399 research outputs found

    AN INFORMATION THEORETIC APPROACH TO INTERACTING MULTIPLE MODEL ESTIMATION FOR AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    Accurate and robust autonomous underwater navigation (AUV) requires the fundamental task of position estimation in a variety of conditions. Additionally, the U.S. Navy would prefer to have systems that are not dependent on external beacon systems such as global positioning system (GPS), since they are subject to jamming and spoofing and can reduce operational effectiveness. Current methodologies such as Terrain-Aided Navigation (TAN) use exteroceptive imaging sensors for building a local reference position estimate and will not be useful when those sensors are out of range. What is needed are multiple navigation filters where each can be more effective depending on the mission conditions. This thesis investigates how to combine multiple navigation filters to provide a more robust AUV position estimate. The solution presented is to blend two different filtering methodologies utilizing an interacting multiple model (IMM) estimation approach based on an information theoretic framework. The first filter is a model-based Extended Kalman Filter (EKF) that is effective under dead reckoning (DR) conditions. The second is a Particle Filter approach for Active Terrain Aided Navigation (ATAN) that is appropriate when in sensor range. Using data collected at Lake Crescent, Washington, each of the navigation filters are developed with results and then we demonstrate how an IMM information theoretic approach can be used to blend approaches to improve position and orientation estimation.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Dynamic Switching State Systems for Visual Tracking

    Get PDF
    This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together

    Adaptive Indoor Pedestrian Tracking Using Foot-Mounted Miniature Inertial Sensor

    Get PDF
    This dissertation introduces a positioning system for measuring and tracking the momentary location of a pedestrian, regardless of the environmental variations. This report proposed a 6-DOF (degrees of freedom) foot-mounted miniature inertial sensor for indoor localization which has been tested with simulated and real-world data. To estimate the orientation, velocity and position of a pedestrian we describe and implement a Kalman filter (KF) based framework, a zero-velocity updates (ZUPTs) methodology, as well as, a zero-velocity (ZV) detection algorithm. The novel approach presented in this dissertation uses the interactive multiple model (IMM) filter in order to determine the exact state of pedestrian with changing dynamics. This work evaluates the performance of the proposed method in two different ways: At first a vehicle traveling in a straight line is simulated using commonly used kinematic motion models in the area of tracking (constant velocity (CV), constant acceleration (CA) and coordinated turn (CT) models) which demonstrates accurate state estimation of targets with changing dynamics is achieved through the use of multiple model filter models. We conclude by proposing an interactive multiple model estimator based adaptive indoor pedestrian tracking system for handling dynamic motion which can incorporate different motion types (walking, running, sprinting and ladder climbing) whose threshold is determined individually and IMM adjusts itself adaptively to correct the change in motion models. Results indicate that the overall IMM performance will at all times be similar to the best individual filter model within the IMM

    Dynamic Switching State Systems for Visual Tracking

    Get PDF
    This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together

    Fuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model

    Get PDF
    In this paper, fuzzy theory and interacting multiple model are introduced into H∞ filter-based particle filter to propose a new fuzzy interacting multiple model H∞ particle filter based on current statistical model. Each model uses H∞ particle filter algorithm for filtering, in which the current statistical model can describe the maneuver of target accurately and H∞ filter can deal with the nonlinear system effectively. Aiming at the problem of large amount of probability calculation in interacting multiple model by using combination calculation method, our approach calculates each model matching probability through the fuzzy theory, which can not only reduce the calculation amount, but also improve the state estimation accuracy to some extent. The simulation results show that the proposed algorithm can be more accurate and robust to track maneuvering target

    Automotive sensor fusion systems for traffic aware adaptive cruise control

    Get PDF
    The autonomous driving (AD) industry is advancing at a rapid pace. New sensing technology for tracking vehicles, controlling vehicle behavior, and communicating with infrastructure are being added to commercial vehicles. These new automotive technologies reduce on road fatalities, improve ride quality, and improve vehicle fuel economy. This research explores two types of automotive sensor fusion systems: a novel radar/camera sensor fusion system using a long shortterm memory (LSTM) neural network (NN) to perform data fusion improving tracking capabilities in a simulated environment and a traditional radar/camera sensor fusion system that is deployed in Mississippi State’s entry in the EcoCAR Mobility Challenge (2019 Chevrolet Blazer) for an adaptive cruise control system (ACC) which functions in on-road applications. Along with vehicles, pedestrians, and cyclists, the sensor fusion system deployed in the 2019 Chevrolet Blazer uses vehicle-to-everything (V2X) communication to communicate with infrastructure such as traffic lights to optimize and autonomously control vehicle acceleration through a connected corrido

    Dynamic Switching State Systems for Visual Tracking

    Get PDF
    This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together
    • …
    corecore