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Abstract

Estimating the motion state of objects is a central component of most visual
tracking pipelines. Therefore, object observations provided by an appearance
model, representing the object in image space, serve as input for the actual
filtering and the prediction into future frames. Under real-life conditions, the
dynamics of tracked objects are subject to change over time. Especially in
such maneuver scenarios, current methods struggle to deal with the model
mismatch due to varying system characteristics.

This thesis addresses the problem of how to capture the dynamics of maneu-
vering objects in an efficient and reactive way. Towards this end, the per-
spective of recursive Bayesian filters and the perspective of deep learning ap-
proaches on state estimation are considered and their functional viewpoints
are brought together.

The starting point of this thesis is the interacting multiple-model (IMM)
filter, as the most common representative Bayesian formulation for dealing
withmodel mismatches or rather maneuvering objects. For amodel mismatch
scenario, in which tracking is done directly in image space, a state de-coupling
and a re-coupling scheme are introduced as modifications for an improved
design compared to the standard IMM filter.

In order to deal with two maneuver types, switching noise levels and switch-
ing dynamics, recurrent neural network (RNN)-based approaches are pro-
posed as alternatives to IMM filtering. The approaches maintain the func-
tionality of an IMM filter while reducing the amount of required filter tuning.
With a focus on applications in the surveillance and intelligent vehicle do-
mains, the effectiveness of RNN-based solutions is demonstrated for the ex-
emplary tasks of path prediction and intention prediction, reflecting the most
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Abstract

common prototypical maneuver types. The presented RNN-based network
yields performance comparable to other existing relevant methods on a pub-
lic benchmark. The suggested modifications help to achieve a robust predic-
tion performance with regard to switching noise levels. For sudden motion
changes, a proposed RNN-based IMM surrogate can capture the change in
the dynamical behavior mare reliably than the Bayesian filter counterparts.
The abilities of the RNN-IMM are evaluated in extensive experiments on real-
world and synthetic datasets, reflecting prototypical maneuver situations of
pedestrians in the application domain of intelligent vehicles.
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Kurzfassung

Die Schätzung des Bewegungszustands von Objekten ist eine zentrale
Komponente für die video-basierte Objektverfolgung. Dabei werden Objekt-
beobachtungen, die von einem Erscheinungsmodell geliefert werden und
das Objekt im Bildraum repräsentieren, als Eingabe für die Filterung und
die Vorhersage in zukünftige Frames verwendet. Unter realen Bedingungen
variiert die Dynamik des verfolgten Objektes über die Zeit. Besonders in
solchen Manöversituationen haben aktuelle Methoden wegen Modellfehlan-
passungen aufgrund der variierenden Systemeigenschaften Schwierigkeiten
den Bewegungszustand des Objektes zu schätzen.

Diese Arbeit befasst sich mit dem Problem der effizienten und reaktiven Er-
fassung der Dynamik von manövrierenden Objekten. Zu diesem Zweck wer-
den die Perspektive rekursiver Bayes’scher Filter und die Perspektive tiefer
lernender Ansätze zur Zustandsschätzung betrachtet und ihre funktionalen
Sichtweisen zusammengeführt.

Ausgangspunkt dieser Arbeit ist das interacting multiple-model (IMM)-
Filter, als einer der am häufigsten verwendete Ansätze basierend auf einer
Bayes’sche Formulierung zum Umgang mit Modellfehlanpassungen bzw. ma-
növrierenden Objekten. Für ein Modellfehlanpassungsszenario, bei dem die
Objektverfolgung direkt im Bildraum erfolgt, werden eine Zustandsentkopp-
lung und ein Rückkopplungsschema als Modifikationen für ein verbesser-
tes Design im Vergleich zum Standard-IMM-Filter eingeführt. Zum besseren
Umgang mit den zwei Manövertypen von variierenden Rauschpegeln und
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Kurzfassung

variierenden Objektdynamiken werden recurrent neural network (RNN)-
basierte Ansätze als Alternative zum IMM-Filter vorgestellt. Die Ansätze bil-
den die Funktionalität eines IMM-Filters ab und reduzieren gleichzeitig den
Umfang der erforderlichen Filterabstimmung.

Mit dem Schwerpunkt auf Anwendungen in den Bereichen Videoüberwa-
chung und intelligente Fahrzeuge wird die Wirksamkeit der vorgestellten
RNN-basierten Ansätze exemplarisch für Aufgabenstellungen der Pfad-
vorhersage und der Intentionsvorhersage demonstriert. Die ausgewählten
Anwendungen spiegeln prototypische Manöversituationen wieder. Ein vor-
gestelltes RNN-basiertes Netzwerk erzielt eine Leistung vergleichbar mit
relevanten Methoden auf dem aktuellen Stand der Technik auf einem öf-
fentlichen Benchmark. Die vorgeschlagenen Modifikationen tragen dazu
bei eine robuste Vorhersageleistung in Bezug auf die Rauschpegel zu er-
reichen. Bei plötzlichen Bewegungsänderungen kann ein vorgeschlagenes
RNN-basiertes IMM-Surrogat die Änderung im dynamischen Verhalten zu-
verlässiger erfassen als die Bayes’sche Filter Pendants. Die Fähigkeiten des
RNN-IMM werden in umfangreichen Experimenten auf realen und syntheti-
schen Datensätzen, die prototypische Manöversituationen von Fußgängern
im Anwendungsbereich intelligenter Fahrzeuge widerspiegeln, evaluiert.

iv



Acknowledgements

This thesis is the result of mywork in the departmentObject Recognition at the
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation
IOSB. I was in the fortunate position of receiving much individual support in
a variety of ways.

First of all, I would like to thank my advisor Prof. Dr.-Ing. Jürgen Beyerer
for his guidance and feedback, which were invaluable to complete this thesis.
I am grateful to Prof. Ph.D. Brendan T. Morris, Prof. Dr. Bernhard Beckert,
Prof. Ph.D. Mehdi B. Tahoori, and Prof. Dr. Peter Sanders for agreeing to be
part of my examination committee. In particular, I would like to thank Ph.D.
Brendan T. Morris for his interest in my work and for being in the committee
as a second advisor.

Special thanks go to my supervisors Dr. Wolfgang Hübner and Dr. Michael
Arens at Fraunhofer IOSB for providing conditions, feedback, and freedom to
prepare this thesis.

I want to acknowledge my colleagues of the departmentObject Recognition for
their constant assistance and in particular, my colleagues of the Video Content
Analysis group. The support and the conversations were essential for solving
various technical challenges.

Lastly, I want to thank my family and friends for their advice and their en-
couragement throughout all phases of this work.

v





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . i

Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . v

Notation . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . 5

2 Perspectives on State Estimation from Visual
Observations . . . . . . . . . . . . . . . . . . . . . 7
2.1 What is Visual Tracking? . . . . . . . . . . . . . . 7
2.2 One Problem - Two Functional Views . . . . . . . . . 10
2.3 Related Work . . . . . . . . . . . . . . . . . . . 15

2.3.1 Path Prediction . . . . . . . . . . . . . . . 15
2.3.2 Intention Prediction . . . . . . . . . . . . . 25

2.4 Summary . . . . . . . . . . . . . . . . . . . . . 30

3 The Bayesian Perspective . . . . . . . . . . . . . . . . 31
3.1 Background . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Kalman Filter . . . . . . . . . . . . . . . . 33
3.1.2 Maneuvering Objects . . . . . . . . . . . . . 38

3.2 IMM Filter for Visual Tracking . . . . . . . . . . . . 49

vii



Contents

3.2.1 De-coupled IMM Filter . . . . . . . . . . . . 49
3.2.2 Evaluation: De-coupled IMM Filter . . . . . . . 54
3.2.3 Re-coupled IMM filter . . . . . . . . . . . . 63
3.2.4 Evaluation: Re-coupled IMM Filter . . . . . . . 66

3.3 Assets and Drawbacks of IMM Filters . . . . . . . . . 70

4 The Deep Learning Perspective . . . . . . . . . . . . . 73
4.1 Background . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Multi-Layer Perceptron . . . . . . . . . . . . 74
4.1.2 Recurrent Neural Networks . . . . . . . . . . 76
4.1.3 Training . . . . . . . . . . . . . . . . . . 80
4.1.4 Mixture Density Networks . . . . . . . . . . . 85

4.2 RNN-based Solutions . . . . . . . . . . . . . . . . 89
4.2.1 Path Prediction . . . . . . . . . . . . . . . 90
4.2.2 Intention Prediction . . . . . . . . . . . . . 116
4.2.3 Tracklet Alignment with

a Minimum Variance Prototype . . . . . . . . . 143

5 Summary and Concluding Remarks . . . . . . . . . . . 153

Bibliography . . . . . . . . . . . . . . . . . . . . . . . 157

Publications . . . . . . . . . . . . . . . . . . . . . . . 183

Supervised student theses . . . . . . . . . . . . . . . . . 189

List of Figures . . . . . . . . . . . . . . . . . . . . . . 191

List of Tables . . . . . . . . . . . . . . . . . . . . . . 195

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . 197

viii



Notation

This chapter introduces the notation and symbolswhich are used in this thesis.

General notation

Scalars italic Roman and Greek lowercase letters 𝑥, 𝛼
Sets calligraphic Roman uppercase letters 𝒟
Vectors bold Roman lowercase letters 𝐭
Matrices bold Roman uppercase letters 𝐑
State spaces bold calligraphic Roman uppercase letters 𝓧

In multidimensional sets of elements related to time series, the first super-
script index denotes time.

Distributions

𝒩 Gaussian distribution
ℬ𝑖𝑛 Binomial distribution
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Notation

Numbers, indexing and conventions

ℕ natural numbers
ℝ real numbers
𝑘, 𝑡 discrete points in time
𝑖, 𝑗, ℓ, 𝑞 indexing for objects, observations and points
⌈⋅⌉ ceil operator, the least integer greater than or equal to the

value.

State modeling and probabilities

𝓧 (dynamical) state-space
𝓗 (recurrent) state-space
𝓩 observation space
𝓨 target space

𝑓(⋅) dynamical model
ℎ(⋅)𝑜𝑏𝑠 observation model

𝐅 system matrix of the Kalman Filter
𝐆 noise gain matrix of the Kalman Filter
𝐇 observation matrix of the Kalman Filter
𝐊 Kalman gain

𝔼[⋅] expectation value
𝐱𝑘 (dynamical) state vector at time 𝑘
𝐡𝑘 (recurrent) state vector at time 𝑘
𝐳𝑘 observation vector at time 𝑘
𝐲𝑘 target vector at time 𝑘

𝑚𝑘 dynamical mode at time 𝑘
𝐯𝑘 process noise at time 𝑘
𝐰𝑘 observation noise at time 𝑘
𝐐𝑘 process noise covariance matrix at time 𝑘
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Notation

𝐑𝑘 observation noise covariance matrix at time 𝑘

𝐏 covariance matrix
𝐏𝑘𝐱𝐱 (dynamical) state covariance matrix
𝐏𝑘𝐳𝐳 observation covariance matrix

𝐏𝑘,−𝐱𝐱 prior probability
𝐏𝑘,+𝐱𝐱 posterior probability
𝑝(𝐱𝑘) probability density function (pdf)
𝑃(𝑚𝑘) probability mass function (pmf)
𝑝(𝐱𝑘+1|𝐱𝑘,...) transition density
𝑃(𝑚𝑘+1|𝑚𝑘,...) transition probability
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1 Introduction

One fundamental ability essential for intelligent autonomous systems to see,
understand, and react to the environment is to track objects of interest in im-
age sequences. Its applications cover a broad range from intelligent vehicles
to robot navigation and smart video surveillance. For example, the ability to
anticipate the actions of pedestrians in a scene and to predict their future po-
sitions is a safety issue for autonomous vehicles and other vision-based active
safety systems.

? ?

Figure 1.1: Scenes captured from an approaching vehicle, the most important question being
whether the pedestrian is going to cross the street. Traditionally, such questions are
tackled with adaptive recursive Bayesian filters [Sch13].

Despite enormous advances in extracting observations of objects from im-
ages due to deep learning, the actual filtering and the prediction into future
frames are mainly restricted to the application of recursive Bayesian filters.
The problem-specific choice of their design parameters, such as connecting
the object motion uncertainty and its predictability to physical system pa-
rameters or the observation uncertainty, requires not only well-suited phys-
ical models, but also a large amount of engineering. Especially in situations
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1 Introduction

where the tracked objects perform a maneuver, this has proved a challenging
task. A maneuver is any motion characteristic that an object is performing
other than the dynamical model used by the filter. An illustrative example for
a variation in the dynamics, which poses significant challenges for the filters
to adapt, is to determine if a pedestrian is going to cross the street (see fig-
ure 1.1). Such situations additionally require the choice of various adequate
dynamical models, including associated transition modeling.

Towards this end, the overarching research question of this thesis is how to
capture the dynamics of maneuvering objects in image sequences effectively.
Maneuvering objects can be defined by either being subject to random per-
turbations i.e., different noise levels or subject to sudden motion changes.

The dynamical model acts as one component of a larger vision system whose
tasks mainly consist of providing additional information for further process-
ing steps, supporting appearance models by bridging detection failures, and
forecasting the behavior by predicting future states.

1.1 Problem Statement

Given a short sequence of observations 𝒵 generated by an appearance model
of a visual tracker, we are interested in estimating the state of a maneuver-
ing object. In the following, systems where the discrete-time version of the
motion or dynamical model can be formalized as follows are considered:

𝒴 = 𝑓𝜃 (𝒵0∶𝑘,𝒞0∶𝑘) + 𝝐, (1.1)

The aim is to estimate the expected conditioned states of the object

𝔼[𝒴|𝒵0∶𝑘,𝒞0∶𝑘]. (1.2)

Here, 𝒴 describes the states or state distributions of a tracked object, 𝒞
describes additional contextual cues extracted from the observed image
sequences and 𝝐 describes an additional error term. In Bayesian filtering,
models of this type are called state-space models or dynamical systems,

2



1.2 Contributions

whereas in deep learning, they are referred to as recurrent neural networks.
This thesis includes discussions on both formulations and their connection
by maximum likelihood inference. In order to effectively capture the dy-
namics of maneuvering objects and to reduce the amount of engineering, a
comparable deep learning solution to adaptive recursive Bayesian filtering
is introduced. The research questions in this context are answered along
with the prototypical types of maneuvers, abrupt change of motions and
random perturbations. The main application areas throughout this thesis are
intelligent vehicles and automated surveillance systems.

1.2 Contributions

The starting point of this thesis are adaptive filters and their most common
representative, the interacting multiple-model (IMM) filter [Blo88]. Based
on a Bayesian formulation, the IMM filter is designed for capturing motion
uncertainties and modeling complex object dynamics in situations where the
object undergoes sudden changes. The IMM filter can be used to combine sev-
eral dynamical models and offers a good compromise between performance
and complexity. This thesis contributes to an improved design of a basic IMM
filter as a module in a visual tracking pipeline by introducing both a state
de-coupling and a re-coupling scheme as modifications.

De-coupling: Firstly, when relying solely on visual cues, the benefit of a
suggested de-coupling of the state estimate of an IMM filter is demonstrated
[Bec16].

Re-coupling: Secondly, a state re-coupling scheme is introducedwhich helps
to better deal with the corresponding observation uncertainties of such a
tracking pipeline [Bec18a].

Although the IMMfilter has some drawbacks, it is still a core element formany
state-of-the-art applications. In order to reduce the amount of required engi-
neering and to learn an improved dynamical model structure, a contribution
of this thesis is the transfer of the IMM functionality into a comparable deep
learning architecture. Since adaptive filters and in particular the IMM filter

3



1 Introduction

are designed to deal with maneuvering objects, in the following two major
maneuver types are considered separately.

Switching noise levels: Switching noise levels: The effectiveness of deep
neural networks for predicting future pedestrian states is evaluated. A pro-
posed network achieves state-of-the-art performance on publicly available
datasets [Bec18c]. The results can be accessed on the TrajNet website (http:
//trajnet.stanford.edu/, last accessed 19.12.2019). The ranking of different pre-
dictors combines the final displacement error and the average displacement
error for predicting the next 12 states of pedestrian trajectories pooled over
the datasets. The proposed network is an RNN-encoder with a dense layer
on top for projecting into the observation space. Although being simple at
core, the network can achieve a performance comparable to more elaborated
models in terms of considering more cues than solely position information.

Switching behavior: The connections to the IMM filter are explored and
an IMM filter surrogate is presented (RNN-IMM). Similar to an IMM filter
solution, the presented RNN-IMM assigns a probability value to different dy-
namical modes and, based on them, generates a multi-modal distribution over
future object states as output[Bec19b, Bec19a]. The switching behavior is
thoroughly analyzed for prototypical, critical maneuver situations, such as
a bending in maneuver of pedestrians. The presented RNN-IMM solution re-
duces not only the amount of explicitmodeling of filter parameters but enables
an improved maneuver onset and maneuver termination behavior.

In order to provide a learned reference trajectory for pooled object trajectory
data, this thesis contributes by introducing an alignment network.

Alignment network: The application of hard-coded normalization strate-
gies on pooled trajectories shifts the variation along the trajectory. Hence,
the arbitrarily chosen references hinder applying clustering approaches. The
proposed network learns a freely adjustable prototype as a reference trajec-
tory. Firstly, the resulting prototype reflects the minimum variance of the
input trajectories, which allows deducing the dominating dynamical behav-
ior. Secondly, with a fixed reference, the conditions for clustering approaches
and out-of-distribution detections are improved.

4
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1.3 Outline

Overall, this thesis is motivated by uniting the interconnected Bayesian and
deep learning perspectives on maneuver prediction. In response to the re-
search question on how to effectively capture changing object dynamics in
image sequences, a transfer to an IMM filter comparable neural networks is
introduced.

1.3 Outline

The thesis is structured as follows: Chapter 2 introduces the theoretical back-
ground in order to unite the functional views of deep learning and Bayesian
filtering on object tracking. Furthermore, current state-of-the-art is surveyed
for selected exemplary applications. In chapter 3, the problem ofmaneuvering
object tracking is considered from the Bayesian filtering perspective, result-
ing in improved IMM filter designs. Chapter 4 presents an alternative deep
learning-based solution in order to reduce the amount of hand-tuning of the
filters and to provide an effective solution for the switching state problem.
Conclusions are drawn in chapter 5.
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2 Perspectives on State Estimation
from Visual Observations

In this chapter, the perspectives of deep learning and recursive Bayesian fil-
tering on (visual) object tracking are united. Based on the united functional
view, the contributions of this thesis are positioned with respect to existing
literature and to specific applications.

2.1 What is Visual Tracking?

Vision-based or visual tracking is defined as the process of using image obser-
vations and a predictive dynamical model to consistently estimate the state(s)
of one or more object(s) over the discrete-time steps corresponding to video
frames [Mag11]. Thereby recursive Bayesian filtering acts mostly as a top-
down process for state estimation, which involves incorporating prior infor-
mation about the scene or object to connect the object dynamics to physical
systems [Bla03]. This tracking pipeline with top-down filtering is often re-
ferred to as detection-by-tracking [And08] and without top-down filtering as
tracking-by-detection. A block diagram for a single object visual tracking
pipeline is visualized in figure 2.1.

Vision-based tracking of a single object is formulated as the estimation of a
time series 𝒵 = {𝐳𝑘 ∶ 𝑘 ∈ ℕ} over a set of discrete-time instances 𝑘, based on
the information ℐ = {𝐈𝑘 ∶ 𝑘 ∈ ℕ} from the set of images. The vector-valued
time series 𝒵 is considered as the states of the object and is mainly referred
to as the trajectory of the object. However, for recursive Bayesian filters or

7



2 Perspectives on State Estimation from Visual Observations

dynamical systems ¹ the term state 𝒳 = {𝐱𝑘 ∶ 𝑘 ∈ ℕ} refers to a collection of
variables such as position, velocity, orientation, which are indirectly observed
through noisy observations.

Object
initialization

Appearance model

Visual
representation

Statistical
learning

State
estimation Localization

Figure 2.1: Block diagram of a visual tracking pipeline which shows the main components of a
tracking cycle.

Since the focus of this thesis is neither on building an appearance model for
object detection nor the necessary feature extraction, but on the top-down
state estimation, it is crucial to distinguish between the term states clearly.
The term observation 𝐳𝑘 will be used to describe the object representation
(e.g., bounding box, centroid, blobs) in the image generated by an appearance
model of a detector or a visual tracker. Thus, appearance modeling basically
boils down to representing object pixel intensities. The resulting associated
image region is the observation serving as input for the dynamical state esti-
mation. Pedestrian detections in the form of enclosing bounding-boxes is an
illustrative example of an observation space 𝓩. Observation, detection, and
object state interchangeably refer to the shape approximation in the image in
contrast to the dynamical state 𝐱𝑘 , which fully describes a dynamical system.

In figure 2.2, commonly used object representations for describing the location
and an approximation of the object shape are depicted. For the goal of tracking
an object in the 2D image space, the minimal form of 𝐳𝑘 is the center position
of the object in 𝐈𝑘 .

¹ The terms state-space models and dynamical systems are used interchangeably in this thesis.
Whereas the term state-space models originates from probabilistic modeling, the term dynam-
ical systems originates from signal processing. Bayesian filtering refers to the Bayesian way of
formulating optimal filtering for dynamical systems.

8



2.1 What is Visual Tracking?

Figure 2.2: Examples of object states for different visual tracking tasks.

Deep-tracking based approaches aremostly tailored to image processing tasks
such as classification and detection, thus detection-by-tracking with a Bayes-
ian filter is still very common [Kre17]. The tasks of the Bayesian filter within
the overall pipeline are:

• The support of the appearance model to bridge detection failures or
occlusion situations.

• Provide additional information for subsequent processing stages.

• Enhance the detection robustness.

• Estimate indirectly observables.

• Forecast the behavior of the object.

Within the pipeline, the tasks of the Bayesian filter can be explicitly associated
with different types of inference problems: prediction, filtering, and smooth-
ing. Because inference is a very general problem formachine learningmodels,
the consideration of the filter functionality as an inference problem helps to
unite the functional viewpoints. Furthermore, the types of required compu-
tations are neatly separated in order to reason from sequential data correctly
[Moh15].

9



2 Perspectives on State Estimation from Visual Observations

2.2 One Problem - Two Functional Views

Recursive Bayesian filtering refers to the Bayesian way of formulating the es-
timation of the hidden (dynamical) states using probability theory. Hence, the
hidden dynamical states and the observations are assumed to be random vari-
ables. The dynamical state itself is represented by means of a probability
density function (pdf)² 𝑝(𝐱𝑘) at time step 𝑘. It is assumed that the tran-
sition density³ 𝑝(𝐱𝑘+1|𝐱𝑘) is the same for all time instances and behaves
according to a known system transition function. This function is referred
to as the dynamical model (see equation 1.1). Other commonly used terms
include, among others, motion model, process model, and plant model. For
recursive Bayesian filtering, the dynamical model can be written as

𝐱𝑘+1 = 𝑓𝑘 (𝐱𝑘, 𝐯𝑘) . (2.1)

Here, 𝑓𝑘(⋅) is a non-linear function and 𝐯𝑘 the process noise. In the remainder
of this thesis, only discrete-time models are considered because the observa-
tions are a set of discrete-time instants. The time steps are related through
𝑡𝑘+1 = 𝑡𝑘 + Δ𝑇 , where Δ𝑇 is the sampling time. The dynamical state 𝐱 is
assumed to be an unobserved Markov process, and 𝐳 are the observations of
a hidden Markov model (HMM). The observation or measurement model
maps the hidden dynamical state into the observation space and is given by

𝐳𝑘 = ℎ𝑘𝑜𝑏𝑠 (𝐱𝑘,𝐰𝑘) , (2.2)

with the non-linear observation function ℎ𝑘𝑜𝑏𝑠(⋅) and observation noise 𝐰𝑘 .
A graphical model, which expresses the conditional dependence structure of
such anHMM, is depicted in figure 2.3 (see for example [Kol09]). The structure
of the model complies with a directed acyclic graph representing the factor-
ization of the joint probability.

² In case of a discrete state-space probability mass function (pmf) 𝑃(𝐱𝑘).
³ In case of a discrete state-space transition probability 𝑃(𝐱𝑘+1|𝐱𝑘).
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2.2 One Problem - Two Functional Views

As aforementioned, the conditional density𝑝(𝐱𝑘+1|𝐱𝑘), which depends on the
dynamical model, is assumed to be stationary. This is equivalent to assuming
that the parameters of the transition function are shared across time steps
[Moh15].

𝐱𝑘−1 𝐱𝑘 𝐱𝑘+1

𝐳𝑘−1 𝐳𝑘 𝐳𝑘+1

Figure 2.3: A graphical model specifying the conditional relations for a dynamical system.

Thus, it is possible to directly connect to recurrent neural networks (RNNs)
[Goo16, Rum88] and the loss function of RNNs using maximum likelihood
estimation. Under the Markov assumption, the probability of an observed
sequence 𝒵 according to a dynamical system (DS) as depicted in figure 2.3
can be calculated by marginalizing over 𝐱𝑘 :

𝑝(𝐳0, … ,𝐳𝐾) =∏
𝑘
∫𝑝(𝐳𝑘,𝐱𝑘) d𝐱𝑘 , with (2.3)

𝑝(𝐳𝑘,𝐱𝑘) = 𝑝(𝐳𝑘|𝐱𝑘)𝑝(𝐱𝑘|𝐱𝑘−1).

Using the negative log-likelihood, the following loss function can be obtained:

ℒ(Θ)𝐷𝑆 = −∑
𝑘

log∫𝑝(𝐱𝑘|𝐱𝑘−1)𝑝(𝐳𝑘|𝐱𝑘) d𝐱𝑘 . (2.4)

For deterministic transition dynamics,

𝑝Θ(𝐱𝑘|𝐱𝑘−1) = 𝛿(𝐱𝑘 − 𝑓Θ(𝐱𝑘−1,𝐳𝑘−1)), (2.5)
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2 Perspectives on State Estimation from Visual Observations

the loss function can be reformulated to

ℒ(Θ)𝐷𝑆 = −∑
𝑘

log𝑝(𝐳𝑘|𝑓Θ(𝐱𝑘−1,𝐳𝑘−1)) (2.6)

= −∑
𝑘

log𝑝(𝐳𝑘|𝑓Θ(𝐱𝑘−1)).

Next, the loss function is recovered from the perspective of RNNs. According
to equation 2.3, the goal is to capture the probability of the observed sequence
𝒵. RNNs are extensions of multi-layer feed-forward networks, where hidden
units ℋ = {𝐡𝑘 ∶ 𝑘 ∈ ℕ} are used to encode an internal hidden state space
[Goo16]. In extension to multi-layer networks, the parameters are shared
across different parts of a model. Here, the parameter of the transition func-
tion are shared across time steps, resulting in a neural network where the
activation of the hidden layers are fed back into the network along with the
input. Figure 2.4 depicts the unfolded computational graph of an RNN, where
the hidden state sequence is used to compute the output vector sequence
𝒪 = {𝐨𝑘 ∶ 𝑘 ∈ ℕ}.

𝐡𝑘−1 𝐡𝑘 𝐡𝑘+1

𝐳𝑘−1 𝐳𝑘 𝐳𝑘+1

𝐨𝑘−1 𝐨𝑘 𝐨𝑘+1

Figure 2.4: Recurrent neural network seen as an unfolded computational graph. Each node is
associated with a particular time instance.
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2.2 One Problem - Two Functional Views

The unfolded model structure corresponds, similarly to recursive Bayesian
filtering, to a directed acyclic computational graph. Thus, the recurrent net-
work processes information by incorporating it into the state 𝐡 that is passed
forward through time by the transition function.

The hidden state for one time step is given by

𝐡𝑘+1 = 𝑓Θ (𝐡𝑘, 𝐳𝑘+1) . (2.7)

For a basic RNN [Elm90] the transition function is given by

𝐡𝑘+1 = 𝜙 (𝐖ℎℎ𝐡𝑘 +𝐖ℎ𝑧𝐳𝑘+1 + 𝐛ℎ) , (2.8)

where𝐖ℎℎ and𝐖ℎ𝑧 represents theweights, 𝐛ℎ the biases of a recurrent layer,
and 𝜙(.) an activation function. Based on ideas of graph unrolling and para-
meter sharing, a wide variety of recurrent neural networks can be designed
[Goo16]. For the moment, we stick with an RNN as depicted in figure 2.4 that
generates an output at each time step and uses a hidden-to-hidden recurrent
connection as described above. The depicted RNN does not specify what form
the output and loss function take. Thus, the output 𝐨𝑘 can be used to param-
eterize a predictive distribution 𝑝(𝐳𝑘+1|𝐨𝑘) over possible next observations
𝐳𝑘+1. In order to match 𝐳, the form of 𝑝(𝐳𝑘+1|𝐨𝑘) must be chosen carefully.
The problem of finding a good predictive distribution can be very challenging
and is usually referred to as probability density modeling [Gra13a]. Given a
hidden state, the output is computed as follows

𝐨𝑘 = 𝑜 (𝐖ℎ𝑜𝐡𝑘 + 𝐛𝑜) , (2.9)

where 𝑜 (⋅) is the output layer function,𝐖ℎ𝑜 denotes a weight matrix and 𝐛𝑜
denotes a bias vector. The complete network defines a function, parameter-
ized by the weight matrices, from observations 𝐳0∶𝑘 to the output vector 𝐨𝑘 .
Equation 2.7 can be considered as the RNN equivalent of the dynamical model,
and equation 2.9 can be considered as the RNN equivalent of the observation
model.
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2 Perspectives on State Estimation from Visual Observations

The probability of an observed sequence 𝒵 as estimated by an RNN is given
by

𝑝(𝐳0, … ,𝐳𝐾) =∏
𝑘
𝑝(𝐳𝑘+1|𝐨𝑘). (2.10)

The corresponding loss function of an RNNs using maximum likelihood esti-
mation can be defined as:

ℒ(Θ)𝑅𝑁𝑁 = −∑
𝑘

log𝑝(𝐳𝑘+1|𝐨𝑘), or rather (2.11)

= −∑
𝑘

log𝑝(𝐳𝑘+1|𝑓Θ (𝐡𝑘−1, 𝐳𝑘)). (2.12)

Due to the deterministic nature of RNNs, the computation of the predictive
distributions is realized by the feed-forward operations in the unfolded net-
work. By applying backpropagation through time (BPTT) [Wil95] to the
computational graph, the partial derivatives of the loss with respect to the
network weights can efficiently be calculated, and the network can be trained
using stochastic gradient descent.

When comparing the loss functions of equation 2.12 and 2.6, it becomes evi-
dent that the RNN loss corresponds to maximum likelihood estimation with
deterministic dynamics. According to Bayesian filtering, the result for the
associated inference problems are given in form of a conditional probability
density that represents the dynamical state estimate [Hub15]. The estima-
tion tasks depend on the relation between the time steps 𝑘 and 𝐾. If 𝑘 < 𝐾,
the estimation problem is referred to as prediction (inferring the future), for
𝑘 = 𝐾 the estimation is referred to as filtering, update, or correction respec-
tively (inferring the present), and if 𝑘 > 𝐾, it is referred to as smoothing (infer-
ring the past). Prediction and filtering are typically performed on-line, while
smoothing is an off-line estimation task, as it improves past state estimates
given additional information. For Bayesian filters, the conditional densities
are calculated recursively under the assumption that the dynamical state is
a Markov process. For the tracking pipeline described in section 2.1 and for
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many other practical applications, prediction and filtering are performed al-
ternatingly, which is commonly referred to as prediction-update cycle. Based
on the above drawn connections between the Bayesian perspective and the
RNN perspective, for both on-line estimation tasks of recursive Bayesian fil-
ters, there exists an RNN counterpart, where prediction and update are realized
by feed-forward operations in the unfolded network. For applying Bayesian
filtering, strict assumptions such as Gaussian transitions are required to solve
the inference problem, but those assumptions are commonly violated in a real
environment. Before the seminal Kalman filter [Kal60] is introduced as a basic
dynamical state estimator, this thesis is positioned with respect to the existing
literature for two selected tasks, where the role of a top-down state estimator
as part of a vision-based tracking is a crucial component. While extracting
the observation from images is specific to computer vision, inference is very
general, and the field of machine learning and pattern recognition is entered.
In order to narrow down the large number of existing approaches originating
from different communities, these approaches are categorized with respect to
the applied motion model, the level of contextual information used, and the
time horizon under consideration. The following discussion uses mainly the
Bayesian perspective for positioning the contributions compared to related
work.

2.3 Related Work

The two selected tasks, in which higher-level processing strongly relies on the
state estimator, are path prediction and intention prediction. Whereby path pre-
diction is mainly tackled as a pure prediction problem for intention prediction,
both prediction and filtering is mostly done jointly (see for example [Gav99]).

2.3.1 Path Prediction

In tasks such as path prediction, the term agent often denotes the dynamic
objects of interest such as robots, pedestrians, cyclists, cars, or other human-
driven vehicles. The target agent is the dynamic object for which the motion
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2 Perspectives on State Estimation from Visual Observations

prediction is done and corresponds to our tracked object. The term path is
here restrictively used for a sequence of positions, and the term trajectory can
include additional information for describing the movement of the object. In
our case, the term trajectory corresponds to a sequence of object states (see
section 2.1) ⁴ However, the focus here is on path prediction, but the predic-
tion of video frames, actions, articulated motion, or human activities often
rely on the same motion prediction methods. As explained, there is a cross-
disciplinary interest and a fast-growing body of work for motion prediction.
In order to categorize the different prediction methods, we built on the tax-
onomy introduced by Rudenko et al. [Rud20]. In accordance with this taxon-
omy, motion prediction is categorized with respect to the modeling approach
and the type of contextual cues. In figure 2.5, the categories of the taxonomy
introduced by Rudenko et al. are visualized.

Categorization from other related surveys may differ slightly, but are similar
at their core. In order to name a few, there are surveys from application do-
mains such as service robots [Kru13, Las17], intelligent vehicles [Ras19, Rid18,
Bro16, Lef14], and computer vision [Hir18, Mur17, Mor08].

Most relevant for this thesis is the survey of Hirakawa et al. [Hir18]. They
survey path prediction methods for vision-based systems, where all the consi-
deredmethods are realized on top of computer vision tasks, such as pedestrian
detection. This corresponds precisely to our distinction between appearance
modeling to generate observations as input data and the top-down state esti-
mator. Hirakawa et al. categorize motion modeling approaches mainly into
Bayesian models, energy minimization methods, deep learning methods, and
inverse reinforcement learningmethods. In addition, the approaches are cate-
gorized depending on whether they explicitly use object features or environ-
mental features extracted from a video. Rasouli and Kotsos [Ras19] survey
pedestrian behavior in the application domain of intelligent vehicles and use
the terms pedestrian factors and environmental factors to distinguish with
respect to the awareness of a specific factor.

⁴ In robotics, the term path is used for describing a space curve without a notion of time and the
term trajectory is used for a path with a notion of time.
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Figure 2.5: Overview of the taxonomy of categories according to Rudenko et al. [Rud20]. The
categorization of this thesis within the taxonomy is highlighted in red.
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With the taxonomy of Rudenko et al., this distinction is addressed by contex-
tual cues. The categories utilized by Kruse et al. [Kru13], Lasota et al. [Las17]
and Lefèvre et al. [Lef14] are also based on motion modeling and correspond-
ingly included in the taxonomy.

The taxonomy depicted in figure 2.5 enables to distinguish along the different
modeling approaches and along an increasing level of contextual awareness.
Using the motion modeling approach as a classification criterion, prediction
approaches are divided in physics-based methods, pattern-based methods and
planning-based methods. The second criterion asks what contextual cues are
exploited, leading to a classification between target agent cues, dynamic envi-
ronment cues, and static environment cues.

In addition to this taxonomy, we distinguish if some contextual cues are used
in an additional processing step in order to associate the object’s dynamical
state with the physical world. From the perspective of a Bayesian filter with a
dynamical model, it is important if a reasonable observation model can be ap-
plied. In particular, path prediction is mostly done on ground level, which
implicitly requires additional assumptions about the environment or addi-
tional sensors (LIDAR, stereo camera system) or approaches like structure-
from-motion (SfM) [Sze10] to reconstruct a 3𝐷 scene. For example, an intelli-
gent vehicle is accompanied by many additional sensors, which allow the ac-
tual prediction of dynamic objects being done in an ego-motion compensated
vehicle centered coordination system. Thus, even when the environmental
cues are not used as input for the motion prediction itself, the overall vision-
based system is aware of its environment. Thus, the system implicitly relies
on more contextual cues. However, there exist several scenarios where this
mapping is unknown, includes substantially higher expense, or is an overall
unsolved problem. An example is general object tracking. In such a case,
the object is directly tracked in image space on randomly selected videos. In
several domains, this implicit knowledge of the environment is presumed but
not always given. An example from the domain of visual surveillance is video
recordings without extrinsic or intrinsic calibration of the cameras. The con-
dition of being able to rely on mapping to the physical world or not is referred
to as explicit or implicit contextual cues in the remainder of this thesis.
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In addition to the categories proposed by Rudenko et al., the relevant time
horizon helps to further differentiate between prediction methods. Motion
prediction methods can be roughly categorized into short-term prediction
with relevant time horizons of 0.5 − 2 seconds, and into long-term predic-
tion with relevant time horizons of 5 − 20 seconds. In figure 2.6, a mapping
between preferred motion modeling approaches and the prediction time hori-
zon is visualized.

Physics-based
modeling

Pattern-based
modeling

Planning-
based

modeling

long-term prediction
5 − 20 seconds ahead

short-term prediction
0.5 − 2 seconds ahead

Figure 2.6: Categorization of the relevant time horizon for different motion prediction ap-
proaches.

Depending on an increasing time horizon, a shift in the preferred motion mo-
deling category is visible. Due to the context of maneuvering objects, it is
clear that a quick reaction to a change in motion is required, and only short-
term prediction is considered. Nevertheless, the category of planning-based
methods is kept for a better overall view on motion prediction.

Physics-based methods: Physics-based methods define an explicit transi-
tion function, the dynamical model, which is based on Newton’s law of mo-
tion as part of a recursive Bayesian filter. Individual dynamical models differ
according to the type of motion they describe. Different motion types include
maneuvering or non-maneuvering motions, the complexity of object dynam-
ics, and the noise model.
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As already described, prediction is done by inferring from observed cues. In
the prediction taxonomy, these models are subdivided into single-model ap-
proaches and multiple-model approaches that involve several modes of dy-
namics. In situations where the object’s behavior changes abruptly, multiple-
model approaches are utilized. In order to model the motion of maneuvering
objects, a fusion of different prototypical motion models is done. A more de-
tailed description of different fusion strategies and the technical background
of multiple-model approaches is given in chapter 3. In short, multiple-model
methods include an adaptive set of dynamical models and a fusion strategy
to select individual models [Poo17, Koo16, Koo19, Sch13, Aga12]. Examples
of single-model methods include the approaches of Yamaguchi et al. [Yam11],
Pelligrini et al. [Pel09], Zernetsch et al. [Zer16], and Elganar et al. [Eln01].

Physics-based methods are commonly considered for short-term predictions.
In contrast to pattern-based methods, they can readily be applied to unknown
environments without the need for training data. They provide fast and effi-
cient inference including explicit handling of prediction uncertainty. Draw-
backs are the limited expressive power and the large amount of engineer-
ing required to design a filter [Bar02]. Physics-based approaches are due to
their generalization ability and their fast inference still the most popular ap-
proaches for applications with a short prediction time horizon, such as colli-
sion avoidance [Rud20].

Pattern-basedmethods: Instead of using an explicit motion model, pattern-
based methods learn generalized transitions and trajectories from training
data. This is done by using different function approximators such as HMM
or neural networks. Depending on the type of function approximator, two
main categories are distinguished. Sequential methods typically learn condi-
tional models under the assumption that the dynamical state is conditionally
dependent on the history of past states. As shown in section 2.2, this func-
tion approximator can be realized with HMMs and RNNs. In most cases, the
function approximator is realized as a regression problem. For neural net-
works, the corresponding loss function is that of a feed-forward network,
with an appropriate distance function for the path being predicted, such as
the squared loss. Under certain assumptions, such as discrete or Gaussian
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transitions with random dynamical states, HMM and Kalman filters, respec-
tively, allow learning a function approximator. More recent approaches use
variational inference or particle Markov-chain-Monte-Carlo (MCMC) for
large-scale dynamical systems [Bar12]. In order to predict a sequence of state
transitions, consecutive one-step predictions are made to concatenation into
paths of arbitrary length.

Examples of sequential pattern-based methods are the approaches of Vem-
ula et al. [Vem18], Keller et al. [Kel14], Goldhammer et al. [Gol14], Alahi et al.
[Ale17, Ala16], Kucner et al. [Kuc17], Zhang et al. [Zha19], and Xue et al.
[Xue19]. A more elaborate description of the technical background for se-
quential pattern-based methods will be given in chapter 4.

Non-sequential methods aim to learn a set of motion patterns or directly
model the distribution over full trajectories without temporal factorization
of the dynamics. Commonly, non-sequential approaches are based on clus-
tering in order to identify sets of long-term motion patters in the observed
trajectories. Clustering is an unsupervised machine learning technique
for identifying structure in unlabeled data [Bis06]. For generating useful
clusters, the clustering approaches address issues such as the definition of a
distance or similarity measure, update methodology, and cluster validation
[Mor08]. In order to name a few non-sequential approaches which intend to
model the distribution of object trajectories, there are the approaches from
Xiao et al. [Xia15], Luber et al. [Lub12], and Trautman et al. [Tra10]

In summary, pattern-based methods can deal with comparatively large predic-
tion horizons and are suited for scenarios with complex unknown dynamics.
On the downside, this requires training samples from specific scenes that can
not easily be pooled together. A further issue is the generalization capability.
Pattern-based methods tend to be used in non-safety critical applications in a
spatially constrained environment [Rud20]. In the scope of this thesis, some
of the standard recursive filter functionality is transferred to such a pattern-
based learning approach and particularly used in a time-critical scenario.

Planning-based methods: As unique characteristics, planning-based meth-
ods assume a criterion for optimal motion in the environment. By solving
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a sequential decision-making problem, the optimal path of an object is com-
puted. Most approaches differ in the type of objective functions that mini-
mizes the total cost of a sequence of actions or rather motions. Thus, plan-
ning-based methods explicitly reason about the goal of a long-term motion
and compute policies or path hypotheses to enable to reach those goals. In
order to estimate an optimal path, these methods rely on Markov decision
processes (MDP) [Mur12], reinforcement learning, rapidly-exploring random
trees (RRT) [Kar11], potential field or shortest-path algorithm such as Dijk-
stra and A* (see for example Thrun et al. [Thr05]). Using the motion pre-
diction taxonomy, planning-based approaches can be classified into two sub-
categories of forward planning methods and inverse planning methods. The
distinction depends on the choice of the reward function. Forward planning
methods rely on a pre-defined reward function and inverse planning methods
aim to learn the reward function by applying statistical learning techniques
on the trajectory data.

Examples from the category of forward planning methods include the ap-
proaches of Rudenko et al. [Rud17], Vasquez [Vas16], Rösmann [Rös17], Kara-
sev et al. [Kar16a], and from the category of inverse planning methods the ap-
proaches of Kitani et al. [Kit12], Rehder et al. [Reh18], Ziebart et al. [Zie09]
are included.

In summary, planning-based approaches are considered if it is possible to de-
fine goals for the objects explicitly and a model or map of the environment
is available. If these conditions are met, the planning-based approaches tend
to generate better long-term predictions than the physics-based techniques
and tend to generalize better than the pattern-based to unseen environments.
However, in dynamic environments, re-computation of the reward function
is required and mostly, this is time-consuming. Thus, for short-term predic-
tion and fast changing object dynamics, these approaches are not well-suited.
The assets and drawbacks of the introduced motion modeling approaches are
summarized in table 2.1.

Contextual Cues: Besides using the modeling approach to categorize the
prediction approach, the amount of exploited contextual cues help to further
distinguish between single approaches. The contextual cues for describing
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the overall contextual awareness of an approach are briefly explained here.
In the application domain of intelligent vehicles, Rasouli et al. [Ras19] pre-
sented a very detailed survey of factors of pedestrian behavior such as de-
mographics and environmental conditions. However, their categorization in
pedestrian factors and environmental factors, include major and sub-factors
which can be directly mapped to the categories of Rudenko et al. According to
Rudenko et al. and using their terminology, the categorization of the predic-
tion problem along the contextual cues is done based on three criteria. These
classification criteria are defined as the contextual cues from the object itself
(object or target agent cues), cues from a dynamic environment or cues from
a static environment.

Table 2.1: Summary of the assets and drawbacks of the different motion modeling approaches.

Motion modeling Assets Drawbacks

Physics-based
approaches

+Simple, efficient, work well under
mild conditions in particular for short-
term prediction horizons.
+Explainable, data efficient and gener-
alize well with respect to unseen envi-
ronments.
+Possible to incorporate dynamic con-
textual cues to models but lead to com-
plex algorithms.

−No reasoning over global environ-
ment.
−Capture only pre-defined motion dy-
namics.
−Large amount of engineering re-
quired.

Pattern-based
approaches

+Learning from actual motion of ob-
jects.
+Reduced modeling required.
+Ability to capture complex dynamics.
+Long-term predictions.
+Capture theoretically all contextual
cues present in the training data.
+Fast inference.

−Require large amount of training
data.
−Limited generalization to new envi-
ronments.
−Low explainability.

Planning-based ap-
proaches

+Generalization to new environments.
+Explicitly reasoning on executed ac-
tions intended on goals and map
awareness.
+Long-term predictions.

−Mandatory pre-requirement of goals
(e.g. as semantic annotations).
−Re-computation of the reward func-
tion required in dynamic environ-
ments.
−Strong dependency on the discretiza-
tion of action and state-spaces.
−Re-computation of the reward func-
tion is time consuming.
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Although it is sufficient to not further differentiate the motion state cues as
part of the object cues in respect of a taxonomy for prediction, it is crucial for
keeping the strict separation of unobserved and observed dynamical states
for the scope of this thesis. Instead of combined contextual cues as input
vector representing the observed environment for a general formulation of
the prediction function, the provided input by the tracking system is always
considered separately.

Instead of using

𝒴 = 𝑓𝜃 (𝒞0∶𝑘) + 𝝐 (2.13)

to formalize the prediction problem, the following equation is used (see equa-
tion 1.1)

𝒴 = 𝑓𝜃 (𝒵0∶𝑘,𝒞0∶𝑘) + 𝝐,

where 𝒴 describes for a path prediction problem the future locations (or dis-
tribution over the locations). As before, 𝒵 are the observations generated by
the tracking system (appearance model of the visual tracker), 𝒞 are additional
contextual cues extracted from the observed image sequences, and 𝝐 describes
an additional error term.

Thus, the scope of this thesis is to replace the 𝑓𝜃 of a dynamical system in
combination with a recursive Bayesian filter with a learning-based solution.
By utilizing deep learning-based approaches, it is clear that the proposed so-
lutions fall not univocally into a single class of taxonomy of Rudenko et al.
The starting point is physics-basedmultiple-model approaches, which are still
the dominant approaches to capture maneuvers.

With respect to the object dynamics, every object is considered separately.
Thus these approaches are unaware of other objects. For tracking systems
with Bayesian filters, this aspect is tackled by data-association solutions like
multi-hypotheses tracking. As mentioned earlier, for detection-by-tracking
the contextual cues are often implicitly used to allow the mapping to the
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physical system under specific assumptions, but the scene context is not in-
cluded in the modeling approach for the prediction. Thus, basic physics-based
multiple-model are unaware of other static environment cues. However, for
all the modeling approaches exist context-aware predictors, but due to the
fact that learning-based approaches are best suited to integrate this kind of
information, we will indicate for the appropriate situations how to handle ad-
ditional context cues, but keep the focus on providing stable solutions for the
case the tracked object is unaware of additional clues.

2.3.2 Intention Prediction

Although many approaches can relatively reliably predict the location of ob-
jects a few seconds ahead, they still struggle to predict when the object will
stop. Towards this end, intention prediction is selected as an exemplary task to
evaluate different aspects of the proposed solution with respect to the switch-
ing dynamics of objects. Intention prediction is an expression mainly used in
the domain of intelligent vehicles as part of overall pedestrian behavior anal-
ysis of vision-based active safety systems. The pedestrian intention can be
estimated jointly with path prediction, as proposed by [Gav99], but also as
pure classification task of a pedestrian action. Due to this close relation be-
tween intention and path prediction, approaches for intention prediction can
be categorized with the same taxonomy as before. Furthermore, we look at
the problem from the Bayesian filter perspective and retain accordingly the
modeling basis relying on the observed trajectory.

However, the estimation of the pedestrians’ intention with respect to their
impending motion can basically be tackled with all of the approaches intro-
duced in section 2.3.1 and mixtures of them. An essential difference is the
short time-window for the prediction and the decision to be made due to
the speed of the vehicle. Since physic-based methods are efficient for short
prediction horizons and generalize well to unseen environments, the number
of approaches in recent literature for intention prediction relying on physics-
based approaches is significantly larger than for path prediction. Themultiple-
model approaches help to better deal with motion model uncertainties. The
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integration of context-awareness for the predictors lead to complex learning
algorithm. For inference, the combination with Bayesian filter is kept.

In reviews on intention prediction or pedestrian behavior prediction [Rid18,
Ras19], the prediction-update cycle of recursive filter is used to categorize all
approaches originated from tracking as dynamics-based prediction. Thereby,
the distinction between a physics-based and pattern-based approaches is lost,
but the Kalman filter, independent of a learned or selected physical motion
model, can be set as baseline approach. A large variety of physics-based mod-
els describing the motion of dynamic objects in ground, marine, airborne ob-
ject tracking, is presented in the work of Li et al. [Li03]. Popular examples of
motion models include the constant velocity (CV) model, constant accel-
eration (CA) model, and constant turn (CT) model. Since the publication of
the seminal Kalman article [Kal60], as special case of Bayesian filtering, many
extensions have been proposed. For example non-linear extensions, such as
the extended Kalman filter (EKF), the unscented Kalman filter (UKF), or
non-Gaussian extensions, such as particle filter (PF) [Bar02, Gri18].

In addition to the before mentioned physics-based single-model methods, the
following approaches use, inter alia, a Kalman filter approach for prediction
of pedestrian positions. Bertozzi et al. [Ber04] (EKF), Meuter et al. [Meu08]
(UKF), and Møgelmose [Møg15] (PF) use Kalman filtering with a CV model.
In the work of Binelli et al. [Bin05] and Elnagar et al. [Eln01], a Kalman filter
is combined with a CA model. For tracking other road users, such as bikes
and vehicles, variants of the CT model are often utilized (see for examples
[Bar08, Bat09]). Zernetsch et al. [Zer16] incorporated additional object cues in
form of the resistance forces from inclination and rolling to extend the cyclist
dynamical model. In [Sch13], Schneider and Gavrila conducted a comparative
study on using Kalman filters with different dynamical models for pedestrian
path prediction. An alternative approach relying also on an HMM, but with
discrete hidden states representing intention classes, was introduced in the
work of Wakim et al. [Wak04]. They classify the four pedestrian behaviors of
standing, walking, jogging, and running.
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By combining such intention class prediction jointly with path prediction, we
end up with multiple-model approaches. For longer time-horizons the inten-
tion of the object motion is dominated by its goals. This again illustrates
the gentle transitions between the modeling methods. For example the ap-
proaches of Kitani et al. [Kit12], Tamura et al. [Tam12], and Ziebart [Zie09]
propose algorithms to learn a dynamical model yielding goal-directed behav-
ior of pedestrians using maximum entropy inverse optimal control. Under
the assumption that pedestrians make near-optimal decisions with stochastic
policies, probability distributions over trajectories are predicted.

The primary approach of multiple-model methods are referred to as multiple-
model methods and hybrid dynamical state methods [Hof04], that augment
the discrete motion or intention state with the continuous dynamical state.
Following the description of Li and Jilkov [Li10] of multiple-model methods,
they consist of the following elements. Firstly, an adaptive dynamical model
set. Secondly, methods to deal with discrete value uncertainties, such as a
Markov or a semi-Markov assumption. Thirdly, a recursive estimation scheme
to deal with the continuous dynamical states conditioned on the dynamical
model. Fourthly, a strategy to estimate the overall best by fusion or selection
of individual filters. The combination of an HMM and a (linear) dynamical
system is called jump Markov linear system (JMLS) [Mur12]. Other com-
mon expressions include switching state-space model (SSSM) or switch-
ing linear dynamical system (SLDS). For predicting cyclist intentions, Pool
et al. [Poo17] presented a mixture of five linear dynamical models and in-
cluded the static environmental cues by excluding single motion prediction
not complying with the road topology.

Instead of a JMLS, Karasev et al. [Kar16a] rely on a jump-Markov decision
process [Mur12] to model pedestrian motion. The pedestrian dynamics is de-
scribed with a soft Markov decision process, and the pedestrian goals are the
hidden discrete states. Environmental cues are included with engineered re-
ward function terms for surface types (e.g., sidewalk, crosswalk, road, grass).

As stated before, the interacting multiple-model (IMM) filter is the most
common inference technique applied for tracking problems [Maz98] with
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maneuvering objects. For example [Lin16] used an IMM filter to track pedes-
trians in the application domain of service robots. Madrigal et al. [Mad13]
proposed an IMM filter solution in a surveillance scenario. In [Kae04],
Kaempchen et al. tracked maneuvering vehicles with an IMM filter. In the
particular context of intention prediction of pedestrians from a vehicle per-
spective, Schneider and Gavrila [Sch13] proposed an IMM filter with several
basic motion models. Köhler et al. combined an IMM filter for pedestrian
tracking with a support-vector-machine (SVM) to classify the intention to
cross based on motion contour image [Bob96] in a surveillance scenario.

In order to include contextual cues several approaches added a dynamic
Bayesian network (DBN) [Kol09] or conditional random fields (CRFs)
[Laf01] on top of a SLDS (see for example [Has15a, Has15b, Koo19, Bon14,
Koo14, Sch15]). Specifically, this means that for inference the IMM fil-
ter is applied to predict future object positions and the additional hidden
state influences the transition probability between single dynamical mod-
els. Hashimoto et al. [Has15b] used an DBN to consider the behavior of
other pedestrians. In [Has15a], they included the information of pedestri-
ans being part of a group. In accordance with Quintero et al. [Qui15] and
Keller et al. [Kel11], Hashimoto et al. reported that it is harder to recognize
the decision of a pedestrian to stop than the decision to cross a street.

Kooij et al. [Koo14] presented a DBN to model the latent factors of head poses
extracted by a head pose detector to account for inattentive pedestrians. To-
gether with spatial cues captured by the distance of the pedestrian to the road
curbside, the change in pedestrian dynamics is controlled. In [Sch15], Schulz
and Stiefelhagen proposed an intention recognition system based on latent-
dynamic CRF to integrate the pedestrian head orientation for controlling the
motionmodel switches. For the estimation of vehicle trajectorieswith an IMM
filter, Kuhn et al. [Kuh15] presented a DBN to embed the context of possible
routes by a pre-defined environment geometry.

There is a recognizable trend of integrating more and more contextual cues
of possible causes of intention changes to better anticipate instead of react-
ing to changes in dynamics. This, however, does not change the fact that
quick reaction to a change in dynamics is crucial for the overall system. Even
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though contextual cues can for example be incorporated with DBNs or other
modeling schemes, the current predominant machine learning paradigms are
neural networks. In particular, RNNs are the standard approach for model-
ing sequential data. As explained in section 2.3.1, there exist an increasing
amount of RNN-based approaches for path prediction. Our goal is to preserve
benefits from traditional multiple-model methods to deal with maneuvering
object, but get rid of the tedious tuning of the filters. Nevertheless, the before
listed approaches [Ale17, Ala16, Zha19, Xue19] in the category of sequential
pattern-based models are closely related to this work. The technical back-
ground of the RNN-based variants is explained in chapter 4.

At this point, we limit ourselves to several approaches applied in an intention
prediction setting and refer to surveys such as [Rud20, Rid18, Hir18, Ras19,
Hir18] for further reading. Not relying on the neural networks nor amultiple-
model approach, but categorized as pattern-based methods are the works from
[Qui15] and Keller et al.[Kel11]. In [Kel11] probabilistic hierarchical trajec-
tory matching is used to match an observed pedestrian track with a database
of tracklets or rather trajectory sections. Extrapolated future location from
the best fitting sections are then combined with dynamic features extracted
using dense optical flow inside the pedestrian bounding boxes, or as in [Qui15]
extracted from full-body articulated poses. In both works, these body mo-
tion dynamics are learned using Gaussian processes with dynamic model
(GPDM) with an HMM to switch between the behavior classes of crossing
and stopping. Quintero et al. [Qui19] included the behavior classes starting
and standing. A pure intention classification approach was proposed in the
work of Völz et al. [Völ15] using a SVM to infer pedestrian crossing from ex-
tracted tracks from LIDAR sensor. Alternatively, they proposed an regression
forest [Völ16], and later presented an RNN-based solution [Völ19]. Gold-
hammer et al. [Gol15, Gol14] introduced a neural network-based approach.
Trajectories from a pedestrian head tracking system in static traffic are ap-
proximated with a least-spare polynomial fit for a fixed input window. The
resulting polynomial coefficients are used as input for an multi-layer per-
ceptron (MLP) [Goo16] to predict future paths.
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Representatively the RNN-based approach of [Sal18] is mentioned due to the
fact that they use an RNN regression model to predict pedestrian path with-
out the maneuver context, but distinguish for their analysis between corre-
sponding trajectories classes such as crossing. In the context of vehicle ma-
neuvers, such as lane changing, Deo and Trivedi [Deo18] presented an RNN-
based model to compute maneuver-dependent vehicle trajectories. Together
with our proposed RNN-based pedestrian path prediction network [Bec18c],
this model serves as basis for the presented RNN-based IMM filter surrogate
[Bec19b, Bec19a].

2.4 Summary

In this chapter, the contributions of this thesis were positioned with respect
to related literature for the selected application of path and intention predic-
tion. The focus of the thesis is state estimation of maneuvering objects as part
of a visual tracking pipeline realized as detection-by-tracking approach. For
a high level of abstraction, the processing pipeline contains the following el-
ements. The object observations provided by an appearance model based on
extracted image feature, describing the object in image space. These obser-
vations serve as input for a Bayesian filter or the proposed RNN-based alter-
natives. We shift from a physics-based modeling to a pattern-based modeling
of the dynamics. Both modeling approaches predict a parametric distribution
over the object states and jointly capture maneuver probabilities for subse-
quent processing stages.
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In this chapter, Bayesian filtering solutions including the IMM filter for deal-
ing with maneuvering objects are explored. After an introduction of the tech-
nical background, design modifications compared to a basic IMM filter are in-
troduced. Some of the results presented in this chapter have been published
in our previous work [Bec16, Bec18a].

3.1 Background

As described in section 2.2, dynamical state estimation, also known as Bayes-
ian filtering, is a general probabilistic approach for recursively estimating an
unknown probability density function over time using incoming observations
and a dynamical model. In order to calculate these densities in a recursive
fashion, the assumption of the dynamical state 𝐱𝑘 being a Markov process is
implied. The prediction-update cycles consist of alternating estimates of the
conditional probability density from an initial state density 𝑝(𝐱0) at time step
𝑘 = 0.

In the prediction step, the predictive distribution of the dynamical state is com-
puted. Then, the observation model ℎ𝑘𝑜𝑏𝑠 (𝐱𝑘,𝐰𝑘) allows to predict the ex-
pected observation. Thus, given the conditional density 𝑝+(𝐱𝑘) ≜ 𝑝(𝐱𝑘| ̃𝐳0∶𝑘)
the density of the predicted state at time step 𝑘 + 1 is calculated according to
the Chapman-Kolmogorov equation [Hub15]

𝑝−(𝐱𝑘+1) ≜ 𝑝(𝐱𝑘+1| ̃𝐳0∶𝑘) = ∫ 𝑝(𝐱𝑘+1|𝐱𝑘)𝑝+(𝐱𝑘) d𝐱𝑘 . (3.1)
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Here, ̃𝐳𝑘 is an actual observation, a realization of 𝐳𝑘 . 𝑝(𝐱𝑘+1|𝐱𝑘) is the tran-
sition density that depends on the dynamical model 𝐱𝑘+1 = 𝑓𝑘 (𝐱𝑘, 𝐯𝑘) and
𝐯𝑘 the process noise. That way, a prior estimate of the current state 𝐱𝑘,− is
obtained. In the update step, a newly available observation ̃𝐳𝑘 is incorporated
into the predictive density 𝑝−(𝐱𝑘). The posterior density of the dynamical
state can be derived with Bayes’ rule and is given by

𝑝+(𝐱𝑘) ≜ 𝑝(𝐱𝑘| ̃𝐳0∶𝑘) = 𝜂𝑘𝑝( ̃𝐳𝑘|𝐱𝑘)𝑝−(𝐱𝑘), (3.2)

with 𝜂𝑘 ≜ (∫ 𝑝( ̃𝐳𝑘|𝐱𝑘)𝑝−(𝐱𝑘) d𝐱𝑘)
−1

.

The term 𝜂𝑘 represents the normalization constant, the term𝑝( ̃𝐳𝑘|𝐱𝑘) is called
the likelihood function of 𝐱𝑘 for a given observation ̃𝐳𝑘 and depends on the
observation model 𝐳𝑘 = ℎ𝑘𝑜𝑏𝑠 (𝐱𝑘,𝐰𝑘) and the observation noise 𝐰𝑘 . The
posterior 𝑝+(𝐱𝑘) is the probability distribution over the 𝐱𝑘 at time step 𝑘,
conditioned on all past observations 𝐳0∶𝑘 and is also referred to as belief or
state of knowledge [Thr05].

Bayesian filtering provides an optimal solution for equation 3.1 and 3.2 and
can be considered a statistical inversion problem [Hub15]. In figure 3.1, the
prediction-update cycle of a Bayesian filter is visualized. In general, a closed-
form solution of the filtering equations is not possible due to the integrals and
multiplications of density functions involved. Thus, simplifying assumptions
are required.

Under the assumption of linear dynamical and observation models affected
by Gaussian noise, the seminalKalman filter (KF) [Kal60] is optimal and has
a closed-form solution. For the case of𝐰𝑘 and 𝐯𝑘 being uncorrelated, the KF
is an optimal dynamical state estimator in the sense of the least square errors
and Bayesian filtering [Gri18]. Thus, the (linear) Kalman filter is a method for
exact on-line inference in a linear DS and linear DSs are commonly used to
describe basic dynamical models, such as a CV model.
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Prediction Update

ObservationsInitial conditions

Figure 3.1: Visualization of the prediction-update cycle of a Bayesian filter. The filter recursively
estimates the unknown system state 𝐱𝑘 from the observations 𝐳𝑘 and estimated state
�̂�𝑘−1 using the dynamical model and the observation model.

3.1.1 Kalman Filter

For the Kalman filter, the dynamical model from equation 2.1 and the ob-
servation model from 2.2 is restricted to linear equations. Accordingly, the
dynamical model can be described by equation

𝐱𝑘+1 = 𝐅𝑘𝐱𝑘 + 𝐆𝑘𝐯𝑘 (3.3)

and the observation model

𝐳𝑘 = 𝐇𝑘𝐱𝑘 +𝐰𝑘 . (3.4)

Hereby, 𝐅𝑘 ∈ ℝ𝑛𝑥×𝑛𝑥 is the system matrix of the Kalman filter and 𝐇𝑘 ∈
ℝ𝑛𝑧×𝑛𝑥 the observation matrix. The noise processes 𝐯𝑘 ∈ ℝ𝑛𝑣 and𝐰𝑘 ∈ ℝ𝑛𝑧

are assumed to be white Gaussian noise process with known covariance ma-
trices 𝐐𝑘 and 𝐑𝑘 . Further, it is assumed that 𝐯𝑘 and 𝐰𝑘 are uncorrelated.
𝐆𝑘 ∈ ℝ𝑛𝑥×𝑛𝑣 is the noise gain, over which the system noise enters the dy-
namical system:

𝐏𝐯𝐯 ≜ Cov(𝐯𝑖𝐯𝑘) = 𝔼[𝐯𝑖𝐯𝑘T] = {𝐐
𝑘 for 𝑖 = 𝑘

0 for 𝑖 ≠ 𝑘 , (3.5)
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𝐏𝐰𝐰 ≜ Cov(𝐰𝑖𝐰𝑘) = 𝔼[𝐰𝑖𝐰𝑘T] = {𝐑
𝑘 for 𝑖 = 𝑘

0 for 𝑖 ≠ 𝑘 . (3.6)

Hence,

𝐯𝑘∼𝒩(𝟎,𝐐𝑘), (3.7)
𝐰𝑘∼𝒩(𝟎,𝐑𝑘), (3.8)

with

𝐏𝐯𝐰 ≜ Cov(𝐯𝑖𝐰𝑘) = 𝔼[𝐰𝑖𝐰𝑘T] = 𝟎 ∀𝑖, 𝑘, (3.9)

𝐏𝐱0𝐯 ≜ Cov(𝐱0𝐯𝑘) = 𝔼[𝐱0𝐯𝑘T] = 𝟎 ∀𝑘, (3.10)

𝐏𝐱0𝐰 ≜ Cov(𝐱0𝐰𝑘) = 𝔼[𝐱0𝐰𝑘T] = 𝟎 ∀𝑘. (3.11)

Given that a Gaussian distribution can be represented by the two first mo-
ments, the state estimate boils down to calculating the mean vector �̂�𝑘 and
covariance matrix 𝐏𝑘𝐱𝐱 of the true state 𝐱𝑘 . The dynamical state representa-
tion is given by

𝐱𝑘∼𝒩(�̂�𝑘, 𝐏𝑘𝐱𝐱), (3.12)

with

𝐏𝑘𝐱𝐱 ≜ Cov(𝐱𝑘𝐱𝑘) = 𝔼[(𝐱𝑘 − 𝔼[𝐱]𝑘)(𝐱𝑘 − 𝔼[𝐱]𝑘)T]
= 𝔼[(𝐱𝑘 − �̂�𝑘)(𝐱𝑘 − �̂�𝑘)T]. (3.13)

(3.14)

The prior estimates, which are obtained during the prediction step and do not
account for the current observation, are denoted by �̂�𝑘,− and 𝐏𝑘,−𝐱𝐱 :

�̂�𝑘,− = 𝔼[𝐱𝑘| ̃𝐳0∶𝑘−1], (3.15)

𝐏𝑘,−𝐱𝐱 = 𝔼[(𝐱𝑘 − �̂�𝑘,−)(𝐱𝑘 − �̂�𝑘,−)T]. (3.16)
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In the update step, the current observation is incorporated to obtain the pos-
terior estimate:

�̂�𝑘,+ = 𝔼[𝐱𝑘| ̃𝐳0∶𝑘], (3.17)

𝐏𝑘,+𝐱𝐱 = 𝔼[(𝐱𝑘 − �̂�𝑘,+)(𝐱𝑘 − �̂�𝑘,+)T]. (3.18)

At time 𝑘 = 0, the Kalman filter is initialized with the prior distribution for
the state 𝒩(�̂�0, 𝐏0𝐱𝐱). The prediction step of a KF can be derived by using the
transition function from equation 3.3 in the expectation computation:

�̂�𝑘,− = 𝔼[𝐱𝑘| ̃𝐳0∶𝑘−1]
= 𝔼[𝐅𝐱𝑘−1 + 𝐆𝐯𝑘−1| ̃𝐳0∶𝑘−1]
= 𝔼[𝐅𝐱𝑘−1| ̃𝐳0∶𝑘−1] + 𝔼[𝐆𝐯𝑘−1| ̃𝐳0∶𝑘−1]
= 𝐅 𝔼[𝐱𝑘−1| ̃𝐳0∶𝑘−1] + 𝟎
= 𝐅�̂�𝑘−1,+. (3.19)

The associated covariance matrix results from equation 3.19 and 3.3:

𝐏𝑘,−𝐱𝐱 = 𝔼[(𝐱𝑘 − �̂�𝑘,−)(𝐱𝑘 − �̂�𝑘,−)T]
= 𝔼[(𝐅𝐱𝑘−1 + 𝐆𝐯𝑘−1 − 𝐅�̂�𝑘−1,+)(𝐅𝐱𝑘−1 + 𝐆𝐯𝑘−1 − 𝐅�̂�𝑘−1,+)T]
= 𝔼[(𝐅(𝐱𝑘−1 − �̂�𝑘−1,+) + 𝐆𝐯𝑘−1)

((𝐱𝑘−1 − �̂�𝑘−1,+)T𝐅T + 𝐯𝑘−1T𝐆T)]
= 𝔼[𝐅(𝐱𝑘−1 − �̂�𝑘−1,+)(𝐱𝑘−1 − �̂�𝑘−1,+)T𝐅T]

+ 𝔼[𝐅(𝐱𝑘−1 − �̂�𝑘−1,+)𝐯𝑘−1T𝐆T]

+ 𝔼[𝐆𝐯𝑘−1(𝐱𝑘−1 − �̂�𝑘−1,+)T𝐅T] + 𝔼[𝐆𝐯𝑘−1𝐯𝑘−1T𝐆T]
= 𝐅 𝔼[(𝐱𝑘−1 − �̂�𝑘−1,+)(𝐱𝑘−1 − �̂�𝑘−1,+)T]𝐅T + 𝟎 + 𝟎

+ 𝐆 𝔼[𝐯𝑘−1𝐯𝑘−1T]𝐆T

𝐏𝑘,−𝐱𝐱 = 𝐅𝐏𝑘−1,+𝐱𝐱 𝐅T + 𝐆𝐐𝑘−1𝐆T. (3.20)
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In equation 3.20, 𝐐𝑘 reflects the uncertainty in the dynamical model. The un-
certainty 𝐏𝑘,−𝐱𝐱 of the dynamical state increases for every one-step prediction
in accordance with this equation.

In order to calculate the corresponding posterior estimates for the update step
on the basis of the current observation, the yet unknown quantities of ̂𝐳𝑘 , 𝐏𝑘𝐱𝐳,
𝐏𝑘𝐳𝐳, and 𝐏𝑘𝐱𝐳 must first be determined. The expected value of the observation
can be obtained under consideration of the observation model

̂𝐳𝑘 = 𝔼[ ̃𝐳𝑘]
= 𝔼[𝐇𝐱𝑘 +𝐰𝑘]
= 𝐇𝑘 𝔼[𝐱𝑘] + 𝔼[𝐰𝑘]
= 𝐇�̂�𝑘,−. (3.21)

The difference between the actually obtained observation ̃𝐳𝑘 and predicted ̂𝐳𝑘
is called innovation or residuum.

𝐬𝑘 ≜ ̃𝐳𝑘 − ̂𝐳𝑘

= ̃𝐳𝑘 −𝐇�̂�𝑘,−, (3.22)

where the innovation or residual covariance 𝐏𝑘𝐳𝐳 ≜ 𝐒𝑘 is given by:

𝐏𝑘𝐳𝐳 = 𝔼[( ̃𝐳𝑘 − ̂𝐳𝑘)( ̃𝐳𝑘 − ̂𝐳𝑘)T]. (3.23)

By inserting the observation model and equation 3.23 we obtain

𝐏𝑘𝐳𝐳 = 𝔼[(𝐇𝑘𝐱𝑘 +𝐰𝑘 −𝐇�̂�𝑘)(𝐇𝑘𝐱𝑘 +𝐰𝑘 −𝐇�̂�𝑘)T]

= 𝔼[𝐇𝑘(𝐱𝑘 − �̂�𝑘)(𝐱𝑘 − �̂�𝑘)T𝐇𝑘T] + 𝔼[𝐇𝑘(𝐱𝑘 − �̂�𝑘)𝐰𝑘T]

+ 𝔼[(𝐱𝑘 − �̂�𝑘)T𝐇𝑘T] + 𝔼[𝐰𝑘𝐰𝑘T]

= 𝐇𝑘 𝔼[(𝐱𝑘 − �̂�𝑘)(𝐱𝑘 − �̂�𝑘)T]𝐇𝑘T + 𝔼[𝐰𝑘𝐰𝑘T]

𝐒𝑘 = 𝐇𝑘𝐏𝑘,−𝐱𝐱 𝐇𝑘T + 𝐑𝑘 . (3.24)
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The matrix 𝐏𝑘𝐱𝐳 can analogously be determined

𝐏𝑘𝐱𝐳 = 𝔼[(𝐱𝑘 − �̂�𝑘)( ̃𝐳𝑘 − ̂𝐳𝑘)T]
= 𝔼[(𝐱𝑘 − �̂�𝑘)(𝐇𝑘𝐱𝑘 +𝐰𝑘 −𝐇�̂�𝑘)T]

= 𝔼[(𝐱𝑘 − �̂�𝑘)(𝐱𝑘 − �̂�𝑘)T𝐇𝑘T] + 𝔼[(𝐱𝑘 − �̂�𝑘)𝐰𝑘T]

= 𝔼[(𝐱𝑘 − �̂�𝑘)(𝐱𝑘 − �̂�𝑘)T]𝐇𝑘T

= 𝐏𝑘,−𝐱𝐱 𝐇𝑘T. (3.25)

For calculating the observation update, the posterior density (see equation
3.2) is conditioned on the current observation. For a given observation ̃𝐳𝑘 , the
resulting observation update of the Kalman filter calculates the Gaussian pos-
terior density 𝒩(𝐱𝑘; �̂�𝑘,+, 𝐏𝑘,+𝐱𝐱 ) of the dynamical state 𝐱𝑘 with mean vector
and covariance matrix according to

�̂�𝑘,+ = �̂�𝑘,− + 𝐏𝑘𝐱𝐳𝐏𝑘𝐱𝐳
−1( ̃𝐳𝑘 − ̂𝐳𝑘), (3.26)

𝐏𝑘,+𝐱𝐱 = 𝐏𝑘,−𝐱𝐱 + 𝐏𝑘𝐱𝐳𝐏𝑘𝐳𝐳
−1𝐏𝑘𝐳𝐱. (3.27)

The expressions 3.26 and 3.27 can be derived by conditioning the joint Gaus-
sian distribution of 𝐱 and 𝐳 on 𝐳 (see for example [Hub15]). Substituting equa-
tions 3.21, 3.24, 3.25 together with

𝐏𝑘𝐳𝐱 = 𝐏𝑘𝐳𝐱
T = 𝐇𝑘𝐏𝑘,−𝐱𝐱 (3.28)

in equation 3.26, we obtain the desired expression for calculating the posterior
mean

�̂�𝑘,+ = �̂�𝑘,− + 𝐏𝑘,−𝐱𝐱 𝐇𝑘T(𝐇𝑘𝐏𝑘,−𝐱𝐱 𝐇𝑘T + 𝐑𝑘)−1( ̃𝐳𝑘 −𝐇𝑘�̂�𝑘,−). (3.29)

It is common to use the abbreviation

𝐊𝑘 = 𝐏𝑘,−𝐱𝐱 𝐇𝑘T(𝐇𝑘𝐏𝑘,−𝐱𝐱 𝐇𝑘T + 𝐑𝑘)−1. (3.30)
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Thematrix𝐊𝑘 is the so-called Kalman gain. Using𝐊𝑘 the update step is given
by:

�̂�𝑘,+ = �̂�𝑘,− +𝐊𝑘( ̃𝐳𝑘 −𝐇𝑘�̂�𝑘,−), (3.31)

𝐏𝑘,+𝐱𝐱 = 𝐏𝑘,−𝐱𝐱 −𝐊𝑘𝐇𝑘𝐏𝑘,−𝐱𝐱 = (𝐈 − 𝐊𝑘𝐇𝑘) 𝐏𝑘,−𝐱𝐱 . (3.32)

The KF provides equations for propagating Gaussian distributions through
a linear system, resulting in a maintained Gaussian distribution. In case of
non-linearities in at least the dynamical model or the observation model, this
does not apply anymore. Further, the property that the joint density of 𝐱
and 𝐳 is also Gaussian is only satisfied for linear models. Most non-linear
filtering approaches utilize the construction of a joint Gaussian of 𝐱 and 𝐳
and conditioning on 𝐳 to derive the Kalman filter. Thus, these approaches
aim to find an approximation for non-linear filtering problems. Some popular
example filters are the EKF and the iterative EKF (IEKF), which approximate
the non-linear function by using the Taylor series expansion around the mean
of the Gaussian distribution. Other approaches, such as the UKF, approximate
the distribution bymeans of a set of points that can be propagated through the
non-linear functions and serve to determine the new distribution parameters.
A generalization of this approach leads to the family of PFs.

These modification concepts of the KF can be transferred to concepts pre-
sented in the following. Although linear models are considered, the same
techniques, that are explained in the sequel, can be used by linearization. A
more elaborate description of non-linear filtering extension of the KF can be
found in [Bar02, Sär13, Thr05].

3.1.2 Maneuvering Objects

In the absence of the problem of data association, maneuvering object tracking
faces two interrelated main challenges: object motion mode uncertainty and
non-linearity. Mode refers to true object motion or a pattern of behavior, and
the dynamical model is a mathematical - usually simplified - description of the
object motion with a certain accuracy level. Estimation is based on models,
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approximations of the modes, which precisely describe the truth. Multiple-
model approaches are generally considered to be the mainstream approach to
maneuvering object tracking under motion mode uncertainty [Li10].

In filtering, multiple-model approaches are included in the group of adaptive
filtering (see for example [Bar02]). In general, a well functioning filter de-
pends on an adequate choice of 𝐐𝑘 and 𝐑𝑘 . The concept of an adaptive filter
considers every filter which adapts itself when it detects dynamics that the dy-
namical model cannot account for. In object tracking, maneuvers are defined
as model mismatch problems and in addition to multiple-model approaches,
so-called maneuver detection based methods are also considered as adaptive
filters. Some example methods are adjustable level process noise [Zar09], vari-
able state dimension, and input estimation. But these methods are generally
considered to be too slow to compensate maneuvers [Bar02].

As described in section 2.3.2, multiple-model approaches are the preferred
choice when the object motion is poorly described by a single model. These
approaches assume that the system behaves in accordance with one of a finite
number of dynamical models. The models can differ in noise levels or in their
structure. Such systems are also referred to as hybrid systems or hybrid dy-
namical state methods since they augment the discrete motion state with the
continuous dynamical state 𝝃𝑘 = (𝐱𝑘, 𝑚𝑘). Multiple-model approaches can
be further sub-divided into static and switching multiple-model approaches.
Static approaches converge quickly to only the most probable model without
recovering [Lab14]. Thus, a reinitialization of mismatched filters is required.
This is accomplished by using the estimate from other models. Since the nec-
essary modifications are a rigorously built-in part of switching multiple-model
approaches, static approaches are not further considered.

From the broad set of proposed switching multiple-model approaches, there is
no clear-cut best algorithm, but the interacting multiple-model (IMM) fil-
ter is considered to be the best compromise of low computational complexity
and good tracking performance [Pit05]. In particular for the task of inten-
tion prediction the IMM filter is the primary approach [Sch13, Koo19, Bon14,
Sch15, Has15a, Has15b].
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The prediction problem for maneuvering objects with such multiple-model
systems can be described as

𝒴 = 𝑓𝑚𝑘 (𝒵0∶𝑘,𝒞0∶𝑘) + 𝝐,

where 𝑚𝑘 ∈ ℳ = {𝑚1, … ,𝑚𝑀} denotes the mode or dynamical model at
time 𝑘 that is in effect during the sampling period ending at 𝑘. The dynamical
model of the linear Kalman filter from equation 3.3 thus yields

𝐱𝑘+1 = 𝐅𝑘(𝑚𝑘)𝐱𝑘 + 𝐆𝑘(𝑚𝑘)𝐯𝑘(𝑚𝑘), (3.33)

and the adapted observation model is given by

𝐳𝑘 = 𝐇𝑘(𝑚𝑘)𝐱𝑘 +𝐰𝑘(𝑚𝑘). (3.34)

In case equation 3.33 and 3.34 correspond to linear dynamical systems, such
systems are referred to as JMLS [Mur12]. Among other, the expressions SSSM
and SLDS are also common. For the dynamical model and the observation
model, the transition matrices are formulated depending on𝑚𝑘 . The mode at
time 𝑘 is assumed to be among the set of possible𝑀 models

𝑚𝑘 ∈ {𝑚𝑗}
𝑀
𝑗=1 . (3.35)

The sequence of dynamical models through time 𝑘 (𝑞th mode history) is de-
noted as

ℳ𝑘,𝑞 = {𝑚1,𝑞
𝑖 , … ,𝑚𝑘,𝑞

𝑖 } 𝑞 = 1,… ,𝑀𝑘 , (3.36)

where (⋅)𝜅,𝑞𝑖 is the model index 𝑖 at time 𝜅 from history 𝑞 and 1 ≤ (⋅)𝜅,𝑞𝑖 ≤ 𝑀.
Note that the number of histories increases exponentially with time. The
switching between themotionmodels is assumed to be aMarkov process with
known transition probabilities. Thus a Markov-chain consisting of a transi-
tion probability matrix (TPM) with

𝑝𝑖𝑗 ≜ 𝑃(𝑚𝑘 = 𝑚𝑗|𝑚𝑘−1 = 𝑚𝑖). (3.37)

40



3.1 Background

The event that model 𝑗 is in effect at time 𝑘 is denoted as

𝑚𝑘
𝑗 ≜ {𝑚𝑘 = 𝑚𝑗} (3.38)

and the conditional probability of the 𝑞th sequence of models

𝛼𝑘,𝑞 = 𝑃(ℳ𝑘,𝑞|𝐳0∶𝑘). (3.39)

The 𝑞th sequence of models through time can be written as

ℳ𝑘,𝑞 = {ℳ𝑘,𝑙, 𝑚𝑘
𝑗 } , (3.40)

where 𝑙 denotes the parent sequence with the last element 𝑚𝑗 . Due to the
Markov property,

𝑃(𝑚𝑘
𝑗 |ℳ𝑘,𝑞) = 𝑃(𝑚𝑘

𝑗 |𝑚𝑘−1
𝑖 ) ≜ 𝑝𝑖𝑗 , (3.41)

where the index 𝑖 corresponds to the last model in the parent sequence 𝑙. An
optimal estimator for such a system calculates the following expectation

𝔼[𝐱𝑘| ̃𝐳0∶𝑘] =
𝑀𝑘

∑
𝑞=1

𝔼[𝐱𝑘|ℳ𝑘,𝑞, ̃𝐳0∶𝑘]𝑃(ℳ𝑘,𝑞| ̃𝐳0∶𝑘). (3.42)

Thus, the conditional pdf of the dynamical state 𝐱𝑘 at time 𝑘 using the theorem
of total probability with respect to mutually exclusive and exhaustive set of
events (equation 3.36), is a Gaussian mixture with an exponentially increasing
number of terms [Bar02]:

𝑝(𝐱𝑘| ̃𝐳0∶𝑘) =
𝑀𝑘

∑
𝑞=1

𝑝(𝐱𝑘|ℳ𝑘,𝑞, ̃𝐳0∶𝑘)𝑃(ℳ𝑘,𝑞| ̃𝐳0∶𝑘). (3.43)
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By using Bayes’ rule, the probability of a sequence of models can be obtained
as

𝛼𝑘,𝑞 = 𝑃(ℳ𝑘,𝑞| ̃𝐳0∶𝑘)
= 𝑃(ℳ𝑘,𝑞| ̃𝐳𝑘, ̃𝐳0∶𝑘−1)
= 𝜂𝑝( ̃𝐳𝑘|ℳ𝑘,𝑞, ̃𝐳0∶𝑘−1)𝑃(ℳ𝑘,𝑞| ̃𝐳0∶𝑘−1)
= 𝜂𝑝( ̃𝐳𝑘|ℳ𝑘,𝑞, ̃𝐳0∶𝑘−1)𝑃(𝑚𝑘

𝑗 ,ℳ𝑘−1,𝑙| ̃𝐳0∶𝑘−1)
= 𝜂𝑝( ̃𝐳𝑘|ℳ𝑘,𝑞, ̃𝐳0∶𝑘−1)𝑃(𝑚𝑘

𝑗 |ℳ𝑘−1,𝑙, ̃𝐳0∶𝑘−1)𝛼𝑘−1,𝑙

= 𝜂𝑝( ̃𝐳𝑘|ℳ𝑘,𝑞, ̃𝐳0∶𝑘−1)𝑃(𝑚𝑘
𝑗 |ℳ𝑘−1,𝑙)𝛼𝑘−1,𝑙 , (3.44)

where 𝜂 is the normalization constant. Since the current mode only depends
on the previous, it follows:

𝛼𝑘,𝑞 = 𝜂𝑝( ̃𝐳𝑘|ℳ𝑘,𝑞, ̃𝐳0∶𝑘−1)𝑃(𝑚𝑘
𝑗 |𝑚𝑘

𝑖 )𝛼𝑘−1,𝑙 (3.45)

= 𝜂𝑝( ̃𝐳𝑘|ℳ𝑘,𝑞, 𝐳0∶𝑘−1)𝑝𝑖𝑗𝛼𝑘−1,𝑙 , (3.46)

where 𝑖 = 𝑙𝑘−1 is the index of the last model 𝑚𝑘−1 of the parent sequence 𝑙.
Equation 3.46 shows that even if the model sequence is Markov, a condition-
ing on the entire past history is required. In order to prevent a combinatorial
explosion and to applymultiple-models in practice, approximations of the op-
timal solution are required. The different multiple-model approaches vary in
theway how they approximate equation 3.43. As explained in section 2.3, they
consist of the following elements [Li10]. Firstly, the adaptive set of selected
dynamical models. Secondly, methods to deal with discrete value uncertain-
ties, such as a Markov or a semi-Markov assumption. Thirdly, a recursive
estimation scheme to deal with the continuous dynamical states conditioned
on the dynamical model. Fourthly, a strategy to estimate the overall best filter
by fusion or selection of individual filters.

In [Pit05], Pitre et al. compared several multiple-model methods including
generalized pseudo-Bayesian filter of first order (GPB1), and of second order
(GPB2) [Cha78], IMM filter, B-best based multiple-model filter [Tug82], and
Viterbi-basedmultiple-model algorithm [Ave91] for tracking applications and
showed that the IMM filter offers the best compromise between good tracking
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performance and low computational complexity. GPB2 filter and IMM filter
approximate equation 3.43 identically, but the GPB2 filter requires 𝑀2 com-
bined Kalman filters instead of the 𝑀 combined Kalman filters of the IMM
algorithm with similar tracking performance. A more detailed derivation of
GPB filter can for example be found in [Bar02, Pit05]. Here, we focus on the
IMM solution for the filtering problem.

The basic idea of IMM is to approximate equation 3.42 or rather equation 3.43
by

𝔼[𝐱𝑘| ̃𝐳0∶𝑘] =
𝑀
∑
𝑗=1

𝔼[𝐱𝑘|𝑚𝑘
𝑗 , ̃𝐳0∶𝑘]𝑃(𝑚𝑘

𝑗 | ̃𝐳0∶𝑘), (3.47)

𝑝(𝐱𝑘| ̃𝐳0∶𝑘) =
𝑀
∑
𝑗=1

𝑝(𝐱𝑘|𝑚𝑘
𝑗 , ̃𝐳0∶𝑘)𝑃(𝑚𝑘

𝑗 | ̃𝐳0∶𝑘). (3.48)

Here,𝑀 basic filters run in parallel, and every filter is optimal for one specific
state of the discrete Markov-chain, i.e., the dynamic model and the observa-
tion model fit to a specific mode with regards to equation 3.33 and equation
3.34. For the term 𝑃(𝑚𝑘

𝑖 |𝐳0∶𝑘), the posterior mode probability, the abbrevia-
tion 𝛼𝑘𝑖 is used. The IMM algorithm consists of three major steps: interaction
(mixing), filtering, and combination. The following derivation of these steps is
oriented on [Wen11, Bar02].

IMM-Interaction
The first step of the IMM filter cycle is interaction. Here, the Markov-chain
is propagated through time. Accordingly, the estimate of the motion mode
and the estimate of the dynamical state must be adapted. Thus, the following
transition must be determined:

𝛼𝑘−1𝑗 = 𝛼𝑘−1𝑗𝑘−1 → 𝛼𝑘−1𝑖𝑘 ∀𝑖,𝑗, (3.49)

𝑝(𝐱𝑘−1|𝑚𝑘−1
𝑗 , ̃𝐳0∶𝑘−1) → 𝑝(𝐱𝑘−1|𝑚𝑘−1

𝑖 , ̃𝐳0∶𝑘−1) ∀𝑖,𝑗. (3.50)

The term 𝛼𝑘−1𝑖𝑘 ≜ 𝑃(𝑚𝑘
𝑗 | ̃𝐳0∶𝑘−1) is the probability under the condition that all

observation up to time step 𝑘−1 are available, and model 𝑖 is in effect in time
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step 𝑘. By applying the Chapman-Kolmogorov equation (see equation 3.1) on
the Markov-chain, the desired transition for equation 3.49 is given by

𝛼𝑘−1𝑖𝑘 =
𝑀
∑
𝑗=1

𝛼𝑘−1𝑖𝑘|𝑗𝑘−1𝛼
𝑘−1
𝑗𝑘−1 =

𝑀
∑
𝑗=1

𝑝𝑖𝑗𝛼𝑘−1𝑗𝑘−1 . (3.51)

Here, 𝛼𝑘−1𝑖𝑘|𝑗𝑘−1 ≜ 𝑃(𝑚𝑘
𝑖 |𝑚𝑘−1

𝑗 , ̃𝐳0∶𝑘−1) is the probability under the condition
that all observations up to time step 𝑘 − 1 are available, and model 𝑖 is in
effect in time step 𝑘 for the case model 𝑗 was in effect in time step 𝑘 − 1.
When applying Bayes’ rule, it follows

𝛼𝑘−1𝑗𝑘−1|𝑖𝑘𝛼
𝑘−1
𝑖𝑘 = 𝛼𝑘−1𝑖𝑘|𝑗𝑘−1𝛼

𝑘−1
𝑗𝑘−1 = 𝑝𝑖𝑗𝛼𝑘−1𝑗𝑘−1 , (3.52)

and thus

𝛼𝑘−1𝑗𝑘−1|𝑖𝑘 =
𝑝𝑖𝑗𝛼𝑘−1𝑗𝑘−1

𝛼𝑘−1𝑖𝑘
=

𝑝𝑖𝑗𝛼𝑘−1𝑗𝑘−1

∑𝑀
𝑗=1 𝑝𝑖𝑗𝛼𝑘−1𝑗𝑘−1

=
𝑝𝑖𝑗𝛼𝑘−1𝑗𝑘−1

̄𝑐𝑖
. (3.53)

The desired pdf from equation 3.50 can now be described by

𝑝(𝐱𝑘−1|𝑚𝑘−1
𝑖 , ̃𝐳0∶𝑘−1) =

𝑀
∑
𝑗=1

𝑝(𝐱𝑘−1|𝑚𝑘
𝑖 , 𝑚𝑘−1

𝑗 , ̃𝐳0∶𝑘−1)𝛼𝑘−1𝑗𝑘−1|𝑖𝑘 . (3.54)

The weighting probabilities 𝛼𝑘𝑗|𝑖 = 𝛼𝑘−1𝑗𝑘−1|𝑖𝑘 are referred to as mixing or inter-
acting probabilities. Using Bayes’ rule, we get

𝑝(𝐱𝑘−1|𝑚𝑘
𝑖 , 𝑚𝑘−1

𝑗 , ̃𝐳0∶𝑘−1)𝑃(𝑚𝑘
𝑖 |𝑚𝑘−1

𝑗 , ̃𝐳0∶𝑘−1)
= 𝑃(𝑚𝑘

𝑖 |𝐱𝑘−1, 𝑚𝑘−1
𝑗 , ̃𝐳0∶𝑘−1)𝑝(𝐱𝑘−1|𝑚𝑘−1

𝑗 , ̃𝐳0∶𝑘−1),
(3.55)

and thus

𝑝(𝐱𝑘−1|𝑚𝑘
𝑖 , 𝑚𝑘−1

𝑗 , ̃𝐳0∶𝑘−1)

=
𝑃(𝑚𝑘

𝑖 |𝐱𝑘−1, 𝑚𝑘−1
𝑗 , ̃𝐳0∶𝑘−1)

𝑃(𝑚𝑘
𝑖 |𝑚𝑘−1

𝑗 , ̃𝐳0∶𝑘−1)
𝑝(𝐱𝑘−1|𝑚𝑘−1

𝑗 , ̃𝐳0∶𝑘−1).
(3.56)
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The probability of 𝑚𝑘 = 𝑚𝑖 depends on 𝑚𝑘−1 = 𝑚𝑗 , but not on 𝐱𝑘−1. Thus
the terms of the fraction in equation 3.56 are equal. By using this simplified
version of equation 3.56, we can also simplify 3.54, the desired pdf from equa-
tion 3.50, according to

𝑝(𝐱𝑘−1|𝑚𝑘−1
𝑖 , ̃𝐳0∶𝑘−1) =

𝑀
∑
𝑗=1

𝑝(𝐱𝑘−1|𝑚𝑘−1
𝑗 , ̃𝐳0∶𝑘−1)𝛼𝑘−1𝑗|𝑖 . (3.57)

According to 3.57, the pdf of the dynamical state conditioned on model 𝑚𝑖
is a weighted sum of 𝑀 Gaussian distributions (mixture-of-Gaussian). The
following step after interaction, is the prediction by using an elementary dy-
namical model. Thus, the sum of Gaussians from 3.57 has to be approximated
by a single Gaussian distribution. The approximation by a single Gaussian
can be done by moment matching (see for example [Bar02]). Thus, the mixed
initial condition (mixed mean and covariance) for each filter is computed as

𝐱𝑘−1,+0,𝑖 =
𝑀
∑
𝑗=1

𝛼𝑘−1𝑗|𝑖 𝐱𝑘−1,+𝑗 , (3.58)

P𝑘−1,+0,𝑖 =
𝑀
∑
𝑗=1

𝛼𝑘−1𝑗|𝑖 (P𝑘−1,+𝑗 + (�̂�𝑘−1,+𝑗 − 𝐱𝑘−1,+0,𝑖 )(�̂�𝑘−1,+𝑗 − 𝐱𝑘−1,+0,𝑖 )T) .

(3.59)

Here, �̂�𝑘−1,+𝑗 and 𝐏𝑘−1,+𝑗 are the updated mean and covariance for model 𝑗 at
time step 𝑘 − 1.

IMM-Filtering
In the filtering step, after initialization with 𝐱𝑘−1,+𝑖 and P𝑘−1,+𝑖 , the Kalman
filter equations (3.32, 3.31 and 3.19, 3.20) are applied for each individual filter.
Correspondingly in the prediction step of the KF, the pdf of the models are
propagated through time

𝑝(𝐱𝑘−1|𝑚𝑘
𝑖 , ̃𝐳0∶𝑘−1) → 𝑝(𝐱𝑘|𝑚𝑘

𝑖 , ̃𝐳0∶𝑘−1) ∀𝑖. (3.60)
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Thus, the prediction part is given by

[𝐱𝑘,−𝑖 ,𝐏𝑘,−𝑖 ] = KF𝑝 [𝐱𝑘−1,+0,𝑖 ,𝐏𝑘−1,+0,𝑖 , 𝐅𝑘−1𝑖 , 𝐐𝑘−1
𝑖 ] . (3.61)

Here the abbreviation 𝐅𝑘𝑖 corresponds to 𝐅𝑘(𝑚𝑘
𝑖 ). This also applies accord-

ingly to 𝐐𝑘
𝑖 , 𝐇𝑘

𝑖 , and 𝐑𝑘
𝑖 . The model probabilities are not affected here. In the

update step of the IMM filter, the pdf of the filters are updated

𝑝(𝐱𝑘−1|𝑚𝑘
𝑖 , ̃𝐳0∶𝑘) → 𝑝(𝐱𝑘|𝑚𝑘

𝑖 , ̃𝐳0∶𝑘) ∀𝑖, (3.62)

and thus

[𝐱𝑘,+𝑖 ,𝐏𝑘,+𝑖 ] = KFᵆ [𝐱𝑘,−𝑖 ,𝐏𝑘,−𝑖 , 𝐇𝑘
𝑖 , 𝐑𝑘

𝑖 ] . (3.63)

In addition to the parameter of the pdf, the model probabilities have to be
adapted

𝛼𝑘−1𝑖𝑘 → 𝛼𝑘𝑖 ∀𝑖. (3.64)

Using Bayes’ rule yields

𝑃(𝑚𝑘
𝑖 | ̃𝐳𝑘, ̃𝐳0∶𝑘−1,𝐱

𝑘,−
𝑖 ) = 𝑝( ̃𝐳𝑘|𝑚𝑘

𝑖 , ̃𝐳0∶𝑘−1,𝐱𝑘,−𝑖 )𝑃(𝑚𝑘
𝑖 | ̃𝐳0∶𝑘−1,𝐱

𝑘,−
𝑖 )

𝑝( ̃𝐳𝑘| ̃𝐳0∶𝑘−1,𝐱𝑘,−𝑖 )
. (3.65)

The likelihood Λ𝑘𝑖 of the observation for each filter is computed

Λ𝑘𝑖 = 𝑝( ̃𝐳𝑘|𝐱𝑘,−𝑖 )

= 1

√(2𝜋)𝑛𝑧 ||𝐒𝑘𝑖 ||
exp (−12𝐬

𝑘
𝑖
T𝐒𝑘𝑖

−1𝐬𝑘𝑖 ), (3.66)

where 𝐬𝑘𝑖 is the observation innovation, and 𝐒𝑘𝑖 the innovation covariance (see
equations 3.22 and 3.23) of the KF update step of model 𝑚𝑖 .
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3.1 Background

Due to the fact that in 𝐱𝑘,−𝑖 all observations till time step 𝑘−1 are incorporated,
it is possible to write

𝑝( ̃𝐳𝑘|𝑚𝑘
𝑖 , ̃𝐳0∶𝑘−1,𝐱𝑘,−𝑖 ) = 𝑝( ̃𝐳𝑘|𝐱𝑘,−𝑖 ) = Λ𝑘𝑖 , (3.67)

and we get for equation 3.65

𝛼𝑘𝑖 =
Λ𝑘𝑖 𝛼𝑘−1𝑖𝑘

∑𝑀
𝑖=1 Λ𝑘𝑖 𝛼𝑘−1𝑖𝑘

. (3.68)

Note that 𝛼𝑘−1𝑖𝑘 is the propagated model probability, thus we can use the ex-
pression ̄𝑐𝑖 from equation 3.53 to rewrite 3.68 the model probability update
equation according to

𝛼𝑘𝑖 =
1
𝑐Λ

𝑘
𝑖 ̄𝑐𝑖 . (3.69)

Here, 𝑐 = ∑𝑀
𝑖=1 Λ𝑘𝑖 ̄𝑐𝑖 is the normalization factor for equation 3.69. This

expression is commonly used in literature ([Bar02, Lab14, Sär13]).

IMM-Combination
The final step in an IMM cycle is combination. The combination of the model
conditioned estimates and covariances is done according to mode matching
of the Gaussian mixture as follows:

�̂�𝑘,+ =
𝑀
∑
𝑗=1

𝛼𝑘𝑗 𝐱
𝑘,+
𝑗 , (3.70)

�̂�𝑘,+ =
𝑀
∑
𝑗=1

𝛼𝑘𝑗 (𝐏
𝑘,+
𝑗 + (𝐱𝑘,+𝑗 − �̂�𝑘,+)(𝐱𝑘,+𝑗 − �̂�𝑘,+)T) . (3.71)

This completes a full IMM filter cycle. For a better overview the most impor-
tant equations of the IMM algorithm are summarized in the following.
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3 The Bayesian Perspective

• Interaction
Mixing probabilities:

𝛼𝑘−1𝑗|𝑖 =
𝑝𝑖𝑗𝛼𝑘−1𝑗

∑𝑀
𝑗=1 𝑝𝑖𝑗𝛼𝑘−1𝑗

.

Mixed mean and mixed covariance:

𝐱𝑘−1,+0,𝑖 =
𝑀
∑
𝑗=1

𝛼𝑘−1𝑗|𝑖 𝐱𝑘−1,+𝑗 ,

P𝑘−1,+0,𝑖 =
𝑀
∑
𝑗=1

𝛼𝑘−1𝑗|𝑖 (P𝑘−1,+𝑗

+(�̂�𝑘−1,+𝑗 − 𝐱𝑘−1,+0,𝑖 )(�̂�𝑘−1,+𝑗 − 𝐱𝑘−1,+0,𝑖 )T) .

• Filtering
Prediction:

[𝐱𝑘,−𝑖 ,𝐏𝑘,−𝑖 ] = KF𝑝 [𝐱𝑘−1,+0,𝑖 ,𝐏𝑘−1,+0,𝑖 , 𝐅𝑘−1𝑖 , 𝐐𝑘−1
𝑖 ] .

Update:

[𝐱𝑘,+𝑖 ,𝐏𝑘,+𝑖 ] = KFᵆ [𝐱𝑘,−𝑖 ,𝐏𝑘,−𝑖 , 𝐇𝑘
𝑖 , 𝐑𝑘

𝑖 ] .

Model probability update:

𝛼𝑘𝑖 =
1
𝑐Λ

𝑘
𝑖 ̄𝑐𝑖 ,

with 𝑐 =
𝑀
∑
𝑖=1

Λ𝑘𝑖 ; ̄𝑐𝑖 =
𝑀
∑
𝑗=1

𝑝𝑖𝑗𝛼𝑘−1𝑗 .
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3.2 IMM Filter for Visual Tracking

• Combination Combined mean and combined covariance:

�̂�𝑘,+ =
𝑀
∑
𝑗=1

𝛼𝑘𝑗 𝐱
𝑘,+
𝑗 ,

�̂�𝑘,+ =
𝑀
∑
𝑗=1

𝛼𝑘𝑗 (𝐏
𝑘,+
𝑗

+(𝐱𝑘,+𝑗 − �̂�𝑘,+)(𝐱𝑘,+𝑗 − �̂�𝑘,+)T) .

3.2 IMM Filter for Visual Tracking

In this chapter, we present our adapted designs for a basic IMM filter by both
a state de-coupling and re-coupling scheme as modifications. All filters are
applied as top-down state estimator in a visual tracking pipeline.

3.2.1 De-coupled IMM Filter

The dynamical models of recursive Bayesian filters rely on explicitly defined
dynamic equations that follow physical models such as Newton’s law of mo-
tion. In order to apply a physics-based dynamical model, not only a good
physical model is required, but in addition, mapping between the observa-
tions to the 3𝐷 physical world. As described in section 2.3, the condition of
being able to rely on mapping to the physical world can be ensured by utiliz-
ing contextual cues to better interpret the observed scene or by includingmore
assumptions about the environment. For example, in order to perform path
prediction on ground level additional sensors (LIDAR, stereo camera system)
or approaches like structure-from-motion (SfM) reconstruct the 3D scene.

Although the aim of several approaches is to determine such a mapping func-
tion, there exist several scenarios where this mapping is unknown, involves
substantially higher expense, or is an unsolved problem. Accordingly, with-
out implicit contextual cues to estimate a mapping function, object tracking is
performed directly in the 2D image space. Thus, the objects are solely tracked
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3 The Bayesian Perspective

on directly mapped observations from the appearance model. A typical exam-
ple is the tracking of objects without available external calibration. Figure 3.2
shows two examples where the state estimate solely relies on the enclosing
bounding box of the object. In particular, the observation models are mapped
linearly to the dynamical state of the object. As a consequence, the dynamical
models are abused as general-purpose models to capture the object motion. In
other words, the dynamical models are only rudimentary models of the true
object motion mode with relatively large process noise levels.

Observation model:

[ 𝐈3×3 𝟎3×6 ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑠
̇𝑥
̇𝑦
̇𝑠
̈𝑥
̈𝑦
̈𝑠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑘

+𝐰𝑘 = [𝑥,𝑦,𝑠]𝑘
T
= 𝐳𝑘

Figure 3.2: Two tracked objects where the dynamical state is directly estimated from observa-
tions provided by the output of a person detector or a visual tracker in terms of
the center position (𝑥,𝑦) and the object scale (𝑠). (Top) An example image from
the Daimler Mono Pedestrian dataset [Enz09]. (Bottom) An example image from the
sequence car of the VOT2014 dataset [Ceh16, Kri14].
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3.2 IMM Filter for Visual Tracking

As discussed earlier, an IMMfilter is a good choice for dealingwithmotion un-
certainties and reducing the effect of model mismatching. The effect of model
mismatching is clearly present in a detection-by-tracking pipeline for track-
ing in image space. Although an IMM filter can describe more complex object
dynamics by combining several basic dynamical models, there arise some fal-
lacies when an IMM filter is restricted to this situation. In the following, these
fallacies are analyzed by comparing a standard IMM filter setup to a proposed
de-coupling of the dynamical states for the case of tracking objects only with
directly mapped object observations. At first, a reference IMM setup for the
desired scenario is introduced. For combining several dynamical models, the
dynamical state of the object is described according to

𝐱𝑘+1 = 𝐅𝑘𝑖 𝐱𝑘 + 𝐯𝑘𝑖 , (3.72)

and the observation model is given by

𝐳𝑘 = 𝐇𝑘
𝑖 𝐱𝑘 +𝐰𝑘

𝑖 . (3.73)

The observation noise𝐰𝑘 ∈ ℝ𝑛𝑧 is assumed to be uncorrelated to the process
noise and modeled as white Gaussian noise process 𝐰𝑘 ∼ 𝒩(0,R𝑤). For the
goal of tracking an object on directly mapped observations, the 𝐇𝑘

𝑖 includes
only binary values. As observations provided by an appearance model, the
unified bounding box is used. Thus, 𝐳𝑘 includes the center position (𝑥,𝑦) of
the object in image 𝐈𝑘 , and the object scale 𝑠 (see figure 3.2). Such information
can be obtained from every object detector following the slidingwindow para-
digm. Although common detectors differ in many aspects, the output of such
a sliding window-based detector is a rectangular bounding box centered at
the object location [Dol12, Enz09]. Alternatively, almost every visual tracker
compared in the study of Cehovin et al. [Ceh16] uses the enclosing bounding
box to represent the object state in the image. In order to choose an adap-
tive model set, the three most common general-purpose dynamical models
are considered. These dynamical models are the constant position (CP), the
constant velocity (CV), and the constant acceleration (CA). Despite being
applicable as translational models for tracking in image space, these models
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3 The Bayesian Perspective

are used for modeling the motion behavior of pedestrians for intention pre-
diction with a single dynamical model [Møg15, Eln01, Bin05], or combined as
multiple-model approach [Sch15, Gol14, Sch13]. Accordingly, the transition
matrices 𝐅𝑘𝑖 can then be defined as

𝐅𝑘𝐶𝑃 = [ 𝐈3×3 𝟎3×6
𝟎6×3 𝟎6×6 ] (3.74)

for the CP model, and as

𝐅𝑘𝐶𝑉 = [
𝐈3×3 𝐈3×3Δ𝑇 𝟎3×3
𝟎3×3 𝐈3×3 𝟎3×3
𝟎3×3 𝟎3×3 𝟎3×3

] . (3.75)

for the CV model. In literature, several assumptions on how to model the
acceleration process of an object are proposed. Here, in accordance with Li et
al. [Li05] the following CA model has been chosen

𝐅𝑘𝐶𝐴 = [
𝐈3×3 𝐈3×3Δ𝑇 𝐈3×3

1
2
Δ𝑇2

𝟎3×3 𝐈3×3 𝐈3×3Δ𝑇
𝟎3×3 𝟎3×3 𝐈3×3

] . (3.76)

Hence, 𝐅𝑘𝑖 ∈ {𝐅𝑘𝐶𝑃, 𝐅𝑘𝐶𝑉 ,𝐅𝑘𝐶𝐴} with 𝑚𝑘
𝑖 ∈ {𝑚𝑘

𝐶𝑃, 𝑚𝑘
𝐶𝑉 , 𝑚𝑘

𝐶𝐴}. In case these
models are applied in image space, every single model is used together with
a relatively high model uncertainty. With the above choice of the model set
structure the dynamical state 𝐱𝑘 of the reference IMM filter is given by

𝐱𝑘IMM 1 = [𝑥, 𝑦, 𝑠, ̇𝑥, ̇𝑦, ̇𝑠, ̈𝑥, ̈𝑦, ̈𝑠]T . (3.77)

In addition to a directly observed center position (𝑥,𝑦) and the object scale
(𝑠), the IMM filter uses the corresponding velocities ( ̇𝑥, ̇𝑦, ̇𝑠), and accelerations
( ̈𝑥, ̈𝑦, ̈𝑠). For standard Kalman filtering, a de-coupling of the states is redun-
dant. Due to the characteristics of an IMMfilter, both choosing a wrong single
motion model and carelessly extending the states can lead to a non-optimal
performance. The IMM solution to avoid the combinatorial explosion of an
optimal filtering behavior using multiple-models is done by conditioning all
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3.2 IMM Filter for Visual Tracking

filters on the currently active model, and the final state estimate is obtained
by merging the results of all base filters (see section 3.1.2). Thus, a poor es-
timate of the active model affects the weighting of the mixed inputs in the
interaction step. Thereby, a combination of the location and the scale in a sin-
gle state vector can result in errors in the calculation of the model probability,
especially when combining the scale with the image position. For example,
the scale change of an object can be constant while the object is moving. Thus,
the best fitting model for the scale is CP, although this model is a poor fit for
the image position. Therefore, we propose to de-couple the state estimate.
In practice, this is done by using an additional IMM filter. Hence, the scale
and the corresponding velocity, and acceleration are estimated independently
from the position states and their derivatives. This first state separation step
leads to the following IMM configuration:

𝐱𝑘IMM 2 = [[𝑥,𝑦, ̇𝑥, ̇𝑦, ̈𝑥, ̈𝑦] , [𝑠, ̇𝑠, ̈𝑠]]T = [𝐱𝑘1
T, 𝐱𝑘2

T
]
T

. (3.78)

Thus, the state estimation problem can be written in terms of two de-coupled
state sub-vectors

[ 𝐱𝑘+11
𝐱𝑘+12

] = [ 𝐅𝑘1,𝑗 𝟎3×3
𝟎6×6 𝐅𝑘2,𝑗

] [ 𝐱𝑘1
𝐱𝑘2

] + [ 𝐆𝑘
1𝐯𝑘1,𝑗

𝐆𝑘
2𝐯𝑘2,𝑗

] . (3.79)

A separation of the scale with an additional filter seems obvious, but when
tracking with directly mapped image space data, a split into independent im-
age coordinates may not immediately appear to be necessary. In order to
show the benefit of such an IMM setup, we recommend the following IMM
configuration:

𝐱𝑘IMM 3 = [[𝑥, ̇𝑥, ̈𝑥] , [𝑦, ̇𝑦, ̈𝑦] , [𝑠, ̇𝑠, ̈𝑠]]T = [𝐱𝑘1
T, 𝐱𝑘2

T, 𝐱𝑘3
T
]
T

. (3.80)
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The proposed de-coupled estimator results in

[
𝐱𝑘+11
𝐱𝑘+12
𝐱𝑘+13

] = [
𝐅𝑘1,𝑗 𝟎3×3 𝟎3×3
𝟎3×3 𝐅𝑘2,𝑗 𝟎3×3
𝟎3×3 𝟎3×3 𝐅𝑘3,𝑗

][
𝐱𝑘1
𝐱𝑘2
𝐱𝑘3

] + [
𝐆𝑘
1𝐯𝑘1,𝑗

𝐆𝑘
2𝐯𝑘2,𝑗

𝐆𝑘
3𝐯𝑘3,𝑗

] . (3.81)

Here, three IMM filters are used to describe the 𝑥 position, 𝑦 position, 𝑠 scale,
and corresponding derivatives. Thus, every motion along the image axes is
captured with a separate filter.

The strategy of de-coupling state estimates and basing the estimator on
reduced-order filters has hitherto been mainly used in air traffic surveil-
lance. In this field, usually, an aircraft’s motion in the horizontal plane is
independent of its vertical motion [Bar02]. For example, in the work of
Yeddanapudi et al. [Yed97] and Wang et al. [Wan99], the aircraft motion
in North and East direction is estimated with a separated filter to a second
filter for the vertical state (the altitude and the vertical velocity). Besides the
explained benefits, especially for an IMM filter restricted to directly mapped
image space observations, the computational complexity of a de-coupled
system is also reduced compared to a system using only one state vector.

3.2.2 Evaluation: De-coupled IMM Filter

The above described IMM configurations are evaluated on the VOT2014 data-
set [Ceh16, Kri14]. This dataset is a selection of 25 prototypical object tracking
sequences. Although the dataset is originally designed to compare different
visual trackers, it includes a variety of different object motions from differ-
ent object categories. Some example sequences from the VOT2014 dataset
are depicted in figure 3.3. Due to the fact that the object type, the capturing
sensor, and the tracking scenario differ strongly, this dataset includes several
situations in which the estimation of the mapping function to a 3D physical
reference system is an unsolved problem or would require high expense.
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sequence bicycle

... ...

sequence gymnastics

... ...

sequence surfing

time in frames

... ...

Figure 3.3: Example tracking sequences from the VOT2014 dataset [Ceh16, Kri14]. Unified
bounding boxes of the objects are shown for the sequences bicycle, gymnastics, and
surfing.

Settings: The overall performance depends on a number of design parame-
ters. The most critical design parameters are the model set structure, process
and observation noises, initial state, and the jump structure given by the tran-
sition probabilities. Although, the basic IMM setup with three standard mo-
tion models (CP, CV, CA) is sub-optimal for some scenarios of the VOT2014
dataset, this combination is kept fixed. In practice, the TPM is often assumed
to be known and is chosen a priori. As stated in Bar-Shalom [Bar02], an ad-hoc
approach is to fill the diagonals with values close to 1. We set the diagonals to
0.99 and the remaining transition values to 0.005. The IMM filter is relatively
insensitive to small changes in TPM. Since the CV model is the most widely
used in tracking approaches, we set the initial model probability 𝛼0𝑖 in favor
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of this model to 0.98 and to 0.01 for the other models. The observation noise
is assumed to be an additive white noise. The process noise is modeled as the
acceleration increment during a sampling interval (discrete Wiener process
acceleration). In the experiments, the variances of both noise processes were
varied between 1, 2, 5, and 10.

Table 3.1: Results for the comparison between different IMM de-coupling configurations on the
VOT2014 dataset. Settings: 𝜍2𝑣 = 2, 𝜍2𝑤 = 5, 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 = 3

failure rate average IoU
sequence IMM 1 IMM 2 IMM 3 IMM 1 IMM 2 IMM 3

ball 0.270 0.191 0.164 0.634 0.679 0.695
basketball 0.003 0.003 0.004 0.863 0.884 0.891
bicycle 0.304 0.233 0.173 0.602 0.641 0.692
bolt 0.080 0.044 0.027 0.774 0.810 0.842
car 0.340 0.261 0.108 0.610 0.642 0.710
david 0.167 0.152 0.141 0.697 0.715 0.720
driving 0.082 0.135 0.135 0.793 0.749 0.736
drunk 0.000 0.000 0.000 0.931 0.929 0.931
fernado 0.018 0.021 0.018 0.857 0.852 0.859
fish1 0.242 0.144 0.111 0.663 0.726 0.725
fish2 0.107 0.084 0.064 0.745 0.769 0.775
gymnastics 0.107 0.138 0.138 0.798 0.787 0.786
hand1 0.262 0.232 0.227 0.656 0.664 0.665
hand2 0.410 0.379 0.359 0.542 0.559 0.576
jogging 0.047 0.054 0.047 0.769 0.776 0.777
motocross 0.092 0.188 0.188 0.752 0.745 0.755
polarbear 0.011 0.008 0.011 0.848 0.849 0.852
skating 0.000 0.000 0.000 0.866 0.881 0.898
sphere 0.295 0.300 0.316 0.618 0.629 0.605
sunshade 0.559 0.571 0.484 0.426 0.442 0.488
surfing 0.111 0.081 0.048 0.699 0.746 0.773
torus 0.150 0.146 0.142 0.706 0.723 0.712
trellis 0.358 0.276 0.238 0.579 0.633 0.661
tunnel 0.129 0.078 0.101 0.695 0.734 0.729
woman 0.051 0.053 0.051 0.773 0.794 0.805
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Results: For every image sequence, the first 10 frames are excluded and used
for initializing the filters. The update interval 𝑡ᵆ𝑝𝑑𝑎𝑡𝑒 for getting a new ob-
servation for the filter has been varied between every single, every third, and
every fifth frame. Since the standard outputs of object detectors are a rectan-
gular bounding box centered at the object location, we use the ground truth
bounding boxes from the VOT2014 dataset for evaluating the prediction ac-
curacy. Performance measures aim at summarizing the extent to which the
tracker’s prediction agrees with the ground truth annotation. In Cehovin et
al. [Ceh14], a general definition of an object state description in a sequence
with length 𝑁 is established based on the center of the object and the region
of the object at time 𝑘. From the IMM filter, the predicted center location 𝑥,
𝑦, and scale 𝑠 are used to calculate an unified bounding box 𝐴𝑘0. The overlap
between the predicted and the ground truth region can be calculated as

IoU =
||�̂�𝑘𝑂 ∩ 𝐴𝑘𝐺𝑇 ||
||�̂�𝑘𝑂 ∪ 𝐴𝑘𝐺𝑇 ||

. (3.82)

The overlap ratio is often referred to as intersection-over-union (IoU) or
Jaccard index [Jac08]. For the ground truth area 𝐴𝑘𝐺𝑇 , also an unified bound-
ing box is considered. In general, the width of the enclosing bounding box
is more strongly influenced by the body pose of the objects. Hence, a unified
bounding boxwith a width of 1/3 of the bounding box height is used. Although
the selected ratio is better suited for object categories such as pedestrians, this
ratio also works for object categories with deviating width to height ratio to
achieve a good assignment between observation and prediction. A property
of the IoU is that they simultaneously account for position and size. Thus,
there is no need for additional normalization considerations. The IoU is sum-
marized over an entire sequence by an average IoU. In addition to the average
IoU, the failure rate is used as a second comparative score. The failure is the
number of frames in which the IoU is below a threshold of 0.5 is recorded and
is computed as

failure rate = number of frames IoU < 0.5
number of frames . (3.83)

57



3 The Bayesian Perspective
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Figure 3.4: Visualization of the failure rate for the sequences bicycle and surfing with an overlap
threshold of 0.5 for 𝜍2𝑣 = 2, 𝜍2𝑤 = 5, 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 = 3.

The overall results for the three different IMM configurations are exemplary
summarized for 𝜎2𝑤 = 2, 𝜎2𝑟 = 5, 𝑡ᵆ𝑝𝑑𝑎𝑡𝑒 = 3 in table 3.1. The correspond-
ing visualization of the failure rate for the sequences bicycle and surfing (see

58



3.2 IMM Filter for Visual Tracking

figure 3.3) with an overlap threshold of 0.5 is shown in figure 3.4. Other para-
meter settings may differ slightly, but are equal at their core. This means that
the achieved overlap varies and that for some specific sequences, the ranking
of the IMM configuration changes. Overall it can be noticed that the IMM
configuration that uses separated image space coordinates and scale, outper-
forms the other configurations. Due to the fact that the motion of objects
in some particular sequence is highly non-linear, the chosen combination of
motion models is not optimal. Moreover, this can also result in a changed
ranking, but the trend towards the third configuration for achieving superior
results is visible for all evaluated parameter settings. It should be noted that
in particular two sequences (gymnastics and diving) do not comply with the
results achieved on the other sequences. Firstly, both include objects which
execute a rotation. Here, we used unified bounding boxes and associated the
height with the object scale. When the object is rotating, this association is
wrong and leads to highly non-linear motion patterns due to the change in the
bounding box orientation. Under such conditions, the current rotation should
be considered in the state of the object or otherwise it is not possible to asso-
ciate the object scale with the bounding box height. Besides, it is inevitably
difficult to produce uncontroversial ground truth boxes for rotating objects.
Hence, the annotations for these sequences include a stronger ambiguity for
the enclosing bounding boxes, and are erroneous in some cases.

Due to the fact that the ground truth includes an uncertainty and the over-
lap values for ranking the different filter configurations are in some cases very
close to each other, a hypotheses test is applied as follows. The VOT2014 data-
set contains 25 videos, and the evaluation has been structured such that each
sequence provides a single data point that can be used to conduct a pairwise
test between the IMM filter configurations. Given two IMM configurations,
a sequence is categorized in favor of one configuration based on the average
overlap. Equal values are excluded. The counts for these cases will follow a
binomial distribution. Furthermore, if the setups are equivalent, the proba-
bility of one versus the other should be 0.5. Binomial statistics can then be
used to compute a 𝑝-value and determine whether or not to reject the null
hypothesis that both configurations are equivalent.
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The setup for the applied exact binomial tests are listed in the following and
the results are summarized in table 3.2.

• Hypothesis statement: Compared IMM configurations perform
equally well.

• Null hypothesis : 𝐻0: 𝑃0 = 1/2
• Alternate hypothesis: 𝐻1: 𝑃0 ≠ 1/2
• Test distribution: 𝑋𝑡𝑒𝑠𝑡 ∼ ℬ𝑖𝑛(𝑁𝑡𝑒𝑠𝑡,𝑃)
• Test statistics: 𝐿 = Number an IMM configuration performs better for

a test sequence.

• 𝑝-value (two-sided): 𝑝-value = 2 ⋅ ∑𝐿
𝑙=0 (

𝑁𝑡𝑒𝑠𝑡
𝑙
)𝑃𝑙0 (1 − 𝑃0)𝑁𝑡𝑒𝑠𝑡−𝑙

• Significance level: 𝛼𝑡𝑒𝑠𝑡 = 0.05

Table 3.2: Statistical hypothesis tests for the different IMM configurations on theVOT2014 data-
set based on the results from table 3.1.

Test: IMM 3 vs. IMM 2 Test: IMM 3 vs IMM 1 Test: IMM 2 vs IMM 1

IMM 3 > IMM 2 19 IMM 3 > IMM 1 21 IMM 2 > IMM 1 20
IMM 3 < IMM 2 6 IMM 3 < IMM 1 3 IMM 2 < IMM 1 5

𝑝-value (two-sided) 0.0146 𝑝-value (two-sided) 0.0003 𝑝-value (two-sided) 0.0041
Null hypothesis rejected Null hypothesis rejected Null hypothesis rejected

In all cases, the null hypothesis is rejected due to 𝑝-values indicating that the
differences in performance were significant. As mentioned, other parameter
settings lead to only slight variations in performance and can therefore lead
to a less distinctive result for a specific setup. Nevertheless, the overall trend
towards a de-coupled IMM filter shows that this configuration is an improve-
ment over the other IMM filter configurations. An improvement can also be
perceived by de-coupling location and scale. Thus, the second configuration
(IMM 2) outperforms the naive state extension (IMM 1). This state de-coupling
is also recommended when the actual motion is described in 3D.These results
follow the intuition that when tracking an object directly in image space, the
motion in a particular direction can be independent from the other direction.
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3.2 IMM Filter for Visual Tracking

Although this assumption is not always true, it is commonly used for many
filter designs, including single model variants. Because the base filters are
conditioned on the best fitting model, the final estimate is negatively influ-
enced by a naive extension of the state vector. Figure 3.5 illustrates this effect
by visualizing the model probabilities of the de-coupled IMM filter. There, the
individual model probabilities differ for all de-coupled states. For combining
the scale and its derived changes with the actual motion states this seems ob-
vious. On the contrary, the presented results show how crucial this can also
become for mixing image coordinates.

In summary, when relying on directly mapped observations, which is com-
mon for tracking in image space, a naive extension of the state vector should
be avoided. However, the fact that independent states are affected by mixing
the inputs from the base filters, which is a result of the required approxima-
tion for optimal filtering, can easily be overseen when applying IMM filters
for tracking in image space. With this simple reminder, a better IMM filtering
can be achieved. While the overall performance can be further improved by
selecting alternative motionmodels which better fit to the dynamics of the ob-
ject in the scene, it is also crucial to not just naively extend the state. All states
of an IMM state vector should depend on each other and thus, each additional
independent state and its derivatives should be considered in an additional
IMM filter. Thus, the conditioning on the current best fitting model can not
negatively affect the overall performance. The motion of an object in image
space is a good example of a case in which the dynamics along the image axes
should be considered independently when applied to an IMM filter.
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3.2 IMM Filter for Visual Tracking

3.2.3 Re-coupled IMM filter

Figure 3.6: Example images of detected persons with the approach of Kieritz et al. [Kie16] on
the Daimler Mono Pedestrian dataset [Enz09].

In this section, a state re-coupling scheme for the IMM filter configuration is
introduced. The proposed re-coupled IMMfilter provides an online adaptation
scheme of the system noise parameters in order to better capture location un-
certainties pertaining to image coordinates. The observation 𝐳𝑘 for tracking
in image space is often obtained from a object detector. As an example, figure
3.6 shows detected persons with the approach of Kieritz et al. [Kie16]. The
applied person detector follows the widely used sliding window paradigm.
Thereby, for every window location and scale a binary classification is done.
The classifier consists of weighted decisions trees using the integral over a
rectangular region of a feature channel as nodes, and are generated by boost-
ing [Fre97]. Thus, the output of such detectors, as well as that of most visual
tracking approaches, is a rectangular bounding box. Similar to section 3.2.2,
the performance of person detectors is also measured by the IoU between the
detector output and the ground truth bounding box. A standard threshold
for a detector output to be categorized as true positive is 0.5 (see for example
Dollar et al. [Dol12]).

The IoU criterion bears the risk that the observation noise scale dependency
is easily overseen. For sequences where the range of person or other object
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3 The Bayesian Perspective

scales is very limited, a fixed observation noise variance is adequate. Nev-
ertheless, it is intuitively clear that the location accuracy is scale-dependent.
For demonstrating the scale-dependency of the observation noise, we evalu-
ated our person detector (Kieritz et al. [Kie16]) on theMOT16 dataset [Mil16]
and the Daimler Mono Pedestrian dataset [Enz09] for covering a broad range
of person scales. Only detections with an overlap greater than 0.5 are consi-
dered in the analysis. Without applying a non-maximum suppression on the
detector output (multiple detections are thereby associated with a single an-
notation), a total number of 450826 detections were compared to the ground
truth data. By dividing the range of person scales into several intervals, the
effect of scale dependency for the pixel distance in 𝑥 and 𝑦 direction can be
seen. When the pixel distance is normalized by the object scale, a zero-mean
error distribution with a relatively constant variance over the chosen scale
intervals could be observed. This is shown for the error in 𝑥 in figure 3.7. It
can be clearly seen that the displacement or error is larger for higher person
scales. Normalized with the true scale, the standard deviation of the error is
nearly constant.

error 𝑥 in pixels
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Figure 3.7: (Left) Distribution of the detection error in 𝑥 for persons smaller than 200 pixels
and person greater than 300 pixels. (Right) Distribution of the detection error in 𝑥
relative to the ground truth person height.

In order to take the shown dependency between the noise levels and the scale
of the object into account, we propose a re-coupling of states of the IMM filter.
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3.2 IMM Filter for Visual Tracking

The overall state-space model of the proposed IMM filter can be expressed as:

[
𝐱𝑘+11
𝐱𝑘+12
𝐱𝑘+13

] = [
𝐅𝑘1,𝑖 𝟎3×3 𝟎3×3
𝟎3×3 𝐅𝑘2,𝑖 𝟎3×3
𝟎3×3 𝟎3×3 𝐅𝑘3,𝑖

] [
𝐱𝑘1
𝐱𝑘2
𝐱𝑘3

] + [
𝐆𝑘
1𝐯𝑘1,𝑖

𝐆𝑘
2𝐯𝑘2,𝑖

𝐆𝑘
1𝐯𝑘3,𝑖

] , (3.84)

[
𝐳𝑘1
𝐳𝑘2
𝐳𝑘3

] = [
𝐇𝑘

1,𝑖 𝟎3×3 𝐃𝑘
1,𝑖

𝟎3×3 H𝑘
2,𝑖 𝐃𝑘

2,𝑖
𝟎3×3 𝟎3×3 𝐇𝑘

3,𝑖

][
𝐱𝑘1
𝐱𝑘2
𝐱𝑘3

] + [
𝟎3×1
𝟎3×1
𝐰𝑘

3,𝑖

] . (3.85)

Here, 𝐃𝑘 is a weighting matrix for tuning the scale-dependent noise. In the
overall dynamical model, we realized a coupling of the scale dynamics to
image coordinate dynamics which is very similar to augmenting a state for
dealing with time-correlated noise (see for example Wendel et al. [Wen04]).
It should be noted that the scale has to be strictly positive, but assuming a
Gaussian distribution for the filter does allow negative values. Since the de-
tection of persons requires a reasonable scale, the problem can be neglected
in most cases. By using a relative scale, this problem can be avoided and
even more important, the noise process can be modeled by a zero-mean white
sequence. Without using the relative scale change, the noise of the scale
is state-dependent. For considering this situation, we refer for example to
Spinello et al. [Spi10]. In the case of visual tracking, it is common to describe
the scale change relative to the initial scale. Thus, the state vector 𝐱𝑘3 can be re-
placed with the relative scale change 𝑠𝑟 = 𝑠/𝑠0 and the corresponding velocity
and acceleration [𝑠𝑟, ̇𝑠𝑟, ̈𝑠𝑟]

T. In sequences where the range of person scales is
very limited, like the VOT2014 dataset, a fixed setting of the noise variances
is sufficient. But in scenarios with a relatively fast change of the object scale,
for example images collected from a driving vehicle, the proposed IMM filter
helps to avoid an under- or over-estimation of the system uncertainties.
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3.2.4 Evaluation: Re-coupled IMM Filter

The benefit of the complete scheme of re-coupling IMM filter states is eval-
uated on 10 selected sequences from the Daimler Mono Pedestrian dataset
[Enz09], which was captured on-board a vehicle driving through an urban en-
vironment. Figure 3.8 depicts the trajectories of person ground truth boxes,
where the increase of the scale is clearly visible. Although in such a scenario,
the object motion is preferentially modeled in an ego-motion compensated
vehicle centered coordination system on ground level, here no further con-
textual cues in order to enable an association between the observation and
the 3𝐷 environment are considered. Nevertheless, the object type and sen-
sor setup are known in this case, the constraint of tracking directly in image
space is kept. The modeling of pedestrian motion relying on physical motion
models is discussed in section 4.

sequence 01 sequence 02 sequence 03 sequence 04 sequence 05

sequence 06 sequence 07 sequence 08 sequence 09 sequence 10

Figure 3.8: Visualization of trajectories of person bounding boxes from the Daimler Mono Pe-
destrian dataset [Enz09].

Settings: For the following evaluation the model set combination from sec-
tion 3.2.3 is used. We also kept the previously chosen transition matrix and
the initial probability values. The fixed observation noise standard deviations
for the 𝑥 and 𝑦 dynamics were set to ⌈√0.03 ⋅ 𝑠0/pixels⌉ and the adaptive ob-
servation noise levels were set ⌈√0.03 ⋅ ̂𝑠𝑘/pixels⌉. The noise levels for the scale
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dynamics were modeled as white Gaussian noise. The process noise stan-
dard deviation was set to ⌈√0.1 ⋅ 𝑠0/pixels⌉ for all three filters and modeled as
the acceleration increment during a sampling period. Since the error for the
scale estimation is identical, it is excluded from the evaluation. Thus, only
the image location error 𝑒 = √(𝑥𝐺𝑇 − ̂𝑥)2 + (𝑦𝐺𝑇 − ̂𝑦)2 in form of the root-
mean-squared error (RMSE) is considered. For simulating different per-
son detectors, the ground truth bounding boxes were used. Zero-mean white
Gaussian noise was added to the ground truth center location and scale. For
taking the scale-dependency into account, the additional noise term was set
to √0.04 ⋅ 𝑠𝑘/pixels.

Table 3.3: RMSE analysis for the de-coupled and re-coupled IMM filter on selected sequences
of the Daimler Mono Pedestrian dataset [Enz09]. Settings: 𝜍𝑣 = ⌈√0.1 ⋅ 𝑠0/pixels⌉,
𝜍𝑤 = ⌈√0.03 ⋅ 𝑠0/pixels⌉

sequence frame numbers ̄𝑒𝑑𝑒𝑐 𝜎𝑒𝑑𝑒𝑐 ̄𝑒𝑟𝑒𝑐 𝜎𝑒𝑟𝑒𝑐 𝑟𝑟𝑒𝑐/𝑑𝑒𝑐 𝜎𝑟𝑟𝑒𝑐/𝑑𝑒𝑐
01 2678 - 2708 4.330 4.174 3.978 2.962 0.886 0.168
02 2875 - 2900 3.425 2.580 3.350 2.079 0.964 0.115
03 4686 - 4712 11.321 16.153 9.822 11.169 0.882 0.195
04 4892 - 4921 3.668 7.003 6.432 5.615 0.923 0.128
05 5974 - 6016 6.301 6.905 5.879 5.615 0.886 0.180
06 11047 - 11076 4.679 3.922 4.623 3.795 0.986 0.110
07 11248 - 11283 9.584 7.762 9.111 7.086 0.935 0.129
08 11485 - 11521 8.436 7.381 8.136 6.882 0.951 0.111
09 11796 - 11842 5.365 5.887 4.821 4.362 0.852 0.230
10 17342 - 17366 10.711 10.555 9.594 7.578 0.906 0.165

Results: The results for the described setup for 𝑁𝑟 = 1000 runs is shown
in table 3.3. Here, ̄𝑒 is the average RMSE and 𝜎𝑒 the corresponding standard
deviation. The last two columns include the average ratio of the sum of the
RMSE (𝑟𝑟𝑒𝑐/𝑑𝑒𝑐 =

1
𝑁𝑟
(∑𝑁

0 𝑒𝑘,𝑟𝑒𝑐)/(∑
𝑁
0 𝑒𝑘,𝑑𝑒𝑐)) of a sequence and its standard

deviation. In these experiments, the adaptive noise tuning was done step-
wise by mapping it to fixed levels in order to avoid an oversensitive tuning.
Alternatively, the current uncertainty of the scale estimate can in addition be
considered for preventing an oversensitive noise adjustment that might result
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in an erroneous assessment. As can be seen in table 3.3, the results achieved
with the de-coupled filter is inferior to the re-coupled filter. The difference
in terms of the average RMSE is small, but the variance for the re-coupled
filter is lower. The results show the benefit of a re-coupled filter and proto-
typical situations for applying it. For sequences where the change in scale is
less pronounced, like sequence 06, both filters perform equally well, but the
re-coupled filter bears the risk of a too strong noise adaptation because of the
scale estimation uncertainty. This is also consistent with modeling the de-
tection uncertainty with an additive fixed term, where the performance can
accordingly shift towards the de-coupled IMM filter. But in sequences with
rapid scale changes, the advantage of the re-coupled filter gets more signifi-
cant. This can be seen from the lower 𝑟𝑟𝑒𝑐/𝑑𝑒𝑐 values for the re-coupled filter
for the chosen settings.

The results from table 3.3 mainly conduces to illustrate some effects for track-
ing solely in image space. But it also shows some limitations of the chosen
linear filter setup for scenarios captured from a driving vehicle. However, the
effect of fixed noise levels can directly be derived from the above error dis-
tribution analysis of the person detector. The filter gain multiplies the prior
uncertainty 𝐏𝑘,−𝐱𝐱 𝐇𝑘T with the inverse observation uncertainty (residual co-
variance: 𝐒𝑘 = 𝐇𝑘𝐏𝑘,−𝐱𝐱 𝐇𝑘T + 𝐑𝑘 ; see equation 3.30). Although a division
is not defined for matrices, we can think of the Kalman gain as a ratio that
controls the influence of a new observation on the updated (posterior) state
estimate. For example in sequence 03, the ground truth scale of the fully
visible person changes from 103 pixels to 360 pixels. As mentioned, a true
positive is considered up to an IoU of 0.5. Hence, an admissible correct de-
tection to ground truth association can result in relatively high localization
errors. Hence, a suggested error confined to 𝑦 can result in an error of half
the person scale. For sequence 03, up to 180 pixels. Assuming that the prior
uncertainty and the state estimate from the last frame are identical, the fil-
ter gain difference only depends on the noise variance. Thus, a small noise
variance would strongly underestimate the observation uncertainty and lead
to almost complete correction of the estimated position to the measured po-
sition and vice versa.
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sequence 03

sequence 10

Figure 3.9: Comparison between estimated trajectories with a re-coupled ( ) and a de-coupled
) IMM filter, and the corresponding ground truth trajectory ( ). The noisy ob-

servation is highlighted in lime ( ). In the examples from sequence 03 and sequence
10, the positive effect of adjusting the observation noise level is visible.

Besides the fact that the overall performance of person detectors increases
for close ranges or rather large scales [Dol12], this is not true for the local-
ization accuracy (see figure 3.7). In case the underlying detection and local-
ization scheme improves for larger scales, a fixed observation noise level and
de-coupled filter setup is sufficient. This also implies that the commonly used

69



3 The Bayesian Perspective

IoU value as a reference value for considering a true positive detection is only
adequate for assessing the detection task, but should be more restrictive for
larger scales, especially in combination with tracking. The combination of a
filter and a detector with very large image location uncertainties is also im-
practical.

In summary, when tracking solely in image space the observation uncertain-
ties provided by commonly used person detectors or visual trackers are scale-
dependent. The proposed re-coupled IMMfilter helps to improve dealing with
these conditions. The advantage of the re-coupling scheme for an IMM filter
is more significant in scenarios where tracked objects cover a broader range
of scales, or their scales show a high dynamic (see figure 3.9).

3.3 Assets and Drawbacks of IMM Filters

A maneuver is any motion characteristic that an object is performing other
than the dynamical model used by the filter. In case the object maneuvers are
in a set of finite number of models, multiple-model approaches are the pre-
ferred choice to deal with such a model mismatch. However, the tuning of a
filter, the choice of its design parameters, requires a large amount of engineer-
ing. Since tuning of filters aims to systematically connect the filter parameters
to physical system parameters, this is extremely hard for tracking directly in
image space. Thus the filter setup consists of simplified models of the true
motion mode with large noise levels to deal with the model uncertainty. The
proposed modifications of a basic IMM filter design help to improve the filter
performance, in particular for tracking in image space.

It is clear that for most application scenarios a mapping function to 3D is cru-
cial to further improve the tracking performance. Nevertheless, filter tuning
requires still a large amount of engineering and adequate physical models. To
overcome the limitation of an IMM filter, we propose RNN-based alternatives
that obtain the key abilities of an IMM. We shift from a physics-based model-
ing to a pattern-based modeling of the object dynamics. The goal is to describe
complex object motion and capture the intention of switching in dynamics.
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Thus, the probabilities of the currently performed motion dynamics that is
crucial for higher-level processing should also be provided by the system.

The assets and drawbacks of the IMM filter are summarized in table 3.4.

Table 3.4: Summary of the assets and drawbacks of IMM filters.

Assets Drawbacks

IMM filters +Most common architecture to capture
switching dynamics.
+Ability to describe complex object
motion and capture latent intention.
+Probability of motion dynamics that
is currently performed.
+Low computational complexity.

−Large amount of engineering
required (model set structure, sys-
tem/process and observation noise,
jump structure and transition proba-
bilities).
−Limited expressive power.
−Physical model required.
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In this chapter, the RNN-based solutions for dealingwithmaneuvering objects
are explored. For the exemplary tasks of path prediction and intention predic-
tion, their behavior with regards to model mismatch is analyzed. Thereby,
path prediction is mainly used for comparison to related approaches for mo-
tion prediction methods due to the fact that there exists a public standard
benchmark (section 4.2.1). Intention prediction, on the other hand, is well-
suited to give a detailed evaluation of the switching behavior (section 4.2.2).
The first part of this chapter introduces some theoretical background required
for the later proposed deep learning-based filter alternatives. This chapter is
partly published in [Bec18c, Bec18b, Bec19a, Bec19b].

4.1 Background

Again, we start with the formalized prediction problem, (see equation 1.1)

𝒴 = 𝑓𝜃 (𝒵0∶𝑘,𝒞0∶𝑘) + 𝝐,

where 𝒴 describes the future states (or distribution over the states) of a trajec-
tory, 𝒵 are the observations generated by the tracking system, 𝒞 additional
contextual cues extracted from the observed image sequences, and 𝝐 describes
an additional error term. As discussed in section 2.3, modeling motion and
modeling contextual cues are two different aspects of the motion prediction
problem. Without loss of generality, the contextual cues 𝒞0∶𝑘 are initially left
out.
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4 The Deep Learning Perspective

Our aim is to replace the 𝑓𝜃 of a dynamical model with a deep learning so-
lution. In the case of a fixed observation window and realizing the function
approximator as a regression problem, learning of the network parameters
can be realized by an MLP, a feed-forward neural network, with an appropri-
ate distance function for the predicted trajectory. MLPs are the quintessen-
tial deep learning models. The term feed-forward is used because informa-
tion flows through the computational graph of the network from the input
in general or here the fixed-length observed trajectory 𝒵0∶𝑘 , through the in-
termediate computations used to define 𝑓(.), and finally to the target state 𝐲
[Goo16]. Thus, an MLP defines a mapping 𝑓𝜃 (𝒵0∶𝑘) and learns the parame-
ters 𝜃 that result in the best function approximation. MLPs have no feedback
connections to feed model outputs back into itself. If feedback connections
are included, such networks are refereed to as RNN. By drawing the connec-
tion between dynamical systems and RNNs in advance (see section 2.2), we
motivated the transfer to a deep learning solution. However, MLPs are a con-
ceptual stepping stone on the path to RNNs, which power our proposed IMM
alternative and are thus explained in brief.

4.1.1 Multi-Layer Perceptron

MLPs combine several interconnected perceptrons together. Whereby a per-
ceptron is a type of elemental neural unit (neuron) which has an input vector
𝐳 ∈ ℝ𝑛𝑧 and one scalar output 𝑜 [Ros58]. The output is 𝜙(⋅) applied to the
dot product of its inputs and a bias term 𝑏

𝑜 = 𝜙 (𝐰T𝐳 + 𝑏) . (4.1)

Here, 𝐰 ∈ ℝ𝑛𝑧 denotes weights for all the inputs, and 𝜙 a non-linear func-
tion referred to as activation function. Commonly used activation functions
include the identity function, the sigmoid function, the hyperbolic tangent
function, the ReLU (Rectified Linear Unit) function, and the Leaky ReLU func-
tion. By combining several neurons together, MLPs are able to approximate
arbitrary non-linear mappings. Thus, an MLP is a feed-forward network of
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neuron layers where the neurons of one layer are only connected to the neu-
rons of the previous layer. The output of the 𝑖th layer is given by

𝐥𝑖 = 𝜙 (𝐖𝑖𝐥𝑖−1 + 𝐛𝑖) (4.2)

where 𝐥0 = 𝐳 is the input and 𝐥𝑁 = 𝐨 being the output of an 𝑁-layer MLP.
𝐖𝑖 ∈ ℝ𝑛𝑚×𝑛𝑧 is the weight matrix of layer 𝑖 with 𝐖𝑖 = [𝐰𝑖,1,⋯𝐰𝑖,𝑚]

T

being the combined weight vectors of its 𝑚 neurons. All weight matrices 𝐖
and bias vectors 𝐛 are the trainable parameters 𝜃 of the network controlling
the behavior of 𝑓𝜃 . Figure 4.1 illustrates the structure of an MLP consisting
of an input layer, an output layer, and one hidden layer. Due to the pairwise
connections of neurons between layers, MLPs are also referred to as fully
connected layers. The number of parameters quickly rises with an increasing
number of neurons in the network. Although the term MLPs is sometimes
strictly used for a class of feed-forward networks composed of multiple layers
of perceptrons with threshold activation, here the term MLP refers loosely to
any feed-forward network without being restricted to particular activation
function including radial basis function networks [Bro88].

𝑧1Input 1

𝑧2Input 2

𝑧3Input 3
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Figure 4.1: Visualization of an MLP.
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The parameters of feed-forward neural networks can be efficiently learned
with stochastic gradient descent (SGD) together with the backpropagation
[Rum88] algorithm. Backpropagation is an efficient technique of computing
the gradients in directed graphs of computations, such as neural networks.
The term backpropagation is the abbreviation for backpropagation of errors,
where the errors are defined by the distance function, such as the distance to
the path being predicted. Further details on backpropagation and optimization
methods are given in 4.1.3. AnMLP or fully connected feed-forward network is
designed to have separate parameters for each input feature so that it learns all
of the rules of the object motion separately at each position in the trajectory.

4.1.2 Recurrent Neural Networks

In order to extend MLPs for an improved processing of sequential data with
variable input length, RNNs share parameters across different parts of a
model. As explained in section 2.2, RNNs are extensions of MLPs, where
hidden units ℋ = {𝐡𝑘 ∶ 𝑘 ∈ ℕ} are used to encode an internal latent state
space. Unfolding a recurrent computation into a computational graph that
has a repetitive structure results in parameter sharing across the network.
The unfolded model structure corresponds, similarly to recursive Bayesian
filtering, to a directed acyclic computational graph. Thus, the recurrent
network processes information by incorporating it into the hidden state that
is passed forward in time. As shown in equation 2.7, the hidden state for one
time step can be given by

𝐡𝑘+1 = 𝑓Θ (𝐡𝑘, 𝐳𝑘+1) . (4.3)

A basic RNN [Elm90] can be defined as

𝐡𝑘+1 = 𝜙 (𝐖ℎℎ𝐡𝑘 +𝐖𝑧ℎ𝐳𝑘+1 + 𝐛ℎ) , (4.4)
𝐨𝑘 = 𝜙 (𝐖ℎ𝑜𝐡𝑘 + 𝐛𝑜) . (4.5)

𝐖(.) represents the weights, 𝐛(.) biases of a recurrent layer, and 𝜙(.) an ac-
tivation function. The unfolding process introduces two advantages. Firstly,
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regardless of the trajectory length the input size is kept fixed. Secondly, it
is possible to use the same transition function with the same parameters for
every step. A single shared model allows to generalize to trajectory lengths
not included in the training set.

The ideas of graph unrolling and parameter sharing enable the design of a
wide variety of RNNs [Goo16]. The most effective sequence models used
in practical applications are the so-called gated RNNs. These include long
short-term memory (LSTM) [Hoc97] and networks based on the gated re-
current unit (GRU) [Cho14]. Together with the standard RNN, these variants
are used inmost of our experiments. The aim of gated RNNs is to reduce the ef-
fects of exploding and vanishing gradients during parameter learning [Ben93,
Pas13]. They rely on the idea of creating a path through time and connecting
weights that may change at every time step. In [Gre17], Greff et al. conducted
a comparative study between different variants of gated RNN architectures for
the task of speech recognition, handwriting recognition, and polyphonic mu-
sic modeling. The results show that none of the variants could significantly
improve upon the LSTM.

𝐡𝑘−1 𝐡𝑘

𝐡𝑘

𝐳𝑘

tanh

RNN

Figure 4.2: Visualization of a standard RNN unit.
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Figure 4.3: Visualization of an LSTM unit.
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Figure 4.4: Visualization of a GRU unit.
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The computation of RNNs can be divided into three main blocks of parame-
ters and corresponding transformations. Firstly, from input to hidden state.
Secondly, from previous to next hidden state, and thirdly from hidden state to
the output. All RNNs have the form of a chain of repeated modules of neural
networks called unit. Thus, an RNN unit includes the main blocks and addi-
tional interacting layers or gates depending on the solutions to the vanishing
gradient problem. Therefore, gates are realized as linear layers with an activa-
tion function and an element-wise operation with the signal. LSTMs have an
additional internal recurrence, called cell state or memory cell 𝐜, to the outer
recurrence state of the RNN. The introduced self-loop adds a path for the gra-
dients. In addition, some trainable gates control the information added and
removed from the cell state. The transition equations of an LSTM are given
by

𝐠𝑘𝑓 = sigm (𝐖ℎ𝑔𝑓𝐡𝑘−1 +𝐖𝑧𝑔𝑓𝐳𝑘 + 𝐛𝑔𝑓) ,
𝐠𝑘𝑖 = sigm (𝐖ℎ𝑔𝑖𝐡𝑘−1 +𝐖𝑧𝑔𝑖𝐳𝑘 + 𝐛𝑔𝑖) ,
𝐠𝑘𝑜 = sigm (𝐖ℎ𝑔𝑜𝐡𝑘−1 +𝐖𝑧𝑔𝑜𝐳𝑘 + 𝐛𝑔𝑜) ,
𝐜𝑘 = 𝐠𝑘𝑓 ⊙ 𝐜𝑘−1 + 𝐠𝑘𝑖 ⊙ tanh (𝐖ℎ𝑐𝐡𝑘−1 +𝐖𝑧𝑐𝐳𝑘 + 𝐛𝑐) , (4.6)

𝐡𝑘 = 𝐠𝑘𝑜 ⊙ tanh(𝐜𝑘), (4.7)

with the input gate vector 𝐠𝑖 , forget gate vector 𝐠𝑓 and output gate vector 𝐠𝑜 .
The operator ⊙ denotes the Hadamard product (element-wise product). The
forget gate controls how much of the old cell values is used in the new cell
value. The amount of input used in the new cell value is controlled by the
input gate and the output gate controls how much of the new cell value is put
out. In a GRU, the LSTM cell is simplified by combining forget and input gates
into a single update gate and merging the cell and hidden states. This results
in fewer trainable parameters with comparable performance in specific tasks.
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The GRU architecture is given by

𝐠𝑘ᵆ = sigm (𝐖ℎ𝑔𝑓𝐡𝑘−1 +𝐖𝑧𝑔𝑓𝐳𝑘 + 𝐛𝑔𝑓) ,
𝐠𝑘𝑟 = sigm (𝐖ℎ𝑔𝑖𝐡𝑘−1 +𝐖𝑧𝑔𝑖𝐳𝑘 + 𝐛𝑔𝑖) ,
�̆�𝑘 = tanh (𝐖𝑧ℎ̆𝐳𝑘 +𝐖 ̆𝑔𝑟�̆� (𝐠

𝑘
𝑟 ⊙𝐡𝑘−1) + 𝐛�̆�) ,

𝐡𝑘 = (1 − 𝐠𝑘ᵆ) ⊙ 𝐡𝑘−1 + 𝐠𝑘ᵆ ⊙ �̆�𝑘 , (4.8)

where 𝐠𝑘ᵆ is the update gate vector and 𝐠𝑘𝑟 is the reset gate vector. The GRU
tackles the vanishing gradient problem without depending on an internal cell
state. Thereby, the reset gate controls how much of the old output is kept as
new input, and the update gate controls whether to use the new input or old
output. For more information on different variants of RNNs, we refer to the
following works [Gra13b, Gre17, Goo16]. The block diagrams of the repeating
units of an RNN, an LSTM, and a GRU are illustrated in figures 4.2, 4.3, and
4.4. ⁵

4.1.3 Training

As shown in section 2.2, the unfolded structure of an RNN corresponds to a
directed acyclic computational graph. The graph maps the input trajectory
𝒵 = {𝐳𝑘 ∶ 𝑘 ∈ ℕ} (or generally input sequence) to a corresponding sequence
of outputs 𝒪 = {𝐨𝑘 ∶ 𝑘 ∈ ℕ}. Thus, it provides an explicit description of
which computation to perform and maps the input trajectory to outputs and
losses. By information flow forward in time, the outputs and losses are com-
puted. The parameter gradients are computed backward in time. Figure 2.4
depicts the unfolded computational graph of a vanilla RNN. Due to the fact
that RNNs are composed of differentiable operators, training the parameters
can be done by minimizing any differentiable loss functionℒ(𝚯) using gradi-
ent descent. The basic update cycle of gradient descent is to find the derivative
of the loss function with respect to network parameters 𝚯, then adjust the

⁵ Visualization inspired byUnderstanding LSTMNetworks (https://colah.github.io/posts/2015-08-
Understanding-LSTMs/ last accessed 19.12.2019.).
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4.1 Background

weights in the direction of the negative slope (parameter update). In section
2.2, we demonstrated that the loss function of RNNs corresponds to maximum
likelihood estimation with deterministic dynamics. Further, the loss function
corresponding to the probability given by the network to the observed se-
quence 𝒵 = {𝐳𝑘 ∶ 𝑘 ∈ ℕ} is given by

ℒ(𝚯)𝑅𝑁𝑁 = −∑
𝑘

log𝑝(𝐳𝑘|𝐨𝑘−1). (4.9)

The choice of a loss function is directly related to the design of the output
layer. One can think of the design of the output layer about framing the pre-
diction problem and the choice of the loss function corresponds to the way of
calculating the error. Thus, the output 𝐨𝑘 can be used to parameterize a pre-
dictive distribution 𝑝(𝐳𝑘+1|𝐨𝑘) over the possible next observation 𝐳𝑘+1. Due
to the deterministic nature of RNNs, the computation of the predictive distri-
butions is realized by the feed-forward operations in the unfolded network.
Accordingly, the training of RNNs can be done similarly to feed-forward net-
works by applying gradient descent methods to minimize a differentiable loss
function ℒ(𝚯).

The generalization of backpropagation for recurrent networks is called back-
propagation through time (BPTT) [Wil95]. As explained briefly, backprop-
agation is a technique to efficiently calculate the gradients of scalar valued
functions with respect to their inputs. It boils down to a recursive application
of the chain rule from calculus for the partial derivatives. In order to perform
a parameter update, the gradients of the loss function ∇𝚯𝑘ℒ(𝚯) with respect
to the parameters are required. The same process enables a computation of the
gradients for the inputs. By applying the chain rule, evaluating the gradients
of the output with respect to the inputs reduces to a product of Jacobian ma-
trices which is the final gradient. In the forward pass all intermediate values,
corresponding to all intermediate transformations, and the loss for a given
set of training samples and the current parameters is computed. Thus, inputs
and loss function take on specific values using fixed functions. The backward
pass, backpropagation, proceeds in the reverse order through all intermediate
stages by applying the chain rule to estimate the influence of local gradients
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on the final output. Thus, the gradients are recursively chained through the
functions that produced the values in the forward pass until the inputs are
reached. For neural networks, the inputs of interest are the network param-
eters and their gradients provide information on how to change the current
parameters for minimizing the expected loss [Kar16b].

The basic update rule of gradient descent as an iterative optimization algo-
rithm can be written as

𝚯𝑘+1 ≜ 𝚯𝑘 − 𝜆𝑙𝑟
𝜕ℒ(𝚯)
𝜕𝚯𝑘 = 𝚯𝑘 − 𝜆𝑙𝑟∇𝚯𝑘ℒ(𝚯), (4.10)

where 𝜆𝑙𝑟 is the learning rate of the neural network that determines the mag-
nitude of the parameter changeΔ𝚯𝑘 . The index 𝑘 refers to the time before and
𝑘+1 to the time after parameter update. Designing and training a neural net-
work is not much different from training any other machine learning model
with gradient descent. In contrast to standard gradient descent, where the
gradient is calculated from the entire training dataset, stochastic gradient
descent (SGD) performs a parameter update for a randomly selected subset
of training samples. Sometimes, there is a minor distinction for the terminol-
ogy of SGD. SGD is used for a parameter update for every data sample, and
mini-batch gradient descent for a parameter update for every mini-batch of
training samples. However, most algorithms for deep learning use more than
one but less than all training samples, here for the sake of simplicity, only the
term SGD is used [Goo16].

Despite SGD as a stochastic approximation of standard gradient descent, there
exist many further modifications to overcome challenges of gradient descent-
based optimization strategies such as over-fitting, slow convergence, and lo-
cal minima. Due to the fact that second-order optimization methods, such as
Newton’s method, require calculation of the Hessian matrix, in practice, al-
most exclusively first-order algorithms based on gradient descent are used. In
the following, we briefly outline commonly used modifications, but leave out
second-order alternatives.

The momentum method [Pol64] is designed to accelerate SGD, especially in
the face of high curvature, small but consistent gradients, or noisy gradients.
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Themomentummethod accumulates an exponentially decaying moving aver-
age of past gradients and continues to move in their direction. Thereby, mo-
mentum damps oscillation and speeds up convergence in cases where the sur-
face of the loss function is in one dimension much steeper than in the other.

Formally, the momentum method changes the parameter update by introdu-
cing a velocity term that captures the direction and speed at which the param-
eters move through parameter space. The adapted parameter update is given
by

𝚯𝑘+1 = 𝚯𝑘 − 𝐯𝑘𝚯, with
𝐯𝑘𝚯 = 𝜆𝑚𝑜𝐯𝑘−1𝚯 + 𝜆𝑙𝑟∇𝚯𝑘ℒ(𝚯). (4.11)

The added hyper-parameter 𝜆𝑚𝑜 ∈ [0,1] is termed momentum and controls
the influence of previous update values. Common values of 𝜆𝑚𝑜 used in prac-
tice include 0.5, 0.9, and 0.99 or adapting 𝜆𝑚𝑜 over time by starting from a
small value and later increasing it. Rumelhart et al. [Rum86] showed that
using a momentum term dramatically increases the convergence rate.

Nesterov’s accelerated gradient [Nes83] adds a correction factor to the stan-
dardmomentummethod by evaluating the gradient after a one step prediction
in the current direction. This update rule can be expressed as follows

𝚯𝑘+1 = 𝚯𝑘 − 𝐯𝑘𝚯, with
𝐯𝑘𝚯 = 𝜆𝑚𝑜𝐯𝑘−1𝚯 + 𝜆𝑙𝑟∇�̆�𝑘ℒ(𝚯 − 𝐯𝑘−1𝚯 ). (4.12)

This minor change intends to slow down earlier and reduce overshooting. In
[Ben13], Bengio et al. showed that the resulting increased responsiveness
helps to improve the performance of RNNs for a number of tasks. The mo-
mentum term helps to speed up SGD and adapts the parameter update with
respect to the slope of the error function but to the expense of introducing
another hyper-parameter. One alternative is to adapt the learning rate by ap-
plying a pre-defined schedule. A representative function is the exponential
learning rate decay. Whereas themomentum term helps to speed up SGD and
adapts the parameter update with respect to the slope of the error function, it
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is also possible to allow for individual parameter updates depending on their
importance.

A heuristic approach to adapting individual learning rates for model param-
eters during training is the delta-bar-delta algorithm [Jac88], but it is not ap-
plicable to SGD optimization. Examples for this category of algorithms with
a per-parameter learning rate method to perform more informative gradient-
based learning are AdaGrad [Duc11], RMSprop [Tie12], Adadelta [Zei12], and
Adam [Kin15].

The AdaGrad algorithm adjusts the learning rate individually by scaling them
inversely proportional to the squared sum of all past gradients. AdaGrad per-
forms well for some deep learning models, but the main weakness is that the
accumulation of squared gradients from the beginning of training can result
in an early and aggressive decrease in the effective learning rate [Goo16].

RMSprop and Adadelta are both extensions that help to reduce the effect of
an aggressively decreasing learning rate. Contrary to AdaGrad, the changing
gradient accumulation is replaced by an exponentially weighted moving aver-
age of the squared gradients. RMSprop is actually a special case of Adadelta
withweight decay factor of 𝜆𝑎𝑑 = 0.9 for the gradients. The parameter update
can be described by

𝚯𝑘+1 = 𝚯𝑘 − 𝜆𝑙𝑟
∇𝚯𝑘ℒ(𝚯)

√𝔼[∇𝚯𝑘ℒ(𝚯) ⊙ ∇𝚯𝑘ℒ(𝚯) + 𝜖𝐴𝑑𝑎]
, with

𝔼[∇𝚯𝑘ℒ(𝚯) ⊙ ∇𝚯𝑘ℒ(𝚯)] = 𝜆𝑎𝑑 𝔼[∇𝚯𝑘−1ℒ(𝚯) ⊙ ∇𝚯𝑘−1ℒ(𝚯)]
+(1 − 𝜆𝑎𝑑)∇𝚯𝑘ℒ(𝚯) ⊙ ∇𝚯𝑘ℒ(𝚯). (4.13)

Here, 𝜖𝐴𝑑𝑎 is a smoothing term to avoid division by zero. The learning rate is
divided by an exponentially decaying average of squared gradients. Tieleman
and Hinton [Tie12] suggest to set the default value of the learning rate to
0.001.

Another optimization method that computes adaptive learning rates for each
parameter is adaptive moment estimation (ADAM) [Kin15]. ADAM com-
bines Adadelta and momentum by storing both the exponentially decaying
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average of past squared gradients, like Adadelta, and exponentially decaying
average of past gradients, likemomentum. These are the first and second mo-
ment of the gradients respectively. Further, Adam counteracts biases during
initialization in the first-order moments (momentum) and the (uncentered)
second-order moments by corrections factors. With 𝜆𝑏𝑐,1, 𝜆𝑏𝑐,2 being the bias
correction factors for the first and second moment estimates, the ADAM up-
date rule is given by

𝚯𝑘+1 = 𝚯𝑘 − 𝜆𝑙𝑟
1

√
𝔼[∇𝚯𝑘ℒ(𝚯)⊙∇𝚯𝑘ℒ(𝚯)]

(1−𝜆𝑏𝑐,2)
+ 𝜖𝐴𝐷𝐴𝑀

𝔼[∇𝚯𝑘ℒ(𝚯)]
(1 − 𝜆𝑏𝑐,1)

.

(4.14)

Kingma and Ba suggest to use 𝜆𝑙𝑟 = 0.002, 𝜆𝑏𝑐,1 = 0.9 and 𝜆𝑏𝑐,2 = 0.999 as
default parameters. Adadelta and RMSprop also incorporate an estimate of the
second-order moment but lack the correction factor. Thus, the estimates may
have high biases in early stages of the training. In general, ADAM is consi-
dered to be relatively robust to the choice of hyper-parameters. Nevertheless,
no single best algorithm has emerged. In [Sch14], Schaul et al. conducted
a comparative study on a large number of optimization algorithms across a
wide range of learning tasks. The results show that the presented algorithms
with adaptive learning rate perform fairly robustly, but without clear-cut best
algorithm. Despite some further extension, such as Nadam [Doz16] and AMS-
Grad [Red18], the most actively used optimization algorithms are standard
SGD, SGD with momentum, RMSProp, RMSProp with momentum, AdaDelta,
and ADAM. Although ADAM and its extensions might be the best overall
choices, SGD is much more reliant on a robust initialization and annealing
schedule than other optimizers [Rud16].

4.1.4 Mixture Density Networks

So far, we introduced some theoretical background related to the recurrent
units and methods for training the networks. One remaining central ques-
tion is how to parametrize the predictive distribution 𝑝(𝐳𝑘|𝐨𝑘−1). Similar to
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Bayesian filtering, the conditional probability density should allow to pre-
dict observations and has to deal with real-valued inputs from the observed
trajectory. The idea of mixture density networks (MDNs) [Bis94, Bis06]
is to use the outputs of a neural network to parameterize a Gaussian mix-
ture distribution. MDNs provide a complete framework for modeling con-
ditional density functions. They overcome the limitations of conventional
least-square approaches for dealing with multi-modal target data. Since the
selected tasks of path and intention prediction are multi-modal problems by
nature and MDNs can be used with RNNs [Sch00], our basic neural network
to infer object states consists of an RNN with an MDN on top. This combina-
tion was originally introduced by Graves for the generation and prediction of
handwriting [Gra13a]. It is subsequently referred to as an RNN-MDN model
or respectively as an LSTM-MDN model.

Consider a path prediction problem where 𝐲𝑘+1 = 𝑝(𝐳𝑘+1|𝐳0∶𝑘) describes the
next location and 𝐳0∶𝑘 are the corresponding observations leading to output
𝐨𝑘 . The conditional probability for a bi-variate Gaussian mixture is defined as
follows:

𝑝(𝐳𝑘+1|𝐨𝑘) =
𝐿
∑
𝑙=1

𝑤𝑘
𝑙 𝒩(𝐳𝑘+1|𝝁𝑘𝑙 (𝐨𝑘), 𝝈𝑘𝑙 (𝐨𝑘), 𝜌𝑘𝑙 (𝐨𝑘)). (4.15)

Here, 𝐨𝑘 is used to parametrize the 𝐿 component Gaussian mixture model
𝐨𝑘 = (𝝁𝑘𝑙 , 𝝈𝑘𝑙 , 𝜌𝑘𝑙 , 𝑤𝑘

𝑙 )𝐿𝑙=1. In order to reduce notation clutter, the dependency
on the network output will only be denoted in case it is not clear. In an MDN,
the same function is used to predict the parameters of all of the densities com-
ponents as well as the mixing coefficients. So, the non-linear hidden units are
shared amongst the input-dependent functions. For a mixture of bi-variate
Gaussians with 𝐿 components, the network output generates 6 ⋅𝐿 parameters
wheremean and standard deviation are two-dimensional vectors, whereas the
mixture weights and correlations are scalars.
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In order to ensure that the mixture density forms a valid categorical distribu-
tion, the weights are normalized with a softmax activation function:

𝑤𝑘
𝑗 =

exp ̂𝑤𝑘
𝑗

∑𝐿
𝑙=1 exp ̂𝑤𝑘

𝑙
. (4.16)

The softmax function ensures that 𝑤𝑘
𝑗 lie in the required range 𝑤𝑘

𝑗 ∈ (0,1)
and ∑𝐿

𝑙=1𝑤𝑘
𝑙 = 1. It realizes a generalization of the Bernoulli distribution

corresponding to the usual logistic sigmoid. The variances can be represented
in terms of the exponential of the corresponding network [Bis94, Gra13a].
The originally proposed exponential can lead to numerical instability, thus we
employ a variant of the exponential linear unit (ELU) activation function
[Cle16]. The transformation function is given by

𝜎𝑘𝑗 = { ̂𝜎𝑘𝑗 + 1 for ̂𝜎𝑘𝑗 > 0
𝜆𝑒𝑙ᵆ(exp ̂𝜎𝑘𝑗 − 1) + 1 for ̂𝜎𝑘𝑗 ≤ 0 . (4.17)

Both, the originally proposed exponential and the ELU variant avoid confi-
gurations with variances which go to zero. As an alternative, also a softplus
activation function can be used [Glo11]. Themeans represent location param-
eters and can be represented directly with the network output as

𝜇𝑘𝑗 = �̂�𝑘𝑗 . (4.18)

Ensuring that the correlation coefficients lies in range 𝜌𝑘𝑙 ∈ (−1,1) is real-
ized with a hyperbolic tangent activation function. The parameters of the
MDN can be determined by maximum likelihood estimation, or equivalently
by minimizing an error function defined to be the negative logarithm of the
likelihood.
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Substitute equation 4.15 into 4.9 yields the sequence loss

ℒ(𝒵,Θ)𝑅𝑁𝑁 =
𝐾
∑
𝑘=1

− log(
𝐿
∑
𝑙=1

𝑤𝑘
𝑙 𝒩(𝐳𝑘+1|𝝁𝑘𝑙 , 𝝈𝑘𝑙 , 𝜌𝑘𝑙 ))

=
𝐾
∑
𝑘=1

− log(
𝐿
∑
𝑙=1

𝑤𝑘
𝑙

1

2𝜋𝜎𝑘𝑙,1𝜎𝑘𝑙,2√1− 𝜌𝑘𝑙
2
exp( −𝑍𝑘𝑙

2(1 − 𝜌𝑘𝑙
2)
)) , (4.19)

with

𝑍𝑘𝑙 =
(𝑥𝑘1,𝑙 − 𝜇𝑘1,𝑙)2

𝜎𝑘1,𝑙
2 +

(𝑥𝑘2,𝑙 − 𝜇𝑘2,𝑙)2

𝜎𝑘2,𝑙
2 −

2𝜌𝑘𝑙 (𝑥𝑘1,𝑙 − 𝜇𝑘1,𝑙)(𝑥𝑘2,𝑙 − 𝜇𝑘2,𝑙)
𝜎𝑘1,𝑙𝜎𝑘2,𝑙

.

As a technical detail, the loss function is arranged, such that the log-sum-exp-
trick [Pre07] can be applied. Thus, improving numerical stability:

ℒ(𝒵,Θ)𝑅𝑁𝑁 =
𝐾
∑
𝑘=1

− log(
𝐿
∑
𝑙=1

𝑤𝑘
𝑙 𝒩(𝐳𝑘+1|𝝁𝑘𝑙 , 𝝈𝑘𝑙 , 𝜌𝑘𝑙 ))

=
𝐾
∑
𝑘=1

− log(
𝐿
∑
𝑙=1

exp (log (𝑤𝑘
𝑙 𝒩(𝐳𝑘+1|𝝁𝑘𝑙 , 𝝈𝑘𝑙 , 𝜌𝑘𝑙 ))))

=
𝐾
∑
𝑘=1

− log(
𝐿
∑
𝑙=1

exp ( log (𝑤𝑘
𝑙 )

− log (2𝜋𝜎𝑘1,𝑙𝜎𝑘2,𝑙√1− 𝜌𝑘𝑙
2
) − 𝑍𝑘𝑙

2(1 − 𝜌𝑘𝑙
2
)
)) . (4.20)

As explained, RNN-MDN variants are commonly an adaptation of the model
introduced by Graves [Gra13a]. Especially in the context of sequence pre-
diction, including path prediction, these models are preferred to other neural
networks which can also generate a probabilistic distribution over the out-
puts. Popular alternatives mostly rely on Bayesian neural networks [Mac92,
Bis95] or their recurrent extension [For17]. Instead of placing a distribution
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over the output of the model, Bayesian neural networks use probabilistic neu-
rons. Similar to models discussed in section 3.1, Bayesian inference has to be
applied during training in order to determine the posterior distribution of the
network parameters. Due to the intractable probability distributions, either
Monte Carlo methods or approximate inference methods, such as variational
inference [Blu15], inference based on expectation propagation [Her15], and
Monte Carlo dropout [Gal16], has to be applied. The requirement of approxi-
mate inference make training computationally more intensive and potentially
less stable. Hence, despite their ability to allow probabilistic predictions and
provide information about model uncertainty, these models are less widely
used in practice [Hug19]. Compared to Bayesian neural networks or respec-
tively Bayesian RNNs, RNN-MDNs have a simple structure and are thus easier
to train and control. Hence, RNN-MDNs have been not only successfully ap-
plied to model handwriting data [Gra13a], but also to model sketch drawings
[Ha18], speech synthesis [Wan17], and, more importantly, in the context of
this thesis to generate trajectory predictions [Vem18, Ala16, Zha19, Xue19].

Due to the capabilities of RNNs tomodel arbitrary functions and the success of
the RNN-MDN in a variety of sequence processing tasks, we use RNN-MDN as
basic architecture for our pattern-based solutions to model object trajectories
and additionally capture the predictive distribution.

4.2 RNN-based Solutions

In this chapter, the ability of RNN-based solutions to deal with maneuvering
objects is analyzed. Thereby, we distinguish between the two types of ma-
neuvers which are normally tackled with multiple-model approaches. These
maneuver types are the switch in noise levels and the switch in motion behav-
ior. They are considered separately. The analysis is done for the two selected
tasks of path and intention prediction. For both tasks, higher-level process-
ing strongly relies on the state estimation performance. The approaches are
realized as a top-down component as part of a vision-based tracking system.

89



4 The Deep Learning Perspective

Due to cross-disciplinary interest, as shown in section 2.3, there exists a fast-
growing amount of different approaches. The requirements on the perfor-
mance quality depend on the application domain and particular use cases
within. Due to the wide variety of applications, different levels of contex-
tual cues, and the amount of existing diverse methods, a standardized bench-
marking is difficult to achieve. Here, path prediction is used for comparison
to related approaches for motion prediction due to the fact that there exists a
public standard benchmark, and the corresponding data includes variation in
the noise levels. Intention prediction is selected for capturing scenarios within
the application domain of intelligent vehicles to evaluate the ability of the
proposed solutions with respect to the switching dynamics of objects. For
specific use-cases, such as pedestrian crossing, there are not only strict re-
quirements on the prediction horizons, but in addition, there are suited solu-
tions for physically modeling the pedestrian motion. As discussed in section
2.3, the essential difference is the short time window for prediction, and thus
the more dominant role of physics-based multiple-model approaches.

4.2.1 Path Prediction

Although the integration of more contextual cues can be crucial to improve
motion prediction and pattern-based methods can theoretically capture all
contextual cues present in the training data, we only rely on the informa-
tion provided by an underlying object tracker. For path prediction, this is
a sequence of past positions in order to infer future positions. Firstly, the
physics-based traditional alternatives, which we aim to replace, also solely
rely on the observed object states. Secondly, not only the incorporation of
contextual cues lead to very complex algorithms for physics-based methods,
but also the design and training of the network get more complicated, e.g.,
due to the increased dimension of input data.

However, even without additional cues, there are many pitfalls when using
neural network-based alternatives for path prediction. In the following our
analysis reveals failure cases and gives explanations for observed phenomena.
Further, we provide recommendations for overcoming shortcomings which
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enabled our proposed solution to achieve top-rank at the public TrajNet 2018
challenge. Our aim is to achieve a more reliable prediction network. Despite
the simple core architecture, the network can achieve a performance compa-
rable to more elaborated models with regards to considering more cues than
solely position information.

Achieving the objective of finding an effective prediction network involves,
on the one hand, evaluation of different deep neural networks and, on the
other hand, an analysis of the properties of the dataset. The dataset analysis
directly motivates the required modification to enable a robust prediction.

4.2.1.1 Dataset Analysis

Although many datasets for path prediction are publicly available, the Tra-
jNet [Sad18] benchmark and the corresponding challenge is the first attempt
to build a standard benchmark for path prediction and provides a platform
for comparison. The challenge is in particular called the world plane human-
human TrajNet challenge (World H-H TrajNet).

Figure 4.5: Example trajectories from the BIWI ETH dataset and example tracklets from the se-
quence Hyang_07 from the Stanford Drone Dataset (SDD).
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The TrajNet dataset is a superset of the commonly used surveillance datasets
which cover real-world scenarios with varying crowd densities and varying
complexity of trajectory patterns. In most datasets, the scene is observed from
a bird’s eye view, but there are also scenarios where the scene is observed
under a higher depression angle. Details of the datasets are summarized in
table 4.1 (adapted from TrajNet website). The selection includes the following
datasets. The BIWI dataset [Pel09] also referenced to as ETH Walking Pedes-
trians, which is split into two sets (ETH and Hotel). The UCY dataset also
referred to as Crowds-by-Example dataset [Ler07] contains three scenes from
an oblique view, where the first (Zara) shows a part of a shopping street, the
second (Students/Uni Examples) captures a part of the university campus, and
the third scene (Arxiepiskopi) captures a different part of the campus. Then,
the Stanford Drone Dataset (SDD) [Rob16] consists of multiple aerial images
capturing different locations around the Stanford campus. Furthermore, the
PETS 2009 dataset [Fer09], where different outdoor activities of crowds are
observed by multiple static cameras. Sample images with full trajectories and
tracklets are shown in figure 4.5. The term tracklet refers to a part of a longer
trajectory.

Table 4.1: Training (gray ) and test (blue ) dataset of the world plane human-human dataset
challenge (adapted from the TrajNet websitea [Sad18]).

Name Resolution #Pedestrians Frame rate / fps Reference
BIWI Hotel 720 × 576 389 2.5 [Pel09]
UCY Zara 720 × 576 204 2.5 [Ler07]

UCY Students 720 × 576 415 2.5 [Ler07]
UCY Arxiepiskopi 720 × 576 24 2.5 [Ler07]

PETS 2009 768 × 576 19 2.5 [Fer09]
Stanford Drone Dataset (SDD) 595 × 326 3295 2.5 [Rob16]

BIWI ETH 640 × 480 360 2.5 [Pel09]
UCY Zara 720 × 576 148 2.5 [Ler07]

UCY Uni Examples 720 × 576 118 2.5 [Ler07]
Stanford Drone Dataset (SDD) 595 × 326 3297 2.5 [Rob16]

a TrajNet website: (http://trajnet.stanford.edu/, last accessed 19.12.2019)
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It should be noted that for theWorld H-H TrajNet challenge, path prediction is
performed on ground level in a world coordinate system with available cues
from the dynamic environment in form of observed trajectories from other dy-
namic objects in the scene (human-human). Hence, contextual cues are im-
plicitly used to realize a mapping from the image space to a 3D reference sys-
tem. Since the scenarios capture static surveillance scenes, this is realized un-
der a flat world assumption and by estimation of individual homographies for
every scene. In accordance with our requirements, path prediction relies for
the challenge on position data provided by an underlying system. In particu-
lar, the ground truth trajectories are generated by a visual tracker or are man-
ually annotated. It is common and good practice to apply cross-validation. For
the TrajNet challenge, this is done by omitting complete datasets for testing.
This is reasonable, given the fact that the interaction behavior of humans in
open spaces is scene-independent and in order to measure the generalization
capabilities of various approaches across datasets.
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Figure 4.6: (Left) Visualization of all tracklets of the training set from the TrajNet dataset collec-
tion. (Right) Visualization of all initialization tracklets of the test set.

Nevertheless, by combining all training sets the spatial context of scene-
specific motion and the reference systems are lost. When only relying on
observed motion trajectories, positional information is crucial in order to
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learn spatio-temporal variation. For example, the sidewalks in the Hyang
sequences (see figure 4.5) lead to a spatial-dependent change in the curvature
of a trajectory. Since our focus is on deep neural networks including RNNs,
shifting from position information to offsets helps to overcome some draw-
backs. Before RNNs were successfully applied for tracking pedestrians in a
surveillance scenario, they gained attention due to their success in tasks like
speech recognition [Gra13c, Chu15] and caption generation [Don17, Xu15].
Since these domains are particularly different from trajectory prediction in
certain aspects, their position-dependent movement is not important. Ac-
cordingly, RNNs can benefit from conditioning on offsets, instead of absolute
positions, for scene-independent motion prediction. This insight is not new,
yet utilizing offsets helps not only to stabilize the learning process but also
to improves the prediction performance for the evaluated networks. This
shift to offsets or rather velocities has also been successfully applied for
example for the prediction of human poses based on RNNs [Mar17]. In the
context of deep networks, the same effect can also be achieved by adding
residual connections, which have been shown to improve performance on
deep convolutional networks [He16]. Presumably due to the limitation of
the input and output spaces, for applying on the TrajNet challenge instead
of predicting the next position (where will the person be next) predicting
the following offsets (where will the person go next) [Hug17, Hug18] also
contributed to increased prediction accuracy. This becomes immediately
apparent by looking at the complete tracklets of the training and test set (see
figure 4.6).

Firstly, it takes a considerably higher modeling effort to represent all possible
positions instead of modeling particular velocities. Further, input data outside
the training range can lead to undefined states in the deep network, which re-
sults in an unreasonable output. Some of the initialization tracklets clearly lie
outside the training input space. Also, approaches which benefit from human-
human interaction such as [Gup18, Has18, Ale17, Ala16] in combination with
deep networks lack at this point information about surrounding persons to in-
teract with, so that the decoding of relative distances is not possible because
of a reduced person density. Note that the ability of RNN-based solutions to
capture environment cues from position data only is per se a positive ability,
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but they require a sufficient amount of training data without too large gaps
in the input data. This is further discussed in the subsequent sections.
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Figure 4.7: (Top Left, Top Right) Offset histograms of the training set. (Bottom) Magnitude his-
togram of the offsets.

Another factor for improving prediction performance is becoming apparent
when contemplating the offset distribution of the data. Figure 4.7 shows the
offsets histograms for 𝑥 and 𝑦 separately. Due to the loss of the reference
system, it is impossible to assume a reasonable location distribution prior. In
contrast, the offset and magnitude distribution clearly reflects the preferred
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walking speeds in the data. The histograms also show that a large number
of persons are standing. In the recent work of Hasan et al. [Has18], it was
emphasized that forecasting errors are in general higher when the speed of
persons is lower and argued that when persons are walking slowly, their be-
havior becomes less predictable, due to physical reasons (less inertia). During
our testing, we discovered the same phenomenon. In particular, RNN-based
networks tend to overestimate slow velocities and do sometimes not accu-
rately identify the standing behavior.

Despite this problem, the range of offsets is very limited compared to the lo-
cation distribution and shows a clear tendency towards expected prior values.
Common techniques for sequence prediction problems are normalization and
standardization of the input data. Whereby normalization has a similar role
on the position data, applying standardization on position input data shows
no benefit. In our experiments, standardization worked slightly better than
normalization or an embedding layer for input encoding. Although the effect
on the performance is quite low for the TrajNet challenge, our best result is
achieved using standardized offsets as input. It is rarely necessary to standard-
ize the inputs, but there are practical reasons like accelerating the training or
reducing the chances of getting stuck in local optima [Bro17]. Predicting off-
sets also guarantees that the output directly conforms better with the range
of common activation functions. Through standardization of the offsets, the
network uses the deviations from the preferred pedestrian walking behavior
to predict changes in their behavior.

Without discretization artifacts, the dynamics of humans are smooth and
persistent. The trajectory data from the TrajNet dataset includes varying
discretization artifacts or noise levels resulting from different methods with
which ground truth data was generated. As explained, part of the ground
truth trajectories are generated by a visual tracker. For approximating the
amount of noise in the datasets, the distance between a smoothed spline fit
through the complete tracklets is compared to the provided ground truth
tracklet points. The spline fitting is done with a polynomial function with
a varying degree (1,2,3,4) independent for the 𝑥 and 𝑦 values. By selecting
the individual best fit in regards to the mean squared error for a single

96



4.2 RNN-based Solutions

trajectory fit, over- and under-fitting is prevented. The remaining error is
used to approximate the noise for single trajectories. Despite the fact that
using a fitted trajectory as pre-processed ground truth can also induce some
errors, the fitted trajectories capture the continuous, persistent motion better.
Further, the complete history or rather full trajectories are considered instead
of only short time windows which makes the fit more robust. Nevertheless,
the achieved fitted trajectories form a smooth and natural path and are used
as rough assessment for the noise levels in the ground truth trajectory data.
The results for the training set are summarized in table 4.2.

The approximated noise levels show the variation in the ground truth data.
In order to outperform a linear baseline predictor, the learned model must be
able to successfully model different velocity profiles and capture curved paths
out of input data with different noise levels. Initial experiments to solely train
on smoothed fitted trajectories with synthetic noise performed worse. Nev-
ertheless, for the prediction of future steps, the best performing predictor is
trained to forecast smoothed paths. Before the different evaluated models are
introduced, the last data analysis of the training set is intended to assess the
complexity in terms of the non-linearity of the trajectories. Therefore, the co-
efficient of determination 𝑅2 for linear interpolation is calculated separately
for the 𝑥 and 𝑦 values. This linear interpolation serves as a baseline predictor
for the TrajNet challenge. The histograms of 𝑅2 for the training set are shown
in figure 4.8. 𝑅2 is the percentage of the variation that is explained by the
model and is used to determine the suitability of the regression fit as a linear-
ity measure [Dra66]. The average ̄𝑅2 values are summarized in table 4.2. It
can be seen that for most tracklets, a linear interpolation works well. In order
to outperform the linear interpolation baseline, it is crucial to not only cover a
variety of complex observedmotions but to also produce robust results in sim-
pler situations. As shown, the person’s velocity has to be effectively captured
by the model.

The analysis of the TrajNet dataset shows that the main challenges to achieve
a good, robust prediction performance for the World H-H TrajNet challenge
are the following. Firstly, generalization ability across datasets. Secondly,
the ability to deal with varying noise levels due to mainly including straight
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Table 4.2: Standard deviation of the distance between a smoothed spline fit and the ground truth
trajectory data. The average �̄�2 score for all tracklets in the subsets.

Name 𝜎𝑥,spline / m 𝜎𝑦,spline / m ̄𝑅2𝑥 ̄𝑅2𝑦
Overall 0.067 0.069 0.889 0.811

BIWI Hotel 0.042 0.031 0.637 0.876
UCY Zara_02 0.029 0.035 0.952 0.758
UCY Zara_03 0.026 0.031 0.935 0.716

UCY Students_01 0.033 0.029 0.868 0.852
UCY Students_03 0.039 0.040 0.915 0.760

UCY Arxiepiskopi_01 0.050 0.027 0.959 0.677
PETS 2009 S2L1 0.037 0.026 0.781 0.877

SDD Bookstore_00 0.060 0.063 0.889 0.844
SDD Bookstore_01 0.054 0.053 0.879 0.878
SDD Bookstore_02 0.068 0.073 0.861 0.921
SDD Bookstore_03 0.069 0.061 0.951 0.830
SDD Coupa_03 0.057 0.043 0.954 0.937

SDD Deathcircle_00 0.072 0.079 0.893 0.808
SDD Deathcircle_01 0.086 0.103 0.850 0.818
SDD Deathcircle_02 0.151 0.158 0.772 0.591
SDD Deathcircle_03 0.116 0.134 0.816 0.770
SDD Gates_00 0.054 0.073 0.980 0.735
SDD Gates_01 0.064 0.084 0.859 0.890
SDD Gates_03 0.086 0.106 0.847 0.860
SDD Gates_04 0.071 0.155 0.820 0.906
SDD Hyang_04 0.048 0.050 0.829 0.842
SDD Hyang_05 0.059 0.081 0.872 0.740
SDD Hyang_06 0.070 0.066 0.875 0.811
SDD Nexus_00 0.076 0.082 0.886 0.742
SSD Nexus_02 0.069 0.074 0.934 0.726
SDD Nexus_07 0.053 0.069 0.935 0.764
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walking persons with different noise levels. Nevertheless, the scenarios also
include behavior changes resulting, inter alia, from human-human interac-
tion. But for unaware motion modeling, a change in behavior has to be esti-
mated from the corresponding individual tracklet alone.
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Figure 4.8: Coefficient of determination 𝑅2 for 𝑥 and 𝑦 for all training tracklets of the World
H-H TrajNet challenge.

4.2.1.2 Models and Evaluation

Finding an effective prediction network is done by using a coarse-to-fine
searching strategy to reach the maximum achievable prediction accuracy
without further cues like human-human interaction or human-space inter-
action based on basic networks. Towards this end, we started with a set
of networks with a limited set of hyper-parameters to narrow it down to
one network, in order to then extend the hyper-parameter set for a more
exhaustive tuning.

For the World H-H TrajNet challenge, the performance is compared using the
two error metrics of average displacement error (ADE) andfinal displace-
ment error (FDE).Thesemetrics are commonly used to assess path prediction
performance (see for example [Ala16, Vem18, Pel09, Gup18, Xue18, Has18]).
The average of both combined values are then used as an overall average to
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rank the approaches. The ADE is defined as the average L2 distance between
ground truth and the prediction over all predicted time steps, and the FDE is
defined as the L2 distance between the predicted final position and the true
final position. For the World H-H TrajNet challenge, the unit of the error
metrics is meter. For all experiments, 8 (3.2 seconds) consecutive positions
are observed, before predicting the next 12 (4.8 seconds) positions. Since the
maximum-likelihood path is used for evaluation, the networks are initially
realized as regressors by using the squared loss as a distance function for the
path being predicted.

For a fixed observation window, as used in the World H-H TrajNet challenge,
MLP-based networks can also be used to realize a prediction network, they
are also considered in our coarse evaluation. Moreover, by adapting the ar-
chitecture or by applying a fixed time window solution in a sliding-window
fashion, the network can be used for longer input length. In contrast to other
sequence prediction tasks such as natural language processing, the relevant
time horizon for path prediction is shorter. Besides the described architecture
from section 4.1, temporal convolutional networks (TCNs) are more of-
ten used to encode the observations for fixed time horizons. Due to their less
complex structure, they are easier to train and to control [Bai18, Mil19]. Re-
cent results indicate that TCNs can compete with RNNs in terms of sequence
prediction tasks such as audio synthesis and language processing.

The following basic neural networks and corresponding variants are selected
for a coarse evaluation in addition to approaches from the community and
approaches provided by the organizers of the TrajNet challenge.

MLP: The MLP is tested with different linear and non-linear activation func-
tions. One variation concatenates all inputs and predicts 24 outputs directly.
Further, cascaded architectures with a step-wise prediction are examined. We
vary between different coordinate systems of Euclidean and polar coordi-
nates. As discussed in section 4.2.1.1, positions and offsets (also orientation
normalized) are considered as inputs and outputs.
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RNN-MLP: Vanilla RNNs produce an output at each time step. For the eva-
luation of the RNN-MLP, we vary only theMLPwhich is used for the decoding
of the positions and offsets.

RNN-encoder-MLP: In contrast to the RNN-MLP network, the complete ini-
tialization tracklet is used to generate the internal representation before a
prediction is done. The RNN-encoder-MLP is varied by alternating activation
functions for the MLP and by alternatively predicting the complete future
path/offsets instead of only next steps. As a further alternative, the full path
is predicted as offsets to one reference point instead of applying path integra-
tion in order to predict the final position.

RNN-encoder-decoder-model (Seq2Seq): In addition to RNN-encoder-
MLPs, Seq2Seqs include a second network. This second decoder network
takes the internal representation of the encoder and then starts predicting the
next steps. The different settings for the evaluation of this model were due to
alternating activation functions for the MLP on top of the decoder RNN.

Temporal convolutional networks (TCN): As an alternative to RNNs and
based on WaveNets [van16], Bai et al. [Bai18] introduced a general convolu-
tion architecture for sequence prediction. We tested their standard and ex-
tended architecture with a gating mechanism (GTCN). For a more detailed
description, we refer to the original papers.

All networks were trained with varying numbers of layers (1 to 5) and hid-
den units (4 to 64) using stochastic gradient descent with a fixed learning
rate of 0.005. The models are trained for 100 epochs using ADAM optimizer
[Kin15] and have been implemented in Tensorflow [Aba15]. Firstly, only stan-
dard RNN cells are used for the experiments. Later, we also tested with RNNs
variants LSTM [Hoc97], and GRU [Cho14] (see section 4.1). As loss the mean
squared error between the predicted and the ground truth position or offsets
over all time steps is used.

In order to emphasize trends, an excerpt of the experiments’ results is summa-
rized in table 4.3. The best results were achieved with the RNN-encoder-MLP.
However, in most cases the different architectures perform very similarly.
These initial results also show that the best performing networks lie close to
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the result achieved with linear interpolation. Since the previous dataset anal-
ysis revealed that for a large amount of tracklets linear interpolation works
quite well, it is a crucial requirement to produce stable results also in simple
situations. Thus, factors such as strong overestimation of slow person veloc-
ities and some undefined random predictions when using positions can lead
to weak performances compared to simple baselines. For reducing the effect
of overestimation of slowly walking persons, Hasan et al. [Has18] integrated
head pose information. However, this information requires a suitable head
pose detector and this additional cue is not available for the TrajNet chal-
lenge. We can only remark for the tested networks that this effect can also
differ for different runs. Naturally, it is important that during training, the
networks see enough samples of standing and slow-moving situations. In-
stead of excluding such samples through heuristics or probabilistic filtering,
which can help during application, we counteract this by data augmentation
(see next section).

Table 4.3: Results from our coarse evaluation on the data corresponding to the world plane
human-human dataset (World H-H TrajNet challenge). In contrast to the results in
table 4.4, the shown results are not generated with the official benchmark toolkit. Al-
though the same datasets are used for training and testing, the exact test set selection
of ground truth trajectories or tracklets for the challenge are not publicly available,
and thus the results may vary.

Approach Overall Average FDE / m ADE / m
Linear interpolation 0.894 1.359 0.429
Linear MLP (Pos) 1.041 1.592 0.491
Linear MLP (Off) 0.896 1.384 0.407

Non-linear MLP (Off) 2.103 3.181 1.024
Linear RNN 0.951 1.482 0.420

Non-linear RNN 0.841 1.300 0.381
Linear RNN-encoder-MLP 0.892 1.381 0.404

Non-linear RNN-encoder-MLP 0.827 1.276 0.377
Linear Seq2Seq 0.923 1.429 0.418

Non-linear Seq2Seq 0.860 1.331 0.390
TCN 0.841 1.301 0.381

Gated TCN 0.947 1.468 0.426
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These results show that using deep neural networks for path prediction can
produce undesired unstable results. Further, there is no clear-cut best per-
forming model and clear guidance towards a class of models. Thus the gap
between an MLP predictor and a Seq2Seq model is very narrow in the test
scenarios. However, besides the factors derived from the data analysis, a pre-
diction of the full path instead of step-wise prediction helps to overcome an
accumulation of errors that are fed back into the networks. For the TrajNet
challenge with a fixed prediction horizon, we thus prefer the RNN-encoder-
MLP over a Seq2Seq model. In the domain of human pose prediction based
on RNNs, Zhou et al [Zho18] reduced this problem with an auto-conditioned
RNN, and Martinez et al. [Mar17] propose using a Seq2Seq model along with
a sampling-based loss. In [Zim12], Zimmermann et al. reported that extend-
ing prediction into the future helps to balance the information flow and to
achieve a better input-output relationship. They called the prediction of more
future steps from the encoded representation overshooting. In accordance to
the results presented by [Mil19] for other sequence prediction tasks, TCNs
perform also very similar to RNNs for path prediction. About the same time
as our results on path prediction were published [Bec18c, Bec18b], [Nik18]
Nikhil and Morris concordantly reported that TCNs yield competitive results
for pedestrian path prediction.

Despite several benefits of TCNs over RNNs and variants, we stick with an
RNN-based solution due to its connection to Bayesian filtering. Furthermore,
RNNs are more common as part of architectures which model interactions
[Ala16, Ale17, Has18, Xue18] to represent single motion (see section 2.3). Due
to results from the initial evaluation and the discussed reasons, we chose an
RNN-encoder-MLP as our favored model to further apply the ablation study
to achieve more robust performance results.
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4.2.1.3 RNN-based prediction network: RED Predictor

For the comparison to existing approaches, the selected model is an RNN-
encoder-MLP. In this section, the final design choices which lead to the sub-
mitted predictor and achieved top-rank at the World H-H TrajNet challenge,
are summarized.

The RNN-encoder can generalize to deal with varying noisy inputs and is thus
able to better capture the person’smotion compared to the linear interpolation
baseline. The main insight is that motion continuity is easier to express in off-
sets or velocities because it takes considerably more modeling effort to repre-
sent all possible conditioning positions. Especially for the World H-H TrajNet
challenge, with different ranges for positions in the training and test set, this
has a significant influence on whether a good performance can be obtained.
Instead of using the given input sequence 𝒵 = {(𝑥𝑘,𝑦𝑘) ∈ ℝ2|𝑘 = 1,… ,𝑘𝑜𝑏𝑠}
of 𝑘𝑜𝑏𝑠 consecutive pedestrian positions along a trajectory, here the offsets
are used for conditioning the network 𝒵 = {(Δ𝑘𝑥,Δ𝑘𝑦) ∈ ℝ2|𝑘 = 2,… ,𝑘𝑜𝑏𝑠}.
Apart from the smaller modeling effort to represent conditioned offsets and
the prevention of undefined states due to a suitable data range, this domain
shift makes data pre-processing like the used standardization more reason-
able. Since the offset or rather velocity distribution follows approximately
a normal distribution around the expected walking speeds of pedestrians in
contrast to the position distribution, through standardization of the offsets,
the expected behavior is straight walking, and thus the network uses the de-
viations from the dominant walking pattern as inputs.

In our work [Hug17], we demonstrated that RNN-based solutions can capture
environment cues from position data only. Therefore, they incorporate scene-
specific knowledge which in turn can be a hindrance for generalizing across
scenes. This actually positive ability relies on additional contextual cues to
enable a better transfer to other scenarios. Thus, by using trajectory sam-
ples from other datasets, an undesired scene-prior is included. Naturally, this
effect gets stronger in case the scene includes a clear spatially-dependent be-
havior, such as roundabouts and crossings which are present in the Stanford
Drone Dataset (SDD). For short time horizons and to better generalize across
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different and unseen environments, the switch to relative positions (all train-
ing tracklets start at the origin), and to use offsets should be preferred. Thus,
the spatial information only persists in an implicit fashion by performing path
integration. As discussed in section 2.3, for longer time-horizons the inten-
tion of the object motion, here pedestrians, is more strongly motivated by its
goals. Classifying the goals of pedestrians in a scene requires further scene
knowledge. The above input modifications help in training neural networks
by scaling the inputs to a reasonable range, although in theory the desired
scaling can be achieved only with appropriate weights and biases. By using
non-linear activation functions such as sigmoid type functions, it is impossi-
ble to achieve an ever increasing trend. Nevertheless, a network can achieve
output values greater than the bound of a single neuron, but the network
can saturate at minimum or maximum values, in particular for trending in-
put data. Straight walking can be interpreted as increasing trended data of
position along a trajectory. The last observation can be used to provide a di-
rect connection to the output layers, which is realized as linear MLP. By this
non-squashing connection, the saturation problem can be countered. Due to
careful scaling around the known preferred walking behavior inside reason-
able bounds, the network can better handle the trend in trajectory data dom-
inated by straight walking. Since the pedestrian motions are not raw trended
sequential data and due to careful pre-processing, a direct connection for re-
ducing the saturation effect is not mandatory but should be kept in mind for
using position data only.

In order to deal with discretization artifacts in the ground truth trajectories
and to make further training easier, smoothed trajectories are used as the de-
sired output. As described, the minimal spline fit with a polynomial function
of varying degree for a complete tracklet is used to achieve smoother andmore
persistent dynamics. Nonetheless, RNNs can generalize over the outputs and
produce smooth predictions, but the intention is not to synthesize the noise,
but make training easier in terms of reducing the artifacts in the ground truth
data. As a drawback, the fit can produce incorrect results in some cases, but
overall the trajectories look more natural and smooth. Especially if longer
tracklets or rather complete trajectories can be considered, the fitting results
improve due to the incorporation of more data points. In case of poor spline
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fit corresponding to a large fitting error for all degrees of the polynomial func-
tion, the original trajectory is kept. Examples of fitted ground truth tracklets
are depicted in figure 4.9.
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Figure 4.9: Example visualization of pre-processed ground truth trajectories to produce a more
persistent motion behavior and reduce ground truth discretization artifacts.

In order to reduce the effect of error accumulation during a step-wise pre-
diction, overshooting is applied [Zim12]. Instead of feeding back RNN outputs
step-wise, the encoded representation is used to apply a multi-step prediction.
For the TrajNet challenge, the whole future path is predicted. Full path inte-
gration works similarly well, but here offsets to the reference positions (last
observed position) are predicted.

Physics-based models, such as a CV model, are independent of the absolute
values of states despite not being physically plausible. In spite of the loss of
physical intractability and related problems, such models can be applied as
general translational models without modification. For example, this applies
to tracking an object in image space as discussed in section 3.2.

In contrast, deep learning-based models can over-fit to limited training sam-
ples and are not able to generalize to input data which is too far outside the
seen input range. For example, in the BIWI ETH dataset or BIWI Hotel dataset,
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the trajectories include a strong bias along a specific direction. Thus, training
on BIWI ETH trajectories and inferring on rotated trajectories lead to under-
estimation of the true velocity along the dominating direction in the training
samples. This effect can result from over-fitting to data bias or scene-prior,
deviation from input range or it can be seen as a lack of generalization ability.
In addition to the explained factor, this potential shortcoming can be coun-
teracted by data augmentation. Due to the fact that there exist several rea-
sonable physics-based models to describe pedestrian behavior, it is possible to
augment the training data by simulating realistic motion profiles. Although
the scenarios of the TrajNet challenge are relatively well suited to improve
training by simulation due to the fact that pedestrian behavior is evaluated
on ground level in a world coordinate system, data augmentation is only done
by reverting all training tracklets of the provided challenge data. Thereby, the
amount of training samples reflecting single object behavior is directly dou-
bled. For the submitted results, no further data augmentation techniques are
applied.

The discussed effect of over-fitting to a scene is depicted in figure 4.10.
The images show the prediction of an RNN-encoder with an MDN, which
parametrizes a bi-variate Gaussian, as last layer for an original tracklet of the
ETH dataset and a tracklet rotated by 90∘. As a loss, a linear combination
of the negative log-likelihood for the ground truth future positions under
the predicted positions (see section 4.19) and the mean squared error to the
ground truth trajectories is used. The models are both trained on a subset of
the ETH dataset. On the left, an original test tracklet is used to infer future
positions and covariances. On the right, a rotated test tracklet. It is clearly
visible that the model on the right produces a bad prediction due to the effects
described above.

The proposed simple but effective predictor for the TrajNet challenge com-
bines all the listed factors. At its core, the architecture is an RNN-encoder
with a dense MLP stacked on top (RED). Hence, the predictor is referred to
as RED predictor when it is realized as pure regression model. In the demon-
stration example from figure 4.10 where the MLP is replaced with an MDN to
capture also the predictive distribution, the term RED-MDN is used.
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Figure 4.10: Qualitative results with an RNN-encoder model with well adapted input range and
without. On the left and on the right the same observations are used, but on the
right they are rotated. (Left) The model is able to represent the motion and make a
reasonable prediction. (Right) Due to unbalanced training samples with trajectories
mainly orientated along one direction, the network produces a poor estimate for a
90∘ rotated trajectory.

Realized as a regression model and without direct connection to the last ob-
servation, the RED predictor can be defined by:

𝐡𝑘𝑒𝑛𝑐 = RNN(𝐡𝑘−1𝑒𝑛𝑐 ,Δ𝑘(𝑥,𝑦); 𝚯𝑒𝑛𝑐)

𝒴𝐾𝑝𝑟𝑒 = {(Δ𝑘+𝑘𝑝𝑟𝑒𝑑𝑥 ,Δ𝑘+𝑘𝑝𝑟𝑒𝑑𝑦 ) + (𝑥𝑘,𝑦𝑘)}𝐾𝑝𝑟𝑒
𝑘𝑝𝑟𝑒=1 = MLP(𝐡𝑘𝑒𝑛𝑐; 𝚯𝑀𝐿𝑃).

(4.21)

Here, RNN(⋅) is the recurrent network, 𝐡𝑒𝑛𝑐 the hidden state of the RNN-
encoder with corresponding weights𝐖𝑒𝑛𝑐 and biases 𝐛𝑒𝑛𝑐 (parameters𝚯𝑒𝑛𝑐),
which is used to generate the full, smoothed path. The term MLP(⋅) reflects
an MLP including the conforming weights𝐖𝑀𝐿𝑃 and biases 𝐛𝑀𝐿𝑃 to map the
vector 𝐡𝑒𝑛𝑐 to the observation space (𝚯𝑀𝐿𝑃 = {𝐖𝑀𝐿𝑃,𝐛𝑀𝐿𝑃}). The overall
architecture is visualized in figure 4.11.
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LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

MLP

𝐳𝑘Δ𝑘𝐳Δ𝑘−1𝐳Δ𝑘−2𝐳

Figure 4.11: Visualization of the RED architecture. The conditioning is done for the full initia-
lization sequence 𝒵 = {(∆𝑘

𝑥 ,∆𝑘
𝑦) ∈ ℝ2|𝑘 = 2,… , 8}. The internal representation

is then used to predict the desired path at once (all 12 positions) using the last ob-
served position (𝑥8,𝑦8) as reference for localization.

The submitted results of our final RED predictor is highlighted in red in table
4.4, using the official benchmark toolkit. Some qualitative predictions exam-
ples from the RED-MDN on the BIWI ETH and BIWI Hotel dataset are visu-
alized in figures 4.12, 4.13, and respectively in figures 4.14, 4.15. Although
the dominating behavior of the pedestrians is straight walking, the scenarios
also include diverse and more complex behaviors. The images depict that the
network is able to capture the different motion types and to adapt by incorpo-
rating new observations. Prediction is done for individual pedestrians solely
based on the observed trajectory. The examples show that, despite using any
cues from other persons, the RED-MDN predicts similar dynamical behav-
ior for persons walking closely together in a group. By comparing different
sample situations, it can be seen that the network is able to model different
walking speeds. It can also be seen, how the prediction is adapted when the
dynamics are changing. In figure 4.14 and 4.14, a deceleration and a stopping
behavior is correctly captured. The ability of RNN-based network to deal with
the maneuver type of changing dynamics is discussed in detail in section 4.2.2.

After a performed fine search for the selected network, the shown result of ta-
ble 4.4 is producedwith an LSTMunit (state size of 32) and one recurrent layer.
The proposed predictor is able to produce sophisticated results compared to
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elaborate models which additionally rely on interaction information such as
the model from Yamaguchi et al. [Yam11] (extended social-force-field model
based on the approach of Helbing and Molnár [Hel95]) and the Social-LSTM
[Ala16]. Compared to all submitted approaches of theWorld H-H TrajNet 2018
challenge, the RED predictor achieved the best result. All other results were
either officially submitted or provided by the organizers.

Table 4.4: Results for the world plane human-human dataset (World H-H TrajNet) challenge
including our submitted RNN-based approach (RED predictor). The results of ap-
proaches marked with (*) are directly obtained from corresponding papers. Other
results are taken from the TrajNet websitea [Sad18].

Approach Overall Average FDE / m ADE / m Reference
RED predictor 0.783 1.207 0.359 Ours

SR-LSTM 0.815 1.229 0.370 [Zha19]
Social Forces (EWAP) 0.819 1.266 0.371 [Yam11]

FISHY 0.820 1.256 0.375
JHU 0.844 1.304 0.384

Predictor SUL 0.887 1.374 0.399
Linear interpolation 0.894 1.359 0.429
Social Forces (ATTR) 0.904 1.395 0.412 [Yam11]

LVA* 0.945 1.449 0.438 [Xue19]
SGAN 1.334 2.107 0.506 [Gup18]
OSG 1.385 2.106 0.664

Social LSTM 1.387 2.098 0.675 [Ala16]
LV* 1.398 2.072 0.723 [Xue19]

Interactive Gaussian Processes 1.642 1.038 2.245 [Ell09]
Vanilla LSTM 2.107 3.114 1.100

Occupancy LSTM 2.111 3.12 1.101 [Ala16]

a TrajNet website: (http://trajnet.stanford.edu/, last accessed 19.12.2019)

Nevertheless, the Social-LSTM is one of the first proposed RNN-based archi-
tectures which includes human-human interaction and laid the basis for archi-
tectures like presented in the work of Hasan et al. [Has18], Xue et al. [Xue18],
and Zhang et al. [Zha19]. Single motion is modeled with an RNN or rather
an LSTM network. By applying some of the proposed factors to the models, it
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is expected that the models and corresponding extensions are able to outper-
form the proposed single motion predictor in datasets with high pedestrian
density.

4.2.1.4 Summary

Although a part of the presented modifications is tailored to the TrajNet chal-
lenge, the results show how to enhance prediction performance for RNN-
based networks. The provided analysis of the datasets reveals some weak-
nesses of the challenge, such as no defined categorization into linear and non-
linear or with and without human interaction. However, it is difficult to pro-
vide standardized benchmarking in particular due to the fast-growing body
of different approaches for capturing object dynamics. In terms of our goals,
the trajectory data reflects the desired properties of observations provided by
an underlying visual tracking component with varying noise levels. Hence,
the results show that RNN-based models are able to deal with this maneuver
type. Due to the emphasized modifications, the proposed network achieves
state-of-the-art performance compared to existing alternative approaches on
a public benchmark dedicated to path prediction. It is clear that independently
from the model complexity, approaches restricted to observing only informa-
tion from a single trajectory are in range to a reachable performance limit
on the current dataset repository. However, the TrajNet benchmark also pro-
vides human-human and human-space information. Recent work such as the
approaches of Gupta et al. [Gup18] or Xua et al. [Xue18] (human-human) and
Sadeghian et al. [Sad19] (human-human, human-space) show possibilities of
how to better anticipate the pedestrian behavior based by integrating these
contextual cues.

111



4 The Deep Learning Perspective
Q
ua

lit
at
iv
e
ex

am
pl
es

BI
W
IE

TH
Si
m
ila

rs
pe

ed
sa

nd
cu

rv
ili
ne

ar
m
ot
io
n
(p
ed

es
tri

an
s:

)

...
...

H
ea

di
ng

co
rr
ec

tio
n
(p
ed

es
tri

an
:

)

...
...

tim
e
in

fra
m
es

Fi
gu

re
4.
12

:D
iv
er
se

pr
ed

ic
tio

ns
ge

ne
ra
te
d
by

th
eR

ED
-M

D
N

on
th
eB

IW
IE

TH
da

ta
se
t.
Ea

ch
ro
w

sh
ow

st
hr

ee
tim

es
te
ps

of
di
ffe

re
nt

sa
m
pl
e

sit
ua

tio
ns

.P
re
di
ct
io
n
is

do
ne

fo
ri

nd
iv
id
ua

lp
ed

es
tri

an
s(

co
lo
r-
co

de
d)

so
le
ly

ba
se
d
on

th
e
ob

se
rv

ed
tra

je
ct
or

y.

112



4.2 RNN-based Solutions

Q
ua

lit
at
iv
e
ex

am
pl
es

BI
W
IE

TH
Be

ha
vi
or

ch
an

ge
(p
ed

es
tri

an
:

)

...
...

Cl
os

e
cr
os

sin
g
(p
ed

es
tri

an
s:

)

...
...

tim
e
in

fra
m
es

Fi
gu

re
4.
13

:A
dd

iti
on

al
di
ve

rs
e
pr

ed
ic
tio

ns
ge

ne
ra
te
d
by

th
e
RE

D
-M

D
N

on
th
e
BI
W
I
ET

H
da

ta
se
t.

Ea
ch

ro
w

sh
ow

s
th
re
e
tim

e
st
ep

s
of

di
ffe

re
nt

sa
m
pl
es

itu
at
io
ns

.P
re
di
ct
io
n
is

do
ne

fo
ri

nd
iv
id
ua

lp
ed

es
tri

an
s(

co
lo
r-
co

de
d)

so
le
ly

ba
se
d
on

th
eo

bs
er
ve

d
tra

je
ct
or

y.

113



4 The Deep Learning Perspective
Q
ua

lit
at
iv
e
ex

am
pl
es

BI
W
IH

ot
el

Si
m
ila

rs
pe

ed
sa

nd
cu

rv
ili
ne

ar
m
ot
io
n
(p
ed

es
tri

an
s:

)

...
...

H
ea

di
ng

co
rr
ec

tio
n
(p
ed

es
tri

an
:

)

...
...

tim
e
in

fra
m
es

Fi
gu

re
4.
14

:D
iv
er
se

pr
ed

ic
tio

ns
ge

ne
ra
te
d
by

th
eR

ED
-M

D
N

on
th
eB

IW
IH

ot
el

da
ta
se
t.
Ea

ch
ro
w

sh
ow

st
hr

ee
tim

es
te
ps

of
di
ffe

re
nt

sa
m
pl
e

sit
ua

tio
ns

.P
re
di
ct
io
n
is

do
ne

fo
ri

nd
iv
id
ua

lp
ed

es
tri

an
s(

co
lo
r-
co

de
d)

so
le
ly

ba
se
d
on

th
e
ob

se
rv

ed
tra

je
ct
or

y.

114



4.2 RNN-based Solutions

Q
ua

lit
at
iv
e
ex

am
pl
es

BI
W
IH

ot
el

D
ec

el
er
at
io
n
(p
ed

es
tri

an
:

)

...
...

St
op

pi
ng

(p
ed

es
tri

an
:

)

...
...

tim
e
in

fra
m
es

Fi
gu

re
4.
15

:A
dd

iti
on

al
D
iv
er
se

pr
ed

ic
tio

ns
ge

ne
ra
te
d
by

th
e
RE

D
-M

D
N

on
th
e
BI
W
IH

ot
el

da
ta
se
t.

Ea
ch

ro
w

sh
ow

s
th
re
e
tim

e
st
ep

s
of

di
ffe

re
nt

sa
m
pl
es

itu
at
io
ns

.P
re
di
ct
io
n
is

do
ne

fo
ri

nd
iv
id
ua

lp
ed

es
tri

an
s(

co
lo
r-
co

de
d)

so
le
ly

ba
se
d
on

th
eo

bs
er
ve

d
tra

je
ct
or

y.

115



4 The Deep Learning Perspective

4.2.2 Intention Prediction

In this section, the ability of a proposed RNN-based solution with respect to
switching dynamics of pedestrians is evaluated for scenarios within the ap-
plication domain of intelligent vehicles. In the domain of intelligent vehicles,
pedestrian intention is mainly used as part of the overall behavior analysis
of a vision-based active safety system and applied jointly with path predic-
tion. Due to the short time window for emergency breaking, physics-based
approaches are the preferred solution. We consider concrete scenarios that
are tackled with multiple-model approaches such as the IMM filter. Although
many approaches can relatively reliably predict the location of objects a few
seconds ahead, they still struggle to predict when the object will stop [Rid18,
Has15b]. Hence, the scenario of stopping pedestrians with the corresponding
physics-based multiple-model solutions is analyzed in particular.

Inspired by an IMM filter solution, we propose an RNN-based IMM filter sur-
rogate for improved handling of varying dynamics over time. On the one
hand, the presented RNN-based model is able to provide a confidence value
for the performed dynamics. On the other hand, it can overcome some lim-
itations of the classic IMM filter. The proposed RNN-IMM incorporates the
insight from section 4.2.1 and is based on an RNN-encoder-decoder network
introduced by Deo and Trivedi [Deo18] for the case of freeway traffic predic-
tion.

In the following, a description of the RNN-IMM is provided before different
maneuver scenarios including corresponding common physics-based dynam-
ical models for Kalman and IMM filters are analyzed.

4.2.2.1 RNN-based IMM Filter Surrogate

The goal is to devise a model that can successfully predict future paths of
pedestrians and represent alternating pedestrian dynamics, e.g., dynamics
that can transition from straight walking to a turning maneuver or to stop-
ping. Both the IMM filter and the RNN-IMM predict a parametric distribution
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over object states and jointly capture maneuver probabilities for subsequent
processing.

As in the previous section, trajectory prediction is formally stated as the
problem of predicting the future trajectories of a pedestrian, conditioned on
its track history. Given an input sequence 𝒵 = {(𝑥𝑘,𝑦𝑘) ∈ ℝ2|𝑘 = 1, … ,𝑘𝑜𝑏𝑠}
of 𝑘𝑜𝑏𝑠 consecutive observed pedestrian positions 𝐳𝑘 = (𝑥𝑘,𝑦𝑘) at time step
𝑘 along a trajectory, the task is to filter the current position ̂𝐳𝑘 = (𝑥𝑘,𝑦𝑘)
and to generate a multi-modal prediction for the next 𝑘𝑝𝑟𝑒𝑑 positions
{𝐳𝑘+1, 𝐳𝑘+2, … , 𝐳𝑘+𝑘𝑝𝑟𝑒𝑑 }.

Softmax

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM
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Θ𝑚,1 Θ𝑚,2

Figure 4.16: Visualization of the RNN-based IMM filter surrogate (RNN-encoder-decoder net-
work) for jointly predicting specific dynamical probabilities and corresponding dis-
tributions of future trajectory positions. The encoder predicts the dynamical prob-
abilities and the filtered position for the current time step. The decoder uses the
context vector and the position estimate to predict future pedestrian locations.

As discussed in section 4.2.1, it takes considerably more modeling effort
to represent all possible conditioning positions. Thus motion continuity is
easier to express in offsets or velocities. In order to exploit scene-specific
knowledge for trajectory prediction, additional use of the position informa-
tion is required. In our work [Hug17], we showed that RNN-based trajectory
prediction models are able to capture spatially dependent behavior changes
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only from motion data for sufficient training samples. In order to analyze the
RNN-based model capabilities in prototypical maneuver scenarios, mostly
synthetic data is used as an ideal sanity check performance evaluation. For
a fixed reference system, position information is used to estimate the true
position. In addition, the offsets are used for conditioning the network
𝒵 = {(𝑥𝑘,𝑦𝑘, Δ𝑘𝑥,Δ𝑘𝑦) ∈ ℝ4|𝑘 = 2,… ,𝑘𝑜𝑏𝑠}. The future trajectory is denoted
with 𝒴 = {(𝑥𝑘,𝑦𝑘) ∈ ℝ2|𝑘 = 𝑘𝑜𝑏𝑠 + 1,… ,𝑘𝑝𝑟𝑒𝑑} and the filtered position
with 𝐱′𝑘 = 𝐳𝑘 . Compared to Bayesian filtering, 𝐱′𝑘 is not the full dynamical
state, but the observable state 𝐳𝑘after applying the RNN equivalent of the
observation model (see equation 2.9). This expression is used to highlight the
analogy to the IMM filter, but the notion of deterministic inputs for RNNs is
kept. The model estimates the conditional distribution 𝑝(𝒴,𝐱′𝑘|𝒵). In order
to identify specific dynamics under𝑀 desired maneuver classes (e.g., turning
maneuvers, stopping, and straight walking), this term can be given by:

𝑝(𝒴,𝐱′𝑘|𝒵) =
𝑀
∑
𝑖
𝑝Θ𝑅𝑁𝑁−𝐼𝑀𝑀(𝒴,𝐱

′𝑘|𝑚𝑖,𝒵)𝑃(𝑚𝑖|𝒵). (4.22)

Here, 𝚯𝑅𝑁𝑁−𝐼𝑀𝑀 = {𝚯𝑘𝑜𝑏𝑠+1
𝑅𝑁𝑁−𝐼𝑀𝑀 , … ,𝚯

𝑘𝑝𝑟𝑒𝑑
𝑅𝑁𝑁−𝐼𝑀𝑀} are the parameters of

an 𝐿 component Gaussian mixture model 𝚯𝑘
𝑅𝑁𝑁−𝐼𝑀𝑀 = (𝝁𝑘𝑙 , 𝚺𝑘, 𝑤𝑘

𝑙 )𝑙=1,…,𝐿.
By adding the maneuver context in form of the posterior mode probability,
𝑃(𝑚𝑖|𝒵)

∧= 𝛼𝑖 the analogy to the classic IMM filter becomes apparent.

For an IMM filter, the mode probability is used to calculate the mixing proba-
bilities to combine the set of chosen candidate models into a merged estimate
(see equation 3.50). In case of using an IMM filter, the time behavior of the ba-
sic filter set is modeled as a homogeneous (time-invariant) Markov chain with
a fixed transition probability matrix (TPM) 𝑝𝑖𝑗 ≜ 𝑃(𝑚𝑘

𝑖 |𝑚𝑘−1
𝑗 ). As shown in

section 3.1.2, the posterior density of the IMM filter can be written under the
assumption that𝑀 models describe the variation of the dynamics as follows:

𝑝(𝐱𝑘|𝒵) =
𝑀
∑
𝑖
𝑝Θ𝐼𝑀𝑀(𝐱𝑘|𝑚𝑖,𝒵)𝑃(𝑚𝑖|𝒵). (4.23)
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Here, 𝑝Θ𝐼𝑀𝑀(𝐱𝑘|𝑚𝑖,𝒵) is in the context of an IMM filter a Gaussian distri-
bution and 𝑃(𝑚𝑖|𝒵)

∧= 𝛼𝑖 is the posterior mode probability for the IMM fil-
ter. As explained, the transition between different dynamics is modeled as a
first-order Markov chain for an IMM filter. The law of total probability al-
lows computing new mode probabilities based on the transition probabilities.
Given the current mode probabilities and transition probabilities, the weight-
ing probabilities 𝛼𝑖|𝑗 for the mixing step of the IMM filter can be calculated.
For each model 𝑚𝑖 and 𝑚𝑗 , they are calculated as 𝛼𝑘−1𝑖|𝑗 = 1/ ̄𝑐𝑗𝑝𝑖𝑗𝛼𝑘−1𝑖 with a
normalization factor ̄𝑐𝑗 = ∑𝑀

𝑖=1 𝑝𝑖𝑗𝛼𝑘−1𝑖 (see section 3.1.2). Then, in the pre-
diction stage, each filter is applied independently using the calculated mixed
initial condition. Subsequently, the model probabilities are adapted according
to the likelihood of each filter.

Whereas explicit modeling of the switching behavior and the object dynam-
ics of the IMM filter stands in contrast to an implicit dynamic encoding of an
RNN-based approach. In order to provide an IMM filter surrogate, the pro-
posed model also estimates mode probabilities and filters or rather de-noises
the current position based on noisy observations 𝒵. By writing the condi-
tional distribution 𝑝(𝒴,𝐱′ |𝒵) of the RNN-based approach in form of equation
4.22, the desired estimates can be inferred from the hidden states of the RNN
𝐡. This formulation does not require to set the parameter of the TPM ma-
trix manually, which is commonly done based on the mean sojourn time (the
mean time an object stays in a motion type [Sch13, Bar02]) or as stated in the
work of Bar-Shalom [Bar02], an ad-hoc approach is filling the diagonals with
values close to one. For the proposed RNN-based IMM filter surrogate, the ba-
sic architecture is a recurrent encoder-decoder model. The encoder takes the
frame by frame input sequence 𝒵. The hidden state vector of the encoder is
updated at each time step based on the previous hidden state and the current
observation. The generated internal representation is used to predict mode
probabilities 𝜶𝑘 at the current time step and the filtered position 𝐱′𝑘 .
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With an embedding of the current observations, the encoder can be defined
as follows:

𝐞𝑘𝑒𝑛𝑐 = EMB(𝐳𝑘; 𝚯𝑒𝑒),
𝐡𝑘𝑒𝑛𝑐 = RNN(𝐡𝑘−1𝑒𝑛𝑐 ,𝐞𝑘𝑒𝑛𝑐; 𝚯𝑒𝑛𝑐),

𝜶𝑘𝑙𝑜𝑔𝑖𝑡𝑠, ̂𝐳𝑘, �̂�𝑘 = MLP(𝐡𝑘𝑒𝑛𝑐; 𝚯𝑀𝐿𝑃),

̂𝜶𝑘 =
exp (𝜶𝑘𝑙𝑜𝑔𝑖𝑡𝑠)

∑𝑀
𝑗=1 exp (𝛼𝑘𝑙𝑜𝑔𝑖𝑡𝑠,𝑗)

. (4.24)

Here, RNN(⋅) is the recurrent network, 𝐡 the hidden state of the RNN, MLP(⋅)
the multi-layer perceptron, and EMB(⋅) an embedding layer. 𝚯(⋅) represents
the weights𝐖(⋅) and biases 𝐛(⋅) of the MLP, EMB, and respectively RNN. The
final state of the encoder can be expected to encode information about the
track history. For generating a distribution over trajectories conditioned on
dynamical modes, the encoder hidden state is appended with an one-hot en-
coded vector corresponding to specific dynamics and the filtered current po-
sition. The decoder of the model can be defined as follows:

𝐡𝑘−1𝑑𝑒𝑐 = 𝐡𝑘𝑒𝑛𝑐 ,
𝐡𝑘𝑑𝑒𝑐 = RNN(𝐡𝑘−1𝑑𝑒𝑐 , ̂𝐳𝑘,𝜶𝑘; 𝚯𝑑𝑒𝑐),

̂𝒴 = {(�̂�𝑘𝑙 + �̂�𝑘𝑜𝑏𝑠 , �̂�𝑘𝑙 , ̂𝑤𝑘
𝑙 )}𝐾𝑘=𝑘𝑜𝑏𝑠+1 = MLP(𝐡𝑘𝑑𝑒𝑐; 𝚯𝑑𝑒). (4.25)

The decoder is used to parametrize an MDN or rather 𝚯𝑅𝑁𝑁−𝐼𝑀𝑀 directly
for several positions in the future. Although the overall RNN-IMM uses the
trajectory prediction and dynamical classification jointly, the loss function
for training is split into three parts. Dynamical classification is trained to
minimize the cross-entropy of the different𝑀 dynamical modes:

ℒ(𝒵)𝑚𝑎𝑛𝑒ᵆ𝑣𝑒𝑟 = −
𝑀
∑
𝑗=1

𝛼𝑘𝑗,𝐺𝑇 log(�̂�𝑘𝑗 ). (4.26)

Additionally, the encoder is trained byminimizing the filtering lossℒ(𝒵)𝑓𝑖𝑙𝑡𝑒𝑟
in form of the negative log-likelihood of the ground truth current pedestrian
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position under the predicted position. Finally, the complete encoder-decoder
is trained by minimizing the negative log-likelihood for the ground truth fu-
ture pedestrian locations conditioned on the performed maneuver class. The
context vector is appended with the ground truth values of the dynamical
classes for each training trajectory. This results in the following loss func-
tion:

ℒ(𝒵)𝑝𝑟𝑒𝑑 = − log (𝑝Θ𝑅𝑁𝑁−𝐼𝑀𝑀(𝒴𝐺𝑇 |𝑚𝐺𝑇 ,𝒵)𝑃(𝑚𝐺𝑇 |𝒵))

=
𝐾
∑

𝑘=𝑘𝑜𝑏𝑠+1
− log(

𝐿
∑
𝑙=1

̂𝑤𝑘
𝑙 𝒩(𝐳𝑘|�̂�𝑘𝑙 + ̂𝐳𝑘𝑜𝑏𝑠 , �̂�𝑘𝑙 ; 𝑚𝐺𝑇)) .

(4.27)

The overall architecture is visualized in figure 4.16. The context vector com-
bines the encoding of the track history with the encoding of the alternating
dynamical classes. Together with the filtered position, it is used as input for
the decoder.

4.2.2.2 Evaluation

This section consists of an evaluation of the proposed RNN-IMM. The evalua-
tion is concerned with verifying the overall viability of the approach in ma-
neuver situations in terms of switching motion behavior. Firstly, synthetic
test conditions are used in order to gain insight into the model behavior in
different typical pedestrian maneuvers. By doing that, factors such as a re-
stricted amount of training samples are avoided. Later, the evaluation is also
done on the Daimler context path prediction dataset [Koo14], which is a real-
world dataset designed to capture pedestrian maneuvers from a driving vehi-
cle. The synthetic data reflects the Daimler context path prediction dataset and
Daimler path prediction dataset [Sch13] by capturing similar condition and
using the statistics in the data for generating samples. Both datasets capture
sequences recorded with the same sensor setup or rather the same vehicle.
The 2014 dataset version is focused on crossing and stopping maneuvers.
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In the domain of intelligent vehicles, intention prediction of pedestrians is com-
monly done in an ego-motion compensated vehicle centered coordinate sys-
tem. The detections provided by an object detector are mapped onto a ground
plane in world coordinates. For the Daimler datasets, a stereo camera-system
(baseline 22 cm, 16 frames per second (fps), 1176 × 640 pixels) is used, in-
ter alia, for mapping the observation to the physical world. Thereby, the in-
corporation of prior knowledge about the dynamics of pedestrian motion is
enabled. As explained in section 2.3.2, there exist several physics-based dy-
namical models that are applied in combination with Bayesian filters under
these conditions. The choice of selected physics-based reference approaches
is orientated on a comparative study from Schneider et al. [Sch13] on re-
cursive Bayesian filters for pedestrian path prediction at short time horizons
(below 2 seconds) on the Daimler path prediction dataset. For single-models
in combination with a Kalman filter, a CV and a CA model are considered
for crossing scenarios. These dynamical models are also used for the predic-
tion of pedestrian positions by Bertozzi et al. [Ber04], Meuter et al. [Meu08],
Møgelmose et al [Møg15], Binelli et al. [Bin05], and Elnagar et al. [Eln01] to
name a few. Further, the proposed IMM filters of Schneider et al. are the core
of the introduced extensions for including several contextual cues to control
the transition probability between single dynamical models (see section 2.3.2
[Koo19, Koo14, Sch15]).

Since the Daimler path prediction dataset provides only a maximum number
of 23 sequences for single motion types, in order to avoid problems such as a
limited number of training samples and to gain some insights into a controlled
setup, synthetic data is used to perform a sanity check analysis. Furthermore,
there is a location bias in the Daimler datasets, which is more present for the
2013 version and the bending in maneuvers. Since recursive Bayesian filters
make no use of the spatial context of a scene in their standard formulation,
this does not harm their mutual comparison. In section 2.3.1, we discussed
the ability of RNN-based prediction networks to capture spatially dependent
behavior changes. In order to make a fairer comparison for the real-world
data evaluation, all tracklets are normalized to start at the origin.
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The evaluation on the Daimler 2014 dataset is done in an ego-motion com-
pensated reference system. The frame rate of the camera system inside the
recording vehicle is 16 fps and it is adopted accordingly for our experiments.
Pedestrians change their behavior abruptly. Therefore, sensible time horizons
are short. Here, 8 (0.5 seconds) consecutive positions are observed, before pre-
dicting the next 8 (0.5 seconds), 12 (0.75 seconds), and 16 (1 second).

For generating synthetic trajectories of a basic maneuvering pedestrian, ran-
dom agents are sampled from a Gaussian distribution according to a preferred
pedestrian walking speed [Tek02] (𝒩(1.38𝑚/𝑠, 0.37 (𝑚/𝑠)2)) from the distribu-
tion of starting positions of the correspondingDaimler dataset sequences. The
distribution of starting position is approximated with a mixture-of-Gaussians
by using the expectation-maximization (EM) algorithm [Bis06] with five com-
ponents. The chosen preferred walking speed corresponds approximately to
TrajNet dataset analysis in section 4.2.1.

The RNN-IMM models have been implemented using Tensorflow [Aba15] and
are trained for 2000 epochs using ADAM optimizer [Kin15] with a decreasing
learning rate, starting from 0.01with a learning rate decay of 0.95 and a decay
factor of 1/10. For the experiments, the RNN variant LSTM [Hoc97] is used.

4.2.2.3 Scenario: Crossing

In the first scenario, the pedestrian intending either to cross or not to cross
the street laterally is considered. During a single trajectory simulation, the
agents head laterally and can perform a stoppingmaneuver or cross the street.
Figure 4.17 illustrates such maneuvers with example images from the Daimler
dataset [Sch13]. For mapping the pedestrian detections to a vehicle-motion
compensated ground plane, Schneider et al. used onboard sensors for velocity
and yaw rate, and a stereo camera system to compute the median disparity
based on a dense stereo approach (semi-global matching) [Hir08].

Due to the non-linear observation model based on a perspective camera
model, an inevitable linearized extension for the Kalman and IMM filter
observation models is required.
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Figure 4.17: Illustration of typical pedestrian motions. The above images depict the two chosen
maneuver classes of straight walking or crossing and stopping. The images on the
left show a person crossing the street. The images on the right show a person
transitioning from walking to standing at the curbside of the street. In particular
changing from straight walking to stopping [Sch13].

Here, the observation uncertainty is assumed to be Gaussian distributed𝐰𝑘 ∼
𝒩(0, (0.01 𝑚)2) in the compensated reference system. Thus, the standard for-
mulation of the Bayesian filters is well suited for this task. For the stopping
maneuver or rather the event of deceleration until standing, a mean sojourn
time of 1 second with a standard variation of 0.1 seconds is used. As a re-
minder, the mean sojourn time 𝜏𝑠𝑜 is the mean time an object stays in a mo-
tion type or dynamical mode [Sch13, Bar02]). Blackman [Bla99] suggests us-
ing this time to specify the TPM instead of using the ad-hoc approach to fill
the diagonals with values close to one. Thus, the model-to-model transition
is set to 𝑚𝑖𝑖 = 1 − ∆𝑇/𝜏𝑠𝑜 (see equation 3.37). The sojourn times are derived
from the Daimler datasets.
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As long as a person moves in a straight line at a nearly constant speed, their
dynamics can be captured with a Kalman filter using a CV model. During the
maneuver, the relation to one fixed motion model describing the dynamics
fails due to an additional deceleration. Similar to Schneider et al. [Sch13] or
Kooij et al. [Koo14], one reference IMM filter is set up by combining two basic
models, in particular the CV and the CA model. As discussed in section 3.2.1,
side effects due to independent motions in different directions are avoided by
only considering the crossing direction or - from the vehicle perspective - the
lateral motion. In other existing work, a combination of a CP model and a CV
model is suggested because of the relatively short decelerating phase (see for
example [Kel11]). Furthermore, an IMM filter with the three dynamic models
of a CP, a CV, and a CA model is for example used in the work Goldham-
mer et al. [Gol14]. Thereby, a transition from straight walking to stopping
is modeled in a physically plausible manner with a deceleration phase. Fol-
lowing the aforementioned explanations, the IMM-RNN is compared to the
described IMM filters with two dynamical models ((CV, CA); (CP, CV)), an
IMM filter with three dynamical models (CP, CV, CA), a Kalman filter with a
single CV model, a Kalman filter with a single CA model, and as baseline to a
linear interpolation.

Also correspondingly to Schneider et al., the process noise 𝐯𝑘 is determined
by 𝑄𝑘 = 𝑄𝑘

0𝑞, where 𝑞 ∈ {𝜎2𝐶𝑃, 𝜎2𝐶𝑉 , 𝜎2𝐶𝐴} describes the changes in position,
in velocity or respectively in acceleration over a sampling period Δ𝑇. The
covariancematrix𝑄0 of a CV (white noise acceleration) [Bar02]model is given
by

𝐐𝑘
𝐶𝑉 = [ 0.25Δ𝑇4 0.5Δ𝑇2

0.5Δ𝑇2 Δ𝑇2 ] 𝜎2𝐶𝑉 . (4.28)

The physical dimension of 𝜎𝐶𝑉 is that of an acceleration. For the CA (Wiener
process acceleration) [Bar02] model

𝐐𝑘
𝐶𝐴 = [

0.25Δ𝑇4 0.5Δ𝑇3 0.5Δ𝑇2
0.5Δ𝑇3 Δ𝑇2 Δ𝑇
0.5Δ𝑇2 Δ𝑇 1

]𝜎2𝐶𝐴. (4.29)
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In this model, the process noise 𝐯𝑘 is the acceleration increment during the
𝑘th sampling period. Based on the above process noise model, Schneider
et al. [Sch13] estimated the process noise parameters for the different cho-
sen filters (IMM filter (CV, CA), Kalman filter CV, CA) on the Daimler data-
set. These noise parameters are for the IMM filter (CV, CA) 𝜎𝐼𝑀𝑀,𝐶𝑉 =
0.7𝑚/𝑠2, 𝜎𝐼𝑀𝑀,𝐶𝐴 = 0.8 𝑚/𝑠3 and for the single Kalman filters 𝜎𝐶𝑉 = 0.77 𝑚/𝑠2
and 𝜎𝐶𝐴 = 0.44 𝑚/𝑠3. For the CP model, the noise parameter can be set
based on the steady walking pace. For the IMM filter (CP, CV), we used
the settings similar to Keller et al. [Kel11] (𝜎𝐼𝑀𝑀,𝐶𝑃 = 0.1 𝑚/𝑠, 𝜎𝐼𝑀𝑀,𝐶𝑉 =
0.09𝑚/𝑠2). The noise parameters of the threemodel IMMfilters are 𝜎𝐼𝑀𝑀,𝐶𝑃 =
0.1 𝑚/𝑠, 𝜎𝐼𝑀𝑀,𝐶𝑉 = 0.7 𝑚/𝑠2, and 𝜎𝐼𝑀𝑀,𝐶𝐴 = 0.8 𝑚/𝑠3. These parameters are
consistent with the suggested practical setting in Bar-Shalom [Bar02] and the
chosen sojourn time for the simulation.
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Figure 4.18: Visualization of the predicted multi-modal distributions of future position as
heatmap. (Left) Density plots for crossing or rather straight walking examples.
(Right) Density plots for stopping examples in which the maximum of the predicted
distribution is visible close to the last observation.
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Compared to vehicle maneuvers, such as lane changing, a definition of ma-
neuver classes for pedestrians is harder to establish. Since in most cases, the
standard behavior of pedestrians is straight walking, the deviation from a
standard behavior, and whether the pedestrian is in a normal mode is here
detected. A fixed deviation in velocity, deceleration, along with the tangen-
tial ground truth trajectory is used to assign a maneuver label to a time step
of a single trajectory. Thus, the RNN-IMM and IMM filters have a similar dy-
namical model set description. As the distribution over the trajectories for
the RNN-IMM is captured with a Gaussian mixture model, the maneuver de-
scription for a single model can still be multi-modal. Since the IMM filter
predicts a multi-modal distribution in the form of a combination of the uni-
modal model-specific predictions, the RNN-IMM is set to equally predict a
uni-modal Gaussian distribution conditioned on a single maneuver class in
the presented results.

Table 4.5: Results for the comparison between an RNN-IMM and IMM filters with several dy-
namical model setups, Kalman filters with single models, and using linear interpola-
tion on the simulated maneuver situations of crossing and stopping. The prediction is
done for 8, 12, and 16 time steps conditioned on 8 observations for a frame rate of 16
fps.

8/8 8/12 8/16
Approach FDE / m 𝜎FDE / m FDE / m 𝜎FDE / m FDE / m 𝜎FDE / m
RNN-IMM 0.0309 0.0404 0.0427 0.0817 0.0517 0.0941

IMM filter (CP, CV, CA) 0.0612 0.0606 0.113 0.130 0.1736 0.1901
IMM filter (CV, CA) 0.0674 0.0602 0.1188 0.1255 0.1862 0.1915
IMM filter (CP, CV) 0.1073 0.0916 0.2031 0.1623 0.3101 0.214
Kalman filter (CA) 0.0796 0.0638 0.1575 0.1137 0.2386 0.1696
Kalman filter (CV) 0.1578 0.1601 0.2890 0.2965 0.4701 0.4700
Linear interpolation 0.1587 0.1610 0.2903 0.2978 0.4724 0.4718

In figure 4.18, predictions for two differently performed motion types are de-
picted for 8 future positions weighted by the predicted maneuver probability.
In the shown images, the positions are normalized to start at the origin. The
resulting multi-modal prediction is visualized as a heatmap. On the right, it
can be seen that for a crossing sequence with straight walking, the RNN-IMM
mainly uses the corresponding straight walking model. On the left, where
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the deceleration started, the straight walking probability is visibly lower, and
the predicted distribution maximum is very close to the last observation. For
the quantitative evaluation, 1000 noisy trajectories have been synthetically
generated, where 80% are used for training and 20% for the comparison to the
recursive Bayesian filters. The results are summarized in table 4.5.

The performance is compared using the final displacement error (FDE) (see
for example [Pel09]) of the lateral motion (from the vehicle perspective) for
three different time horizons, in particular 8 steps (0.5 seconds), 12 steps
(0.75 seconds) and 16 steps (1 second). These results show that the presented
RNN-IMM is able to capture the changing varying dynamics for the synthet-
ically generated data faster. In terms of the single motion models (CV versus
CA), one can observe the benefits for the CA in capturing the deceleration.
Since pedestrian acceleration or declaration phases are relatively short due
to pedestrians quickly reaching their preferred walking speed or a stopping
state [Gol17], the CA and higher-order dynamical models can lead to high
prediction errors for longer time horizons. In order to capture the maneuver,
the switch to other models is beneficial. For the crossing and stopping simu-
lation, the IMM filters show an overall improvement over the single models.
The best result is achieved with the three model IMM filter. The RNN-based
IMM filter surrogate is able to capture the switch to a stopping mode. The
engineering task of finding the best model set for IMM filters and their ex-
tensions can lead to improved behavior (see for example Keller et al. [Kel14])
in specific maneuver situations, but it is also a very tedious process to find
a good setting. As discussed, recent work like the approaches of Kooij et al.
[Koo19] show options how to further improve the prediction performance
of IMM filters by using a DBN on top and thereby including scene context
and more cues than pedestrian point kinematics (e.g. head orientation, gaze,
body tilt, articulated body information). The integrated cues and accordingly
additional latent states modify only the transition probability between single
dynamical models, which is not required for the RNN-IMM.

However, the presented RNN-IMM is able to also provide a confidence value
𝑃(𝑚𝑖|𝒵)

∧= 𝛼𝑖 for the performed dynamics, but without an explicit modeling
of the dynamics transitions in the form of a fixed TPM. Similar to the provided
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mode probabilities of IMM filters, this can be used for subsequent processing
stages (see for example our works [Bec15, Mün16a, Mün16b]). Further, in-
stead of choosing the basic filter set, the prediction model is learned. In case
there exists some well-known model for describing the standard dynamics of
the desired object, only deviations from the known dynamics can be used to
define additional maneuver classes.

4.2.2.4 Scenario: Turning

Figure 4.19: Illustration of a typical pedestrian maneuver. The above images depict a change
from straight walking to turning and thus a sudden crossing of the street (bending
in).

Another prototypical maneuver performed by a pedestrian, which is of keen
interest in the context of intelligent vehicles, is a turning maneuver. For
such a maneuver, the pedestrian’s dynamics changes from a straight walk-
ing to a bending in behavior. Similar to the simulation of the crossing/stop-
ping scenario, for simulating a basic maneuvering pedestrian, random agents
are sampled from a Gaussian distribution in accordance with common pede-
strian walking speeds [Tek02] (𝒩(1,38 𝑚/𝑠, (0.37 𝑚/𝑠)2)) from the distribution
of starting positions of annotated bending in sequences from the Daimler path
prediction dataset. Hence, the same fixed frame rate of 16 fps is used. During
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a single trajectory simulation, the agents can perform a turning maneuver.
The change in heading is sampled from an uniform distribution between 45∘
and 100∘. The duration of the turning event is sampled from a Gaussian dis-
tribution based on the mean sojourn time estimated from the ground truth
sequences (𝒩(1.83𝑠, (0.29𝑠)2)). For comparing to common physics-based dy-
namical models, the simulation is done on ground level. In this scenario, the
longitudinal motion is also crucial to capture such a maneuver. In addition to
the above chosen filters, Keller et al. suggest a combination of a 𝐶𝑉 model
and a 𝐶𝑇 model as elemental filters to model the switching behavior. The
corresponding joint state vector of the CT model with the turning rate 𝜔 can
be expressed as

𝐱𝑘𝐶𝑇 = [𝑥,𝑦, ̇𝑥, ̇𝑦,𝜔]T . (4.30)

Since the model is non-linear, the estimation of the state is done via an EKF
[Bar02]. The corresponding dynamical model for state prediction is given by

𝐱𝑘+1𝐶𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 sin(𝜔𝑘∆𝑇)
𝜔𝑘 0 cos(𝜔𝑘∆𝑇−1)

𝜔𝑘 0
0 1−cos(𝜔𝑘∆𝑇)

𝜔𝑘 1 sin(𝜔𝑘∆𝑇)
𝜔𝑘 0

0 cos(𝜔𝑘Δ𝑇) 0 − sin(𝜔𝑘Δ𝑇) 0
0 sin(𝜔𝑘Δ𝑇) 0 cos(𝜔𝑘Δ𝑇) 0
0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝐹𝑘
𝐶𝑇

𝐱𝑘𝐶𝑇 + 𝐆𝑘
𝐶𝑇𝐯𝑘 .

(4.31)

Despite the matrix form, the model can be equivalently expressed as a set of
equations 𝑓𝐶𝑇 . To use an EKF for estimating, the Jacobian 𝐉𝑘𝐶𝑇 =

𝛿𝑓𝐶𝑇
𝛿𝐱𝐶𝑇

|�̂�𝑘,+𝐶𝑇
of

the dynamical equations must be computed for calculating the transition for
the state covariance.
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𝐉𝑘𝐶𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 sin(𝜔𝑘∆𝑇)
𝜔𝑘 0 cos(𝜔𝑘∆𝑇−1)

𝜔𝑘
𝛿𝑥
𝛿𝜔
|�̂�𝑘,+𝐶𝑇

0 1−cos(𝜔𝑘∆𝑇)
𝜔𝑘 1 sin(𝜔𝑘∆𝑇)

𝜔𝑘
𝛿�̇�
𝛿𝜔
|�̂�𝑘,+𝐶𝑇

0 cos(𝜔𝑘Δ𝑇) 0 − sin(𝜔𝑘Δ𝑇) 𝛿𝑦
𝛿𝜔
|�̂�𝑘,+𝐶𝑇

0 sin(𝜔𝑘Δ𝑇) 0 cos(𝜔𝑘Δ𝑇) 𝛿 ̇𝑦
𝛿𝜔
|�̂�𝑘,+𝐶𝑇

0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦�̂�𝑘,+𝐶𝑇

(4.32)

with the partial derivatives with respect to the turning rate

𝛿𝑥
𝛿𝜔 |�̂�𝑘,+𝐶𝑇

= 𝜔𝑘Δ𝑇 cos(𝜔𝑘Δ𝑇) − sin(𝜔𝑘Δ𝑇)
𝜔𝑘2

̇𝑥𝑘

− 𝜔𝑘Δ𝑇 sin(𝜔𝑘Δ𝑇) + cos(𝜔𝑘Δ𝑇 − 1)
𝜔𝑘2

̇𝑦𝑘

𝛿 ̇𝑥
𝛿𝜔 |�̂�𝑘,+𝐶𝑇

= −Δ𝑇 sin(𝜔𝑘Δ𝑇) ̇𝑥𝑘 − Δ𝑇 cos(𝜔𝑘Δ𝑇) ̇𝑦𝑘

𝛿𝑦
𝛿𝜔 |�̂�𝑘,+𝐶𝑇

= 𝜔𝑘Δ𝑇 sin(𝜔𝑘Δ𝑇) + cos(𝜔𝑘Δ𝑇)
𝜔𝑘2

̇𝑥𝑘

− 𝜔𝑘Δ𝑇 cos(𝜔𝑘Δ𝑇) − sin(𝜔𝑘Δ𝑇 − 1)
𝜔𝑘2

̇𝑦𝑘

𝛿 ̇𝑦
𝛿𝜔 |�̂�𝑘,+𝐶𝑇

= −Δ𝑇 cos(𝜔𝑘Δ𝑇) ̇𝑥𝑘 − Δ𝑇 sin(𝜔𝑘Δ𝑇) ̇𝑦𝑘 . (4.33)

For the noise process model used by Schneider et al., the process noise covari-
ance matrix has the form

𝐐𝑘
𝐶𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.25Δ𝑇4 0.5Δ𝑇2 0 0 0
0.5Δ𝑇2 Δ𝑇2 0 0 0

0 0 0.25Δ𝑇4 0.5Δ𝑇2 0
0 0 0.5Δ𝑇2 Δ𝑇 0
0 0 0 0 𝜍2𝐶𝑇∆𝑇2

𝜍2𝐶𝑉

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝜎2𝐶𝑉 .

(4.34)
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Here, 𝜎2𝐶𝑇 is the turning rate variance and 𝜎2𝐶𝑉 corresponds to a random ac-
celeration (see equation 4.28). For the CT model as part of the IMM (CV, CT)
filter, the noise parameters are chosen according to Schneider et al. [Sch13]
(𝜎𝐼𝑀𝑀,𝐶𝑉 = 0.4 𝑚/𝑠2, 𝜎𝐼𝑀𝑀,𝐶𝑇 = 0.9 𝑟𝑎𝑑/𝑠2). The noise parameters for the
other dynamical models are chosen as in section 4.2.2.3. As discussed in sec-
tion 3.2.1, using the proposed de-coupled IMM filter can be beneficial due to
independent motion along a particular direction. Hence, a de-coupled IMM
filter with similar parameter setup is additionally used for comparison.

𝑥 in meters

𝑦
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m
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s

𝑥 in meters

𝑦
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Figure 4.20: Visualization of the predicted multi-modal distributions of future position as
heatmap for the bending in scenario. Two density plots showing different points
in time during the turning maneuver.

In case of turning, the motion changes from a rectilinear dynamics to a curvi-
linear motion, in relation to the dynamics this results in an additional accel-
eration or rather change in heading. Therefore, a change from a constant
velocity model to a turning model or acceleration model indicates a critical
situation from the vehicle perspective. Figure 4.19 illustrates such a turning
or bending in maneuver.

Since the standard behavior of pedestrians is straight walking, a fixed devia-
tion in heading for a required time-horizon is used to assign maneuver labels
to single trajectories. The RNN-IMM outputs a multi-modal path distribution
based on the one-hot encoded maneuver classes. Here, the conditioning is
done for the three maneuver classes of turning left, turning right and straight
walking. For the synthetic bending in scenario, the maneuver distributions
could be captured with one Gaussian component even though the trajectory
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distribution can still bemulti-modal by using anMDNwithmore components.
In figure 4.20, example multi-modal predictions for the bending in maneuver
scenario are visualized. The predicted density is visualized as a heatmap with
normalized positions starting at the origin. The two example images show
two turning situations at different points in time. On the left, the straight
walking probability is still dominant. On the right, the RNN-IMM captures
the maneuver and predicts a clockwise change in heading.

Table 4.6: Results for the comparison between an an RNN-IMM and IMM filters with different
dynamical model structures, a Kalman filter with a single CV model, a Kalman filter
with a single CA model, and using linear interpolation on the simulated bending in
maneuver situations. The prediction is done for 8, 12, and 16 time steps conditioned
on 8 observations for a frame rate of 16 fps.

8/8 8/12 8/16
Approach FDE / m 𝜎FDE / m FDE / m 𝜎FDE / m FDE / m 𝜎FDE / m
RNN-IMM 0.1009 0.1066 0.1833 0.2073 0.2479 0.3387

IMM filter (CV, CA) 0.1641 0.1068 0.3274 0.2131 0.5109 0.3732
IMM filter (CV, CA; de-coupled) 0.1626 0.1248 0.3119 0.2519 0.5055 0.4138

IMM EKF (CT, CV) 0.1988 0.1575 0.3482 0.2745 0.5102 0.4227
Kalman filter (CA) 0.1809 0.1145 0.3664 0.2497 0.5344 0.3257
Kalman filter (CV) 0.2098 0.1707 0.3729 0.3007 0.5301 0.4523
Linear interpolation 0.2530 0.2084 0.4326 0.3543 0.6122 0.5100

For training and evaluation, 1000 noisy trajectories have been synthetically
generated with a split of using 80% for training and 20% for evaluation. The
results are summarized in table 4.6. For comparison, the final displacement
error (FDE) is calculated as average L2 distance between the predicted final
positions and the ground truth positions for three different time-horizons.

As before, the proposed RNN-IMM achieves the best result for the simulated
scenario and is able to capture the switch to another motion type. The IMM
filter solutions perform better than single model Kalman filters. Comparing
the different model set structures of the IMMfilters, our de-coupled IMMfilter
yields slightly better results, but with no significant difference. For the longer
time-horizon, the effect of curvilinear motion is more pronounced, thus the
benefit of the RNN-IMM is more visible, and the inclusion of the CT model
in the filter setup has a more positive effect. The CT model and its variants
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are more common for being utilized for tracking other road users, such as
bikes and vehicles (see for example [Koo19, Bat09]) or capturing the turning
maneuver of tracked air-crafts [Li03]. Solely the amount of existing physics-
based models and model set combinations clearly show why the trend is to
shift to a pattern-based alternative. Also, in the bending in scenario, the RNN-
based IMM filter surrogate is able to capture the switch in modes without the
engineering task of finding the best model set for the IMM filter.

4.2.2.5 Scenario: Real-World Data

Table 4.7: Results for the comparison between an RNN-IMM and several filters, including differ-
ent IMM filters and single Kalman filter on the Daimler context path prediction dataset
[Koo14]. The prediction is done for 8, 12, and 16 time steps conditioned on 8 observa-
tions.

8/8 8/12 8/16
Approach FDE / m 𝜎FDE / m FDE / m 𝜎FDE / m FDE / m 𝜎FDE / m
RNN-IMM 0.0811 0.1165 0.1244 0.2076 0.2137 0.3313

IMM filter (CP, CV) 0.1609 0.1495 0.2746 0.2518 0.3881 0.3711
IMM filter (CP, CV, CA) 0.1721 0.1688 0.3060 0.2753 0.4202 0.3925
IMM filter (CV, CA) 0.1792 0.1641 0.3242 0.2790 0.4602 0.4178
Kalman filter (CA) 0.2061 0.2240 0.5260 0.4055 0.8112 0.6300
Kalman filter (CV) 0.1618 0.1507 0.2749 0.2519 0.3885 0.3711
Linear interpolation 0.1628 0.1511 0.2773 0.2541 0.3918 0.3745

For the real-world data scenario, the evaluation is done on the Daimler con-
text path prediction dataset [Koo14] consisting of 58 sequences recorded with
the described sensor setup in an ego-motion compensated reference system.
All sequences involve individual pedestrians intending to cross the street or
to stop at the curbside (crossing and stopping maneuvers). The sequences are
further labeled with time-to-event (TTE) (in frames) information to focus
on the critical situations. For stopping pedestrians, the frame when the last
foot of the pedestrian is placed on the ground of the curbside is labeled with
TTE= 0 and for crossing pedestrians, the closest point before stepping on the
road. Only the lateral motion and frames between TTE< −15 and TTE> 15
are considered. 5-fold cross-validation is done for tracklets capturing the
time windows of 16, 20, and 24 consecutive position, where 8 positions are
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used for initialization. This matches with the setting of the simulated cross-
ing sequences. In order to reduce side effects due to limited training samples,
additional sequences are augmented to extend the total amount of training
sequences to 200. According to the estimated lateral observation error, the
observation noise is set to𝐰𝑘 ∼ 𝒩(0, (0.06 𝑚)2) in the vehicle-motion com-
pensated reference system. The evaluation of the real data is done on 20% of
the real-world tracklets. Table 4.7 shows the final displacement errors for the
lateral positions for three time-horizons. In table 4.8 and 4.9 the results are
split into the crossing and stopping sequences.

Table 4.8: Evaluation results for the crossing sequences of the Daimler context path prediction
dataset [Koo14]. The final displacement error is shown for predicting 8, 12, and 16
steps into the future.

Crossing sequences
8/8 8/12 8/16

Approach FDE / m 𝜎FDE / m FDE / m 𝜎FDE / m FDE / m 𝜎FDE / m
RNN-IMM 0.0841 0.1219 0.1224 0.2076 0.1978 0.3174

IMM filter (CP, CV) 0.1490 0.1387 0.2522 0.2405 0.3456 0.35197
IMM filter (CP, CV, CA) 0.1601 0.1640 0.3160 0.2798 0.4202 0.3946
IMM filter (CV, CA) 0.1492 0.1435 0.3217 0.2809 0.4450 0.4201
Kalman filter (CA) 0.1906 0.16623 0.5764 0.4090 0.8770 0.6400
Kalman filter (CV) 0.1491 0.1387 0.2523 0.2406 0.3460 0.3520
Linear interpolation 0.1526 0.1442 0.2545 0.2427 0.3490 0.3553

Table 4.9: Evaluation results for the stopping sequences of the Daimler context path prediction
dataset [Koo14]. The final displacement error is shown for predicting 8, 12, and 16
steps into the future.

Stopping sequences
8/8 8/12 8/16

Approach FDE / m 𝜎FDE /m FDE / m 𝜎FDE / m FDE /m 𝜎FDE / m
RNN-IMM 0.0693 0.0934 0.1316 0.2075 0.2766 0.3755

IMM filter (CP, CV) 0.1890 0.1627 0.3588 0.2742 0.5207 0.4027
IMM filter (CP, CV, CA) 0.1581 0.1450 0.2886 0.2542 0.4404 0.384
IMM filter (CV, CA) 0.1797 0.1602 0.3336 0.2715 0.5567 0.3959
Kalman filter (CA) 0.1799 0.1784 0.3376 0.3254 0.5507 0.5114
Kalman filter (CV) 0.1897 0.1628 0.3592 0.2745 0.5572 0.3963
Linear interpolation 0.1990 0.1685 0.3627 0.2768 0.5619 0.3993
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As reference models, the IMM and Kalman filters with the corresponding dy-
namical models as described in section 4.2.2.3 are used. Also on the real-world
sequences, the RNN-IMM achieves the best performance. For the comparison
of the different model set configuration, the difficulty of choosing the best
configuration becomes clearly visible. Despite the fact that the performance
difference is relative small, including a CP or CA helps to better capture the
stopping behavior. As expected, in pure crossing sequences a Kalman filter
with single CV model performs well. Due to fact that the pedestrians walk
with a relatively constant speed, the second-order CA model interprets noisy
observations as additional acceleration and thus performsworse than the first-
order CV model. The IMM filters are able to better handle this situation. Due
to larger observation noise in the real-world sequences, the distinction be-
tween the maneuver situation and finding the best dynamical model com-
bination is more difficult. As shown, the amount of different proposed dy-
namical model structures in combination with the general problem of finding
suited physics-based model, show the benefit of capturing switching dynam-
ics with RNN-based solutions. In figure 4.21 and figure 4.22, the predicted
density distributions with an RNN-IMM are visualized for a crossing and re-
spectively a stopping maneuver for 8 future steps. The lengths of the colored
bars above the pedestrians depict the model probabilities. For the visualiza-
tion, the predicted distribution is mapped back to image space using the cali-
bration information. The future distributions are obtained by sampling from
the predicted distribution. In the crossing situation, the model classifies the
straight walking behavior correctly and predicts crossing with a high proba-
bility. In figure 4.22, the switching behavior is highlighted. In the images on
the left, the declaration begins but straight walking is still dominant. In the
images in the middle, the selected model has changed and stopping behavior
is classified. The predicted positions are closer to the current positions. On
the right, the pedestrian stands at the curbside and the RNN-IMM recognizes
the situation correctly. Thus, the predicted density is very close to the current
position. Although the observation noise level is larger than for the synthetic
scenarios, the RNN-IMM tends to be overconfident towards one mode. This
effect is further analyzed in the next section for simulated trajectories under
better-controlled conditions.
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4.2 RNN-based Solutions

4.2.2.6 Scenario: Intention Classification

Table 4.10: Intention classification results for a comparison between an IMM filter and the pro-
posed RNN-IMM for generated pedestrian trajectories with a Markovian switch be-
tween a CV and CA model for increasing noise levels. The firs column shows the
sensitivity and the second column the average predicted mode probability of correct
classified dynamical modes.

sensitivity / average true mode probability
Approach 𝜎𝑤 = 0.001 𝜎𝑤 = 0.005 𝜎𝑤 = 0.01 𝜎𝑤 = 0.05 𝜎𝑤 = 0.1

RNN-IMM-Mode 0.946 0.963 0.818 0.839 0.7606 0.787 0.629 0.669 0.587 0.633
IMM filter (CV, CA) 0.893 0.835 0.767 0.745 0.703 0.613 0.619 0.589 0.583 0.554

For the experiments so far, pedestrian intention prediction is considered jointly
with path prediction. In this section, it is considered as a pure classification
task. In order to better control the conditions for training and the test sce-
nario, again synthetic data is used. For the real-world sequences as well as
for the simulated scenarios in this section, the pedestrian trajectories are con-
sidered purely deterministic trajectories which consist of fixed-length non-
maneuvering and maneuvering motion. Although this is common and rea-
sonable, the underlying assumption of hybrid state systems such as the IMM
filter is that the true dynamical mode is modeled as a Markov-chain with dis-
crete dynamical modes. In this section, a pedestrian tracking scenario with
switching dynamics is simulated as a probabilistic trajectory with random
Markovian transitions. The scenario of pedestrian motion orientated on the
Daimler dataset statistic is kept. Both for reference IMM and as well for gener-
ating sample trajectories, the combination of a CV model and a CA restricted
to lateral motion is used. In the experiments, the observation noise is in-
creased step-wise, and the classification accuracy of the RNN-IMM is com-
pared to its IMM filter counterpart. For the simulation, the dynamics of a
pedestrian agent can switch between the two models with a switching prob-
ability of 𝑃(𝑚𝑘

𝑖 |𝑚𝑘−1
𝑗 ) = 0.1 (𝑗 ≠ 𝑖) or stay in its dynamical mode with

𝑃(𝑚𝑘
𝑖 |𝑚𝑘−1

𝑖 ) = 0.9. The acceleration during a CA phase is sampled from
a Gaussian distribution (𝒩(1 𝑚/𝑠2,(0.1 𝑚/𝑠2)2)). Drawn decelerations are re-
jected. The starting velocity is again sampled from a distribution of common
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walking speeds in accordance with Teknomo [Tek02]. The velocity of a sim-
ulated agent can exceed the maximum of the physically possible velocity of
pedestrians to prevent an undesired switch to CV model due to a constant
maximum value. Thereby, the conditions for the IMM with the two corre-
sponding dynamic models are idealized. The process noise is modeled with
the two noise models explained in section 4.2.2.3. For comparison, the true
positive dynamics classification rate, also referred to as sensitivity, is used.
The predicted model probability for the current time step is compared with
the known ground truth mode. The first 8 steps are excluded for filter ini-
tialization. In table 4.10, the results for an increasing observation noise are
summarized. The frame rate is set to 16 fps and the process noise parame-
ters to 𝜎𝐶𝑉 = 0.01 𝑚/𝑠2 and 𝜎𝐶𝐴 = 0.01 𝑚/𝑠3. For training and evaluation,
1000 trajectories of 4 seconds with random Markovian transitions between
a CV model and CA model are generated. The evaluation is done on 20% of
the generated samples. Alongside the sensitivity, the average mode proba-
bility for a correctly classified dynamics is shown. Although the conditions
are suited for an IMM filter, the proposed RNN-IMM can better classify the
true dynamical mode from the noisy observations. For increasing observa-
tion noise levels, the sensitivity decreases to less than 60% correctly classified
dynamical modes for both models. The results show that the RNN-IMM can
faster switch to other dynamics. However, a distinction between the selected
dynamical models gets more difficult for larger noise levels. The IMMfilter as-
signs each model a similar probability, and thus both models are equally used
to estimate the dynamical state. The predicted mode probability of the IMM
filter fits better to a sensitivity close to 0.5. Hence, the RNN-IMM tends to be
overconfident with the assigned dynamical model probabilities. The model
probabilities over time for both models are visualized in figure 4.23.

The true dynamics for a particular time step is indicated with the background
color. The CA model is visualized with dark blue ( ) and the CV model with
dark yellow ( ). The IMM filter probabilities 𝑃(⋅)𝐼𝑀𝑀 are shown as a dotted
line and the RNN-IMM probabilities 𝑃(⋅)𝑅𝑁𝑁 as a solid line. The example
results demonstrate the effect of stronger combining the selected dynamical
models to describe the dynamical behavior of the object with an IMM filter.
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4.2 RNN-based Solutions

The RNN-based solution, on the other hand, makes a harder decision towards
one model.

4.2.2.7 Summary

The presented results demonstrate the ability of the proposed RNN-based
IMM surrogate to deal with switching motion behavior of a tracked object.
For the exemplary task of intention prediction in the context of intelligent vehi-
cles, the RNN-IMM and the IMM filter counterpart are realized as a top-down
component as part of a visual tracking system. By using a stereo camera sys-
tem, applying semi-global matching [Hir08] and correcting the ego-motion,
the detections are mapped to a physical reference system. Thus, the IMM
filter can rely on prior knowledge of the dynamics of pedestrian motion pro-
vided by several proposed physics-based dynamical models or rather model
sets. Under these conditions, the RNN-IMM is able to recognize the change in
motion type faster and achieves a better performance for jointly estimating fu-
ture path or for a pure classification task. The model capabilities were shown
on synthetic data and real-world data, both reflecting typical pedestrian ma-
neuvers. For comparison, both approaches describe the motion of pedestrian
point kinematics. It is clear as a basic principle, pattern-basedmethods are bet-
ter suited to integrate more contextual cues. Hence, without the restriction of
sufficient training data and the fast-growing body on datasets for intelligent
vehicles, the RNN-IMM offers much more potential for extension (see section
2.3). Compared to the traditional IMM filter, the amount of engineering is
reduced since the transition probabilities are not explicitly modeled. Another
reason for the reduced engineering effort is that for the RNN-IMM, a maneu-
ver is simply modeled as a deviation from standard straight walking behavior
without modeling dynamical model combinations.
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Figure 4.23: Visualization of the mode probabilities of an IMM filter and an RNN-IMM model
for simulated trajectories with Markovian transition behavior.
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4.2.3 Tracklet Alignment with
a Minimum Variance Prototype

So far, we discussed the effect of hard-coded normalization to reduce the vari-
ation in translation and rotation of pooled tracklet data in order to enable a
better generalization across datasets. Since the object motion cues are inde-
pendent of these transformations, the amount of required modeling of object
motion states can be reduced. Nevertheless, by applying these normalizations
on tracklet data, the reference point and the reference rotation are arbitrar-
ily chosen. Hence, the variation is eliminated from the references and just
shifted along the tracklet. This makes clustering of such tracklets very chal-
lenging. In addition, rotation normalization is sensitive to out-of-distribution
input tracklets. When using just two observations for estimating the rotation
angle, the error in rotation depends on the distance between the two obser-
vations. Thus, using the first two observations can lead to high rotation error.
Using observations which lie further apart relies on the assumption that the
dynamics do not change between both observations.

In this section, a neural network solution that learns to align the input track-
lets is proposed. The alignment network learns the required transformation of
the input tracklets to achieve an optimal matching with an adjustable proto-
type. Instead of an arbitrarily chosen reference point and a reference rotation,
a reference tracklet - the prototype - that reflects the minimum variance in the
input data is learned. The alignment network enables to assess the training
data by analyzing the prototype. Furthermore, the distance to the learned
prototype can be used for clustering or identifying out-of-distribution track-
lets.

The analysis of the alignment network is done on synthetically generated tra-
jectories reflecting different dynamical behaviors. In addition, the path pre-
diction data from the BIWI sequences [Pel09] and the UCY sequences [Ler07]
is used.
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4.2.3.1 Alignment Network

The alignment network can be combined with a prediction network by fram-
ing the prediction network with two transformation networks (forward and
backward network). Besides the transformation networks, the central block
to align the tracklets is the prototype network. In the following, it is re-
ferred to as bottleneck network. The bottleneck network consists only of a
freely adjustable prototype tracklet 𝒵⋆𝑝𝑟𝑜𝑡𝑜 without additional learnable pa-
rameters. This prototype tracklet is a sequence of randomly chosen points
{(𝑥𝑘,𝑦𝑘) ∈ ℝ2|𝑘 = 1, … ,𝑘𝑝𝑟𝑜𝑡𝑜} of 𝑘𝑝𝑟𝑜𝑡𝑜 time steps. The bottleneck network
can be defined as follows:

̂𝒵⋆𝑝𝑟𝑜𝑡𝑜 = Bott(Θ𝐵𝑜𝑡𝑡). (4.35)

Here, Θ𝐵𝑜𝑡𝑡 are the adjustable prototype points. The idea is to find the best
possible alignment with the prototype tracklet by simultaneously adjusting
the prototype and learning the transformation parameters for the input track-
lets. The resulting prototype represents a tracklet with minimum variance. In
other words, it reflects the dominant input tracklet structure. In order to align
the input tracklets with the prototype, the tracklets are transformed by trans-
formation networks. The forward network (FW ∶ 𝐳 → ̂𝐳⋆) transforms the
input trajectory to another trajectory space conditioned on the input track-
let. Thereby, the affine transformations of translation, rotation, and scaling
are successively applied. Since the object motion cues are independent of
these transformations, the estimate of the object motion state can be applied in
transformed trajectory space. The forward network can be defined as follows:

̂𝐭𝒵,𝐹𝑊 , ̂𝑟𝒵,𝐹𝑊 , ̂𝑠𝒵,𝐹𝑊 = MLP(𝐳1∶𝑘𝑜𝑏𝑠 ; Θ𝐹𝑊),
̂𝐳⋆,1∶𝑘𝑜𝑏𝑠 = FW(𝐳1∶𝑘𝑜𝑏𝑠 , ̂𝐭𝒵, ̂𝑟𝒵, ̂𝑠𝒵). (4.36)

The terms 𝐭𝒵, 𝑟𝒵, 𝑠𝒵 are the learned translation, rotation, and scale for a given
input tracklet 𝐳1∶𝑘𝑜𝑏𝑠 of a fixed observation window of 𝑘𝑜𝑏𝑠 time steps. The
parameters of the forward network and the prototype tracklet are learned by
minimizing the mean squared error between the transformed input tracklets
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and the prototype. The loss for a set of 𝑁 input tracklets can be defined as

ℒ𝐵𝑜𝑡𝑡(Θ𝐵𝑜𝑡𝑡,Θ𝐹𝑊) =
1
𝑁

𝑁
∑
𝑖=1
( ̂𝐳⋆,1∶𝑘𝑜𝑏𝑠𝑖 − ̂𝒵⋆𝑝𝑟𝑜𝑡𝑜)2. (4.37)

Alternatively, the Huber loss function [Hub64] or M-estimators [Ham11] can
be used. The aligned tracklets can then serve as input for the filtering or
prediction model. An RNN-based prediction model for the next 𝑘𝑝𝑟𝑒𝑑 steps
can be defined as

𝐡𝑘𝑜𝑏𝑠𝑒𝑛𝑐 = RNN(𝐡𝑘𝑜𝑏𝑠−1𝑒𝑛𝑐 , ̂𝐳⋆,𝑘𝑜𝑏𝑠 ; Θ𝑒𝑛𝑐),
̂𝐳⋆,𝑘𝑜𝑏𝑠+1∶𝑘𝑜𝑏𝑠+𝑘𝑝𝑟𝑒𝑑 = MLP(𝐡𝑘𝑜𝑏𝑠𝑒𝑛𝑐 ; Θ𝑝𝑟𝑒𝑑). (4.38)

The estimated next steps in the transformed tracklet space are mapped back
to the original input space by the backward network (BW ∶ ̂𝐳⋆ → ̂𝐳). The
backward network performs the affine transformations in reverse order.

̂𝐭𝒵,𝐵𝑊 , ̂𝑟𝒵,𝐵𝑊 , ̂𝑠𝒵,𝐵𝑊 = MLP(𝐳1∶𝑘𝑜𝑏𝑠 ; Θ𝐵𝑊),
̂𝐳𝑘𝑜𝑏𝑠+1∶𝑘𝑜𝑏𝑠+𝑘𝑝𝑟𝑒𝑑 = BW( ̂𝐳⋆,𝑘𝑜𝑏𝑠+1∶𝑘𝑜𝑏𝑠+𝑘𝑝𝑟𝑒𝑑 , ̂𝐭𝒵,𝐵𝑊 , ̂𝑟𝒵,𝐵𝑊 , ̂𝑠𝒵,𝐵𝑊)

(4.39)

Accordingly, the actual prediction is done in the transformed space, where
all input tracklets are ideally in alignment with the prototype in a scene-
independent reference system. Thus, extensive deviations from the proto-
type tracklets can be used to identify out-of-distribution input tracklets, which
can lead to poor prediction results. Further, the prototype reflects the min-
imum variation of the dynamical behavior and enables to draw conclusions
to the dominating dynamics in the training samples. The observed sequence
can also be used as input for the backward network to incorporate spatial-
dependent contextual cues into the overall network. Instead of only apply-
ing the inverse transformations from the forward network, the prediction can
by further adapted. With this proposed cascade of successive transformation
and estimation steps, a distinction between the spatial-context and temporal-
context is realized. Similarly to sections discussed above, the prediction or
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filtering network can be trained by minimizing the loss in form of the nega-
tive log-likelihood of the ground truth positions under the predicted positions
or using the mean squared error between ground truth positions and the pre-
dicted positions. A combined network of an alignment network together with
a prediction network is visualized in figure 4.24.

Forward
network𝒵𝑜𝑏𝑠

𝒵𝑜𝑏𝑠

𝒵⋆𝑜𝑏𝑠

Backward
network

̂𝒵𝑝𝑟𝑒𝑑

Bottleneck
network ̂𝒵⋆𝑝𝑟𝑜𝑡𝑜

Prediction model

Figure 4.24: Visualization of the alignment network with an integrated RNN-based prediction
network. The forward-network transforms the input tracklet 𝒵𝑜𝑏𝑠 = 𝐳1∶𝑘𝑜𝑏𝑠 to
align with the prototype tracklet. Prediction is performed in the transformed track-
let space. Then the tracklets are transformed in reverse order to the original tracklet
space 𝒵𝑝𝑟𝑒𝑑 = 𝐳𝑘𝑜𝑏𝑠+1∶𝑘𝑜𝑏𝑠+𝑘𝑝𝑟𝑒𝑑 by the backward-network.

4.2.3.2 Evaluation

The abilities of the alignment network are analyzed on synthetic data with
one specific dynamical behavior. For real-world data, the path prediction se-
quences from the BIWI sequences [Pel09] and the UCY sequences [Ler07] are
chosen.

The alignment models have been implemented using Tensorflow [Aba15] and
are trained for 20000 epochs using ADAM optimizer [Kin15] with an initial
leaning rate of 0.0003. For the experiments, the forward network is realized
with two hidden layers of size 50.
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4.2.3.3 Scenario: Synthetic Data

𝑥⋆

𝑦⋆

CV

𝑥⋆
𝑦⋆

CA

𝑥⋆

𝑦⋆

CT | [5∘, 30∘]

𝑥⋆

𝑦⋆

CT | [−15∘, 15∘]

Figure 4.25: Visualization of aligned tracklets for the four different training sets. The prototype
tracklet is highlighted in red . The resulting prototype reflects the minimum vari-
ation in the dynamical behavior. Tracklets are visualized in an unit-less embedded
space.

The synthetically generated trajectories reflect a CV, a CA, and a CT dynam-
ical behavior. Four training sets of 100 noise-free tracklets of 8 steps with a
frame rate of 1 fps are generated. All starting positions and heading directions
are uniformly sampled from an origin interval of [−10 𝑚, 10 𝑚] and from a
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rotation interval of [−90.0∘, 90.0∘]. For the first set, the agent speed is uni-
formly sampled from [5 𝑚/𝑠, 25 𝑚/𝑠] and is kept fixed. For the second set, an
additional acceleration is sampled from the interval of [5 𝑚/𝑠2, 25 𝑚/𝑠2]. Thus,
the second set includes only agents according to a CA model. The third and
the fourth training set include in addition to the walking speed a turning com-
ponent uniformly sampled from [5∘, 30∘] and [−15∘, 15∘]. Thus, the agents of
the last sets perform a curvilinear motion where the one set is biased towards
one turning direction. The resulting prototype and the aligned tracklets of
the four training sets are visualized in figure 4.25.

The images depict how the learned prototype reflects the underlying dynam-
ics. For the top left image, the prototype is shaped like a straight line with
equidistant points according to a CV model. The top right image shows a
prototype that reflects the additional acceleration. The images on the bot-
tom correspond to curvilinear motion. For the left image, the bias towards
one rotation direction can be seen. For the right image, the prototype is ad-
justed to reflect the minimum variance of the input tracklets. For all train-
ing sets, the variation in translation and rotation is removed. Theoretically,
the alignment results are independent of data pre-processing such as position
normalization. Nevertheless, data pre-processing also helps to make training
more stable. The important difference is that the reference for all tracklets is
not arbitrarily chosen but learned. This enables to assess the input tracklet
due to their distance to a common reference - the prototype of the bottleneck
network.

4.2.3.4 Scenario: Real-World Data

As part of the TrajNet dataset collection, the BIWI [Pel09] dataset and the
UCY [Ler07] dataset are described in section 4.2.1. Although the datasets in-
clude pedestrians with varying motion types, most pedestrians walk straight
corresponding to a CV model (see section 4.2.1.1).

Here, the datasets are used to analyze if the alignment network is able to learn
a reasonable prototype from real-world data and to assess the input tracklets.
In figure 4.26, the alignment results for input tracklets of length 8 of the BIWI
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ETH and the UCY ZARA1 dataset are visualized. The resulting prototype
reflects a nearly constant walking behavior. For both datasets, the variation
due to affine transformations is compensated by the alignment network.

BIWI ETH

𝑥⋆

𝑦⋆

UCY ZARA1

𝑥⋆

𝑦⋆

Figure 4.26: Alignment results for the BIWI-ETH and UCY-ZARA1 sequences. The prototype
tracklet is highlighted in red . Tracklets are visualized in an unit-less embedded
space.

Visualization of the aligned tracklets for different steps during training for the
BIWI-ETH dataset are depicted in figure 4.27. The images show how the pa-
rameters of the forward network and bottleneck network are jointly adapted
to remove the translation and rotation variation. The effect how the prototype
is adjusted over time is also clearly visible.

The distance of the input tracklets to the learned prototype for the BIWI ETH
and UCY ZARA1 sequences are visualized in figure 4.28. For visualization,
the input tracklets are color-coded in accordance with a sequential colormap
using the L2 distance to the prototype. The strongest outliers for both datsets
correspond to standing or loitering persons. This can be better exposed by
using the translation and rotation normalized input tracklets, as shown in
figure 4.29. Since the result for the normalized input data is similar to using
un-processed tracklets, this also demonstrates the robustness of the alignment
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network to remove affine transformation variation from the input tracklets.
In figure 4.29, the larger distance to the prototype of person tracklets close
to the origin is visible. The largest distances correspond to persons walking
slowlywith some sort of loitering behavior. This complies with the statements
given in section 4.2.1.1.

𝑥⋆

𝑦⋆

𝑥⋆

𝑦⋆

𝑥⋆

𝑦⋆

𝑥⋆

𝑦⋆

Figure 4.27: Visualization of aligned tracklets from the the BIWI ETH dataset for different time
steps during training. The prototype tracklet is highlighted in red . The images
depict the joint learning of the transformations of the tracklets and adjusting the
prototype. Tracklets are visualized in an unit-less embedded space.
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Figure 4.28: Color-coded input tracklets from the BIWI ETH and UCY ZARA1 datasets. The
color-coding is done based on the L2 distance (0 → max) between a track-
let and the learned prototype.

4.2.3.5 Summary

The presented results show that the proposed alignment network offers new
possibilities to assess input tracklet data. Due to the fact that trajectory clus-
tering approaches mainly rely on time-varying positions, it is clear that the
required information is mostly removed by applying normalization. The pro-
totype provides a reference without shifting the variation along the tracklets.
Thereby, the conditions to apply clustering approaches or out-of-distribution
detection are improved. Moreover, the prototype is adjusted to match with
the minimum variance in the input tracklets. Thus, it reflects the prototypical
dynamical behavior. The proposed alignment network offers a promising di-
rection for future research to better separate the temporal-dependent motion
cues from the spatial-dependent environmental cues.
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Figure 4.29: Visualization based on the L2 distance (0 → max) between normalized track-
lets (translation and rotation) from the BIWI ETH dataset and the corresponding
learned prototype.
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5 Summary and Concluding Remarks

This thesis addressed the problem of state estimation of maneuvering objects
as part of a visual detection-by-tracking system with a focus on applications
in the surveillance and intelligent vehicle domains. Object observations pro-
vided by an appearance model, describing the object in image space, serve as
input for recursive Bayesian filters or respectively for proposed RNN-based
alternatives.

After discussing the interconnected Bayesian and deep learning func-
tional viewpoints on state estimation, the IMM filter, as the most common
representative based on a Bayesian formulation for dealing with model mis-
matches or maneuvering objects, was selected as our reference approach. For
a model mismatch scenario of directly tracking in image space, this thesis
contributes to an improved design of a basic IMM filter as a top-down filtering
approach by introducing a state de-coupling and a re-coupling scheme.

The benefit of the suggested de-coupling scheme of an IMM filter was demon-
strated for prototypical visual object tracking sequences, where the estimation
of the mapping function to a 3D physical reference system is so far an widely
unsolved problem. For better dealing with the corresponding observation un-
certainties in these conditions, a state re-coupling scheme was introduced.
Thereby, an implicit depth prior, which is connected through the object scales,
enables a scale-dependent adaptation of the observation noise levels.

In order to reduce the amount of required engineering and to learn an im-
proved process model set structure, the IMM functionality was transferred
into a comparable deep learning architecture. Since the IMM filter is in par-
ticular designed to deal with the maneuver types of switching noise levels and
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switching dynamics, the proposed RNN-based networks were correspond-
ingly analyzed with regards to both maneuver types. This was done for the
exemplary tasks of path prediction and intention prediction. Due to the fact that
there exists a public standard benchmark, path predictionwas mainly used for
comparison to related approaches for motion prediction methods. The data-
set analysis revealed that the trajectory data reflects the desired properties
of observations provided by an underlying visual tracking component with
varying noise levels. Despite the simple core architecture of an RNN-encoder
with a dense layer for mapping back in the observation space, the proposed
RNN network yielded the top-rank onWorld H-H TrajNet challenge, and thus
achieved a performance comparable to related current state-of-the-art meth-
ods. The presented modification, such as overshooting, helped to enhance the
prediction performance in the presence of varying noise levels.

The ability of proposed solutions with respect to the switching dynamics of
objects was evaluated for intention prediction in the application domain of
intelligent vehicles. In extensive experiments on synthetic and real-world
datasets, the proposed RNN-based IMM filter surrogate (RNN-IMM) obtained
a performance boost over existing proposed IMM filter configuration tailored
to specific maneuver scenarios. Similar to an IMM filter solution, the pre-
sented RNN-IMM assigns a probability value to a dynamics and, based on
them, puts out a multi-modal distribution over future object states. The RNN-
IMM achieved a better performance for jointly estimating intentions and fu-
ture paths. Also for a pure intention classification task, the (RNN-IMM) yields
a performance boost compared to IMM filters. The amount of filter tuning is
reduced due to a direct estimate of the dynamics probability, and thus there
is no explicit modeling of the transition probabilities. Although in the ana-
lyzed maneuver scenarios several tailored IMM solutions exist, the RNN-IMM
captures the switch in dynamics more reliable.

Instead of utilizing the state estimator as a top-downmodule in a visual track-
ing system, one direction for future research is the end-to-end reasoning on
object motion directly from image sequences. Here, relying on an interme-
diate object state representation was a design choice to allow, among other
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things, a fairer comparison between Bayesian filters and RNN-based alterna-
tives. However, more and more end-to-end formulations of different track-
ing tasks are introduced. Besides currently achieving lower performance on
benchmarks [Lea17], end-to-end solutions are a future direction to overcome
requirements on system identification in the form of dynamics or observation
models, and on any feature engineering for the appearance model.

As discussed in section 2.3, developing sophisticated methods for motion pre-
diction which go beyond Kalman filtering is a clear trend. Due to the rapidly
expanding field and thus the amount of new diverse methods, there is a need
for improved standardized prediction benchmarking. Especially for bench-
marking prediction with contextual cues, a well-defined categorization of the
underlying data into specific conditions is crucial. The presented results re-
vealed that it is required to first ensure a meaningful learned representation
for single object dynamics rather than just to increase the model complexity
by simply adding cues. Nevertheless, more contextual cues are undeniably
necessary in order to improve object behavior anticipation. More methods, in
particular deep learning-based methods, start to include the global structure
of the environment and allow better estimates of context-dependent patterns
in real-world data. Thus, intelligent autonomous systems require an in-depth
semantic scene understanding to predict object motion or to plan and navigate
alongside them [Rud20]. Contextual understanding with respect to features
of the static environment and dynamic environment offers many options for
future research to explore. In order to better separate spatial-independentmo-
tion cues from the spatial-dependent environmental cues, the proposed align-
ment network offers a promising direction for future research.
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This work addresses the problem of how to capture the dynamics of ma-
neuvering objects for visual tracking. Towards this end, the perspective of 
recursive Bayesian fi lters and the perspective of deep learning approaches 
for state estimation are considered and their functional viewpoints are 
brought together.  
Starting from an interacting multiple-model (IMM) fi lter, as the most 
common representative Bayesian formulation for dealing with maneuver-
ing objects, this work proposes recurrent neural network (RNN)-based 
approaches as alternatives to IMM fi ltering. These approaches maintain 
the functionality of an IMM fi lter while reducing the amount of required 
fi lter tuning. With a focus on applications in the fi elds of surveillance and 
intelligent vehicles, the effectiveness of RNN-based solutions is demon-
strated for the exemplary tasks of path prediction and intention prediction, 
refl ecting prototypical maneuver types.
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