270 research outputs found

    Human brain-to-brain synchrony in a naturalistic setting: an fMRI study on observational learning

    Get PDF

    A Posture Sequence Learning System for an Anthropomorphic Robotic Hand

    Get PDF
    The paper presents a cognitive architecture for posture learning of an anthropomorphic robotic hand. Our approach is aimed to allow the robotic system to perform complex perceptual operations, to interact with a human user and to integrate the perceptions by a cognitive representation of the scene and the observed actions. The anthropomorphic robotic hand imitates the gestures acquired by the vision system in order to learn meaningful movements, to build its knowledge by different conceptual spaces and to perform complex interaction with the human operator

    Learning together or learning alone: Investigating the role of social interaction in second language word learning

    Get PDF

    Survey: Robot Programming by Demonstration

    Get PDF
    Robot PbD started about 30 years ago, growing importantly during the past decade. The rationale for moving from purely preprogrammed robots to very flexible user-based interfaces for training the robot to perform a task is three-fold. First and foremost, PbD, also referred to as {\em imitation learning} is a powerful mechanism for reducing the complexity of search spaces for learning. When observing either good or bad examples, one can reduce the search for a possible solution, by either starting the search from the observed good solution (local optima), or conversely, by eliminating from the search space what is known as a bad solution. Imitation learning is, thus, a powerful tool for enhancing and accelerating learning in both animals and artifacts. Second, imitation learning offers an implicit means of training a machine, such that explicit and tedious programming of a task by a human user can be minimized or eliminated (Figure \ref{fig:what-how}). Imitation learning is thus a ``natural'' means of interacting with a machine that would be accessible to lay people. And third, studying and modeling the coupling of perception and action, which is at the core of imitation learning, helps us to understand the mechanisms by which the self-organization of perception and action could arise during development. The reciprocal interaction of perception and action could explain how competence in motor control can be grounded in rich structure of perceptual variables, and vice versa, how the processes of perception can develop as means to create successful actions. PbD promises were thus multiple. On the one hand, one hoped that it would make the learning faster, in contrast to tedious reinforcement learning methods or trials-and-error learning. On the other hand, one expected that the methods, being user-friendly, would enhance the application of robots in human daily environments. Recent progresses in the field, which we review in this chapter, show that the field has make a leap forward the past decade toward these goals and that these promises may be fulfilled very soon

    Mental Imagery in Humanoid Robots

    Get PDF
    Mental imagery presents humans with the opportunity to predict prospective happenings based on own intended actions, to reminisce occurrences from the past and reproduce the perceptual experience. This cognitive capability is mandatory for human survival in this folding and changing world. By means of internal representation, mental imagery offers other cognitive functions (e.g., decision making, planning) the possibility to assess information on objects or events that are not being perceived. Furthermore, there is evidence to suggest that humans are able to employ this ability in the early stages of infancy. Although materialisation of humanoid robot employment in the future appears to be promising, comprehensive research on mental imagery in these robots is lacking. Working within a human environment required more than a set of pre-programmed actions. This thesis aims to investigate the use of mental imagery in humanoid robots, which could be used to serve the demands of their cognitive skills as in humans. Based on empirical data and neuro-imaging studies on mental imagery, the thesis proposes a novel neurorobotic framework which proposes to facilitate humanoid robots to exploit mental imagery. Through conduction of a series of experiments on mental rotation and tool use, the results from this study confirm this potential. Chapters 5 and 6 detail experiments on mental rotation that investigate a bio-constrained neural network framework accounting for mental rotation processes. They are based on neural mechanisms involving not only visual imagery, but also affordance encoding, motor simulation, and the anticipation of the visual consequences of actions. The proposed model is in agreement with the theoretical and empirical research on mental rotation. The models were validated with both a simulated and physical humanoid robot (iCub), engaged in solving a typical mental rotation task. The results show that the model is able to solve a typical mental rotation task and in agreement with data from psychology experiments, they also show response times linearly dependent on the angular disparity between the objects. Furthermore, the experiments in chapter 6 propose a novel neurorobotic model that has a macro-architecture constrained by knowledge on brain, which encompasses a rather general mental rotation mechanism and incorporates a biologically plausible decision making mechanism. The new model is tested within the humanoid robot iCub in tasks requiring to mentally rotate 2D geometrical images appearing on a computer screen. The results show that the robot has an enhanced capacity to generalize mental rotation of new objects and shows the possible effects of overt movements of the wrist on mental rotation. These results indicate that the model represents a further step in the identification of the embodied neural mechanisms that might underlie mental rotation in humans and might also give hints to enhance robots' planning capabilities. In Chapter 7, the primary purpose for conducting the experiment on tool use development through computational modelling refers to the demonstration that developmental characteristics of tool use identified in human infants can be attributed to intrinsic motivations. Through the processes of sensorimotor learning and rewarding mechanisms, intrinsic motivations play a key role as a driving force that drives infants to exhibit exploratory behaviours, i.e., play. Sensorimotor learning permits an emergence of other cognitive functions, i.e., affordances, mental imagery and problem-solving. Two hypotheses on tool use development are also conducted thoroughly. Secondly, the experiment tests two candidate mechanisms that might underlie an ability to use a tool in infants: overt movements and mental imagery. By means of reinforcement learning and sensorimotor learning, knowledge of how to use a tool might emerge through random movements or trial-and-error which might reveal a solution (sequence of actions) of solving a given tool use task accidentally. On the other hand, mental imagery was used to replace the outcome of overt movements in the processes of self-determined rewards. Instead of determining a reward from physical interactions, mental imagery allows the robots to evaluate a consequence of actions, in mind, before performing movements to solve a given tool use task. Therefore, collectively, the case of mental imagery in humanoid robots was systematically addressed by means of a number of neurorobotic models and, furthermore, two categories of spatial problem solving tasks: mental rotation and tool use. Mental rotation evidently involves the employment of mental imagery and this thesis confirms the potential for its exploitation by humanoid robots. Additionally, the studies on tool use demonstrate that the key components assumed and included in the experiments on mental rotation, namely affordances and mental imagery, can be acquired by robots through the processes of sensorimotor learning.Ministry of Science and Technology, the Thai Governmen

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Data-based analysis of speech and gesture: the Bielefeld Speech and Gesture Alignment corpus (SaGA) and its applications

    Get PDF
    LĂŒcking A, Bergmann K, Hahn F, Kopp S, Rieser H. Data-based analysis of speech and gesture: the Bielefeld Speech and Gesture Alignment corpus (SaGA) and its applications. Journal on Multimodal User Interfaces. 2013;7(1-2):5-18.Communicating face-to-face, interlocutors frequently produce multimodal meaning packages consisting of speech and accompanying gestures. We discuss a systematically annotated speech and gesture corpus consisting of 25 route-and-landmark-description dialogues, the Bielefeld Speech and Gesture Alignment corpus (SaGA), collected in experimental face-to-face settings. We first describe the primary and secondary data of the corpus and its reliability assessment. Then we go into some of the projects carried out using SaGA demonstrating the wide range of its usability: on the empirical side, there is work on gesture typology, individual and contextual parameters influencing gesture production and gestures’ functions for dialogue structure. Speech-gesture interfaces have been established extending unification-based grammars. In addition, the development of a computational model of speech-gesture alignment and its implementation constitutes a research line we focus on
    • 

    corecore