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The autonomous driving (AD) industry is advancing at a rapid pace. New sensing technology
for tracking vehicles, controlling vehicle behavior, and communicating with infrastructure are
being added to commercial vehicles. These new automotive technologies reduce on road fatalities,
improve ride quality, and improve vehicle fuel economy. This research explores two types of
automotive sensor fusion systems: a novel radar/camera sensor fusion system using a long short-
term memory (LSTM) neural network (NN) to perform data fusion improving tracking capabilities
in a simulated environment and a traditional radar/camera sensor fusion system that is deployed
in Mississippi State’s entry in the ECoOCAR Mobility Challenge (2019 Chevrolet Blazer) for an
adaptive cruise control system (ACC) which functions in on-road applications. Along with vehicles,
pedestrians, and cyclists, the sensor fusion system deployed in the 2019 Chevrolet Blazer uses
vehicle-to-everything (V2X) communication to communicate with infrastructure such as traffic

lights to optimize and autonomously control vehicle acceleration through a connected corridor.
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CHAPTER I

INTRODUCTION

1.1 Motivation
1.1.1 Advanced Driver Assistance Systems

Advanced driver assistance systems (ADAS) have become prominent in today’s automotive
industry. Original equipment manufacturer’s (OEMs) are integrating ADAS technologies into
vehicles to improve driver safety, comfort, and fuel economy. Traffic related accidents have high
monetary and human costs. In 2018 over 38,000 fatalities occurred due to automotive crashes in the
U.S. alone [9]. To reduce this number a large effort is taking place to include ADAS technologies
such as emergency braking, lane keep assist (LKA), vehicle-to-everything (V2X) communication,
and adaptive cruise control (ACC) in today’s automobiles. ADAS not only helps reduce on road

accidents, it also improves the driver’s ride quality and driving experience.

1.1.2 SAE Levels of Driving Automation

The Society of Automotive Engineers (SAE) has defined six levels of automation. The SAE
J3016 standard defines each level of driving automation by defining both the human’s responsibility
when using the autonomous driving features and the vehicle’s autonomous driving capability [30].
SAE driving autonomy level zero defines a vehicle with no active autonomous driving systems.
SAE level one defines a vehicle with one active ADAS system, such as LKA or ACC. For a vehicle

to be classified as SAE level two, it must have two active ADAS systems active, such as LKA and
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ACC. It is important to note that for autonomy levels one and two, the driver must be engaged and
actively driving at all times and is responsible for the cars action’s. SAE level three defines a vehicle
that can operate autonomously in limited conditions, such as on-ramp to off-ramp highway driving,
or perform autonomous driving in certain geographical locations. In a level three autonomous
vehicle, the driver does not have to be actively driving, but needs to be on alert for when the vehicle
hands control back to the driver. SAE level four does not require any driver intervention and is able
to operate fully autonomously, but is limited to certain locations or operating conditions. Finally,
SAE level five defines a vehicle that can operate in all conditions, drive in all on-road locations,

and operate without any driver intervention.

1.1.3 Challenges in Autonomous Driving

There are many challenges in autonomous driving for the vehicle to be in a safe, comfortable,
and efficient state. An Autonomous driving system can be broken down into four subsystems:
sensing, perception and tracking, path planning and control, and acting. The sensing subsystem
manages all of the sensors on the vehicle and performs light operations on sensor data so that it can
be used by the perception and tracking subsystem. The perception and tracking subsystem’s goal
is to use the sensor data to recreate the environment around the vehicle as accurately as possible.
This gives the vehicle the information it needs to make a decision on what areas are drivable and
what areas are not drivable. The path planning and control subsystem defines the path on which the
vehicle must travel. The path is then converted into a set of steering and acceleration commands
to drive the vehicle. Finally, the acting subsystem is the hardware actuators on the vehicle that

physically control the vehicle such as the friction brakes or motor.



All of the subsystems must work in harmony with one another, or issues quickly begin to
quickly occur. For instance, if the sensing subsystem does not detect an in-path obstacle, the
vehicle will never know it is there. This could cause a vehicle crash. Another example could
be the path planning subsystem failing to create an optimal path, which could result in inefficient
motor behavior or uncomfortable ride quality. On top of working together, there must be a minimal
latency between subsystems. If the delay is too great, the vehicle might not make a maneuver

quickly enough to avoid an accident.

1.2 Contributions

This thesis contributes to the advancement of autonomous driving technology in three cate-
gories: 1) sensor fusion, ii) V2X application, and iii) procedures to develop and test autonomous
driving systems.

In the first portion of this thesis, a novel sensor fusion system based on the LSTM neural
network is developed and tested in a simulated environment. A long short-term memory (LSTM)
network has been proven to yield comparable results to state of the art state estimation filters such
as the extended Kalman filter (EKF) and interacting multiple model (IMM) filter.

In the second portion of this thesis, a systematic approach for testing and developing an
autonomous driving perception system is discussed. A detailed discussion using model in the loop
(MIL), component in the loop (CIL), software in the loop (SIL), hardware in the loop (HIL), and
vehicle in the loop (VIL) testing environments is discussed and applied to a radar-camera sensor
fusion system. This process describes how to navigate from the early design phase of building

system requirements to successfully validating the system on road ACC system.



In the final portion of this thesis, V2X radios are explored in a vehicle-to-intersection aware
ACC system. By using CIL testing methodologies, a V2I system is integrated into a radar-camera
sensor fusion system. This system is transitioned to on road testing, where the system safely and

successfully navigates a single V2I intersection.

1.3 Publications

This thesis contains content from the following Publications:

1. Jonah Gandy,Dr. John E. Ball. (2022). Long Short-Term Memory Networks for Automotive
Sensor Fusion. SPIE Defense and Commercial Sensing, April 2022

2. Amine Taoudi, Jonah Gandy, Vance Hudson, Chaomin Luo, Randolph F. Follett. (2022).
Model Based Design and Verification of Automated Driving Features Using XIL Simulation
Platforms. SAE



CHAPTER II

BACKGROUND

2.1 Automotive Sensors for Perception

Automotive sensors come in a variety of flavors to address many of the challenges in autonomous
vehicle perception. In robotic literature, sensors are broken down into two types: proprioceptive
and exteroceptive[11]. A proprioceptive sensor monitors the internal state of the vehicle or robot.
Exteroceptive sensors gather measurements of a vehicle’s surrounding environment, such as other
vehicles, lane information, and obstacles. This section will cover three proprioceptive sensors used
in modern automotive autonomy: camera, radar, and LiDAR. Table 2.1 summarizes each sensor’s

strength’s and weaknesses.

2.1.1 Camera Sensor

A camera sensor is typically passive sensor that receives photons and creates a digital image
which is used for target classification and range measurement. Cameras are a common sensor on
autonomous vehicles due to low cost and the sensor’s ability to represent color and textures in a
digital format. Camera systems can be as basic as a backup camera to complex stereo cameras used
for accurately measuring objects in 3D space. Monocular cameras are a single-camera system that
typically excel in target classification, lane line tracking, and lateral measurements. A weakness

of a monocular camera system is depth perception, where the camera must use a technique known



Table 2.1

Radar and Camera Sensor Weaknesses and Strengths

Performance Trait Camera Radar LiDAR
Longitudinal Measurement Weak Strong Strong
Lateral Measurement Strong Average Strong

Velocity Measurement Very Weak | Strong Strong

Object Classification Very Strong | Weak Average
Cost Strong Neutral | Very Weak

Weather Performance Weak Strong Average

as structure from motion [37] to translate obstacles from a 2D space into 3D space. Two main
disadvantages of a camera is its poor performance in low light environments and degradation in
rainy and foggy environments. The camera sensor also requires a great deal of processing power
to train neural networks for obstacle classification as well as to run the networks in real-time in
the vehicle. A common practice is to fuse a camera sensor with a range detection sensor such as a
radar or LiDAR sensor. This practice creates a "complementary" pair which is useful for accurately

perceiving the environment around the vehicle [5].

2.1.2 Radar Sensor

The radio detection and ranging (radar) sensor is a mature technology that transmits and
receives radio frequencies (rf) to measure a target’s range and velocity. Common frequency bands
for automotive radar include 24 Ghz, 77 Ghz, and 79 Ghz. Today, most automotive radar sensors
operate in the 77 Ghz and 79 Ghz frequencies. Automotive radar sensors can also be broken
down into three range classifications: short-range radar (SRR) with a detection range of 0 - 50 m,

medium-range radar (MRR) with a detection range of 50 - 100 m , and long-range radar (LRR)



with a detection range of 100 - 200 m [38]. Relative to other automotive sensors, radar sensors
excel at range and velocity measurement, maintain consistent performance in fog and rain, and are

relatively cheap compared to most LiDAR sensors.

2.1.3 LiDAR Sensor

The light detection and ranging (LiDAR) sensor is a relatively novel technology in the auto-
motive space. In 2004, the winning vehicle in the DARPA Grand Challenge used a LiDAR sensor
[34]. LiDAR uses pulses of light to calculate distances derived from the pulse’s time of flight
(ToF). In the automotive space, there are three types of LiDAR: rotary-based mechanical LiDAR,
scanning solid-state LiDAR, and full solid-state LiDAR [32]. A rotary mechanical LiDAR typically
provides a 360 degree 3D point cloud. A solid-state LiDAR uses Microelectromechanical (MEMS)
systems rather than a rotary mechanism. Because a solid-state LiDAR 1is not spinning, solid-state
LiDARs do not provide a 36 degree field of view. Finally, the full solid-state LiIDAR do not use any
mechanical systems. A full solid-state LiDAR uses a photodetector (similar to a camera sensor) to
capture light pulses. Due to the current state of photodetector technology, full solid-state LiDARs
are limited to ranges of 50 - 100 m [32]. In the current state of technology, LiDAR sensors are

expensive compared to radar and camera sensors, limiting their use in commercial vehicles.

2.2 Sensor Fusion

There are many ways to approach sensor fusion, but a traditional approach involves multiple
homogeneous and heterogeneous sources measuring a system’s surroundings. A sensor fusion
system that everyone understands is the human body. Human’s have six senses, all contributing to

an individual’s ability to perceive and interpret the environment. The same analogy can be drawn
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for an autonomous vehicle, where different sensors measure the surrounding environment to create
an accurate picture of the environment. In the automotive case, there are three levels to define the

types of sensor fusion [12].

1. Low-level fusion: Raw data such as signals or pixels are used during the sensor fusion
process. This is also known as data fusion.

2. Medium-level: Data includes features such as pattern, classification, position, shape, or lane
information. This is also known as feature fusion.

3. High-level: This level is known as decision-level fusion, where the sensor fusion performs
probabilistic approaches such as Bayesian methods to fuse data together.

2.2.1 Data Association

Data association is the process of associating sensor detections with the same object over
time. This is a very important component in a sensor fusion system and depending on sensor
performance, data association algorithms must be chosen carefully and tuned towards available
sensors. In this paper, two assignment algorithms to perform association were explored: Munkres
Assignment and Suboptimal Nearest Neighbor (SNN) [27] [28] which both aim to solve the data
association problem.

The SNN algorithm uses a gating procedure to throw away out of bounds detections. Gating is
the process of defining a boundary around an object and throwing away any detections that appear
outside of an object’s radius. A boundary can either be defined as a circle or a rectangle. A simple
gating equation seen in eq. (2.1) was used to change the gating boundary based on longitudinal
distance. This equation assumes that as objects move further away in the longitudinal direction,
sensor measurements will be less accurate. The constants in eq. (2.1) were discovered empirically

through simulation.



ObjeCtlong. distance < 50 > ObjeCtlong. distance * 0.1
gating radius = (2.1)

ObjeCtlong. distance = 50,4

Eq. (2.1) ensures that as objects move closer, the gate becomes smaller and accurate measure-
ments are required to move forward to detection assignment. When the longitudinal distance is
greater than 50, the gating radius is set to four, as seen in eq. (2.1). In the case where detections are
within the gating boundary, an association algorithm will assign the best detections to an object.
SNN algorithm then assigns detections with the gating boundary to the track. It is important to
note that detections closer to the vehicle are assumed to be more accurate (according to sensor
model characteristics). A scaling factor of 0.1 was chosen to reduce the size of the gating boundary
as objects get relatively closer to the vehicle. This scaling factor ensures that unsuitable detections
do not get associated with existing tracks. At a longitudinal distance of 50 meters, the scaling
factor is dropped. It is assumed that sensor detections at a longitudinal distance of 50 meters will
have a greater measurement error. By dropping the scaling factor, the data association algorithm
associates more detections to existing tracks.

The Munkres Assignment algorithm uses the Hungarian method to assign detections to tracks
[27]. In place of a gating mechanism, a cost matrix is used. The cost matrix is created using the
Euclidean distance of each detection to each target. The algorithm then uses the Hungarian method
to assign the best detection to each track. It is important to note that the Munkres assignment
algorithm solves for a global solution where the SNN algorithm solves for a local solution.

Global and local solutions become apparent when two vehicles are in close proximity. In the

case where two vehicles are close together, a local solution could associate a non-optimal detection
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with a track, where a global solution will associate optimal detections tracks. A common trade-off
between algorithms that solve for local and global solutions is computation speed. An algorithm
that solves for a global solution often requires more computational power to solve for the global

solution.

2.2.2 State Estimation Filters

State estimation filters provide estimations of where an object is by using a motion model
and removing measurement noise. State estimation filters are multiple types of state estimation
filters, but one of the most popular filters is the Kalman Filter, originally proposed by Rudolph
Kalman [23]. The Kalman Filter blends the measurement uncertainty and the state transition
model together. If correctly setup and tuned, this removes noise and uncertainty from a sensor(s)
measurement. While the Kalman Filter is ideal for linear system state estimation, a well-known
weakness is its application to non-linear systems. A second variant of the Kalman Filter was
proposed in 1997, known as the Extended Kalman Filter (EKF), that addressed non-linear systems
[1]. A third vairent, known as the interacting multiple model (IMM) filter uses multiple Kalman
Filters with different motion models. This allows for the IMM filter to "blend" multiple different
types of state estimation motion models together. This section will provide background on three

filters: the original Kalman Filter, the EKF, and the IMM filter.

2.2.2.1 Kalman Filtering
The original Kalman Filter is composed with eq. (2.2) and is designed for linear applications
with gaussian noise distribution [3]. The goal of the Kalman Filter is to take a system model and

uncertain measurement matrix, y , as an input and output the ideal system state. The Kalman Filter
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system design equations are seen in eqs. (2.2) and (2.3). Two vectors x; and yj represent the state
vector and output vector respectively. The notation below uses k as the current discrete time step,
k — 1 as the previous discrete time step, and (k|k — 1) read as "k given k — 1", that is, data at time

step k, given k — 1. In eq. (2.3), an observation matrix H can also be seen.

Xk = Fro1xk-1G p—1Ug—1 + Wi (2.2)
Vi = Hixy + vy (2.3)

To implement the Kalman Filtering algorithm, a series of equations are used to provide predic-
tion and update functionality. The first step in the Kalman Filtering algorithm is the state estimation
calculation, X, and the error covariance matrix, Py, calculation. Once the filter is initialized, it
makes a state update using the discrete equation in (2.4). F is the state transition matrix, which in
the sensor fusion case, is a kinematic motion equation for nearly constant velocity (NCV) or nearly
constant acceleration (NCA). Both motion models are seen in (2.5) and (2.6), where equation
(2.5) is NCV and equation (2.6) is NCA. A "nearly" constant motion model is assumed because

capturing a perfect constant motion model would be very computationally expensive.

k-1 = Fr—1Xk—1 + Gr—1up—1 (2.4)
Xk+1 1 T 0 O] xx
VX sl 0 1 0 Of]|vxg

F,, = = (2.5)

Vietl 0 0 I T||w

VYk+l 0 0 0 I||vyk
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Xkal 1 7 312 0 0 0 || x
VX k1 O1 T 00 O VX
axj+1 00 1 0 O0 O||ax
F..= = (2.6)
yeer | |00 0 1 T T2y

VYk+1 00 0 O 1 T/|]|vy

ayi+1 00 0 O0O0 1 ayy

The formulation of the error covariance matrix, P, is shown in (2.7). The process noise matrix,
0, is modelled to represent any noise outside of the system. In the autonomous vehicle case,

outside noise could be gusts of wind, road conditions, or a change in road grade.

Piji—1 = Fro1 P  FL_ | + Qg (2.7)

One of the most important variables in the Kalman Filter equations is the Kalman gain, K. The
Kalman gain controls how much the prediction equation ‘blends’ the sensor measurements and the
system model. In eq. (2.8), the Kalman gain is calculated using the measurement noise covariance
matrix, R, and the measurement observation matrix H. The measurement noise covariance matrix

models the noise characteristics from the sensor.

Ky = Pyji—1H, (HyPrj—1Hy + Ri) ™! (2.8)

Finally, the Kalman Filter algorithm outputs a state estimate, X , in (2.9). The equation output
is controlled by the Kalman gain and outputs an optimal state estimation for the current time step.

Along with the state estimation, an update state error covariance matrix, Py, is calculated in (2.10).

12



k= Zpp-1 + K (2 — HiXrk-1) (2.9)

Pr = (I = Ky Hy)Pyjk—1 (2.10)

2.2.2.2 Extended Kalman Filtering

Sensor fusion algorithms typically need non-linear equations to properly perform vehicle
tracking. An example of non-linear motion is a vehicle changing speeds in a constant velocity case.
If the Kalman Filtering model is a constant velocity model and the tracked vehicle is changing
velocities, the vanilla Kalman Filter would not be able to accurately perform state estimation for
the tracked vehicle. A popular method to perform state estimation for the non-linear case is to use
the EKF. The EKF solves non-linear systems using a set of Kalman Filtering equations modified
with a Jacobian matrix.

To perform non-linear state estimation, the EKF linearizes measurements and state points at
each discrete timestep. For each timestep, a Jacobian matrix is computed so that linear estimation
can occur. The EKF system design equations in (2.11) and (2.12) are very similar to the Kalman

Filter, the only difference is the utilization of the Jacobian matrix to help perform linearization.

Xipk—1 = f (R-1, Ug-1) (2.11)

Vi = h(xg) + v (2.12)
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The Jacobian matrix is composed of the partial derivatives of the transition matrix, F, and the

observation matrix, H as seen in Eqaution (2.13) and (2.14).

Of (xk, ug)
P2t (2.13)

of (%x)
H=2 2.14
P |2 (2.14)

2.2.2.3 Interacting Multiple Model Filtering

The IMM algorithm is a Bayesian filtering method for recursive state estimators, such as the
Kalman Filter [10]. The IMM algorithm uses a Markovian chain algorithm to predict the probability
of the current and future system model. By allowing individual models to interact and blend, an
accurate state estimation for non-linear tracking scenarios can be achieved. An example of a set of
motion models is seen in set m from eq. (2.15), where a NCV and NCA motion models are used
to represent rudimentary movements of a tracked object. Each motion model in set m is known
as a mode. Each motion model’s probability is calculated using eq. (2.16) and stored in a vector

named y in eq. (2.17).

m = {nearly constant velocity, nearly constant acceleration} (2.15)
ui = P(m;|Z) (2.16)
pi = {p1, po} (2.17)
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The IMM algorithm transitions between modes by formulating a set of hypotheses generated
from the Markov chain algorithm in matrix M, or the transition probability matrix. This matrix
allows the IMM to compute mode probabilities and transition probabilities. To compute this, the
total probability theorem in eq. (2.18) is used. In the context of the IMM algorithm, this can be

represented with the summation as seen in eqgs. (2.19) and (2.20).

P(A) = Z P(A|B)P(B) (2.18)
mip mip2
[:“1 F‘Z] = |pima + pomay pimy + pomy (2.19)
mp1 mp
N
e (2.20)

i=1

An important part of the IMM algorithm is interaction between each filter. This interaction
between filters “blends” the state estimations. It also gives each filter more information about
what is happening, preventing filter divergence. In the context of the IMM, this is called mixing
probabilities. To do this, the IMM computes a mixing weight, w;;. Weights are formulated from
the dot product of each filter’s probability from u; and M;; shown in eq. (2.21). Weights adjust
the state and covariance matrix of each filter according to filter likelihood. Eqs. (2.22) and (2.23)

show the weighted covariance matrix, P;’.’and state, x?”.

wij = || = M (2.21)
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N
A= Z Wiixi (2.22)

N
Py = Y Wil =3 =)+ Py 223)
i=1

Next, each filter within the IMM algorithm performs a prediction with adjusted states and
covariances as shown in eqgs. (2.24) and (2.25). In this example, the set of filters used in the IMM

are Kalman Filters.

)_Cj = ijT (224)

P;=F;PTF +Q; (2.25)

In final step of the IMM algorithm, the IMM makes a final state estimate, x, using the product
of each probability and state estimate from each filter. The process equations are shown in eqgs.

(2.26) and (2.27).

N
x =" % (2.26)
=
N —_—
Pi= u |G -G -9 +P; 2.27)
=

A full process flow of the IMM algorithm is seen in Figure 2.1, where a NCV and NCA Kalman

Filter are used for the filters.
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IMM Process Flow

2.2.3 Object Tracking Framework

An object tracking framework is a methodology to initialize, maintain, and delete tracks in a
sensor fusion algorithm. Vehicle tracks in a perception system must be maintained overtime, where
attributes for each track such as state, lane, classification, track ID, and track status are updated at
the sensor fusion algorithm time. When a new obstacle is first detected by a sensor, it is initialized
as a tentative track, where it must satisfy a confirmation threshold. The confirmation threshold
defines a threshold of X out o f Y that must be met to confirm a track. When a track is confirmed,
it can be assumed that the track represents a real obstacle and not a false positive [26].

Confirmed tracks are subject to a deletion threshold where a X out o f Y detection association
threshold is applied. Sensor measurements are imperfect and asynchronous. In a tracking algorithm
this must be accounted for using a method called coasting. Coasting is when a track is confirmed,
but no detections in the current time step were associated with the track. The track is then coasting,

meaning the state of tracking is predicted using a filter, such as the Kalman Filter. While coasting
17



is an effective mitigation strategy for dropped detections in a 10 Hz system, the more a track is
coasted, the more inaccurate the state becomes. This is where a deletion threshold is used to

remove the track from the track list if the track is not seen for X out of Y detection frames.

2.3 Deep Learning in Autonomous Driving

Deep Learning (DL) has accelerated the growth of technology in the autonomous driving field.
DL is used for object detection in computer vision (CV) tasks, data forecasting natural language
processing, and path planning in robotics. A popular neural network in autonomous driving is
the convolutional neural network (CNN). The CNN is used for computer vision tasks such as lane
segmentation [40] and object classification [29]. The recurrent neural network (RNN) handles
temporal data such as language processing and state estimation. Over time, a RNN builds weights
in its layers, allowing it to "remember" and handle data over time [35]. A vanilla RNN is limited to
short sequences of data due to the exploding gradient problem. Over time, a weight in a RNN can
exponentially grow, where the weights in the network are so large that the data moving through the

network is not affected by the weights [17].

2.4 Long Short-Term Memory Networks

Long short-term memory (LSTM) networks are a type of recurrent neural networks (RNN).
RNNss are classified as a feedback network (as opposed to a feed forward network), and can handle
time-sequences of data. RNNs use temporal data and have the ability to handle sequences of
data and perform tasks such as speech recognition, language processing, and data forecasting. In

problems with long sequences of data, RNNs are not well suited due to the exploding gradient
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problem during network training. To mitigate this issue, LSTMs were introduced to handle long
data sequences [18].

In literature, the LSTM has three gates: an input gate, an output gate, and a forget gate. This
is known as the three-gate version of the LSTM. A vanilla LSTM only uses the input and output
gate. The following discussion and experiments in this paper refer to the three-gate version of
the LSTM [16], which introduced the third gate, known as the forget gate. The input gate, y™"
activation functions to regulate the information flowing in and out of each LSTM cell. The forget
gate, y°"" | is used to reset cell information when it becomes outdated or stale. For each gate, the
variable w is used to represent the weight. The sigmoid function for the input and output gates is

seen in equations (2.28), (2.29) and (2.30). The data flowing through the cell is net,.

yin(l) = fin (Z winy" (t = 1)) (2.28)
yout(t) = four (Z winy™ (t = 1)) (2.29)
ye(t) = f<p (Z W(pym(t - 1)) (2.30)

A cell state, s, from eq. (2.31), is used to learn and forget information as it passes through the

cell.

se(t) = y?(1)sc(t = 1) + y™ (1) g (net.(1)) (2.31)
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The LSTM is a modern approach to apply deep learning to temporal based tasks. The LSTM
eliminates the vanishing gradient problem from vanilla RNNs to handle longer sequences. With
this, the LSTM comes with several issues: it cannot handle sequences in excess of 10,000 and it is

more computationally expensive by a factor of nine [16].

2.5 Model Predictive Control for ACC

The MPC has risen in popularity over the last decade due to an increase in computation
speed and algorithm maturity. An MPC can optimize over multiple variables with a set of given
constraints. Initially, the MPC was used to regulate multi-variable chemical processes, but has
been recently adopted in the automotive space [19] due to the MPC’s ability to optimize around a
set of constraints in multivariable problems. Examples of automotive control applications that use
the MPC include energy management strategies [31], transmission [7], steering [14], and ACC [2]
[36].

At the core of the MPC, the output of an MPC is optimized around a cost function as seen in
eq. (2.32) [15]. The cost function considers the vehicle dynamics and any constraints set on the
MPC. In the MPC formulation, ¢ describes the discrete time index. Eqs. (2.33) and (2.34) define
the system model. The vectors x, y, and u define the system state, input, and output. The set of
constraints on the output of each vector is seen in eqs. (2.35), (2.36), and (2.37). The variable
N defines the control horizon and how many steps the MPC will take to optimize. The MPC’s
model is initialized using eq. (2.38), where in this case the initialization is zero. Finally, eq. (2.39)
defines the number of prediction steps that occur before the terminal control law is applied where

N is the prediction horizon iteration.
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N=I
YLI}in F(x(N[t)) + Z L(x(klt), y(klt), u(k|t))
@) k=0

s.t. x(k+1)t) = f(x(k|t),u(k|t))

y(k|t) = h(x(k[t), u(k|r))

xmzn S x(k|t) S xmax,k = l""’NC

Vmin < y(k|t) < ymax,k = Oa ., N

Umin < u(k|t) < tpmax,k =0, ..., Ney

x(0|t) = x(¢)

u(klt) = k(x(k|t)),k = Ny,...,N -1

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

When in operation, the MPC begins its control with an initialization of the of the system state

vector, x. By using a system model, the MPC makes a prediction into the future to a desired

prediction horizon variable. The optimization function, equation (2.32), considers the system

constraints and cost function when determining a control output. The control output is fed back to
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the system model and to the plant [15]. The cycle is repeated for the next cycle using the feedback
from the plant and the new input vector.

In the ACC system, a list of inputs, constraints and outputs must be defined for an MPC to
operate correctly [36]. The MPC input vector, p;, uses the in-path vehicle’s relative longitudinal
position and velocity as seen in eq. (2.40). In order to maintain a safe distance at varying velocities,
the safe distance, dy, changes with vehicle velocity as seen in eq. (2.41). Eq. (2.41), also known as
the car following model, ensures that there is enough distance between the lead vehicle and the ego
vehicle as the velocity increases. When the ego vehicle comes a stop, the minimum safe distance,

do 1s enforced. A time gap constant, Ty, is used to determine how large the safe distance will be.

Prelative distance

X = (2.40)

Prelative velocity

ds(t) = Tpve(t) + doy (2.41)

Constraints for the MPC directly affect driver safety, fuel economy, and ride quality. The first
constraint on the MPC is the safe distance constraint in equation eq. (2.42), enforcing that the MPC
shall not violate the safe distance constraint, dy. The second set of constraints affect ride quality
and fuel economy by enforcing limitations on the minimum and maximum acceleration the MPC
can request. The constraints on the acceleration are seen in eqs (2.43), (2.44), and (2.45). Finally
a constraint on the change in acceleration (jerk) is set on the output of the MPC in eq. (2.46).
Limiting the rate of change in acceleration will provide a smoother ride and increase fuel economy

by allowing the vehicle powertrain to operate efficiently.
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d()<dr

Amin < e < Amax

Amin < 0

Amax > 0

jmin < ] < jmax

2.6 Vehicle-to-Everything Communication

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

V2X communication brings a wide spectrum of applications to semi- and fully-autonomous

vehicles. Traffic light assist [8] [22], a vehicle-to-intersection (V2I) technology, is an autonomous

system that alerts the driver of an upcoming intersection and can autonomously slow the vehicle

to stop for a red traffic light. Platooning [4] is another technology that utilizes vehicle-to-vehicle

(V2V) messages to give string stability to a line of vehicles. With V2V messages, each vehicle

receives a full and accurate dataset of all vehicles in the platoon.

V2X communication is typically broken down into two categories: dedicated short-range

communicate (DSRC) and cellular V2X (C-V2X). DSRC uses the IEEE 802.11p wireless protocol

for local transmission and reception of basic safety messages (BSMs), signal timing and phasing

(STaP) messages, and map messages. In ideal environments, DSRC radios can communication

23



with vehicles in ranges of 3 - 5 km [20]. DSRC are used for low-latency applications such as
inter-vehicle communication. In areas without 5G cellular coverage, vehicles with DSRC radios
can create an ad-hoc network [6]. C-V2X leverages 5G network technologies and is standardized
in 3rd Generation Partnership Project (3GPP) release 15. Green navigation [13] uses C-V2X to
receive traffic information to optimize navigation throughout a city, improving fuel efficiency and
avoiding highly congested areas. Optimal vehicle communication uses a hybrid V2X architecture.
The hybrid V2X architecture uses both DSRC and C-V2X radios to achieve the benefits of both
systems [6].

Fifteen DSRC messages are defined in SAE J2735 [21]. This message set includes messages
defining V2v, V2I, and vehicle-to-pedestrian communication. In a V2V application, BSMs are
transmitted and received by all vehicle that have a DSRC radio and are within working range of
the radio. A BSM includes rich vehicle data such as vehicle dynamic data, blinker status, and
GPS location. In a V2I application, Signal Phase and Timing (SPaT) and Map messages are
transmitted in pairs to vehicles in range of the intersection. SPaT messages define the timing
information about the traffic lights in the intersection. Map messages provide detailed information
about geographical layout of the intersection. Map messages were designed to work with both
BSMs and SPaT messages. BSMs include GPS information that can be plotted onto the map
message, giving absolute location of each vehicle at an intersection. SPaT messages are associated
with map messages, giving the vehicles on-board-unit (OBU) enough information to determine

which intersections are relevant.
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2.7 Mississippi State EcoCAR

The EcoCAR Mobility Challenge is part of the Advanced Vehicle Technology Competitions
(AVTC) Series where eleven universities across the United States and Canadar are tasked with
converting a stock 2019 Chevrolet Blazer into a SAE level two autonomous hybrid vehicle. The
EcoCAR Mobility Challenge is headlined sponsered by General Motors, MathWorks, and the
Department of Energy and managed by Argonne National Laboratory.

The EcoCAR Mobility Challenge is in the fourth and final year of the competition, where
teams are focused on refining and finishing their SAE level two autonomous features and hybrid
electric drive train. The research in this thesis was performed using the 2019 Chevrolet Blazer
from the EcoCAR Mobility Challenge for the Mississippi State ECOCAR team. The team’s forward

perception sensors were donated by Bosch and Intel, both of whom are EcCoCAR sponsors.
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CHAPTER III

LONG SHORT-TERM MEMORY NETWORKS FOR AUTOMOTIVE STATE ESTIMATION

3.1 Introduction

Adaptive Cruise Control (ACC) is an important part of automotive autonomy. To have a
robust Adaptive Cruise Control system, a well-defined sensor fusion system is required. This
chapter focuses on a feature-level sensor fusion system where three fusion techniques are explored:
independent Kalman filtering, interacting multiple model (IMM) filtering, and a novel hybrid
technique using a combination of both an IMM Filter and deep neural network (DNN). Kalman
Filtering is a popular approach for automotive sensor fusion, but heavily relies on the given
kinematic models to make state estimations. This chapter explores the IMM filter to capture multi-
model motion as well as a DNN approach to build a data-driven model of the system. The IMM
filter is built with several Kalman Filters featuring different kinematic models. The proposed DNN
used is a Long Short-Term Memory (LSTM) network trained on radar and camera data to forecast
a vehicle’s state. To overcome the weaknesses in both IMM filtering and LSTM networks, this
chapter propose’s a hybrid technique consisting of both the IMM filter and the LSTM network. The
proposed hybrid system uses a single filter for each sensor. The filtered sensor data is synchronized
and used as the input for a trained LSTM network. The LSTM network was trained on over
100 simulated highway driving scenarios that might occur in an ACC application. Simulations

and code were developed using MATLAB and the Autonomous Driving Toolbox. Our hybrid
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Simulated Sensor Field of View.

IMM-LSTM system outperformed the independent Kalman Filtering approach in longitudinal and
lateral tracking accuracy (RMSE) by 23 percent and had promising results compared to the IMM

filter where the tracking error was decreased by nearly 50 percent in certain driving scenarios.

3.2 Methods
3.2.1 Simulated Sensors

Data to train/test the LSTM network was generated using MathWork’s Driving Scenario De-
signer [25]. To build a forward perception, camera and radar sensors were placed on a simulated
vehicle. Sensor characteristics such as detection range, detection noise, and field of view were all
tuned in the scenario designer tool. As seen in Figure 3.1, the camera and radar’s field of view is

plotted.
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3.2.2 Sensor Fusion Using IMM Filter

The first approach proposed is an IMM state estimator configured with two EKFs: a NCV EKF
and a NCA EKF. As seen in egs. (2.5) and (2.6), the NCV and NCA motion models were chosen to
represent the constant velocity maneuvers and constant acceleration maneuvers a tracked vehicle
might make.

The IMM was initialized with a set of a filters, m in eq. (3.1), transition probabilities, mu, and
state covariance matrix from the initialization measurement. The transition probabilities matrix

limits how much a certain model can influence the system.

mu = [0.95,0.95] (3.1)

As seen in eq. (3.1), the transition probabilities are both 95 percent. In real-world scenarios,
a specific model will never be 100 percent true. Therefore, one model will never represent the
vehicle’s state perfectly. The 5 percent margin allows for other models to influence the primary
model.

Inputs to the IMM are timed aligned radar and camera detections. The detection alignment
component produces a frame every 100 ms. To handle multiple tracks, a new IMM is created to
handle state estimation for each track. As tracks are initialized and deleted, IMMSs are created and

deleted respectively.

3.2.3 Sensor Fusion Using LSTM Neural Network

In comparison the IMM system, a data-driven approach using an LSTM neural network was

explored. The full LSTM-based sensor fusion architecture is seen in Figure 3.2. An LSTM was
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trained to perform state estimation using several input features from both the camera and radar
Sensors.

There are several advantages of using a DNN approach over a traditional model-based algorithm
such as the IMM. DNNs have to ability to learn underlying patterns in data, where model-based
algorithms are limited to the scope of their tuned model. In the first sensor fusion approach, the
IMM has optimal performance in scenarios with nearly constant acceleration or nearly constant
velocity. In scenarios where vehicles perform maneuvers outside of motion model scope, overall
state estimation performance decreases. On the other hand, the LSTM network learns the motion
models and underlying patterns of the input features. Furthermore, the LSTM network has a
model agnostic capability to predict a wider variety of movements compared to the traditional
IMM approach[33]. The immediate downside to the LSTM network is that the network is only as
good as its training data. This means that if the training data does not include a wide variety of

scenarios, the LSTM network will be limited with its capability to perform state estimation.
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In the LSTM system architecture, the input features of the LSTM include filtered data from
a camera and radar. The purpose of filtering preceding measurements is to remove measurement
noise and consistently deliver input to the LSTM. Sensors are susceptible to dropped detections.
To mitigate the issue of dropped detections, the preceding filters handle dropped detections by
coasting state outputs. This ensures that the LSTM network is getting a measurement from both

the camera and radar at each timestep.

Table 3.1
LSTM Input Features
Input Features Unit
Camera xy, m
Camera vxy, m/s
Camera yy m
Camera vyy m

Camera Variance xy,
Camera Variance vxy
Camera Variance yj
Camera Variance vyy

Radar xy, m
Radar vxy, m/s
Radar yy m
Radar vyy. m/s

Radar Variance x;,
Radar Variance vxy
Radar Variance yy,
Radar Variance vyy
Ego vy m/s
Ego yy degrees
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Table 3.2

LSTM Output Features

Output Features | Unit
Xk m
Yk m

3.2.3.1 LSTM Network Training

The LSTM network was trained on 350 driving scenarios. The sequence lengths ranged from
36 — 412 detection sequences. The input and output features are seen in Table 3.1 and Table 3.2
respectively. The LSTM network regresses from radar and camera measurements to lateral (x) and
longitudinal (y) in cartesian coordinates using sensor measurements, sensor variance vectors, and
ego vehicle data. Most RNNs, including LSTMs, do operate using time as an input variable. It is
important that all data in the sequences used to train an LSTM have the same discrete timestep.
After an LSTM is trained using a specific timestep, running the network requires the data to enter
the network at the specific timestap that the network was trained on. The trained LSTM in this
architecture expects an input every 100 ms. In this chapter, the trained LSTM is limited to data
frames at 100 ms intervals.

Input features to the LSTM network were normalized to [-1 1] to achieve optimal performance
results. This method of normalization was chosen to handle negative sensor measurements. The
normalization equation is shown in eq. (3.2). Output features were not normalized. The LSTM

network regresses to the lateral and longitudinal coordinates.
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Xnormalized = ((M) * 2) -1 (3.2)

Xmax — Xmin

During the training cycle for the LSTM, one normalization tactic that was explored was to
normalize both the input and output features. This method proved to train very well with validation
data, but during the testing phase the network performed poorly. A second approach was found to

normalize the input features and allow the network to regress to lateral and longitudinal coordinates.

3.2.3.2 LSTM Network Configuration

The LSTM network is composed of thirteen hidden layers as seen in Figure 3.3. Four fully
connected layers were discovered to have optimal performance for the Euclidean coordinate regres-
sion. As discussed in [24], the input fully-connected layers allow the network to learn and handle
the complex maneuvers of the tracked vehicle. The two LSTM layers address non-linearities and

retain memory of the sequence data.
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LSTM Network Layers

During training, the Adam Optimizer was chosen through a comparison process against other
optimizers. Other optimizers such as Stochastic Gradient Descent with Momentum (SGDM) were
explored but did not yield optimal results when compared to Adam. Table (3.3) shows the hyper

parameters used to train the LSTM network in Figure (3.3).

3.2.4 Performance Metrics

Two metrics will be used to evaluate the performance of each state estimation approach. The
mean absolute error (MAE) in eq. (3.3) is used to define the percentage error between the vehicle

state estimate, y, and the ground truth, y’ for the entire sequence, N. The root mean squared error
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Table 3.3

LSTM Hyperparameters

Hyperparameter | Value

Learning Rate | 0.0005
Epochs 4500
Mini-Batch Size 256

(RMSE) in (3.4) is used to observe the error in meters between the vehicle state estimate and the

ground truth.

N
! :

MAE:N;m—yil (3.3)
1 N

RMSE = | = i—y)? 3.4
N;(y yi) (3.4)

3.3 Results and Discussion
3.3.1 Simulated Sensor Performance

For the experiments in this chapter, a radar and camera sensor were modeled and simulated
using MathWorks’s Autonomous Driving Toolbox in MATLAB 2020b. Within the toolbox, sensors
were tuned to represent real-world sensor measurement characteristics.

Individual sensor performance was first analyzed to observe the measurement performance in
the longitudinal direction. Figures 3.4 and 3.5 show the sensor longitudinal measurement at ranges
from O to 80 meters in a box plot format. The box plot format shows the sensor measurement at five

different ranges up to 80 m. High measurement accuracy is a necessity for reliable sensor fusion

34



Longitudinal Camera Measurement Variance
T T T

75 F . _
+
70 — i
+ .
60 |- o + ,
g H
ol = |
2 :
5 i
% +
Q50 + b
E ]
=l == |
2 i
=) \
5
40 4
351 — 7
30 - q
%
25 — b
L I I I I
5m - 20m 20m - 35m 35m - 50m 50m - 65 65m - 80m
Figure 3.4

Camera Detection Boxplot

systems and accurate tracking results. It is also important to observe each sensor’s measurement
characteristics so that the sensor fusion state estimation algorithms can be tuned correctly.

The boxplot is a useful plotting tool to show sensor measurement performance over various
ranges. The measurement mean is indicated with a red line in each box, measurements in the first
and third quartile are above and below the red line within the blue box respectively, and minimum
and maximum measurements are shown with the whiskers. Finally, measurement outliers are
shown with a red “+”.

As expected, the radar sensor outperformed the camera sensor in the range measurements.
Cameras are limited by the number of pixels in each image. For a camera to make a range

measurement, a relationship between pixel frames must be established [41]. As a vehicle gets
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Radar Detection Boxplot

further away, the vehicle is represented with fewer pixels and the measurement become less accurate.
Figure 3.4 shows the camera measurement deviation rise linearly as the distance increases.

Radar performance is not impacted as harshly by the increase in distance at ranges up to 80 m.
Frequency modulated continuous-wave (FMCW) radars radiate rf energy to accurately measure
target distance and velocity relative to an automotive camera sensor. With this, the mid-range

radar’s performance did not decrease linearly as seen in Figure 3.4.

3.3.2 IMM Sensor Fusion Results

Before testing the full sensor fusion system, individual components of the system were tested.
The first component testing was the IMM state estimator.
To verify that the IMM was performing correctly, two different simulations were used to initially

verify filter functionality. The first functional requirement of the IMM was the model switching
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IMM Model Switching.

component. As a vehicle performs various maneuvers, the IMM must adjust its model probability
to represent the vehicle’s current state. Figure 3.6 shows a simple longitudinal maneuver test where
a lead vehicle drives at a constant velocity for the first five seconds of the test, then accelerates
from time stamps five to ten. This test verified that the models were appropriately switching as the
tracked vehicle changes velocities.

In Figure 3.6, the IMM correctly switches between the NCV and NCA modes. In the simulated
scenario, the lead vehicle changes motion models at time 5 seconds. At time 5 seconds, the second
plot in Figure 7 shows the IMM switching model modes to correctly output from the NCA Kalman
Filter.

The second functionality test for the IMM was to compare its output to a single camera system

and a single radar system. Three systems were tested: a Radar IMM, a Camera IMM, and an
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RC IMM. The scenarios simulated were two highway driving scenes. In both scenes, the lead
vehicle is at a relative distance between 60 — 100 m. The vehicle’s maneuvers include lane changes
and velocity changes. The results for the simulations are seen in Figure 3.7 where the Euclidian
RMSE/m error was used as a metric to analyze system performance. A higher RMSE indicates
worse performance.

Figure 3.7 shows that the using both radar and camera sensor measurements, the radar-camera
(RC) IMM is able to achieve more accurate results compared to a single sensor system.

Finally, the RC IMM system was tested across 100 driving scenarios. The purpose of this test
was to expose the RC IMM system to a wide variety of tests. If an IMM did not perform well in a
certain test, issues were addressed by making refinements to the IMM parameters and the testing

procedure was restarted to collect measurements across all of the testing scenarios.
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Scenario 2: LSTM vs. IMM Performance.

3.3.3 LSTM Sensor Fusion Results

After several iterations of training, tuning, and refinement, the LSTM network was able to
achieve consistent sensor fusion results. The final training results were a validation error (RMSE/m)
of 0.41 and a mini-batch error of (RMSE/m) 0.29.

Initial testing of the LSTM composed of simple scenes with constant velocity and constant
acceleration maneuvers. Once the LSTM was verified to work on simple scenarios, more complex
scenarios were introduced. Figure 3.8 shows a simple stop and go test. In this simple scenario,
LSTM was able to make accurate predictions.

The LSTM was able to accurately track the lead vehicle in both the lateral and longitudinal

direction. The LSTM was also able to outperform the RC IMM in the lateral tracking.
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Table 3.4

Scenario Descriptions.

Scenario | Description

1 The lead vehicle remains at a constant velocity.

2 The lead vehicle remains stationary while the ego vehicle
approaches from behind at 20 mph. The ego vehicle safely
decelerates and stops at a safe distance of 5 m.

3 The lead vehicle stops at a stop sign, then accelerates. The
ego vehicle stops at the stop sign, then accelerates behind
the lead vehicle.

4 The lead vehicle travels in front of the ego vehicle on a a
highway. The lead vehicle makes several maneuvers such
as lane changes and velocity changes.

To further benchmark and test the LSTM sensor fusion system, four different scenarios were
designed to test the LSTM’s capabilities. The LSTM system was compared against five different
filtering systems. Along with the Radar and Camera IMM from Figure 3.7, a Kalman Filter using
a NCV model (CV KF) and an Extended Kalman Filter using a NCV model (CV EKF) were also
used to benchmark system.

Table 3.4 describes each scenario and the maneuvers that were made by the lead vehicle. The
performance results for each scenario are shown in Table 3.5. Performance results were measured
in RMSE/m.

The results from Table 3.7 show that the IMM and the LSTM sensor fusion systems were able
to achieve consistent results across all four scenarios. Both the EKF and KF systems excelled at
Scenario 1, where the vehicle made maneuvers within the NCV model scope. As the scenarios
included more maneuvers such as lateral changes and changes in velocity, the EKF and KF systems

suffered a performance hit seen in Scenarios 3 and 4. The camera and radar IMM systems both
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Table 3.5

State Estimation Results, Error reported in RMSE(m). R(Radar), CV(Constant Velocity),
EKF(Extended Kalman Filter), IMM(Interacting Multiple Model), RC(Radar-Camera),
KF(Kalman Filter), LSTM(Long Short-Term Memory)

Scenario R CV CCv R C RC CV RC RC
EKF EKF IMM IMM KF IMM | LSTM
1 1.1426 3.9067 2.0534 1.8525 1.0518 | 1.3215 | 1.3406
2 1.0849 1.5821 0.4159 0.4782 22153 | 1.0812 | 0.5419
3 1.1858 2.3526 0.1625 0.5458 6.5802 | 0.8565 | 0.4486
4 2.4556 4.6987 1.5259 1.7126 15.0106 | 0.8492 | 2.1208
Average
RMSE(m) 1.467225 | 3.135025 | 1.039425 | 1.147275 | 6.214475 | 1.0271 | 1.112975

had consistent performance, but when introduced to the more complex highway Scenario 4, both
systems had degraded performance while the RC IMM was able to leverage measurements from
both sensors.

The final testing scenario used to benchmark the LSTM was a scenario with over 1300 timesteps.
This was test intended to exploit some of the weaknesses with the LSTM network. As stated in [16],
the LSTM networks struggle to maintain prediction accuracy when input sequence lengths exceed
1000 steps. Figure 3.9 shows a comparison between the RC IMM and the RC LSTM systems.

The RC LSTM system struggles to maintain accurate measurements after timestep 600 in the
longitudinal direction. In the lateral direction, the RC LSTM system maintains accurate state
estimations throughout the duration of the entire sequence and outperforms the RC IMM system
in the lateral state estimation. To mitigate this issue, a reset mechanism could be setup to reset

the LSTM network when the network begins to drift away from radar-camera measurements. THe
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Long Sequence LSTM Results.

LSTM netowrk could also be reset regulary at a selected timestep preventing measurement drift

nput data.

Finally, another weakness in the RC LSTM system is the limited amount of training data. 350
unique scenes were generated to cover a large number of scenarios a vehicle perception system

might encounter. Edge cases that were not including in the training date would cause the LSTM’s

3.4 Conclusions and Future Work

In conclusion, this chapter explored two state estimation techniques for sensor fusion system.
The first system used a model-based approach using an IMM state estimator. The second system
used a data-driven approach with an LSTM network trained on sensor measurement to regress to

vehicle position coordinates. After successful training and benchmarking, the RC LSTM system
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Table 3.6

Long Sequence Scenario: IMM vs. LSTM.

RC IMM

RC LSTM

Long. RMSE(m)

Lat. RMSE(m)

Long. RMSE(m)

Lat. RMSE(m)

0.46625

0.3200

1.3260

0.1122

and RC IMM system, it can be concluded that both systems outperformed the single filter estimation
approaches using a Kalman Filter of Extended Kalman Filter. Across multiple scenarios the RC

LSTM outperformed single state estimation techniques such as the Kalman Filter and Extended

Kalman Filter algorithms but failed to surpass the performance of the RC IMM system.

Looking into the future, progress on this work will explore novel approaches to incorporate
DNNSs into model- based algorithms. Mechanisms to predict model modes and corrections as seen
in [39] [33] . Another area that will be researched is lane assignment. Using an LSTM to perform
lane assignment based on road curvature, vehicle position, and lane boundaries might prove to
be beneficial. A predicted lane assignment for each track would be beneficial for an autonomous

vehicle’s capability in identifying in-path vehicles for ADAS applications such as adaptive cruise

control and lane keep assist.
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CHAPTER IV
TESTING SENSOR FUSION IN XIL ENVIRONMENTS FOR ADAPTIVE CRUISE

CONTROL

4.1 Introduction

This chapter will discuss the engineering process and testing platforms used to bring a radar-
camera perception system from initial requirements to full functionality in an ACC system. The
sensor fusion is deployed into 2019 Chevrolet Blazer for on-road testing. The testing platforms used
to develop and test the sensor fusion system include: model in the loop, hardware in the loop, and
vehicle in the loop. An engineering V-Diagram was used to guide the project’s development and
ensure that requirements are met in four different testing environments: model in the loop(MIL),

software in the loop(SIL), hardware in the loop (HIL), and vehicle in the loop(VIL).

4.1.1 Connected and Autonomous Vehicle System Architecture

In the Chevrolet Blazer, two hardware controllers are employed for processing sensor detections
and controlling the hybrid vehicle propulsion. An Intel TANK-870Q170 is used to process sensor
detections, command longitudinal acceleration, and manage incoming V2X messages. A dSPACE
MicroAutoBox(MABX) serves as the hybrid vehicle supervisory controller. This section will focus

on the software and hardware layout of the Intel TANK. With heterogeneous sensors, it is required
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Chevrolet Blazer Sensor Suite.

to build a robust sensor fusion algorithm to handle heterogeneous detections. One of the most

popular sensor combinations, radar-camera, is employed in this CAV system as seen in Figure 4.1.

4.1.1.1 Sensor Architecture

The Chevrolet Blazer is outfitted two with forward facing sensors: a Bosch MRR Evo 14 Front
Radar and an Intel Mobileye 6. Both sensors are feature level sensors, meaning that feature level
data is reported from each sensor. Table 4.1 and 4.2 show the Bosch radar and Intel camera sensor
specifications. The sensor pair was chosen due to its complementary measurement system. As
discussed early, radar and camera sensors are a economical choice for an ACC system. When
selecting sensors for an ACC system a critical region should be drawn to define the area where
sensor performance is critical. In the critical region the sensor suite should be able to provide:

accurate measurements, redundant measurements, lane classification, and multi-object detection.
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Table 4.1

Bosch MRR Evo 14 Front Radar.

Specification Value
FOV 90 degrees
Tested Range Om-80m
- Position (m)
- Velocity (m/s)
- Acceleration (m/s”"2)
- Deviation (m”2/s"2)
- Lane Classification
(Enum)

Measurements

As seen in Figure 4.2, the camera and radar sensor suite covers the critical region, which is objects

in the left, right and ego lanes.

4.1.1.2 Sensor Fusion Software Architecture

The software architecture on the Intel TANK was developed using ROS, Python, and MAT-
LAB. As seen in Figure 4.3, the core sensor fusion architecture consists of three layers: sensing,
preprocessing, and tracking. The architecture is organized into modular nodes using ROS and
Simulink. The architecture is distributed into local processing for each sensor. A global tracker is
employed to fuse the detections from the radar and camera trackers.

In the sensing layer, the software is designed to process the CAN messages from each sensor.
CAN messages are decoded into usable data formats and published in a ROS network. A prepro-
cessing layer is used to synchronize detections from the asynchronous sensors. The preprocessing

layer creates a detection frame every 100 ms. During the 100 ms window, if a detection is received
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Table 4.2

Intel Mobileye 6 Camera.
Specification Value
FOV 38 degrees
Tested Range Om-178 m
- Position (m)
- Velocity (m/s)
- Acceleration (m/s"2)
Measurements .
- Lane Polynomial
- Lane Classification
- Object Classification

from a sensor, the packet buffer will store the detection in the frame. At the end of the 100 ms
window, the frame is published to its respective local tracker.

In the tracking layer, each sensor has an associated local tracker. A local tracker at each sensor
provides several benefits: smoothing out sensor measurements, per-sensor track maintenance
rules, and per-sensor data association tuning. Radar and camera sensors have different strategies
for generating detections. By employing a local track for each sensor, per-sensor tuning strategies
can be employed to create uniform detections before the detections are fused in the global tracker.
Once detections are filtered in the local trackers, the global tracker is designed to fuse heterogeneous
detections. The output of the global tracker is a track list (with a maximum of three tracks) of
surrounding objects such as vehicles, stationary objects, cyclists, and pedestrians. The maximum
number of tracks is limited to three tracks due to the assumption that the ACC system shall function

on a two lane highway with no more than three vehicles in view of the sensors.
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4.2 Engineering Development and Testing Processes

Interfacing with a variety of controllers and developing large and complex software is not a

trivial task. To address this set of issues, a development process following the engineering V-

Diagram Model, as seen in Figure 4.4 below, was adopted.

is to provide a systematic approach for requirements development, design, software development,
and testing. As opposed to a traditional V-Diagram Model, the V-Diagram Model in Figure 4.4 was
modified to support four different testing environments: MIL, SIL, HIL, and VIL. The V-Diagram
approach provides a methodology for moving requirements and software through a variety of
testing environments and eventually into the vehicle testing environment where the full system

is validated. This allows for safe and effective testing in the final platform, VIL. A summary of
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Sensor Fusion Architecture.

criteria tested in each environment is seen in Table 4.3. In the following sections, each testing
environment will be broken down further into rational and application.

The V-Diagram Model is driven by requirements developed early in the development phase.
With ACC as the end application, seven requirements were developed to describe to necessary
functionality of the sensor fusion system for ACC to function efficiently and safely. The seven

sensor fusion requirements are listed in Table 4.4 below.

4.2.1 Model-in-the-Loop Testing

The sensor fusion software in Figure 4.3 was developed using a model-based design approach.
MathWorks’ Simulink software was used to develop, test, and build the software on the Intel TANK
in the Chevrolet Blazer. In the MIL environment, the tracking algorithm components such as state
estimation, track maintenance, data association, and detection transformation were developed.
The MIL environment relied on two techniques for testing: scenario simulation and data-replay.
Scenario simulation used MathWorks” Driving Scenario Designer[25] to build scenarios. Sensors

placed on the virtual vehicle would detect objects in the scenarios. The collected sensor data was
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Table 4.3

Environment Criteria.

Environment Criteria
This environment deals with fundamental algorithm functionality.
MIL Mechanisms such as detection generation and data-replay are used

to test algorithms in this environment.
This environment ensures that generated code (C, C++) functions
as intended in the ROS network.
HIL This environment deals with the communication between controllers.
VIL This enV‘ironment tests full systerp funct.ionality .after all safety
requirements have been met in previous environments.

SIL

used to replay through the sensor fusion algorithm both in real-time and simulation time. Real-
time data functionality refers to the built code deployed and running on the autonomous controller.
Simulation time is the timestep set in the simulation environment. One advantage of scenario
simulation is the ability to design scenarios that would be difficult or dangerous to replicate in
the real world. An example of this would be a lead vehicle suddenly coming to a stop. Relative
distance and velocity is a key measurement that the sensor fusion system must be able to handle.
If the system has too much "lag" or does not track the vehicle correctly, it could cause a major
incident.

Data-replay was heavily used in development of the sensor fusion algorithm. An advantage of
using data-replay over scenario simulation was the ability to tune the sensor fusion algorithms to
real sensor data collected in the VIL environment. In the MIL environment, an example of the
workflow used is seen in Figure 4.5. Simulink is used to simulate the sensor fusion model. Logging
data in the ROS networks requires the rosbag functionality, which is the logging system in ROS.

rosbags can be recording during the data-collection period and replayed into a ROS network. In
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Simulink, the rosbag replay block is used to replay sensor data into the sensor algorithm. Sensor
data is fed into the sensor fusion algorithms similar to how the data enters the sensor fusion system
in the VIL environment.

Ground truth data is collected independently on an OxTS RT3000 unit. Since data on the
OXTS unit and the ROS system were captured independently, the two datasets needed to be time
aligned before further review. To time align ground truth and sensor fusion data, vehicle speed
captured on the OxTS unit and vehicle speed capture in the ROS system was cross correlated. The
cross correlation process shifts the vehicle speed signals across time and provides a correlation
at each time shift. The time shift index with the highest correlation value is used to time align
the two datasets. Vehicle speed is used because it an accurate measurement recorded on the

OxTS(captured with GPS and IMU sensors) and directly in the vehicle. Once data is time aligned,
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Table 4.4

Sensor Fusion Requirements

ID

Requirement Description

The sensor fusion system shall be able to track
vehicles in longitudinal ranges of 1 m to 120 m

The sensor fusion system shall correctly assign
lanes to tracks in longitudinal ranges 1 m to 80 m

The perception system shall prioritize the
closest in-path vehicle for the ACC algorithm.

The perception system shall confirm a track after 5 out 6
detections have been assigned to the tentative track.

The perception system shall delete a track after 10 out of 10
frames of not having a detection assigned to the track.

In ranges of 5 to 80 meters, the perception
system shall not switch track IDs.

The MAE of a track shall be less than 5% for in-path vehicles
within a 5 to 80 meters infront of the ego vehicle.

the sensor fusion system results can be simulated and compared to ground truth data.
correlated data is stored as a scenario folder with two datasets: ground truth and sensor data. This
workflow allows for rapid development and accurate results (MIL vs. VIL). This workflow also
allows for direct sensor comparison (radar vs. camera). In the Simulink model, the camera sensor
data input can be disabled, providing a radar only system. The same process can be for a used to

simulate camera only system. This approach provides a comparison between camera, radar, and

radar-camera systems using the same scenario and dataset.

4.2.2 Software-in-the-Loop Testing

The SIL environment is used to test the full ROS system in a virtualized environment. In

the SIL environment, the system is running in real-time, as opposed to the MIL environment.
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Requirements such as compatibility between software components, code generation, and ROS
environment variables are all addressed in the SIL environment. Testing in the SIL environment
uses data-replay in the form of rosbag files. As discussed in the MIL environment, rosbags replay
data in real-time, therefore any timing requirements are addressed in the SIL environment.

Along with the core sensor fusion software and ROS network, other applications such as
real-time plotting tools and diagnostics are also developed in the SIL environment. Diagnostic
requirements can be tested using fault injection in the rosbag files. In Figure 4.6, a diagram of the
SIL environment is seen with build sensor fusion code outputting tracks to a Birds-Eye-Plot tool

built in Python.

4.2.3 Hardware-in-the-Loop Testing
The HIL environment is primarily used for testing communication interfaces between con-
trollers in the vehicle. Five communication channels are connected to the Intel TANK and require-

ments for each communication must be met for safe functionality when the system is deployed into
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the vehicle. To run HIL simulations, a dSPACE HIL simulator is used to imitate the physical CAN
interfaces in the Chevrolet Blazer. As seen in Figure 4.7, three CAN channels from the Intel TANK
are used to communicate with sensors/controllers in the vehicle. On the HIL simulator, soft ECUs
are used to emulate the radar and camera sensors. The dSPACE MABXx controller interfaces with
the HIL simulator through multiple CAN channels. In a test case where adaptive cruise control
functionality such enabling/disabling is being tested, the HIL simulator would emulate the button
status. In this testing scenario, the HIL simulator was used to test the signal chain between the
Intel TANK and the vehicle. Requirements that could potentially be dangerous to test in the VIL
environment are possible using the HIL simulator and can be performed conveniently in a lab
setting.

For analyzing the sensor fusion performance, an OxTS RT3000 GNSS/INS was used to obtain
ground truth measurements for a fixed object. To meet the requirements listed in Table 4.4, three
scenarios were designed to address each requirement and test the systems functionality. As well as

analyzing performance in real-time, ground truth and sensor fusion measurements were logged for
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data-replay. As seen in Figure 4.8, the system functionality on the TANK is tested using a rosbag

file to replay data into the system.

4.2.4 Vehicle-in-the-Loop Testing

In the VIL environment full system functionality is tested. High level system requirements,
such as the requirements listed in Table 4.4, are tested in the VIL environment. To ensure optimal
use of vehicle time, all controller outputs were logged via a CAN or rosbag logger. To meet the
requirements described in Table 4.4, three scenarios were designed to test the functionality of the
sensor fusion system and are listed in Table 4.5.

Real-time sensor fusion CAN data is recorded on an OxTS RT3000 unit, which captures ground
truth and measured detections. To validate the sensor fusion system, metrics such as mean average

error (MAE), RMSE, and number of track drops were all used. Figure 4.9 shows the VIL testing
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environment dataflow in a scenario. A testing limitation was the lack of multiple OxTS units. With
only a single OxTS unit, testing was limited to a scenario with only a single static test vehicle.

Each testing scenario was tested at two approach speed: 15 mph and 25 mph. Testing scenarios
are also broken down into in-lane and out-of-lane scenarios. The tracking of the lead vehicle’s
lateral position directly affects the lane assignment. Technology Blvd., seen in Figure 4.10, located
in Mississippi State University’s research park, was used as a closed-course testing ground due to
its 340 m straight away, high quality lanes, and ease of access. Requirements for a closed-course
track are: a lead vehicle and a follow vehicle.

All scenarios from Table 4.5 were performed on-road, using real sensor data. Tests were
repeated using two different vehicles: a White Ford F250 and a Black Toyota Camry. Testing
results for the system are seen in Tables 4.6 and 4.7. Testing procedures were replicated across two
vehicles to test if the system could obtain accurate results with different types of vehicles (trucks
vs. sedans). In both testing scenarios, the weather was mostly sunny conditions.

In the direct approach scenarios, both vehicles were accurately tracked with less than a 5%

longitudinal range error and less than a 2 mph longitudinal range-rate error at speeds of 15 and
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Table 4.5

Sensor Fusion On Road Testing Scenarios.

Scenario ID | Scenario Description
| Ego vehicle approaches an in-path vehicle at 10 mph
from an initial distance of 250 m.
’ Ego vehicle approaches an in-path vehicle at 20 mph
from an initial distance of 250 m.
3 The ego vehicle is positioned 5 m from the lead in-path vehicle.
The ego vehicle reverses at 5 mph until the 150 m marker.

25 mph. Figure 4.11 shows a 30 mph direct approach scenario. A limitation of the sensor fusion
system is state accuracy at higher relative velocities. As seen in Table 4.7, the average error in
the velocity measurement increases as the relative velocity between the ego vehicle and the track

vehicle increases.
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VIL Testing Environment Example.
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Figure 4.10

Technology Blvd. Sensor Fusion Testing Location.

Five different subplots are shown in Figure 4.11 to describe the tracking performance of the
sensor fusion system. In the first and second subplot, the longitudinal and lateral range for both
the ground truth and fused object are plotted against time. The in path flag is plotted to show
that the lead test vehicle was identified to be in an in-path object at a longitudinal distance of 130
m. The fifth subplot shows the object’s assigned ID. In a robust sensor fusion system, the same
object should not swap IDs over time. This would mean that the system is capable of tracking
the same object over a period of time without "dropping" the track. If the same tracked object
is swapping IDs, the system could be suffering from intermediately "dropping" the track and is
deleting tracks too quickly. This causes issues to other downstream applications such as ACC
where the in path vehicle suddenly disappears and reappears to the system. This would result in
unwanted acceleration and braking, causing the driver’s ride to be uncomfortable and reducing fuel

economy.
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Table 4.6

Sensor Fusion Testing Result with Black Toyota Camry.

Scenario Average Range | Average Range-Rate | Long. Range | Lat. Range
Error % Error (mph) RMSE (m) | RMSE (m)
1 2.54 1.3 1.38 3.09
3.82 1.5 1.62 291
3 3.66 0.36 0.94 291

While static object tests with the OxTS unit provide insight to sensor accuracy, dynamic object
tests add more variables such as road curvature, vehicles passing in adjacent lanes, and vehicle
kinematics that the sensor fusion system must account for. The dynamic scenario was designed to
mimic a highway scenario that might occur when the ACC system is activated. The scenario test
site was located at Hail State Blvd., which is composed of over 5 km of highway with high quality
lane markings. The scenario was scripted to have a lead vehicle begin approximately 10 m in front
of the ego vehicle, accelerating to 45 mph. A 10 m distance is used to emulate the safe distance set
for the ACC controller. The ACC controller is still in development and to ensure safe functionality,
the minimum safe distance is set to 10 m. As confidence is the system is built, the minimum safe
distance will be lowered to 5 m. During the test, the lead vehicle would vary its speed between 40
mph and 50 mph, creating smaller and larger distances to challenge the sensor fusion system. The
scenario ends with the lead vehicle coming to a stop and the ego vehicle stopping approximately
10 m behind. Figure 4.12 shows tracking results of the sensor fusion system.

The results from the dynamic scenario shows that the sensor fusion system was able to con-
sistently track the lead vehicle during the entire drive cycle. During the test, the lead vehicle was

in-path for the entire duration. The sensor fusion results reflect that a vehicle is in-path even when
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Table 4.7

Sensor Fusion Testing Result with White Ford F250.

Scenario Average Range | Average Range-Rate | Long. Range | Lat. Range
Error % Error (mph) RMSE (m) | RMSE (m)
1 4.69 0.45 2.93 0.39
2.97 0.74 1.96 0.6
3 3.29 0.18 1.68 0.52

road conditions such as curvature and slope were not ideal. It should be noted that during the test,
there were multiple occurances of oncoming traffic in the left lane. While plots such as Figure 4.12
show the in-path vehicle, the system is designed for multi-object tracking. Vehicles in the left lane
were correctly assigned to the left lane and did not distract or interrupt the system from tracking

the lead vehicle.

4.2.5 Performance in MIL vs. VIL

Translating performance from a simulated environment to a real environment is critical for
the development process with the overall goal of being able replicate a VIL environment in a
MIL simulation. Having an accurate MIL simulation environment allows for rapid algorithm
development without taking away vehicle time or resources. To compare the MIL and VIL
environments appropriately, a simple approach scenario was used to benchmark the environments.
In the scenario, a lead vehicle was stationed approximately 100 m in front of the ego vehicle. Once
both vehicles were positioned, the ego vehicle proceeded to approach the lead vehicle at a speed of
10 mph. The scenario was designed and simulated using MathWork’s Driving Scenario Designer.

In the simulated MIL scenario, ground truth data was collected directly by comparing the ego
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VIL Dynamic Scenario.

vehicle to the lead vehicle. In the VIL scenario, the same sensor fusion system was deployed for
real-time functionality. Ground truth data was collected using an OxTS RT3000 unit.

As seen in Figure 4.13, the MIL and VIL testing results are seen for the 10 mph approach sce-
nario. A noticeable difference between the MIL and VIL environments is the sensor measurement
characteristics. In the MIL environment, the sensor measurement characteristics were tuned to
have less noise compared to the VIL environment. Another difference, which is not shown in the
figures, is the radar sensor detection distance. In the VIL environment, the radar is designed to be
a mid-range radar with capability of detecting objects at a distance of 80 m. The MIL simulation

environment radar sensor was adjusted by increasing the sensor noise and decreasing the detection

range from 120 m to 80 m.
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MIL vs. VIL Testing.

4.2.6 Radar vs. Camera Performance

The radar and camera sensors both provide key information to a sensor fusion system. The
camera used on the MSU Chevrolet Blazyer, an Intel Mobileye 660, can be seen to provide very
accurate longitudinal measurements. The issue with a camera only approach is evident when
observing the estimated longitudinal velocity. As seen in Tables 4.6 and 4.7, two different vehicles
were used in the same scenarios. In the scenarios with the Black Toyota Camry, the radar sensor
generated fewer detections compared to the White Ford F250. In the testing scenarios with the
Ford F250, the radar was operating normally and generating detections at a normal range. In
the scenarios with the radar operating normally, the velocity measurement is 97 % more accurate
compared to the scenarios with the Toyota Camry. While sets of range-rate measurements meet
the minimum requirements, it is important to note that the radar sensor is a critical component for

accurately measuring longitudinal range-rate.
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Another limitation with the Bosch radar sensor is that is only has mid-range (MR) detection
capability. Mid-range sensors automotive sensors are capable of detecting vehicles at distance of
5 m to 85 m where a long-range sensor, such as the Intel Mobileye, is capable of detecting vehicles
at distances of 175 m. To test the capabilities of each sensor individually, a MIL simulation was
performed where the camera was disabled and the radar was enabled. A second simulation was
performed with the radar disabled and the camera enabled. The results of the simulation are
highlighted in Figure 4.14. The radar demonstrates accurate tracking at ranges of 5 - 60 m, but
does not have the capability for long range detections at 150 m, which is highlighted in red in figure
4.14. The camera is able to track the lead vehicle at 150 m, but the camera is unable to accurately
track the longitudinal range and velocity, which is highlighted in red in Figure 4.14. In Table 4.8,

a comparison between the radar, camera, and radar-camera sensor fusion system is seen. In all
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Radar vs. Camera Comparison.

metrics, the radar-camera system outperforms the single sensor systems.
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Table 4.8

Camera vs. Radar vs. Camera-Radar Sensor Fusion Results.

Sensor Average Range | Average Range-Rate | Long. Range
Suite Error Y% Error (mph) RMSE (m)
Camera 7.88 0.63 3.02
Radar 16.82 1.52 27.82
Camera-Radar 4.46 0.39 2.51
Camera %e 55.42 % 47.06 % 18.44 %
Improvement
Radar e 277.13 % 289.74 % 1008.37 %
Improvement
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Radar-Camera Performance.

60

Using both camera and radar sensors provide fused result benefits where the full system is able

track objects at longer distances (using the camera) and when an object is closer, the system relies
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on the radar’s measurements since the radar sensor has higher accuracy. The full system approach
can be seen in Figure 4.15. Another metric that was not highlighted in the Figure 4.14, but should
be noted is lane assignment. In the radar-only system, the lane assignment is not consistent since
the system relies on the camera’s lane polynomial to project a lane forward. In the camera-radar
system, the system takes advantage of the lane assignment that is provided by the camera and the

accurate measurements of the radar.

4.3 Sensor Fusion with Adaptive Cruise Control

The final step in system validation is using the sensor fusion system in conjunction with an
ACC system. Figure 4.16 shows a high-level dataflow of the ACC system with the sensor fusion
and MPC algorithms. A track management component sits between the sensor fusion algorithm
and the MPC. In a mult-object fusion system, the in-path object must be identified and its relative
longitudinal distance and velocity must be sent the to MPC. The track management component
parses the track list for an in-path object and propagates the in-path object to the MPC. If there is
not an in-path object, the in-path object fields are set to zero or false, letting MPC know that there
is no in-path vehicle follow.

An MPC for ACC from MathWork’s Autonomous Driving library was adopted as the primary
ACC controller. Before using the MPC in on-road scenarios, several MPC parameters needed to
be tuned in simulation. Table 4.9 shows the MPC parameters that were tuned using simulated drive
cycles.

Testing the ACC system for on-road functionality occurred over multiple phases. Figure 4.17

below highlights each of the phases used to verify the functionality of the ACC system. As the ACC
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system completed a phase, more complexity was added to the testing scenarios. The goal of testing
over multiple phases was ease the system into more complex scenarios overtime, therefore ensuring
the was safe to use. In the first phase, a dynamometer was used to verify that the ACC system could
maintain sets speeds with no in-path vehicle. The second phase introduced a simulated vehicle
in-path that the ACC system followed while on a dynamometer. The third phase introduced an
on-road scenario where the ACC system had to come to a complete stop for an in-path vehicle.
This scenario replicated the procedure performed in the sensor fusion approach tests, but with the
ACC system commanding vehicle acceleration. In the final phase, a dynamic on-road endurance

run was used to demonstrate the full ACC system.
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Table 4.9

MPC Parameters.

Parameter Value | Unit
Default Spacing 6 m
rcceleron | 5| ™2
Al\c/[ci;g;liirgn > m/s"2
Plf(frliczt;‘l’ln 100 | Steps
Phase 2 Phase 3

Initial On Road Testing
* Maintain Speed

* Approach Test

* Cut-in Approach Test

On Road Testing
* Hail State Blvd. Drive

Cycle

Figure 4.17

ACC On Road Testing Strategy.

The ACC endurance scenario was located at Hail State Blvd. with an in-path vehicle maintaining

a velocity of 40 mph. In the ego vehicle, the ACC set speed was set to 45 mph, which forced the

ACC system to maintain a safe distance behind the lead-vehicle during the duration of the testing.
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Figure 4.18 shows the test results where the ACC system is able to successfully track the lead

vehicle throughout the duration of the test as well as maintain a safe distance behind the vehicle.
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Hail State Blvd. ACC On-Road Drive Cycle.

4.4 Conclusions and Future Work

Bringing a sensor fusion system from a set of requirements into a on road vehicle is a challenging
task. This section introduces a development and testing methodology on how to bring a sensor
fusion system through multiple testing environments and offers novel development workflows for
validating requirements across multiple environments. The radar and camera sensor fusion system
discussed in the section applied technologies across the MIL, SIL, HIL, and VIL environments to
meet all of the system requirements of accurately tracking a lead vehicle for an ACC system. When
the sensor fusion system was moved into a real ACC system, there was a seamless transition and

the system was able to function safely and comfortably.
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Moving into the future, this development methodology can be applied to other sensor fusion
systems with different sensor sets. For example, a LIDAR and camera based system can use the
workflows presented to collect raw sensor data and ground truth data. Time align the two datasets
and perform high fidelity simulations using tools such as Python and Simulink. This process
not only introduces rapid mobile development, it also allows for seamless transition into the VIL
environment, since the system has been tuned on real sensor data rather than simulated data. There
is still a lot of room to improve the existing sensor system by adding sensor that cover blind spots
and monitor behind the vehicle. In the addition of more sensors, the practices presented can be

applied to validate and improve system tracking capabilities.
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CHAPTER V

TRAFFIC AWARE ADAPTIVE CRUISE CONTROL

5.1 Introduction

This final chapter extends the previously discussed sensor fusion system in the MSU Chevrolet
Blazer by adding vehicle-to-intersection (V2I) to the ACC. The ACC system presented in this
section not only controls longitudinal velocity for vehicles, but also longitudinal velocity for V2I
enabled intersections. This section discusses the DSRC radios used to bring V2X technology into
the vehicle, integration of the V2X system, and the testing platforms used to validate the traffic
aware ACC system. In previous sections a large emphasis was placed on MIL, HIL, and VIL
testing. This section explores component in the loop (CIL) testing, which involves simulating V2X
scenarios to achieve seamless integration moving into the VIL environment.

5.2 Methods
5.2.1 Hardware Architecture

The hardware used for the V2X system is a MKS OBU provided by Cohda Wireless[43]. The
MKS5 OBU is a DSRC equipped with dual IEEE 802.11p radios and runs Cohda’s OBU software
which transmits and receives the SAE J2735 V2X [21] message set. The MKS5 OBU is connected
to the connected and automated vehicle controller, the Intel TANK, which uses the V2X data to

autonomously control vehicle longitudinal acceleration. As seen in Figure 5.1, the V2X antenna
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Figure 5.1

V2X Antenna Installed on the Mississippi State Chevrolet Blazer.

is installed at the rear of the vehicle. The antenna is capable of receiving the J2735 message set

and GPS information.

5.2.2 Software Architecture

On the software side, integrating rudimentary V2X capabilities can be seen in Figure 5.2. A
discussed in the previous chapters, in a sensor fusion system for ACC, there must be a component
that prioritizes the closest in-path vehicle. To add V2X capability, this software component must
be extended to handle upcoming intersections with traffic lights. In Figure 5.2, the prioritization
component chooses the closest in-path obstacle. An obstacle could be an object sensed by the
sensor fusion system or a upcoming traffic light that is red. The traffic light information is then

transformed into an upcoming object. When the a red light occurs, the object information is sent
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an MPC which controls vehicle longitudinal acceleration. This allows the vehicle to autonomously

control its longitudinal speed based off of both vehicles and traffic lights.

5.2.3 Green Light Optimization Speed Advisory and Safety Violation Warning

SPaT and Map messages received on an OBU are preprocessed before each message is handed
off to the Intel TANK. In the preprocessed stage, the OBU begins by unpacking each message. The
OBU calculates which intersections are relevant to the vehicle by associating the vehicle with an
ingress lane. The OBU can receive multiple SPaT and map messages, but filtering out non-relevant
messages reduces unwanted system confusion.

V2I intersections are composed of an egress and ingress approach lanes. An egress lane is the
lane where the vehicle is leaving the intersection. An ingress lane is the lane where the vehicle is

approaching the intersection. Figure 5.4 shows a V2I intersection with ingress and egress lanes.

73



Table 5.1

SVW and GLOSA Data Structure.

Value Unit
Current Phase Enumerator
Phase At Arrival | Enumerator
Lane ID Integer
Time to Change Seconds
Distance to Event Meters
Stop Line
Latitude Degrees
Stop Line
Longitude Degrees

If the vehicle is in an egress lane, then the system will ignore the message. When the ego
vehicle is in a relevant ingress lane, the OBU will then generate different warnings depending on
the ego vehicle’s speed and distance to the intersection. If the OBU calculates that the ego vehicle
will run ared light at an upcoming intersection, a safety violation warning (SVW) will be generated
and sent to the Intel TANK. If the OBU calculates that the ego vehicle is in an approach lane, it
will generate a green light optimization speed advisory (GLOSA) warning alerting the vehicle that
a relevant intersection is incoming. The data structure for a SVW and GLOSA is seen in Table 5.1.
Both message types share a similar data structure, but are generated at different times depending

on the vehicle state.

5.2.4 V2X Setup for Component in the Loop Testing
Before taking the V2X system on road, a component in the loop (CIL) testing environment was
used to ensure that each hardware and software component was functioning correctly. In Figure

5.3, two MKS radios are set up approximately 3 m apart. One MKS is loaded with the OBU
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V2X Component in the Loop Setup.

firmware and the second MK3 is loaded with road side unit (RSU) firmware. The RSU unit was set
to transmit a simple traffic cycle: ten seconds of a "Stop and Remain" (red phase) and fize seconds
of "Protected Movement" (green phase).

To simulate an approach vehicle, VSIM, a tool from Cohda Wireless, was used to create the
simulated approach. VSIM can also be setup to "spoof” OBU GPS location. This creates a scenario
where the OBU thinks it is approaching a V2X-enabled intersection. In Figure 5.4, a picture of
the VSIM approach can be seen. During system operation, the RSU would transmit SPaT/Map
messages at an interval of One Hz. The messages would be received and processed by the OBU

and then sent to the Inte]l TANK for autonomous longitudinal control.
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The simulated approach was designed to take place at Hail State Blvd to emulate the same
scenario that would be used for on road testing. Figure 5.4 shows the intersection layout with both
ingress and egress lanes. By using the CIL setup, many software bugs were fixed in the system
before moving to on road testing. This ensured that the system would operate in a predictable and

safe manner. The VSIM simulation at Hail State Blvd. is seen in Figure 5.5.

5.3 Results and Discussion

In the CIL environment, the Intel TANK was monitored closely to ensure that data was
received, decoded, and transmitted correctly from the MKS. To verify that intersections were
being recognized as in path obstacles, an approach test at 20 mph was simulated using VSIM.
The results for the test are seen in Figure 5.6, where the intersection is identified as being an in

path obstacle when the stop light phase is red and when the phase returned to green, the obstacle
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VSIM Simulation at Hail State Blvd.

disappears. As seen in Figure 5.6, an SVW is only generated when the OBU sees a red light that the
vehicle could run. While the simulated vehicle was not using acceleration commands, testing in

the CIL environment verifies: custom SPaT/Map messages, inter-controller communication, and

over the air (OTA) communication between the OBU and RSU radios.

Moving into the VIL environment, the same approach scenario as seen in Figure 5.5 was
used. In the VIL environment, the ACC system was activated and was enabled to stop for any
in-path obstacles. The results for the VIL testing are seen in Figure 5.7 for a 20 mph scenario and
Table 5.2. Table 5.2 shows the different system responses when approaching the intersection at
varying speeds. The vehicle’s traffic aware ACC system was able to function correctly for the three
scenarios listed in Table 5.2. As vehicle approach speed increased, the SVW alert was generated

at greater distances, giving the vehicle more time to stop before arriving at the intersection. A
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CIL 20 mph Approach Test Results.

pass/fail metric was used to judge the vehicle’s system response. In all three approach scenarios,
the vehicle successfully stopped for the intersection, waited for the correct traffic light phase, and

resumed set ACC speed when the correct phase was displayed.

5.4 Conclusion and Future Work

There are many opportunities to develop the V2I system further. The first opportunity would
be to use GLOSA alerts instead of SVW alerts. A primary issue for the SVW alert system is lack
of information when the vehicle is approaching. As the vehicle approaches an intersection with
SVW alerts enabled, a SVW alert is only generated when the OBU calculates that the vehicle will

run the proceeding red light. On the other hand, a GLOSA alert is generated when the approach
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Table 5.2

Safety Violation Warning Testing Results.

Scenario Dlstanzel::tl‘ SYW System Response
20 mph Approach 253 m Stop and Go
30 mph Approach 37.8 m Stop and Go
35 mph Approach 42.5m Stop and Go

vehicle is in an approach lane. This gives the vehicle continuous information about the upcoming
traffic light’s status, giving the system more time to optimize its approach.

Optimizing for multiple V2I intersections (also known as a connected corridor), has been
accomplished in simulation by an MPC presented in [42]. Bringing an MPC that optimizes for
multiple V2I intersections to a real-time system presents many challenges. The first challenge is
implementing the MPC from [42]. The MPC from [42] was optimized for simulation, where the
traffic light phasing was known for the entire connected corridor. In a real world scenario, only
current traffic light phase patterns will be known for the upcoming connected corridor. Deploying
a real-time connected corridor also is presented as a challenge. V2I technology is not widely used
in traffic intersections, therefore a series of custom intersections must be created and synchronously
managed.

In conclusion, V2X technology allows for vehicles to optimize vehicle control with high quality
data. It brings many safety aspects to drivers and pedestrians through V2I and V2P message sets.
While there are many applications, there are also a few downfalls of V2X technology that must
be discussed. The first downfall of V2X technology is the requirement for all intersections and

vehicles to have V2X-enabled radios. This means bring the Department of Transportation (DOT)
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VIL Traffic Light Approach at 20 mph.

and industry onto the same page. The second downfall for V2X technology is bad-actors posing

as V2I intersections which could compromise a vehicle’s autonomous systems.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In summary, this thesis research covers a wide scope of automotive perception through either
sensing or communication technology. An LSTM neural network was developed to perform
automotive sensor fusion for a radar-camera system. The LSTM-based sensor fusion was able
to perform in a similar manner compared to traditional sensor fusion methods such as Kalman
Filtering. During the development several challenges were encountered while developing and
training the neural network. The LSTM network required a lot of data before the network began
to converge during training. Several data normalization techniques were used to ensure that the
neural network trained in an optimal manner.

This thesis also discusses the engineering process to bring a radar-camera sensor fusion for
ACC from system requirements to full on road system functionality in a 2019 Chevrolet Blazer. By
using the engineering V-Diagram to guide system development through the MIL, SIL, CIL, HIL,
and VIL testing platforms, a robust sensor fusion system was developed for ACC that met all initial
system requirements. Along with validating the sensor fusion system’s performance on road using
an OXTS RT3000, the system was also used for ACC in an on road drive cycle. The sensor fusion
not only maintained a vehicle track for the duration of the drive cycle, the system provided accurate

information to the MPC used to command acceleration. This allowed the MPC to behave in an
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optimal manner, without causing any major issues during the on-road test. During the development
process of the radar-camera sensor fusion system, the Bosch Radar had issues and did not report
detections as stated by the documentation. This limited the sensor fusion system’s performance.
Moving into the future, this research is being extended with a Delphi ESR 2.5 automotive radar.
By using the engineering process discussed above, a V2X system was integrated and tested to
bring V2I capability to the Chevrolet Blazer’s ACC system. The V2X system was integrated into
the existing sensor fusion system and tested using the CIL and VIL testing platforms. In final test
scenarios, the traffic aware ACC system was capable of stopping for a V2I-enabled intersection
and autonomously resuming speed when the intersection signals provided the correct signal.
Moving into the future, there are several optimizations that should be made to the traffic aware
ACC system. The first optimization is maintaining a safe distance in the ACC application. As
seen in testing results, the ACC system struggled to keep up with the lead vehicle and did not
command enough acceleration to minimize the error between the relative longitudinal distance
and safe distance. Along with optimizing the ACC system’s ability to follow a lead vehicle, the
ACC system needs to be able to handle multiple V2I intersections and optimize its approach
through each intersection. As seen in [42], an MPC was used to optimize a simulated vehicle’s
position by commanding acceleration through a connected corridor. While connected corridor
optimizing has been done in simulation, the optimization has not been completed on road using
a real vehicle. By adding real world dynamics to the system, optimizing a vehicle’s approach
through a connected corridor becomes a nontrivial task. Moving into the final months of the
EcoCAR Mobility Challenge, the Mississippi State ECOCAR team hopes to accomplish this using

the V2X system in the Chevrolet Blazer.
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