
Strathprints Institutional Repository

Howey, Richard and Long, Derek and Fox, Maria (2005) Plan validation and mixed-initiative planning
in space operations. In: Planning, Scheduling and Constraint Satisfaction: From Theory to Practice.
Frontiers in Artificial Intelligence and Applications, 117 (117). IOS Press, Amsterdam, pp. 89-98.
ISBN 1-58603-484-7

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Plan Validation and Mixed-Initiative
Planning in Space Operations

Richard Howey Derek Long
Maria Fox

richard.howey, derek.long, maria.fox @cis.strath.ac.uk

Department of Computer and Information Systems
University of Strathclyde, Glasgow, UK

Abstract. This paper describes our experiences in using our plan validation tool,VAL ,
in the development of a mixed-initiative plan construction tool intended to support
space operations planning. VAL was initially developed to support the 3rd Interna-
tional Planning Competition (IPC), but has subsequently been extended in order to
exploit its capabilities in plan validation and development. In particular, it has been
extended to include advanced features ofPDDL2.1 that were untested in the 3rd IPC
but which have proved important in its application to mixed-initiative planning in the
space operations project. The tool has also been extended to keep abreast of devel-
opments inPDDL, providing critical support to participants and organisers of the 4th
IPC.

1 Introduction

VAL is a plan validation tool forPDDL. It played an important role in the 3rd IPC [9], allowing
reliable validation of the several thousand plans produced by the competitors, as well as
providing competitors with support for their development and debugging cycles. We have
found the capabilities ofVAL to be critical in understanding the structures of large plans,
providing visualisation and reporting facilities [4]. VAL continued to play an important part
in the 4th IPC [3], which saw seen several minor extensions toPDDL and its semantics.

VAL has also been extended to support features that were included in the definition of
PDDL2.1, although not used in the competitions, including the expression of continuous
change. In this paper we breifly describe the semantic developments ofPDDL required to
support continuous change and go on to give a motivating example for the role of this ex-
tension, based on a project in space operations planning.VAL has proved to be a valuable
resource for this project, supporting the development of a domain description, the validation
of plans constructed by humans and, using a new extension to the system, providing advice
on the correction of flawed plans. In this paper we describe this recent feature and discuss
ways in which the tool can be exploited in plan development in a mixed-initiative mode. We
also briefly discuss how this approach might be developed to allowVAL to play a key role in
fully automated plan construction.



2 PDDL and its Semantics with Continuous Effects

When Drew McDermott and the first planning competition committee proposedPDDL as a
community standard [12] planning domain description language, they initiated an important
process of development in which the planning research community has seen incremental ex-
tensions and modifications as the language has adapted to various goals. In the first instance,
the core ofPDDL was aSTRIPS language, offering anADL extension. This language has a
semantics that is widely accepted, based on a simple state-transition model, with few areas
of potential ambiguity. Perhaps the most significant issue for which alternative resolutions
exist is concurrency: classical plans are often considered to besequencesof steps, represent-
ing state transitions, but partial-order planning [11] and Graphplan [2] both offer alternative
models in which some form of parallelism is considered.

McDermott developed a simple plan validation tool forPDDL, intended only for sequen-
tial plans. However, the question of interpretation for more complex extensions ofPDDL is
more difficult. There is no prior widely accepted model, so choices must be made that are not
necessarily universally accepted. Since the language plays a central role in communication
of domains between researchers, it is important that there be a standard by which a common
understanding may be developed for the semantics of domains and plans for those domains.
A formal semantics is the first component of this. However, a formal semantics is not suffi-
cient by itself, because a formal semantics is notoriously difficult to read. In practice, many
formal semantics are read in detail by few and understood in all details by even fewer. To
make the semantics accessible, their implementation as a validation tool is an important step.
In this form, it is possible to confirm understanding of the semantics by testing various plans
and domains with the tool, confirming the behaviour is as expected. VAL supplies a variety
of forms of feedback, making it possible to explore quite precisely what might be wrong with
a flawed plan and aiding in the interpretation of the more subtle details of the semantics.

Continuous effects are an important extension toPDDL for accurately modelling change
in real world situations, their implementation inVAL is crucial in the mixed initiative applica-
tion for the Beagle 2. Continuous effects can only affect metric quantities: it is not possible to
change a propositional fluent continuously. A metric variable that can be changed by a con-
tinuous effect is called aPrimitive Numerical Expression (PNE). A durative action that has a
continuous effect on a PNE changes it so that the values taken are described by a continuous
function of time. We have developed formal semantics for the inclusion of continuous effects
in PDDL, so calledPDDL2.1 level 4. The semantics can be described by continuous activity
on a real time line punctuated with discrete activity; for details see [5, 6]. When defining con-
tinuous effects in the domain model the rates of change of the PNEs are defined, it is possible
for these rates of change to refer to PNEs that are themselves changing continuously. In this
way the continuous effects are defined by a system of differential equations. These differen-
tial equations must be solved inVAL , however it is infeasible to solve all possible systems of
differential equations, so we restrict ourselves to an interesting subset. Namely solutions that
are given by polynomials or certain classes of exponential functions (also some numerical
solutions). Apart from solving differential equations it is also a requirement to find the roots
of real valued functions on given intervals. This is due to invariant conditions of durative
actions which must hold over the application of the durative action. An invariant condition
may state that a PNE must be below a certain threshold, for examplef < k on (0, T ), and if
f is changing continuously we need to consider the roots off − k on (0, T ). For details on
differential equations and rooting finding techniques in the context of plan validation see [5].



3 Space Operations Planning for the Beagle 2 Lander

On December 25th, 2003, a small lander, travelling with the Mars Express orbiter, was ex-
pected to land on Mars surface. Unfortunately, as with a high proportion of Mars landers,
the Beagle 2 lander was unsuccessful. Various explanations of its failure have been proposed,
including the possibility that the density of the Martian atmosphere is not as high as had
been thought and, as a result, the parachute-brake failed to slow the lander sufficiently before
impact. Despite this major setback, the design of the lander is considered so innovative and
efficient (both in terms of cost and in terms of science-to-mass) that a future repeat attempt is
being seriously considered. Funded by the European Space Agency, the authors have explored
the possible roles of planning technology in space operations [13]. The project includes ex-
amining interactions between human operations planners and automated technology, initially
in the context of operations plans for Beagle 2. Considerable expertise was built up around the
Beagle 2 systems, including a partial domain model for human planning operations, and this
has formed the core of a project to exploit planning technology to support mixed-initiative
and partially automated planning for the lander operations.

Beagle 2 is a static lander, equipped with a

Figure 1: Beagle 2

jointed arm carrying an array of scientific instru-
ments in a “paw” at its end. Included in the paw
is a mole capable of drilling into soil around the
lander to a distance of more than 2 meters, to re-
trieve soil samples for gas analysis on board the
lander. Beagle 2 is essentially a geological sur-
vey system, capable of performing an array of
geological and environmental measurements in
its immediate surroundings.

All lander operations are constrained by po-
wer availability, provided by solar energy with a

battery for storage, and by temperatures. In addition, the lander is equipped with storage
buffers for instrument data. These are too small to store all the data generated by the suc-
cession of experiments performed by the lander. Data must therefore be uplinked from the
lander not only to return it to the scientists, but also to free up space for storage of succeeding
measurements. Uplink windows are constrained, both in duration and in bandwidth, so that
it is not possible to empty all the buffers in a window. Thus, there is a further problem of
scheduling the uplinking of data into the communication windows in order to allow buffers to
be emptied in time for experiments to be performed. These constraints make the management
of data and communication a critical element of the planning problem, in common with other
deep space missions.

Therefore, planning lander operations involves managing constraints on continuously
changing quantities (the generated power levels and temperatures), scheduling the use of
resources, planning the movement sequences of the arm and use of the instruments. Human
operations planners were to have carried out the planning for the lander in a complex process
involving scientists, providing mission goals and the operations to achieve them, and lander
operations personnel, concerned with lander security and, therefore, the power resources and
internal lander monitoring systems. When we became involved in the project we discovered
that the existing partial domain description was in a form that closely resembledPDDL2.1
durative action descriptions. It was possible to translate the description intoPDDL automat-



ically using a simple automatic translator. The domain encoding began with over 50 actions
and this has increased to nearly 70 actions following further domain analysis.

Power is the most important continuous factor in the operations of the lander. The lan-
der operates close to margins and the model of the solar generation and the battery charging
profiles are vital in determining when operations can be planned. The management of bat-
tery and solar power is sufficiently close to the margins of operational envelopes that it plans
must interact with the continuous changes involved in the physical system rather than with
abstractions into coarse-grained simple step-function changes. Of course, with sufficiently
small time-steps a step-function model can approximate the continuous change adequately,
but it is infeasible to attempt to model this level of granularity explicitly in the planning
domain description. Therefore, this problem demands that the planner has access to a suffi-
ciently detailed model of the continuous changes that affect the power systems.

4 Mixed-Initiative Planning

Mixed-initiative planning is a well-recognised path by which to introduce automatic planning
technology into a context in which planning is currently performed manually. The idea is to
allow human and automatic planners to cooperate in producing a plan. There are several
aspects to this interaction. It simplifies the problems facing the automatic planning, since
difficult choices in plan construction can be passed to a human, while the human can benefit
from not having to manage the bulk of easier planning decisions and simple book-keeping
tasks. However, the requirement for interaction imposes a more stringent demand on the
system developers to ensure that feedback from the planner can be provided in a way that
makes sense to the human planner, in terms that the human planner can relate to the planning
task with which they are familiar. Furthermore, the automatic planning task changes from
that of complete plan construction to one of plan repair and iterative plan improvement. We
are not concerned with all the details of the demonstrator we have developed in this paper.
Instead, we focus on the role thatVAL has played in supporting the problems of feedback and
plan repair.

4.1 UsingVAL in Mixed-Initiative Planning

WhenVAL is used in its simplest form, without any parameters, in the case of plan failure
it reports only that the plan has failed. An option is available for verbose output in which
the system generates a report explaining which action in a plan has failed. However, this is
still of limited use since no indication is given of how an action precondition might have
failed to be satisfied. The action precondition might be very complex, but only failed due to
one literal with the incorrect truth value. For example, a large factory machine may have an
action for starting processing with a complicated precondition, but an instance of the action
in a plan might fail simply because the machine is not switched on prior to planned execution
of the start action. Feedback from the plan validation reporting that the machine needs to be
switched on would be invaluable advice on how to fix the plan. In complex plans identifying
even simple failures such as this can be difficult due to the obscuring effects of the actions
surrounding the failure.

With the intention of supplying more informed feedback we have developed inVAL a
detailed advice sub-system indicating how to satisfy unsatisfied preconditions in an invalid



plan. The advice can be used in amixed-initiative planningcycle in which the human plan-
ner firstly produces a plan either by hand or with the aid of software beforeVAL simulates
execution of the plan giving detailed advice on how to repair the plan for each unsatisfied ac-
tion precondition (or invariant condition or goal). The advice can then be used by the human
planner to produce a new plan to correcting the errors, or at least some of them. The new plan
can then be executed usingVAL which produces new plan repair advice, and so on.

In general, the advice offered byVAL indicates why a given plan failed and what con-
ditions must be achieved in order to repair it. It does not indicate which actions might be
applied to achieve those conditions or explore the interactions they might introduce into the
plan if they are added to it. Therefore, the advice fromVAL must be seen as the first stage in
the repair or reconstruction of a flawed plan: other components are necessary to decide how
best to act on the advice if this decision is to be made automatically.

4.2 Structure of Plan Repair Advice

The advice given for a failed precondition is derived from aPDDL precondition expression
and stored in a structure called anadvice proposition.

Definition 4.1. Advice Proposition For a givenPDDL precondition of an action in a plan
theadvice propositionprovides instructions on how the state,S, must be altered at this point
in the plan in order to satisfy the precondition. An advice proposition (AP) is one of the
following:
• Instructions to setA to true, for some literalA.
• Instructions to setA to false, for some literalA.
• Instructions to satisfy a comparison consisting of numerical expressions where each PNE
has its current value reported.
• A list of APs whereall must be followed (conjunction AP).
• A list of APs whereat least onemust be followed (disjunction AP).
• No advice (the empty advice case).

VAL produces advice for each unsatisfied precondition by mapping the precondition and
state to an advice proposition.

Definition 4.2. Let φ be the mapping from aPDDL precondition,P , and a state,S, to an
advice proposition defined as follows ifP is a literal, comparison or connective respectively.

φ(P, S) := if S |= P thenno adviceelsesetP to true

φ(P, S) := if P is an unsatisfied comparison thensatisfyP

φ(∧iXi, S) := ∧i φ(Xi, S), for each unsatisfiedXi in S

φ(∨iXi, S) := ∨i φ(Xi, S), for each unsatisfiedXi in S

φ(X → Y, S) := φ(¬X ∨ Y, S)

If P is a negation,P = ¬Q, thenφ(P ) = ψ(Q) whereψ is defined as below ifQ is a
predicate, comparison or connective respectively.

ψ(Q,S) := if Q 6|= S thenno adviceelsesetQ to false

ψ(Q,S) := if Q is an unsatisfied comparison thensatisfyQ

ψ(∧iXi, S) := ∨i φ(¬Xi, S), for each satisfiedXi in S

ψ(∨iXi, S) := ∧i φ(¬Xi, S), for each satisfiedXi in S

ψ(X → Y, S) := φ(X ∧ ¬Y, S)
ψ(¬Q′, S) := φ(Q′, S)



The mapφ is well defined sincePDDL preconditions and states are finite. Starting from
a PDDL precondition that is not satisfied always yields a non-empty advice proposition. The
advice takes the form of lists of APs, conjoined or disjoined according to contex. Further
advice lists may then be nested. The actual conditions that need to be changed in the state
will be the truth value of predicates and the numerical values of PNEs.

4.3 Advice on Invariants depending on Continuous Effects

The introduction of continuous effects into a plan further complicates the validation of an
invariant over a given interval. There is a natural extension to the plan repair advice given
by φ to invariant conditions depending on continuously changing PNEs. An invariant con-
dition must hold for all values on a given interval, this further consideration only changes
the advice given byφ for comparisons that depend on continuously changing PNEs. Instead
of considering just one state the advice for satisfying an invariant must consider: one logi-
cal state (for the predicates), and a continuously changing numerical state on the interval in
question for comparisons depending on continuous effects. The advice for such a comparison
is that it needs to be satisfied on the interval, together with a report of the subset of values of
the interval that the comparison is satisfied on.

For a disjunctive advice proposition which states that one of the following must be satis-
fied the meaning should be interpreted appropriately when referring to invariant conditions.
That is, for each time value in the invariant interval one of the advice propositions must be
followed. The advice proposition that is followed need not be the same advice proposition for
each time value. See [5], section 7.2 for more details on disjunctive invariants.

4.4 Plan Repair Example UsingVAL : Beagle 2 Plan

In this section we consider an example of the use ofVAL in a mixed-initiative setting for the
Beagle 2 planning problem. In this simple scenario, starting shortly after dawn, the Beagle
begins with its arm stowed and its battery at a low state of charge (due to overnight oper-
ations). The operations planner wishes to construct a plan that will allow examination of a
rock that has been named “peanuts”. The examination procedure consists of taking a close
up image with the stereoscopic camera, then a closer image with the microscope, grinding a
core sample, transferring it to the ovens and processing it in the gas analysis system (GAP).
We will examine only the first few actions. An initial plan is constructed (through a GUI that
is not critical to the work described here):

1: (generate-solar-power) [43200] ;Starts continuous power generation
1: (PAW-move stowed wind_high_modified) [100]
500: (PAW-move wind_high_modified closeup_peanuts) [800]
1400: (SEQ-SCS-CLOSEUP closeup_peanuts) [130]
3550: (SEQ-MIC-FULL_SET_COMPRESS_EACH peanuts) [17300]

VAL is then applied to it, reporting failure with advice as shown below.1

Only one possible achiever for the condition:
(MIC_FOCUS_RANGED peanuts_sample)

Adding SEQ-MIC-FIND_FOCUS_RANGE to complete before 3550
Added PAW-move action from peanuts_closeup to peanuts starting at 3349

1For simplicity we show all times in seconds relative to the plan start. In fact, the GUI uses absolute times
and reports are given in terms of these.



Examination of the LATEX report reveals that the reason for this advice is that two invari-
ants for the action(SEQ-MIC-FULL SET COMPRESSEACH peanuts) are violated. One is
that the microscope must be properly focussed before attempting to use it to capture images
and the second is that the microscope must be in position at “peanuts” in order to be able to
capture the images. The first condition is achieved by the addition of a new action (there is
only one choice) and the second by a proposed addition on an additional PAW movement ac-
tion. Note, however, that the new action(SEQ-MIC-FULL SET COMPRESSEACH peanuts)

has a precondition that is also unsatisfied. The validation process is, deliberately, not invoked
recursively to attempt to repair flaws in the first phase of repairs. This is to ensure that the hu-
man has some opportunity to monitor the process of repair and to interact with it by accepting
parts of the repair and rejecting or modifying others.

Where advice is generated for PAW movement, the plan repair machinery finds efficient
paths between known arm configurations for the path, possibly generating a sequence of
PAW-moves in order to traverse a path. There is no geometric planning involved in this —
individual moves between specific pairs of locations are preplanned as command sequences
for the individual motors in the arm controller. However, the recognition of the path-planning
problem that is involved in identifying the sequence of waypoints for the arm to traverse is
an important element of the repair process. This machinery depends on the recognition of the
underlying behaviour of PAW-move actions as amobile generic type[8].

If, at this point, the human operator simply chooses to reinvoke the replanning system
then the following plan is passed toVAL .

1: (generate-solar-power) [43200] ;Starts continuous power generation
1: (PAW-move stowed wind_high_modified) [100]
500: (PAW-move wind_high_modified peanuts_closeup) [800]
1400: (SEQ-SCS-CLOSEUP peanuts_closeup) [130]
1567: (SEQ-MIC-FIND_FOCUS_RANGE peanuts) [1982]
3550: (SEQ-MIC-FULL_SET_COMPRESS_EACH peanuts) [17300]

The observant reader will notice that this plan does not contain the additional PAW move-
ment action advised above. This is because the interface between the GUI andVAL relies on
a plan representation that is convenient to the human operator, abstracting details that seem
obvious. In particular, a PAW-move action only includes its destination argument — it is as-
sumed that the starting point for each move is wherever was the last location of the PAW. In
the partially repaired plan proposed after the first cycle the inserted PAW-move comes too late
to achieve the invariant condition of the(SEQ-MIC-FULL SET COMPRESSEACH peanuts)

action, so the system infers that the PAW must actually be moved earlier and that this subse-
quent move is a redundant attempt to move the PAW from “peanuts” to itself. This is reported
as a flawed action and deleted from the plan, which is why it does not appear in the plan listed
above. The repair advice is therefore:

Error in finding duration for: (PAW-move peanuts peanuts)
Action instance does not exist!
Plan failed to execute
Report in report.ps
Added PAW-move action from peanuts_closeup to peanuts starting at 1366

The plan now becomes:

1: (generate-solar-power) [43200] ;Starts continuous power generation
1: (PAW-move stowed wind_high_modified) [100]
500: (PAW-move wind_high_modified peanuts_closeup) [800]
1366: (PAW-move peanuts_closeup peanuts) [200]
1400: (SEQ-SCS-CLOSEUP peanuts_closeup) [130]
1567: (SEQ-MIC-FIND_FOCUS_RANGE peanuts) [1982]
3550: (SEQ-MIC-FULL_SET_COMPRESS_EACH peanuts) [17300]



and it still contains an important flaw. The new attempt to position the necessary PAW-
move action has created a different conflict, this time with the action(SEQ-SCS-CLOSEUP

peanuts closeup) , which requires that the PAW stays immobile during the image capture.
Repairing this flaw is a more difficult problem. The plan repair system observes that the
profile for the behaviour of the required condition is that it is true in the interval following the
second PAW-move up to the third PAW-move. It proposes to exploit this by moving the action
(SEQ-SCS-CLOSEUP peanuts closeup) earlier, but there is not sufficient time between
the two PAW-moves to allow the stereo-camera image to be captured. Therefore, the third
PAW-move is moved later to make space and all of the actions dependent on the third PAW-
move are delayed by the same amount of time. This repair is explained in the following output
from the system:

Propose to delay (PAW-move peanuts_closeup peanuts) by 66 seconds
Propose to delay (SEQ-MIC-FIND_FOCUS_RANGE peanuts) by 66 seconds
Propose to delay (SEQ-MIC-FULL_SET_COMPRESS_EACH peanuts) by 66 seconds
Propose to bring forward (SEQ-SCS-CLOSEUP peanuts_closeup) by 99 seconds

The final plan is:

1: (generate-solar-power) [43200] ;Starts continuous power generation
1: (PAW-move stowed wind_high_modified) [100]
500: (PAW-move wind_high_modified peanuts_closeup) [800]
1301: (SEQ-SCS-CLOSEUP peanuts_closeup) [130]
1432: (PAW-move peanuts_closeup peanuts) [200]
1633: (SEQ-MIC-FIND_FOCUS_RANGE peanuts) [1982]
3616: (SEQ-MIC-FULL_SET_COMPRESS_EACH peanuts) [17300]

If the final plan is validated one last time,VAL reports success and generates a report com-
plete with graphs illustrating the power levels during execution. If this same plan is executed
from a state in which the battery state of charge is close to its critical minimum level then a
different outcome can be generated:

Problem found without any repairs:
Condition unsatisfied for:

(generate-solar-power) at time 1

This is due to the fact that the initial powerdraw due to the use of the instruments occurs
too early in the recharging cycle and the power level dips below the minimum level. This
is seen in the report generated byVAL , which explains that the invariant (that the charge
remain above the critical level) is unsatisfied over particular intervals and in the graph of
charge produced byVAL for the report (figure 2). The curve shows that the charge dips low
in the early stages of the plan, when powerdraw exceeds solar-power generation. The shape
is complex due to the changing demands of the different activities across the interval. The
repair for this is to slide all the activity later in the day when power has been generated by
solar generation, but our machinery is not yet capable of generating this repair automatically.
(It can handle simpler cases in which single actions must be slipped to account for violation
of invariants by continuously changing PNEs).

The process of repair depends on a rich plan representation, capturing the dependency
structure between the actions and possible external events. This temporal aspect of the struc-
ture is an important additional element, along with the effect of continuous change, that is
not considered in the otherwise closely related work of Lemai and Ingrand [7] on plan repair.
In their work they consider plans as partial order structures and build repairs using traditional
partial-order planning flaw repair strategies. This is a valuable approach to handling plan
flaws and can be generalised to handle metric conditions to some extent. However, they do
not consider continuous change or its impact on invariants and this is an important aspect of
the current work. In the context of the space operations project, management of continuously



-
Time

6Charge

0 3615
8

16

Figure 2: Graph of Charge.

changing power supplies is a vital part of the planning problem, as has also been observed
in the development of MAPGEN [1], the NASA tool used for mixed-initiative planning for
the Mars Exploratory Rovers mission. MAPGEN does not attempt to model the power man-
agement directly, relying instead on a separate purpose-built model. This has the advantage
of being highly accurate, but the important disadvantage of being opaque to the planning and
validation process. This means that it is difficult to make predictions about the right way to
repair plans that violate the power envelope.

5 Further Work and Concluding Remarks

Polynomials were the first continuous effects to be handled byVAL [5]. The approach can be
extended to continuous effects described by more complex functions, by using polynomials to
approximate the functions. This approach has been implemented for exponential functions in
VAL . This extension has been an important step in the exploitation ofVAL in the context of the
Beagle 2 operations, since the power models are sufficiently complex that they cannot easily
be modelled using simple polynomials alone. In fact, to model them it has been necessary
to numerically solve certain classes of differential equations: we have used the Runge-Kutta-
Fehlberg [10] method with very encouraging results.

We are investigating ways to improve the advice given for repairing a plan, for exam-
ple which actions should be added, removed or moved within the plan. In particular how a
durative action with an invariant condition which depends on continuous activity, may be
moved within the plan to satisfy the invariant. We are aiming for the least human input in the
mixed-initiative planning process, so that most plan repair activity can be automated byVAL .
Ultimately, VAL should support a complete plan repair strategy.

This work is part of a larger project exploring the transfer of planning technology into
space operations planning in European space missions. This is in the context of world-wide
efforts in space exploration and the NASA mobile robots missions currently being pursued
on Mars. These missions also make extensive use of mixed-initiative planning aids, including
the MAPGEN[1] tool, used successfully in the Mars Exploratory Rover missions.

Applying planning technology to real problems highlights the need to provide solutions
to problems that are often not considered in the pure planning research community. Mixed-
initiative planning has long been considered an important bridging technology to help human
planners to become familiar with and more trusting of automatic planning technologies, while
also solving some of the difficulties faced by planners in complex and realistic domains.



In this paper we have discussed the use ofVAL , our plan validation technology, as a tool
in mixed-initiative planning for space operations. An important aspect of this tool is that
it is directly linked to our development of the semantics ofPDDL and therefore provides a
basis for formal validation of the domain descriptions we are constructing. The importance
of continuous change in this domain is an added complication. We have advocated the role of
continuous change in planning domain models for some time and this domain is an illustration
that it is of key importance in real domain problems.

In the context of the space operations planning we have integratedVAL into the tool in-
tended for Beagle 2 operations planning. We anticipate that this bridge between theory and
practice will continue to inspire and motivate further developments in our planning technol-
ogy.

References

[1] M. Ai-Change, J. Bresina, L. Charest, J. Hsu, A.K. Jónsson, R. Kanefsy, P. Maldegue, P. Morris, K. Rajan,
and J. Yglesias. MAPGEN: Mixed intitive activity planning for the Mars Exploratory Rover mission. In
Proceedings of Demonstration Systems Track, ICAPS’03, 2003.

[2] A. Blum and M. Furst. Fast Planning through Plan-graph Analysis. InProceedings of IJCAI, 1995.

[3] S. Edelkamp, J. Hoffmann, and committee. The 4th International Planning Competition 2004,
www.informatik.uni-freiburg.de/ ∼hoffmann/ipc-4/ .

[4] R. Howey and D. Long.VAL ’s progress: The automatic validation tool forPDDL2.1 used in the interna-
tional planning competition. InProc. of ICAPS Workshop on the IPC, 2003.

[5] R. Howey and D. Long. Validating plans with continuous effects. InProceedings of the 22nd Workshop
of the UK Planning and Scheduling Special Interest Group, pages 115–124, December 2003.

[6] R. Howey and D. Long.VAL : Automatic plan validation, continuous effects and mixed initiative planning
using PDDL. In Proc. of The 16th IEEE International Conference on Tools with Artificial Intelligence,
Florida, USA, 2004.

[7] S. Lemai and F. Ingrand. Interleaving temporal planning and execution in robotics domains. InProceed-
ings of AAAI’04, 2004.

[8] D. Long and M. Fox. Recognizing and exploiting generic types in planning domains. InInternational AI
Planning Systems conference, AIPS 2000, Breckenridge, Colorado, USA., 2000.

[9] D. Long and M. Fox. The 3rd International Planning Competition: Results and analysis.Journal of AI
Research, 20, 2003.

[10] J. H. Mathews and K. K. Fink.Numerical Methods Using Matlab. Prentice-Hall Inc., New Jersey, USA,
4th edition, 2004.

[11] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. InProceedings of the Ninth National
Conference on Artificial Intelligence (AAAI-91), volume 2, pages 634–639, Anaheim, California, USA,
1991. AAAI Press/MIT Press.

[12] D. McDermott and AIPS’98 IPC Committee. PDDL–the planning domain definition language. Technical
report, Available at:www.cs.yale.edu/homes/dvm , 1998.

[13] M.J. Woods, R.S. Aylett, D. Long, M. Fox, and R. Ward. Assessing planning and scheduling technologies
for deep space exploration. InProceedings of 4th British Conference on (Mobile) Robotics: Towards
Intelligent Mobile Robots, 2003.


