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ABSTRACT 

 

 

Chunyu Chen, Distributed Formation Tracking Control of Multiple Car-like Robots. Master of 

Science (MS), May, 2014, 136 pp., 49 figures, references, 55 titles.  

In this thesis, distributed formation tracking control of multiple car-like robots is studied. 

Each vehicle can communicate and send or receive states information to or from a portion of 

other vehicles. The communication topology is characterized by a graph. Each vehicle is 

considered as a vertex in the graph and each communication link is considered as an edge in the 

graph. The unicycles are modeled firstly by both kinematic systems. Distributed controllers for 

vehicle kinematics are designed with the aid of graph theory. Two control algorithms are 

designed based on the chained-form system and its transformation respectively. Both algorithms 

achieve exponential convergence to the desired reference states. Then vehicle dynamics is 

considered and dynamic controllers are designed with the aid of two types of kinematic-based 

controllers proposed in the first section. Finally, a special case of switching graph is addressed 

considering the probability of vehicle disability and links breakage.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Multi-agent systems are composed of multiple interacting intelligent agents and can solve 

complex problems which cannot be achieved by monolithic system. Multi-agent systems have 

been widely applied into industrial utilization, different applications of multi-agent systems are 

addressed in [1]-[14] including formation control [1]-[4], rendezvous [5]-[7] and flocking [8]-[10], 

distributed sensor networks [11][12] and cooperative control of unmanned air vehicles [13][14].  

Consensus problem for multi-agent systems has been intensively studied in recent years 

with the aid of new techniques from distributed computing [15]-[18] and graph theory [19]-[21]. 

Consensus for net-worked agents means they reach an agreement in respect with a certain quantity 

of interests. In real-life operations, agents in net-worked systems are always expected to be 

operated synchronically and preserve common quantity of states thus fulfill the tasks cooperatively.  

General forms for networks of dynamic agents are studied in [22]-[32]. Since different 

dynamic systems can be modeled by combination of first-order or multi-order systems, it is 

necessary to study control algorithms for those simplified subsystems. 

Distributed control of multiple Single-integrator systems is considered in [22]-[28], multi-

agent systems with higher order are studied in [29]-[32]. In [26], delayed-state-derivative feedback 

control method is proposed for sample-data consensus of first-order multi-agentsystems. In [27], 

sampled-data based consensus problem of first-order multi-agent systems with quantized 
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communication is studied and control methods are proposed. In [28], novel distributed adaptive 

consensus controllers are designed for multiple first-order nonlinear systems with unknown 

parameters and external disturbances. In [29], cooperative tracking control of higher-order 

nonlinear systems with a dynamic leader is studied for a weighted communication graph with fixed 

topologies. In [30], distributed control methods for asymptotic consensus of first-order and second-

order linear networks are addressed with communication time-delays. In [31], double integrator 

dynamics with switching topologies are addressed for consensus with a reference nonlinear model. 

In [32], a second-order consensus protocol is introduced and then applied to achieve altitude 

alignment among a team of micro air vehicles. In [33], distributed coordination problem for 

multiple Lagrangian systems is studied with parametric uncertainties. In [34], synchronizing 

networks of nonidentical, nonlinear dynamical Lagrangian systems is addressed for connected 

graph with constant unknown time delays, adaptive controllers are designed to achieve global full-

sate synchronizations. In [35], distributed finite-time containment control for multiple Lagrangian 

systems is addressed and a model-independent control law is proposed using both the one-hop and 

two-hop neighbors’ information. In [36], leaderless consensus algorithms for Euler-Lagrangian 

systems are analyzed, special scenarios of actuator saturation and unavailability of measurements 

of generalized coordinate derivatives are considered and corresponding control algorithms are 

proposed.  

In [37]-[41], distributed Control methods for consensus problem are addressed under 

different assumptions of the agent systems and communication topologies including time-delays 

of communication links, communication switching and node/link failures. In [37], the authors 

propose consensus algorithms for multi-agent networked systems, directed graph is considered for 
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communication and disturbances of time-delays and node/link failures are considered for verifying 

robustness of proposed control laws. In [38], both linear and nonlinear consensus protocols are 

proposed for distributed control of multi-agent consensus, filtering effects of communication 

channels are considered and maximum tolerance of time-delays is calculated. In [39], both fixed 

and switching communication topologies are studied for directed and undirected graph, algebraic 

connectivity is utilized for studying the convergence velocity of multi-agent systems, 

communication networks with directed information flow is studied for performance of the control 

algorithms. In [40], the agents’ inputs are supposed to be subjected to a constantly albeit possibly 

unknown time delay, it is proved the time delay has restrictions on communication topologies thus 

influences the consensus conditions. In [41], the multi-agent systems are considered time-discrete 

with directed fixed communication topologies. The proposed control laws display dependence of 

the consensus condition on the agent’s unstable poles, non-minimum phase zeros and their relative 

degree. 

Robotic vehicle systems offer advantages of performing complex engineering tasks due to 

their robustness and precision with the aid of external accessories such as infrared detector, hand 

gripper and wireless sensor. Mobile robots can complete more complex tasks including rescue and 

navigation and have been applied into military and industrial and security environments. Vehicles 

can be operated in isolated fashion of which control information is solely vehicles’ own states. 

However, control of multiple vehicles enables improving existing single-vehicle application by 

developing new capabilities. Compared with tasks performed by solo automobile, advantages of 

multivehicle systems include increasing reliability, efficiency and spatially distributed operation. 

For multivehicle system control techniques, one of the most important problems is coordination 
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of motions of individual vehicles, which can either be realized by controlling each vehicle 

respectively or utilizing distributed control methods with the aid of communication between 

vehicles. One common problem of distributed coordination of multivehicle system is consensus 

seeking. Each vehicle agent in the multivehicle system needs to reach an agreement for certain 

quantities of interest, the common interest might be convergence of vehicles’ states to predefined 

values. In this case, the vehicles either converge to a static point known as rendezvous problem or 

track the common trajectory or reference system. In reality, vehicles are usually equipped with 

sensors which can detect information from neighbors thus realize the communication between 

different vehicles with certain spatial distance. The communication between multivehicle systems 

can be described by communication graph, every vehicle system is treated as a vertex in the 

communication graph and there exist communication links between two vehicles if one vehicle 

can receive information from another vehicle. The links can be either directed or undirected based 

on the characteristics of communication type. Distributed control of multivehicle systems for 

consensus seeking only utilize information from neighbor vehicles instead of accessing the 

consensus states directly for self-control since not all the systems can communicate with the 

reference system. It has been proved when the communication topology satisfies specific 

requirements, all the vehicle systems will converge to consensus states by applying distributed 

control methods. High expense of communication equipments with wide-bandwidth 

communication channels are withdrawn and system redundancy is reduced. Even if during the 

operating process some links or vehicle nodes are disabled, it does not influence the overall 

systems’ performance and robustness is improved. 
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Before further capabilities of multivehicle systems can be developed, the most important 

problem is to solve the multivehicle coordination and design distributed coordination strategies. 

One common problem of multivehicle systems coordination is formation control. Consensus 

algorithms for multi-agent systems have been utilized for designing distributed formation control 

in [42]-[47]. Leader-follower formation control for trajectory tracking is addressed in [42], 

Lyapunov-based techniques are developed for distributed tracking control with one vehicle acting 

as a leader while others acting as followers tracking the path in certain formation pattern. In [43], 

distributed formation tracking controllers are designed for nonholonomic vehicles by combing 

consensus-based controllers with cascaded systems. In [44], the authors translate multivehicle 

formation control problem into a leader-following consensus problem and design distributed 

control methods to achieve constant velocities for all vehicle agents and constant spacing between 

vehicles with three types of communication topologies. In [45], backstepping techniques are 

utilized for distributed controller design with multivehicle system formation tracking problem, 

constant communication delays are also considered for the controller design. In [46], state 

feedback control laws for multivehicle systems formation tracking are proposed with the aid of 

graph theory and Lyapunov theory. In [47], asymptotical control of multiple wheeled robots is 

designed with a leader-follower communication topologies.  

In these papers, the control laws are designed for intermediate parameters of translational 

and rotational velocities. However, in practical application, it is the external torques generated by 

vehicle engines that control motions of a real vehicle. Then dynamic vehicle model is considered 

for distributed formation tracking control of multivehicle systems. In [48], cooperative control of 

higher-order multivehicle systems with dynamic uncertainties is addressed with a local cooperative 
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controller and a vehicle-level controller. In [49], neural network is applied to estimate the 

uncertainties and external disturbances of the dynamic systems. In [50], adaptive cooperative 

control laws are proposed with the aid of the passivity property of system dynamics with 

uncertainties. In [51], robust adaptive neural network (NN) control of multiple unmanned ground 

vehicles is addressed with a virtual leader-follower format. Neural network is introduced to solve 

nonlinearities and uncertainties of dynamic systems.  

In this thesis, distributed formation tracking control of multivehicle systems is studied. The 

net-worked vehicle agents are supposed to be information transmittable and receivable for specific 

neighbors. The reference trajectory signals are supposed to be a virtual leader with the same system 

structure as the follower vehicle agents and the communication graph is a leader-follower topology, 

and control algorithms for both vehicles’ kinematics and dynamics are proposed. For vehicles’ 

kinematic systems, the unicycle models have three generalized states with two Cartesian 

coordinates in respect to x-axis, y-axis and the steering angle with respect to x-axis. The control 

inputs for kinematics are translational and rotational velocities. The formation tracking problem is 

redefined as consensus with the reference trajectory with the same known kinematics which is self-

regulated, thus the control goals can be ultimately concluded into designing control laws to 

stabilize the multiple error systems obtained by subtracting the reference trajectory from each 

follower’s kinematic system. In this thesis, a new distributed control method with the aid of 

cascaded system theory and graph theory is proposed for kinematic systems. Firstly variable 

transformations are implemented to transform kinematics into multiple chained-form systems, 

then the multiple chained-form systems are written in a cascaded structure. The graph theory is 

utilized to characterize the communication topologies for multiple vehicles and estimate the 
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reference trajectory since it is assumed only a portion of vehicles can receive control information 

from the reference trajectory directly and all the other followers can only receive information from 

their neighbors. It is proved the unavailable reference signal can still be estimated with the states 

information of neighboring vehicles when the communication graph satisfies certain conditions. 

Then with the aid of exponential stability theorem from the cascaded systems, the multiple 

transformed chained-form systems are stabilized by states feedback control with the system’s own 

states information and the estimated transformed reference trajectory (the reference trajectory is 

also transformed into chained form). The stability of the chained-form error systems is proved to 

guarantee the consensus of vehicles’ kinematics with the reference trajectory. Moreover, this thesis 

considers the vehicles’ dynamics considering the impracticality of control design through 

velocities in real-life operations. The control velocities designed in kinematics are considered 

intermediate variables and states of vehicles’ dynamics while the control torques in vehicles’ 

dynamics are the real control inputs. With the aid of backstepping methods, distributed formation 

tracking control laws are considered for vehicle dynamics with the aid of kinematics-based 

controllers. Both cases of dynamics with and without parametrical uncertainties are considered 

since at some circumstances the physical quantities of vehicles may not be known, sliding mode 

control is utilized to estimate the uncertainties. This thesis also addresses the switching 

communication topologies considering in real-life operations the graph is unfixed due to 

disconnection and creation of communication links and vehicle disabilities. To confirm the 

effectiveness of proposed control algorithms, simulations are done for four identical unicycles with 

the aid of SIMULINK of MATLAB.  
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CHAPTER II 

 

 

PRELIMINARY RESULTS 

 

 

In this chapter, main analytical tools for distributed control of multivehicle system 

consensus are discussed. Graph theory is utilized for characterizing communication topology of 

multivehicle system, Laplacian matrix is introduced to analyze the communication graph 

mathematically. In order to define consensus for multivehicle system, stability is introduced to 

characterize consensus of the overall systems. 

2.1 Introduction of Communication Graph 

A graph is usually defined as a group of vertices and the edges connecting these vertices. 

The set of vertices are defined as Vn= {v1, v2, ..., vn}, where n is the number of vertices. En is the 

set of edges and satisfies En⊆ Vn × Vn as not all the vertices are connecting with each other. Graph 

Gn is a pair of sets (Vn, En). A graph can be either undirected or directed based on characteristic of 

communication links, namely elements in En. If the links are bidirectional then the communication 

graph is called undirected graph otherwise directed graph. For directed graph, En is called arrow 

sets where communication links eij = (vi, vj) are directional, vi is called the tail of arrow and vj is 

called head of arrow, vj  can receive information from vi. Take the directed communication 

topology in Figure 2.1 as an example. 
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Figure 2.1 is the communication topology.  

V4

V2

V3

V5

V1

 

Figure 2.1 Communication topology 

G5={V5,E5} where V5={v1, v2,v3, v4,v5 }, E5={{e12 },{e32 },{e34 },{e45 }}.  

2.2 Fundamental Properties of Graph 

From Section 2.1, it is learned the communication between multivehicle systems can be 

described by directed or undirected graph. Characteristics of graph determine whether consensus 

states can be achieved. In this section, fundamental conception of graph is introduced including 

connectivity and tree structure. In latter control design these properties will be utilized to achieve 

consensus states. 

Definition 2.1 A path is a sequence of edges connecting series of vertices.  

Definition 2.2 Subpath G1 of G2 is defined as a graph which satisfies 𝑉(𝐺1) ⊆ 𝑉(𝐺2)  and 

𝐸(𝐺1) ⊆ 𝐸(𝐺2).  
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Definition 2.3 A graph is connected if for each pair of vertices (vi, vj), there exists a path from vi 

to vj, for directed graph, connectivity means both paths from vi to vj and vj to vi exist.  

Definition 2.4 A tree is an undirected connected graph, for directed graph, the oriented or 

directed tree is a tree if directions of edges are ignored. 

Definition 2.5 A spanning tree is a subgraph containing all the vertices of the connected graph. 

Definition 2.6 For the vertex vi in the vertex set of a digraph Gd = (Vn, En), the number of its tail 

end-points is called the outdegree of vi denoted by 𝑑𝑒𝑔+(𝑣𝑖). the number of its head -points is 

called the indegree of vi denoted by 𝑑𝑒𝑔−(𝑣𝑖). 

Definition 2.7 For the vertex vi in the vertex set of Graph Gn = (Vn, En), the neighbor of vi is a 

vertex which forms an edge in the edge set with vi, for a digraph. The out-neighbor of vi is the 

vertex which send information to vi. On the contrary, the in-neighbor of vi is the vertex which 

receive information from vi. 

2.3 Laplacian Matrix 

From Section 2.1, it is learned interacting multivehicle systems with specific 

communication topology can be characterized by a graph with each vehicle the vertex of the graph 

and intercommunication the link of edge sets. Mathematical formula is utilized for consequent 

control algorithm design with the aid of Laplacian Matrix. For communication graph of n vehicles 

Gn = (Vn, En), adjacency matrix A = [aij]nxn is defined as aij = 1, if vj can receive information from 

vi, otherwise aij = 0. Since the vehicle can acquire its own information without communicating 

with other vehicles, aii is supposed to be zero. In reality, due to the unevenness of communication 
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intensity between different links, additional weight factor is added to describe the communication 

links Aw = [wijaij]nxn. It is proved the weights only influence the convergence time for overall 

systems while having no effects on the consensus performance.  

Consider  𝐷 = 𝑑𝑖𝑎𝑔(∑ 𝑎1𝑗, ∑ 𝑎2𝑗
𝑛
𝑗=1 … ,∑ 𝑎𝑛𝑗)

𝑛
𝑗=1

𝑛
𝑗=1 , then Laplacian matrix L is 

calculated by L = D–A. For the directed graph in Figure 2.1, its associated Laplacian matrix is  

𝐿 =

[
 
 
 
 
0 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

−

[
 
 
 
 
0 0 0 0 0
1 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0]

 
 
 
 

 

=

[
 
 
 
 

0 0 0 0 0
−1 2 −1 0 0
0 0 0 0 0
0 0 −1 1 0
0 0 −1 0 1]

 
 
 
 

 

Let X  be a 𝑛 × 𝑛 matrix with entries 𝑥𝑖𝑗, let 𝑅𝑖 = ∑ |𝑥𝑖𝑗|𝑗≠𝑖  be the sum of absolute values 

of non-diagonal entries in the ith row, Greshgrin disc 𝐷(𝑥𝑖𝑖, 𝑅𝑖) is defined as the closed disc 

centered at 𝑥𝑖𝑖 with the radius of 𝑅𝑖.  

Theorem 2.1 Every eigenvalue of X  lies in at least one of the Greshogrin discs 𝐷(𝑥𝑖𝑖, 𝑅𝑖). 

Theorem 2.2 Let Gn = (Vn , En) be the graph associated with n vertices with Laplacian matrix L, 

then all the eigenvalues of -L are located in the left half of the complex plane.  

Proof  By Theorem 2.1, it can be proved all the eigenvalues of L are located within the 

union of the following discs  
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∪ 𝐷𝑖 = {|𝜆𝑖 − 𝑙𝑖𝑖| ≤ ∑|𝑙𝑖𝑗|

𝑗≠𝑖

} 

Notice for the Laplacian matrix, it follows that 𝑙𝑖𝑖 = ∑ |𝑙𝑖𝑗|𝑗≠𝑖 = 𝑑𝑒𝑔+(𝑣𝑖), then the union of discs 

can be expressed as 

∪ 𝐷𝑖 = {|𝜆𝑖 − 𝑑𝑒𝑔+(𝑣𝑖)| ≤ 𝑑𝑒𝑔+(𝑣𝑖)} 

Moreover, all the eigenvalues of L are contained in the largest disc of the union 

|𝜆𝑖 − 𝑑𝑒𝑔𝑚𝑎𝑥
+ (𝑣𝑖)| ≤ 𝑑𝑒𝑔𝑚𝑎𝑥

+ (𝑣𝑖) 

Clearly, all the eigenvalues of -L are contained in the mirror image of the largest disc 

|𝜆𝑖 + 𝑑𝑒𝑔𝑚𝑎𝑥
+ (𝑣𝑖)| ≤ 𝑑𝑒𝑔𝑚𝑎𝑥

+ (𝑣𝑖) 

r

r=deg+max

Im

Re

Spec(-L) Spec(L)
 

Figure 2.2 Greshgrin disc of the Laplacian matrix 
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Since the row sum of –L is zero and it is known there exists at least one eigenvalue 𝜆1 which is 

equal to zero with the rest eigenvalues 𝜆𝑛 ≤ 𝜆𝑛−1 ≤ ⋯ ≤ 𝜆2 ≤ 0. 

Theorem 2.3 Let Gn = (Vn, En) be the graph associated with n vertices with Laplacian matrix L, 

eigenvalues of -L satisfy 𝜆𝑛 ≤ 𝜆𝑛−1 ≤ ⋯ ≤ 𝜆2 < 𝜆1 = 0 if Gn is connected. 

Proof  Since Gn is connected then rank of –L 𝑅𝑎𝑛𝑘(−𝐿) = 𝑛 − 1 and –L has a simple zero 

eigenvalue, by Theorem 2.2, 𝜆𝑛 ≤ 𝜆𝑛−1 ≤ ⋯ ≤ 𝜆2 < 𝜆1 = 0.  

Theorem 2.4 Let Gn=(Vn, En) be the graph associated with n vertices with Laplacian matrix L, 

eigenvalues of -L satisfy 𝜆𝑛 ≤ 𝜆𝑛−1 ≤ ⋯ ≤ 𝜆2 < 𝜆1 = 0 if Gn has a spanning tree.  

2.4 Fundamental Properties of Nonlinear Dynamic System 

Consider the nonlinear dynamic system defined by the following n-dimensional first-order 

vector differential equation 

                                                              �̇� = 𝑓(𝑡, 𝑥, 𝑢) (2.1) 

where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇, 𝑢 = [𝑢1, 𝑢2, … , 𝑢𝑛]𝑇 and 

𝑓(𝑡, 𝑥, 𝑢) = [𝑓(𝑡, 𝑥1, 𝑢1), 𝑓(𝑡, 𝑥2, 𝑢2), … 𝑓(𝑡, 𝑥𝑛, 𝑢𝑛)] 

The equation above is called the state equation and x is the state while u is the input. Since the 

function f depends explicitly on t, the nonlinear system is called non-autonomous or time-varying.  

A point x = x̃ in the state space is said to be an equilibrium point of (2.1) if it has the 

property that any state starting from x̃ will remain at x̃ in certain time. For non-autonomous system 

(2.1) the equilibrium points are roots of  
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                                                               𝑓(𝑡, 𝑥) = 0 (2.2) 

If all the solutions of (2.2) starting out from x̃ will ultimately stay near x̃ in certain time, x̃ 

is said to be Lyapunov stable. If all solutions starting out from x̃ will converge to x̃ then x̃ is said 

to be asymptotically stable. If in addition to being asymptotically stable, the convergence velocity 

is at a exponential decay rate then x̃ is said to be exponentially stable. 

x̃ is said to be globally asymptotically stable (GUS) or globally exponentially stable (GES) 

if the solutions can start out from any point in the state space in addition to the requirement for 

asymptotical stableness and exponential stableness.  

Consider a function 𝛼: [0, 𝑎) → [0,∞), if 𝛼 is strictly increasing and 𝛼(0) = 0, then 𝛼 is 

said to be a class κ function. More strongly, if 𝛼(𝑎) = ∞ as 𝑎 → ∞ then 𝛼 is said to be a class κ∞ 

function.  

Consider a function 𝛽: [0, 𝑎) × [0,∞) → [0,∞), if for each fixed 𝑠 , 𝛽(𝑟, 𝑠) belongs to 

class κ with respect to 𝑟, for each fixed 𝑟, 𝛽(𝑟, 𝑠) is decreasing with respect to 𝑠 and 𝛽(𝑟, 𝑠) → 0 

as 𝑠 → ∞, then 𝛽(𝑟, 𝑠) is said to be a class κι function.  

Assume there exists a class κι function 𝛽 such that for any initial state 𝑥(𝑡0) 

||x(t)|| ≤ 𝛽(||𝑥(𝑡0)||, 𝑡 − 𝑡0) 

for  ∀𝑡 ≥ 𝑡0 then the origin of (2.1) is globally uniformly asymptotically stable.  

The origin is said to be globally exponentially stable if there exist positive constants k and 

λ such that 
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||𝑥(𝑡)|| ≤ 𝑘||𝑥(𝑡0)||𝑒
−𝜆(𝑡−𝑡0) 

for any initial state 𝑥(𝑡0), ∀𝑡 ≥ 𝑡0
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CHAPTER III 

 

 

CONSENSUS ON MULTIPLE LINEAR SYSTEMS 

 

 

From the kinematic vehicle system in Chapter 4, it is learned that vehicle kinematic system 

is characterized by a first-order system. In this chapter, distributed control laws for first-order 

system consensus is discussed. Consensus states are represented by reference signals. Consensus 

signals are divided into time-invariant and time-varying reference signals. In this paper, the latter 

scenario of time-varying trajectory convergence is studied. Firstly control laws in [37][38] for 

time-invariant reference states and in [22] for time-varying reference states are introduced, then a 

novel method that will be utilized in Chapter 4 for distributed multivehicle system formation 

tracking control is proposed. Compared with control algorithms in [22], the proposed first-order 

system consensus law removes utilization of derivatives of states information such as coordinates 

and angles, which cannot be easily acquired by sensors. Then consensus algorithms for multiple 

double-integrator systems are designed based on the novel first-order algorithm. 

3.1 Consensus of Multiple First-order Systems 

A first-order system is defined by  

                                                                     �̇�𝑖 = 𝑢𝑖 (3.1) 

where 𝛿𝑖 is the state of the the first- order system i, 𝑢𝑖 is the control input. 
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In [39], a first-order consensus protocol is proposed as 

                                                         𝑢𝑖 = −∑ 𝑎𝑖𝑗(𝛿𝑖 − 𝛿𝑗)
𝑛
𝑗=1  (3.2) 

where aii = 0 and aij ≥ 0 if information flows from vehicle vj to vehicle vi and 0 otherwise, by 

applying ui in (3.2), system (3.1) can be written as 

                                                                    �̇� = −𝐿𝛿 (3.3) 

where δ = [δ1, δ2, ...δn]
T , L = [lij] where  𝑙𝑖𝑖 = ∑ 𝑎𝑖𝑗𝑗≠𝑖   and 𝑙𝑖𝑗 = −𝑎𝑖𝑗∀i = j. 

Theorem 3.1 (3.2) guarantees δ=[ δ1, δ2, …,  δn]
T converge to the same value known as group 

decision value δ*(t) = ∑ 𝛼𝑖𝛿𝑖(0)𝑛
𝑖=1  where α=[ α1, α2, …,  αn] is a nonnegative left vector of L 

associated with eigenvalue 0 with the property that  𝛼𝑖 ≥ 0 ,  i=1,2,…,n. and the sum of 

 𝛼𝑖 ∑  𝛼𝑖
𝑛
𝑖=1 = 1 if graph G is connected. 

From Theorem 3.1 it can be learned all the agents will converge to the consensus state, the 

consensus value is actually decided by the weight of each agent. It is proved that if the 

communication link is bidirectional and the undirected graph is connected, all the agents share the 

same weight and the consensus value is the average of the agents’ initial states. If the graph is a 

digraph, each agent’s weight in the final consensus value is different, the weight depends on the 

information accessibility to other agents, which means if the agent can have its information sent 

to more follower agents, the higher weight it will have in the consensus state.  

In the vehicle tracking problem, a predefined signal is regarded as a reference trajectory, 

this signal can also be modeled as a vehicle system known as the virtual leader, the virtual leader 

don’t receive information from any other agent and it has the highest weight in the decision value, 
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assume the reference signal is denoted by vn+1, then 𝛼𝑛+1 = 1 and 𝛼𝑖 = 0  for 1 ≤ 𝑖 ≤ 𝑛 , the 

control law in (3.2) is rewritten as 

                                     𝑢𝑖 = −∑ 𝑎𝑖𝑗(𝛿𝑖 − 𝛿𝑗)
𝑛
𝑗=1 − 𝑎𝑖,𝑛+1(𝛿𝑖 − 𝛿𝑛+1) (3.4)  

where 𝑎𝑖,𝑛+1 > 0. if vi can receive information from vn+1, otherwise 𝑎𝑖,𝑛+1 = 0. 

Theorem 3.2 For a directed graph G, if �̇�𝑛+1 = 0 and G has a spanning tree with vn+1 as its root, 

(3.4) guarantee δ=[ δ1, δ2, …,  δn]
T converge to the same value known as group decision value δ*(t) 

= δn+1. 

Theorem 3.2 holds only if the reference state is constant signal. However, the tracking 

problem usually involves time-varying reference signal. If the algorithms in (3.4) are applied to 

time-varying signal case, �̇�𝑟 will be introduced onto the right hand of (3.4) 

                                  𝑢𝑖 = �̇�𝑛+1 − ∑ 𝑎𝑖𝑗(𝛿𝑖 − 𝛿𝑗)
𝑛
𝑗=1 − 𝑎𝑖,𝑛+1(𝛿𝑖 − 𝛿𝑛+1) (3.5) 

It is known that only a portion of agents can receive information from vn+1, which means (3.5) 

holds only if all the agents can receive information from vn+1. Then the modified control laws for 

time-varying reference signal are proposed in [22]. 

Theorem 3.3 Let G ={V, E} be the communication topology associated with n+1 agents (the 

n+1’th agent is the time-varying reference signal), algorithm (3.6) solve the consensus problem 

with a time-varying reference signal if and only if there exists a spanning tree with the virtual agent 

as its root [22]. 
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𝑢𝑖 =
1

∑ 𝑎𝑖𝑗 + 𝑎𝑖,𝑛+1
𝑛
𝑗=1

∑𝑎𝑖𝑗[�̇�𝑗 − 𝛾𝑖(𝛿𝑖 − 𝛿𝑗)]

𝑛

𝑗=1

+
𝑎𝑖,𝑛+1

∑ 𝑎𝑖𝑗 + 𝑎𝑖,𝑛+1
𝑛
𝑗=1

∑[�̇�𝑛+1 − 𝛾𝑖(𝛿𝑖 − 𝛿𝑛+1)]

𝑛

𝑗=1

 

 (3.6) 

3.2 First-order Systems Consensus with Time-varying Reference Signals 

In this section, a different control law for first-order system consensus with time-varying 

reference signals is studied. The proposed control laws will be used in designing the distributed 

control algorithms for the vehicle kinematic and dynamic systems in Chapter 4 and Chapter 5. In 

this proposed first-order control algorithm, derivative term �̇�𝑗  and �̇�𝑛+1  are removed since in 

practical applications sensors may only sense physical states of coordinates and angles but not 

translational and rotational velocities.  

The desired trajectory is assumed to be time-varying signal, the main problem for trajectory 

tracking is to find a term to replace �̇�𝑛+1 = 𝑢𝑛+1, which cannot be acquired directly for each slave 

system, consider system (3.4), define the tracking errors 𝛿i = 𝛿i − 𝛿𝑛+1, then (3.4) is transformed 

into 

                                         �̇�𝑖 = ∑ 𝑎𝑖𝑗(𝛿𝑖 − 𝛿𝑗) −𝑛
𝑗=1 𝑎𝑖,𝑛+1𝛿𝑖 − �̇�1,𝑛+1 (3.7) 

Replace �̇�1,𝑛+1 in (3.7) with 𝜌sign(∑ 𝑎𝑖𝑗(𝛿𝑖 − 𝛿𝑗) −𝑛
𝑗=1 𝑎𝑖,𝑛+1𝛿𝑖), it follows that 

𝑢𝑖 = −∑𝑎𝑖𝑗(𝛿𝑖 − 𝛿𝑗)

𝑛

𝑗=1

− 𝑎𝑖,𝑛+1(𝛿𝑖 − 𝛿𝑛+1) − 𝑝𝑠𝑖𝑔𝑛(∑𝑎𝑖𝑗(𝛿𝑖 − 𝛿𝑗)

𝑛

𝑗=1

+ 𝑎𝑖,𝑛+1(𝛿𝑖 − 𝛿𝑛+1)) 

 (3.8) 
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Theorem 3.4 Let G ={V, E} be the communication topology associated with n+1 agents (agent 

vn+1 is the time-varying reference signal), algorithm (3.8) guarantee that 𝛿i − 𝛿𝑛+1  globally 

exponentially stable if there exists a spanning tree in the communication graph with vn+1 as the 

root of the spanning tree. 

Proof Substitute 𝑢𝑖 in (3.8) into (3.1), define the tracking error 𝛿i = 𝛿i − 𝛿𝑛+1 it follows 

that 

�̇�𝑖 = ∑𝑎𝑖𝑗(𝛿𝑖 − 𝛿𝑗) −

𝑛

𝑗=1

𝑎𝑖,𝑛+1𝛿𝑖 − 𝜌𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿𝑖 − 𝛿𝑗) −

𝑛

𝑗=1

𝑎𝑖,𝑛+1𝛿𝑖) − �̇�𝑛+1 

With the aid of Laplacian matrix in Chapter 2 the equation above can be written in 

                                      �̇� = −(𝐿 + 𝐵)𝛿 − 𝜌𝑠𝑖𝑔𝑛 ((𝐿 + 𝐵)𝛿) − �̇�𝑛+1𝟏 (3.9) 

where 𝛿 = [𝛿1, … , 𝛿𝑛,],  𝐿 is the Laplacian matrix associated with G, 𝐵 = 𝑑𝑖𝑎𝑔(𝑎1,𝑛+1, … , 𝑎𝑛,𝑛+1). 

It can be proved of 𝐿 + 𝐵 is positive symmetric matrix with eigenvalues in the right half of the 

complex plane. 

Choose the Lyapunov function 𝑉 =
1

2
𝛿2, differentiate 𝑉 along (3.9), it follows that 

�̇� = −𝛿𝑇(𝐿 + 𝐵)𝛿−𝛿𝑇𝜌𝑠𝑖𝑔𝑛 ((𝐿 + 𝐵)𝛿)−𝛿𝑇�̇�𝑛+1𝟏 

= −𝛿𝑇(𝐿 + 𝐵)𝛿−𝛿𝑇𝜌𝑠𝑖𝑔𝑛 ((𝐿 + 𝐵)𝛿) 

    − ((𝐿 + 𝐵)𝛿)
T

(𝐿 + 𝐵)−1�̇�𝑛+1𝟏 

Let ϵ be the minimum eigenvalue of (𝐿 + 𝐵)−1, then 
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�̇� ≤ −𝛿𝑇(𝐿 + 𝐵)𝛿 − 𝜖𝜌 ((𝐿 + 𝐵)𝛿)
𝑇

𝑠𝑖𝑔𝑛 ((𝐿 + 𝐵)𝛿) 

−((𝐿 + 𝐵)𝛿)
T

(𝐿 + 𝐵)−1�̇�𝑛+1𝟏 

If 𝜌 satisfies  

𝜌 ≥
||(𝐿 + 𝐵)−1|||�̇�𝑛+1|

𝜖
 

then �̇� ≤ −𝛿𝑇(𝐿 + 𝐵)𝛿, let σmin be the smallest eigenvalue of 𝐿 + 𝐵, it follows that 

�̇� ≤ −𝛿𝑇(𝐿 + 𝐵)𝛿 ≤ −σmin𝛿
2 =

𝜎𝑚𝑖𝑛

0.5
×

1

2
𝛿2 

�̇� ≤ 2𝜎𝑚𝑖𝑛𝑉 

Then 𝛿 exponentially globally converge to zero, which means lim
𝑡→∞

𝛿𝑖 − 𝛿𝑛+1 = 0.  

Compared with the first-order system control methods in [22], the distributed control law 

in (3.8) has low redundancy, more states transference means wider bandwidth of communication 

channels and higher requirements on communication facilities, in addition, (3.8) removes the usage 

of inaccessible quantity of states and has broader potential applications in real-life operations.  

Example 3.1 Consider a directed spanning tree topology in Figure 3.1. Assume the virtual leader 

is the time-varying reference signal which in this case is the sinusoid signal sin(t). Suppose only 

agent v1 could get access with the leader directly. Simulation results in Figure 3.2 and 3.3 show 

that all the follower agents converge to the reference signal as 𝑡 → ∞. 
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Figure 3.1 is the information exchange graph.  

V4

V2
V3 V1

V5

 

Figure 3.1 Information exchange graph 

 

Figure 3.2 𝛿𝑗 − 𝛿0 for 1 ≤ 𝑗 ≤ 5 (I) 
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Figure 3.3 is the trajectory of 𝛿𝑗 for 1 ≤ 𝑗 ≤ 5. 

 

Figure 3.3 Trajectory of 𝛿𝑗 for 1 ≤ 𝑗 ≤ 5 (I) 

3.3 Second-order Systems Consensus with Time-varying Reference Signals 

Consider multiple double-integrator systems  

                                                                      �̇�𝑗 = 𝛿𝑗 (3.10) 

                                                                      �̇�𝑗 = 𝑢𝑗  (3.11) 

for 1 ≤ 𝑗 ≤ 𝑛, where 𝛿𝑗 and 𝜎𝑗 are the states of system j, 𝑢𝑗  is the control input.  
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Assume the reference trajectory is also characterized by the second order system with the 

same structure of (3.10) and (3.11) 

                                                                     �̇�0 = 𝛿0 (3.12) 

                                                                     �̇�0 = 𝑢0 (3.13) 

In order to track the reference signal in (3.12)-(3.13), the multiple second-order error systems 

between each individual agent and the reference trajectory are utilized. 

Define �̃�j = 𝜎𝑗 − 𝜎0, 𝛿j = 𝛿𝑗 − 𝛿0, the multiple second-order error systems are defined by  

                                                                �̇̃�𝑗 = 𝛿𝑗 − 𝛿0 (3.14) 

                                                                �̇�𝑗 = 𝑢𝑗 − 𝑢0 (3.15) 

Notice 𝛿0 and 𝑢0  are supposed not to be available to all the follower double-integrator 

systems. Estimation of these two reference states are implemented based on the communication 

topology of networked multi-agent systems. The novel first-order consensus algorithm proposed 

in previous section is utilized to help design the double integrator systems.  

Define 𝜒𝑗 = 𝑘1𝜎𝑗 + 𝛿𝑗, then (3.10) is transformed into 

                                                             �̇�𝑗 = −𝑘1𝜎𝑗 + 𝜒𝑗 (3.16) 

Similarly, (3.12) is transformed into 

                                                            �̇�0 = −𝑘1𝜎0 + 𝜒0 (3.17) 

Differentiate 𝜒𝑗 = 𝑘1𝜎𝑗 + 𝛿𝑗, it follows that 
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�̇�𝑗 = 𝑘1�̇�𝑗 + �̇�𝑗 

                                                                       = 𝑘1𝛿𝑗 + 𝑢𝑗 (3.18) 

Lemma 3.1 If 𝜒𝑗 − 𝜒0 is bounded and converges to zero, then 𝜎𝑗 exponentially converges to 𝜎0. 

Proof  Subtract (3.16) by (3.17) it follows that 

                                              �̇�𝑗 − �̇�0 = −𝑘1(𝜎𝑗 − 𝜎0) + (𝜒𝑗 − 𝜒0) (3.19) 

Since �̇�𝑗 − �̇�0 = −𝑘1(𝜎𝑗 − 𝜎0) is exponentially stable and 𝜒𝑗 − 𝜒0 is asymptotically stable, then 

𝜎𝑗 − 𝜎0 is bounded and converges to zero exponentially. 

Lemma 3.2 If 𝜒𝑗 − 𝜒0 is bounded and converges to zero, then 𝛿𝑗 converges to 𝛿0. 

Proof 

𝜒𝑗 − 𝜒0 = 𝑘1𝜎𝑗 + 𝛿𝑗 − 𝑘1𝜎0 − 𝛿0 

= 𝑘1(𝜎𝑗 − 𝜎0) + (𝛿𝑗 − 𝛿0) 

By Lemma 3., 𝜎𝑗 − 𝜎0 is bounded and exponentially converges to zero, then it can be proved 𝛿𝑗 −

𝛿0 exponentially converges to zero. 

Notice that the convergence of 𝜒𝑗 to 𝜒0 ensures  

lim
t→∞

(𝜎𝑗 − 𝜎0) = 0 

lim
t→∞

(𝛿𝑗 − 𝛿0) = 0 
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Reference signal tracking of multiple double-integrator systems is transformed into designing 

distributed control laws for 𝜒𝑗 such that  

lim
t→∞

(𝜒𝑗 − 𝜒0) = 0 

Theorem 3.5 Let G ={V, E} be the communication topology associated with n+1 agents (agent 

vn+1 is the time-varying reference signal), algorithm (3.20) guarantee that 𝜎𝑗 − 𝜎0 and 𝛿j − 𝛿0 are 

globally exponentially stable if there exists a spanning tree in the communication graph with vn+1 

as the root of the spanning tree. 

𝑢𝑗 = −∑𝑎𝑗𝑖(𝜒𝑖 − 𝜒𝑖)

𝑛

𝑖=1

− 𝑎𝑗,𝑛+1(𝜒𝑗 − 𝜒0) − 𝑝𝑠𝑖𝑔𝑛(∑𝑎𝑖𝑗(𝜒𝑗 − 𝜒𝑖)

𝑛

𝑗=1

+ 𝑎𝑗,𝑛+1(𝜒𝑗 − 𝜒0) − 𝑘1𝛿𝑗 

  (3.20) 

where 𝜒0 = 𝑘1𝜎0 + 𝛿0. 𝑎𝑗,𝑛+1 = 1 if 𝑣𝑗  can receive information from the virtual leader directly, 

otherwise 𝑎𝑗,𝑛+1 = 0. 

Proof Substitute 𝑢𝑗  in (3.20) into (3.18), define the tracking error 𝜒j = 𝜒j − 𝜒1,𝑛+1  it 

follows that 

�̇̃�𝑗 = ∑𝑎𝑗𝑖(�̃�𝑗 − �̃�𝑖) −

𝑛

𝑖=1

𝑎𝑗,𝑛+1�̃�𝑗 − 𝜌𝑠𝑖𝑔𝑛 (∑𝑎𝑗𝑖(�̃�𝑗 − �̃�𝑖) −

𝑛

𝑖=1

𝑎𝑗,𝑛+1𝜒𝑗) − �̇�0 

With the aid of Laplacian matrix in Chapter 2 the equation above can be written in 

                                       �̇̃� = −(𝐿 + 𝐵)�̃� − 𝜌𝑠𝑖𝑔𝑛((𝐿 + 𝐵)�̃�) − �̇�0𝟏 (3.21) 
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where 𝜒 = [𝜒1, … , 𝜒𝑛,], 𝐿 is the Laplacian matrix associated with G, 𝐵 = 𝑑𝑖𝑎𝑔(𝑎1,𝑛+1, … , 𝑎𝑛,𝑛+1). 

It can be proved of 𝐿 + 𝐵 is positive symmetric matrix with eigenvalues in the right half of the 

complex plane. 

Choose the Lyapunov function 𝑉𝑥 =
1

2
�̃�2, differentiate 𝑉𝑥 along (3.21), it follows that 

�̇�x = −�̃�𝑇(𝐿 + 𝐵)�̃�−�̃�𝑇𝜌𝑠𝑖𝑔𝑛((𝐿 + 𝐵)�̃�)−�̃�𝑇�̇�0𝟏 

= −�̃�𝑇(𝐿 + 𝐵)�̃�−�̃�𝑇𝜌𝑠𝑖𝑔𝑛((𝐿 + 𝐵)�̃�) 

    −((𝐿 + 𝐵)�̃�)
T
(𝐿 + 𝐵)−1�̇�0𝟏 

Let ϵ be the minimum eigenvalue of (𝐿 + 𝐵)−1, then 

�̇�x ≤ −�̃�𝑇(𝐿 + 𝐵)�̃� − 𝜖𝜌((𝐿 + 𝐵)�̃�)
𝑇
𝑠𝑖𝑔𝑛((𝐿 + 𝐵)�̃�) 

−((𝐿 + 𝐵)�̃�)
T
(𝐿 + 𝐵)−1�̇�0𝟏 

If 𝜌 satisfies  

𝜌 ≥
||(𝐿 + 𝐵)−1|||�̇�0|

𝜖
 

then �̇� ≤ −𝜒𝑇(𝐿 + 𝐵)�̃�, let 𝜎𝑚𝑖𝑛 be the smallest eigenvalue of 𝐿 + 𝐵, it follows that 

�̇�x ≤ −�̃�𝑇(𝐿 + 𝐵)�̃� ≤ −𝜎𝑚𝑖𝑛�̃�2 =
𝜎𝑚𝑖𝑛

0.5
×

1

2
�̃�2 

�̇�x ≤ 2𝜎𝑚𝑖𝑛𝑉𝑥 
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Then it can be proved 𝜒𝑗 − 𝜒0 exponentially converge to zero. By Lemma 3.1 𝜎𝑗 exponentially 

converges to 𝜎0. By Lemma 3.2 𝛿j exponentially converges to 𝛿0. 

Example 3.2 Consider the communication topology for five double-integrator systems in Figure 

3.4. Assume the virtual leader is the time-varying reference signal which in this case is the sinusoid 

signal (𝜎0, 𝛿0) = (𝑐𝑜𝑠(𝑡), −𝑠𝑖𝑛(𝑡)). Suppose only agent v1 could get access to the leader directly. 

Simulation results in figure 3.5 and 3.6 show that lim
𝑡→∞

(𝛿𝑗 − 𝛿0) = 0. Figure 3.7 and Figure 3.8 

show that lim
𝑡→∞

(𝜎𝑗 − 𝜎0) = 0. 

Figure 3.4 represents the communication graph. 

V1

V2

V3

V4

V5

V0

 

Figure 3.4 Communication topology for multiple double-integrator systems 
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Figure 3.5 is the convergence result of 𝜎𝑗 for 1 ≤ 𝑗 ≤ 5  

 

Figure 3.5 𝜎𝑗 − 𝜎0 for 1 ≤ 𝑗 ≤ 5  
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Figure 3.6 is the trajectory of 𝜎𝑗 for 1 ≤ 𝑗 ≤ 5  

 

Figure 3.6 Trajectory of 𝜎𝑗 for 1 ≤ 𝑗 ≤ 5 

 

 

 

 

 



31 

 

Figure 3.7 is the convergence result of 𝛿𝑗 for 1 ≤ 𝑗 ≤ 5  

 

Figure 3.7 𝛿𝑗 − 𝛿0 for 1 ≤ 𝑗 ≤ 5 (II) 
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Figure 3.8 is the trajectory of 𝛿𝑗 for 1 ≤ 𝑗 ≤ 5  

 

Figure 3.8 Trajectory of 𝛿𝑗 for 1 ≤ 𝑗 ≤ 5 (II) 

3.4 Summary 

In this chapter, distributed control for consensus problem on first-order multi-agent 

systems is addressed with the aid of graph theory and Lyapunov theory. Control methods are 

introduced for exponential stability of multi-error systems in [22][38][39]. A novel consensus 

algorithm for time-varying reference signals tracking is proposed and has potential practical 
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applications in real-life operations. This method will be utilized to design distributed formation 

tracking laws of multiple car-like robotic systems in Chapter IV and V
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CHAPTER IV 

 

 

COOPERATIVE FORMATION TRACKING CONTROL OF MULTIPLE 

 

 

KINEMATIC VEHICLES 

 

 

In this chapter, firstly the kinematic model of the vehicle is derived and fundamental 

properties of the corresponding system are analyzed, then distributed formation tracking control 

of multiple kinematic systems is studied with the aid of graph theory and theories from cascaded 

systems and chained-form systems.  

There are many types of mobile vehicles of which car-like vehicle is widely used. The 

simplest mobile robot structure is a single chassis installed with two wheels, which can be 

simplified as a unicycle under the consumption both wheels have identical configuration and 

motion behaviors. Then the two wheels can be treated as collapsing into the middle point of the 

chassis. Four-wheel car-like robot is more similar as the real vehicle. Some are four-wheel drive 

with all four wheels receiving torque from the engine, the others are either front-wheel drive or 

rear-wheel drive which means either the front wheels or the rear wheels are driven by the engine. 

The wheels are considered to be employed with nonholonomic constraints under the assumption 

that there is no slippage at the wheel. The nonholonomic constraint is not integrable and can be 

characterized by the relation between the velocities (both translational and angular) and the 

steering angle of the vehicle. 
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�̇� 𝑠𝑖𝑛(𝜃) − �̇� 𝑐𝑜𝑠(𝜃) = 0 

where (x, y) is coordinate of the middle point of the axis and θ is the steering angle with respect to 

x-axis，�̇� and �̇� are the velocities with respect to x-axis and y-axis.  

4.1 Kinematic Modeling of Vehicle 

Consider the vehicle as a unicycle rolling on a plane, as is shown in Figure 4.1. The 

configuration of a unicycle could be described with a vector of three generalized coordinates, 

namely the orthogonal coordinates (x, y) of the point contacting with the plane in a fixed frame 

and θ measuring the orientation of the wheel from the contacting point with respect to x-axis, 

which is shown in Figure 4.2. The vector of generalized coordinates is defined by q = [x, y, θ], the 

generalized velocities�̇� = [�̇�, �̇�, �̇�] is under nonholonomic constraints in the presence of rolling 

without slipping conditions, which can be characterized by a form of Pfaffian constraint of a set 

of linearly independent constraints linear in velocity. 

x
θy

 

Figure 4.1 A unicycle  
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Figure 4.2 is the simplified model of unicycle. 

x

y
θ

 

Figure 4.2 Simplified model of unicycle 

[𝑠𝑖𝑛 (𝜃) −𝑐𝑜𝑠 (𝜃) 0] [
�̇�
�̇�

�̇�

] = 0 

The generalized velocities can be written as  

                                                      �̇� = [
cos (𝜃)
𝑠𝑖𝑛 (𝜃)

0

] 𝑣 + [
0
0
1
]𝑤 (4.1) 

where w and v are the unicycle’s rotational and translational velocities.  

Consider a car-like vehicle model having the same kinematic of a real car. A general front-

wheel steer, rear-wheel drive vehicle is commonly utilized in practical application, which means 

the external torque is implemented onto the real wheels. The front wheels are driven wheels and 

can be steered while the rear wheel orientation is fixed. The generalized coordination of four-wheel 
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car-like vehicle can be defined by vector q = [x, y, θ,𝜑], where x, y are the cartesian coordinates 

of the rear wheel, θ is the orientation of the car body with respect to x-axis, 𝜑 is the steering angle, 

as is shown in Figure 4.3.   

 

x

θy

Φ

 

Figure 4.3 Simplified model of four-wheeled car 

Similar as the unicycle, the four-wheel vehicle model is also subject to nonholonomic 

constraints on both its real and front wheels with the form for each wheel,  

�̇�𝑓 sin(𝜃 + 𝜑) − �̇�𝑓 𝑐𝑜𝑠(𝜃 + 𝜑) = 0 

�̇�𝑟 sin(𝜃) − �̇�𝑟 cos(𝜃) = 0 

where xf  and yf  denote the cartesian coordinates of the middle point of the axis connecting the two 

front wheels，xr and  yr  denote the cartesian coordinates of the middle point of the axis connecting 
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the two rear wheels. Assume the distance between the middle point of front axis and rear axis is l 

and the vehicle has a rigid body, it follows that 

𝑥𝑓 = 𝑥𝑟 + 𝑙𝑐𝑜𝑠(𝜃) 

𝑦𝑓 = 𝑦𝑟 + 𝑙𝑠𝑖𝑛(𝜃) 

Then the Pfaffian constraint matrix A can be denoted by 

𝐴 = [
𝑠𝑖𝑛 (𝜃 + 𝜑) −𝑐𝑜𝑠 (𝜃 + 𝜑) −𝑙𝑐𝑜𝑠𝜑 0

𝑠𝑖𝑛 (𝜃) −𝑐𝑜𝑠 (𝜃) 0 0
] 

The kinematic model can be written in  

                                                     �̇� = [

𝑐𝑜𝑠 (𝜃)
𝑠𝑖𝑛 (𝜃)

𝑡𝑎𝑛(𝜑) /𝑙
0

] 𝑣 + [

0
0
0
1

]𝑤 (4.2) 

Notice in. (4.2), the steering angle cannot achieve ±
1

2
π which implies the front wheel cannot be 

perpendicular to the longitudinal axis of the car body. 

Throughout this paper, the unicycle model in Figure 4.2 is used, when the two axises in the 

four-wheel car model in Figure 4.3 is considered overlapped and regarded as a single axis. Then 

four-wheel car-like models can be simplified into unicycles.  

In Section 4.2, state controllability of kinematic system (4.1) at a point and a path is 

addressed with the aid of controllability theory of nonlinear system. Controllability of the vehicle’s 

kinematics determines whether feedback control could be utilized for stability of the nonlinear 

kinematic system. Trajectory tracking systems (4.4) is proved to be controllable and can be 
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stabilized by states feedback control thus the solo vehicle can track and converge to the reference 

states.  

4.2 Controllability Analysis 

Kinematic model in (4.1) is denoted by 

                                                              �̇� = 𝑔1𝑣 + 𝑔2𝑤 (4.3) 

where  

 𝑔1 = [
cos (𝜃)
sin (𝜃)

0

] , 𝑔1 = [
0
0
1
] 

(4.3) is a nonlinear and driftless system, notice the number of inputs is less than that of the 

generalized coordinates, then (4.3) is an underactuated system.  

Controllability at a point: Consider qe as an equilibrium point with zero input, in order to check 

whether system (4.3) is linearized at qe,  

�̇̃� = 𝑔1(𝑞𝑒)𝑣 + 𝑔2(𝑞𝑒)𝑤 = 𝐺(𝑞𝑒)𝑉 

where �̃� = 𝑞 − 𝑞𝑒, the linearized system has rank of two, which implies it is locally controllable. 

In order to test the controllability of nonlinear system (4.3), Lie Algebra rank condition is 

introduced. Define the Lie bracket as  

[𝑋 𝑌](𝑞) =
𝜕𝑌

𝜕𝑞
𝑋 −

𝜕𝑋

𝜕𝑞
𝑌 

The controllability problem boils down to checking whether  
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𝑟𝑎𝑛𝑘[𝑔1, 𝑔2, [𝑔1, 𝑔2], [𝑔1, [𝑔1, 𝑔2]], … ] = 3 

[𝑔1, 𝑔2] = [sin(𝜃) , − cos(𝜃) , 0], it can be verified  

𝑟𝑎𝑛𝑘 [
cos(𝜃) 0 sin(𝜃)

sin(𝜃) 0 −cos(𝜃)
0 1 0

] = [
sin(𝜃) cos(𝜃) 0 −𝑐𝑜𝑠2(𝜃)

0 1 0
0 0 1

] = 3 

then (4.3) is globally controllable. However, the system cannot be stabilized by a smooth feedback 

control law, which implies the stability of (4.3) requires either giving up the continuity condition 

or using time-varying control laws.  

Controllability about a trajectory: The desired reference trajectory is denoted by 𝑞𝑑(𝑡) =

[𝑥𝑑(𝑡), 𝑦𝑑(𝑡), 𝜃𝑑(𝑡)], define �̃�(𝑡) = 𝑞(𝑡) − 𝑞𝑑(𝑡), �̃�(𝑡) = 𝑉(𝑡) − 𝑉𝑑(𝑡),  

�̃�(𝑡) = 𝑓(𝑞(𝑡), 𝑉(𝑡), 𝑞𝑑(𝑡), 𝑉𝑑(𝑡)) 

              = 𝐺(𝑞(𝑡))𝑉(𝑡) − 𝐺(𝑞𝑑(𝑡))𝑉𝑑(𝑡) 

 

�̇̃�(t) =
𝜕𝑓(𝑞𝑑(𝑡), 𝑉𝑑(𝑡))

𝜕𝑞(𝑡)
(𝑞(𝑡) − 𝑞𝑑(𝑡)) +

𝜕𝑓(𝑞𝑑(𝑡), 𝑉𝑑(𝑡))

𝜕𝑉(𝑡)
(𝑉(𝑡) − 𝑉𝑑(𝑡)) 

 (4.4) 

Then it follows that the linearization of (4.3) is 

                        �̇̃� = [

0 0 −𝑠𝑖𝑛(𝜃𝑑(𝑡)) 𝑣𝑑(𝑡)

0 0 𝑐𝑜𝑠(𝜃𝑑(𝑡)) 𝑣𝑑(𝑡)

0 0 0

] �̃� + [

𝑐𝑜𝑠(𝜃𝑑(𝑡)) 0

𝑠𝑖𝑛(𝜃𝑑(𝑡)) 0

0 1

] �̃� (4.5) 

Notice when the trajectory is designed to be time-invariant signal with 𝑣𝑑(𝑡) = 𝑣𝑑0 and 𝜃𝑑(𝑡) =

𝜃𝑑0, the controllability condition matrix is 
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[𝐵 𝐴𝐵 𝐴𝐵2] = [
𝑐𝑜𝑠(𝜃𝑑0) 0 0 −𝑠𝑖𝑛 (𝜃𝑑0)𝑣𝑑0 0 0

𝑠𝑖𝑛 (𝜃𝑑0) 0 0 𝑐𝑜𝑠(𝜃𝑑0)𝑣𝑑0 0 0
0 1 0 0 0 0

] = 3 

which implies the linearized system (4.4) is locally controllable with a linear reference trajectory. 

By linear feedback, eigenvalues of (4.5) can be placed in the left half of complex plane, then the 

equilibrium point �̃�(𝑡) = 𝑞(𝑡) − 𝑞𝑑(𝑡)  is locally asymptotically stable. When the reference 

trajectory is nonlinear with inconstant velocities, Gramian’s singularity determines the 

controllability and state-transition matrix should satisfy specific conditions to make the system 

locally stable. Due to the nonlinearity of kinematic system, if the nonlinear system can be 

transformed into linear form with state transformation, linear feedback control laws can be 

designed to guarantee stability of transformed system thus stability of original nonlinear system. 

Since solo kinematic system is proved controllable about a trajectory and state feedback 

control laws can be designed for consensus, it is accessible to achieve multivehicle systems Since 

solo kinematic system is proved controllable about a trajectory and state feedback control laws can 

be designed for consensus with the desired trajectory. It is accessible to achieve multivehicle 

systems consensus by states feedback control using not only the vehicle’s own states information 

but also its neighbor vehicles’ states information. 

4.3 Formation Tracking with Chained-form Systems 

The canonical form of kinematic model makes it easier to analyze the vehicle system in 

the chained form system. Chained system is a qausi-linear system, the first two equation of chained 

system is the standard linear system and can be stabilized by linear feedback control laws if not 

considering the states of following equations. And in [52][53], different control laws have been 
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proposed for stabilization of all states of chained form system. Chained-form nonlinear system is 

firstly introduced and then combined with multivehicle systems for designing distributed 

formation tracking methods. 

Consider the unicycle model in (4.1), with the following states transform 

𝑞1 = 𝜃 

𝑞2 = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃) 

𝑞3 = 𝑥𝑠𝑖𝑛(𝜃) − 𝑦𝑐𝑜𝑠(𝜃) 

𝑣 = 𝑞3𝑢1 + 𝑢2 

𝑤 = 𝑢1 

(4.1) can be written as  

�̇�1 = 𝑢1 

�̇�2 = 𝑢2 

                                                                   �̇�3 = 𝑞2𝑢1 (4.6) 

Actually, the transform equations could always be found to change the two-inputs n-states driftless 

systems to the chained-from system 

�̇�1 = 𝑢1 

�̇�2 = 𝑢1 

        �̇�𝑛 = 𝑞𝑛−1𝑢1 

The virtual agent vehicle, namely the desired trajectory, is also transformed into the chain-like 

systems 
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�̇�10 = 𝑢10 

�̇�20 = 𝑢10 

                                                                   �̇�30 = 𝑞2𝑟𝑢10 (4.7) 

Problem statement The generalized coordinates of vehicle vj is denoted by [x1j, y1j, 𝜃1j] The control 

problem is to design control laws and make the follower vehicle track the virtual leader [x0, y0, 𝜃0] 

in a fixed pattern [pjx, pjy]. The control problem is defined as designing control laws for vj and wj 

such using its own state information and the knowledge from its neighbors such that  

                                                  𝑙𝑖𝑚
𝑡→∞

[
𝑥𝑖 − 𝑥𝑗

𝑦𝑖 − 𝑦𝑗
] = [

𝑝𝑖𝑥 − 𝑝𝑗𝑥

𝑝𝑖𝑦 − 𝑝𝑗𝑦
] (4.8) 

                                                        𝑙𝑖𝑚
𝑡→∞

(𝜃𝑗 − 𝜃0) = 0 (4.9) 

                                                       𝑙𝑖𝑚
𝑡→∞

[∑
𝑥𝑗

𝑚

𝑚
𝑖=1 − 𝑥0] = 0 (4.10) 

                                                       𝑙𝑖𝑚
𝑡→∞

[∑
𝑦𝑗

𝑚

𝑚
𝑖=1 − 𝑥0] = 0 (4.11) 

for 1≤i≤ j ≤m, in order to introduce the desired pattern into the transformed states, the state 

transformation is redefined by  

𝑞1𝑗 = 𝜃𝑗  

𝑞2𝑗 = (𝑥𝑗 − 𝑝𝑗𝑥)𝑐𝑜𝑠𝜃𝑗 + (𝑦𝑗 − 𝑝𝑗𝑥)𝑠𝑖𝑛𝜃𝑗  

𝑞3𝑗 = (𝑥𝑗 − 𝑝𝑗𝑥)𝑠𝑖𝑛𝜃𝑗 − (𝑦𝑗 − 𝑝𝑗𝑥)𝑐𝑜𝑠𝜃𝑗  

𝑣𝑗 = 𝑞3𝑗𝑢1𝑗 + 𝑢2𝑗 

𝑤𝑗 = 𝑢1𝑗 
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Then the chained-form system for vehicle vj is 

                                                              �̇�1𝑗 = 𝑢1𝑗 (4.12) 

                                                              �̇�2𝑗 = 𝑢2𝑗 (4.13) 

                                                              �̇�3𝑗 = 𝑞2𝑗𝑢1𝑗 (4.14) 

Lemma 4.1 if  

                                                              𝑙𝑖𝑚
𝑡→∞

(𝑞1𝑗 − 𝑞10) = 0 (4.15) 

                                                              𝑙𝑖𝑚
𝑡→∞

(𝑞2𝑗 − 𝑞20) = 0 (4.16) 

                                                              𝑙𝑖𝑚
𝑡→∞

(𝑞3𝑗 − 𝑞30) = 0 (4.17) 

For 1≤j ≤m, then (4.8)-(4.11) hold.  

Proof  It is straightforward to prove that (4.9) holds by (4.15), by the transformation 

equations 

[
𝑥𝑗 − 𝑝𝑗𝑥

𝑦𝑗 − 𝑝𝑗𝑥
] = [

𝑐𝑜𝑠𝜃𝑗 𝑠𝑖𝑛𝜃𝑗

𝑠𝑖𝑛𝜃𝑗 −𝑠𝑖𝑛𝜃𝑗
] [

𝑞2𝑗

𝑞3𝑗
] 

Therefore, by (4.16) and (4.17) 

lim
t→∞

[
𝑥𝑗 − 𝑝𝑗𝑥

𝑦𝑗 − 𝑝𝑗𝑥
] = lim

t→∞
[
𝑐𝑜𝑠𝜃𝑗 𝑠𝑖𝑛𝜃𝑗

𝑠𝑖𝑛𝜃𝑗 −𝑠𝑖𝑛𝜃𝑗
] [

𝑞2𝑗

𝑞3𝑗
] 

= [
𝑐𝑜𝑠𝜃0 𝑠𝑖𝑛𝜃0

𝑠𝑖𝑛𝜃0 −𝑠𝑖𝑛𝜃0
] [

𝑞20

𝑞30
] = [

𝑥0 − 𝑝0𝑥

𝑦0 − 𝑝0𝑦
] 
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[𝑝0𝑥, 𝑝0𝑦] = [0, 0] is considered the center of the desired pattern, namely the position of the virtual 

leader, which means 𝑙𝑖𝑚
𝑡→∞

[ 𝑥𝑗 − 𝑝𝑗𝑥 − 𝑥0, 𝑦𝑗 − 𝑝𝑗𝑦 −𝑦0] = [0,0]. 

By Lemma 4.1, the control problem can be defined as designing 𝑢1𝑗 and 𝑢2𝑗with aids of 

its own state information and its neighbors’ information such that 

                                                              𝑙𝑖𝑚
𝑡→∞

(𝑞∗𝑗 − 𝑞∗0) = 0 (4.18) 

where 𝑞∗𝑗 = [𝑞1𝑗 , 𝑞2𝑗 , 𝑞3𝑗] and 𝑞∗0 = [𝑞10, 𝑞20, 𝑞30]. 

Before designing the control laws for 𝑢1𝑗 and 𝑢2𝑗, several theorems which will be utilized 

in designing distributed control methods are proposed, consider the following system 

�̇�1 = 𝑓1(𝑡, 𝑥1) + 𝑔(𝑡, 𝑥1, 𝑥2)𝑥2 

                                                     �̇�2 = 𝑓2(𝑡, 𝑥2) (4.19) 

where x1ϵℝ
n, x2ϵℝ

n, 𝑓1(𝑡, 𝑥1) is continuously differentiable in (t,x1) and 𝑔(𝑡, 𝑥1, 𝑥2), 𝑓2(𝑡, 𝑥1) 

are continuous and locally Lipschitz in x1 and (x1,x2), it could be seen that the state equation of x1 

depends on state x2 thus (4.19) is a cascaded system. 

Theorem 4.1 The cascaded system (4.19) is globally uniformly exponentially stable if the 

following three assumptions hold [54]. 

Assumption 1 �̇�1 = 𝑓1(𝑡, 𝑥1)  is globally uniformly exponentially stable and there exists a 

continuously differentiable function 𝑉(𝑡, 𝑥1):ℝ+ × ℝn → ℝ that satisfies 

𝑘1||𝑥1||
𝑎 ≤ 𝑉(𝑡, 𝑥1) ≤ 𝑘2||𝑥1||

𝑎 
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𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥1
𝑓1(𝑡, 𝑥1) ≤ −𝑘3||𝑥1||

𝑎 

where 𝑘1,𝑘2 and 𝑘3 and a are positive constants. 

Assumption 2 The interconnection function 𝑔(𝑡, 𝑥1, 𝑥2) satisfies for all 𝑡 ≥ 𝑡0 

||𝑔(𝑡, 𝑥1, 𝑥2)|| ≤ 𝜃1(||𝑥2||) + 𝜃2(||𝑥2||)𝑥1 

where 𝜃1 and 𝜃2 are continuous functions. 

Assumption 3 �̇�2 = 𝑓2(𝑡, 𝑥1) is globally uniformly exponentially stable and for all 

𝑡0 ≥ 0, it follows that 

∫ ||𝑥2(𝑡0, 𝑡, 𝑥2(𝑡0))||
∞

𝑡0

≤ 𝑘(||𝑥2(𝑡0)||) 

where k is a class κ function. 

Theorem 4.1 has been proved in [54] and [55], the proof is limited here. 

Lemma 4.2 The linear equation is uniformly exponentially stable if there exists a symmetric, 

continuously differentiable matrix function 𝑄(𝑡) and such that  

𝑐1𝐼 ≤ 𝑄(𝑡) ≤ 𝑐2𝐼 

𝑄(𝑡)𝑓1(𝑡) + 𝑓1
𝑇(𝑡)𝑄(𝑡) + �̇�(𝑡) ≤ 𝑣𝐼 

where 𝑐1, 𝑐2 and 𝑣 are finite positive constants. 

Theorem 4.2 for the system  
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                                                          �̇� = (𝑓1(𝑡) + 𝑓2(𝑡))𝑥 (4.20) 

If �̇� = 𝑓1(𝑡)𝑥 is globally exponentially stable and 𝑓2(𝑡) converges to zero exponentially, then the 

system (4.20) is globally exponentially stable under the assumption that both 𝑓1(𝑡)and 𝑓2(𝑡)are 

bounded.  

Proof Consider the linear time-varying system �̇� = 𝑓1(𝑡)𝑥 , since it is globally 

exponentially stable, let 𝑄(𝑡) be a continuous, bounded positive symmetric matrix,  

𝑄(𝑡) = ∫ 𝜑𝑇(𝜏, 𝑡)𝜑(𝜏, 𝑡)𝑑𝜏
∞

𝑡

 

And 𝑄(𝑡) satisfies the following conditions 

𝑐1𝐼 ≤ 𝑄(𝑡) ≤ 𝑐2𝐼 

𝑄(𝑡)𝑓1(𝑡) + 𝑓1
𝑇(𝑡)𝑄(𝑡) + �̇�(𝑡) = −𝐼 

where 𝑐1 and 𝑐1 are finite positive constants, 𝜑(𝜏, 𝑡) is the state transmission matrix of �̇� = 𝑓1(𝑡)𝑥, 

it follows that 

𝑄(𝑡)(𝑓1(𝑡) + 𝑓2(𝑡)) + (𝑓1
𝑇(𝑡) + 𝑓2

𝑇(𝑡))𝑄(𝑡) + �̇�(𝑡) = −𝐼 + 𝑄(𝑡)𝑓2(𝑡) + 𝑓2
𝑇(𝑡)𝑄(𝑡) 

Since 𝑄(𝑡) and 𝑓2(𝑡) are bounded, 𝑓2(𝑡) is exponentially stable, then  

𝑄(𝑡)𝑓2(𝑡) + 𝑓2
𝑇(𝑡)𝑄(𝑡) ≤ 𝐼 

for t ≥ t0, it follows that  

𝑄(𝑡)(𝑓1(𝑡) + 𝑓2(𝑡)) + (𝑓1
𝑇(𝑡) + 𝑓2

𝑇(𝑡))𝑄(𝑡) + �̇�(𝑡) = 𝑣𝐼 



48 

 

By Lemma 4.2 (4.20) is globally exponentially stable. 

Consider the linear time-varying system 

                                          �̇� =

[
 
 
 
 

0 … … … 0
𝜑(𝑡) 0 … … 0
0 ⋱ ⋱ ⋮ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝜑(𝑡) 0]

 
 
 
 

𝑥 +

[
 
 
 
 
1
0
⋮
⋮
0]
 
 
 
 

𝑢 (4.21) 

where 𝜑(𝑡) is a bounded continuously differentiable Lipschiz signal which satisfies |𝜑(𝑡)| ≤ 𝑀. 

Theorem 4.3 System (4.21) is globally exponentially stable if the control inputs 

𝑢 = −𝑘𝑖𝜑(𝑡)𝑚𝑜𝑑(𝑖,2)𝑥𝑖 

where 𝑘𝑖 are coefficients of the following polynomial 

λn + 𝑘1λ
n−1 + ⋯+ 𝑘𝑛 

such that this polynomial is Hurwitz. 

4.4 Distributed State Feedback Tracking Control of Kinematic Cascaded Systems 

In order to track the desired trajectory, the tracking error 𝑞∗𝑗𝑒 = 𝑞∗𝑗 − 𝑞∗0 is defined as 

�̇�1𝑗𝑒 = 𝑢1𝑗 − 𝑢1𝑟 

�̇�2𝑗𝑒 = 𝑢2𝑗 − 𝑢2𝑟  

                                                  �̇�3𝑗𝑒 = 𝑞2𝑗𝑒𝑢1𝑟 + 𝑞2𝑗(𝑢1𝑗 − 𝑢1𝑟) (4.22) 
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Since the stability of system (4.22) implies the 𝑙𝑖𝑚
𝑡→∞

𝑞∗𝑗𝑒 = 𝑞∗𝑗 − 𝑞∗0 = 0, then the control problem 

is to design 𝑢1𝑗  and 𝑢2𝑗  with the knowledge of 𝑞∗𝑗 , 𝑞∗0  and 𝑢∗𝑟  such that (4.22) is globally 

exponentially stable.  

Consider 𝑢∗𝑗 in the following form  

𝑢1𝑗 = 𝑢1𝑗(𝑡, 𝑞∗𝑗, 𝑞∗0, 𝑢∗𝑟) 

𝑢2𝑗 = 𝑢2𝑗(𝑡, 𝑞∗𝑗, 𝑞∗0, 𝑢∗𝑟) 

which means the control laws utilize the state information and are thus state-feedback methods. 

Notice in (4.22) 𝑢1𝑗  can be easily designed to stabilize 𝑞1𝑗𝑒 , which means �̇�2 = 𝑓2(𝑡, 𝑥1)  is 

globally exponentially stable, �̇�1 = 𝑓1(𝑡, 𝑥2) is  

[
�̇�2𝑗𝑒

�̇�3𝑗𝑒
] = [

0 0
𝑢1𝑟 0

] [
𝑞2𝑗𝑒

𝑞3𝑗𝑒
] 

Then the chained from cascaded system is  

�̇�1 = 𝑓1(𝑡, 𝑥1) + 𝑔(𝑡, 𝑥1, 𝑥2)𝑥2 

                                                  �̇�2 = 𝑓2(𝑡, 𝑥2) (4.23) 

where 𝑥1 = [𝑞2𝑗𝑒 , 𝑞3𝑗𝑒]
𝑇 , 𝑥2 = 𝑞1𝑗𝑒 , 𝑓1(𝑡, 𝑥1) = [

0 0
𝑢1𝑟 0

] [
𝑞2𝑗𝑒

𝑞3𝑗𝑒
] ,  𝑔(𝑡, 𝑥1, 𝑥2)𝑥2 = 𝑞2𝑗(𝑢1𝑗 −

𝑢1𝑟) and 𝑓2(𝑡, 𝑥2) = 𝑢1𝑗 − 𝑢1𝑟. 

Theorem 4.4 the control laws 

𝑢1𝑗 = 𝑢1𝑟 − 𝑘1𝑞1𝑗𝑒 



50 

 

                                                   u2j = 𝑢2𝑟 − 𝑘2𝑞2𝑗𝑒 − 𝑘3𝑢1𝑟𝑞3𝑗𝑒 (4.24) 

guarantee (4.23) are globally exponentially stable, provided that 𝑘1 > 0,  𝑘2 and 𝑘3 are such that 

the polynomial  

λ2 + 𝑘2𝜆 + 𝑘3 

is Hurwitz. 

Proof  The closed-loop dynamics of (4.22) can be expressed by 𝑓1(𝑡, 𝑥1) = (𝐴(𝑡) −

𝐵𝐾(𝑡))𝑥1 , where 𝐴(𝑡) = [
0 0

𝑢1𝑟 0
] , 𝐵 = [1,0]𝑇  and 𝐾(𝑡) = [𝑘2, 𝑘3𝑢1𝑟], 𝑓2(𝑡, 𝑥2) = −𝑘1𝑥2 , 

𝑔(𝑡, 𝑥1, 𝑥2) = −𝑘1[0, 𝑞2𝑗]
𝑇. Since the reference signal 𝑢1𝑟 is persistently excited signal which is 

bounded and continuously differentiable, by Theorem 4.3 it is proved �̇�1 = 𝑓1(𝑡, 𝑥1) is globally 

exponentially stable. For the Assumption 2 in Theorem 4.1, it follows that  

||𝑔(𝑡, 𝑥1, 𝑥2)|| = ||−𝑘1[0, 𝑞2𝑟]
𝑇 − 𝑘1[0, 𝑞2𝑒]

𝑇|| 

≤ 𝑘1𝐶 + 𝑘1||[0, 𝑞2𝑒]
𝑇|| 

Then Assumption 2 holds. For the third assumption, since the closed-loop dynamics of 𝑓2(𝑡, 𝑥2) is 

�̇�2 = −𝑘1𝑥2 which is globally exponentially stable, then Assumption 3 holds.  

Notice in the control laws in (4.24), both 𝑢1𝑗 and 𝑢2𝑗 utilize the information of reference states 

𝑢∗𝑟 directly. From the communication topology it is learned that not all the vehicles could receive 

information directly from the virtual leader, which means other methods should be found to replace 

𝑢∗𝑟 while the new term should still converge to 𝑢∗𝑟. Then the distributed control algorithms on 

first-order system with time-varying reference signals in Theorem 3.2 is utilized for achieving 
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estimation of the 𝑢∗𝑟. Moreover, in order to express the communication between vehicles, the 

constant positive figure 𝑘1 in (4.24) is replaced with Laplacian Matrix from graph theory. Consider 

the communication topology for m vehicles as graph G, the adjacency matrix A and the 

corresponding Laplacian matrix L are defined as in Chapter 2. Regard the reference signals as a 

virtual vehicle agent and suppose there exists a spanning tree in the communication graph and the 

virtual agent is the root of the spanning tree, it can be proved Le (containing the virtual leader) is 

positive symmetric thus has the same effects as 𝑘1.  

Theorem 4.5 For m systems in (4.12), if there exists a spanning tree with the virtual leader vm+1 

as the root of the spanning tree, then the distributed control laws 

                                                                 𝑢1𝑗 = 𝜂1𝑗 (4.25) 

where 

                          𝜂1𝑗 = −∑ 𝑎𝑗𝑖𝑖∈𝛮𝑗
(𝑞1𝑗 − 𝑞1𝑖) − 𝑎𝑗,𝑚+1(𝑞1𝑗 − 𝑞1,𝑚+1) + 𝛿1𝑗 (4.26) 

�̇�1𝑗 = − ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝛿1𝑗 − 𝛿1𝑖) − 𝑎𝑗,𝑚+1(𝛿1𝑗 − 𝛿1,𝑚+1) − 𝜌𝑠𝑖𝑔𝑛[∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝛿1𝑗 − 𝛿1𝑖)

− 𝑎𝑗,𝑚+1(𝛿1𝑗 − 𝛿1,𝑚+1)] 

 (4.27) 

guarantee that 𝑞1𝑗 globally exponentially converge to 𝑞1,𝑚+1, for 1 ≤ 𝑗 ≤ 𝑚 

Proof  Define the tracking error 𝛿1j = 𝛿1j − 𝛿1,𝑚+1 it follows that 
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�̇�1𝑗 = ∑𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖) −

𝑚

𝑗=1

𝑎𝑖,𝑛+1𝛿1𝑗 − 𝜌𝑠𝑖𝑔𝑛 (∑ 𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿1𝑗) − �̇�1,𝑚+1 

 

By theorem 2.4 it can be proved 𝛿1j − 𝛿1,𝑚+1 globally exponentially converge to zero. Substitute 

𝑢1𝑗 in (4.25) into (4.12) it follows that 

�̇�1𝑗 = − ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝑞1𝑗 − 𝑞1𝑖) − 𝑎𝑗,𝑚+1(𝑞1𝑗 − 𝑞1,𝑚+1) + 𝛿1𝑗 

Define �̃�1𝑗 = 𝑞1𝑗 − 𝑞1,𝑚+1 then the equation above can be written in 

                            �̇̃�1𝑗 = −∑ 𝑎𝑗𝑖𝑖∈𝛮𝑗
(�̃�1𝑗 − �̃�1𝑖) − 𝑎𝑗,𝑚+1�̃�1𝑗 + 𝛿1𝑗 − �̇�1,𝑚+1 (4.28) 

With the aid of the Laplacian Matrix in graph theory, (4.28) can be written in  

                                                      �̇̃�1∗ = −(𝐿 + 𝐵)�̃�1∗ + 𝛿1∗ (4.29) 

(4.29) is a linear system (since 𝐿 + 𝐵 is a positive symmetric time-invariant matrix ) subjected to 

globally exponentially stable disturbance𝛿1∗. By Theorem 4.2, �̃�1∗ is globally exponentially stable 

thus 𝑞1𝑗 globally exponentially converge to 𝑞1,𝑚+1. 

Theorem 4.6 For m systems in (4.13)-(4.14), if there exists a spanning tree with the virtual leader 

vm+1 as the root of the spanning tree, then the distributed control laws 

                                                                     𝑢2𝑗 = 𝜂2𝑗  (4.30) 

where 
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                                                    𝜂2𝑗 = −𝑘2𝑞2𝑗 − 𝑘3𝑢1𝑗𝑞3𝑗 + 𝛿2𝑗 (4.31) 

�̇�2𝑗 = − ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝛿2𝑗 − 𝛿2𝑖) − 𝑎𝑗,𝑚+1(𝛿2𝑗 − 𝛿2,𝑚+1) − 𝛽𝑠𝑖𝑔𝑛[∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝛿2𝑗 − 𝛿2𝑖)

− 𝑎𝑗,𝑚+1(𝛿2𝑗 − 𝛿2,𝑚+1)] 

 (4.32) 

guarantee that 𝑞2𝑗  globally exponentially converge to 𝑞2,𝑚+1  and 𝑞3𝑗  globally exponentially 

converge to 𝑞3,𝑚+1,  for 1 ≤ 𝑗 ≤ 𝑚 

where  

𝛿2,𝑚+1 = 𝑢2,𝑚+1 + 𝑘2𝑞2,𝑚+1 + 𝑘3𝑢1,𝑚+1𝑞3,𝑚+1 

𝑘2, 𝑘3 are chosen such roots of polynomial λ2 + 𝑘2𝜆 + 𝑘3 are in the left-half of complex plane. 

Proof. Substitute 𝑢2𝑗 in (4.30) into (4.13) it follows that 

                                                    �̇�2𝑗 = −𝑘2𝑞2𝑗 − 𝑘3𝑢1𝑗𝑞3𝑗 + 𝛿2𝑗 (4.33) 

Define  

𝑠1𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞2𝑗 − 𝑞2𝑖) + 𝑎𝑗,𝑚+1(𝑞2𝑗 − 𝑞2,𝑚+1) 

𝑠2𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞3𝑗 − 𝑞3𝑖) + 𝑎𝑗,𝑚+1(𝑞3𝑗 − 𝑞3,𝑚+1) 

Differentiate 𝑠1𝑗, 𝑠2𝑗 along (4.31) and (4.14) it follows that 
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�̇�1𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

((−𝑘2𝑞2𝑗 − 𝑘3𝑢1𝑗𝑞3𝑗 + 𝛿2𝑗) − (−𝑘2𝑞2𝑖 − 𝑘3𝑢1𝑖𝑞3𝑖 + 𝛿2𝑖)) 

+𝑎𝑗,𝑚+1 ((−𝑘2𝑞2𝑗 − 𝑘3𝑢1𝑗𝑞3𝑗 + 𝛿2𝑗) − (−𝑘2𝑞2,𝑚+1 − 𝑘3𝑢1,𝑚+1𝑞3,𝑚+1 + 𝛿2,𝑚+1)) 

Then one has 

�̇�1𝑗 = −𝑘2 (∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞2𝑗 − 𝑞2𝑖) + 𝑎𝑗,𝑚+1(𝑞2𝑗 − 𝑞2,𝑚+1)) 

−𝑘3𝑢1,𝑚+1 (∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞3𝑗 − 𝑞3𝑖) + 𝑎𝑗,𝑚+1(𝑞3𝑗 − 𝑞3,𝑚+1)) 

+ ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝛿2𝑗 − 𝛿2𝑖) + 𝑎𝑗,𝑚+1(𝛿2𝑗 − 𝛿2,𝑚+1) 

             −𝑘3 (∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

((𝑢1𝑗 − 𝑢1,𝑚+1)𝑞3𝑗 − (𝑢1𝑗 − 𝑢1,𝑚+1)𝑞3𝑖) + (𝑢1𝑗 − 𝑢1,𝑚+1)𝑎𝑗,𝑚+1𝑞3𝑗) 

By mathematical manipulation it follows that 

�̇�1𝑗 = −𝑘2𝑠1𝑗 − 𝑘3𝑢1,𝑚+1𝑠2𝑗 + ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝛿2𝑗 − 𝛿2𝑖) + 𝑎𝑗,𝑚+1(𝛿2𝑗 − 𝛿2,𝑚+1) 

               −𝑘3 (∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

((𝑢1𝑗 − 𝑢1,𝑚+1)𝑞3𝑗 − (𝑢1𝑖 − 𝑢1,𝑚+1)𝑞3𝑖) + (𝑢1𝑗 − 𝑢1,𝑚+1)𝑎𝑗,𝑚+1𝑞3𝑗) 

 (4.34) 
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Similarly 

�̇�2𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑢1𝑗𝑞2𝑗 − 𝑢1𝑖𝑞2𝑖) + 𝑎𝑗,𝑚+1(𝑢1𝑗𝑞2𝑗 − 𝑢1,𝑚+1𝑞2,𝑚+1) 

�̇�2𝑗 = 𝑢1,𝑚+1(∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞2𝑗 − 𝑞2𝑖) + 𝑎𝑗,𝑚+1(𝑞2𝑗 − 𝑞2,𝑚+1)) 

+ ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

((𝑢1𝑗 − 𝑢1,𝑚+1)𝑞2𝑗 − (𝑢1𝑖 − 𝑢1,𝑚+1)𝑞2𝑖) + (𝑢1𝑗 − 𝑢1,𝑚+1)𝑎𝑗,𝑚+1𝑞2𝑗 

By mathematical manipulation it follows that 

�̇�2𝑗 = 𝑢1,𝑚+1𝑠1𝑗 + ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

((𝑢1𝑗 − 𝑢1,𝑚+1)𝑞2𝑗 − (𝑢1𝑖 − 𝑢1,𝑚+1)𝑞2𝑖) + (𝑢1𝑗 − 𝑢1,𝑚+1)𝑎𝑗,𝑚+1𝑞2𝑗 

 (4.35) 

Let 𝛿2j = 𝛿2𝑗 − 𝛿2,𝑚+1, �̃�1𝑗 = 𝑢1𝑗 − 𝑢1,𝑚+1, (4.34) and (4.35) can be written as 

�̇�1𝑗 = −𝑘2𝑠1𝑗 − 𝑘3𝑢1,𝑚+1𝑠2𝑗 + ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝛿2𝑗 − 𝛿2𝑖) + 𝑎𝑗,𝑚+1𝛿2𝑗 

               −𝑘3 (∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�1𝑗𝑞3𝑗 − �̃�1𝑗𝑞3𝑖) + �̃�1𝑗𝑎𝑗,𝑚+1𝑞3𝑗) 

 (4.36) 

                   �̇�2𝑗 = 𝑢1,𝑚+1𝑠1𝑗 + ∑ 𝑎𝑗𝑖𝑖∈𝑁𝑗
(�̃�1𝑗𝑞2𝑗 − �̃�1𝑗𝑞2𝑖) + �̃�1𝑗𝑎𝑗,𝑚+1𝑞2𝑗  (4.37) 
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(4.27), (4.28) and (4.32) are written in 

�̇�1𝑗 = − ∑ 𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑖,𝑚+1𝛿1𝑗 − �̇�1,𝑚+1 − 𝜌𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿1𝑗) 

 (4.38) 

                               �̇̃�1𝑗 = −∑ 𝑎𝑗𝑖𝑖∈𝛮𝑗
(�̃�1𝑗 − �̃�1𝑖) − 𝑎𝑗,𝑚+1�̃�1𝑗 + 𝛿1𝑗 (4.39) 

�̇�2𝑗 = − ∑ 𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑖,𝑚+1𝛿2𝑗 − �̇�2,𝑚+1 − 𝛽𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿2𝑗) 

 (4.40) 

Define  

𝑥1 = [[𝑠11, 𝑠21], [𝑠12, 𝑠22], … , [𝑠1𝑚, 𝑠2𝑚]] 

𝑥2 = [[𝛿21, �̃�11, 𝛿11], [𝛿22, �̃�12, 𝛿12], … , [𝛿2𝑚, �̃�1𝑚, 𝛿1𝑚]] 

 

Then it follows that 

𝑓1𝑗 = [
−𝑘2 −𝑘3𝑢1,𝑚+1

𝑢1,𝑚+1 0
] [

𝑠1𝑗

𝑠2𝑗
] 

𝑓1(𝑡, 𝑥1) = [𝑓11, … , 𝑓1𝑚] 
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𝑓2𝑗 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 − ∑ 𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖) − 𝑎𝑖,𝑚+1𝛿2𝑗

𝑖∈𝑁𝑗

−𝛽𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿2𝑗) − �̇�2,𝑚+1

− ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(�̃�1𝑗 − �̃�1𝑖) − 𝑎𝑗,𝑚+1�̃�1𝑗 + 𝛿1𝑗

− ∑ 𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑖,𝑚+1𝛿1𝑗

−𝜌𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿1𝑗)−�̇�1,𝑚+1

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑓2(𝑡, 𝑥2) = [𝑓21, 𝑓22, … , 𝑓2𝑚] 

𝑔𝑗 =

[
 
 
 
 
 
 
 
 ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝛿2𝑗 − 𝛿2𝑖) + 𝑎𝑗,𝑚+1𝛿2𝑗

−𝑘3 (∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�1𝑗𝑞3𝑗 − �̃�1𝑗𝑞3𝑖) + �̃�1𝑗𝑎𝑗,𝑚+1𝑞3𝑗)

∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�1𝑗𝑞2𝑗 − �̃�1𝑗𝑞2𝑖) + �̃�1𝑗𝑎𝑗,𝑚+1𝑞2𝑗

]
 
 
 
 
 
 
 
 

 

𝑔(𝑡, 𝑥1, 𝑥2)𝑥2 = [𝑔1, 𝑔2, … , 𝑔𝑚] 

 

By Theorem 2.4 it can be proved 𝛿2𝑗 = 𝛿2𝑗 − 𝛿2,𝑚+1 globally exponentially converge to 

zero, which implies  

− ∑ 𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑖,𝑚+1𝛿2𝑗 − �̇�2,𝑚+1 − 𝛽𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿2𝑗) 

globally exponentially converge to zero. 
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By theorem 4.5 �̃�1𝑗 = 𝑞1𝑗 − 𝑞1,𝑚+1  and 𝛿1𝑗 = 𝛿1𝑗 − 𝛿1,𝑚+1  globally exponentially 

converge to zero, which implies 

− ∑ 𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑖,𝑚+1𝛿1𝑗 − �̇�1,𝑚+1 − 𝜌𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿1𝑗) 

globally exponentially converge to zero, and  

− ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(�̃�1𝑗 − �̃�1𝑖) − 𝑎𝑗,𝑚+1�̃�1𝑗 + 𝛿1𝑗 

globally exponentially converge to zero. From the definition of 𝑓2𝑗, then system ẋ2 = 𝑓2(𝑡, 𝑥2) is 

exponentially stable,the third assumption in Theorem 4.1 holds. Since 𝑓1𝑗 have the same form as 

(4.24), by theorem 4.3 ẋ1 = 𝑓1(𝑡, 𝑥1) is exponentially stable, then the first assumption in Theorem 

4.1 holds. From the definition of 𝑔𝑗, it can be proved the second assumption in Theorem 4.1 holds, 

which means 𝑥1 = [[𝑠11, 𝑠21], [𝑠12, 𝑠22], … , [𝑠1𝑚, 𝑠2𝑚]] is globally exponentially stable. From the 

definition of 𝑠1𝑗 and 𝑠2𝑗 one has 

𝑠1𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞2𝑗 − 𝑞2𝑖) + 𝑎𝑗,𝑚+1(𝑞2𝑗 − 𝑞2,𝑚+1) 

= ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�2𝑗 − �̃�2𝑖) + 𝑎𝑗,𝑚+1�̃�2𝑗 

= (𝐿 + 𝐵)�̃�2𝑗 

Since (𝐿 + 𝐵)  is positive symmetric matrix then 𝑞2𝑗 − 𝑞2,𝑚+1 = �̃�2𝑗 = (𝐿 + 𝐵)−1𝑠1𝑗  globally 

exponentially converge to zero,  

𝑠2𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞3𝑗 − 𝑞2𝑖) + 𝑎𝑗,𝑚+1(𝑞3𝑗 − 𝑞3,𝑚+1) 
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= ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�3𝑗 − �̃�3𝑖) + 𝑎𝑗,𝑚+1�̃�3𝑗 

= (𝐿 + 𝐵)�̃�3𝑗 

 

Similarly, 𝑞3𝑗 − 𝑞3,𝑚+1 = �̃�3𝑗 = (𝐿 + 𝐵)−1𝑠2𝑗 globally exponentially converge to zero. 

Theorem 4.7 For m systems in (4.12)-(4.14), if there exists a spanning tree with the virtual leader 

vm+1 as the root of the spanning tree, then the distributed control law (4.25) and (4.30) guarantee 

that (4.8)-(4.11) hold.  

Proof  By Theorem 4.5, control laws in (4.25) ensure 𝑞1𝑗 globally exponentially converge 

to 𝑞1,𝑚+1. By Theorem 4.6, control laws in (4.30) ensure 𝑞2𝑗 globally exponentially converge to 

𝑞2,𝑚+1 and 𝑞3𝑗 globally exponentially converge to 𝑞3,𝑚+1. By Lemma 4.1, (4.8)-(4.11) hold.  

4.5 Simulation I 

To show the effectiveness of proposed control algorithms in Section 4.4 for vehicles 

kinematics, simulation is done for five identical unicycles. Robot models are as shown in Figure 

4.1. The desired pattern and communication graph are shown in Figure 4.4 and Figure 4.5.  

In Figure 4.4, it is assumed there are four identical car-like mobile robots. The desired 

formation of the five robots is assumed to be a  regular pentagon with each side exactly identical. 

The sum of the internal angles is 540 degree, all sides have equal length and each interior angle is 

108 degree. The diagnosis in this case is 0.5.  

Figure 4.5 represents the communication graph of the five robots, v0 is assumed to be the 

virtual leader, from the communication topology it is learned that only v1 can receive information 
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directly from the desired trajectory, other follower robots communicate with the leader indirectly. 

It can be also proved a spanning tree exist in the communication graph in Figure 4.5 with the 

virtual leader as the root of the spanning tree. 

Figure 4.4 is the desired formation. 

0.5

y

x

Figure 4.4 Desired formation of five vehicles I 
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Figure 4.5 is the communication graph. 

V1

V2

V3

V4

V5

V0

 

Figure 4.5 Information exchange topology I  

For the five vehicles’ kinematic systems, Figure 4.6 represents the centroid of 𝑥𝑗 (1≤ 𝑗 ≤5) 

and the desired trajectory 𝑥0. Figure 4.7 represents the centroid of 𝑦𝑗 (1≤ 𝑗 ≤5) and the desired 

trajectory 𝑦0 . Figure 4.8 represents (𝜃0 − 𝜃𝑗 ) (1≤ j ≤5). Figure 4.9 represents the formation 

tracking of five follower robots.  
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Figure 4.6 is the convergence results of 𝑥𝑗. 

 

Figure 4.6 The centroid of 𝑥𝑗 (1≤ 𝑗 ≤5) and the desired trajectory 𝑥0 
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Figure 4.7 is the convergence result of 𝑦𝑗. 

 

Figure 4.7 The centroid of 𝑦𝑗 (1≤ 𝑗 ≤5) and the desired trajectory 𝑦0 
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Figure 4.8 is the convergence result of 𝜃𝑗 . 

 

Figure 4.8 𝜃𝑗 − 𝜃0 (1≤ 𝑗 ≤5) 
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Figure 4.9 is the formation tracking of multi-vehicle system. 

 

Figure 4.9 Formation tracking of five follower robots I 

4.6 Novel Distributed Controllers of Vehicle Kinematics 

In Section 4.4, distributed formation tracking control algorithms are proposed based on 

transformed chained-form structures. The chained-form systems are rewritten in a cascaded form 

in (4.19). Exponential stability theorem is utilized to stabilize the chained-from systems thus the 

original vehicle kinematics converges to the reference trajectory exponentially.  
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In this section, modified kinematic controllers are designed. Firstly, the following lemma 

is proposed.  

Lemma 4.3 For the system  

                                                        �̇� = −𝜑1(𝑡)
2𝛿 + 𝜑2(𝑡) (4.41) 

where 𝜑1(𝑡) is a PE signal, if 𝜑2(𝑡) is bounded and converges to zero, then 𝛿 converges to zero. 

Notice in the chained-form systems (4.12)-(4.14). Since (4.12) and (4.13) are first-order 

linear systems, it is easy to stabilize them by linear feedback control laws. However, (4.14) has a 

nonlinear structure, stability of (4.12) and (4.13) cannot ensure the stability of (4.14). Further 

variable transformations require to be implemented in order to stabilize 𝑞3𝑗. 

Consider the following variable transformations,  

                                                               𝑧∗𝑗 = 𝑞∗𝑗 − 𝜇∗𝑗 (4.42) 

where 𝑞∗𝑗 = [𝑞1𝑗 , 𝑞2𝑗 , 𝑞3𝑗] are defined in (4.12)-(4.13). 

 𝜇∗𝑗 = [𝜇1𝑗 , 𝜇2𝑗, 𝜇3𝑗], where 𝜇1𝑗 = 𝜇3𝑗 = 0, 𝜇2𝑗 = −𝑘𝑢𝑢1𝑗𝑧3𝑗, 𝑘𝑢 is a positive constant.  

By (4.39), the chained-form system in (4.12)-(4.13) is transformed into 

                                                                �̇�1𝑗 = 𝑢1𝑗 (4.43) 

                                             �̇�2𝑗 = 𝑢2𝑗 + 𝑘𝑢(�̇�1𝑗𝑧3𝑗 + �̇�3𝑗𝑢1𝑗) (4.44)  

                                                     �̇�3𝑗 = −𝑘𝑢𝑢1𝑗
2 𝑧3𝑗 + 𝑢1𝑗𝑧2𝑗 (4.45) 

Similarly, the chained-form reference trajectory is also transformed into 
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                                                               �̇�10 = 𝑢10 (4.46) 

                                            �̇�20 = 𝑢20 + 𝑘𝑢(�̇�10𝑧30 + �̇�30𝑢10) (4.47)  

                                                    �̇�30 = −𝑘𝑢𝑢10
2 𝑧30 + 𝑢10𝑧20 (4.48) 

Compared with the chained-form systems in (4.12)-(4.13), (4.43) has the same structure as 

(4.12). Since the nonlinear term in (4.44) can be removed by state feedback, (4.44) can be 

stabilized by the control methods of (4.13). (4.45) has the same structure as (4.41) in Lemma 4.3. 

If (4.43) and (4.44) are stabilized to (4.46) and (4.47), when 𝑢1𝑗  is PE signal, (4.42) can be 

stabilized to (4.45). 

Before the distributed control algorithms for (4.43) to (4.45) are designed, the equivalence 

between consensus of systems in (4.43)-(4.45) and control goals in (4.8)-(4.11) is proved.  

Lemma 4.4 For the transformed systems in (4.43) - (4.45), if 

                                                          𝑙𝑖𝑚
𝑡→∞

( 𝑧1𝑗 − 𝑧10) = 0 (4.49) 

                                                          𝑙𝑖𝑚
𝑡→∞

( 𝑧2𝑗 − 𝑧20) = 0 (4.50) 

                                                          𝑙𝑖𝑚
𝑡→∞

( 𝑧3𝑗 − 𝑧30) = 0 (4.51) 

                                                         𝑙𝑖𝑚
𝑡→∞

( 𝑢1𝑗 − 𝑢10) = 0 (4.52) 

then (4.8)-(4.11) hold. 

Proof  

lim
𝑡→∞

(𝑞1𝑗 − 𝑞10) = lim
𝑡→∞

(𝑧1𝑗 + 𝜇1𝑗 − 𝑧10 − 𝜇10) 
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lim
𝑡→∞

(𝑞1𝑗 − 𝑞10) = lim
𝑡→∞

(𝑧1𝑗 − 𝑧10) 

lim
𝑡→∞

(𝑞3𝑗 − 𝑞30) = lim
𝑡→∞

(𝑧3𝑗 + 𝜇3𝑗 − 𝑧30 − 𝜇30) 

lim
𝑡→∞

(𝑞3𝑗 − 𝑞30) = lim
𝑡→∞

(𝑧3𝑗 − 𝑧30) 

lim
𝑡→∞

(𝑞2𝑗 − 𝑞20) = lim
𝑡→∞

(𝑧2𝑗 + 𝜇2𝑗 − 𝑧20 − 𝜇20) 

lim
𝑡→∞

(𝑞2𝑗 − 𝑞20) = lim
𝑡→∞

(𝑧2𝑗 − 𝑘𝑢𝑢1𝑗𝑧3𝑗 − 𝑧20 + 𝑘𝑢𝑢10𝑧30) 

Notice when lim
t→∞

( z3j − z30) = 0, lim
t→∞

( u1j − u10) = 0,  

lim (
𝑡→∞

𝑘𝑢𝑢1𝑗𝑧3𝑗 − 𝑘𝑢𝑢10𝑧30) = 0 

which means  

lim
𝑡→∞

(𝑞2𝑗 − 𝑞20) = lim
𝑡→∞

(𝑧2𝑗 − 𝑧20) 

Then it follows that 

𝑙𝑖𝑚
𝑡→∞

[

𝑧1𝑗 − 𝑧10

𝑧2𝑗 − 𝑧20

𝑧3𝑗 − 𝑧30

] = 𝑙𝑖𝑚
𝑡→∞

[

𝑞1𝑗 − 𝑞10

𝑞2𝑗 − 𝑞20

𝑞3𝑗 − 𝑞30

] 

By Lemma 4.1, (4.8)-(4.11) hold. 

From Lemma 4.4, it is learned that the control goal is to design 𝑢∗𝑗 = [𝑢1𝑗 , 𝑢2𝑗] for the 

transformed systems in (4.43)-(4.45) such that  

𝑙𝑖𝑚
𝑡→∞

( 𝑧1𝑗 − 𝑧10) = 0 



69 

 

𝑙𝑖𝑚
𝑡→∞

( 𝑧2𝑗 − 𝑧20) = 0 

𝑙𝑖𝑚
𝑡→∞

( 𝑧3𝑗 − 𝑧30) = 0 

From Lemma 4.3, it is learned if 𝜑2(𝑡)  is bounded and converges to zero, 𝜑1(𝑡)  is a 

persistently excited signal, then 𝛿 is asymptotically stable. Notice (4.42) has the same structure as 

(4.38). If 𝑢1𝑗𝑧2𝑗 is bounded and converges to zero, 𝑢1𝑗 is a persistently excited signal, then 𝑧3𝑗 

can be stabilized. 

Assumption 4 
𝑑𝑖𝑢10

𝑑𝑡𝑖  (0 ≤ i ≤ 2) is bounded and  

∫ 𝑢10
2

𝑡+𝑇

𝑡

(𝜏)𝑑𝜏 > 𝛼 

for some 𝛼 > 0 and 𝑇 > 0. 

Assumption 4 implies 𝑢10 is a persistently excited signal. 

Lemma 4.5 For the m systems in (4.40)-(4.42), under Assumption 4, if 

𝑙𝑖𝑚
𝑡→∞

( 𝑧2𝑗 − 𝑧20) = 0 

𝑙𝑖𝑚
𝑡→∞

( 𝑢1𝑗 − 𝑢10) = 0 

then  

𝑙𝑖𝑚
𝑡→∞

( 𝑧3𝑗 − 𝑧30) = 0. 

Proof  Subtract (4.42) by (4.45), it follows that  
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�̇�3𝑗 − �̇�30 = −(𝑘𝑢𝑢1𝑗
2 𝑧3𝑗 − 𝑘𝑢𝑢10

2 𝑧30) + 𝑢1𝑗𝑧2𝑗 − 𝑢10𝑧20 

�̇�3𝑗 − �̇�30 = −𝑘𝑢𝑢1𝑗
2 (𝑧3𝑗 − 𝑧30) − 𝑘𝑢(𝑢1𝑗

2 − 𝑢10
2 )𝑧30 + 𝑢1𝑗𝑧2𝑗 − 𝑢10𝑧20 

Denote �̃�3𝑗 = 𝑧3𝑗 − 𝑧30, one has 

�̇̃�3𝑗 = −𝑘𝑢𝑢1𝑗
2 �̃�3𝑗 − 𝑘𝑢(𝑢1𝑗

2 − 𝑢10
2 )𝑧30 + 𝑢1𝑗𝑧2𝑗 − 𝑢10𝑧20 

Since 𝑙𝑖𝑚
𝑡→∞

( 𝑧2𝑗 − 𝑧20) = 0, 𝑙𝑖𝑚
𝑡→∞

( 𝑢1𝑗 − 𝑢10) = 0 and 𝑧30 is bounded, then 

−𝑘𝑢(𝑢1𝑗
2 − 𝑢10

2 )𝑧30 + 𝑢1𝑗𝑧2𝑗 − 𝑢10𝑧20 

is bounded and converge to zero. 𝑢1𝑗 is a PE signal, then by Lemma 4.3, �̃�3𝑗 is asymptotically 

stable.  

Since the consensus with 𝑧20  for 𝑧2𝑗  can ensure that 𝑧3𝑗  converges to 𝑧30 , then by 

designing control laws for 𝑧2𝑗 and 𝑧1𝑗, the control goals in (4.49)-(4.52) can be achieved. 

Theorem 4.8 For the m systems in (4.43), if there exists a spanning tree with the virtual leader 

vm+1 as the root of the spanning tree, then the distributed control laws 

                                                                   𝑢1𝑗 = 𝜂1𝑗 (4.53) 

where 

                                                           𝜂1𝑗 = −𝛼1𝑧1𝑗 + 𝜁1𝑗  (4.54) 
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𝜁1̇𝑗 = − ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝜁1𝑗 − 𝜁1𝑖) − 𝑎𝑗,𝑚+1(𝜁1𝑗 − 𝜁10)

− 𝜌1𝑠𝑖𝑔𝑛 [∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝜁1𝑗 − 𝜁1𝑖) − 𝑎𝑗,𝑚+1(𝜁1𝑗 − 𝜁10)] 

 (4.55) 

guarantee that  

𝑙𝑖𝑚
𝑡→∞

( 𝑧1𝑗 − 𝑧10) = 0 

𝑙𝑖𝑚
𝑡→∞

( 𝑢1𝑗 − 𝑢10) = 0 

for 1 ≤ j ≤ m, where 𝑎𝑗,𝑚+1 = 1 if the virtual leader is available to vehicle vj, otherwise 𝑎𝑗,𝑚+1 =

0. α1 is a positive constant, 𝜁10 = 𝑢10 + 𝛼1𝑧10. 

Proof  (4.55) is rewritten by  

𝜁1̇∗ = −𝐿𝜁1∗ − 𝐵(𝜁1∗ − 𝜁10𝟏) − 𝜌1𝑠𝑖𝑔𝑛(𝐿𝜁1∗ + 𝐵(𝜁1∗ − 𝜁10𝟏)) 

where 𝜁1∗ = [𝜁11, 𝜁12, … , 𝜁1𝑚], 𝐵 = 𝑑𝑖𝑎𝑔(𝑎1,𝑚+1, 𝑎2,𝑚+1, … , 𝑎𝑚,𝑚+1). 

Let 𝜁1𝑗 = 𝜁1𝑗 − 𝜁10, it follows that  

𝜁̇1∗ = −(𝐿 + 𝐵)𝜁1∗ − 𝜌1𝑠𝑖𝑔𝑛 ((𝐿 + 𝐵)𝜁1∗) − 𝜁1̇0 

By Theorem 3.4, it is known when 𝜌1 satisfies 

𝜌1 ≥
||(𝐿 + 𝐵)−1|||𝜁1̇0|

𝜖
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where 𝜖 is the minimum eigenvalue of (𝐿 + 𝐵)−1, then 𝜁1𝑗 exponentially converges to 𝜁10 for 1 ≤

𝑗 ≤ 𝑚.  

Choose a nonnegative symmetric function 𝑉𝑧 = ∑
1

2
�̃�1𝑗

2𝑚
𝑗=1 . Differentiate 𝑉𝑧 along (4.54), it 

follows that 

�̇�𝑧 = −𝛼1�̃�1∗
2 + �̃�1∗𝜁1∗ 

�̇�𝑧 ≤ −𝛼1�̃�1∗
2 + ||�̃�1∗|| ||𝜁1∗|| 

= −2𝛼1𝑉𝑧 + ||𝜁1∗||√2𝑉𝑧 

Choose 𝑉2 = √𝑉𝑧, one has 

�̇�2 ≤ −𝛼1𝑉2 +
1

√2
||𝜁1∗|| 

Then 𝑉2 is exponentially stable, which implies 𝑧1𝑗 exponentially converges to 𝑧10 for 1 ≤ 𝑗 ≤ 𝑚. 

By (4.50), it is known  

𝑙𝑖𝑚
𝑡→∞

( 𝑢1𝑗 − 𝑢10) = 𝑙𝑖𝑚
𝑡→∞

(−𝛼1𝑧1𝑗 + 𝜁1𝑗 − 𝑢10) 

Since 𝜁1𝑗 exponentially converges to 𝜁10, then 

𝑙𝑖𝑚
𝑡→∞

(−𝛼1𝑧1𝑗 + 𝜁1𝑗 − 𝑢10) = 𝑙𝑖𝑚
𝑡→∞

(−𝛼1𝑧1𝑗 + 𝑢10 + 𝛼1𝑧10 − 𝑢10) 

= −𝑙𝑖𝑚
𝑡→∞

( 𝛼1(𝑧1𝑗 − 𝑧10)) 

Since 𝑙𝑖𝑚
𝑡→∞

( 𝑧1𝑗 − 𝑧10) = 0.It can be proved that 𝑙𝑖𝑚
𝑡→∞

( 𝑢1𝑗 − 𝑢10) = 0. 
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Theorem 4.9 For the m systems in (4.44)-(4.45), if there exists a spanning tree with the virtual 

leader vm+1 as the root of the spanning tree, then the distributed control laws 

                                                                    𝑢2𝑗 = 𝜂2𝑗  (4.56) 

where  

𝜂2𝑗 = − ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝑧2𝑗 − 𝑧2𝑖) − 𝑎𝑗,𝑚+1(𝑧2𝑗 − 𝑧20)

− 𝜌2𝑠𝑖𝑔𝑛 [∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝑧2𝑗 − 𝑧2𝑖) − 𝑎𝑗,𝑚+1(𝑧2𝑗 − 𝑧20)] − 𝑘𝑢(�̇�1𝑗𝑧3𝑗 + �̇�3𝑗𝑢1𝑗) 

 (4.57) 

guarantee that  

𝑙𝑖𝑚
𝑡→∞

( 𝑧2𝑗 − 𝑧20) = 0 

for 1 ≤ j ≤ m, where 𝑎𝑗,𝑚+1 = 1 if the virtual leader is available to vehicle vj, otherwise 𝑎𝑗,𝑚+1 =

0. 

Proof  Substitute 𝑢2𝑗 in (4.56) into (4.44) one has  

�̇�2∗ = −𝐿𝑧2∗ − 𝐵(𝑧2∗ − 𝑧20𝟏) − 𝜌2𝑠𝑖𝑔𝑛(𝐿𝑧2∗ + 𝐵(𝑧2∗ − 𝑧20𝟏)) 

where 𝑧2∗ = [𝑧21, 𝑧22, … , 𝑧2𝑚], 𝐵 = 𝑑𝑖𝑎𝑔(𝑎1,𝑚+1, 𝑎2,𝑚+1, … , 𝑎𝑚,𝑚+1). 

Let �̃�2𝑗 = 𝑧2𝑗 − 𝑧20, it follows that  

�̇̃�2∗ = −(𝐿 + 𝐵)�̃�2∗ − 𝜌2𝑠𝑖𝑔𝑛((𝐿 + 𝐵)�̃�2∗) − �̇�20 
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By Theorem 3.4, it is known when 𝜌2 satisfies 

𝜌2 ≥
||(𝐿 + 𝐵)−1|||�̇�20|

𝜖
 

where 𝜖 is the minimum eigenvalue of (𝐿 + 𝐵)−1, then 𝑧2𝑗 exponentially converges to 𝑧20 for 1 ≤

𝑗 ≤ 𝑚.  

Theorem 4.10 For the m systems in (4.43)-(4.45), if there exists a spanning tree with the virtual 

leader vm+1 as the root of the spanning tree, then the distributed control laws in (4.53) and (4.56) 

guarantee that the control goals in (4.8)-(4.11) hold. 

Proof By Theorem 4.8 𝑙𝑖𝑚
𝑡→∞

( 𝑧1𝑗 − 𝑧10) = 0 , 𝑙𝑖𝑚
𝑡→∞

( 𝑢1𝑗 − 𝑢10) = 0 . By Theorem 4.9, 

𝑙𝑖𝑚
𝑡→∞

( 𝑧2𝑗 − 𝑧20) = 0. By Lemma 4.5, 𝑙𝑖𝑚
𝑡→∞

( 𝑧3𝑗 − 𝑧30) = 0. By Lemma 4.4, the control goals in 

(4.8)-(4.11) hold. 

4.7 Simulation II 

To show the effectiveness of proposed control algorithms in Section 4.6 for vehicles 

kinematics, simulation is done for four identical unicycles. The desired pattern and communication 

graph are shown in Figure 4.10 and Figure 4.11. The reference trajectory is  

(𝑥0, 𝑦0, 𝜃0) = (2𝑠𝑖𝑛(0.5𝑡), −2𝑐𝑜𝑠(0.5𝑡), 0.5𝑡) 

In Figure 4.10, it is assumed there are five identical car-like mobile robots. The desired 

formation of the five robots is assumed to be a regular pentagon with each side exactly identical. 

The sum of the internal angles is 540 degree, all sides have equal length and each interior angle is 

108 degree. The diagnosis in this case is 0.5.  
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Figure 4.11 represents the communication graph of the five robots, v0 is assumed to be the 

virtual leader, from the communication topology it is learned that only v1 can receive information 

directly from the desired trajectory, other follower robots communicate with the leader indirectly. 

Unlike the communication topology in Figure 4.5, in Figure 4.11, the communication pattern 

between follower vehicles is changed but it can be also proved a spanning tree exist in the 

communication graph in Figure 4.11 with the virtual leader as the root of the spanning tree. 

0.5

y

x

 

Figure 4.10 Desired formation of five vehicles II 
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Figure 4.11 is the communication graph.  

 

V1

V2

V3

V4

V5

V0

Figure 4.11 Information exchange topology II 

For the five vehicles’ kinematic systems, Figure 4.12 represents the centroid of 𝑥𝑗  (1≤

𝑗 ≤5) and the desired trajectory x0. Figure 4.13 represents the centroid of 𝑦𝑗 (1≤ 𝑗 ≤5) and the 

desired trajectory 𝑦0 . Figure 4.14 represents (𝜃0 − 𝜃𝑗 ) (1≤ j ≤5). Figure 4.15 represents the 

formation tracking of five follower robots.  
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Figure 4.12 is the convergence result of 𝑥𝑖. 

 

 

Figure 4.12 The centroid of 𝑥𝑖 (1≤ 𝑖 ≤5) and the desired trajectory 𝑥0 
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Figure 4.13 is the convergence result of 𝑦𝑖. 

 

 

Figure 4.13 The centroid of 𝑦𝑖 (1≤ 𝑖 ≤5) and the desired trajectory 𝑦0 
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Figure 4.14 is the convergence result of 𝜃𝑖. 

 

 

Figure 4.14 𝜃𝑖 − 𝜃0 (1≤ 𝑖 ≤5) 
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Figure 4.15 is the formation tracking of multi-vehicle system. 

 

 

Figure 4.15 Formation tracking of five follower robots II 

 

4.8 Summary 

In this chapter, distributed formation tracking control of multiple wheeled robots is 

discussed. The reference trajectory is considered as sinusoidal signals which are persistently 

excited. Cooperative formation tracking is achieved with the aid of cascaded system stability 
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theorem and graph theory. Variable transformation is utilized to transfer the original nonlinear 

kinematics into chained-form system. Stability of chained-form system is proved to guarantee the 

stability of original kinematics. 

Thus, consensus of the multiple chained-form systems guarantees the formation tracking 

of multiple robots. In Section 4.4, the chained-form systems are rewritten in cascaded form such 

that the exponential stability theory of cascade systems could be utilized to stabilize the 

transformed systems. In Section 4.6, variable transformations are further implemented onto the 

chained-form systems such that formation tracking is realized with the aid of the novel distributed 

consensus algorithm on multiple first-order systems and Lemma 4.3. Both algorithms solve the 

multivehicle formation tracking problem. Compared with distributed kinematic controllers in 

(4.50)-(4.52), (4.25),(4.26) and (4.29),(4.30) are much more concise since the control laws are 

designed only for the chained-form systems while the controllers in Section 4.6 are implemented 

on the transformed chained-form systems. Moreover, Derivative terms are removed since in real-

life operations these data information cannot be acquired by the sensors.  
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CHAPTER V 

 

 

COOPERATIVE FORMATION TRACKING CONTROL OF MULTIPLE 

 

 

DYNAMIC VEHICLES 

 

 

In Chapter IV, kinematic model of car-like robot is studied and control algorithms for 

kinematic system are proposed. However, in practical application the torques generated by vehicle 

engines actually control the motions of vehicles, then it is necessary to consider the dynamic 

models of vehicles with respect to control torques. Vehicle dynamics is derived with the aid of 

Euler-Lagrangian equations and distributed formation tracking control methods are designed for 

multiple vehicles of dynamic systems. Two cases of dynamics of without parametric uncertainties 

and with parametric uncertainties are both addressed considering in real-life operations the 

physical quantities might not be available precisely. The dynamic controllers are based on 

kinematic controllers in Section 4.4, Section 4.6 and backstepping methods. Considering that time-

switching communication topology occurs in real-life operation due to vehicle disability and 

communication link breakage, a special case of time-varying communication graph is addressed 

and distributed consensus control laws are proposed under certain assumptions of the switching 

graph. 
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5.1 Dynamics of Vehicle 

Consider unicycle vehicle model in Figure 4.1, for vehicle 𝑣𝑗 , the kinetic energy is 

𝐾𝑗 =
1

2
𝑚𝑗(�̇�𝑗

2 + �̇�𝑗
2) +

1

2
𝐼𝑗�̇�𝑗

2
 

where �̇�𝑗  and �̇�𝑗  are translational velocities with respect to x-axis and y-axis respectively, �̇�𝑗  is 

rotational velocity, 𝑚 is mass of the vehicle and 𝐼𝑗  is moment of inertia. Potential energy𝑃𝑗  is 

considered zero as the plane on which the vehicles drive is regarded as zero potential energy 

surface, then the Lagrangian equation for the vehicle dynamics is  

𝐿𝑗 = 𝑘𝑗 − 𝑃𝑗 =
1

2
𝑚𝑗(�̇�𝑗

2 + �̇�𝑗
2) +

1

2
𝐼𝑗�̇�𝑗

2
 

By definition of Euler-Lagrange equation it follows that 

𝑑

𝑑𝑡

𝜕𝐿𝑗

𝜕�̇�𝑗
−

𝜕𝐿𝑗

𝜕𝑥𝑗
= 𝑓𝑗𝑥 

𝑑

𝑑𝑡

𝜕𝐿𝑗

𝜕�̇�𝑗
−

𝜕𝐿𝑗

𝜕𝑦𝑗
= 𝑓𝑗𝑦 

𝑑

𝑑𝑡

𝜕𝐿𝑗

𝜕�̇�𝑗

−
𝜕𝐿𝑗

𝜕𝜃𝑗
= 𝑓𝑗𝜃 

𝑚𝑗�̈�𝑗 =
𝜏1𝑗

𝑅1𝑗
𝑐𝑜𝑠 𝜃𝑗 +

𝜏2𝑗

𝑅2𝑗
𝑐𝑜𝑠 𝜃𝑗 + 𝜆𝑗𝑠𝑖𝑛𝜃𝑗  

𝑚𝑗�̈�𝑗 =
𝜏1

𝑅1
𝑠𝑖𝑛 𝜃𝑗 +

𝜏2𝑗

𝑅2𝑗
𝑠𝑖𝑛 𝜃𝑗 − 𝜆𝑗𝑐𝑜𝑠𝜃𝑗 

                                            𝐼𝑗�̈�𝑗 =
𝜏1𝑗

𝑅1𝑗
−

𝜏2𝑗

𝑅2𝑗
 (5.1) 
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where 𝜏∗𝑗 = [𝜏1𝑗,𝜏2𝑗] are drive torques implemented on two wheels respectively. 𝑅1𝑗 and 𝑅2𝑗 are 

radius of two wheels, 𝜆𝑗 is nonholonomic constraint force.  

Define 𝑞∗𝑗 = [𝑥𝑗 , 𝑦𝑗 , 𝜃𝑗] can be expressed as 

                   𝑀𝑗(𝑞∗𝑗)�̈�∗𝑗 + 𝐶𝑗(𝑞∗𝑗 , �̇�∗𝑗)�̇�∗𝑗 + 𝐺𝑗(𝑞∗𝑗) = 𝐵𝑗(𝑞∗𝑗)𝜏∗𝑗 + 𝐽𝑗
𝑇(𝑞∗𝑗)𝜆𝑗 (5.2) 

where 𝑀𝑗(𝑞∗𝑗) = [

𝑚𝑗 0 0

0 𝑚𝑗 0

0 0 𝐼𝑗

], 𝐶𝑗 represents Centripetal and Coriolis force, 𝐺𝑗 is gravitational 

force, both 𝐶𝑗 and 𝐺𝑗 are three-order null matrix,  

𝐵𝑗(𝑞∗𝑗) =

[
 
 
 
 
 
 
𝑐𝑜𝑠 𝜃𝑗

𝑅1𝑗

𝑐𝑜𝑠 𝜃𝑗

𝑅2𝑗

𝑠𝑖𝑛 𝜃𝑗

𝑅1𝑗

𝑠𝑖𝑛 𝜃𝑗

𝑅2𝑗

1

𝑅1𝑗

1

𝑅2𝑗 ]
 
 
 
 
 
 

 

𝐼𝑗 = [𝑠𝑖𝑛𝜃𝑗 , − 𝑐𝑜𝑠 𝜃𝑗 , 0]𝑇 

The nonholonomic constraints are defined as  

[𝑠𝑖𝑛𝜃𝑗 , − 𝑐𝑜𝑠 𝜃𝑗 , 0]𝑞∗𝑗 = 0 

Notice on the right hand of (5.2) the nonholonomic constraints [𝑠𝑖𝑛𝜃𝑗 , − 𝑐𝑜𝑠 𝜃𝑗 , 0]𝑇𝜆𝑗 has nothing 

to do with the control torques, the disturbance term should be removed for control design of 𝜏∗𝑗.  

Define the velocity vector 𝑣∗𝑗 = [𝑣1, 𝑣2]  with 𝑣1  its translational velocity and 𝑣2  its 

rotational velocity, it follows that  
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                                                 �̇�∗𝑗 = 𝑔(𝑞∗𝑗)𝑣∗𝑗 = [
𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0
0 1

] [
𝑣1

𝑣2
] (5.3) 

Notice that  

𝐽𝑗
𝑇 ∗ 𝑔(𝑞∗𝑗) = [𝑠𝑖𝑛𝜃𝑗 , − 𝑐𝑜𝑠 𝜃𝑗 , 0] ∗ [

𝑐𝑜𝑠𝜃𝑗 0

𝑠𝑖𝑛𝜃𝑗 0

0 1

] = [
0
0
] 

Then the nonholonomic constraints 𝐽𝑗
𝑇(𝑞∗𝑗)𝜆𝑗 can be removed by substituting 𝑞∗𝑗 in (5.2) with 

𝑣∗𝑗 in (5.3), it follows that  

𝑀𝑗(𝑞∗𝑗)𝑔(𝑞∗𝑗)�̇�∗𝑗 + 𝑀𝑗(𝑞∗𝑗)�̇�(𝑞∗𝑗)𝑣∗𝑗 + 𝐶𝑗(𝑞∗𝑗 , �̇�∗𝑗)𝑔(𝑞∗𝑗)𝑣∗𝑗 + 𝐺𝑗(𝑞∗𝑗) = 𝐵𝑗(𝑞∗𝑗)𝜏 (5.4) 

By multiplying 𝑔𝑇(𝑞∗𝑗) on both sides of (5.4) one has 

                                 �̅�𝑗(𝑞∗𝑗)�̇�∗𝑗 + 𝐶�̅�(𝑞∗𝑗, �̇�∗𝑗)𝑣∗𝑗 + �̅�𝑗(𝑞∗𝑗) = �̅�𝑗(𝑞∗𝑗)𝜏 (5.5) 

where 

�̅�𝑗(𝑞∗𝑗) = 𝑔𝑇(𝑞∗𝑗)𝑀𝑗(𝑞∗𝑗)𝑔(𝑞∗𝑗) 

𝐶�̅�(𝑞∗𝑗, �̇�∗𝑗) = 𝑔𝑇(𝑞∗𝑗)𝑀𝑗(𝑞∗𝑗)�̇�(𝑞∗𝑗) + 𝑔𝑇(𝑞∗𝑗)𝐶𝑗(𝑞∗𝑗, �̇�∗𝑗)𝑔(𝑞∗𝑗),  

�̅�𝑗(𝑞∗𝑗) = 𝑔𝑇(𝑞∗𝑗)𝐺(𝑞∗𝑗), B̅j(𝑞∗𝑗) = 𝑔𝑇(𝑞∗𝑗)𝐵𝑗(𝑞∗𝑗). 

In Chapter 4, distributed control laws are proposed for the control inputs of the chained-

form system. Notice that the control inputs in (4.12) are not velocities of the vehicle kinematics 

𝑣∗𝑗. In order to associate the transformed dynamic system (5.5) with kinematic system (4.12), the 
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chained-form transform equations are considered, define 𝑢∗𝑗 = [𝑢1, 𝑢2]
T 

                                                 [
𝑣1

𝑣2
] = 𝛹 ∗ 𝑢∗𝑗 = [

𝑞3 1
1 0

] [
𝑢1

𝑢2
] (5.6) 

Substitute 𝑣∗𝑗 in (5.5) with 𝑢∗𝑗 by the transformation in (5.6) and multiply 𝛹T on both sides of 

(5.5) it follows that 

                               �̃�𝑗(𝑞∗𝑗)�̇�∗𝑗 + �̃�𝑗(𝑞∗𝑗, �̇�∗𝑗)𝑢∗𝑗 + �̃�𝑗(𝑞∗𝑗) = �̃�𝑗(𝑞∗𝑗)𝜏 (5.7) 

where  

�̃�𝑗(𝑞∗𝑗) = 𝛹T�̅�𝑗(𝑞∗𝑗)𝛹 

�̃�𝑗(𝑞∗𝑗, �̇�∗𝑗) = 𝛹T�̅�𝑗(𝑞∗𝑗)�̇� + 𝛹T𝐶�̅�(𝑞∗𝑗, �̇�∗𝑗)𝛹 

�̃�𝑗(𝑞∗𝑗) = 𝛹T�̅�𝑗(𝑞∗𝑗), �̃�𝑗(𝑞∗𝑗) = 𝛹T�̅�𝑗(𝑞∗𝑗). 

The transformed dynamic system (5.7) has the following two properties 

(1) �̇̃�j − 2�̃�𝑗 is skew-symmetric  

(2) �̃�𝑗(𝑞∗𝑗)�̇�∗𝑗 + �̃�𝑗(𝑞∗𝑗 , �̇�∗𝑗)𝑢∗𝑗 + �̃�𝑗(𝑞∗𝑗) = 𝑌𝑗(�̇�∗𝑗 , 𝑢∗𝑗 , �̇�∗𝑗 , 𝑞∗𝑗)𝑎𝑗  

where �̃�𝑗(𝑞∗𝑗)  is the a 3 × 3  positive-definite symmetric matrix, �̃�𝑗(𝑞∗𝑗 , �̇�∗𝑗) represents 

centripetal and Coriolis force and �̃�𝑗(𝑞∗𝑗) is the gravitational force. 𝑎𝑗 is the inertia vector which 

is composed of the mass and moment of inertia of the vehicle, 𝑌𝑗  is a known function of 

�̇�∗𝑗, 𝑢∗𝑗 , �̇�∗𝑗 , 𝑞∗𝑗. 
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In Chapter 4, distributed control of multiple vehicles with kinematic systems is studied 

with the aid of control algorithms of chained-form systems and graph theory. Since the 𝑢∗𝑗 in (4.25) 

and (4.30) are the intermediate states of vehicle dynamics rather than the real control inputs, 

distributed control of dynamic systems is based on the kinematic control methods with the aid of 

backstepping methods. 

5.2 Distributed Control of Dynamic Systems without Parametric Uncertainties 

Define �̂�∗𝑗 = 𝑢∗𝑗 − 𝜂∗𝑗, where 𝜂∗𝑗 = [𝜂1𝑗 , 𝜂2𝑗] are defined in (4.26) and (4.31). 

Theorem 5.1 For m systems in (5.7), if there exists a spanning tree with the virtual leader vm+1 as 

the root of the spanning tree, then the distributed control laws  

                                         τj = �̃�𝑗
−1

(�̃�𝑗�̇�∗𝑗 + �̃�𝑗𝜂∗𝑗 + �̃�𝑗 − 𝑘�̂�∗𝑗) (5.8) 

Guarantee that (4.8)-(4.11) holds, where k is a positive constant, 𝜂∗𝑗 are defined in (4.26) and 

(4.31). 

Proof  Choose Lyapunov function 𝑉𝑢 =
1

2
�̂�∗𝑗

𝑇 �̃�𝑗�̂�∗𝑗 , differentiate it along (5.7) one has 

                                                 �̇�𝑢 =
1

2
�̂�∗𝑗

𝑇 �̇̃�𝑗�̂�∗𝑗 + �̂�∗𝑗
𝑇 �̃�𝑗 �̇̂�∗𝑗 (5.9) 

Substitute τj in (5.8) into (5.7) it follows that 

�̃�𝑗�̇�∗𝑗 + �̃�𝑗𝑢∗𝑗 + �̃�𝑗 = �̃�𝑗�̇�∗𝑗 + �̃�𝑗𝜂∗𝑗 + �̃�𝑗 − 𝑘�̂�∗𝑗 

�̃�𝑗(�̇�∗𝑗 − �̇�∗𝑗) + �̃�𝑗(𝑢∗𝑗 − 𝜂∗𝑗) = −𝑘�̂�∗𝑗 
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                                                          �̃�𝑗�̇̂�∗𝑗 = −�̃�𝑗�̂�∗𝑗 − 𝑘�̂�∗𝑗 (5.10) 

Substitute �̃�𝑗�̇̂�∗𝑗 in (5.10) into (5.9) one has  

�̇�𝑢 =
1

2
�̂�∗𝑗

𝑇 �̇̃�𝑗�̂�∗𝑗 + �̂�∗𝑗
𝑇 ∗ (−�̃�𝑗�̂�∗𝑗 − 𝑘�̂�∗𝑗) 

=
1

2
�̂�∗𝑗

𝑇 (�̇̃�𝑗−2�̃�𝑗)�̂�∗𝑗 − �̂�∗𝑗
𝑇 𝑘�̂�∗𝑗 

Since �̇̃�j − 2�̃�𝑗 is skew-symmetric, then it follows that �̇�𝑢 = −�̂�∗𝑗
𝑇 𝑘�̂�∗𝑗. Let λ𝑚 be the maximal 

eigenvalue of �̃�𝑗 it can be learned that �̇�𝑢 < −
2𝑘

λ𝑚
𝑉𝑢, then �̂�∗𝑗 is exponentially stable which means 

𝑢∗𝑗 − 𝜂∗𝑗 exponentially converge to zero.  

The distributed controllers in (4.25) and (4.30) are rewritten as 

                  𝑢1𝑗 = −∑ 𝑎𝑗𝑖𝑖∈𝛮𝑗
(𝑞1𝑗 − 𝑞1𝑖) − 𝑎𝑗,𝑚+1(𝑞1𝑗 − 𝑞1,𝑚+1) + 𝛿1𝑗 + �̂�1𝑗 (5.11) 

δ̇1j = − ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝛿1𝑗 − 𝛿1𝑖) − 𝑎𝑗,𝑚+1(𝛿1𝑗 − 𝛿1,𝑚+1) − 𝜌𝑠𝑖𝑔𝑛[∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝛿1𝑗 − 𝛿1𝑖)

− 𝑎𝑗,𝑚+1(𝛿1𝑗 − 𝛿1,𝑚+1)] 

 (5.12) 

                                           𝑢2𝑗 = −𝑘2𝑞2𝑗 − 𝑘3𝑢1𝑗𝑞3𝑗 + 𝛿2𝑗 + �̂�2𝑗 (5.13) 

�̇�2𝑗 = − ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝛿2𝑗 − 𝛿2𝑖) − 𝑎𝑗,𝑚+1(𝛿2𝑗 − 𝛿2,𝑚+1) − 𝛽𝑠𝑖𝑔𝑛[∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝛿2𝑗 − 𝛿2𝑖)

− 𝑎𝑗,𝑚+1(𝛿2𝑗 − 𝛿2,𝑚+1)] 

 (5.14) 
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𝑠1𝑗and 𝑠2𝑗 are defined as 

𝑠1𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞2𝑗 − 𝑞2𝑖) + 𝑎𝑗,𝑚+1(𝑞2𝑗 − 𝑞2,𝑚+1) 

𝑠2𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞3𝑗 − 𝑞3𝑖) + 𝑎𝑗,𝑚+1(𝑞3𝑗 − 𝑞3,𝑚+1) 

The derivative 𝑠1𝑗 is  

�̇�1𝑗 = −𝑘2𝑠1𝑗 − 𝑘3𝑢1,𝑚+1𝑠2𝑗 + ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝛿2𝑗 − 𝛿2𝑖) + 𝑎𝑗,𝑚+1(𝛿2𝑗 − 𝛿2,𝑚+1)

+ ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̂�2𝑗 − �̂�2𝑖) + 𝑎𝑗,𝑚+1(�̂�2𝑗) 

       −𝑘3 (∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

((𝑢1𝑗 − 𝑢1,𝑚+1)𝑞3𝑗 − (𝑢1𝑖 − 𝑢1,𝑚+1)𝑞3𝑖) + (𝑢1𝑗 −  𝑢1,𝑚+1)𝑎𝑗,𝑚+1𝑞3𝑗) 

By mathematical manipulation it follows that 

 

�̇�1𝑗 = −𝑘2𝑠1𝑗 − 𝑘3𝑢1,𝑚+1𝑠2𝑗 + ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝛿2𝑗 − 𝛿2𝑖) + 𝑎𝑗,𝑚+1𝛿2𝑗 + ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̂�2𝑗 − �̂�2𝑖) 

+𝑎𝑗,𝑚+1(�̂�2𝑗)  − 𝑘3 (∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�1𝑗𝑞3𝑗 − �̃�1𝑖𝑞3𝑖) + �̃�1𝑗𝑎𝑗,𝑚+1𝑞3𝑗) 

 (5.15) 

Similarly one has 
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                      �̇�2𝑗 = 𝑢1,𝑚+1𝑠1𝑗 + ∑ 𝑎𝑗𝑖𝑖∈𝑁𝑗
(�̃�1𝑗𝑞2𝑗 − �̃�1𝑗𝑞2𝑖) + �̃�1𝑗𝑎𝑗,𝑚+1𝑞2𝑗  (5.16) 

�̇�1𝑗, �̇̃�1𝑗 and �̇�2𝑗 are written as 

 

�̇�1𝑗 = − ∑ 𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑖,𝑚+1𝛿1𝑗 − �̇�1,𝑚+1 − 𝜌𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿1𝑗) 

 (5.17) 

                            �̇̃�1𝑗 = −∑ 𝑎𝑗𝑖𝑖∈𝛮𝑗
(�̃�1𝑗 − �̃�1𝑖) − 𝑎𝑗,𝑚+1�̃�1𝑗 + 𝛿1𝑗 + �̂�1𝑗 (5.18) 

�̇�2𝑗 = − ∑ 𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑖,𝑚+1𝛿2𝑗 − �̇�2,𝑚+1 − 𝛽𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿2𝑗 −  𝛿2𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿2𝑗) 

 (5.19) 

Define  

𝑥1 = [[𝑠11, 𝑠21], [𝑠12, 𝑠22], … , [𝑠1𝑚, 𝑠2𝑚] 

𝑥2 = [[𝛿21, �̃�11, 𝛿11], [𝛿22, �̃�12, 𝛿12], … , [𝛿2𝑚, �̃�1𝑚, 𝛿1𝑚]] 

Then it follows that 

𝑓1𝑗 = [
−𝑘2 −𝑘3𝑢1,𝑚+1

𝑢1,𝑚+1 0
] [

𝑠1𝑗

𝑠2𝑗
] 

𝑓1(𝑡, 𝑥1) = [𝑓11, … , 𝑓1𝑚] 
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𝑓2𝑗 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 − ∑ 𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖) − 𝑎𝑖,𝑚+1𝛿2𝑗

𝑖∈𝑁𝑗

−𝛽𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿2𝑗) − �̇�2,𝑚+1

− ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(�̃�1𝑗 − �̃�1𝑖) − 𝑎𝑗,𝑚+1�̃�1𝑗 + 𝛿1𝑗 + �̂�1𝑗

− ∑ 𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑗,𝑚+1𝛿1𝑗

−𝜌𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿1𝑗)−�̇�1,𝑚+1

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑓2(𝑡, 𝑥2) = [𝑓21, 𝑓22, … , 𝑓2𝑚] 

𝑔𝑗 =

[
 
 
 
 
 
 
 
 
 
 
 ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝛿2𝑗 − 𝛿2𝑖) + 𝑎𝑗,𝑚+1𝛿2𝑗

∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̂�2𝑗 − �̂�2𝑖) + 𝑎𝑗,𝑚+1(�̂�2𝑗)

−𝑘3 (∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�1𝑗𝑞3𝑗 − �̃�1𝑗𝑞3𝑖) + �̃�1𝑗𝑎𝑗,𝑚+1𝑞3𝑗)

∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�1𝑗𝑞2𝑗 − �̃�1𝑗𝑞2𝑖) + �̃�1𝑗𝑎𝑗,𝑚+1𝑞2𝑗

]
 
 
 
 
 
 
 
 
 
 
 

 

𝑔(𝑡, 𝑥1, 𝑥2)𝑥2 = [𝑔1, 𝑔2, … , 𝑔𝑚] 

By Theorem 2.4 it can be proved 𝛿2𝑗 = 𝛿2𝑗 − 𝛿2,𝑚+1 globally exponentially converge to 

zero, which implies  

− ∑ 𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑖,𝑚+1𝛿2𝑗 − �̇�2,𝑚+1 − 𝛽𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿2𝑗 − 𝛿2𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿2𝑗) 

globally exponentially converge to zero. 
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By Theorem 4.5 �̃�1𝑗 = 𝑞1𝑗 − 𝑞1,𝑚+1  and 𝛿1𝑗 = 𝛿1𝑗 − 𝛿1,𝑚+1  globally exponentially 

converge to zero, which implies 

− ∑ 𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖)

𝑖∈𝑁𝑗

− 𝑎𝑖,𝑚+1𝛿1𝑗 − �̇�1,𝑚+1 − 𝜌𝑠𝑖𝑔𝑛 (∑𝑎𝑖𝑗(𝛿1𝑗 − 𝛿1𝑖) −

𝑛

𝑗=1

𝑎𝑗,𝑚+1𝛿1𝑗) 

globally exponentially converge to zero, and  

− ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(�̃�1𝑗 − �̃�1𝑖) − 𝑎𝑗,𝑚+1�̃�1𝑗 + 𝛿1𝑗 

globally exponentially converge to zero. From the definition of 𝑓2𝑗, then system ẋ2 = 𝑓2(𝑡, 𝑥2) is 

exponentially stable,the third assumption in Theorem 4.1 holds. 𝑓1𝑗 have the same form as (4.24), 

by Theorem 4.3 ẋ1 = 𝑓1(𝑡, 𝑥1) is exponentially stable, then the first assumption in Theorem 4.1 

holds. From the definition of 𝑔𝑗, it can be proved the second assumption in Theorem 4.1 holds, 

which means 𝑥1 = [[𝑠11, 𝑠21], [𝑠12, 𝑠22], … , [𝑠1𝑚, 𝑠2𝑚]] is globally exponentially stable, from the 

definition of 𝑠1𝑗 and 𝑠2𝑗,  

𝑠1𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞2𝑗 − 𝑞2𝑖) + 𝑎𝑗,𝑚+1(𝑞2𝑗 − 𝑞2,𝑚+1) 

= ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�2𝑗 − �̃�2𝑖) + 𝑎𝑗,𝑚+1�̃�2𝑗 

= (𝐿 + 𝐵)�̃�2𝑗 

Since (𝐿 + 𝐵)  is positive symmetric matrix then 𝑞2𝑗 − 𝑞2,𝑚+1 = �̃�2𝑗 = (𝐿 + 𝐵)−1𝑠1𝑗  globally 

exponentially converge to zero,  

𝑠2𝑗 = ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(𝑞3𝑗 − 𝑞2𝑖) + 𝑎𝑗,𝑚+1(𝑞3𝑗 − 𝑞3,𝑚+1) 



93 

 

= ∑ 𝑎𝑗𝑖

𝑖∈𝑁𝑗

(�̃�3𝑗 − �̃�3𝑖) + 𝑎𝑗,𝑚+1�̃�3𝑗 

= (𝐿 + 𝐵)�̃�3𝑗 

Similarly, 𝑞3𝑗 − 𝑞3,𝑚+1 = �̃�3𝑗 = (𝐿 + 𝐵)−1𝑠2𝑗 globally exponentially converge to zero. 

5.3 Distributed Control of Dynamic Systems with Parametric Uncertainties 

In Section 5.2, distributed control laws are proposed for dynamic systems without 

uncertainties. However, in practice inertia parameters of the mass and moment of inertia are 

unknown and require to be estimated.  

In this section, distributed controllers for vehicle dynamics with parametric uncertainties 

are designed based on both the kinematic controllers in Section 4.4 and Section 4.6. The 

parametrical uncertainties are estimated by robust control methods and adaptive control methods 

respectively.   

Define �̂�∗𝑗 = 𝑢∗𝑗 − 𝜂∗𝑗, where 𝜂∗𝑗 = [𝜂1𝑗 , 𝜂2𝑗] are defined in (4.26) and (4.31). 

Theorem 5.2 For m systems in (5.7), if there exists a spanning tree with the virtual leader vm+1 as 

the root of the spanning tree, then the distributed control laws  

                              τj = �̃�𝑗
−1

(�̂�𝑗�̇�∗𝑗 + �̂�𝑗𝜂∗𝑗 + �̂�𝑗 − 𝑘�̂�∗𝑗 − 𝑌𝑗𝛽𝑠𝑖𝑔𝑛(𝑌𝑗
𝑇�̂�∗𝑗)) (5.20) 

guarantee that (4.8)-(4.11) holds, where k satisfies |�̂� − �̃�| < 𝛽, �̂� and �̃� are the estimated and 

actual inertia parameters vector. 𝜂∗𝑗 are defined in (4.26) and (4.31). 
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Proof  Denote the inertia parameter errors by �̌� = �̂� − �̃�, choose the Lyapunov function 

𝑉𝑢 =
1

2
�̂�∗𝑗

𝑇 �̃�𝑗�̂�∗𝑗, differentiate it along (5.7) one has 

                                                    �̇�𝑢 =
1

2
�̂�∗𝑗

𝑇 �̇̃�𝑗�̂�∗𝑗 + �̂�∗𝑗
𝑇 �̃�𝑗 �̇̂�∗𝑗 (5.21) 

Substitute 𝜏𝑗 in (5.8) into (5.7) it follows that 

�̃�𝑗�̇�∗𝑗 + �̃�𝑗𝑢∗𝑗 + �̃�𝑗 = �̂�𝑗�̇�∗𝑗 + �̂�𝑗𝜂∗𝑗 + �̂�𝑗 − 𝑘�̂�∗𝑗 − 𝑌𝑗𝛽𝑠𝑖𝑔𝑛(𝑌𝑗
𝑇�̂�∗𝑗) 

�̃�𝑗�̇�∗𝑗 + �̃�𝑗𝑢∗𝑗 + �̃�𝑗 

= (�̌�𝑗 + �̃�𝑗)�̇�∗𝑗 + (�̌�𝑗 + �̃�𝑗)𝜂∗𝑗 + (�̌�𝑗 + �̃�𝑗) − 𝑘�̂�∗𝑗 − 𝑌𝑗𝛽𝑠𝑖𝑔𝑛(𝑌𝑗
𝑇�̂�∗𝑗) 

�̃�𝑗(�̇�∗𝑗 − �̇�∗𝑗) + �̃�𝑗(𝑢∗𝑗 − 𝜂∗𝑗) = −𝑘�̂�∗𝑗 + 𝑌𝑗�̌� − 𝑌𝑗𝛽𝑠𝑖𝑔𝑛(𝑌𝑗
𝑇�̂�∗𝑗) 

                              �̃�𝑗�̇̂�∗𝑗 = −�̃�𝑗�̂�∗𝑗 − 𝑘�̂�∗𝑗 + 𝑌𝑗�̌� − 𝑌𝑗𝛽𝑠𝑖𝑔𝑛(𝑌𝑗
𝑇�̂�∗𝑗) (5.22) 

Substitute �̃�𝑗�̇̂�∗𝑗 in (5.22) into (5.21) one has  

�̇�𝑢 =
1

2
�̂�∗𝑗

𝑇 �̇̃�𝑗�̂�∗𝑗 + �̂�∗𝑗
𝑇 ∗ (−�̃�𝑗�̂�∗𝑗 − 𝑘�̂�∗𝑗 + 𝑌𝑗�̌� − 𝑌𝑗𝛽𝑠𝑖𝑔𝑛(𝑌𝑗

𝑇�̂�∗𝑗)) 

=
1

2
�̂�∗𝑗

𝑇 (�̇̃�𝑗−2�̃�𝑗)�̂�∗𝑗 − �̂�∗𝑗
𝑇 𝑘�̂�∗𝑗 + �̂�∗𝑗

𝑇 𝑌𝑗�̌� − �̂�∗𝑗
𝑇 𝑌𝑗𝛽𝑠𝑖𝑔𝑛(𝑌𝑗

𝑇�̂�∗𝑗) 

Since �̇̃�j − 2�̃�𝑗  is skew-symmetric, then �̇�𝑢 < −�̂�∗𝑗
𝑇 𝑘�̂�∗𝑗 , let λ𝑚  be the maximal 

eigenvalue of �̃�𝑗 it can be learned that �̇�𝑢 < −�̂�∗𝑗
𝑇 𝑘�̂�∗𝑗 < −

2𝑘

λ𝑚
𝑉𝑢, then �̂�∗𝑗 is exponentially stable 

which means 𝑢∗𝑗 − 𝜂∗𝑗 exponentially converge to zero. The rest proof is similar as Theorem 5.1 

and not repeated here. 
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In Theorem 5.2, distributed controllers for vehicle dynamics with parametrical 

uncertainties are designed based on the kinematic controllers in (4.25) and (4.30). Parametrical 

uncertainties are estimated by sliding mode control. Next the distributed controller for vehicle 

dynamics with parametrical uncertainties designed based on the controllers in (4.53) and (4.56). 

Define �̂�∗𝑗 = 𝑢∗𝑗 − 𝜂∗𝑗, where 𝜂∗𝑗 = [𝜂1𝑗 , 𝜂2𝑗] are defined in (4.54) and (4.57). 

Theorem 5.3 For m systems in (5.7), if there exists a spanning tree with the virtual leader vm+1 as 

the root of the spanning tree, then the distributed control laws  

                                        τj = �̃�𝑗
−1

(−𝑘�̂�∗𝑗 − 𝑌𝑗(�̇�∗𝑗 , 𝑢∗𝑗 , �̇�∗𝑗 , 𝑞∗𝑗)�̂�𝑗) (5.23) 

and the update laws for �̂�𝑗 

                                                 �̇̂�𝑗 = −𝛤𝑗𝑌𝑗
𝑇(�̇�∗𝑗 , 𝑢∗𝑗 , �̇�∗𝑗 , 𝑞∗𝑗)�̂�∗𝑗 (5.24) 

guarantee that (4.8)-(4.11) holds, where �̂�𝑗  is the estimated inertial parameter vector and �̂�𝑗  is 

bounded. 𝜂∗𝑗 are defined in (4.54)-(4.57).  

Proof  Substitute 𝜏𝑗 in (5.23) into (5.7) it follows that 

�̃�𝑗�̇�∗𝑗 + �̃�𝑗𝑢∗𝑗 + �̃�𝑗 = −𝑘�̂�∗𝑗 − 𝑌𝑗(�̇�∗𝑗 , 𝑢∗𝑗 , �̇�∗𝑗 , 𝑞∗𝑗)�̂�𝑗 

�̃�𝑗�̇�∗𝑗 + �̃�𝑗𝑢∗𝑗 + �̃�𝑗 = �̂�𝑗�̇�∗𝑗 + �̂�𝑗𝜂∗𝑗 + �̂�𝑗 − 𝑘�̂�∗𝑗 

�̃�𝑗�̇�∗𝑗 + �̃�𝑗𝑢∗𝑗 + �̃�𝑗 = (�̌�𝑗 + �̃�𝑗)�̇�∗𝑗 + (�̌�𝑗 + �̃�𝑗)𝜂∗𝑗 + (�̌�𝑗 + �̃�𝑗) − 𝑘�̂�∗𝑗 

�̃�𝑗(�̇�∗𝑗 − �̇�∗𝑗) + �̃�𝑗(𝑢∗𝑗 − 𝜂∗𝑗) = −𝑘�̂�∗𝑗 + 𝑌𝑗�̌�𝑗 
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                                                   �̃�𝑗�̇̂�∗𝑗 = −�̃�𝑗�̂�∗𝑗 − 𝑘�̂�∗𝑗 + 𝑌𝑗�̌�𝑗 (5.25) 

where �̌�𝑗 = �̂�𝑗 − 𝑎𝑗 is the estimation error of inertial parameter vector.   

Choose the Lyapunov function 𝑉𝑣 = �̂�∗𝑗
𝑇 �̃�𝑗�̂�∗𝑗 + �̌�𝑗

𝑇Γ𝑗
−1�̌�𝑗, differentiate it along (5.7) one 

has 

                                          �̇�𝑣 = �̂�∗𝑗
𝑇 �̇̃�𝑗�̂�∗𝑗 + 2�̂�∗𝑗

𝑇 �̃�𝑗 �̇̂�∗𝑗 + 2�̌�𝑗
𝑇Γ𝑗

−1�̌�𝑗 (5.26) 

Substitute �̃�𝑗�̇̂�∗𝑗 in (5.25) into (5.26), it follows that  

�̇�𝑣 = �̂�∗𝑗
𝑇 �̇̃�𝑗�̂�∗𝑗 + 2�̂�∗𝑗

𝑇 (−�̃�𝑗�̂�∗𝑗 − 𝑘�̂�∗𝑗 + 𝑌𝑗�̌�𝑗) + 2�̌�𝑗
𝑇𝛤𝑗

−1�̌�𝑗 

With the aid of properties of vehicle dynamics one has 

                                        �̇�𝑣 = −2�̂�∗𝑗
𝑇 𝑘�̂�∗𝑗 + 2�̂�∗𝑗

𝑇 𝑌𝑗�̌�𝑗 + 2�̌�𝑗
𝑇𝛤𝑗

−1�̌�𝑗 (5.27) 

Substitute �̇̂�𝑗 in (5.24) into (5.27), it follows that  

�̇�𝑣 = −2�̂�∗𝑗
𝑇 𝑘�̂�∗𝑗 

Therefore 𝑉𝑣 is bounded, which means �̂�∗𝑗 and �̌�𝑗 are bounded. From (5.25) it is known that �̇̂�∗𝑗 is 

bounded. By Barbalat’s Lemma, it can be proved that lim
𝑡→∞

�̂�∗𝑗 = 0. 

Since the real inputs are 𝑢∗𝑗 = �̂�∗𝑗 + 𝜂∗𝑗, where 𝜂∗𝑗 = [𝜂1𝑗 , 𝜂2𝑗] are defined in (4.54) and 

(4.57). Then the distributed controllers in (4.53) and (4.56) are rewritten as  

                                                   𝑢1𝑗 = −𝛼1𝑧1𝑗 + 𝜁1𝑗 + �̂�1𝑗 (5.28) 
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𝑢2𝑗 = − ∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝑧2𝑗 − 𝑧2𝑖) − 𝑎𝑗,𝑚+1(𝑧2𝑗 − 𝑧20)

− 𝜌2𝑠𝑖𝑔𝑛 [∑ 𝑎𝑗𝑖

𝑖∈𝛮𝑗

(𝑧2𝑗 − 𝑧2𝑖) − 𝑎𝑗,𝑚+1(𝑧2𝑗 − 𝑧20)] − 𝑘𝑢(�̇�1𝑗𝑧3𝑗 + �̇�3𝑗𝑢1𝑗)

+ �̂�2𝑗 

 (5.29) 

It follows that  

�̇̃�1𝑗 = −𝛼1�̃�1𝑗 + 𝜁1𝑗 + �̂�1𝑗 

Choose a nonnegative symmetric function 𝑉𝑧 = ∑
1

2
�̃�1𝑗

2𝑚
𝑗=1 . Differentiate 𝑉𝑧 along (4.50), it 

follows that 

�̇�𝑧 = −𝛼1�̃�1∗
2 + �̃�1∗𝜁1∗ + �̃�1∗�̂�1𝑗 

�̇�𝑧 ≤ −𝛼1�̃�1∗
2 + ||�̃�1∗|| ||𝜁1∗|| + ||�̃�1∗|| ||�̂�1𝑗|| 

= −2𝛼1𝑉𝑧 + 𝐾√2𝑉𝑧 

where 𝐾 = ||𝜁1∗|| + ||�̂�1𝑗|| Choose 𝑉2 = √𝑉𝑧, one has 

 

�̇�2 ≤ −𝛼1𝑉2 +
1

√2
𝐾 



98 

 

Then 𝑉2 is exponentially stable, which implies 𝑧1𝑗 exponentially converges to 𝑧10 for 1 ≤ 𝑗 ≤ 𝑚. 

Thus lim
t→∞

(u1j − u10) = 0. 

�̇�2∗ = −𝐿𝑧2∗ − 𝐵(𝑧2∗ − 𝑧20𝟏) − 𝜌2𝑠𝑖𝑔𝑛(𝐿𝑧2∗ + 𝐵(𝑧2∗ − 𝑧20𝟏)) + �̂�2𝑗 

�̇̃�2∗ = −(𝐿 + 𝐵)�̃�2∗ − 𝜌2𝑠𝑖𝑔𝑛((𝐿 + 𝐵)�̃�2∗) − �̇�20 + �̂�2𝑗 

By Theorem 3.4, it is known when 𝜌2 satisfies 

𝜌2 ≥
||(𝐿 + 𝐵)−1||(|�̇�20| + ||�̂�2𝑗||)

𝜖
 

where 𝜖 is the minimum eigenvalue of (𝐿 + 𝐵)−1, then 𝑧2𝑗 exponentially converges to 𝑧20 for 1 ≤

𝑗 ≤ 𝑚. By Lemma 4.4, (4.8)-(4.11) hold. 

5.4 Distributed Controller with Time-varying Communication Topology 

In previous sections, the communication graph is considered time-invariant. In real-life 

operations the communication topology is sometimes switching resulting from links creation, 

disconnection and nodes disability. It has been proved through an infinite sequence of non-

overlapping, uniformly bounded time interval, if the union of the graphs cross each interval has a 

directed spanning tree, then multi-agent systems can still reach consensus with the aid of SIA 

matrix theories. Now consider the dynamic systems (5.7) with parametric uncertainties.  

Theorem 5.4  For m systems in (5.7), if there exists a spanning tree with the virtual leader vm+1 as 

the root of the spanning tree at any finite time interval, then the distributed control laws 

τj = �̃�𝑗
−1

(�̂�𝑗�̇�∗𝑗 + �̂�𝑗𝜂∗𝑗 + �̂�𝑗 − 𝑘�̂�∗𝑗 − 𝑌𝑗𝛽𝑠𝑖𝑔𝑛(𝑌𝑗
𝑇�̂�∗𝑗)) 
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guarantee that (4.8)-(4.11) holds, where k satisfies |�̂� − �̃�| < 𝛽, �̂� and �̃� are the estimated and 

actual inertia parameters vector. 

5.5 Simulation III 

To show the effectiveness of proposed control algorithms for vehicles dynamics, 

simulation is done for four identical robot models as shown in Figure 4.1. For the dynamic 

controllers in without parametrical uncertainties, the desired pattern and communication graph are 

shown in Figure 5.1 and Figure 5.2. Figure 5.3 to Figure 5.6 represent the convergence results 

from dynamic systems without parametric uncertainties. For the dynamic controllers with 

parametrical uncertainties in Theorem 5.2, the desired pattern and communication graph are shown 

in Figure 5.7 and Figure 5.8.  Figure 5.9 to Figure 5.12 represent the convergence results from 

dynamic systems with parametric uncertainties controlled by the distributed controllers in 

Theorem 5.2. For the dynamic controllers in with parametrical uncertainties in Theorem 5.3, the 

desired pattern and communication graph are shown in Figure 5.13 and Figure 5.14. Figure 5.15 

to Figure 5.18 represent the convergence results from dynamic systems with parametric 

uncertainties controlled by the distributed controllers in Theorem 5.3. 
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Figure 5.1 is the desired formation. 

(0,1)

(1,0)

(0,-1)

(-1,0)

y

x

Figure 5.1 Desired formation of four vehicles I 
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Figure 5.2 is the communication graph. 

V4

V2V3

V0
V1

 

Figure 5.2 Information exchange topology III 

For multiple dynamic systems without parametrical uncertainties, Figure 5.3 represents the 

centroid of xj (1≤ j ≤4) and the desired trajectory x0. Figure 5.4 represents the centroid of yj (1≤

j ≤4) and the desired trajectory y0. Figure 5.5 represents (θ0 − θj) (1≤ j ≤4), Figure 5.6 represents 

the formation tracking of four follower robots.  
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Figure 5.3 is the convergence result of 𝑥𝑗. 

 

Figure 5.3 The centroid of 𝑥𝑗 (1≤ 𝑗 ≤4) and the desired trajectory 𝑥0 
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Figure 5.4 is the convergence result of 𝑦𝑗 

 

Figure 5.4 The centroid of 𝑦𝑗 (1≤ 𝑗 ≤4) and the desired trajectory 𝑦0 
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Figure 5.5 is the converge result of 𝜃𝑗 . 

 

Figure 5.5 𝜃𝑗 − 𝜃0 (1≤ 𝑗 ≤4) 
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Figure 5.6 is the formation tracking of multi-vehicle system. 

 

Figure 5.6 Formation tracking of four follower robots I 
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Figure 5.7 is the desired formation. 
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Figure 5.7 Desired formation of four vehicles II 
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Figure 5.8 is the communication graph. 

V4

V2V3

V0
V1

 

Figure 5.8 Information exchange topology IV  

For multiple dynamic systems with parametrical uncertainties controlled by the distributed 

controllers in Theorem 5.2, Figure 5.9 represents the centroid of 𝑥𝑖  (1≤ 𝑖 ≤4) and the desired 

trajectory x0. Figure 5.10 represents the centroid of 𝑦𝑖 (1≤ 𝑖 ≤4) and the desired trajectory y0. 

Figure 5.11 represents (𝜃0 − 𝜃𝑖) (1≤ 𝑖 ≤4). Figure 5.12 represents the formation tracking of four 

follower robots.  
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Figure 5.9 is the convergence result of 𝑥𝑖. 

 

Figure 5.9 The centroid of 𝑥𝑖 (1≤ 𝑖 ≤4) and the desired trajectory 𝑥0 
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Figure 5.10 is convergence result of 𝑦𝑖. 

 

Figure 5.10 The centroid of 𝑦𝑖 (1≤ 𝑖 ≤4) and the desired trajectory y0 
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Figure 5.11 is the convergence result of 𝜃𝑖. 

 

Figure 5.11 𝜃𝑖 − 𝜃0 (1≤ 𝑖 ≤4) 
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Figure 5.12 is the formation tracking of multi-vehicle system.  

 

Figure 5.12 Formation tracking of four follower robots II 
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Figure 5.13 is the desired formation. 

0.5

y

x

 

Figure 5.13 Desired formation of five vehicles III 
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Figure 5.14 is the communication graph. 

V1

V2

V3

V4

V5

V0

Figure 5.14 Information exchange topology V 

For multiple dynamic systems with parametrical uncertainties controlled by the distributed 

controllers in Theorem 5.3, Figure 5.15 represents the centroid of 𝑥𝑘 (1≤ 𝑘 ≤5) and the desired 

trajectory 𝑥0. Figure 5.16 represents the centroid of 𝑦𝑘 (1≤ 𝑘 ≤5) and the desired trajectory 𝑦0. 

Figure 5.17 represents (𝜃𝑘 − 𝜃0) (1≤ 𝑘 ≤5). Figure 5.18 represents the formation tracking of five 

follower robots.  
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Figure 5.15 is the convergence result of 𝑥𝑘. 

 

Figure 5.15 The centroid of 𝑥𝑘 (1≤ 𝑘 ≤5) and the desired trajectory 𝑥0 
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Figure 5.16 is the convergence result of 𝑦𝑘. 

 

Figure 5.16 The centroid of 𝑦𝑘 (1≤ 𝑘 ≤5) and the desired trajectory 𝑦0  
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Figure 5.17 is the convergence result of 𝜃𝑘. 

 

Figure 5.17 𝜃𝑘 − 𝜃0 (1≤ 𝑘 ≤5) 
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Figure 5.18 is the formation tracking of multi-vehicle system. 

 

Figure 5.18 Formation tracking of five follower robots III 
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Figure 5.19 is the communication graph. 
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Figure 5.19 Information exchange topology 𝐺1 
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Figure 5.20 Information exchange topology 𝐺2 
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For multiple dynamic systems with parametrical uncertainties under time-varying 

communication graph, the switching topology is defined by 

𝐺 = {
𝐺1, 𝑡 − 𝑟𝑜𝑢𝑛𝑑(𝑡) < 0

𝐺2 𝑡 − 𝑟𝑜𝑢𝑛𝑑(𝑡) ≥ 0
 

 Figure 5.21 represents the centroid of 𝑥𝑘 (1≤ 𝑘 ≤4) and the desired trajectory 𝑥0. Figure 5.22 

represents the centroid of 𝑦𝑘 (1≤ 𝑘 ≤4) and the desired trajectory 𝑦0. Figure 5.23 represents (𝜃𝑘 −

𝜃0) (1≤ 𝑘 ≤4). Figure 5.24 represents the formation tracking of four follower robots.  

 

Figure 5.21 The centroid of 𝑥𝑘 (1≤ 𝑘 ≤4) and the desired trajectory 𝑥0 
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Figure 5.22 is the convergence result of 𝑦𝑘. 

 

Figure 5.22 The centroid of 𝑦𝑘 (1≤ 𝑘 ≤4) and the desired trajectory 𝑦0 
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Figure 5.23 is the convergence result of 𝜃𝑘. 

 

Figure 5.23 𝜃𝑘 − 𝜃0 (1≤ 𝑘 ≤4) 
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Figure 5.24 is the formation tracking of multi-vehicle system. 

 

Figure 5.24 Formation tracking of four follower robots III 

5.6 Summary 

In this chapter, distributed formation tracking control of multiple vehicle dynamics is 

studied. Instead of designing controllers for velocities of vehicle kinematics, control laws are 

implemented on torques of vehicle dynamics which are usually the control inputs in real-life 

operations. Controllers of vehicle dynamics are based on the kinematic-based controllers designed 

in Section 4.4, Section 4.6 and backstepping methods. Dynamic models with parametrical and 
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without parametrical uncertainties are both addressed with the aid of sliding mode control methods, 

adaptive control methods and linear feedback control methods. Time-varying communication 

topology resulting from vehicle disability or communication links change is considered, the 

proposed control algorithms are proved to guarantee consensus if the directed spanning tree exists 

in each graph union of every uniformly bounded time interval. 
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CHAPTER VI  

 

 

CONCLUSION 

 

 

In this thesis, formation tracking of multiple car-like robotic systems is studied. Each robot 

is modeled as a unicycle system and assumed to either receive or send states information from or 

to specific portion of robots. The reference trajectory is denoted by a virtual robotic system and 

regarded as a leader with its three generalized states and control velocities available to the follower 

robots which can directly receive the leader’s information. The control goal is to design control 

laws for each follower robot with the aid of its own states information and its neighbor’s 

information through communication. Formation tracking problem is transformed into consensus 

with the reference kinematics and stability of the induced nonlinear systems ensures the 

convergence. Unlike centralized control or solo-system control in which the control information 

is directly utilized, distributed control only utilize information of its own and its neighbor through 

communication. The communication topology between vehicles is characterized by Laplacian 

matrix from graph theory for mathematical analysis of the multiple kinematic systems. The 

original kinematics are transformed into chained-form systems. Equivalence between the stability 

of the original kinematics and that of the chained-form is proved thus by designing controllers for 

the transformed chained-form system the formation consensus can be achieved for the multiple 

robots. The chained-form systems are further rewritten in to a cascaded structure and exponential 
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stability theory of cascaded systems is utilized to achieve the consensus of chained-form systems 

then the consensus of the original kinematic systems with the aid of Laplacian matrix and 

Lyaponov methods. A novel kinematic controllers are designed based on the transformed chained-

systems and are proved to realize the formation tracking goals. Compared with the controllers for 

the chained-form systems, the novel controllers have derivative terms which are usually not 

acquirable in real-life operations. Moreover, the controllers are more complex. 

Consider that the controller of kinematics only aims at the control of velocities which are 

usually not directly implementable in real-life operation, dynamic controller is designed for the 

engine-generated torques with the aid of kinematic-based controller and backstepping methods. 

Since physical quantities of vehicle dynamics may not be available, both controllers of models 

without and with parametrical uncertainties are designed. The parametrical uncertainties of are 

estimated through sliding mode control and adaptive control for distributed controllers in Section 

4.4 and Section 4.6 respectively. Eventually, time-varying communication topology case is 

addressed with the aid of SIA matrix and the consensus is proved with the condition of existence 

of directed spanning tree in each graph union of any non-overlapping , uniformly bounded time 

interval. Contributions of this thesis are 

1.  Much simpler and implementable distributed control algorithms are proposed based on the 

chained-form system and stability of cascaded system. Derivatives terms are removed in 

previous proposed control methods, which cannot be controlled in real-life operations through 

sensing. Moreover, the variable transformation in this thesis is much simpler with only 

chained-form transform thus the resulting control methods are much more concise.  
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2.  Vehicle dynamics are considered. In previous distributed control laws, the controllers  mainly 

aim at the vehicle kinematics, of which the velocities are the control inputs. However, in reality 

it is the engine-generate torques rather than the velocities that actually control the motion of 

the vehicle, velocities of kinematic models are actually intermediate states of the vehicle 

dynamics. In this thesis, vehicle dynamics with and without parametrical uncertainties are both 

addressed based on the kinematic-based controllers and backstepping methods. The 

parametrical uncertainties for unknown dynamics circumstances are estimated through sliding 

mode control. 

In this thesis, distributed formation tracking control of multiple car-like robots is 

studied. There are still some improvements for the proposed distributed controllers. The 

proposed controllers have some limitations. Firstly, the vehicle model in this thesis is 

considered to be quasi-unicycle which has two identical wheels, it has simple structure and 

less controlling states and inputs, which is usually not the case of real vehicles. Secondly, the 

collision between vehicles during the convergence motion process is not considered. 

Improvements include 

1. Design controllers for four-wheeled car-like robotic systems with more complex structure 

and controlling states. In some circumstances such hybrid electric vehicles, the ultimate 

control components are voltage or current sources. The engine system can be modeled by 

hybrid electrical circuit with internal resistance and motors then controllers require to be 

designed for the power sources.  
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2. Collision avoidance should be considered for designing the controllers. From the proposed 

control algorithms, it can be learned vehicles might collide during the motion since no 

collision avoidance restrictions are imposed onto the controllers.  Functions which 

maintain minimum relative positions for neighbors of each vehicle should be devised to 

prevent the collision scenarios. 
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