGEW is the east‐
west SLP gradient across four grid points [(N + C)/2 −
(NW + W)/2]. The selection of MSLP, PG, and DTD was
based on the use of professional judgment, correlation
analysis, classification trees, and sequential model fitting
guided by the Bayes Information Criterion. The inclusion
of CV1 improves the performance of the NHMM by
removing a systematic bias in daily precipitation occur-
rence probabilities at intraseasonal scales.
[33] Equation (7) contrasts surface pressure, its east‐west

gradient, 850–500 hPa thickness, and the closeness to sat-
uration at 850 hPa with midlevel geopotential height. Thus
CV1 will be high when a strong midlevel trough over the
region is accompanied by a dry lower troposphere, high
850–500 hPa thickness, high surface pressure, and high
east‐west surface pressure gradient. Inspection of the results
of the canonical correlation analysis [Bates et al., 2001]
indicates that if precipitation occurs over the study region on
a day when CV1 is high, it is more likely to occur in the
northeast corner and well away from the catchments of the
IWSS dams.
4.2.3. Sensitivity Analysis
[34] To investigate the controls of the different atmo-

spheric predictors upon trends in the weather state proba-
bility series generated by the NHMM, we have carried out a
full factorial experiment in which we assess the effect of
re‐ordering the predictor sequences. Separate analyses were
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carried out for three “seasons”: May to October (MJJASO),
May to July (MJJ), and August to September (ASO). The
idea is that if a simulated trend is predominantly due to one,
or a particular combination, of these predictors, then
reversing the relevant input sequences should reverse the
sign of the trend. In our experiment, each “factor” corre-
sponds to one of the predictors and has two levels, coded as
“forward” and “backward”. For the “forward” level, the
temporal ordering of the predictor is preserved. For the
“backward” level the sequence of “seasons” is reversed, but
the temporal ordering within each “season” is retained in
recognition of the different mechanisms that dominate pre-
cipitation generation in early and late winter (section 2.1).
There are 24 possible factor combinations in total: two for
each of the four predictors. For each of these combinations,
we have run three NHMM simulations to estimate the
factorial effects with reasonable precision. We studied the
effects upon several response variables representing different
indices of change: first, the changes in the mean marginal
probabilities of each of the weather states [P(S = j): j = 1,…N]
between the periods 1958–1967 and 1998–2007, and second,
the corresponding changes for the mean permanence proba-
bilities [P(St = j∣St−1 = j)].
[35] The analysis of a factorial experiment is usually done

via a linear model in which the coefficients (b) represent the
effects of the factors individually and in combination
[Davison, 2003, section 9.2]. For each season, we use half‐
normal plots [Davison, 2003, p. 444] of the coefficient
estimates to show the combinations of atmospheric predictors
with the strongest effects on the responses defined above (the
half‐normal distribution is the distribution of ∣b∣ with b ∼
N(0, s2)). If none of the combinations has any effect, the
balanced design of the factorial experiment ensures that
the coefficient estimates will behave like a random sample
from a normal distribution centered on zero; hence they

will lie on an approximately straight line on a half‐normal
plot. Conversely, if a coefficient estimate appears as a
substantial outlier on such a plot, it can be concluded that
the corresponding combination of predictors is an influ-
ential driver of long‐term changes in the weather state
probability series of interest.

5. Results

5.1. Annual Inflow Series

[36] Inspection of Figure 1 indicates that the variability of
the annual inflow series for the IWSS decreases with time.
We therefore work with the logarithms of the inflows, to
stabilize the variance as required by LLR. Figure 4 displays
the log‐transformed series, with the LLR trend estimate
(bandwidth hcv = 6.01) superimposed. Diagnostic checks
(not shown) indicate that the model assumptions (indepen-
dent, normally distributed errors with constant variance) are
not unreasonable. Formal tests were carried out, as
described in section 4.1.4, to determine whether the trend in
log‐transformed annual inflows can be regarded as linear. A
significance trace (not shown) indicates that, for all
reasonable values of the smoothing bandwidth h, the null
hypothesis of a linear trend is convincingly rejected
(p‐values below 0.005). We conclude that the trend in log
inflows is not linear.
[37] Figure 5 displays the significance trace for the

Bowman et al. [2006] discontinuity test applied to the
logarithms of the inflow series. For all values of h, the null
hypothesis of no discontinuity is comfortably accepted
(p‐values above 0.05). This suggests that the decline in
annual inflows is more consistent with a smooth trend than
with an underlying step function.

Figure 4. Local linear regression curve with h = hcv = 6.01
(thick line) and variability bands (dashed lines) for log‐
transformed, aggregated annual inflow series. Water year
is May to April.

Figure 5. Significance trace to assess the evidence for the
presence of discontinuities in the log‐transformed, aggre-
gated annual inflow series. Horizontal dashed line indicates
the p‐value 0.05, and dashed vertical lines indicate haicc, hcv,
and hdf.
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5.2. At‐Site Precipitation

[38] For the generalized linear modeling of daily precip-
itation in the vicinity of the IWSS dams, the starting point
was, separately for occurrence and amounts, to build a
“baseline” model representing the overall intraseasonal and
regional structure in the data. The model‐building strategy
followed that outlined byChandler [2005], and was informed
both by physical understanding and by examination of model
diagnostics. The baseline models were then expanded by
adding covariates representing temporal trends and their in-
teractions. Two different trend representations were consid-
ered: the first was a linear function of time and the second was
the trend estimate obtained for the inflow series logarithms
(Figure 4). The results indicated overwhelmingly significant
(p‐value < 10−8 according to dependence‐adjusted likelihood
ratio tests) trends in both precipitation occurrence and
amounts. For all practical purposes, the fitted models were the
same for both trend representations; we therefore focus on the
linear version here, since it is easier to interpret. Diagnostic
checks for the extended models were satisfactory.
[39] The extended occurrence model contained terms

representing interactions between lagged occurrences and
both seasonal and regional covariates; the amounts model
contained interactions between seasonal and regional covari-
ates. This suggests that persistence in precipitation occurrence
is seasonally and regionally varying, and that intraseasonal
variation in intensity is regionally varying. However, the main
purpose of the models is to understand the nature of precipi-
tation trends in the region. As discussed by Chandler and
Wheater [2002], the effect of any covariate can be studied in
detail by extracting all of the terms (including interactions)
involving that covariate in the estimated linear predictors (3)
and (4); the result is a function of other covariates. With
time measured in decades, the respective contributions of the
linear trend function to the linear predictors for occurrence and
amounts are

�0:0747þ 0:0312 � Long1ð Þ þ 0:0338 � Elevationð Þ½ � � time ð8Þ

and

�0:0289� 0:0222 � Lat1ð Þ � 0:0498 � Long1ð Þ½ � � time: ð9Þ

[40] Here, elevation is measured in hundreds of meters
and “Lat1” and “Long1” are Legendre polynomials of
degree 1 in latitude and longitude; these are linear functions
taking the value −1 at the southern (respectively western)
edge of the dashed rectangle in Figure 2 and increasing to

+1 at the northern (respectively eastern) edge. Note that the
models are intended to approximate the regional structure of
changes only within this rectangle, and should not be taken
as a basis for extrapolation over a wider area. At the 11 sites
used for model fitting, the value of (8) ranges from −0.093
to +0.036. Unfortunately, this range is difficult to interpret
directly because the occurrence model also contains cov-
ariates representing lagged occurrences: the modeled trend
in precipitation occurrence thus has a direct component
given by (8), along with an indirect component resulting
from the trend in the lagged occurrences themselves. The
net effect of these components can be calculated [Chandler
et al., 2011], although the technical details are well beyond
the scope of the present paper. The qualitative impression
from (8), that negative trends are strongest at locations
with low values of Long1 and Elevation, i.e., in low‐lying
westerly locations, is correct, however.
[41] Fortunately, the final amounts model contained no

terms representing previous days’ rainfalls since these were
found to be insignificant. Interpretation of (9) is much more
straightforward therefore: since this is a contribution to the
log mean wet day rainfall, exponentiating gives an average
decadal change. At the sites used for model fitting, this
change is negative everywhere except in the southwest
corner of the dashed box in Figure 2: the largest change, at
the easternmost site in this box, corresponds to a decrease of
6% per decade. Combining the modeled changes in both
occurrence and amounts as Chandler et al. [2011] did, we
find small increases (up to 0.7% per decade) at three sites but
net decreases of up to 5% per decade at the remainder. In
general, the fitted models suggest substantial decreases in
precipitation, associated with changes in both occurrence and
intensity, over most of the main water supply catchments.
These results are consistent with, but add more detail to, the
conclusions of previous studies reviewed in section 2.3. In
particular, (8) and (9) for the first time provide insight into
the spatial structure of regional precipitation trends.

5.3. Stochastic Downscaling

5.3.1. Model Application
[42] Table 1 provides qualitative descriptions of the spa-

tial daily precipitation occurrence patterns and associated
synoptic situations for the six states of the fitted NHMM,
and lists their mean probability across 1000 simulations for
the period 1958–2007. The patterns and situations are
essentially the same as those depicted by Charles et al.
[1999a, Figure 2], albeit for an earlier version of the
model. The descriptions show that the weather states have a

Table 1. Characteristics of Weather States Obtained From the NHMM

Weather
State

Spatial Precipitation
Occurrence Pattern Synoptic Situationa

Mean Probability

MJJASO MJJ ASO

1 Wet north and hinterland Low pressure trough associated with midlevel moisture
source or spring thunderstorms

0.08 0.07 0.09

2 Wet everywhere Ridging low pressure system, frontal westerly winds 0.18 0.22 0.13
3 Wet west coast and central Coastal convergence, light winds 0.18 0.20 0.17
4 Wet southwest corner Postfrontal, southwesterly winds 0.21 0.21 0.21
5 Dry everywhere High pressure system centered east of SWA, east to

northeast winds
0.25 0.22 0.29

6 Wet south coast Ridging high pressure system, moist southerly winds 0.10 0.08 0.11

aCharles et al. [1999a].
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high degree of physical realism. States 2–5 are the most (and
almost equally) frequent for each season considered. States
1 and 6 are the least frequent, each occurring about one third
to one half as often as each of states 2–5.
[43] To explore changes in weather state occurrence during

the 1958–2007 period, LLR‐based trend tests were applied
to annual series of mean marginal and permanence proba-
bilities, for each of the “seasons” described in section 4.2.3.
Table 2 shows the results for the weather state, season, h =
(haicc, hcv, and hdf), and reference model combinations that
exhibit trends significant at the 0.05 level. The conclusions
from this table are supported by plots of the data, trend es-
timates, and significance traces (not shown). There are
decreasing linear trends in the state 3 probabilities over a
wide range of h values for MJJASO and MJJ. The trend
estimates for state 4 probabilities are nonmonotonic, with a
higher frequency of occurrence since 1980. Over a range of
values of h there is evidence of an increasing linear trend in
state 5 probabilities for MJJ. States 1 and 2 are not included
in Table 2 as their trends are not significant at the 0.10 level.
For ASO, the only significant test result is for state 6, where
there is some evidence for a decreasing linear trend. While

none of the permanence probabilities showed any significant
trends at the 0.05 level, we note for example that all of the
series [P(St = 5∣St−1 = j)], j = 1,…, 6, for MJJ exhibit
increasing trends.
[44] To summarize these results in the context of the

overall precipitation decline in the region, the NHMM
weather states have been aggregated on the basis of whether
the corresponding spatial patterns of precipitation occur-
rence reflect “dry,” “mixed,” or “wet” conditions. A pattern
was categorized as “mixed” if stations with a high proba-
bility of precipitation occurrence are concentrated in par-
ticular subregions of SWA. Thus state 5 was classified as
“dry,” states 2 and 3 were classified as “wet,” and states 1,
4, and 6 were classified as “mixed” (Table 1). Figure 6
shows the mean marginal probability series for each of
these aggregated classes for MJJ. Broadly, these show an
increase in the frequency of “dry” conditions, a decrease in
“wet” conditions, and little change in the frequency of
“mixed” conditions. These conclusions are supported by the
results of hypothesis tests (not shown). However, there is
little evidence for trends in any of the aggregated series for
ASO and hence MJJASO (p‐values ≥ 0.10).

Table 2. Summary of p‐Values for Local Linear Regression Model Fits to Mean Marginal Probability Series for NHMM Weather States

Probability
Series Model Setting

Season

MJJASO MJJ ASO

P(S = 3) h 4.30 29.2 29.2 4.30 8.28 29.2 4.30 6.97 29.2
H0: null 0.099 0.015 0.015 0.004 0.0005 0.00005 0.510 0.562 0.700
H0: linear 0.517 1.00 1.00 0.381 0.290 0.527 0.428 0.452 0.766

P(S = 4) h 0.988 2.13 4.3 1.72 3.55 4.30 4.30 29.2 29.2
H0: null 0.009 0.004 0.002 0.011 0.004 0.003 0.422 0.192 0.192
H0: linear 0.011 0.005 0.004 0.013 0.004 0.003 0.575 0.650 0.650

P(S = 5) h 4.30 29.2 29.2 4.30 21.8 29.2 4.30 29.2 29.2
H0: null 0.434 0.056 0.056 0.015 0.0002 0.0002 0.905 1.00 1.00
H0: linear 0.885 0.388 0.388 0.424 0.174 0.164 0.826 0.847 0.847

P(S = 6) h 4.30 25.3 29.2 1.92 4.30 20.1 4.30 29.2 29.2
H0: null 0.212 0.106 0.103 0.075 0.315 0.415 0.264 0.032 0.032
H0: linear 0.365 0.284 0.286 0.053 0.222 0.155 0.799 0.866 0.866

Figure 6. Local linear regression curves (thick lines) and variability bands (dashed lines) with h = hcv
for aggregated weather state probability series (thin lines) for the MJJ season: (a) P(“dry”) = P(S = 5),
(b) P(“mixed”) = P(S = 1) + P(S = 4) + P(S = 6), and (c) P(“wet”) = P(S = 2) + P(S = 3).
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5.3.2. Modeling of Atmospheric Predictors
[45] Exploratory analysis of the atmospheric predictor

series produced a richer level of detail compared with pre-
vious efforts to characterize changes in regional atmospheric
circulation (see section 2.3). Over the period 1958–2007
there have been slight increasing trends in MSLP and PG
and stronger increasing trends in DTD and CV1; there is
some suggestion that the trend in CV1 is nonlinear, but the
departure from linearity is slight. There are also increasing
trends in the interquartile ranges of the predictors suggesting
that variability is increasing as well as the mean. Intra-
seasonally, there are increasing trends in the dates of the
maxima for MSLP and for PG in particular. There is also an
increasing date of minimum DTD, indicating that maximum
atmospheric moisture at the 850 hPa level is tending to
occur later in the winter half‐year. Moreover, there are
apparent linear relationships between the means and stan-
dard deviations for all four predictors, with the strongest
being for DTD and CV1.
[46] Regression modeling was used to put the above

results on a more formal footing. For each of the variables,
covariates considered in the models included a linear trend
function, sine and cosine functions to represent intraseasonal
variability, lagged values to account for autocorrelation, and
interactions. Furthermore, it is possible that trends in DTD
and CV1 can be explained via the dependence of these
variables upon MSLP and PG, which between them provide
a crude summary of synoptic conditions over the region. To
account for this, therefore, concurrent and lagged values of
MSLP and PG were considered as potential covariates when
modeling DTD and CV1; DTD was also considered as a
potential covariate for CV1. Moreover, to account for the fact
that MSLP and DTD are part of the definition of CV1 at (7),
the quantity 0.04z(MSLP) + z(0.02DTd

850) was included as a
fixed and known contribution to the model for this variable;
such a contribution is referred to as an offset [e.g., Davison,
2003, p. 498]. On the basis of the exploratory analysis, all
four variables were taken to be normally distributed but with
nonconstant variance; the methods of section 4.1.3 were thus
used to fit joint mean‐variance models. In the first instance,
for each variable the standard deviation was taken as a linear
function of the mean. Subsequent diagnostics suggested that
this gave an adequate representation of the variance structure
for DTD and CV1, but not for the pressure variables.
Therefore, extended models were subsequently fitted for
MSLP and PG in which the standard deviation was explicitly
represented as a linear function of the other covariates. As
elsewhere, the choice of covariates to retain in each model
was based on a combination of diagnostics, formal techni-
ques, and physical understanding.
[47] Overall, our results confirmed that there have been

statistically significant changes in the behavior of all four
variables over the past 50 years. However, the complex
structure of the models makes it difficult to infer the exact
nature of these changes from the regression coefficients.
Therefore, having identified where statistically significant
changes have occurred, we return to the original data to
illustrate them. Figure 7 presents the differences between the
monthly means and standard deviations of each variable in
the first and second halves of the data record. Six features
are apparent. First, there is a very clear seasonal structure to
the changes in MSLP, with increases in MJJ and a decrease
in September. The increase in MSLP for MJJ in particular

suggests either a decrease in the intensity of low pressure
troughs or an increase in the intensity of high pressure
systems. Second, mean PG has decreased in MJJ and
increased in ASO, particularly during September. The
decrease in PG in MJJ suggests a decrease in the strength of
the prevailing westerly winds during the season and hence a
reduction in moisture advection. Third, the increase in mean
DTD during May to August indicates a reduction in the
moisture content of the lower troposphere over the centre of
the region during that part of the winter half‐year: there is
little change in September and October. Fourth, there has
been a fairly uniform increase in CV1 between May and
August, and little change in September and October. Fifth,
the variability (standard deviations) of the predictors has
increased over much if not all of MJJASO; according to
the fitted models, these increases are significant at the 5%
level for all variables except PG. Sixth, relative to the
intraseasonal changes in the atmospheric predictors for
MJJ, the corresponding changes for ASO are less con-
ducive to drier conditions. This may explain why the
observed decline in ASO precipitation is markedly less
than that for MJJ [Bates et al., 2008, Figure 4].
5.3.3. Sensitivity Analysis
[48] As reported above, the changes in NHMM weather

state frequencies are consistent with the observed precipi-
tation decline in the region. The factorial experiment
described in section 4.2.3 enables us to determine the
combinations of predictors that are driving these changes in
the simulations. Figure 8 shows half‐normal plots corre-
sponding to each of the probability series with trends sig-
nificant at the 0.05 level (Table 2). Overall five features are
apparent. First, there are only three large effects: MSLP,
DTD, and PG. None of the interaction effects is important.
Thus each predictor has the same effect on simulated pre-
cipitation changes regardless of the state of the other pre-
dictors. Second, MSLP and DTD are the primary drivers of
the decreasing trends in state 3 probabilities for MJJ and
MJJASO (Figures 8a and 8c). This reflects the importance
of changes in the intensities of low pressure (decrease) or
high pressure (increase) systems and the reduction in
moisture supply to precipitation generated by coastal con-
vergence (Table 1). Third, MSLP is the primary driver of the
increasing frequency of state 4 for MJJ and MJJASO
(Figures 8b and 8d). This reflects the importance of changes
in low and high pressure systems to the generation of
postfrontal precipitation (Table 1). Further, PG is an
important effect for MJJASO but not for MJJ (cf. Figures 8b
and 8d). Thus the contrasting changes in PG and the
strength of the prevailing westerly winds for the first and
second halves of the winter half‐year are needed to explain
the trend for the entire winter half‐year. Fourth, DTD
closely followed by MSLP both control the increasing trend
in state 5 probabilities for MJJ (Figure 8e). This reflects the
importance of the reduction in moisture supply and an
increase in the number of days with a high pressure system
centered over the region (Table 1) to a reduction in pre-
cipitation occurrence. Finally, DTD and possibly PG are
responsible for the comparatively mild decreasing trend in
the frequency of state 6 for ASO (Figure 8f). Although
the high probabilities of precipitation occurrence within
state 6 are situated along the south coast (Table 1), local
river flows have declined only slightly (J. K. Ruprecht,
personal communication, 2009).
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6. Discussion and Conclusions

[49] A common and central assumption in the design and
operation of surface water supply systems is the statistical
stationarity of inflow series. Our study of the Integrated
Water Supply Scheme (IWSS) was motivated by the need
for a comprehensive understanding of a hydrologic series
that appears to exhibit nonstationarity through a thorough
investigation of the associated climatic drivers. Our research
uses a comprehensive modeling approach to characterize the
nonstationarity and to identify and describe possible causal
pathways from changes in regional atmospheric circulation
to changes in surface water availability; this provides a
richer level of detail than previous studies. Some of our
results are in agreement with what is already known
(section 2.3), but many others relate to aspects that have not
been previously or comprehensively investigated. They
include the following: the nature of the trend in the annual
inflow series for the IWSS; a thorough analysis of trends in
both precipitation occurrence and amounts in the vicinity of
the IWSS dams; a detailed analysis of trends in the fre-
quencies and temporal persistence of weather types that are
linked directly to spatial patterns of precipitation occurrence;

a comprehensive understanding of intraseasonal as well as
interannual changes in indices of regional atmospheric cir-
culation that are key to trends in spatial patterns of precipi-
tation occurrence; and for the first time an assessment of the
relative importance of the indices, and combinations of
indices, in explaining the trends in the frequencies of weather
types. Overall, our results indicate a more complicated reality
than that suggested by previous studies. Owing to the paucity
of long, high‐quality precipitation records over the period of
interest (1958–2007), however, we were unable to include
precipitation‐runoff modeling to assess the relative influ-
ences of climatic drivers and anthropogenic factors such as
changes in land use and management. While this makes
precise attribution difficult, the available evidence suggests
that the impact of the rainfall decline is greater than the
combined impact of other natural and anthropogenic factors
[Croton and Reed, 2007].
[50] Our main findings in relation to the case study are as

follows.
[51] 1. The decline in annual inflows for the 11 major

dams in the Integrated Water Supply Scheme (IWSS) over
the past three decades is more consistent with a smooth

Figure 7. Changes in monthly means (bars) and standard deviations (lines) for each atmospheric
predictor (1983–2007 versus 1958–1982).
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nonlinear trend than with successive periods of relatively
constant levels separated by abrupt changes. This conclu-
sion, based as it is on a comparison of credible models for
the inflow series rather than upon rejection of an implausible
null hypothesis, challenges the conventional interpretation
of the series. The apparent trend shown in Figure 4 has
implications for future infrastructure investment.
[52] 2. Substantial decreases in precipitation, associated

with changes in both occurrence and intensity, have
occurred over most of the main water supply catchments.
Combining the modeled changes in both occurrence and
amounts, there have been net decreases of up to 5% per

decade over the past half‐century. Moreover, persistence in
precipitation occurrence is seasonally and regionally vary-
ing, and intraseasonal variation in intensity is regionally
varying.
[53] 3. During the first half of the winter half‐year (May

to July), there is evidence of an increasing trend in the
probability of the weather type associated with dry condi-
tions across the study region. This increase is accompanied
by a decrease in the aggregated probabilities of weather types
associated with widespread wet conditions across SWA and
within the vicinity of the main dams of the IWSS in partic-
ular. These trends are strongly associated with a decrease in

Figure 8. Half‐normal plots of selected main and interaction effect estimates from the factorial exper-
iment. Lines in each plot are least squares fits to the 12 lowest values of ∣b∣ and the corresponding half‐
normal quantiles. MSLP, PG, and DTD denote estimated effects for mean sea level pressure, north‐south
SLP gradient, and dew point temperature depression at 850 hPa, respectively (see section 4.2.2 for further
details).
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atmospheric moisture and an increase in regionally averaged
sea level pressure. There is little evidence of any changes in
the persistence of the weather types.
[54] 4. Analysis of time series for four indices of regional‐

scale atmospheric circulation have revealed marked changes
in their seasonality and variability. The changes for May to
July (e.g., higher MSLP, lower north‐south MSLP gradient
(PG), and lower moisture in the lower troposphere (i.e.,
higher DTD)) are highly consistent with the dry conditions
observed over the past 30 years. The changes for August to
October are mixed (higher and lower MSLP in September
and August, respectively, increased PG in August and
September in particular, and lower atmospheric moisture in
August but only marginal changes in September and
October) and are consistent with previous analyses that
indicate only comparatively small reduction in August to
October precipitation. The variability of three out of the four
indices (MSLP, DTD, and CV1) has increased over much if
not all of the winter half‐year.
[55] 5. The temporal orderings of three of the four indices

examined (MSLP, PG, and DTD) have a demonstrable
impact on trends in the weather type probability series. The
effects of the 11 possible interaction terms between the
indices on trends in the weather type probability series are
small by comparison, suggesting that the effects of the
indices can be considered individually, at least as far as the
NHMM is concerned.
[56] 6. While the changes in regional atmospheric circu-

lation and precipitation described herein may only partially
contribute to the observed decline in dam inflow, the mag-
nitudes of these changes are large and they must have a
substantial impact.
[57] 7. The results of our study demonstrate the benefits

of a multifaceted approach to the study of the nature and
drivers of nonstationarity in hydrologic series. They were
obtained through a collaborative research effort involving
multiple disciplines (hydrology, climatology, and statistics),
an approach foreshadowed by Lettenmaier and Burges
[1978].
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