29 research outputs found

    Analysis and design of controllers for cooperative and automated driving

    Get PDF

    Distributed formation tracking control of multiple car-like robots

    Get PDF
    In this thesis, distributed formation tracking control of multiple car-like robots is studied. Each vehicle can communicate and send or receive states information to or from a portion of other vehicles. The communication topology is characterized by a graph. Each vehicle is considered as a vertex in the graph and each communication link is considered as an edge in the graph. The unicycles are modeled firstly by both kinematic systems. Distributed controllers for vehicle kinematics are designed with the aid of graph theory. Two control algorithms are designed based on the chained-form system and its transformation respectively. Both algorithms achieve exponential convergence to the desired reference states. Then vehicle dynamics is considered and dynamic controllers are designed with the aid of two types of kinematic-based controllers proposed in the first section. Finally, a special case of switching graph is addressed considering the probability of vehicle disability and links breakage

    Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments.

    Full text link
    The ability to navigate in everyday environments is a fundamental and necessary skill for any autonomous mobile agent that is intended to work with human users. The presence of pedestrians and other dynamic objects, however, makes the environment inherently dynamic and uncertain. To navigate in such environments, an agent must reason about the near future and make an optimal decision at each time step so that it can move safely toward the goal. Furthermore, for any application intended to carry passengers, it also must be able to move smoothly and comfortably, and the robot behavior needs to be customizable to match the preference of the individual users. Despite decades of progress in the field of motion planning and control, this remains a difficult challenge with existing methods. In this dissertation, we show that safe, comfortable, and customizable mobile robot navigation in dynamic and uncertain environments can be achieved via stochastic model predictive control. We view the problem of navigation in dynamic and uncertain environments as a continuous decision making process, where an agent with short-term predictive capability reasons about its situation and makes an informed decision at each time step. The problem of robot navigation in dynamic and uncertain environments is formulated as an on-line, finite-horizon policy and trajectory optimization problem under uncertainty. With our formulation, planning and control becomes fully integrated, which allows direct optimization of the performance measure. Furthermore, with our approach the problem becomes easy to solve, which allows our algorithm to run in real time on a single core of a typical laptop with off-the-shelf optimization packages. The work presented in this thesis extends the state-of-the-art in analytic control of mobile robots, sampling-based optimal path planning, and stochastic model predictive control. We believe that our work is a significant step toward safe and reliable autonomous navigation that is acceptable to human users.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120760/1/jongjinp_1.pd

    Modelling and robust controller design for an underactuated self-balancing robot with uncertain parameter estimation

    Get PDF
    A comprehensive literature review of self-balancing robot (SBR) provides an insight to the strengths and limitations of the available control techniques for different applications. Most of the researchers have not included the payload and its variations in their investigations. To address this problem comprehensively, it was realized that a rigorous mathematical model of the SBR will help to design an effective control for the targeted system. A robust control for a two-wheeled SBR with unknown payload parameters is considered in these investigations. Although, its mechanical design has the advantage of additional maneuverability, however, the robot's stability is affected by changes in the rider's mass and height, which affect the robot's center of gravity (COG). Conventionally, variations in these parameters impact the performance of the controller that are designed with the assumption to operate under nominal values of the rider's mass and height. The proposed solution includes an extended Kalman filter (EKF) based sliding mode controller (SMC) with an extensive mathematical model describing the dynamics of the robot itself and the payload. The rider's mass and height are estimated using EKF and this information is used to improve the control of SBR. Significance of the proposed method is demonstrated by comparing simulation results with the conventional SMC under different scenarios as well as with other techniques in literature. The proposed method shows zero steady state error and no overshoot. Performance of the conventional SMC is improved with controller parameter estimation. Moreover, the stability issue in the reaching phase of the controller is also solved with the availability of parameter estimates. The proposed method is suitable for a wide range of indoor applications with no disturbance. This investigation provides a comprehensive comparison of available techniques to contextualize the proposed method within the scope of self-balancing robots for indoor applications

    Dynamic path planning of multiple mobile robots

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Fixed-wing drones for communication networks

    Get PDF
    In the last decade, drones became frequently used to provide eye-in-the-sky overview in the outdoor environment. Their main advantage compared to the other types of robots is that they can fly above obstacles and rough terrains and they can quickly cover large areas. These properties also open a new application; drones could provide a multi-hop, line of sight communication for groups of ground users. The aim of this thesis is to develop a drone team that will establish wireless ad-hoc network between users on the ground and distributively adapt links and spatial arrangement to the requirements and motion of the ground users. For this application, we use fixed wing drones. Such platforms can be easily and quickly deployed. Fixed wing drones have higher forward speed and higher battery life than hovering platforms. On the other hand, fixed wing drones have unicycle dynamics with constrained forward speed which makes them unable to hover or perform sharp turns. The first challenge consists in bridging unicycle dynamics of the fixed wing drones. Some control strategies have been proposed and validated in simulations using the average distance between the target and the drone as a performance metric. However, besides the distance metric, energy expenditure of the flight also plays an important role in assessing the overall performance of the flight. We propose a new methodology that introduces a new metric (energy expenditure), we compare existing methods on a large set of target motion patterns and present a comparison between the simulation and field experiments on proposed target motion patterns. The second challenge consists in developing a formation control algorithm that will allow fixed wing robots to provide a wide area coverage and to relay data in a wireless ad-hoc network. In such applications fixed wing drones have to be able to regulate an inter-drone distance. Their reduced maneuverability presents the main challenge to design a formation algorithm that will regulate an inter-drone distance. To address this challenge, we present a distributed control strategy that relies only on local information. Each drone has its own virtual agent, it follows the virtual agent by performing previously evaluated and selected target tracking strategy, and flocking interaction rules are implemented between virtual agents. It is shown in simulation and in field experiments with a team of fixed wing drones that using this distributed formation algorithm, drones can cover an area by creating an equilateral triangular lattice and regulate communication link quality between neighboring drones. The third challenge consists in allowing connectivity between independently moving ground users using fixed wing drone team. We design two distributed control algorithms that change drones' spatial arrangement and interaction topology to maintain the connectivity. We propose a potential field based strategy which adapts distance between drones to shrink and expand the fixed wing drones' formation. In second approach, market-based adaptation, drones distributively delete interaction links to expand the formation graph to a tree graph. In simulations and field experiments we show that our proposed strategies successfully maintain independently moving ground users connected. Overall, this thesis presents synthesis of distributed algorithms for fixed wing drones to establish and maintain wireless ad-hoc communication networks

    Mobile Robots Control and Path Planning Strategies

    Get PDF
    Mobile robots gained lots of attention in the last decades. Because of its flexibility and increased capabilities of automation, mobile robots are used in many applications: from domotic, to search and rescue missions, to agriculture, environment protection and many more. The main capability of mobile robots to accomplish a mission is the mobility in the work environment. To move in a certain environment the robots should achieve: guidance, navigation and control. This thesis focuses on guidance and control of mobile robots, with application to certain classes of robots: Vertical Take Off and Landing Unmanned Aerial Vehicles (VTOL UAV) and Differential Wheel robots (DWR). The contribution of this thesis is on modeling and control of the two classes of robots, and on novel strategies of combined control and motion planning for kinodynamic systems. A new approach to model a class of multi-propeller VTOL is proposed, with the aim of generating a general model for a system as a composition of elementary modules such as actuators and payloads. Two control law for VTOL vehicles and DWR are proposed. The goal of the first is to generate a simple yet powerful control to globally asymptotically stabilize a VTOL for acrobatic maneuvers. The second is a simple saturated input control law for trajectory tracking of a DWR model in 2D. About planning, a novel approach to generate non-feasible trajectories for robots that still guarantees a correct path for kinodynamic planning is proposed. The goal is to reduce the runtime of planners to be used in real-time and realistic scenario. Moreover an innovative framework for mobile robots motion planning with the use of Discrete Event Systems theory is introduced. The two proposed approaches allow to build a global, robust, real-time, quasi-optimal, kinodynamic planner suitable for replanning

    Lab experiences for teaching undergraduate dynamics

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2003.Includes bibliographical references (p. 443-466).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.This thesis describes several projects developed to teach undergraduate dynamics and controls. The materials were developed primarily for the class 2.003 Modeling Dynamics and Control I. These include (1) a set of ActivLab modular experiments that illustrate the dynamics of linear time-invariant (LTI) systems and (2) a two wheeled mobile inverted pendulum. The ActivLab equipment has been designed as shareware, and plans for it are available on the web. The inverted pendulum robot developed here is largely inspired by the iBOT and Segway transportation devices invented by Dean Kamen.by Katherine A. Lilienkamp.S.M
    corecore