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Abstract

Mobile robots gained lots of attention in the last decades, and it is estimated that

their applications will increase exponentially in the next years. Because of its flexibil-

ity and increased capabilities of automation, mobile robots are used in many different

applications: from domotic, to search and rescue missions, to exploration in hostile envi-

ronments, agriculture, environment protection and many more. The main capability of

mobile robots to accomplish a typical mission is the mobility in the work environment.

It may seems a simple task for humans, but for mobile robots there are many challenges.

To move in a certain environment the robots should achieve: guidance, navigation and

control. Guidance refers to the capability of generating a suitable path(s) for the mis-

sion. It refers to what in robotic is called path-planning or motion planner. A suitable

path should be generated based on the environment information and its state, to safely

move the robot through the obstacles. Navigation refers to the ability of determining

the robot/vehicle state with the use of sensors and information. Finally control refers to

the ability of generating appropriate input to the system, in terms of actuators, to steer

it to the desired path and to guarantee stability to the system. This thesis focuses on

guidance and control of mobile robots, with application to certain classes of robots. In

particular the application concerns Vertical Take Off and Landing Unmanned Aerial Ve-

hicles (VTOL UAV) and Differential Wheel robots or Car-like robots. The first class is a

good benchmark because of its underactuation and it’s dynamic model, while the second

is a good benchmark because of its underactuation and non-holonomic constraints. The

contribution of this thesis is on modeling and control of the two classes of robots, and on

novel strategies of combined control and motion planning for kinodynamic systems. On

modeling, a new approach to model a class of multi-propeller VTOL is proposed, with

the aim of generating a general model for a system seen as a composition of elementary

iii



modules such as actuators and payloads. On control, two control law for VTOL vehicles

and differential-wheel robot are proposed. The goal of the first is to generate a simple yet

powerful control to globally asymptotically stabilize a VTOL for acrobatic maneuvers.

The second is a simple saturated input control law for trajectory tracking of a differ-

ential wheel robot model in 2D . About planning, first a novel approach to generate

non-feasible trajectories for robots that still guarantees a correct path for kinodynamic

planning is proposed. The goal of this approach is to reduce the runtime of planners

to be used in real-time and realistic scenario. Moreover an innovative general frame-

work for mobile robots motion planning with the use of Discrete Event Systems theory

is introduced. The two proposed approaches together allow to build a global, real-time,

quasi-optimal, kinodynamic planner suitable for replanning in unknown environments.

The background and motivation of the thesis is the European project SHERPA, where a

heterogeneous robotic platform for search and rescue mission in alpine scenario is devel-

oped. The proposed approaches are supported throughout the thesis with simulations

and applications on real platforms.



Abstract (Italiano)

I robot e la robotica mobile hanno guadagnato molte attenzioni durante gli ultimi

anni, ed è stimato che le applicazioni nella robotica aumenteranno esponenzialmente nei

prossimi anni. Grazie alla loro flessibilità e ai miglioramenti nel campo dell’automazione,

i robot mobili sono usati in molte applicazioni: domotica, missioni di ricerca e soccorso,

esplorazioni di ambienti ostili, agricoltura, protezione ambientale e molti altri. Le ca-

pacità di base che un robot mobile deve compiere per una missione Ãĺ la possibilitÃă
di muoversi agilmente nell’ambiente circostante. PuÃš sembrare un task semplice per

gli uomini, ma per un robot ci sono molte difficoltÃă tecniche. La capacitÃă di movi-

mento di un robot mobile si suddivide nelle cosidette: guidance, navigation and control.

Guidance si riferisce alla capacità di generare una traiettoria consona per la missione. La

traiettoria generata, di solito deve utilizzare le informazioni dell’ambiente circostante e

dello stato del robot e deve permettere di muovere il robot verso un obiettivo in maniera

sicura evitando gli ostacoli ed eventuali pericoli. Navigation si riferisce invece all’abilità

di determinare lo stato del robot a partire dalle informazioni dei sensori di bordo. Per

esempio lo stato del robot potrebbe essere la sua posizione e velocità nello spazio, ma

potrebbe anche rappresentare stati di alto livello come per esempio guasti ad attuatori

o sensori. Infine Control riguarda l’abilità di generare appositi input agli attuatori del

robot, per farlo muovere sulla traiettoria generata e per garantire stabilità del sistema.

Per un’automobile autonoma per esempio gli input potrebbero essere le velocitÃă o le

coppie alle ruote. Questa tesi si focalizzerà su guidance e control per robot mobili, con

applicazioni ad alcune classi di robot. In particolare, le applicazioni riguardano Vertical

Take Off and Landing Unmanned Aerial Vehicles (VTOL UAV) e differential-wheel robot

o robot car-like. La prima classe di robot (VTOL) è un perfetto benchmark a causa della

sottoattuazione che lo caratterizza e per il particolare modello dinamico, mentre la sec-

onda è perfetta ancora per la sottoattuazione e perchè soggetta a vincoli non olonomi. Il
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contributo di questa tesi riguardano la modellazione e il controllo delle due classi di in-

teresse e lo sviluppo di nuove strategie di controllo e pianificazione del moto combinate

per sistemi cinematici/dinamici. Per quanto riguarda la modellazione, viene proposto

un nuovo approccio per modellare VTOL con eliche multiple, con il goal di generare un

modello generico visto come composizione di singoli elementi attuatore/payload. Per

quanto riguarda il controllo, sono proposte due nuove leggi di controllo per VTOL e

differential-wheel robot. La prima con lo scopo di generare una legge di controllo sem-

plice ma potente in grado di stabilizzare asintoticamente e globalmente il VTOL per

compiere manovre acrobatiche. La seconda invece è una semplice legge di controllo

saturata in velocità per il differential-wheel robot che permette l’inseguimento di trai-

ettorie in un piano 2D. Per quanto riguarda la pianificazione del moto, innanzitutto

viene proposto un approccio innovativo per generare traiettorie semplici ma non fat-

tibili, che garantiscono comunque una traiettoria corretta per robot di cui si tiene conto

del modello cinematico/dinamico. L’obiettivo di questo approccio è di ridurre il tempo

di computazione richiesto dalla pianificazione della traiettoria, per essere utilizzato in

applicazioni realistiche real-time. Inoltre viene presentato un innovativo framework di

pianificazione del moto per robot mobili basato sulla teoria dei DES (Discrete Event

System). I due approcci proposti consentono assieme di sviluppare un pianificatore di

moto globale, real-time, con traiettorie quasi ottime, per modelli cinematici/dinamici

ed adatto alla ripianificazione del moto per ambienti non noti e dinamici. Gli approcci

proposti saranno supportati durante tutta la tesi con simulazioni ed esperimenti con

applicazioni a piattaforme robotiche vere.



Aknowledgements

First of all I’d like to thanks my supervisor and co-supervisors Lorenzo Marconi,

Roberto Naldi and Andrea Paoli from which I really learned a lot. Then a big thanks to

all my colleagues and lab mate, in particular Zack, Dani and Fra who shared discussions,

papers, lunches, experiments, ping-pong matches, aperitivi, jokes and advice. Of course

the family deserves a huge hug and thanks. In particular to my parents who supported

me, my girlfriend that went through my geekiness, my brother that read all my thesis

and my red cat that woke me up all the morning biting.

vii





Contents

Abstract iv

Notation 1

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Robots Model 11

2.1 VTOL UAV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 The Modular Multi-Propeller Aerial Vehicle . . . . . . . . . . . . . 13

2.1.3 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Control Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.5 Application: Modeling of a Quad-Rotor Helicopter . . . . . . . . . 21

2.2 Differential Wheel Robot Model . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Robots Control 25

3.1 VTOL UAV Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Inner-Outer Loop Control Strategies . . . . . . . . . . . . . . . . . 31

3.2 Differential Wheel Robot Control . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Bound with quadratic function . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Closed Form Parameters . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



4 Path Planning Strategies 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.5 Globality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.6 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.7 Replanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.8 Incremental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Piece-Wise Controllable Trajectories and Practical Tracking . . . . . . . . 66

4.2.1 Piece-wise Continuous Reference and Integrator Chain System . . 66

4.2.2 Piece-wise Controllable Reference and Non-Linear System . . . . 71

4.2.3 Piece-wise Controllable Reference and Non-Linear System with

Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.4 Application to VTOL and Car-like Robot . . . . . . . . . . . . . . . 80

5 DESP: Discrete Event System Planner 93

5.1 DESP: Discrete Event System Planner . . . . . . . . . . . . . . . . . . . . . 94

5.1.1 Map Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.2 Specification Automaton . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.3 Agent Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.4 Swath and Collision Checking . . . . . . . . . . . . . . . . . . . . . 101

5.1.5 Supervisor and Reachability Graph . . . . . . . . . . . . . . . . . . 103

5.1.6 Exploiting DES capabilities . . . . . . . . . . . . . . . . . . . . . . 106

5.1.7 Advantages of DESP . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Applications and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 Double integrator and Uncontrollable Events . . . . . . . . . . . . 108

5.2.2 Differential Wheel Robot and Replanning . . . . . . . . . . . . . . 117

6 Experiments and Applications 123

6.1 Application to the control of a quadrotor aerial vehicle . . . . . . . . . . . 124

6.1.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Architecture for Control and Coordination of a Swarm of Micro-Quadrotors134

6.2.1 Crazyflie Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.2 Motivation and Control Architecture . . . . . . . . . . . . . . . . . 136

6.2.3 Global Trajectory Tracking Control Law . . . . . . . . . . . . . . . 140



6.2.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Conclusion and Future Works 147

7.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A Appendix 149

A.1 Robots Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.1.1 Hybrid Systems: Definitions and Stability Notions . . . . . . . . . 149

A.1.2 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.1.3 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.1.4 Computation of the rotation matrix . . . . . . . . . . . . . . . . . . 152

A.2 Path Planning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2.1 Discrete Event Systems and Automata . . . . . . . . . . . . . . . . 153

Bibliography 166

xi



xii



Notation

• R, R>0, R≥0 denote the set of real, positive real and non-negative real numbers,

respectively.

• In ∈ Rn×n denote the n-dimensional identity matrix.

• For a matrixMn×m, the ith row and the jth column, with 1 ≤ i ≤ n and 1 ≤ j ≤ m,

are denoted as M |(i,:) and M |(:,j), respectively.

• For a vector v ∈ Rn, the ith element, with 1 ≤ i ≤ n, is denoted as v(i) or, equiva-

lently, as v|(i).

• For a matrix B ∈ Rm×n, n ≥ m, we denote with B+ ∈ Rn×m the generalized

pseudo-inverse of B, i.e., when rank(M) = m, BB+ = Im.

• ω× := Skew(ω) where Skew(col(x1, x2, x3)) denote the skew-symmetric matrix

with the first, second and third row respectively given by [0,−x3, x2], [x3, 0,−x1]

and [−x2, x1, 0].

• Fi and Fb denote, respectively, an inertial reference frame and a reference frame

attached to the center of gravity of the vehicle.

• For x ∈ Rn, |x| denotes the Euclidean norm and, given a closed set A ⊂ Rn, |x|A =

infy∈A |x− y|.

• For a function f : [0, ∞)→ Rk, k > 0, we define with |f |∞ := supt∈[0,∞) |f(t)| and

|f |a := lim supt→∞ |f(t)|.

• Given a setM,M denotes its closure.
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• Given sets S1 and S2, the notation f : S1 ⇒ S2 denotes a set-valued map mapping

subsets of S1 onto subsets of S2.

• With Bnr we denote the closed ball of radius r centered at the origin of Rn, namely

Bnr = {x ∈ Rn : |x| ≤ r}.

• Given a function f : R → R and i ∈ N, we use the notation f(t)(i) := di

dti
f(t) to

denote derivative of f with respect to t.

• We denote the unit vectors as e1 := [1, 0, 0]>, e2 := [0, 1, 0]>, and e3 := [0, 0, 1]>.

• For any x ∈ R3, we let S(x) - with the first, second and third rows given by

[0, −x3, x2], [x3, 0, −x1] and [−x2, x1, 0] - be a skew-symmetric matrix and we

denote with ∧ the inverse operator such that S(x)∧ = x. Let SO(3) denote the

special orthogonal group of order three, i.e., SO(3) = {R ∈ R3×3 : R>R = RR> =

I3, detR = 1}.

• Given a rotation matrix R ∈ SO(3), Θ(R) := 1
2 trace(I3 −R).

• We denote the n-dimensional unit sphere as Sn := {x ∈ Rn+1 : |x| = 1}.

• A unit quaternion q ∈ S3 is defined as a pair q = [η, ε>]> in which η ∈ R and ε ∈ R3

are denoted, respectively, as the scalar and vector part. Given unit quaternions

q1 = [η1, ε
>
1 ]> and q2 = [η2, ε

>
2 ]>, the standard quaternion product is defined as

q1 ⊗ q2 =

[
η1 −ε>1
ε1 η1I3 + S(ε1)

][
η2

ε2

]
.

• With 1 = [1, 0, 0, 0]> ∈ S3 we denote the identity quaternion element and, for a

quaternion q = [η, ε>]> ∈ S3, with q−1 = [η, −ε>]> the inverse, so that q ⊗ q−1 =

q−1 ⊗ q = 1.

• A rotation matrix parameterizing attitude can be expressed in terms of a unit

quaternion q ∈ S3 through the mapping R : S3 → SO(3) (known as Rodrigues

formula [104]) defined as

R(q) = I3 + 2ηS(ε) + 2S(ε)2 .

• The mapping R is such that R(q) = R(−q), namely the two quaternions q and −q
correspond to the same rotation matrix.

• A saturation function as a mapping σ : Rn → Rn such that, for n = 1,

2



1. |σ′(s)| := |dσ(s)/ds| ≤ 2 for all s,

2. |σ′′(s)| := |d2σ(s)/ds2| ≤ d̄ for some d̄ > 0, for all s,

3. sσ(s) > 0 for all s 6= 0, σ(0) = 0,

4. σ(s) = sgn(s) for |s| ≥ 1,

5. |s| < |σ(s)| < 1 for |s| < 1.

For n > 1, the properties listed above are intended to hold componentwise.

• For a matrix, AT defines the transpose of the matrix A.
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Acronyms

A list of abbreviations and acronyms used among the thesis are reported in the

following table.

5



Table 1: Acronyms

UAV Unmanned Aerial Vehicle
VTOL Vertical Take Off and Landing
DWR Differential Wheel Robot
AHRS Attitude and Heading Reference System
IMU Inertial Measurements Unit
MP Multi Propeller
GAS Globally Asymptotically Stable or Global Asymptotic Stability
LAS Locally Asymptotically Stable or Local Asymptotic Stability
BLDC Brushless Direct Current (Motor)
ISS Input to State Stability
DES Discrete Event System
DESP Discrete Event System Planner
RRT Rapidly Exploring Random Tree
PRM Probabilistic Roadmap
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1
Introduction

I n this introduction we present the motivation behind the topics choice of this thesis

and the general organization of the latter.

1.1 Motivation

The background and motivation of this thesis is the European project SHERPA: Smart

collaboration between Humans and ground-aErial Robots for imProving rescuing activ-

ities in Alpine environments [2] [1]. The goal of the project is the development of a

heterogeneous robotic platform for search and rescue missions in hostile environment

such as Alpine scenario, with 10 partners from all over Europe. The platform includes

multi-rotors UAV for low altitude and precise operations, a fixed wing UAV and a big

helicopter UAV for high altitude operations and a ground rover that is a differential

track robot with a manipulator on top, used as base station and for battery replacement

operations. This thesis focuses on the control and motion planning algorithms for the

robotic platforms, in particular for the multi-propeller UAV and the differential track

robot. The hostile and unknown environment requires highly specialized algorithms for

both control and path planning, to be robust to external disturbances and to be reac-

tive to the unknown scenario. On the control side, in particular for the multi-rotors, it

requires a robust control able to handle uncertainties in the model and robustness to
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disturbances because of real sensors usage and disturbances from the environment such

as wind gusts. Moreover one of the tasks in the project includes the aerial and hand

deployment operation, where the UAV has to be deployed by a human operator or from

an helicopter in overturned initial condition. For this task, the need arises for a glob-

ally stabilizing controller able to execute acrobatic maneuvers as attitude recovery and

to stabilize the system from any initial configuration, avoiding dangerous crash. On the

path planning side, the requirements for the project are: real-time and low computation

algorithm for real on-board application, a robust algorithm able to take into account

disturbances and to plan safe paths accordingly and suitable to replanning because of

the unknown environment. Moreover a general framework for multiple heterogeneous

robots had to be develop and shared between different agents. Me and my group were

responsible for the multi-propeller UAV and the ground rover, hence the focus of this

thesis is on control and path planning with applications on those platform, but suitable

for other mobile robots. The two models of interest will be used throughout the whole

thesis for examples and applications.

1.2 Organization

In chapter 2 are presented the dynamic models of VTOL UAV and differential wheel

robot. The VTOL UAV is suitable to model the multi-propeller UAV used in the project,

and we propose a novel strategy to model this class of vehicles with a modular approach,

where the UAV is seen as composition of payload and actuators modules. This will al-

low to model general multi-propeller vehicles with non-standard configurations. About

the differential wheel robot, the model used is a standard unicycle model to define the

kinematic, which is often sufficient to build accurate models and control strategies.

In chapter 3 we propose the control law for the two robots of interest. For the VTOL

UAV we propose an hybrid control law with a cascade approach, where the continuous

position controller is in cascade with the hybrid attitude controller. It allows to over-

come a topological obstruction for continuous law on compact manifolds such as SO(3)

for the attitude, and allows to robustly execute acrobatic maneuvers such as flips and

attitude recovery, useful for the aerial deployment task of the project. About the differ-

ential wheel robot, a vectored speed control is proposed, with saturation on the velocity

input to represent the constraints on the actuator. The proposed control allows to reach

a waypoint in a 2D plane starting from any initial configuration or to track a desired

position trajectory.

In chapter 4 we propose a combined planning and control strategy to generate kino-

dynamic feasible paths, without considering the dynamic model with its differential

constraints in real-time, but with a priori analysis with Lyapunov tools. This allows a
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fast planner, suitable for real-time application. Moreover the robust case is considered

when dealing with disturbances in the system, such as parametric uncertainties in the

model or exogenous disturbances from the environment. With Lyapunov analysis and

ISS theory it is possible to take into account the disturbances in the motion planner to

plan a safe feasible path.

In chapter 5 we introduce a novel framework for path planning of mobile robots, based

on DES (Discrete Event System) theory and tools. Both the dynamic model of the agent

and the environment are discretized and converted into symbolic description by mean

of automata. The framework is suitable to build a kinodynamic, real-time, global plan-

ner, suitable to replanning for unknown environments.

Finally in chapter 6 are presented some experiments and applications to validate part

of the proposed approaches. The experiment focus more on the control law, while plan-

ning strategies are supported by mean of simulation and examples throughout the whole

thesis.
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2
Robots Model

I n this chapter we present the models for two families of robot we use throughout

the thesis: VTOL UAV (Vertical Take-Off and Landing Unmanned Aerial Vehicle)

and differential wheel robot. UAV are recently under high investigation by many

authors because of the reliability of the hardware and the reduced cost to build a plat-

form suitable for experiments. Moreover because of its underactuated nature, it is an

interesting topic of interest for control Differential wheel and car-like robots (or unicy-

cle, bicycle) are topic of research from decades. The investigation topics lie in control

and robotics fields. The main contribution of this thesis in modelling, is a novel strategy

to model a wide class of VTOL UAV. In particular we can model all multi-propeller UAV

with actuators that generate the trust in the same direction. This includes quad-rotors,

exa-rotors, octa-rotors with generic configuration in space. For what concern the differ-

ential wheel robot, we limit to report models from the literature, because they will be

used in other sections of the thesis.
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2.1. VTOL UAV Model

2.1 VTOL UAV Model

For VTOL UAV we consider all the unmanned aerial vehicles that can takeoff vertically

by generating a single total trust in one direction, while completely actuated in attitude

dynamic. The VTOL UAV family, that includes among others helicopters and ducted

fans, also includes the multi-propellers vehicles. Multi-propeller UAV are in general

composed by a frame and a certain number of actuators with propellers capable of pro-

ducing forces and torques. Multi-propeller aerial vehicles have revealed to be effective

aerial platforms for accomplishing a large variety of different tasks, ranging from aerial

survey, exploration of populated areas and search and rescue missions [32, 8, 29, 88].

One reason for this large success is the high level of maneuverability which allows to

safely perform flight missions in densely populated environments [8] or to accomplish

complicated robotics tasks [85, 36]. Moreover, these configurations are characterized by

reduced mechanical complexity when compared to other vehicles, including in particu-

lar helicopters where the attitude is governed by complex mechanical mechanisms such

as cyclic and collective pitches [44].

Several contributions document the interest for this particular configuration by pre-

senting both modeling and control design and by showing the performances in practical

applications [101] [47] [18] [77]. As far as the dynamical model is concerned, miniature

multi-propeller vehicles can be considered as rigid bodies affected by a certain number

of aerodynamic forces and torques [77]. In the presence of non negligible relative wind,

the aerodynamic model of the propeller, which can be derived using momentum theory

or blade-element theory [69], appears to play an important role to determine the dy-

namic behavior of the system [46] [3]. On the other side, when the flight is maintained

stationary, most aerodynamic effects can be reasonably neglected [77].

Recent contribution are also considering the role of the geometric characteristics of

the vehicle both in the modeling and control design. In [56] the analysis of generalized

multi-rotor aerial configuration is proposed showing the link between mechanical de-

sign and dynamical performances. Modular aerial systems have appeared in [94], were

the design and decentralized control for a system composed of a number single rotor

modules (the Distributed Flight Array) is proposed, and in [89] [33], where each module

is given by an autonomous ducted-fan aerial vehicle.

2.1.1 Contribution

By considering the vehicle as a modular system composed of i) actuator modules, i.e.

fixed-pitch propellers capable of producing aerodynamic control forces and torques,

and of ii) payload modules, i.e. equipment or mechanical devices characterized by non-
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negligible mass, this work derives a control strategy capable of controlling a class multi-

propeller aerial vehicles [90]. The geometry of the modular vehicle, namely the rela-

tive position between the different actuator and payload modules, and the aerodynamic

properties of each single module are employed to derive a parametric dynamical model

of the overall system. With this model at hand, the control law is obtained in two dif-

ferent steps. In the first step, control allocation algorithms [17] [57] are synthesized to

resolve possible actuator redundancy. The goal is to obtain virtual-vehicle characterized

by a vectored-thrust under-actuated dynamic behavior [51] where one force component

(the main thrust) and three torque components are available for feedback. Since fixed-

pitch propellers are employed, the control allocation algorithms proposed in this work

are designed to take into account for the fact that each module can produce forces and

torques only in one direction.

A mathematical model for the VTOL UAV system can be derived using the Newton-

Euler equations of motion of a rigid body in the configuration space SE(3) = R3×SO(3).

By considering the inertial coordinate frame Fi = {Oi,
−→
i i,
−→
j i,
−→
k i} and assuming that

the body frame Fbm has its axis aligned with the principal axis of inertia of the rigid body.

The dynamical model of a generalized VTOL UAV with respect to the inertial frame is

described by [91] [90], :

Mp̈ = Ruf +Mge3 + ud

Jω̇ = −ω × Jω + uτ + uτ,d
(2.1)

whereM is the mass of the vehicle, J denotes the inertia of the vehicle, p = col(x, y, z)

is the position of the center of mass, ω the angular velocity expressed in the body frame

Fbm , R the rotation matrix relating the reference frames Fbm and Fi, and e3 the unit vec-

tor e3 := [0, 0, 1]T . Moreover ud and uτ,d represent respectively the force and a torque

disturbances. This general model doesn’t take into account how uf , ud, uτ and uτ,d are

generated and considers the inertia parametersM and J as a single rigid-body object. In

the following section is presented a more general dynamical model for a class of multi-

propeller aerial vehicles that can be described by (2.1).

2.1.2 The Modular Multi-Propeller Aerial Vehicle

The main idea is to consider the vehicle as the interconnection of N > 0 single actuator

modules and P ≥ 0 payload modules. Each actuator module is given by a fixed-pitch

propeller driven by a motor. This subsystem is capable of generating a number of control

forces and torques in order to actuate the overall vehicle. The payload module, on the

other hand, consists of a mass (e.g. a battery, a camera, etc.) which cannot generate

any control force. The forces and torques generated by the modules as well as the main

13
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aerodynamic effects characterizing such subsystems are described in the following two

subsections.

The Fixed-Pitch Propeller Module: Control Wrench

A fixed-pitch propeller module is given by an electric motor equipped with a fixed-pitch

propeller. In some configurations, the electric motor can be replaced by an endothermic

engine. The forces and torques components generated by each i − th single module

are expressed in the reference body frames Fbi = {Obi ,
−→
i bi ,
−→
j bi ,
−→
k bi}, i ∈ {1, 2, ...N},

attached to the center of mass of each module (which corresponds, approximately, to

the motor position). Each body reference frame is fixed so as the z-axis is aligned with

the propeller spin axis. Following [106], [69] and assuming stationary flight (i.e., zero

relative wind speed), the force-torque vector produced by each fixed-pitch propeller can

be then approximated as

f bi =

 0

0

−KTw
2
e,i

 , τ bi =

 0

0

siKQw
2
e,i

 (2.2)

where we,i is the angular speed of the propeller, si ∈ {−1, 1} denotes the spin direction,

i ∈ {1, 2, ..., N}, KT and KQ collect all constant aerodynamic coefficients. It is assumed

that the angular speed represents the available input for control, hence we define

ui := w2
i,e , (2.3)

where the spin direction is assumed to be fixed for each given actuator module.

The Fixed-Pitch Propeller and the Payload Module: Disturbance Vector

In the previous subsection, the control wrench vector produced by each propeller mod-

ule has been derived by assuming zero relative wind speed. This assumption, however, is

not satisfied when the presence of wind disturbances and/or the motion of the propeller

with respect to an inertial reference frame are not negligible. In particular, following

momentum theory [110], the presence of wind directed perpendicular to the propeller

disk may reduce or increase the total thrust produced by the propeller. On the other

side, when the wind speed is directed along the xbi-ybi axis, induced-drag phenomena

and blade flapping (see [69] [77]) create force components not directed along the body

zbi axis of the module. Finally, in the presence of nonzero relative wind, the payload

module is a source of aerodynamic drag [106]. In summary, for each module a distur-

bance wrench vector modeling the effects of relative wind can be considered. In this
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work, for sake of simplicity, these aerodynamic effects will be simply modeled as distur-

bances, namely for each module i ∈ {1, ..., N + P} the force and torque disturbances

fd,i and τd,i are defined.

Modular Configuration

Let us consider now a modular system composed of a number N > 0 of equal fixed-

pitch propellers modules and of a number P ≥ 0 of payload modules rigidly connected

together. Let the coordinate frame Fbm = {Obm ,
−→
i bm ,

−→
j bm ,

−→
k bm} be attached to the

center of mass of the modular system. Let the unit vectors
−→
k bi , namely the propellers

spin axis of each actuator module i, i ∈ {1, 2, ...N}, be fixed in order to point in the same

direction, so that the propeller thrust of each module counteracts the gravity force at

hover. Without loss of generality, let also the unit vectors
−→
k bi , i ∈ {1, ...P}, attached

to the payload modules be directed as the ones of the actuator modules. Finally, for all

the modules in the group in which the body z-axis does not intersect the center of mass

of the formation, let the x-axis pointing towards the z-axis of the reference frame Fbm ,

while, for the remaining actuator modules, let the x-axis be aligned with the one of the

frame Fbm . For the above choice of reference frames, the vectors `bii , which denote the

position of the center of mass of each module with respect to the center of mass of the

overall formation expressed in the reference frame Fbi , are given by

`bii = [ri, 0, hi]
T

in which, by construction, ri ∈ R≥0 and hi ∈ R denote respectively the horizontal and

vertical displacement of each module in the group, with i ∈ {1, 2, ...N+P}. Finally, let us

denote the relative orientation between the reference frames Fbi and the reference frame

Fbm by ψi, i ∈ {1, 2, ..., N + P}. Indeed, ψi denotes the angle by which the reference

frame Fbi should be rotated around the z-axis to align the x-axis with the one of the

frame Fbm . Accordingly, for a vector vbi ∈ R3 defined in the frame Fbi , R
T
ψi
vbi represents

the same vector in the reference frame Fbm , having defined

Rψi :=

 cosψi − sinψi 0

sinψi cosψi 0

0 0 1

 .
Since modules are physically separated, the distance between the center of mass of

any two different modules should be greater than zero. Accordingly, if N + P > 1, the

following constraint on system parameters holds

‖RTψi`
bi
i −R

T
ψj
`
bj
j ‖ > 0 ∀ i 6= j, i, j ∈ {1, 2, ..., N + P} . (2.4)
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With the above construction and notation at hand, we are now able to give a defini-

tion of the class of modular system of interest.

Definition 2.1. A modular multi-propeller aerial robotMP is given by the 6-tuple (N,P,S,Ψ,R,H)

where

• N is the number of equal actuator modules with input ui ∈ R≥0 given by (2.3);

• P is the number of payload modules, each one characterized by a mass MP,i, i ∈
{1, ..., P};

• S := {si ∈ {−1, +1} | i = 1, 2, ...N} is the set of spin directions of the different pro-
peller modules;

• Ψ := {ψi ∈ R | i = 1, 2, ...N + P} is the set of the orientations ψi of each frames Fbi
with respect to the frame Fbm (namely the angle required to align frame Fbi with Fbm);

• R := {ri ∈ R | i = 1, 2, ...N + P} is the set of horizontal distances ri between each
module and the center of gravity of the formation;

• H := {hi ∈ R | i = 1, 2, ...N +P} is the set of vertical distances hi between each module
and the center of gravity of the formation.

Let u := [u1, u2, ..., uN ]T be the vector of all the force-torque components ui pro-

duced by all the N actuator modules in the formation. The resultant control force and

torque vectors fc ∈ R3 and τc ∈ R3 applied by all the modules to the center of mass of

the formation are given by

fc = Bfu (2.5)

τc = Bτ (Ψ,S,R)u (2.6)

where
Bf := [Gf , ..., Gf ],

Bτ (Ψ,S,R) := [RTψ1
Gτ (s1, r1), ..., RTψNGτ (sN , rN )],

having defined

Gf :=

 0

0

−KT

 , Gτ (si, ri) :=

 0

−riKT

siKQ

 .
Vehicle Dynamics

A mathematical model for the multi-propeller vehicle MP system can be derived us-

ing the Newton-Euler equations of motion of a rigid body in the configuration space
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SE(3) = R3×SO(3). By considering the inertial coordinate frame Fi = {Oi,
−→
i i,
−→
j i,
−→
k i}

and assuming that the body frame Fbm has its axis aligned with the principal axis of in-

ertia of the rigid body, the dynamical model of the modular multi-propeller aerial robot

M with respect to the inertial frame is described by

Mmp̈ = Rfc +Mmge3 + ud

Jmω̇ = −ω × Jmω + uτ + uτ,d
(2.7)

where Mm is the total mass of the modular system, Jm denotes the inertia of the mod-

ular vehicle, p = col(x, y, z) is the position of the center of mass, ω the angular velocity

expressed in the body frame Fbm , R the rotation matrix relating the reference frames

Fbm and Fi, and e3 the unit vector e3 := [0, 0, 1]T . Moreover ud and uτ,d represent re-

spectively the resultant force and a torque disturbance deriving from the disturbance

wrench [fd,i, τd,i] produced by each single module i ∈ {1, 2..., N + P}.
By denoting withM the mass of a single actuator module, with JA,i the inertia matrix

of a single actuator module expressed in its reference Fbi and with MP,i and JP,i, i ∈
{1, ..., P}, the mass and the inertia of each payload module, in the case in which the

mass of the links connecting the modules can be neglected, applying Huygens-Steiner

theorem we have1

Jm =
∑N

i=1RψiJA,iR
T
ψi

+M
N∑
i=1

Ji(ri, hi, ψi)+

+

P∑
i=1

RψN+i
JP,iR

T
ψN+i

+

P∑
i=1

MP,iJN+i(rN+i, hN+i, ψN+i)

with

Ji(ri, hi, ψi) =

 r2
i sin2 ψi + h2

i 0 0

0 r2
i cos2 ψi + h2

i 0

0 0 r2
i


and Mm = NM +

∑P
i=1MP,i.

2.1.3 Control Strategy

For systems characterized by actuators redundancy the design of the control law may

be simplified by employing a control allocation schemes [17], [23], [57]. The idea is

to divide the controller in two different parts, namely the feedback control law and

the control allocation algorithm. Goal of the feedback law is to compute the resultant

forces and torques to be applied to the modular vehicle in order to obtain the desired

1For sake of compactness, we denote MP,0 = 0 and JP,0 = 0.
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closed-loop behavior. These control forces and torques are then obtained trough the

control allocation algorithm by combining the effects of all the actuators available on

the modular system.

2.1.4 Control Allocation

This subsection introduces the main results pertaining control allocation. Before intro-

ducing the specific control allocation problem for the class of vehicles of interest, the

special case of positive inputs is considered in successive Subsection. This is in fact the

distinguishing feature of system (2.7) due to the definition of the inputs in (2.3) charac-

terizing each actuator module. In a first step, we show how, under certain conditions,

standard linear control allocation techniques can be adopted also for this class of sys-

tems neglecting the positiveness constraint. With this result at hand, the specific control

allocation problem for the multi-propeller modular vehicles is presented.

Control Allocation for Systems with Positive Inputs

For systems characterized by positive inputs, we consider the following result:

Proposition 2.1. Let B ∈ Rm×n, n > m > 0. If

1) rank(B) = m, and

2) there exists up ∈ Rn>0 such that Bup = 0,

then there exists u ∈ Rn≥0 such that
Bu = v, (2.8)

for all v ∈ Rm.

Proof. Under the above assumptions, a feasible solution to (2.8) can be computed

as

u = B+v + λup (2.9)

where λ ≥ 0 is given by

λ = argmin
i∈{1, N} : (B+v)(i)<0

λup(i) + (B+v)(i) = 0 . (2.10)

As shown in Proposition 2.1, the case in which the inputs are constrained to be pos-

itive represents a particular case of general constrained control allocation [17]. In fact

a solution can be derived neglecting the presence of such constraint provided that the
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kernel of the B matrix contains a vector given by positive values. Such a vector can be in

fact employed to “adjust" the sign of the inputs obtained applying standard techniques,

such as the generalized pseudo-inverse.

The Vectored-Thrust Control Allocation Problem

In the control allocation problem for the multi-propeller vehicleMP it is of interest to

assign a desired torque vector and only the force component directed along the body z-

axis. The idea is in fact to govern the vehicle by using vectored-thrust control paradigms

- see among others [51] - for thrust-propelled aerial robots. For this reason, the problem

is referred to as vectored-thrust control allocation problem (VT-CAP) and it is formulated

as follows.

Problem VT-CAP: Given u?f ∈ R≥0 and u?τ ∈ R3, find a value of u ∈ RN≥0 such that

BV T (Ψ,S,R)u =

[
−u?f
u?τ

]
(2.11)

in which BV T (Ψ,S,R) ∈ R4×N is given by

BV T (Ψ,S,R) =

[
Bf |(3,:)

Bτ (Ψ,S,R)

]
. (2.12)

2

To derive a solution to V T −CAP , the construction proposed in Proposition 2.1 will

be taken into account. More specifically, the following proposition can be stated:

Proposition 2.2. Given u?f > 0 and u?τ ∈ R3 there exists ε(u?f ) > 0 such that if ‖u?τ‖ ≤ ε and

a) there exists u′p ∈ RN>0 such that Bτ (Ψ,S,R)u′p = 0, and

b) rank (BV T (Ψ,S,R)) = 4

then problem V T − CAP admits a solution such that u ∈ RN>0.

Proof. To prove the result we compute a solution to V T − CAP by employing the

assumptions in the statement of the proposition.

1) Note that Bτ (Ψ,S,R) ∈ R3×N satisfies constraint 1) and 2) of Proposition

2.1. In fact, from b), rank(Bτ (·)) = 3, and, from a), constraint 2) in Propo-

sition 2.1 holds true with up = u′p. Accordingly a solution u? ∈ Rn≥0 such

that Bτ (Ψ,S,R)u? = u?τ can be obtained from the algorithm (2.9), namely
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u? := Bτ (Ψ,S,R)+u?τ + λu′p, with λ ≥ 0 computed as in (2.10);

2) given u? ∈ Rn≥0, we denote with σ? :=
∑

i=1,..N u?(i). Since Bτ (·) is a linear

map, for a sufficiently small value of ε then σ? ≥ 0 is arbitrary small;

3) let σthrust := u?f/KT , σ′ :=
∑

i=1,..N u′p(i) and assume that σ? <= σthrust (this

condition can be satisfied by requiring ε small). Let be λ′ := (σthrust − σ?)/σ′.
Then a solution to V T − CAP is given by

u := Bτ (Ψ,S,R)+u?τ + (λ+ λ′)u′p . (2.13)

Proposition 2.2 shows how standard linear control allocation techniques can be adopted

for the multi-propeller configuration MP provided that the desired torque vector is

small compared to the magnitude of desired force u?f . The result, following the frame-

work presented in Proposition 2.1, relies on the existence of a positive input vector,

u′p ∈ Rn>0 in the statement of the proposition, contained into the kernel of the matrix

Bτ (·). Interestingly enough, the computation of such element can be simplified for some

important configurations of practical interest. In particular, the following result holds

true.

Proposition 2.3. Let be MP a multi-propeller with N ≥ 4 and P ≥ 0. If the following
conditions hold true

•
∑N

i=1 si = 0;

• balanced payload:
∑N

i=1R
T
ψi

[ri, 0, 0]T = [0, 0, 0]T , namely the lateral / horizontal po-
sition of the center of gravity of the system coincides with the one of the centroid formed
by the actuator modules,

then ubal = [1, 1, ..., 1]T is such that Bτ (Ψ,S,R)ubal = 0.

Proof. From the first item and the definitions ofGτ andRψ it holds that
∑N

i=1(RψiGτ )|(3) =

0. From the second item, since
∑N

i=1R
T
ψi

[ri, 0, 0]T = [0, 0, 0]T , it follows that

•
∑N

i=1 cosψiri = 0;

•
∑N

i=1 sinψiri = 0,

and hence, from the definition of Gτ ,
∑N

i=1R
T
ψi
Gτ (si, ri) = [0, 0, 0]T .

Remark: The above proposition shows that, when the system is balanced i.e. the

payload does not affect the position of the center of gravity, a simple positive input can
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be obtained by requiring all the actuator modules to generate the same amount of thrust.

Interestingly enough, following the construction of the solution in Proposition 2.2, this

solution allows to equally distribute among the different modules the thrust required to

obtain the final desired control force u?f .

2

Remark: Note that, in the general case in which the balanced payload property may

not be satisfied, the positive input can be computed by defining a convex optimization

problem, e.g.
min g(u′p)

Bτ(Ψ,S,R)u′p = 0

u′p ∈ RN>0

for some convex cost function g : RN → R≥0.

2

2.1.5 Application: Modeling of a Quad-Rotor Helicopter
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Figure 2.1: Quadrotor as a multi-propeller modular vehicle

For the quadrotor depicted in Figure 2.1 the system is assumed to be composed by 4

actuator modules and one single payload module. The actuator modules are disposed at

a distance r̄ from the center of gravity, the payload module is assumed to be located at

the center of mass of the vehicle. As far as the control wrench generation is concerned,
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we obtain

Bf =

 0 0 0 0

0 0 0 0

−KT −KT −KT −KT

 ,
Bτ (Ψ,S,R) =

 −KT r̄ 0 KT r̄ 0

0 KT r̄ 0 −KT r̄

KQs1 KQs2 KQs3 KQs4

 , .
When s1 = s3, s2 = s4 and s1 6= s2 we have that rank(BV T ) = 4. Moreover, since

4∑
i=1

RTψi [ri, 0, 0]T = [0, 0, 0]T ,

namely the system is balanced, we have that u′p = [1, 1, 1, 1]T , is such that (Bτ )u′p =

0. In case the payload is not located in the center of mass the system may fail to be

balanced, since the center of gravity may not coincide with the centroid formed by the

four actuator modules. In this other case a different solution to (Bτ )u′p = 0, with u′p ∈
R4
>0 can be computed using numerical techniques.
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2.2 Differential Wheel Robot Model

The models of unicycles and car-like robots are well known in robotic literature [73] [6]

[93]. They fall under the category of nonholonomics models due to the non-holonomic

constrain they are subject to. This kind of constraints is typical of wheeled robots. What

is constrained are the velocities of the robots, that cannot assume arbitrary and indepen-

dent values.

x

y

px

py
θ

Figure 2.2: Differential wheel robot in 2D and its states.

We report the kinematic model of a unicycle in 2D that can model a differential wheel

robot (Figure 2.2), a robot with two independent wheels:
ṗx = v cos θ

ṗy = v sin θ

θ̇ = ω

v > 0

(2.14)

in which px and py are the position in a cartesian plane, θ the heading angle of the robot,

v and ω the linear and angular velocities, respectively. The linear and angular velocities

are a combination of the velocities of the two independent wheels. If the velocities of

the wheels are w1, w1, the distance of the two wheels is given by dw and the radius of the

wheel is Rw, the linear and angular velocities are given by:{
v = w1+w2

2

ω = Rw
dw

w1−w2
2

(2.15)

The system (2.14) is characterized by a state x = [px, py, θ] ∈ R3, input u = [v, ω] ∈
R2.
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2.2. Differential Wheel Robot Model

Following [73], this model is equivalent, with some input transformation to the

model of a car-like robot with front steering wheels, which model is given by:
ṗx = v cos θ cosφ

ṗy = v sin θ cosφ

θ̇ = v tanφ/l

φ̇ = ω′

(2.16)

where in this case φ is the steering angle of the front wheel, l is the distance from

front and rear wheels and ω′ is the steering velocity input. Hence, the model and control

proposed in this thesis can be adapted to car-like front steering wheel robots.

24



I can control my destiny, but not my fate. Destiny

means there are opportunities to turn right or left,

but fate is a one-way street. I believe we all have the

choice as to whether we fulfill our destiny, but our fate

is sealed.

Paulo Coelho

3
Robots Control

I n this chapter we present the control law for trajectory tracking of the two fami-

lies of robots of interest: VTOL UAV and differential wheel robot. The aim is to

build state-feedback control to track a desired trajectory. Both robots result under-

actuated, so the trajectory to track is only in a subset of the configurations space. The

dynamical models used to build the control law are the ones presented in the previous

chapter.
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3.1. VTOL UAV Control

3.1 VTOL UAV Control

In this section we want to provide a suitable control law [91] for the VTOL system,

compatible to the model proposed in the previous chapter. The general architecture for

the control can be seen in Figure 3.1.

Figure 3.1: Control, model and allocation architecture for VTOL.

The general multi-propeller VTOL model and allocation were described in previous

Chapter. The Control Law block is what will develop in this Chapter. The basic idea

is that the control law generates suitable inputs in terms of T, τ (thrust and torques) to

track a suitable trajectory. The control law is the same for the class of VTOL we model,

where the only difference is on some tuning parameters that depend on M,J . The con-

trol inputs are then converted by the allocation block into suitable inputs for the VTOL,

i.e. rotational speed of propellers ω1, ω2, ..., ωn. Miniature Vertical Take-Off and Landing

(VTOL) aerial systems are currently employed successfully in a large number of appli-

cations including, among others, surveillance, aerial photography and search and rescue

operations [32]. One reason for this large success is the high level of maneuverability,

which allows to safely perform flight missions in densely cluttered environments [8] or

to perform advanced robotic tasks [80]. Among the different configurations, VTOL class

of aerial systems includes helicopters [44] ducted-fan tail-sitters [96] [92] and multi-

propeller helicopters [101] [18] [26]. All of these vehicles are under-actuated mechan-

ical systems, in which the number of available control inputs is less than the number

of degrees-of-freedom (d.o.f.). As a consequence, to achieve the high level of agility re-

quired by real-world applications, the feedback control design plays a central role.

Several contributions [49] [81] [63] [75] document different approaches to the control

design for such a class of under-actuated systems.

In [52], almost-global stability results are demonstrated by means of Lyapunov based

techniques. Results therein show robustness also in the presence of aerodynamic drag

disturbances that typically affect aerial systems. Trajectory tracking in the absence of

linear velocity measurements has been considered in [4] where a hierarchical controller

has also been proposed. In [68], almost-global stability results are achieved by consid-
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ering geometric methods and then applied to the control of a quadrotor aerial vehicle.

Backstepping control design has been proposed in [34] in order to perform aggressive

maneuvers by considering the dynamics of a model helicopter, and in [22] by consider-

ing a hybrid controller able to globally stabilize a desired trajectory. In [79] and [54],

inner-outer loop control strategies have been employed to stabilize the dynamical model

of a miniature helicopter. The proposed methodology takes into account for the feed-

back interconnection between the inner attitude and the outer position control loops.

In particular, nested saturations and high-gain control techniques are used to show sta-

bility of the overall closed-loop system under some limitations in term of the initial

attitude configuration. More recently, a survey describing feedback control design for

under-actuated VTOL systems has appeared in [51].

In this chapter, hierarchical control strategies for a miniature VTOL vehicle to track a

desired trajectory globally with respect to the initial position and attitude configuration

are proposed. In particular, drawing inspiration from recent results pertaining to atti-

tude control of rigid bodies [83], hybrid control techniques [45] are used to overcome the

topological obstruction affecting continuous-time globally stabilizing control laws [12].

Robustness with respect to possibly large exogenous disturbances and parametric un-

certainties is the main contribution. This is achieved by combining total stability tools

for nonlinear control systems [53] with a suitable design of the hybrid control law.

Two different hierarchical control approaches are employed and compared. The first

approach is based on the idea of “breaking the loop" between the attitude and the po-

sition closed-loop dynamics through a suitable choice of the control torques. The over-

all closed-loop system can be considered as a cascade connection in which the attitude

and the position controllers can be tuned independently to achieve the desired stability

properties. However, this control design relies upon the perfect knowledge of the vehi-

cle dynamics and then it may not be effective in the general real-world scenario in which

uncertainties and disturbances, including wind and aerodynamic drag forces, affect the

dynamics of the vehicle.

To overcome this important limitation, a second approach is proposed. Since the

lack of full knowledge of the system dynamics prevents one to compensate the influ-

ence of the position dynamics on the attitude of the vehicle, we propose an attitude

controller that combines a linear hybrid feedback law and a feed-forward law obtained

by nominal model inversion. The resulting control law is more suitable for practical

implementation on a real autopilot due to robustness properties. Such a control law,

however, leads to a more involved feedback interconnection between the hybrid atti-

tude and the continuous-time position closed-loop subsystems and, in turn, to a more

complex closed-loop analysis.

For definition and notion of stability in Hybrid Systems, that are used in this Chapter,
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the reader can refers to the Appendix at the end of this thesis.

3.1.1 Problem Formulation

Dynamical Model

The dynamics of a large class of miniature Vertical Take-Off and Landing (VTOL) aerial

vehicles, including helicopters, ducted-fan and multi-propeller configurations, can be

described by considering the following dynamic model (see among others [51], [4])

Mp̈ = −ufRe3 +Mge3 + df

Ṙ = RS(ω)

Jω̇ = S(Jω)ω + uτ + dτ

(3.1)

in which p = [x, y, z]> ∈ R3 denotes the position of the center of gravity of the system

expressed in the inertial reference frame Fi, ω = [ωx, ωy, ωz]
> ∈ R3 is the angular speed

expressed in the body frame Fb, R ∈ SO(3) is the rotation matrix relating vectors in Fb
to vectors in Fi, M ∈ R> and J ∈ R3×3 (with the property that J = J> > 0) are the

mass and the inertia matrix of the system, uf ∈ R≥0 denotes the control force that, by

construction, is directed along the body z axis and uτ ∈ R3 is the control torque vector.

The force and torque vectors df ∈ R3 and dτ ∈ R3 are bounded unknown exogenous

signals modeling the effects of aerodynamic drag and wind disturbances.

To model actuator limitations, the control force and torques are required to satisfy

uf ∈ Ωf , uτ ∈ Ωτ (3.2)

where the compact sets Ωf ⊂ R≥0 and Ωτ ⊂ R3 define the attainable force and torques

for the specific vehicle.

Besides the presence of the exogenous disturbances df and dτ , the further source

of uncertainty considered in the paper is the inertia matrix J . More specifically, it is

assumed that only a nominal value J0 ∈ R3×3, with J0 = J>0 > 0, and an “upper-bound"

JU ∈ R3×3, i.e., such that

|x>JUx| ≥ |x>Jx| (3.3)

for all x ∈ R3, are known. This uncertainty on the value of J reflects the fact that, for a

physical system having a complex mass distribution, an exact inertia matrix may not be

available.

Remark 3.1. Instead of using a rotation matrix R, the attitude in (3.1) can be parameter-

ized by means of the unit quaternion q ∈ S3. In this case, in the first equation in (3.1) the

rotation matrix is replaced by the Rodrigues mapR and the kinematic equations, which
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are given by the second equation in (3.1), are replaced by

q̇ =
1

2
q ⊗

[
0

ω

]
. (3.4)

In many applications, quaternion parametrization of attitude is often preferred due to

the small number of parameters (4 with respect to 9 required by a rotation matrix) and

the computationally simple quaternion algebra [104]. 4

Control Problem and Nominal System Inversion

This work focuses on the problem of global tracking by state feedback for system (3.1).

More specifically, the goal is to asymptotically track a given time reference position and

orientation

t 7→ p∗(t) ∈ R3, t 7→ R∗(t) ∈ SO(3) (3.5)

for all possible initial conditions p(0) ∈ R3, ṗ(0) ∈ R3, R(0) ∈ SO(3), ω(0) ∈ R3, by

assuming full knowledge of the state of the system.

Two different scenarios will be considered. The first scenario, referred to as the nom-
inal case, is when the force and the torque disturbances are neglected, i.e., df ≡ dτ ≡ 0,

and the inertia matrix is perfectly known, i.e., JU ≡ J0 ≡ J . The second scenario, re-

ferred to as the robust case, takes into account all of the uncertainties specified in Section

3.1.1. Due to the presence of disturbances, a practical tracking result will be derived in

the robust case, while asymptotic tracking results are obtained in the nominal case.

The desired references (3.5) are required to satisfy functional controllability constraints

that are described below. The first constraint derives from the under-actuated nature of

system (3.1) by which the reference position and orientation cannot be assigned inde-

pendently. As the aircraft position assumes a major role in real-world applications [32],

the attitude reference is required to satisfy some constraints to meet the requirements

posed by the position tracking objective. Specifically, let t 7→ p∗(t) be the desired po-

sition reference and let t 7→ v∗f (t) be the nominal reference control force vector defined

as

v∗f (t) := Mge3 −Mp̈∗(t) ∀t ≥ 0 . (3.6)

The function in (3.6) represents the force vector yielding the desired acceleration p̈∗(t) in

the nominal case (i.e., when df ≡ 0). The enforcement of such a v∗f (t) necessarily requires

that the body z-axis of the vehicle, i.e., the thrust direction, is aligned with v∗f (t) at each

t. This requires that the reference attitude t 7→ R∗(t) ∈ SO(3) satisfies the following
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constraint

R∗(t)e3 =
v∗f (t)

|v∗f (t)|
∀t ≥ 0 . (3.7)

Implicit in the previous expression is the requirement that t 7→ p̈∗(t) is such that

|v∗f (t)| = M |ge3 − p̈∗(t)| > v, ∀t ≥ 0 (3.8)

for some v ∈ R>0, which is assumed hereafter.

The problem of computing a rotation matrix satisfying (3.7) has been considered,

for instance, in [68] using differential geometric tools, and in [4] using a unit quaternion

parametrization ofR∗. Details on the computation of a rotation matrixR∗ fulfilling (3.7)

are presented in Appendix A.1.4.

With t 7→ v∗f (t) and t 7→ R∗(t) fulfilling (3.7) and (3.8) in hand, the nominal system

inversion can be accomplished by defining the reference force and torque control inputs

as

u∗f (t) := |v∗f (t)| (3.9)

and

u∗τ (t) := Jω̇∗(t)− S(Jω∗(t))ω∗(t) ,

for each t ≥ 0, where ω∗(t) := (R∗T (t)Ṙ∗(t))∧ is the reference angular velocity. Note that

u∗τ depends on the uncertain parameter J ; hence, it can be computed only in the nominal
case. In the following, for the sake of clarity, we shall denote by u∗τ0 the nominal value of

u∗τ , namely

u∗τ0 := J0ω̇
∗ − S(J0ω

∗)ω∗ . (3.10)

The reference angular velocity ω∗ and its time derivative along the body x and y axis can

be easily derived as functions of p∗ and its time derivatives. As a matter of fact, using

the second equation in (3.1), it follows that R∗>Ṙ∗e3 = S(ω∗)e3 by which[
ω∗x

ω∗y

]
:= WxyR

∗> d

dt

v∗f
|v∗f |

, (3.11)

[
ω̇∗x

ω̇∗y

]
:= Wxy

(
−S(ω∗)R∗>

d

dt

v∗f
|v∗f |

+R∗>
d2

dt2
v∗f
|v∗f |

)
where Wxy ∈ R2×3 is the matrix with the first and second rows given by [0, −1, 0] and

[1, 0, 0], respectively. On the other hand, the angular speed and acceleration along the

body z-axis, namely t 7→ ω∗z and ω̇∗z , are not subjected to constraints deriving from the

position tracking objective.

Further constraints on the reference position t 7→ p∗(t) and the reference orientation
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t 7→ R∗(t) must be chosen to let the control force and torques computed in (3.9) and

(3.10) satisfy the actuator limitations (3.2), namely

u∗f (t) ∈ Ωf , u
∗
τ (t) ∈ Ωτ ∀t ≥ 0 . (3.12)

In particular, the reference derivatives p∗ (1), p∗ (2), p∗ (3), p∗ (4), ω∗z and ω∗ (1)
z are required

to be bounded functions of time satisfying appropriate bounds.

Remark 3.2. Let R1 ∈ SO(3) be such that (3.7) holds with R∗ = R1. Then (3.7) also

holds by picking R∗ = R1Rz for any Rz ∈ SO(3) such that Rze3 = e3 (i.e., Rz represents

an elementary rotation around the e3 unit vector). This fact shows that the relation given

in (3.7) fixes only two of the three degree of freedom of R∗. The third degree of freedom,

which is the rotation around the vector v∗f (t), can be arbitrarily assigned according to

attitude tracking objectives. 4

3.1.2 Inner-Outer Loop Control Strategies

This section presents control strategies that solve the global tracking problem in the

nominal and robust case. The proposed solutions rely upon a hierarchical control struc-

ture having the attitude and the position closed-loop dynamics playing the role of the

inner loop and of the outer loop, respectively. A vectored-thrust control paradigm (see [51])

is followed in the design of the control law. In this respect, a crucial role in avoiding sin-

gularities is played by the use of saturation functions in the outer loop that naturally lead

to the design of a “control vectored-thrust” whose amplitude never vanishes regardless

of the values assumed by the position error. This feature, in turn, enables the adop-

tion of vectored-thrust design paradigms in setting up references signal for the attitude

dynamics on which the inner loop is built.

As far as the inner loop is concerned, two different control strategies are presented

to address the nominal and robust cases, respectively. In the nominal case, the torque

control input is synthesized as a “feedback linearizing” control law able to decouple the

closed-loop attitude dynamics from the position dynamics. The resulting control loop,

which is depicted Figure 3.2, is a cascade interconnection between the attitude and the

position loops. In the next subsections, it will be shown that stability of the overall inter-

connected system does not impose constraints on the tuning of the position and attitude

controllers. The above property can be also achieved by designing a torque control in-

put able to only partially decouple the closed-loop attitude and position dynamics. This

leads to the feedback interconnection depicted in Figure 3.3, in which, due to a suitable

design of the torque control input, the influence of the position dynamics on the attitude

dynamics does not affect the stability properties of the overall closed-loop system.
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Figure 3.2: Nominal Case: Cascade Interconnection
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Figure 3.3: Nominal Case: Feedback Interconnection

In the robust case, a complete decoupling of the closed-loop attitude and position

dynamics is not possible. In this case, the proposed attitude controller combines only a

linear feedback law, driven by a hybrid system to overcome the topological obstruction,

and a feed-forward law obtained by model inversion.

This control law will lead to a feedback interconnection between the attitude (inner)

and the position (outer) loop (see Figure 3.4). In the stability analysis of this feedback

interconnection, a crucial role is played by the use of nested saturation functions (used

in the outer loop) introducing a “decoupling effect" between the two interconnected dy-

namics. Such an effect, in turn, is crucial to show that the attitude loop, which is a hybrid

system, has solutions that, after some finite time, only flow. This property of solutions is

instrumental to establish asymptotic properties of the feedback interconnection.

Stabilization of the translational motion

By letting

p̃ :=

[
p̃

˙̃p

]
:=

[
p− p∗

ṗ− ṗ∗

]
and bearing in mind the first equation in (3.1), the position error dynamics are described

by

M ¨̃p = −ufRe3 + v∗f + df (3.13)
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Figure 3.4: Robust Case: Feedback Interconnection

with v∗f defined in (3.6). A vectored-thrust control strategy is employed to stabilize

system (3.13). To this end, let the control force vector vc be defined as

vc(p̃, t) := v∗f (t) + κ(p̃) , (3.14)

where κ is a state feedback law satisfying κ(0) = 0 and

|κ(p̃)| ≤ κ̄ ∀ p̃ ∈ R6 (3.15)

with 0 < κ̄ < v. Property (3.15), which will be fulfilled in the following by designing

κ(·) as a saturated function, guarantees that

|vc(p̃, t)| ≥ |v∗f (t)| − |κ(p̃)| ≥ v − κ̄ > 0 (3.16)

for all p̃ ∈ R6 and t ≥ 0. The form of (3.13) suggests to design the force control input

uf ∈ R>0 and a desired reference attitudeRc ∈ SO(3) in such a way that uf (t)Rc(p̃, t)e3 =

vc(p̃, t), namely

Rc(p̃, t)e3 =
vc(p̃, t)

|vc(p̃, t)|
(3.17)

and

uf = ufc(p̃, t) := |vc(p̃, t)| . (3.18)

Note that (3.17), (3.18) are well defined for all p̃ ∈ R6 and for all t ≥ 0 by virtue of (3.16)

and of (3.15). By bearing in mind the discussion in Remark 3.2, relation (3.17) fixes two

of the three degree of freedom characterizing Rc ∈ SO(3). The third degree of freedom
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can be fixed by enforcing the constraint

Rc(0, t) = R∗(t) ∀t ≥ 0 (3.19)

which, along with (3.17), uniquely defines the control reference attitude Rc ∈ SO(3).

By adding and subtracting the term ufRce3 in (3.13), the position error dynamics

read as

M ¨̃p = −κ(p̃) + Γ(Rc, R) + df (3.20)

where Γ is defined as

Γ(Rc, R) := ufc (Rc −R) e3 . (3.21)

The design of κ(·) must be conceived to stabilize the origin of (3.20), which is a double

integrator forced by the exogenous inputs Γ and df , and to fulfill the crucial requirement

(3.15). Nested saturations can be used for such a purpose ( [109, 54]). Among the possi-

ble nested saturation design solutions available in literature (see, for instance, [109], [7],

[72]), the approach in [54, Appendix C] yields the following control law

κ(p̃) := λ2σ

(
k2

λ2

(
˙̃p+ λ1σ

(
k1

λ1
p̃

)))
(3.22)

in which σ is a saturation function defined in Chapter while λ1, λ2, k1, and k2 are chosen

as

λi = ε(i−1) λ?i , ki = ε k?i , i = 1, 2 (3.23)

where k?i , λ?i are positive constants (fixed as Proposition 3.1 below) and ε > 0. Note that,

by the definition of saturation function,

|κ(p̃)| ≤
√

3λ?2ε .

Property (3.15) is thus fulfilled by fixing ε as

0 < ε ≤ κ̄√
3λ?2

. (3.24)

The asymptotic properties of the closed-loop position system (3.20), (3.22) are detailed

in the following proposition.

Proposition 3.1. Consider the closed-loop position error dynamics (3.20)-(3.22) with λi and
ki, i = 1, 2, chosen as in (3.23), (3.24) and λ?i , k

?
i taken as

λ?2
k?2

<
λ?1
4
, 4k?1λ

?
1 <

λ?2
4
, 6

k?1
k?2

<
1

24
. (3.25)
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Then, there exist RΓ > 0, Rdf > 0 and γpos > 0 such that the system is Input-to-State
Stable with respect to the inputs (Γ, df ) without restrictions on the initial state, restrictions
(RΓ, Rdf ) on the inputs and asymptotic gain γpos. In particular, for all (Γ, df ) such that
|Γ|∞ ≤ RΓ, |df |∞ ≤ Rdf and for all initial conditions p̃(0) ∈ R6, the resulting trajectories
are bounded and the following asymptotic bound holds true

|p̃|a ≤ γpos max{ |Γ|a , |df |a } .

Proof. System (3.20)-(3.22) can be rewritten as

ζ̇1 = −λ1σ
(
k1
λ1
ζ1

)
+ ζ2

Mζ̇2 = −λ2σ
(
k2
λ2
ζ2

)
+Mk1σ

′
(
k1
λ1
ζ1

)
ζ̇1 + γ(Rc, R)+

+ df

where ζ1 := p̃, ζ2 := ˙̃p + λ1σ ((k1/λ1)ζ1). Then the result follows from [54, Lemma

C.2.1] and [54, Proposition C.2.2] since the system can be written as [54, (C.7)] with

n = 2, q1 = 1, q2 = 1/M , v1 = 0 and v2 = (Γ(·) + df )/M .

If R = Rc then Γ ≡ 0 and the previous result shows that the position tracking error

has an asymptotic bound upper bounded by a function of the disturbance df . Due to

the fact that saturation functions are used in the design of κ(·), the class of force distur-

bances is required to fulfill the restriction |df |∞ ≤ Rdf . In particular, if df ≡ 0, global

asymptotic tracking is guaranteed. In the next subsection, we show how the attitude dy-

namics of the vehicle can be controlled in order to asymptotically enforce the condition

R = Rc. This is accomplished through appropriate design of the inner loop, in which

the rotation matrix Rc plays the role of reference signal for the attitude dynamics.

Instrumental to the design of the inner loop is the computation of the angular velocity

ωc associated to the rotation matrix Rc, defined as

ωc = (R>c Ṙc)
∧ .

The next two lemmas exploit the particular choice of the position control law (3.22)

to highlight some properties of ωc and ω̇c that will play a key role in the subsequent

analysis.

Lemma 3.1. The angular velocity ωc can be expressed as

ωc = Ω1(p̃, t) + Ω2(p̃, t) Γ(R,Rc) + Ω2(p̃, t) df
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where Ω1 and Ω2 are smooth functions satisfying Ω1(0, t) = ω?(t) for all t ≥ 0 and

|Ωi(p̃, t)| ≤ Ω̄ ∀ p̃ ∈ R6 , t ≥ 0

i ∈ {1, 2}, with Ω̄ a positive constant.

Proof. See Appendix A.1.2.

Lemma 3.2. If df ≡ 0 then there exist Ω̄c1, Ω̄c2 ∈ R≥0 such that

|ωc|∞ ≤ Ω̄c1 and |ω̇c|∞ ≤ Ω̄c2 .

Proof. See Appendix A.1.3.

The next two subsections present the attitude stabilization in the nominal and robust

case, respectively. The analysis in those sections is based on a quaternion parametriza-

tion of the attitude. In this respect, we denote by qc ∈ S3 a control quaternion associated

to Rc, namely R(qc) = Rc with R(·) the Rodrigues map. Due to topological reasons,

the computation of qc from Rc requires lifting continuous paths from SO(3) to S3. In

this paper, this has been achieved by employing the path-lifting mechanism proposed in

[82], which ensures that t 7→ qc(t) is a continuous function of time.

Attitude Stabilization: the Nominal Case

Let us consider the problem of attitude stabilization in the nominal case in which df ≡ 0,

dτ ≡ 0, and J ≡ J0. We start by defining attitude error coordinates as

q̃ := q−1
c ⊗ q

ω̃c := ω − ω̄c
(3.26)

with ω̄c := R(q̃)>ωc. From (3.26), bearing in mind (3.4) and the last equation in (3.1),

the following error attitude dynamics can be computed

˙̃q =
1

2
q̃ ⊗

[
0

ω̃c

]
J ˙̃ωc = Σ(ω̃c, ω̄c)ω̃c + S(Jω̄c)ω̄c − JR(q̃)>ω̇c + uτ ,

(3.27)

having defined by Σ the skew-symmetric matrix

Σ(ω̃c, ω̄c) := S(Jω̃c) + S(Jω̄c)− S(ω̄c)J − JS(ω̄c) .
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Hereafter, the scalar and vector part of the error quaternion q̃ are denoted, respectively,

by η̃ and ε̃.

Inspired by [83], the following two controllers are designed

uτ = uτ,FF (q̃, ωc, ω̇c) + uτ,FB(q̃, ω̃c, h) , (3.28)

u′τ = u′τ,FF (q̃, ωc, ω̇c) + uτ,FB(q̃, ω̃c, h) (3.29)

where uτ,FF (·) and u′τ,FF (·) are the “feedforward terms”, which are given by

uτ,FF (q̃, ωc, ω̇c) = JR(q̃)>ω̇c − S(Jω̄c)ω̄c (3.30)

and

u′τ,FF (q̃, ωc, ω̇c) = uτ,FF − (Σ(ω̃c, ω̄c)− S(Jω̃c)) ω̃c , (3.31)

while uτ,FB is the “hybrid feedback term"

uτ,FB(q̃, ω̃c, h) = −kp h ε̃− kd ω̃c (3.32)

in which kp, kd are positive gains and where h ∈ {−1, 1} is a logic variable with hysteresis

governed by the hybrid dynamics{
ḣ = 0 h η̃ ≥ −δ

h+ ∈ sgn(η̃) h η̃ ≤ −δ
(3.33)

where δ ∈ (0, 1) is the hysteresis threshold and sgn : R ⇒ {−1, 1} is the set-valued

function

sgn(s) =

{
sgn(s) |s| > 0

{−1, 1} s = 0 .

The goal of the control law (3.29) is to completely decouple the attitude from the

position dynamics in order to obtain the cascade connection given in Figure 3.2. The

control law (3.28), on the other hand, is such that the skew-symmetric term Σ(ω̃c, ω̄c)ω̃c

in (3.27) is not canceled, leading to the interconnection shown in Figure 3.3.

By considering the control torques (3.28) and (3.29), the corresponding closed-loop

attitude error systems, denoted respectively as Hnom and H′nom, are given by

Hnom

{
˙̃x = Fnom(x̃, ωc) x̃ ∈ Cnom

x̃+ ∈ Gnom(x̃) x̃ ∈ Dnom

(3.34)
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and

H′nom

{
˙̃x = F ′nom(x̃) x̃ ∈ Cnom

x̃+ ∈ Gnom(x̃) x̃ ∈ Dnom

(3.35)

where x̃ = col(q̃, ω̃c, h),

Fnom(x̃, ωc) :=


1

2
q̃ ⊗

[
0

ω̃c

]
J−1 ( Σ(ω̃c, ω̄c) ω̃c − kp h ε̃− kd ω̃c )

0

 ,

F ′nom(x̃) :=


1

2
q̃ ⊗

[
0

ω̃c

]
J−1 (S(Jω̃c)ω̃c − kp h ε̃− kd ω̃c )

0

 ,
Gnom(x̃) := [q̃>, ω̃>c , sgn(η̃)]>,

Cnom := {x̃ ∈ Xatt : h η̃ ≥ −δ} ,
Dnom := {x̃ ∈ Xatt : h η̃ ≤ −δ}

having defined Xatt := S3 × R3 × {−1, 1}. Note that the attitude error system (3.34) is

affected by the position error system through the input ωc, whereas the attitude error

system (3.35), as a consequence of the choice (3.31), is an autonomous system. Also note

that Fnom(0, ωc) = 0 for all ωc ∈ R3.

For the closed-loop autonomous system (3.35), inspired by the ideas in [83], we have

the following result.

Proposition 3.2. Consider the hybrid systems H′nom in (3.35). For all kp > 0, kd > 0, and
δ ∈ (0, 1), the compact set

A = {x̃ ∈ Xatt : q̃ = h1 , ω̃c = 0}

is globally asymptotically stable.

Proof. Consider the candidate Lyapunov function V : Xatt → R≥0 given by V (x̃) =

2kp(1−hη̃)+1
2 ω̃
>
c Jω̃c. It satisfies V (A) = 0, V (Xatt\A) > 0, and {x̃ ∈ Xatt : V (x̃) ≤ c}

is compact for every c ≥ 0. During flows, since

˙̃η = −1

2
ε̃> ω̃c, ˙̃ε =

1

2
η̃ ω̃c +

1

2
S(ε̃) ω̃c

and ω̃>c S(Jω̃c)ω̃c = 0 we have

〈∇V (x̃), F ′nom(x̃)〉 = −kd ω̃>c ω̃c ≤ 0
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for all x̃ ∈ Cnom. During jumps, using the fact x̃ ∈ Dnom implies sgnη̃ 6= sgnh and

h+ = −h,
V (ξ)− V (x̃) = −2kp(−h)η̃ + 2kphη̃ = 4kphη̃

≤ −4kpδ < 0

for all ξ ∈ Gnom(x̃) and for all x̃ ∈ Dnom. Stability of A follows by applying [103,

Theorem 7.6]. To prove asymptotic stability we make use of an invariance principle.

Note first of all that system (3.35) satisfies assumptions (A1)-(A3). In fact, Cnom

and Dnom are closed sets. The flow map is continuous while, since s 7→ sgn(s)

is an outer-semicontinuous and bounded map, Ḡnom is outer semi-continuous and

locally bounded. Now applying [103, Theorem 4.7] with uc : Cnom → R given by

uc(x̃) = −kd ω̃>c ω̃c and ud : Dnom → R given by ud(x̃) = −4kpδ < 0, it follows

that every bounded and complete solution to (3.35) converges to the largest weakly

invariant set contained in

V −1(r) ∩W (3.36)

for some r ≥ 0 where W := {x̃ ∈ Cnom : ω̃c = 0}. By evaluating the dynamics (3.35)

along solutions that remain in (3.36), we have that ε̃ = 0 and, since hη̃ ≥ −δ for all

x̃ ∈ W , q̃ = h1. Then, since the only invariant set is for r = 0, i.e., {x̃ ∈ Xatt : q̃ =

h1, ω̃c = 0, h ∈ {−1, 1}}, and (3.36) with r = 0 is contained inA, we have that every

bounded and complete solution converges to A. Now it remains to prove that every

maximal solution is complete and that solutions are bounded. From the fact that

{x̃ ∈ Xatt : V (x̃) ≤ c} is compact for every c ≥ 0 and the fact that V is nonincreasing

along solutions to (3.35), we have that solutions are bounded. Moreover, since the

viability condition (VC) in [45, Proposition 6.10] holds for (3.35), Gnom(Dnom) ⊂
(Cnom∪Dnom), and the fact that solutions are bounded, by applying [45, Proposition

6.10], it follows that all maximal solutions are complete. ThenA is attractive. Global

asymptotic stability follows from compactness of sublevel sets and from the fact that

V is positive definite.

Now consider system Hnom. The latter is a hybrid system affected by the exogenous

input ωc. As a consequence of Lemma 3.2, we have that the trajectories ωc can be thought

of solutions to the exosystem

ω̇e ∈ B3
Ω̄c2
, ωe ∈ B3

Ω̄c1
(3.37)

in which Ω̄c1, Ω̄c2 are the positive values given in Lemma 3.2. In particular, we have that

there exists a solution ωe to (3.37) such that ωe(t) ≡ ωc(t) for all t ≥ 0. Consider now the
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autonomous hybrid system given by

He

{
ẋe ∈ Fe(xe) xe ∈ Ce

ẋe ∈ Ge(xe) xe ∈ De

(3.38)

where xe := [ω>e , x̃
>]>,

Fe(xe) :=

[
B3

Ω̄c2

Fnom(x̃, ωe)

]
, Ge(xe) :=

[
ωe

Gnom(x̃)

]

Ce := {xe : ωe ∈ B3
Ω̄c1
, x̃ ∈ Cnom} and De := {xe : ωe ∈ B3

Ω̄c1
, x̃ ∈ Dnom}. For system

(3.38), the following stability result holds.

Proposition 3.3. Consider the hybrid system He in (3.38). For all kp > 0, kd > 0, and
δ ∈ (0, 1), the compact set

A =
{
xe ∈ R3 ×Xatt : ωe ∈ B3

Ω̄c1
, q̃ = h1 , ω̃c = 0

}
is globally asymptotically stable.

Proof. Similarly to the proof of Proposition 3.2, we consider the candidate Lya-

punov function V : B3
Ω̄c1
× Xatt → R≥0 given by V (xe) = 2kp(1 − hη̃) + 1

2 ω̃cJω̃c. It

satisfies V (A) = 0 and V ({B3
Ω̄c1
× Xatt} \ A) > 0. Moreover, since B3

Ω̄c1
is compact,

{xe ∈ B3
Ω̄c1
×Xatt : V (xe) ≤ c} is compact for every c ≥ 0.

During flows, since Σ is a skew-symmetric matrix (which implies ω̃>c Σ(ω̃c, ωe)ω̃c =

0), it turns out that the Lyapunov function is nonincreasing, i.e.,

〈∇V (xe), Fe(xe)〉 = −kd ω̃>c ω̃c ≤ 0

for all xe ∈ Ce. During jumps, following the same arguments as in the proof of

Proposition 3.2,

V (ξ)− V (xe) = −2kph
+η̃ + 2kphη̃ = 4kphη̃

≤ −4kpδ < 0

for all ξ ∈ Ge(xe) and for all xe ∈ De. Stability of A follows from [103, Theorem

7.6]. Asymptotic stability can be proved by applying an invariance principle as for

the proof of Proposition 3.2. Note first of all that system (3.38) satisfies assumptions

(A1)-(A3). In fact Ce and De are closed sets. The flow equation is continuous while

Ḡe is outer semi-continuous and locally bounded. Now applying [103, Theorem

4.7] with uc : Ce → R given by uc(xe) = −kd ω̃>c ω̃c and ud : De → R given
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by ud(xe) = −4kpδ < 0, it follows that every bounded and complete solution to

(3.38) converges to the largest weakly invariant set contained in V −1(r) ∩W with

W := {xe ∈ Ce : ω̃c = 0} and for some r ≥ 0. Following the same arguments as in

the proof of Proposition 3.2, this implies that every bounded and complete solution

converges to A. Global asymptotic stability of A then follows as in the proof of

Proposition 3.2.

Stability Properties of the Combined Position and Attitude Closed-Loops in the Nom-

inal Case

By combining the ISS properties of the position error system in Proposition 3.1 with the

global asymptotic stability of the attitude error subsystem given in Propositions 3.2 and

3.3, the desired global tracking objective for the whole system in the nominal case can be

accomplished.

Proposition 3.4. Consider the closed-loop system given by the position error dynamics (3.20),
with df ≡ 0, controlled by (3.22), with λi and ki, i = 1, 2, chosen as in (3.23), (3.24) and λ?i ,
k?i chosen as in Proposition 3.1, and the error attitude dynamics (3.27) controlled by (3.28)
or, respectively, (3.29), with kp > 0, kd > 0, δ ∈ (0, 1) arbitrarily chosen. Then, the compact
set

A? = {(p̃, x̃) ∈ R6 ×Xatt : p̃ = 0 , q̃ = h1 , ω̃c = 0}

is globally asymptotically stable.

Proof. First, consider (3.27) controlled by (3.28). From Lemma 3.2, in the nominal

case, the trajectories ωc can be obtained as solutions to (3.37) and then Proposition

3.3 holds. Since the hybrid system (3.38) satisfies (A1)-(A3), from [45, Theorem 6.8]

the hybrid system (3.38) is nominally well-posed and then [45, Lemma 7.8] implies

that the compact set A in Proposition 3.3 is uniformly attractive from every com-

pact set of the state space. Since A is stable, uniformly attractive from compact

subsets of the state space, and, due to global asymptotic stability and by apply-

ing [45, Lemma 6.16], the reachable set from every given compact set is bounded,

then [45, Lemma 7.11] implies that A is also KL asymptotically stable. As a conse-

quence, for each maximal solution to (3.34), given ∆ > 0 there exists T∆ > 0 such

that Θ(R(q̃(t, j))) ≤ ∆ for all t + j ≥ T∆, (t, j) ∈ dom x̃. Hence, in finite time,

Θ(R(q̃)) is arbitrarily small and, asymptotically, q̃ = h1 and ω̃c = 0. Now consider

(3.27) controlled by (3.29). From Proposition 3.2, the same result holds following

the same arguments employed above. By focusing now on the position error dy-

namics (3.20), it follows that, by choosing ∆ sufficiently small, restrictions R∆ on
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the exogenous input Γ(Rc, R) given Proposition 3.1 are fulfilled in finite time and

Γ(Rc, R) approaches zero asymptotically. Then, since system (3.20) is a continuous-

time system and it has no finite escape time, the result follows applying cascade

control arguments as in [54, Corollary B.3.3]. In particular, for all 0 ≤ t ≤ T∆ solu-

tions to (3.20) are defined and, since for all t ≥ T∆ the restrictions on the inputs are

satisfied, |p̃|a ≤ γp|Γ|a for some class-K function γp, which, since |Γa| = 0, implies

that p̃ converges to zero.

Remark 3.3. Note that the fact that the compact set A? in Proposition 3.4 is globally

asymptotically stable implies that the position and the attitude of system (3.1) converge

to the desired references (3.5), globally with respect to the initial conditions. This result,

which overcomes the topological obstruction of globally stabilizing systems on mani-

folds via continuous feedback laws [12], takes advantage from the methodology pro-

posed in [83] in which a globally stabilizing attitude controller is proposed. 4

Remark 3.4. The result in Proposition 3.4 for the overall closed-loop system does not

require additional conditions on the tuning of the position and attitude controllers other

than to the ones given in Propositions 3.1, 3.2 and 3.3. This useful property is obtained

by designing the attitude controller in (3.28) (and (3.29)) so as to decouple (partially

decouple) the inner attitude loop from the outer position loop. As a main limitation, the

resulting attitude controller relies on the perfect knowledge of the system dynamics (in

particular, see the feedforward terms (3.30) and (3.31)) and then it may not be robust to

large uncertainties or exogenous disturbances. 4

Attitude Stabilization: the Robust Case

Let us focus now on the general case in which the exogenous disturbances df and dτ

affect system (3.1) and just the nominal value J0 of the inertia matrix J is available for

feedback.

In this case it is possible to define the new attitude error coordinates

q̃ := q−1
c ⊗ q, ω̃∗ := ω − ω̄∗ (3.39)

with ω̄∗ = R(q̃)>ω∗. By bearing in mind (3.1) and (3.4), the choice (3.39) leads to an

attitude error dynamics of the form

˙̃q =
1

2
q̃ ⊗

[
0

ω̃∗

]
− 1

2
q̃ ⊗

[
0

R(q̃)>yζ

]
J ˙̃ω∗ = Σ(ω̃∗, ω̄∗) ω̃∗ + S(Jω̄∗)ω̄∗ − JS(R(q̃)>yζ) ω̄

∗ − JR(q̃)> ω̇∗ + uτ + dτ

(3.40)

in which yζ := ωc − ω∗ and where Σ(ω̃∗, ω̄∗) is the skew-symmetric matrix defined just
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after (3.27) with (ω̃c, ω̄c) replaced by (ω̃∗, ω̄∗). As above, η̃ and ε̃ denote respectively the

scalar and vector part of the error quaternion q̃. Regarding the term yζ in (3.40) note

that, by using the properties in Lemma 3.1, the following holds

yζ := Ω1(p̃, t)− ω∗(t) + Ω2(p̃, t) Γ(R,Rc) + Ω2(p̃, t) df (t)

where Ω1(p̃, t) − ω∗(t) and Ω2(p̃, t) Γ(R,Rc) are bounded smooth functions vanishing

respectively with p̃ and ε̃. Namely, yζ = yζ(p̃, ε̃, df , t) with yζ(0, 0, 0, t) = 0. Furthermore,

with the expression of u∗τ0 in (3.10) at hand, note that the term S(Jω̄∗)ω̄∗−JR(q̃)> ω̇∗ in

the last equation of (3.40) can be expressed as

S(Jω̄∗)ω̄∗ − JR(q̃)> ω̇∗ = −u∗τ0 + ∆1ω(q̃, t) ε̃+ ∆2ω(q̃, t) (J − J0)

where ∆1ω and ∆2ω are smooth functions of appropriate dimension such that

∆1ω(q̃, t)ε̃ = J0(I3 −R(q̃)>)ω̇∗ + S(J0ω̄
∗)ω̄∗+

− S(J0ω
?)ω∗,

∆2ω(q̃, t)(J − J0) = (S(Jω̄∗)− S(J0ω̄
∗))ω̄∗+

+ (J0 − J)R(q̃)>ω̇∗.

Note that ∆iω, i ∈ {1, 2}, are uniformly bounded, namely there exists a constant ∆̄ω

such that for all q̃ ∈ S3 and t ≥ 0

|∆iω(q̃, t)| ≤ ∆̄ω , i ∈ {1, 2} .

Furthermore, note that

ω∗ ≡ 0 , ω̇∗ ≡ 0 ⇒ ∆2ω(q̃, t) ≡ 0 . (3.41)

System (3.40) is thus a system driven by control input uτ and affected by the exoge-

nous disturbances (df , dτ , p̃, (J0 − J)[ω∗, ω̇∗]). For this system, the attitude controller is

selected as

uτ = u∗τ0 + uτ,FB(q̃, ω̃∗, h) (3.42)

where the feedback law uτ,FB is chosen as

uτ,FB(q̃, ω̃∗, h) = −kp h ε̃− kp kd ω̃∗ (3.43)

in which kp, kd are positive gains and where h ∈ {−1, 1} is governed by the following
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hybrid dynamics{
ḣ = 0 h η̃ ≥ −δ or ε̃>JU ε̃+ ω̃∗>JU ω̃∗ ≥ 2kd δ

h+ ∈ sgn(η̃) h η̃ ≤ −δ, ε̃>JU ε̃+ ω̃∗>JU ω̃∗ ≤ 2kd δ
(3.44)

with δ ∈ (0, 1) and with the function sgn(·) defined as Section 3.1.2. Note that, com-

pared to (3.33), jumps occur only for sufficiently small values of the angular position

and velocity errors. The whole attitude error system is thus a hybrid system of the form

Hrob

{
˙̃x = Frob(x̃,d) x̃ ∈ Crob

x̃+ ∈ Grob(x̃) x̃ ∈ Drob

(3.45)

with x̃ = col(q̃, ω̃∗, h), d = col(df , dτ , p̃, (J0 − J)ω?, (J0 − J)ω̇?), Frob(·) is the vector

given by the right-hand side of (3.40), Grob(·) is defined as Gnom in the previous section,

and
Crob = {x̃ ∈ Xatt : h η̃ ≥ −δ }∪

{x̃ ∈ Xatt : ε̃>JU ε̃+ ω̃∗>JU ω̃∗ ≥ 2kd δ}
Drob = {x̃ ∈ Xatt : h η̃ ≤ −δ ,

ε̃>JU ε̃+ ω̃∗>JU ω̃∗ ≤ 2kd δ}

It turns out that, if the inputs (df , dτ , (J0−J)ω∗, (J0−J)ω̇∗) are bounded, the design pa-

rameters can be tuned so as, after a finite amount of jumps, system (3.40) flows only and

the resulting continuous-time system is characterized by an arbitrarily small asymptotic

gain with respect to the input d. This fact is formalized in the next Theorem.

Theorem 3.1. Consider the hybrid system Hrob in (3.45). Let δ ∈ (0, 1) and

|df |∞ ≤ Rf , |dτ |∞ ≤ Rτ , |(J − J0)[ω∗, ω̇∗]|∞ ≤ RW (3.46)

for some constants Rf > 0, Rτ > 0 and RW > 0. For any γatt > 0, c > 0, there exists k?d > 0

and for all kd ≤ k?d there exists k?p > 0 such that for all kp ≥ k?p and for all x̃(0, 0) ∈ Crob∪Drob

each maximal solution x̃ is complete and such that

• there exists T ? > 0 such that x̃(t, j) ∈ Crob and |ε̃(t, j)| ≤ c for all (t, j) ∈ dom x̃ such
that t+ j ≥ T ?;

•
lim sup
t→∞

|x̃(t, j?)| ≤ γatt max{|p̃|a , |df |a , |dτ |a , |J − J0||[ω∗, ω̇∗]|a}

where j? = sup{j : (t, j) ∈ dom x̃}.
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Proof. By the expression of ωc and the properties of Ω1(·) and Ω2(·) in Lemma 3.1,

by the fact that Γ(Rc, R) is a smooth function vanishing at ε̃ = 0, and by the defini-

tion of yζ , it turns out that there exist smooth matrices ∆iη(p̃, q̃, t) and ∆iε(p̃, q̃, t),

i = 1, 2, 3, of appropriate dimension such that

1

2
q̃ ⊗

[
0

R(q̃)>yζ

]
=

[
ε̃>∆1η(p̃, q̃, t)

∆1ε(p̃, q̃, t)

]
ε̃

+

[
ε̃>∆2η(p̃, q̃, t)

∆2ε(p̃, q̃, t)

]
+

[
ε̃>∆3η(p̃, q̃, t)

∆3ε(p̃, q̃, t)

]
df

and

|∆iη(p̃, q̃, t)| ≤ ∆̄q , |∆iε(p̃, q̃, t)| ≤ ∆̄q , i = 1, 2, 3

for all p̃ ∈ R6, q̃ ∈ S3, t ≥ 0, where ∆̄q is a positive constant. Furthermore,

∆2η(0, q̃, t) = 0 , ∆2ε(0, q̃, t) = 0 ∀ q̃ ∈ S3 , t ≥ 0 .

Moreover, there exist smooth matrices ∆iω(p̃, q̃, t), i = 3, 4, 5, of appropriate dimen-

sion such that

JS(R(q̃)>yζ)ω̄
∗ = ∆3ω(p̃, q̃, t)ε̃+ ∆4ω(p̃, q̃, t) + ∆5ω(p̃, q̃, t)df

and |∆iω(p̃, q̃, t)| ≤ ∆̄ω, i = 3, 4, 5, for all p̃ ∈ R6, q̃ ∈ S3, t ≥ 0, ω∗ bounded,

where ∆̄ω is a positive constant. Furthermore, ∆4ω(0, q̃, t) = 0 ∀ q̃ ∈ S3 , t ≥
0 . By putting all the previous expressions in (3.40), along flows, the error attitude

dynamics can be more explicitly rewritten as

˙̃η = −1

2
ε̃>ω̃∗ + ε̃>∆1η(·)ε̃+ ε̃>dη

˙̃ε =
1

2
(η̃ω̃∗ + S(ε̃)ω̃∗) + ∆1ε(·)ε̃+ dε

J ˙̃ω∗ = Σ(·) ω̃∗ − u?τ0 + (∆1ω(·) + ∆3ω(·))ε̃+ ∆4ω(·)
+∆5ω(·)df + ∆2ω(q̃, ω∗, ω̇∗)(J − J0) + uτ + dτ

(3.47)

where

dη = ∆2η(p̃, q̃, t) + ∆3η(p̃, q̃, t)df

dε = ∆2ε(p̃, q̃, t) + ∆3ε(p̃, q̃, t)df .
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Let us define now the backstepping-like change of variable

ω̃∗ 7→ z̃ := ω̃∗ +
1

kd
h ε̃

that transforms system (3.47) into

˙̃η = −1

2
ε̃>
(
z̃ − 1

kd
h ε̃

)
+ ε̃>∆1η(·)ε̃+ ε̃>dη

˙̃ε =
1

2
(η̃I3 + S(ε̃))

(
z̃ − 1

kd
h ε̃

)
+ ∆1ε(·)ε̃+ dε

J ˙̃z =
(
−kpkdI3 + Σ′kd(z̃, q̃, h)

)
z̃ + Σ′′kd(z̃, q̃, h)ε̃+ dz

(3.48)

where
Σ′kd(·) := Σ(·) +

1

2kd
h (η̃I3 + S(ε̃))

Σ′′kd(·)ε̃ := −Σ(·) 1

kd
ε̃+ (∆1ω(·) + ∆3ω(·))ε̃+

+
1

2kd
hS(ε̃)

(
z̃ − 1

kd
hε̃

)
+

1

kd
h∆1εε̃

dz :=

(
J

kd
h∆2ε(·) + ∆4ω(·)

)
+

+

(
J

kd
h∆3ε(·) + ∆5ω(·)

)
df+

+ ∆2ω(q̃, ω∗, ω̇∗)(J − J0) + dτ .

In order to study the asymptotic properties of system (3.45), consider the follow-

ing candidate Lyapunov function

V (x̃) = 2(1− hη̃) +
1

2
z̃>Jz̃ .

During flows, the time derivative of V reads as

〈∇V (x̃), Frob(x̃,d)〉 =

= − 1

kd
ε̃> ε̃− z̃>

(
kp kdI3 − Σ′kd(z̃, q̃, h)

)
z̃+

+ε̃>∆1η(p̃, q̃, t)ε̃+ hε̃>z̃ + z̃>Σ′′kd(z̃, q̃, h)ε̃+

+z̃>dz + dε .

Note that |(dη, dε, dz)|∞ ≤ d̄ for some positive constant d̄ dependent on Rf , Rτ , RW .

As a consequence, standard high-gain arguments for continuous time systems (see

in particular [53, Chapter 10]) can be used to claim that for any `1 > 0 there exist
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k?d > 0 and, for all kd ≤ k?d, k?p > 0 such that for all kp ≥ k?p the following holds

|(ε̃, z̃)| ≥ `1|(dη, dε, dz)|
x̃ ∈ Crob

}
⇒ 〈∇V (x̃), Frob(x̃,d)〉 ≤ −γV (x̃) (3.49)

for some positive constant γ.

Let us now analyze the behavior of V during jumps. By definition ofDrob, during

jumps sgnh 6= sgnη̃ which implies that h+ = −h. Hence, z̃+ = ω̃∗+ + (1/kd)h
+ε̃+ =

ω̃∗ − (1/kd)hε̃ by which, recalling also (3.3), the following holds

V (ξ)− V (x̂) = (1− h+η̃) +
1

2
z̃+>Jz̃+ − 2(1− hη̃)− 1

2
z̃>Jz̃

= 4hη̃ +
1

2

(
ω̃∗ − 1

kd
hε̃

)>
J

(
ω̃∗ − 1

kd
hε̃

)
− 1

2

(
ω̃∗ +

1

kd
hε̃

)>
J

(
ω̃∗ +

1

kd
hε̃

)
= 4hη̃ − 2

kd
hω̃∗>Jε̃

≤ −4δ +
2

kd
|ω̃∗>Jε̃| ≤ −4δ +

1

kd

(
ω̃∗>JU ω̃∗ + ε̃>JU ε̃

)
≤ −2δ

for all ξ ∈ Grob(x̃). Now let c1 ≤ c be a positive constant such that |ε̃| ≤ c1 ⇒ |η̃| > δ

and let `2 > 0 be such that

V (x̃) ≤ `2 ⇒ |(ε̃, z̃)| ≤ c1 .

Furthermore, by bearing in mind (3.49), fix `1 > 0 (and k?d and k?p accordingly) and

0 < `3 < `2 so that

|(ε̃, z̃)| ≤ `1d̄ ⇒ V (x̃) ≤ `3 .

In summary, for all df , dτ , J , t 7→ p∗(t), t 7→ ω∗z(t) such that |df |∞ ≤ Rf , |dτ |∞ ≤ Rτ ,

|J − J0||[ω∗, ω̇∗]|∞ ≤ RW , and for all p̃ ∈ R6, we have that (3.49) holds and V

is strictly decreasing during jumps. Accordingly, every complete solutions to Hrob

converge in finite time to the set P`2 := {x̃ : V (x̃) ≤ `2}.
We show that every maximal solution to (3.45) is complete. From the fact that

{x̃ : V (x̃) ≤ c′} is compact for every c′ > 0, and, for all x̃ such that V (x̃) ≥ `2,

V is non increasing along solutions to (3.45), we have that solutions are bounded.

Moreover the viability condition (VC) in [45, Proposition 6.10] holds for the hybrid

system (3.45) with zero input, i.e., d ≡ 0. Then, since Grob(Drob) ⊂ (Crob ∪ Drob)

and, as shown above, from the fact that solutions are bounded, by applying [45,

Proposition 6.10] it follows that all maximal solutions to (3.45) with zero input are

complete. SinceGrob(Drob)∩Drob = ∅ and the inputs df , dτ , dz in (3.48) are bounded,
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there is a finite (nonzero) amount of flows among jumps. This shows that every max-

imal solution to (3.45) in the presence of the input d satisfying (3.46) are complete.

As a consequence, from (3.49), there exists a T ? > 0 such that V (x̃(t, j)) ≤ `2 for

all (t, j) in the hybrid time domain of the solution such that t + j ≥ T ?. Hence, by

definition of c1, |ε̃(t, j)| ≤ |(ε̃(t, j), z̃(t, j))| ≤ c1 < c for all (t, j) such that t+ j ≥ T ?.
This in particular implies that x̃(t, j) ∈ Crob for all (t, j) such that t + j ≥ T ?, from

which item 1 holds true. To prove item 2, note that for all (t, j) ∈ dom x̃ such that

t + j ≥ T ? system (3.45) evolves as a continuous time system, namely no jumps

occur. Accordingly, for all maximal solutions to (3.45), there exists j? > 0 such that

(t, j?) belong to dom x̃ for all t ≥ T ?. The second item then follows by considering

the continuous time system (3.48), the Lyapunov function (3.49), and by applying

standard ISS arguments for continuous time systems [53, Chapter 10]. In particular

the asymptotic bound involving (J−J0)[ω∗, ω̇∗] follows from the property of ∆2ω(·)
in (3.41).

Remark 3.5. From the model inversion computed in Section 3.1.1 it follows that ω∗, ω̇∗

are functions of the position references p∗ (3), p∗ (4) and the attitude references ω∗z , ω̇∗z .

Hence, the value of RW in Theorem 3.1 depends on the desired position and attitude

references and on the uncertainties on the inertia matrix J . 4

Remark 3.6. Theorem 3.1 shows how the attitude controller (3.42)-(3.44) is actually able

to robustly globally stabilize the attitude error (3.39) in the presence of bounded exoge-

nous disturbances and parametric uncertainties. This robustness property represents

the main contribution of the proposed attitude control design with respect to the one

proposed in [83]. Robust attitude controllers have appeared also in the space control

literature (see [25] among others). The approach proposed in this work, however, is also

able to overcome the topological obstruction using hybrid feedback control techniques

so as to obtain a global property. 4

Stability Properties of the Combined Position and Attitude Closed Loops in the Ro-

bust Case

By combining the claim of Theorem 3.1 and the one of Proposition 3.1, small gain argu-

ments for continuous time systems can be used to conclude the asymptotic properties of

the whole closed-loop system in the robust case. In fact, the following proposition holds

true. 1

1Hereafter, for the hybrid systemHrob, we compactly denote |φ|a = lim sup
(t,j)∈domφ, t+j→∞

|φ(t, j)|.
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Proposition 3.5. Consider the whole closed-loop system given by the position error dynamics
(3.20) controlled by (3.22), with λi and ki, i = 1, 2, chosen as in (3.23), (3.24) and λ?i , k

?
i

chosen as in Proposition 3.1, and the error attitude dynamics (3.40) controlled by (3.42)-
(3.44) with δ ∈ (0, 1). Let

|df |∞ ≤ Rdf , |dτ |∞ ≤ Rdτ , |(J − J0)[ω∗, ω̇∗]|∞ ≤ RW

withRdf fixed by Proposition 3.1 andRdτ , RW arbitrarily large positive numbers. Then there
exists k?d > 0 and, for all kd < k?d, k?p(kd) > 0 such that for all kp ≥ k?p(kd) the following
asymptotic bound holds true

|(p̃, ε̃, ω̃)|a ≤ γmax{|df |a ,
1

kp
|dτ |a,

1

kp
|(J − J0)[ω∗, ω̇∗]|a}

for some γ > 0.

Proof. As a first step, note that there exists a positive constant Γ̄ such that the

Γ(Rc, R) can be bounded as |Γ(Rc, R)| ≤ Γ̄|ε̃|. With an eye to the statements of

Proposition 3.1 and Theorem 3.1 , let c > 0 and γatt > 0 be fixed so that Γ̄ c ≤ RΓ

and

γatt γpos Γ̄ < 1 (3.50)

and let k?d and k?p fixed accordingly so that the properties of Theorem 3.1 are ful-

filled with the restrictions on the inputs df , dτ and (J0 − J)[ω∗, ω̇∗] given by Rdf ,

Rdτ and RW . Then, by Theorem 3.1, the restriction RΓ on the input Γ of system

(3.20) controlled by (3.22) is fulfilled in finite time. Moreover, there exists a time T ?

such that for all t+ j ≥ T ? the closed-loop system flows only. At this point, asymp-

totic stability properties of the closed-loop system can be inferred by considering

stability arguments for continuous-time systems. In particular, note that the small

gain condition between the position and attitude subsystems is fulfilled by virtue

of (3.50). The claimed asymptotic bound then follows from gain composition using

the fact that γatt in Theorem 3.1 can be arbitrarily decreased by increasing kp.

By considering a possible employment in real-world applications, note that the ro-

bust attitude control strategy derived in Section 3.1.2 presents a number of advantages

with respect to the nominal one proposed in Section 3.1.2. On the other hand, from The-

orem 3.1 the robust attitude controller can be tuned to deal explicitly with model un-

certainties and exogenous disturbances. The importance of such robustness will be also

emphasized in Section 6.1, in which the problem of controlling a prototype of quadro-

tor aerial vehicle is considered. Moreover, the robust attitude controller relies only on
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3.1. VTOL UAV Control

a simple feedback law (3.43) which depends on the actual state of the system and on

the nominal model inversion computed in Section 3.1.1. All of the above features thus

suggest that the robust control strategy can be successfully employed in the design of

an autopilot for VTOL aerial vehicles. As far as the stability of the overall position and

attitude closed-loop system is concerned, note that the robust control strategy requires

the attitude controller to be sufficiently fast (see the conditions on the attitude control

parameters given in Proposition 3.5). This is a consequence of the fact that, in the robust
case, it is not possible to decouple the position and the attitude dynamics trough a suit-

able design of the control torque as it has been done in the two solutions proposed for

the nominal case.

Remark 3.7. When a hybrid controller is subjected to measurement noise, multiple

jumps or chattering may occur [45, Chapter 4]. This phenomenon may happen when

jumps map the state back to the jump domain, namely G(D) ∩ D 6= ∅. With an eye on

(3.34) and (3.35), since δ > 0, it follows that Gnom(Dnom)∩Dnom = ∅ (see [83, Subsection

IV.E]). Moreover, with an eye on (3.45), since Grob = Gnom and Drob ⊂ Dnom, it also

holds that Grob(Drob)∩Drob = ∅. As shown in [83, Subsection IV.E], the parameter δ can

be also tuned to ensure robustness to possibly large measurement noise. 4

Remark 3.8. The robustness with respect to uncertainties and exogenous disturbances

shown in Proposition 3.5 represents one of the main advantage of the inner-outer loop

controller developed in this work with respect to the globally stabilizing control strategy

proposed in [22]. 4

Simulations and real experiments on the proposed control law are presented in chap-

ter 6.

Conclusions

Control strategies to let the dynamics of a class of VTOL aerial vehicles tracking a de-

sired position and attitude trajectory globally with respect to the initial conditions have

been presented. The proposed feedback controllers are based on a hierarchical control

paradigm in which the attitude, which is governed by means of a hybrid controller to

overcome the well-known topological constraint, is employed as a virtual input to sta-

bilize the aircraft position. Two main approaches have been proposed and compared.

The first one is based on the idea of decoupling the attitude from the position dynam-

ics by taking into account perfect knowledge of the dynamical model of the system.

This approach has the advantage that the attitude and position subsystems can be tuned

separately without affecting the stability properties of the overall system. The second

approach on the other hand aims at obtaining a controller which is robust to the pres-
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ence of uncertainties and exogenous disturbances, such as wind gusts. Since the dy-

namical model of the system is not perfectly known, the position and attitude dynamics

cannot be decoupled. Hence the stability analysis requires to deal with the feedback in-

terconnection between the hybrid attitude and the continuous-time position closed-loop

subsystems. The resulting controller is characterized by a very simple structure, i.e., by

a linear error feedback term driven by the logic required to overcome the topological

obstruction and a feedforward term deriving from the references to be tracked. Simula-

tions obtained considering a prototype of quadrotor aerial vehicle finally show how the

robust controller can be effectively employed in practical applications. Experiments on

real prototype are presented in the last chapter of this thesis.
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3.2. Differential Wheel Robot Control

3.2 Differential Wheel Robot Control

In this section we want to provide a suitable control law for the differential wheeled

robot, compatible to the model proposed in the previous chapter. The goal of the control

law is to generate velocity inputs to track a desired trajectory or to reach a position in

space. Many authors proposed control laws for unicycles or car-like robots [73], [95],

[86]. The proposed control uses the novel concept of vectored speed (similar to vectored

thrust in VTOL control) and includes intrinsically a saturation on the linear speed. A

rigorous Lyapunov analysis proves the semi-globally asymptotic stability of the origin

of the error system, meaning that the robot will asymptotically track the desired tra-

jectory starting from an arbitrary initial state (error). Moreover LES (Local Exponential

Stability) is proved and will be useful for the next chapters on motion planning.

Consider the differential wheel robot model in (2.14). The low level control problem

consists in building a control law for v and ω to achieve the tracking of a desired position

trajectory xR(t) = [px,R(t), ˙px,R(t), py,R(t), ˙py,R(t)]T . The desired trajectory contains the

position and velocity trajectories.

By defining the error coordinates p̃x := px − px,R, p̃y := py − py,R, we design the

following control law

v =

∥∥∥∥∥
[
satλ(−KP p̃x)

satλ(−KP p̃y)

]
+

[
ṗx,R

ṗy,R

]∥∥∥∥∥ ,
ω = ωC −Kθθ̃

(3.51)

having defined θ̃ := θ − θC ,

θC := atan

(
ṗy,R + satλ (−KP p̃y)

ṗx,R + satλ (−KP p̃x)

)
,

ωC := θ̇C

with satλ(x) := λ x√
1+x2

and KP ,Kθ ∈ R>0.

The control law consists in a proportional feedback and a feed-forward term for the

dynamics of θ, where θC is a virtual input for the attitude dynamic, and in a vectored
speed control for the position dynamics, respectively. The idea is in fact to orient the

robot linear velocity vector with the control velocity vector v[cos(θC), sin(θC)]T gener-

ated by the position loop. As a consequence, a desired orientation θC and a desired

linear velocity v are obtained. The desired orientation becomes a virtual input for the

attitude control loop.

From (2.14) and (3.51) we obtain the following closed-loop error system
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
[

˙̃px
˙̃py

]
=

[
satλ (−KP p̃x)

satλ (−KP p̃y)

]
+ v

[
cos θ − cos θ)

sin θ − sin θC

]
˙̃
θ = −Kθθ̃

(3.52)

For the above system the following result holds.

Proposition 3.6. Let us consider the closed-loop system (3.52). Let [p̃x(0), p̃y(0), θ̃(0)] ∈ X,
with X ⊂ R3 an arbitrarily large compact set. Then there exist K?

P > 0, K?
θ > 0 such that for

all KP > K?
P , Kθ > K?

θ

• V := 1
2(p̃2

x + p̃2
y + θ̃2) is a Lyapunov function for system (3.52) satisfying V̇ ≤ −γV for

some γ > 0 and for all t ≥ 0;

• lim
t→∞

[p̃x, p̃y, θ̃] = [0, 0, 0].

Proof. Let us consider the Lyapunov function V . The derivative of V along system

(3.52) is given by:

V̇ = p̃x (satλ(−KP p̃x) + v(cos θ − cos(θC))) +

+ p̃y (satλ(−KP p̃y) + v(cos θ − cos(θC)))−Kθθ̃
2

Being v the module of the velocity control vector which is limited in norm for a

given position trajectory one can write:

v =

∥∥∥∥∥
[
satλ(−KP p̃x)

satλ(−KP p̃y)

]
+

[
ṗx,R

ṗy,R

]∥∥∥∥∥ ≤ Lv
with Lv ∈ R+ so as:

v(cos θ − cos(θC)) ≤ Lv

∣∣∣θ̃∣∣∣
v(sin θ − sin(θC)) ≤ Lv

∣∣∣θ̃∣∣∣
obtaining

V̇ ≤ − λKpp̃x√
1 + (Kpp̃x)2

p̃x + Lv |p̃x|
∣∣∣θ̃∣∣∣

− λKpp̃y√
1 + (Kpp̃py)2

p̃y + Lv |p̃y|
∣∣∣θ̃∣∣∣−Kθθ̃

2
(3.53)

Taking into account Young’s inequality:

|x| |y| ≤ ε2

2
|x|2 +

1

2ε2
|y|2

53



3.2. Differential Wheel Robot Control

with ε an arbitrary positive number, we can rewrite (3.53) as:

V̇ ≤ − λKpp̃x√
1 + (Kpp̃x)2

p̃x +
Lv
2ε2
|p̃x|2 +

Lvε
2

2

∣∣∣θ̃∣∣∣2
− λKpp̃y√

1 + (Kpp̃y)2
p̃y +

Lv
2ε2
|p̃y|2 +

Lv
2
ε2
∣∣∣θ̃∣∣∣2 −Kθθ̃

2
(3.54)

By defining

V̇1 := − λKpp̃x√
1 + (Kpp̃x)2

p̃x +
Lv
2ε2
|p̃x|2

V̇2 := − λKpp̃y√
1 + (Kpp̃y)2

p̃y +
Lv
2ε2
|p̃y|2

V̇3 := Lvε
2
∣∣∣θ̃∣∣∣2 −Kθθ̃

2

we can rewrite (3.54) as

V̇ ≤ V̇1 + V̇2 + V̇3.

We have that:

V̇1 ≤ 0⇔ |p̃x| ≤

√
−L2

v + 4λ2K2
pε

4

LvKp
, x̃lim ≥ 0 (3.55)

and

V̇2 ≤ 0⇔ |p̃y| ≤

√
−L2

v + 4λ2K2
pε

4

LvKp
, ỹlim ≥ 0 (3.56)

and

V̇3 ≤ 0⇔ Kθ ≥ Lvε2, ∀θ ∈ R (3.57)

For (3.55) and (3.56) to hold, we have to chose the control parameter Kp such that:

Kp ≥
Lv

2λε2
(3.58)

Note that, by fixing ε sufficiently large and accordingly, from (3.57) and (3.58), Kθ

andKp sufficiently large, equalities (3.55)-(3.56) hold from arbitrarily large compact

sets.

3.2.1 Bound with quadratic function

With an eye at the proof of Proposition 3.6, note that it is possible to bound the derivative

of the Lyapunov function as:

∃ γ1 > 0, x̃∗ : x̃∗ < x̃lim ⇒ V̇1 ≤ −γ1x̃
2 ∀ |p̃x| ≤ x̃∗ (3.59)

∃ γ1 > 0, ỹ∗ : ỹ∗ < ỹlim ⇒ V̇2 ≤ −γ1ỹ
2 ∀ |p̃y| ≤ ỹ∗ (3.60)
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∃ γ2 > 0 : V̇3 ≤ −γ2θ̃
2 (3.61)

obtaining

V̇ ≤ −γ1x̃
2 − γ1ỹ

2 − γ2θ̃
2 ; ∀ |p̃x| ≤ x̃∗ , |p̃y| ≤ ỹ∗ , θ̃ (3.62)

Then, by defining:

γ′ = min {γ1, γ2} ∈ R (3.63)

we have:

V̇ ≤ −γ′
(
p̃2
x + p̃2

y + θ̃2
)

; ∀ |p̃x| ≤ p̃∗x , |p̃y| ≤ ỹ∗ , θ̃ (3.64)

3.2.2 Closed Form Parameters

Given λ, Lv, xlim an easy solution to find the control parameters to achieve the desired

invariant is choosing:

Kp =
Lv
2λ

(3.65)

ε =
4

√
4λ2 + x̃2

limL
2
v

4λ2
(3.66)

and Kθ according to (3.57). The parameters gamma could be find as following:

γ1 =
x̃∗
(
Kpλε

2 − Lv
√

1 +K2
p x̃
∗2
)

√
1 +K2

p x̃
∗2ε2

(3.67)

γ2 = Kθ − Lvε2 (3.68)

We now have at hand the conditions for the planning, since:

α(‖e‖) = ᾱ(‖e‖) = 1
2 ‖e‖

2

γ(‖e‖) = γ′ ‖e‖2
(3.69)

Remark 3.9. The result in Proposition 3.6 allow to employ Lemma 4.2 by considering

α = ᾱ = 1
2 and the value γ > 0 which depends on the tuning of the control parameters

KP , Kθ, λ. 4

3.2.3 Simulations

Finally we show some simulations of the proposed control law in action. We propose

two simulations: in the first a point-to-point motion is required, while in the second the

differential wheel robot needs to perform a trajectory tracking of a spiral-like trajectory.

For both the simulations, the parameters of the controller are tuned as follows: KP =
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3.2. Differential Wheel Robot Control

4.6, Kθ = 4.4, λ = 1.9. The initial state of the robot is: [px, py, θ] = [0, 0, π].

In the first simulation, the target xR(t) = [10, 0, 5, 0], i.e. the final point to reach is

(10, 5). We can see the results in Figure 3.5.

−2 0 2 4 6 8 10 12
−1

0

1

2

3

4

5

6

y
 [
m
]

x [m]

p
x,R
,p
y,R

p
x
(t),p

y
(t)

Figure 3.5: Point-to-point motion: the differential wheel robot moves from the initial
position to the reference point in [10,5] m.

In second simulation, the initial state is the same, but the reference trajectory is a

spiral-like trajectory. In particular, the trajectory is defined as:

px,R(t) = A
t
10

+1
sin(ωt)

˙px,R(t) = − A

( t
10

+1)
2
10

sin(ωt) + A

( t
10

+1)
ω cos(ωt)

py,R(t) = A
t
10

+1
cos(ωt)

˙py,R(t) = − A

( t
10

+1)
2
10

cos(ωt)− A

( t
10

+1)
ω sin(ωt)

(3.70)

where A is the initial amplitude, chosen as A = 5 in the simulation, ω is the "fre-

quency" of the spiral, chosen as ω = 0.1 in the simulation.

The result of the simulation can be seen in Figure 3.6, where a x−y plane is depicted

with both the trajectory and the position of the robot. We can see how smoothly the

robot converges and asymptotically tracks the trajectory.
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Figure 3.6: Trajectory tracking motion: the differential wheel robot reaches and tracks
the spiral-like trajectory.
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If you fail to plan, you are planning to fail!

Benjamin Franklin

4
Path Planning Strategies

M otion planning for mobile robots is part of the fundamental three pillars of

vehicles and robots movement: guidance, navigation and control. Motion/-

path planning for mobile robots falls under guidance, and despite decades

of research in this field there are yet many open topics and challenges. Still many robots

use actual techniques in real applications and rely on state of the art algorithms despite

their deficiencies. The goal of motion planners is to generate a suitable path or trajectory

for the robot, given a particular mission, taking into accounts knowledge of the state of

the robot and of the environment. Some of the critical challenges the motion planning

problem has to face are: the capability to take into account the dynamic differential con-

straints of the robot, the ability to run in real-time with the on-board computation as a

real application requires, the ability to take into account possible disturbances in the en-

vironment and knowledge failures. A general solution to the problem with differentially

constrained robots was proven to be very challenging and unfeasible for real applica-

tion due to its high computational cost [20]. Since the general problem is unfeasible, the

literature is full of strategies that try to solve one or many of the problems presented.

The most recent strategies for real planning applications include randomized algorithms

[67] [9] [58] and lattice-based algorithms [99] [98] [71]. In this thesis, the contribution

on motion planning is about trying to solve some of the issues of the general planning

problem. In this chapter we’ll focus in particular on a strategy to handle kinodynamic
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planning problems, relying on simple and low computational cost trajectory generation

that guarantees kinodynamical feasibility of the problem not directly handling differ-

ential constraints. In the next chapter on the other hand we’ll focus on a new planner

approach based on Discrete Event System theory, that can potentially solve many of the

planning challenges.
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4.1 Introduction

When we refer to mobile robots path planning we need to first understand the notion of

state of the robot. The state X ⊂ XTOT can be considered as a set of variables of interest

to describe the model of the robot in the environment. X can be composed by state-

space variables, configuration space, internal states or whatever variables of interest

that models the problem. XTOT is the complete set of possible state configurations.

Of course standard approaches uses standard configuration, for example the position,

orientation and velocity in a 2D or 3D dimensional euclidean space. But it can be the

state-space of joints for a manipulator, or the configurations in SO(3) for a rigid body

which interest in only the rotation in 3D. We call initial state Xi = X(t = 0) ⊂ XTOT the

set of variables describing the initial state of the robot. We call final state Xf = X(t =

tf ) ⊂ XTOT the set of variables describing the final state of the robot. The final state is

usually the goal for the particular mission, where we want to bring the robot’s state. We

call the allowed state Xa ⊂ XTOT the set of variables the robot can traverse and with

forbidden space Xfb ⊂ XTOT the set of state the robot shouldn’t traverse. Forbidden

space is usually defined by the environment, or by design to avoid unwanted situations

or positions of the robot. The classic example is that Xfb includes the obstacles present

in the environment, or states that are dangerous such as high speeds or risky areas.

Xa
⋃
Xfb = XTOT . The general problem of robots path planning consists in generating

a state time-trajectory that brings the stateX of the system fromXi toXf only traversing

Xa. The general problem can then be seen as the problem of computing X(t) such that:

X(0) = Xi

X(tf ) = Xf

X(t) ⊂ Xa, ∀t ≥ 0

(4.1)

Many are the challenges to build the perfect planning algorithm and some of the

most important are included in the following.

4.1.1 Feasibility

Feasibility refers to the ability of the algorithm to generate a feasible trajectory for the

dynamic model of the system. Consider a general non-linear model describing the dy-

namic of a mobile robot:

ẋ = f(x(t), u(t)) (4.2)

with x ∈ Rn, u ∈ Rm, f : Rn×m → Rn a locally Lipschitz function.

Consider xR(t) ∈ Rn a state-trajectory reference and uR(t) ∈ Rm the input reference.

The reference trajectory xR(t), uR(t) is said to be functionally-controllable or dynam-
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ically feasible if:

ẋR(t) = f(xR(t), uR(t)) (4.3)

such that if the input u(t) = uR(t), the state-trajectory reference xR(t) evolves as a

possible trajectory of the system (4.2).

This means that a good algorithm should generate a trajectory that respects all the

dynamic constraints of (4.2). By not respecting feasibility, it occurs that the real robot

will be incapable of exactly following the generated trajectory, leading to possible crash

with obstacles. As an example we can consider a double integrator system in two dimen-

sion (x− y): 
ẋ1 = x2

ẋ2 = ux

ẏ1 = y2

ẏ2 = uy

(4.4)

.

If the trajectory generated by the planner consists of connections of straight lines

with constant velocity, it can result in an instantaneously change in velocity. In this

scenario the system would require an infinite input (force), thus making it impossible to

track. The result can be seen in Figure 4.1 where we can see how the closed-loop system

(with a PD controller plus feedforward term) tries to follow the piece-wise lines, but due

to the tracking error it collides with the obstacle.
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Figure 4.1: Double integrator model tracking unfeasible path. We can see how the
closed loop system cannot track perfectly the trajectory, leading to possible crash with
obstacles.

The feasibility condition, considered in all kino-dynamic planners [99] [10] [50] [67]
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[30] [42], is usually one of the most computationally expensive part in planners, since it

has to possibly deal with differential, non-linear and complex equations.

The planning problem with feasibility constraints becomes a Boundary Value Prob-

lem where the state trajectory xR should be computed such that:

ẋR = f(xR(t), uR(t))

xR(0) = Xi

xR(tf ) = Xf

xR(t) ∈ Xa, ∀t ≥ 0

(4.5)

4.1.2 Optimality

We talk about optimality when we want to solve the planning problem with an objective

we want to optimize. The objective to optimize is usually giver in terms of objective

function to maximize or minimize. The definition of the objective function gives us a

way to obtain solutions that have a good quality with respect to what we are interested

in.

The planning problem with feasibility constraints and optimality becomes an Opti-

mization Problem with differential constraints, where the state trajectory xR should be

computed such that:

min
xR

/max
xR

J(v)

subject to : ẋR = f(xR(t), uR(t))

xR(0) = Xi

xR(tf ) = Xf

xR(t) ∈ Xa, ∀t ≥ 0

(4.6)

with J(·) ∈ R the scalar objective function we want to maximize or minimize and

v a vector of variables which the objective function can depend on. Some example the

function J and the variables v can include, among others, time minimization, such that

J = tf , distance minimization, such that J =
∫ tf

0 |xR(t)|dt or input minimization, such

that J =
∫ tf

0 |uR(t)|dt.
The problem of computing optimal motion planning was proven to be very challeng-

ing and computationally expensive [19], [20].

4.1.3 Runtime

Runtime represents the CPU time, or in general the computational time to evaluate the

trajectory with the planning algorithm. This is strictly related to the ability of the robot

to react fast to changes in the environment or in the final state target, and the runtime
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should be as low as possible if we want to be able to run the algorithm in real-time.

This is a very important requirement for real world application in path-planning of mo-

bile robots, since the fast reactivity can avoid unpleasant and dangerous situations for

the robot. Usually the high computations comes from many factors of the algorithm: for

discretized and graph-search algorithms the complexity comes for the fine discretization

that leads to high dimension graphs or lattices, for randomized algorithms the complex-

ity comes to the points connector which needs to take into account the kinodynamic

constraints, while for almost every algorithm, the collision checking module requires

high computation.

4.1.4 Completeness

An algorithm is said to be complete if it returns a solution to the problem in finite

time if it exists, or it fails in finite time otherwise. This is an hard requirements that

almost every known and used algorithm doesn’t have. Other completness concept as

probabilistic-completeness or resolution-completeness are given in literature for special al-

gorithms. Probabilistic completeness [67] [58] is related to sampling-based algorithms

for which the completeness probability goes to 1 as soon as the sampling number in-

crease. Resolution-completeness [66] on the other hand is related to discretized algo-

rithms, where the completeness is guaranteed if the resolution of the algorithm increases

the precision. Most of the discretized algorithm fail to have even resolution complete-

ness properties.

4.1.5 Globality

Globality refers to the set of states in which the planning algorithm is computed and

valid. It is said to be global if the algorithms runs on XTOT while is said to be local if it

runs on a subset XPAR ⊂ XTOT . Of course the best algorithms should be global, but the

drawback is the increase in computational time given by the increased state space. Local

algorithms are for example run on the subspace of state included in the range of exte-

roceptive sensors of the robot. Many planning strategies [113][71] use a combined local

and global planner to try keep both the advantages of local and global planner. In some

grid-based or lattice-based algorithms for example a fine discretization is used around

robot’s location, while a rough discretization is used outside. Other strategies may use a

kinodynamic planning close to the robot and a simple non-kinodynamic planner outside

[99]. There is usually a compromise between runtime performances and globality, where

a global planner usually takes more computation to perform. In real world application

in unknown environment, the globality is not always useful, since the motion planner is

evaluating only local information, making the plans outside the sensor range useless.
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4.1.6 Robustness

Robustness is a feature that is very often omitted from the planning algorithms. De-

signing a robust algorithm means to take into account for generic disturbances that can

model: dynamic model uncertainties such as un-modeled dynamics or wrong parame-

ter estimation, state knowledge uncertainties such as localization uncertainties due to

sensors noise, environment disturbances such as unknown forces acting on the robots

(wind for example). Most of the works in literature that takes into account the prob-

lem, proposes solution based on stochastic modeling of uncertainties and embed those

limitations into the planner [16] [15] [64]. In [78], a robust planner is developed using

Lyapunov invariant funnels and interconnecting motion primitives taking into account

disturbances and un-modeled effects.

4.1.7 Replanning

The environment for robots can be inherently uncertain and dynamic. Obstacles can

move or be freshly detected by the onboard sensors, making the previous computed

path non feasible on non-optimal due to changes in Xa. The replanning is the capacity

of the algorithm to re-plan the path after the initial computation. It is strictly linked to

runtime capabilities since the new trajectory should be computed in a very limited time,

in particular if we are considering the robot dynamics and we are already executing the

previous path. For example a robot moving very fast in a forest and detecting a new

tree, requires a new trajectory in milliseconds otherwise at high speed it would move far

away before a new trajectory is computed, leading to a possible crash. The replanning

ability is not only linked to the runtime, but on the nature itself of the algorithm. Some

algorithms as the discretization-based or grid-based requires that the state of the robot

is in one of the discretized state to compute a trajectory, so the new plan cannot be

computed at any time.

4.1.8 Incremental

Incremental capability is strictly linked to replanning. It means that the new plan can be

computed based on the differences in the constraints or environment and based on the

previously computed path. Starting from the latest path, it is repaired to take into ac-

count the new forbidden states and possible cost changes. This is often many times more

efficient than re computing the whole path from scratch. Some incremental algorithms

for planning on graphs are D* and its variants [62] [107].
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4.2 Piece-Wise Controllable Trajectories and Practical Track-

ing

As widely known, kinodynamic planning is the most difficult task when developing mo-

tion planners, and generating feasible paths is usually one of the most computationally

expensive operation, because the planner has to deal with dynamic constraints given

generally in the form of non-linear differential constraints. What we want to study

in this chapter is the effect of generating quasi-feasible (controllable) trajectories, com-

posed as sequences of piece-wise feasible trajectory. The goal is to analyze the intercon-

nection of the low-level control law for trajectory tracking with the planner that gener-

ates such trajectories and what’s the impact of this choice in the planner. What we obtain

is a practical tracking (since asymptotic tracking is impossible due to non-feasibility of

the path), where we want to derive bounds on tracking error of such trajectories [38]

[41] [40]. The advantages of this analysis is that the planner can be very simple and

generate simple non-feasible trajectories, while still guaranteeing bounded tracking er-

ror. This information can be used to plan safe and robust paths without directly dealing

with differential constraints. As we’ll see later in this chapter, piece-wise controllable

trajectories for many mobile robots can mean simple straight lines, which are very easy

to concatenate with existing algorithms and with the proposed algorithms in this the-

sis. This reduces by many times the runtime of the planner, making it suitable for fast

replanning but still considering the dynamic of the vehicles. Finally we study the same

conditions taking into account uncertainties and disturbances on the system. Using ISS

(Input to State Stability) Lyapunov analysis we derive bounds on tracking error of piece-

wise controllable trajectories in the presence of disturbances on the system, allowing for

robust and fast kinodynamic planning algorithms.

4.2.1 Piece-wise Continuous Reference and Integrator Chain System

As first case we want to analyze the interconnection of a chain of integrators dynamic

system with state-feedback closed loop and a planner that generates sequences of piece-

wise continuous trajectories. Let us consider the following continuous-time single-input

time-invariant linear system:

ẋ(t) = Ax(t) +Bu(t) (4.7)

where x =
[
x1, x2, · · · , xn

]T
∈ Rn, u ∈ R, A ∈ Rn×n given by
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A =



0 1 0 · · · 0

0 0 1
. . . 0

0 0 0
. . . 0

...
...

... · · · 1

0 0 0 · · · 0


(4.8)

and B ∈ Rn×1 defined as

B =
[
0, · · · , 0, 1

]T
(4.9)

By construction, the above system represents a chain of integrators of dimension n.

Assume now that the goal of the control design is to track a desired time reference

trajectory given by

xR(t) =
[
x1R(t), x2R(t), · · · , x(n+1)R(t)

]T
(4.10)

with xiR(t) = ẋ(i−1)R(t), ∀i = 2, 3, ..., n + 1. For sake of convenience, we compactly

denote as xR(t) the vector which corresponds to the desired trajectory together with the

derivatives up to the (n− 1)-th so as:

xR(t) =
[
x1R(t), x2R(t), · · · , xnR(t)

]T
. (4.11)

The desired trajectory is assumed to be a piece-wise continuous function of time with

arbitrary switch time and piece-wise class Cn on the piece intervals. We define tj the

time when a trajectory switch occurs, namely when the reference is switching from the

trajectory piece j− th to trajectory piece (j+ 1)− th, with t−j the time just before the j-th

reference switch and with t+j the time just after the j-th reference switch, with j ∈ N. The

j-th trajectory piece is continuous and class Cn on the interval
[
t+j−1, t−j

]
. We suppose

that
∣∣∣xiR(t+j )− xiR(t−j )

∣∣∣ ≤ di ∀i = 1, 2, ..., n, ∀j, with di ∈ R+ (i.e. there are bounds on

the difference of trajectory and its derivatives after a switch occurs). Finally, we define

d̂ =
√
d2

1 + d2
2 + ...+ d2

n. One can now write the error dynamics of the system by defining

e(t) , x(t)− xR(t), and accordingly:

e1(t) , x1(t)− x1R(t)

e2(t) , x2(t)− x2R(t)

...

en(t) , xn(t)− xnR(t)

(4.12)
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obtaining, from (4.7),

ė(t) = Ae(t) +B(u(t)− x(n+1)R(t)) (4.13)

The error system results in a time-dependent switching system due to the presence

of the piece-wise continuous reference xR(t). In fact, at every switch in the reference

signal it corresponds a jump in the state e of the error system.

The goal of the control law is to track the desired reference trajectory and to achieve

‖e(t)‖ ≤ q, ∀t ≥ 0 (4.14)

with q > d̂, namely to maintain the tracking error bounded despite jumps in the

reference signal.

Inspired by [70], we introduce a dwell time τ , i.e. a minimum time between two

switches in the reference trajectory xR(t), so as (4.14) can be achieved. More formally,

the following result can be stated.

Lemma 4.1. With the control input u(t) = BTPe(t)+x(n+1)R(t), with P solution of the Ric-

cati equation ATP − 2PBBTP +PA = −aIn, and with a Dwell time τ ≥ − λ̄P
a log

(
q2−d̂2
q2

)
,

with λ̄P the largest eigenvalue of the matrix P , the overall error system (4.13) is stable in the
sense of Lyapunov (see [70]) and ‖e(t)‖ ≤ q, ∀t ≥ 0.

Proof: Choosing as common Lyapunov function the quadratic function V = eTPe,

the control law u(t) = BTPe(t) + x(n+1)R(t) with P solution to the Riccati equation

given in the statement of the lemma makes the matrix (A + BK) Hurwitz and ensures

that

V̇ (t) = −a ‖e‖2 (t) (4.15)

By applying the comparison lemma [61] it also holds

λP ‖e(t)‖
2 ≤ V (t) ≤ λ̄P ‖e(t)‖2 (4.16)

From (4.15) and (4.16) we have:

− aV (t)

λP
≤ V̇ (t) ≤ −aV (t)

λP
(4.17)

The time between two consecutive switches, namely the dwell time, is given by τ =

t−j − t
+
j−1. We have that, because of the switch:∥∥∥e(t+j )

∥∥∥2
≤
∥∥∥e(t−j )

∥∥∥2
+ d̂2 (4.18)
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and then to achieve (4.14), a necessary condition is given by:∥∥∥e(t+j )
∥∥∥2
≤ q2 (4.19)

which, by considering the Lyapunov function (4.15) and the inequalities in (4.16),

(4.18) and (4.19) could be rewritten as:

V (t−j ) ≤ λP (q2 − d̂2) (4.20)

From (4.20), it is possible to write the evolution of the Lyapunov function based on

the bounds (4.17) on its derivatives:

V (t−j ) = V (t+j−1)e
− a
λP

τ ≤ λP (q2 − d2) (4.21)

Then, by considering the worst case of V (t+j−1) = λP q
2, note that the inequality (4.21)

holds true when the dwell-time is chosen as in the statement of the lemma.

2

Remark: for the sake of simplicity, it is possible to define

d∗ = max{d1, d2, ..., dn}

and to take d̂ =
√
nd∗, obtaining a more conservative but easier choice for the parameter

d.

Example and Application

Let us consider a mobile robot modeled as a fully-actuated double integrator system

defined over a 2-dimensional Euclidean space
ẋ1 = x2

ẋ2 = u1

ẏ1 = y2

ẏ2 = u2

(4.22)

in which x1 represents the longitudinal position in a 2D plane and y1 the lateral

position. The above model can be employed to model, for instance, the kinematics of a

holonomic vehicle including the lateral / longitudinal dynamics of VTOL aerial vehicle

[34].

The trajectory tracking problem consists of allowing the vehicle to track a desired

trajectory xR(t), yR(t) maintaining a bounded tracking error despite the presence of

jumps or asymptotically track the desired reference when no jump occurs. In this case
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xR(t) represents a position trajectory in x direction and not the full state reference. The

trajectory tracking problem for (4.22) can be defined as follows. Given the system (4.22),

a trajectory x1R(t), y1R(t), and its derivatives up to the 2nd order, build a control law

us =
[
u1 u2

]T
such that the error system

ės(t) = Ases(t) +Bsus(t) +
[
0 1 0 0

]T
ẍ1R(t) +

[
0 0 0 1

]T
ÿ1R(t)

(4.23)

is asymptotically stable in the special case no jump in the reference occurs. The error

system is derived from (4.22) by defining:

es(t) =


es1(t)

es2(t)

es3(t)

es4(t)

 ,

x1(t)− x1R(t)

x2(t)− ẋ1R(t)

y1(t)− y1R(t)

y2(t)− ẏ2R(t)

 (4.24)

so as

As =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 Bs =


0 0

1 0

0 0

0 1

 (4.25)

The goal could be achieved by a control law:

us(t) = Kses(t) +

[
1

0

]
ẍ1R(t) +

[
0

1

]
ÿ1R(t) (4.26)

with Ks = BT
s Ps, with Ps solution of the Riccati equation ATs Ps − 2PsBsB

T
s Ps +

PsAs = −aI4.

Remark: The above result follows as in the proof of Lemma 4.1 by considering sys-

tem (4.22) as two disjoint single-input systems, namely the lateral and the longitudinal

dynamics. 2

Given the control law, by choosing an appropriate a it is possible to fix the state-

feedback gains as well as the matrix Ps. Once the maximum allowed error q and the

trajectory discontinuity d are fixed, it is possible to compute the Dwell TIme τ following

lemma 4.1. A more detailed are realistic application, with explicit calculation of τ will

be given in next chapter.
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4.2.2 Piece-wise Controllable Reference and Non-Linear System

We now want to extend the previous case to a more general non-linear dynamic system,

to model any kind of robot. In this case we suppose that the reference trajectory is

composed of a sequence of piece-wise feasible trajectories, called primitives.
To model a more general class of ground / aerial vehicles, we consider the nonlinear

system

ẋ = f(x(t), u(t)) (4.27)

with x ∈ Rn, u ∈ Rm, f : Rn×m → Rn a locally Lipschitz function.

The desired state and input reference signals are composed of a sequence of primi-
tives, i.e.

xR(t) :=
⋃
i∈N

xi, i+1
R (t), uR(t) :=

⋃
i∈N

ui, i+1
R (t) (4.28)

with i ∈ N and

xi, i+1
R : [ti, ti+1)→ Rn, ui, i+1

R : [ti, ti+1)→ Rm . (4.29)

Each i-th primitive is defined over the compact time interval [ti, ti+1), with ti+1 > ti,

and it is such that

ẋR(t) = f(xR(t), uR(t)) ∀t ∈ [ti, ti+1) , (4.30)

namely it is functionally-controllable in the interval [ti, ti+1). By construction, note that

the state reference xR(t) is a piece-wise continuous function of time: in fact discontinu-

ities may occur at times ti, i ∈ N. We suppose that, for all i ∈ N,∥∥∥xi, i+1
R (t−i+1)− xi+1, i+2

R (ti+1)
∥∥∥ ≤ d′ , (4.31)

for some d′ ≥ 0, i.e., the discontinuities of the state trajectory at the switching times are

bounded.

For some vehicles, as the case of differential wheel car as seen later, only a subset of

the state vector can be of interest for the tracking task and at the same time, to stabilize

the system, other states can be taken into account. Accordingly, we assume that the state

x can be written as x := [y, z]T , with y ∈ Rp the outputs to be controlled, and z ∈ Rn−p

and the equivalent xR := [yR, zR]T , with yR ∈ Rp and zR ∈ Rn−p.

Example 4.1. Let us consider the linear system (double integrator){
ẋ1 = x2

ẋ2 = u
(4.32)

with state x = [x1, x2]T ∈ R2, input u ∈ R. The above system can be employed to model
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the dynamics of a holonomic robot moving along a line [111]. We assume that the output

of interest is given by y := x1, i.e. the position. Following the above construction, given

a constant v ∈ R, a reference state and input can be obtained by means of the following

two primitives
x0, 1
R (t) = [x1R(t0) + vt, v]T

u0, 1
R (t) = 0

(4.33)

which is defined over the time interval [t0, t1), and

x1, 2
R (t) = [x1R(t1)− vt, −v]T

u1, 2
R (t) = 0

(4.34)

defined over the time interval [t1, t2). Note that for the above two primitives we can

compute the discontinuity at the switching time as in (4.31) obtaining d′ =
√

2v. 4

By defining the tracking errors as:

ỹ(t) := y(t)− yR(t) , (4.35)

the control input u(t) is designed in order to achieve practical tracking of the outputs of

interest, i.e.

‖ỹ(t)‖ ≤ q ∀t > 0 (4.36)

for some given q > d, with d ∈ R. Moreover we suppose that the set of states for the

stability of the system is extended to ξ defined as:

ξ =

[
ỹ

η̃

]
(4.37)

with η̃ ∈ Rr a set of auxiliary states. For construction ‖ξ(t)‖ ≤ q ∀t > 0 ⇒
‖ỹ(t)‖ ≤ q ∀t > 0. The control input u is designed as function of state ξ and reference

xR as u = κ(ξ, xR). The extended error system is such that:

ξ̇(t) = f ′(ξ(t)) (4.38)

with f ′ : Rp×r → Rp×r a locally Lipschitz function. Interestingly enough, the error

system 4.38 can be considered as a switching system [70], since xR may switch at ti to a

different value.

The discontinuity d is the equivalent of d′, but considering the extended state ξ such

that for all i ∈ N:

∥∥ξi, i+1(t−i+1)− ξi+1, i+2(ti+1)
∥∥ ≤ d , (4.39)
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Note that q represents the maximum norm of the tracking error that we want to

guarantee for the desired outputs. By construction, the lower bound for this parameter is

the discontinuity bound d: the bigger is the discontinuity, the bigger will be the tracking

error, with the limit case of theoretically perfect tracking only if d = 0 (i.e. the trajectory

is continuous).

To achieve target (4.36), the control law u will be designed in order to have, for all

ξ :
∥∥∥ξ̃∥∥∥ < q,

α(‖ξ‖) ≤ V (ξ) ≤ ᾱ(‖ξ‖)
V̇ ≤ −γ(‖ξ‖) ∀t ∈ (ti, ti+1) , ∀i ∈ N

(4.40)

for some class K functions α(·), ᾱ(·) defined on [0, q), and for a class K function γ(·)
defined on [0, q), and where V : Rn → R≥0 is a common Lyapunov function.

Accordingly, along the interval of time [ti, ti+1), the Lyapunov function V decreases,

while, at times ti, ti+1, .., the Lyapunov function could increase due to the discontinuous

references.

Remark 4.1. The stability properties on the extended error system ξ are present on the

subset of states of interest ỹ, such that if the origin ξ = 0 is stable, even the states of

interest for tracking ỹ are stable. 4

To guarantee that the tracking error does not exceed the desired maximum value q,

the following result, which makes use of the notion of dwell-time defined in [70], can be

employed.

Lemma 4.2. Let us define Vmax := α(q), Vmin := α(ᾱ−1(α(q))− d) and emax := ᾱ−1(α(q)).
If, ∀i ∈ N, ti+1 − ti ≥ τ with τ solution to the boundary value problem

V (ti) = Vmax

V (ti + τ) = Vmin

V̇ ≤ −γ
(
ᾱ−1 (V )

) (4.41)

and the initial state for the error system (4.38) is such that:

‖ξ(t0)‖ ≤ emax (4.42)

then the constraint (4.36) is satisfied for all t > 0.

Proof. From (4.40), the goal (4.36) can be satisfied if the Lyapunov function V does

not surpass the value Vmax defined in the statement of the lemma. This requires

the error ξ(t) to be such that ‖ξ(ti)‖ ≤ emax with emax = ᾱ−1(α(q)) for all times ti,

i ∈ N, in which a jump to a different primitive occurs (see Figure 4.2 for a graph-
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ical intuition). From (4.40), the constraint ‖ξ(ti)‖ ≤ emax is guaranteed by having

V (t−i ) ≤ Vmin, namely by imposing a constraint on the maximum value of V before

a jump to a different primitive. Accordingly, τ can be computed as the time required

by Lyapunov function to decrease from Vmax to Vmin, namely by solving (4.41).

||ξ||

Figure 4.2: Visual representation of the Lemma conditions

Remark 4.2. By using the comparison lemma in [61], the time τ can be upper-bounded

by considering in (4.41) the solution to the ordinary linear differential equation V̇ = −γ,

in which λ = γ
(
ᾱ−1(Vmin)

)
, obtaining

τ =
α(q)− α

(
ᾱ−1 (α (q))− d

)
γ (ᾱ−1 (α (ᾱ−1 (α (q))− d)))

(4.43)

4

Remark 4.3. The time τ can be upper-bounded by solving a linear ordinary differential

equation. In fact there exists λ ∈ R such that:

V̇ ≤ −λ ∀ξ : ‖ξ‖ ≥ hλ (4.44)

By choosing hλ = eλ = ᾱ−1(Vmin) and λ = γ(eλ) the minimum dwell time τ is chosen

such that:

Vmax − λτ ≤ Vmin (4.45)
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from which τ could be chosen as:

τ =
α(q)− α

(
ᾱ−1 (α (q))− d

)
γ (ᾱ−1 (α (ᾱ−1 (α (q))− d)))

(4.46)

4

4.2.3 Piece-wise Controllable Reference and Non-Linear System with Dis-
turbances

We want to extend the previous subsection considering disturbances in the model of

the system. The disturbances can model external inputs, such as wind for UAV, param-

eter uncertainties, such as mass and inertia of the UAV, or un-modeled effects. This

analysis allows us to derive trajectory tracking conditions on the boundedness of the

tracking error to generate robust planners. Finally an application to forest navigation

of differential-wheel robot and VTOL in presence of disturbances is proposed, where

the planner generates simple waypoints but still guarantees dynamic constraints and

non-collision of the dynamic system with disturbances.

For this extension we need to recall and manipulate some notion on ISS (Input to

state Stability). The following tools for ISS stability were derived from [53], [105]. Con-

sidering a system

ẋ = f(x,w) (4.47)

with x ∈ Rn, w ∈ Rk, with f(·) locally Lipschitz for all x : ‖x‖ ≤ xm ∈ R > 0.

The system is said to be Locally Input to State Stable (ISS) if there exist some class K
functions β(·), β(·), γ(·), σ(·) defined on [0, xm), and a function V : Rn → R≥0 of class

C1 such that:

β(‖x‖) ≤ V (x) ≤ β(‖x‖)
V̇ ≤ −γ(‖x‖) + σ(‖w‖)

(4.48)

From (4.48) we have

‖x‖ ≥ χ(‖w‖)⇒ V̇ ≤ −γ′(‖x‖) (4.49)

with χ(‖w‖) a class K function:

χ(‖w‖) = γ−1 (kσ(‖w‖)) (4.50)

,

k ∈ R > 1 and
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γ′(‖x‖) =
k − 1

k
γ(‖x‖) (4.51)

Since

V̇ ≤ −γ′
(
β−1(V )

)
∀V ≥ V1 (4.52)

with V1 = β (χ (‖w‖∞)), there exist a γ̄ ∈ R > 0 such that

V̇ ≤ −γV ∀V ≥ V1 (4.53)

Note: up to V1 the Lyapunov function value decreases exponentially.

We can define a classK functions Ψ(‖w‖) that corresponds to the asymptotic gain for

the system (4.47). It is defined as:

Ψ(‖w‖) = β−1
(
β (χ(w))

)
(4.54)

such that:

‖x(t)‖∞ ≤ Ψ(‖w‖∞) (4.55)

with x(t) the solution of (4.47).

Recalling the notation of the previous section, we define the closed loop error system

with disturbances:

ξ̇(t) = f ′(ξ(t), w) (4.56)

Assumption 1: the closed loop error system 4.56 is ISS such that (4.48) hold, where

the state x is the error state ξ. Assumption 2: two consecutive trajectories are connected,

such that the maximum discontinuity in the error system 4.56 state space is less than

d ∈ R.

Theorem 4.1. Let Assumption 1 and Assumption 2 hold, let emax ∈ R > 0. Let:

emax ≥ ē , β−1
(
β (χ (‖w‖∞))

)
(4.57)

let:

Vmin ≥ V1 (4.58)

let:

ξ0 = ξ(0) : V (ξ0) ≤ Vmax (4.59)
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let:

Vmaxe
−γτ ≤ Vmin (4.60)

with Vmax = β(‖emax‖), Vmin = β
(
β
−1

(Vmax)− d
)

.
Then:

‖ỹ(t)‖ ≤ ‖ξ‖ ≤ emax ∀t > 0 (4.61)

After fixing the controller parameters we want to find a maximum discontinuity d

and a lower bound on the time interval τ , such that if the previous conditions are met

we achieve a practical tracking with maximum tracking error of emax. There are many

ways to solve the problem in a practical application as we’ll see in later, but it can be

generalized as an optimization problem that can be non-linear because of functions β

and β.
Proof. Following (4.2): Vmax is the maximum value of the Lyapunov function such

that:

V (t) < Vmax ⇔ ‖ỹ(t)‖ ≤ ‖ξ(t)‖ ≤ emax, ∀t > 0 (4.62)

Every time a new piece-wise trajectory is generated, the discontinuity d increases

the Lyapunov function value. For iterability we want that before a new primitive is

taken, the Lyapunov value decreases up to the value Vmin, such that after the dis-

continuity the Lyapunov function doesn’t exceed Vmax. Vmin = β
(
β
−1

(Vmax)− d
)

.

Equation (4.53) guarantees that:

V (t) = V (0)e−γ̄t ∀V > V1 (4.63)

Hence (4.60) guarantees that after the discontinuity, the value of Lyapunov func-

tion decreases at least to Vmin in time τ :

Condition (4.58) is required by the ISS condition (4.53).

The minimum tracking error ē corresponds to the asymptotic gain of the system.

We apply the previous theorem to the problem of tracking a particular class of tra-

jectories for some systems of interest. The trajectories we are interested are defined on

R2 (it is possible to extend to R3) and are piece-wise constant in velocity and continu-

ous in position. This kind of trajectories could be seen as all the trajectories generated

connecting waypoints with linear segments with constant velocity along the path. We

define the trajectory pR(t) ∈ R2, where R2 defines the operative space which in our case

is the x− y plane (3D extension is trivial). We can define:
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pR(t) :=
⋃
i∈N

piR(t) (4.64)

with i ∈ N and

piR : [ti, ti+1)→ R2, (4.65)

Let’s assume that

• The liner velocity along the path is constant and with value v so that ‖ṗR(t)‖ = v.

v is the norm of the velocity in the plane x− y.

• The minimum duration of a trajectory piece is T , such that ti+1 − ti > T for all

i. Since the velocity is constant the minimum length for the segment or distance

between waypoints is given by vT .

• The angle between two segments is at most αmax

p (t)
R

Figure 4.3: Example of Trajectory of interest. The trajectory is composed of segments
connecting waypoints with minimum length vT and maximum angle among them of
αmax

An example of trajectory of interest is given in Figure 4.3. For construction, the tra-

jectory has no discontinuity in terms of position, has maximum discontinuity in velocity

of v
√

2(1− cos(αmax)) and maximum discontinuity as angle 2αmax. In fact, the norm of

the difference of two vectors v1 and v2 with same norm v whom versors differ α radians,

is given by:

‖v1 − v2‖ =

√
v2 + v2 cos2(α)− 2v2 cos(α) + v2 sin2(α) (4.66)

and

‖v1 − v2‖ =
√
v2 + v2 − 2v2 cos(α) (4.67)
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The discontinuity value is derived using ‖v1‖ = ‖v2‖, i.e. the velocity is constant

along the path as in the assumptions.

Assumption 1: the closed loop error system is ISS such that (4.48) and (4.53) hold.

Theorem 4.2. Let Assumption 1 holds, let emax ∈ R > 0. Let:

ē , β−1
(
β (χ (‖u‖∞))

)
(4.68)

and let

v∗ ,
β
−1

(Vmax)− β−1
(
Vmaxe

−γ̄T )√
2(1− cos(αmax))

(4.69)

with Vmax = β(‖emax‖), ∀ emax ≥ ē and ∀ v ≤ v∗ and ∀ e0 = e(0) : V (e0) ≤ Vmax then

‖e(t)‖ ≤ emax ∀t > 0 (4.70)

Proof. Vmax is the maximum value of the Lyapunov function such that:

V (t) < Vmax ⇔ ‖e(t)‖ ≤ emax, ∀t > 0 (4.71)

Every time a new direction is picked (new waypoint), the discontinuity in veloc-

ity ∆v =
(√

2v2(1− cos(αmax))
)

increases the Lyapunov function value. For iter-

ability we want that before a new direction is taken, the Lyapunov value decreases

up to the value Vmin, such that after the discontinuity the Lyapunov function doesn’t

exceed Vmax. Vmin = β
(
β
−1

(Vmax)−∆v

)
.

Equation (4.53) guarantees that:

V (t) = V (0)e−γ̄t ∀V > V1 (4.72)

Hence the following inequality constraint guarantees that after the discontinuity,

the value of Lyapunov function decreases at least to Vmin in time T :

Vmaxe
−γ̄T ≤ Vmin (4.73)

This results in:

Vmaxe
−γ̄T ≤ β

(
β
−1

(Vmax)−
√

2v2(1− cos(αmax))
)

(4.74)

which leads to (4.69). A minimum tracking error ē is due to the disturbance

(input u) and the ISS property. The minimum tracking error corresponds to the

asymptotic gain of the system.
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4.2.4 Application to VTOL and Car-like Robot

For the UAV we consider only the position dynamic in a x − y plane from (2.1). The

position dynamics is given by:

Mp̈(t) = −TRe3 +Mge3 (4.75)

with state of the system x = [p ṗ]T ∈ R4, and where M ∈ R > 0 is the mass of the

vehicle, p(t) = [x(t) y(t)]T ∈ R2 the vector of position in inertial frame Fi, T the thrust

input, R the rotation matrix that rotates a vector from body frame Fb to inertial frame

Fi and g the gravity acceleration.

A position reference trajectory for this model is:

pR(t) =

[
xR(t)

yR(t)

]
(4.76)

We consider the dynamic model of VTOL in (4.75) disturbed with a force w =

[wx wy]
T (it can model the non perfect tracking of the attitude, aerodynamic distur-

bances or wind disturbances) such that ‖w‖∞M ≤ w̄, obtaining:

Mp̈(t) = −TRe3 +Mge3 + w (4.77)

If−TRe3 is consider as an input u = [ux uy]
T , such that T = ‖u‖ and Re3 = u

‖u‖ the

system (4.77) could be rewritten as:

Mẍ = ux + wx

Mÿ = uy + wy
(4.78)

The system is described by two separate dynamics. In particular the dynamics are

double integrators with a disturbance w. With a position reference trajectory as in (4.76)

one can rewrite the system in error coordinates e =
[
ex ey

]T
= p− pR as:

ëx =
ux
M

+
wx
M
− ẍR

ëy =
uy
M

+
wy
M
− ÿR

(4.79)

The state vector describing the system is e = [ex ėx ey ėy]
T with input u =

[ux uy]
T and disturbance w = [wx wy]

T .

Theorem 4.3. Let a ∈ R > 0, let P a symmetric and positive definite matrix solution of the
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Riccati equation ATP + 2MPBBTP + PA = −aI4, where:

A =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , B =


0 0
1
M 0

0 0

0 1
M

 (4.80)

then the input

u = −MBTPe+M
[
ẍR ÿR

]T
(4.81)

makes the system (4.79) ISS stable with asymptotic gain

Ψ(w̄) =
2P̄ w̄

(a− ε)

√
λP
λP

(4.82)

with ν an arbitrary positive scalar, P̄ the Euclidean norm of matrix PB and λP and λP the
largest and smallest eigenvalue of P respectively.

Proof. Let’s consider a Lyapunov function V = eTPe. Its derivative becomes

V̇ = eT (ATP + PA+ 2MPBBTP )e+ wTBTPe+ eTPBw (4.83)

and

V̇ ≤ −a ‖e‖2 + 2w̄ ‖PB‖ ‖e‖ (4.84)

Choosing an ε ∈ (0, a), we can define

χ(w̄) =
2

a− ε
P̄ w̄ (4.85)

such that

‖e‖ ≥ χ(w̄) ⇒ V̇ ≤ −ε ‖e‖2 (4.86)

Remark 4.4. With the control law at hand we can define equations (4.48) and (4.54) for
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this specific system. In particular:

β(‖e‖) = λP ‖e‖2

β(‖e‖) = λP ‖e‖
2

Ψ(w̄) =
2P̄ w̄

(a− ε)

√
λP
λP

γ̄ =
ε

λP

(4.87)

with λP and λP the largest and smallest eigenvalue of P respectively, due to Com-

parison Lemma [61]. 4

For the car-like robots, the results in Chapter 2 are enough to be applied to this

problem

As a real application we want to derive a simple strategy to navigate the VTOL and

car-like robot in a forest. Let’s consider the problem of navigating a robot in a forest

environment with a strategy that exploits the tools from previous section. We consider

that the navigation is performed by a closed loop controlled robot. In the "forest" en-

vironment, the obstacles in x − y plane are represented by "trees" or circular obstacles.

The forest has constraints on his geometrical structure, and in particular

Assumption 3:

• obstacles has a maximum radius of R.

• the minimum distance between two obstacle’s center is p̄.

• p̄ is smaller than the range of exteroceptive sensors that detect obstacles.

α α

τ

A

B

C GOAL

R

d

Figure 4.4: Environment and avoid strategy.

We first describe the avoid strategy for a single obstacle (tree) to extend later the

problem to the whole forest.
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Avoid Strategy Description: Single Obstacle

The environment and the avoid strategy are represented in Figure 4.4. The robot is

entering the environment with linear speed v. The obstacle (green circle) can be found

in a direction that differs τ rad from the trajectory that connects the robot to the goal.

The avoid strategy generates an intermediate waypoint (B) in a direction that differs α

rad from the direction connecting the goal. The waypoint is generated when the obstacle

is found at distance d from the robot. For sake of clarity, we define a frame centered in

waypoint (A) when the the avoid maneuver starts, with axis (x, y), with x axis directed

toward the goal, and y axis perpendicular to x axis. The coordinates of waypoint (B) are

given by: [
xB

yB

]
=

[
(d+R) cos(τ)

(d+R) cos(τ) tan(α)

]
(4.88)

Another piece of trajectory connects waypoint (B) to waypoint (C) as in figure and

then to the goal (GOAL). The coordinates of waypoint (C) are given by:[
xC

yC

]
=

[
2(d+R) cos(τ)

0

]
(4.89)

We consider the problem only with α ≥ 0 and τ ≥ 0, since for negative values the

problem is symmetric w.r.t x axis. The goal of the sense and avoid strategy is to dodge the

obstacle and minimize the traveling time to reach the goal by selecting the parameters

α, v, i.e. the deviation angle and the traveling speed in the forest. Meanwhile the strategy

needs to guarantee that the closed loop system tracking the generated trajectory does

not collide with obstacles. To avoid recomputing optimal parameters for every obstacle

found, we suppose to adopt the same strategy for every obstacle, i.e. the same velocity

v, the same direction angle α and at same distance d. Because of this assumption:

• The optimization problem needs to be solved only once (offline too).

• The planning strategy becomes very simple and the computation fast (as soon as

an obstacle is detected, two waypoints are generated).

Hypothesis:

• We consider the problem with τ = 0 that corresponds to the worst case, since the

clearance is smaller.

• Closed Loop conditions: the closed loop error system satisfies (4.48) and (4.53).
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Optimization Problem

The problem of navigation in a forest with the avoid strategy described in previous sub-

section while minimizing the traveling time could be described as an optimization prob-

lem.

The optimization problem is the following:

min
α,v

T (α, v)

subject to : 0 < v < v′(α, v)

emax > ē

(4.90)

with:

v′(α, v) =
β
−1 (

β(‖emax‖)
)
− β−1

(
β(‖emax‖)e−γ̄T

)√
2(1− cos(2α))

(4.91)

with

emax = (d+R) sin(α)−R (4.92)

and

T =
d+R

cos(α)v
(4.93)

following (4.69) and the specific geometry of the problem. T represent the time of the

avoiding maneuver, in particular it represents the time to travel the segmentsAB = BC.

First constraint imposes an upper bound to the traveling velocity v to ensure a maxi-

mum tracking error following Theorem 4.2, so that the tracking error is smaller than the

clearance and no collision is guaranteed. Second constraint imposes a lower bound on α

due to the minimum tracking error because of disturbances.

Combining (4.90) with (4.92), we obtain:

max
α,v

cos(α)v

subject to : ψ(α, v) ≥ 0

αMIN ≤ α < π
2

(4.94)

with ψ(α, v) = v′ − v, and αMIN = sin−1
(
ē+R
d+R

)
. We imposed an upper bound to α

of π/2 since for α = π/2 ⇒ T =∞.

Lemma 4.3. ∀ α ∈
[
αMIN ,

π
2

)
, there exist v > 0 such that:

∀ v : 0 < v < v ⇒ ψ(α, v) > 0 (4.95)
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Proof.

From (4.91) and (4.93), for v → 0, ψ(α, v) > 0, since the exponential of (4.91)

tends to zero, leaving v′ a positive number.

Lemma 4.4. There exist v > 0 such that:

∀ α ∈
[
αMIN ,

π

2

)
, ∀ v : v > v ⇒ ψ(α, v) < 0 (4.96)

Proof. From (4.91) and (4.93), for v → ∞, ψ(α, v) < 0, since v′ tends to a finite

value while v tends to infinite.

First Lemma affirms that a solution to the problem (4.94) always exists, while Lemma

2 gives us a constraint on the maximum value of v. Since objective function and con-

straints are continuous functions and both variables are bounded, it is possible to find a

solution with global optimization. A complete (enumerative) strategy could be used to

find a solution with arbitrary tolerance.

Avoid Strategy Description: Forest

With respect to the previous problem of avoiding a single obstacle, we now want to

investigate how to robustly avoid every obstacle in the forest. An additional constraint

on the distance d needs to be added to ensure that no obstacles are hit during the avoid

maneuvers.

Assumption 3: The deviation angle α is fixed to a value ᾱ and chosen as in the single

obstacle case following (4.94) with d = p̄/2.

Lemma 4.5. The problem (4.94) with Assumption 3 holding and with d such that:

d ≤ min {d1, d2, d3} (4.97)

with
d1 = p̄

2 −R
d2 = p̄

tan ᾱ+sin ᾱ −R
d3 = p̄

1+sin ᾱ −R
(4.98)

guarantees that no obstacles are hit in a forest with characteristics described as in section
Assumption 3.
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Proof. With respect to the single obstacle problem, we need to guarantee that the

robots does not collide with others obstacles while avoiding one obstacle and that

the avoidance maneuver is repeatable. For the repeatability, we have to guarantee

that the robot reaches waypoint C before a new obstacle is found at distance d. This

means that d should be taken such that:

2(d+R) ≤ p̄ (4.99)

which leads to the first condition of (4.98). To guarantee that the robot never col-

lides with other obstacles while doing the avoidance maneuver, d should be chosen

such that the avoidance maneuver is inside the circle centered in the obstacle center

and with radius p̄−R − emax (see Figure 4.5 the grey circle), with emax as in (4.92).

This gives two constraint:

(d+R) tan(ᾱ) ≤ p̄−R− emax (4.100)

which leads to second condition of (4.98), and:

(d+R) ≤ p̄−R− emax (4.101)

which leads to third condition of (4.98).

α αA

B

C GOAL

Rd

Figure 4.5: Forest geometry. The generated trajectory should stay in the grey circle to
be sure that other obstacles are avoided during the maneuver.

Stochastic Forest

In this section, we consider a stochastic forest, and we compute how many obstacle

avoidance maneuvers the robot would execute per unit time, on average.

To model the planar forest environment, we utilize a hard-core planar stochastic
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point process. Roughly speaking, a stochastic point processes is a collection of randomly-

placed points in an Euclidean space. A planar stochastic point process is one where the

points are located on the infinite plane (R2). A hard-core stochastic point process is one

where every pair points are spaced at least some distance p apart. Hence, the class of

hard-core planar stochastic point process forms a suitable class of models for the planar

forest environment which we consider in this paper. In fact, this class of point processes

is widely used in the forestry literature [108].

One of the widely-studied hard-core point processes is called the Matérn process [27],

defined as follows. Let Φ be a Poisson point process on the infinite plane with parameter

λ.1 Delete any two points x, x′ ∈ Φ of the Euclidean distance between x and x′ are

smaller than p, i.e., ‖x− x′‖ ≤ p. The remaining set of points is called the Matérn point

process with parameters λ and p. It is easily verified that any two points from a Matérn

point process are at least a distance of p apart from one another.

Our main result of this section stated below exactly quantifies the expected number

of maneuvers that the robot will execute while traversing a certain stochastic forest.

Theorem 4.4. Let us consider a planar forest environment, where the locations of the trees
are determined by a Matérn point process with parameters λ and p, and each tree has radius
r. Let Kl denote the number of times that the robot has to maneuver if it attempts to travel on
a straight path through this forest.2 Then, the following holds:

E[Kl] = 2 r l λ e−λπ p
2
.

Before providing the proof of this result, we recall an important recent result from

the stochastic point process literature.

Theorem 4.5 (See Theorem 3 in [55]). Let Φ be a Poisson point process with parameter λ in
the d-dimensional Euclidean space, and delete each point x ∈ Φ with probability:

p0

∏
x′∈Φ,x′ 6=x

(1− f(‖x− x′‖)),

where p0 ∈ (0, 1] and f : [0,∞) → [0, 1] is a measurable function. Then, the intensity of the
remaining points is

λ′ = λ p0 exp

(
−λdb0

∫ ∞
0

f(z)zd−1dz

)
,

1The reader is referred to the book by Stoyan et al. [27] for a definition of the Poisson point process.
One way to construct a Poisson point process is to place uniformly at random NA number of points in each
bounded partition A ⊂ R2, where NA is a Poisson random variable with parameter equal to the area of A
times λ. One important property of the Poisson point process with parameter is that the intensity of the
points is λ, hence the expected number of points in a region with area B is λB.

2The starting point and the direction of travel are irrelevant as long as they are both chosen indepen-
dently of the point process.
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where b0 is the volume of the unit ball in the d-dimensional Euclidean space.

Notice that we recover the Matérn process when p0 = 1 and

f(z) =

1, if z ≤ p;

0, otherwise.

Proof (of Theorem 4.4) Suppose the robot attempts to travel the straight path of

distance of l. It must maneuver whenever there is a tree on its path, hence the center

of the tree is within the rectangle of length l and width 2r, where r is the tree radius.

Plugging in this information inot the formula in Theorem 4.5 gives the result. 2

Simulations

Two simulations were run to test the behavior with the proposed method. First simu-

lation was done with the VTOL model, while second simulation with differential wheel

robot. Both were simulated with the closed loop control law as defined previously.

VTOL

A forest is randomly generated with parameters chosen as: p̄ = 4.5m, R = 0.4m. A forest

of 70×70 meters was simulated, with 200 obstacles generated with uniform distribution.

We consider a VTOL with the following parameters: M = 1Kg and RV TOL = 0.2m,

where RV TOL is the radius of the VTOL, so that the trees are considered expanded of

RV TOL to avoid collisions. The parameter d is chosen following (4.97) as d = 1.65 while

ᾱ = 0.6981 rad. The control law is chosen with a = 21 and ε = 20, resulting in a γ̄ = 0.83.

The disturbance was chosen as w̄ = 0.1N resulting in a Ψ = 0.13m. The obstacles were

expanded by the value of Ψ to take into account the minimum tracking error given by

the disturbance w. From the optimization problem it results a maximum traveling speed

of v = 0.75m/s. The results could be seen in Figure 4.6. The green solid circles are the

obstacles (trees) while the dashed green circles are the obstacles expanded by the radius

of the VTOL and Ψ. The red cross is the starting point and the blue cross is the goal. The

trajectory in blue is the generated trajectory while in dashed black it is plotted the real

position of the VTOL tracking the trajectory. The black squares are the bounding box

of the VTOL along the trajectory. As we can notice, the discontinuity in the trajectory

causes a non-perfect tracking, but it is still under a threshold that ensure no obstacles

are hit. In Figure 4.7 a zoom of the trajectory.

88



Chapter 4. Path Planning Strategies

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Figure 4.6: Forest simulation with VTOL.

Differential Wheel Robot

A forest is randomly generated with parameters chosen as: p̄ = 4.5m, R = 0.2m. A forest

of 70×70 meters was simulated, with 200 obstacles generated with uniform distribution.

We consider a VTOL with the following parameters: RDWR = 0.36m, where RDWR is

the radius of the bounding box of the differential wheel robot considered as a rectangle

of side 0.6 × 0.4 m, so that the trees are considered expanded of RDWR to avoid colli-

sions. The parameter d is chosen following (4.97) as d = 1.59 while ᾱ = 0.619 rad. The

control law is chosen with KP = 4.62 and Kθ = 2.38, resulting in a γ̄ = 1.1. From the

optimization problem it results a maximum traveling speed of v = 1.3m/s. The results

could be seen in Figure 4.8. The green solid circles are the obstacles (trees) while the

dashed green circles are the obstacles expanded by the radius of the robot. The red cross

is the starting point and the blue cross is the goal. The trajectory in blue is the generated

trajectory while in black it is plotted the real position of the VTOL tracking the trajec-

tory. The black rectangle is the robot, with the triangle indicating the forward direction.

In Figure 4.9 a zoom of the trajectory.
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Figure 4.7: Forest simulation with VTOL: zoom.
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Figure 4.8: Forest simulation with differential wheel robot.
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Figure 4.9: Forest simulation with differential wheel robot: zoom.
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5
DESP: Discrete Event System

Planner

I n this chapter we introduce a novel motion planning strategy [39] [40] [41] for het-

erogeneous mobile robots based on Discrete Event System theory. When real-world

populated environments and accurate vehicle’s dynamics are taken into account,

planning the motion of the vehicle optimally may require to solve a computationally

intensive optimization problem [111]. Existing approaches often rely on a discrete de-

scription of the environment and of the vehicle dynamics, in order to reduce the ad-

missible region that optimization tools have to explore. In [60] [67] [59], for instance,

feasible paths towards a desired target are obtained by sampling a map of the environ-

ment. In [11], the planning task has been formulated in terms of languages that can be

described formally by means of automata. In [35], the complex nonlinear dynamics of

the vehicle is decomposed into a finite number of motion primitives. This approach has

also been extended in [102] where stability and robustness of the optimal sequence has

been taken into account. In [71] and the path is obtained by connecting a number of dy-

namically feasible trajectories and fast replanning is allowed by considering incremental

search algorithms on lattice. Other lattice-based planner include [98] and [97]. The goal

of the proposed approach is to develop a global planner that generates kinodynamic

feasible paths for a real-time application. Moreover the algorithm should be capable of
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replanning for unknown environments. Taking advantage of a symbolic description of

the vehicle dynamics and of the environment, the reference trajectories are generated as

sequences of elementary primitives. DES theory is used to model the environment and

the dynamics of the robot with automata, and to obtain a so called Supervisor. Graph

search algorithms are then employed to build the optimal sequence of primitives for the

mission.

5.1 DESP: Discrete Event System Planner

In this work DES as well supervisory control theory is utilized to design a motion plan-

ner for mobile robotic platforms. To this aim the geographic space (map) is discretized

to reduce the computational complexity and the dynamics of the robot are converted in

symbolic dynamics using a set of elementary movements (primitives). The primitives

are pieces of dynamically-feasible trajectories, that take into account the dynamic of the

vehicle. The vehicle is controlled to perform a succession of elementary movements,

i.e. the primitives. The single primitives are selected as feasible movements according

to the dynamic of the robot, but its interconnection can be kino-dynamically feasible or

non-feasible. In the latter case, the theory developed in the previous chapter can be used

to derive bounds on the tracking error. The sequence of primitives to be executed is se-

lected in real-time by a high-level supervisor that is designed as a discrete-event system

[2]. To decide the optimal sequence of primitives, the supervisor considers an optimiza-

tion problem in which it takes into account for the current discrete-event model of the

environment and of the vehicle. For an introduction to DES and to the tools used in this

chapter, the reader can refers to the Appendix section.

The main idea of this approach is to describe both the configuration states (map) for

the planning and the dynamics of the robot as automata. The automata are then used to

build a supervisor for planning. To translate a typically continuous systems into discrete

systems as DES some kind of discretizations should be made. Part of the discretization

strategies will be discussed in the following.

To define the supervisor we need to define 3 automata: Map Automaton, Agent Au-

tomaton, Specification Automaton.

5.1.1 Map Automaton

The map automaton is used to describe the "environment" we are interested in. For

mobile robots this can be the 2D or 3D space discretized with a certain resolution. For a

2D environment the proposed automaton Gmap consists of a grid discretization of equal

cells with a 4-connectivity grid. The automaton example for a small map discretized by
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3× 3 states is given in Figure 5.1.
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Figure 5.1: Map Automaton Example

The map automaton is defined as: Gmap = {Xmap, Emap, fmap,Γmap}, where the set

of states Xmap = {11, 12, 13, 21, ...} represents the quanti of the space with a certain

discretization. The set of events Emap = {r, l, u, d} (right, left, up, down) represents ele-

mentary movements on the map and they are not related to robot’s motion. At first we

suppose that the events Emap are controllable. No initial and marked states are present

in this automaton. Once the dimension of the map and the discretization level are de-

fined, Gmap is completely defined and static.

Other kinds of map discretization and connections are possible. However, since not

directly related to the robot movements, any other different representation increases the

complexity and the number of events for apparently no increased performances, as will

be explained later. For example an hexagon discretization could be used, with the cost of

having a 6-connection grid and the impossibility to extend it to 3D. Also a 8-connection

square grid can be used, but the number of events representing elementary movements

would double.

For a natural extension to 3D environments, the same grid can be extended into 3D,

with a 6-connection grid and 6 events. Two more events {a, b} (above, below) are used

to represent elementary movements between planes with different z coordinate as in

Figure 5.2.

5.1.2 Specification Automaton

The Specification Automaton is a refinement of the Map Automaton in which are taken

into account the specifications about the goal, the environments constraints and the ini-
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Figure 5.2: 6-connectivity grid for 3D environment.

tial state.

The Specification Automaton is defined as Gspec = {Xspec, Espec, fspec,Γspec, x0, Xm,spec}
withXspec ⊆ Xmap, Emap ⊆ Espec. The state of the Specification Automaton is a subset of

the Map Automaton, since the environment constraints Xfb are given in terms of forbid-

den states. The forbidden states (and its connections) are simply removed from the Map

Automaton. The initial state x0 is set based on the real state of the robot (for example

it’s position on the map). The marked states Xm,spec are set as the states of interest we

want to reach. They represents the Xf . An example of Specification automaton is given

in Figure 5.3.
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Figure 5.3: Specification Automaton example with no forbidden states.

In the example we can see how the initial state of the robot was set at position 32

and the goal was set at 13. The set of marked states can of course be of any dimension if
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we are interested in reaching one of those states indifferently. In the following example

in Figure 5.4 we consider two obstacles or forbidden states at 11 and 23. As we can

notice, the interested states and its transitions are removed accordingly to embed the

new specifications.
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Figure 5.4: Specification Automaton example with forbidden states.

The Specification Automaton is dynamic by nature. In fact, as soon as new informa-

tion about the environment (such as new obstacles) are gathered or the desired goal(s)

changes, the Specification Automaton changes its properties.

5.1.3 Agent Automaton

Finally, the Agent Automaton is the automaton that describes the set of possible prim-

itives the robot can execute, its logic about how the primitives can be interconnected,

and the interaction of the primitives with the map. For instance if the robot we want to

model has two primitives {goR, goU} consistingS of linear trajectories as in Figure 5.5,

and the robot can execute those primitives in any order, the agent automaton Gag =

{Xag, Eag, fag,Γag, x0,ag, Xm,ag} is given in Figure 5.6.

The event set Eag of the Agent Automaton includes always the event set of the map

Emap and an event set of the motion primitives of the agent that in this case corresponds

to {goU , goR} obtaining Eag = {goU , goR, l, r, u, d}. What the automaton is describing

in addition to the interconnection logic is the effect of those primitives in the map as

sequence of elementary movements. We can see in fact how a goU implies a u elemen-

tary movement, while goR implies a r elementary movement. The marked states Xm,ag

represent some states of interest. In this simple example the only state of interest is the

initial state, in which the robot is ready to execute any primitive. However in a more
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go
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Figure 5.5: Primitives of the Agent Example.
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goU
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Figure 5.6: Agent Automaton example. The robot can only move up and right with
simple linear primitives.

complex model we can consider particular states that represent for example a specific

sequence of primitives.

We can decide to model a different agent with the same set of primitives but with a

different logic for interconnection. For instance modifying the previous example such

that the robot has to execute a goR primitive after each goU primitive, the resulting

Agent Automaton is given by Figure 5.7. A possible valid language becomes for example

{goR, goR, goU , goR, ...}.
This new automaton embeds the property of the allowed primitives sequence, such

that after a goU , only a goR is possible, and at the same times it embeds the interaction of

the primitive with map’s elementary movements. We can see in fact that right after a goR,

only a r event can occur, and after a goU , only a u event can occur. In this automaton,

the marked states are {0, UP0}, since we want to reach the goal with any sequence of

primitives. If instead we want to reach the goal for example with goU as last primitive,

it is enough to mark just the {UP0} state.
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Figure 5.7: Agent Automaton example. The robot can only move up and right with
simple linear primitives. After each up movement the robot can only move right.

In most of the cases the Agent Automaton can be considered static, but nothing forbids

to have a dynamic automaton. For instance, if a fault is detected in a robot’s actuator, the

controllability of the robot changes the set of executable primitives which can be taken

into account in a new Agent Automaton.

For more complex behaviors of the robot and if many primitives are present, it may

results difficult to design the complete Agent Automaton. But a particular procedure as

described below can help the designer.

Agent Primitives Logic and Agent-Map Interactions

By using the parallel composition, one of the most powerful tool for automata, we can

compose smaller automata that describe simple logics and languages into bigger au-

tomata. The idea is that the Agent Automaton has to include both the primitives in-

terconnection logic and the interaction with the map. Because of this we can think of

computing a single automaton called Agent Primitives Logic Automaton (APLA) Gapl =

{Xapl, Eapl, fapl,Γapl, x0,apl, Xm,apl} that embeds the primitives logic and N Agent-Map

Interaction Automata (AMIA) Gami,i = {Xami, Eami, fami,Γami, x0,ami, Xm,ami} that em-

beds how the i − th primitive reflects into base movements on the map. i ∈ N is the

index of the i − th AMIA and N is the number of primitives. The Agent Automaton is

then defined as:

Gag = Gapl||Gami,1||Gami,2||...||Gami,N (5.1)

Both APLA and AMIA should be built such that Eapl = Eami,i = Eag.

Let’s make an example. Suppose that the set of primitives of the robot are defined as

in Figure 5.8.

The primitives represent linear segments in 4 directions {U,D,R,L} and 8 curves

{UL,UR,DL,DR,RU,RD,LU,LD}. Suppose that to make a smoother path we want
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Figure 5.8: Primitives set of the Agent. 12 movements are possible, with 4 straight
lines and 8 curves.

that after a primitive, the next primitive should have the initial direction as the last

direction of the previous primitive. Some valid sequence of primitives are U,UR,RD,D

or UR,R,RD,DR,R as in Figure 5.9.

R

UR

DR

RD

R

Figure 5.9: Example of valid sequence of primitives for the agent.

So we build first the APLA embedding this language as in Figure 5.10.

Then we can build 12 AMIA, one for each primitive, to model the interaction with

map base movements as depicted in Figure 5.11, Figure 5.12 and Figure 5.13. As we can

see, the APLA only embeds the logic of how the primitives can be interconnected, while

single AMIA embeds how each single primitive reflects its movements onto the map.

For example the primitive UL in Figure 5.12 impies the sequence of basic movements

u, l in the map.
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Figure 5.10: APLA example. The final and initial direction of two consecutive primi-
tives is continuous with this logic.
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Figure 5.11: Agent Automaton example: First set of 4 AMIA.

5.1.4 Swath and Collision Checking

It is well known that the collision checking algorithms is one of the most computation-

ally expensive task in motion planning, although not often discussed. With the proposed

approach the collision checking won’t be needed because automatically embedded into

the Supervisor if the AMIA are build in a certain way. Suppose we have a particular

primitive as in Figure 5.14, and the grey cells are the pre-computed trajectory swath, i.e.

the cells occupied by the robot’s footprint during the maneuver.

If we build the AMIA for the particular trajectory such that it traverses all the cells

of the swath, then when the Supervisor is built (as described below), it will automatically

include the collision information. In the example of Figure 5.14, the particular AMIA

can be built such as in Figure 5.16. We can notice how the sequence of elementary move-

ments on the map "covers" all the swath cells. In Figure 5.15 instead we see the swath
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Figure 5.12: Agent Automaton example: Second set of 4 AMIA.
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Figure 5.13: Agent Automaton example: Third set of 4 AMIA.

for the robust case, in which we are able to compute a maximum tracking error due to

disturbances, uncertainties and discontinuities as discussed in the previous chapter. The

number of grey cells is higher because the robot can potentially lie in the dotted area.

This approach is valid for primitive-invariant swath, i.e. for all the primitives that

keep the same footprint independently to the previous primitives and state of the sys-

tem. This is valid for mostly of the mobile robots, but it is not true for example for

manipulators, where a linear segment primitive can results in different links configu-

rations in the space hence different swath. In general, this is not valid for multi-body
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Figure 5.14: Example of swath of a particular
primitive.

Figure 5.15: Example of swath of a particular
primitive with robustness taken into account.
The dashed area around the planned trajectory
represents the possible position error w.r.t. the
trajectory due to disturbances.

0TRstart

1TR 2TR 3TR 4TR

5TR6TR7TR

TRAJ

u r u

r

uud

Figure 5.16: AMIA example for a particular primitive. All the elementary movements
in the map should cover all the swath cells of the trajectory and at the same time reach
the final cell of the trajectory. We can notice the final u− d elementary movements of
the chain to "reach" the top grey cell (1st row, 4th column) and then move down to the
final cell (2nd row, 4th column).

robots, where a certain primitive can have a different swath based on previous primitives

or different states of the system, but with a suitable choices of APLA it can be adapted

to certain classes.

5.1.5 Supervisor and Reachability Graph

Finally, with the Agent Automaton and the Specification Automaton it is possible to com-

pute the Supervisor. The supervisor Gsup = {Xsup, Esup, fsup,Γsup, x0,sup, Xm,sup} in case

of fully observable and controllable events, is defined as:
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Gsup = Gspec||Gag (5.2)

The Gsup obtained represents in practice a reachability graph that embeds both the

specifications on the environment (described by the Specification Automaton) and the

agent constraints (described by the Agent Automaton). Because of how the automata

are constructed and the properties of parallel composition, the Supervisor language will

include all the feasible sequence of primitives, excluding the forbidden ones not respect-

ing the agent automaton logic and colliding with obstacles. By analyzing the Supervisor

graph, it is possible to check directly whether or not the "mission" is feasible. In fact if

Xm,sup = {}, i.e. the marked set of states is empty, there is no sequence of primitives

to reach the goal state(s). If Xm,sup is non-empty, then one or more possible sequence

of primitives can be the solution of the planning problem. In general all the states Xsup

are reachable with some sequence of primitives, and any possible sequence on the graph

won’t collide with obstacles. If more than one solution exist to reach the marked states,

then some weighted oriented graph search algorithms can be used to find some optimal
solution [28], [48], [62], [107]. In particular it is possible to add a cost to every event

representing a primitive based on some cost function and by assigning a cost of zero to

elementary movements {l, r, u, d}. By continuing the previous example, the Supervisor
for the Specification Automaton in Figure 5.3 and the Agent Automaton in Figure 5.6 can

be seen in Figure 5.17.

As we can see, because of the nature of the agent being capable to move only up and

right we can reach only states {12, 13, 22, 23, 32, 33} in the map. In this example mul-

tiple solutions to the problem are possible. In particular the three primitives sequence

to reach the marked state are: {goU , goU , goR}, {goR, goU , goU}, {goU , goR, goU}. If we

consider the same Agent Automaton but the Specification Automaton as in Figure 5.4 with

the obstacles, the resulting Supervisor is given in Figure 5.18. In this example a unique

solution to the problem is given by the primitives sequence {goU , goU , goR}.
In this case, because of the presence of obstacles, the number of reachable states in

the map is smaller. This highlights a very important characteristic in this approach:

as the number of obstacles increases, the number of states of the Supervisor graph de-

creases, making it easier to compute the optimal path with any graph search algorithms.

This is the opposite of almost any path planner algorithm, where, with the increasing

number of obstacles, the computational complexity to find the feasible and/or optimal

path increases.
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Figure 5.17: Supervisor Automaton example. The reachability graph.

Purge Refinement

The number of states (and transition) in the Supervisor can reach a considerable amount.

Since the computational requirements of the graph search algorithms depends on the

number of states of the graph, it is a good practice trying to reduce the final number of

states to reduce the runtime of the algorithm. If the number of states of the Specification
Automaton is nspec, the number of states of APLA is napla, and the number of states of all

AMIA is namia, in the worst case scenario, because of the properties of parallel composi-

tion, the number of states of the Supervisor can be nsup ≤ nspec · napla · namia. In a typical

application we have: nspec >> namia > napla. The parameter nspec depends only on map

dimension, discretization and the number of obstacles, so that nspec can be reduced with

an increasing number of obstacles or by choosing a rougher discretization. No tech-

niques were studied to reduce the napla, but the literature presents some methods to

reduce the number of primitives [99] for a given agent. The proposed Purge Refinement
instead focuses on reducing the impact of namia on the number of states. Because of the

nature of AMIA, they are composed by chains of states where events are the primitive,
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Figure 5.18: Supervisor Automaton example. The reachability graph with obstacles.

followed by a chain of elementary movements. The same structure is then reflected into

the Supervisor. For construction, all the events representing the elementary movements

have a cost of 0, so they don’t impact the graph search algorithm optimality, i.e. they can

be traversed with zero cost. What the Purge Refinement does is to remove from the Super-
visor all the arcs related to elementary movements, and to collapse the states connected

by them. This result in a number of final state for the Supervisor nsup ≤ nspec · napla. An

example of Purging the Supervisor in Figure 5.17 can be seen is Figure 5.19.

In the purged Supervisor, only events representing primitives are present, such that

the graph-search algorithm doesn’t have to iterate in useless states and transitions.

5.1.6 Exploiting DES capabilities

The power of using well developed theory such as DES, allows us to exploit all the ca-

pabilities of those systems. In particular we can use states and events to model more

complex system than the map and the agent itself. Moreover with controllable and ob-

servable events, the modeling capabilities can be extended to more complex scenarios.

Some extended capabilities are under investigation, including the use of unobservable

events to model sensors limitations, uncontrollable events to model environmental dis-

turbances and the extension with parallel composition with other automata to achieve a

decentralized heterogeneous multi-robot coordination for complex tasks. A simple ex-
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Figure 5.19: Supervisor Automaton example after the purging.

ample on how uncontrollable events are used to model wind disturbances for a UAV on

the map is presented in the last section of this Chapter.

5.1.7 Advantages of DESP

We introduce two short lists of general advantages and limitations of DESP, to sum this

chapter for the reader.

Advantages:

• Kinodynamic planning: with a suitable choice of the primitives and its intercon-

nection or using the results presented in previous chapter, the generated trajecto-

ries respect differential constraints.

• No dimensionality curse: with respect to other "discretized" planners, this ap-

proach doesn’t suffer the dimensionality curse given by the increased number of

states when representing systems with many states in the state space dynamic

model. For example using the kinematic of a car-like (state space of dimension 4)

or using the dynamic of a car-like with trailer (state space of dimension 9) doesn’t

increase the number of states of the Supervisor if the number of primitives is the

same, since the map automaton is the same.

• Complexity and runtime reduced with increasing obstacles: increasing the number

of obstacles reduces the supervisor graph dimension, hence the graph-search algo-

rithm for optimal path will search in a reduced states set, resulting in a reduced

runtime.

• Exploiting DES capabilities: uncontrollable and unobservable events, automata

and its operations can be exploited to model complex scenarios.
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• Suitable for replanning and incremental algorithms: because of the graph nature,

the approach is suitable for replanning and to apply existing incremental graph-

search algorithms.

• Suitable for global planning although a variable resolution should be used to re-

duce the number of states.

• Robust: using the theory developed in previous chapter, it is possible to take into

accounts disturbances and uncertainties in the dynamic model, allowing for a ro-

bust planning.

• Flexibility on robot behavior: with custom APLA is possible to build complex be-

haviors for the agent.

• No collision checking: taking into account trajectories swaths and thanks to par-

allel composition properties, no collision checking module is needed and lots of

computation is saved.

Limitations:

• Not complete: Because of both environment and dynamic discretization, the plan-

ning solution is not complete in the sense of the ideal planning problem. Some

authors are investigating if it exist a minimal resolution in both environment and

agent primitives to have a complete solution.

• The optimality is with respect to the chosen discretization of map and agent. Choos-

ing different map resolution or different set of primitives could potentially lead to

more optimized solutions. The optimal solution for this approach is in general not

the optimal for the generalized problem.

5.2 Applications and Simulations

In this section we provide two examples of the use of DESP, combined with the results

of Section 4.2 and using the model and controls developed in Chapters 3 and 2. In the

first example the model of a double integrator is used to model the dynamic of a VTOL

in x − y plane. Moreover some uncontrollable events are used in the Map Automaton to

model areas with disturbances (wind). In the second example a differential-wheel model

is used and a case of replanning is presented.

5.2.1 Double integrator and Uncontrollable Events

In this example, the considered robot is a VTOL, with only the position dynamic in 2D

(x − y plane). The dynamic model of the simplified VTOL can be given by (4.22). We
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choose to discretize a 14×14 meters square area with 7×7 states for the Map Automaton.

Each state represents a 2 square meter block. The discretization of the map is very rough,

but it serves only as example. The names of the states are given in terms of discretized x

position and discretized y position so as by increasing the first number of the state name

represent a positive x movement while a positive increase in the second number of the

state name represent a positive y movement. The resulting Map Automaton is given in

Figure 5.20. All the base movements are omitted for sake of simplicity.

11 21 31 41 51 61 71

12 22 32 42 52 62 72

13 23 33 43 53 63 73

14 24 34 44 54 64 74

15 25 35 45 55 65 75

16 26 36 46 56 66 76

17 27 37 47 57 67 77

windup windup

Figure 5.20: Map Automaton Example 7x7

On top of that we add to states 3−6 and 4−6 an uncontrollable event wind_up which

represents a zone in the map in which a big upward wind is present. After the wind_up
event occurs, the state in the map moves by minus one toward y axis, meaning that the

event is modelled as an uncontrollable movement of the agent toward −y direction. The

Specification Automaton is then built adding forbidden states, initial state, and marked

states. We consider this automaton static, such that the specification doesn’t change on-

line, but the validity for online planners with dynamically changing specifications is still

valid. The forbidden states for this simulation are: 32, 33, 34, 35, 45, the target is set in

the state 15 and the initial state (initial position of the robot) is set to 54. The setting and

the specification automaton resulting from this specification are depicted in Figure 5.21.

The agent automaton is built to represent a constrained model even if the real model

is a fully actuated rigid body. This is to ensure that the final reference is somehow

smoothed by the supervisor but it is a matter of control law design. The primitives (pos-

sible maneuvers, events) of the agent are 8: go_north, go,_n-w, go_n-e, go_east, go_west,
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11 21 31 41 51 61 71

12 22 42 52 62 72

13 23 43 53 63 73

14 24 44 54

start

64 74

15 25 55 65 75

16 26 36 46 56 66 76

17 27 37 47 57 67 77

Figure 5.21: Specification Automaton Example 7x7

go_south, go_s-w, go_s-e. They represent straight lines at 45 degrees each (i.e. the eight

directions north, north-west, west, south-west, ...). We assume that after a primitive

(straight line in one direction) it is possible to have a primitive which differs only 45 de-

grees to the previous one (a correct sequence could be go_north/go_n-w/go_west/go_west,
while a not admissible sequence could be go_north/go_west/go_s-w/go_south because go_north/go_west
primitives differ 90 degrees). This will ensure that the final trajectory will be a broken

line with only 45 degrees of difference between consecutive lines. This could be a lim-

itation for a fully actuated model but ensure a smoother trajectory with less constrains

on derivative bounds. The resulting APLA can be seen in Figure 5.23.

Every event is the primitive of the eight different movements (eight lines), where

north mean a direction toward −y, east a direction toward x, n-e (shortened north-east)

a direction toward −y and +x and so on. The primitives (maneuvers) are taken as linear

motion with constant speed in the eight directions. In particular the speed on every

direction is taken as 1.2m/s. For sake of compactness we use the index i = 1, 2, ..., 8

to identify the primitives so as: go_north ⇒ i = 1, go_n − e ⇒ i = 2, go_east ⇒
i = 3, go_s − e ⇒ i = 4, go_south ⇒ i = 5, go_s − w ⇒ i = 6, go_west ⇒ i = 7,

go_n − w ⇒ i = 8 following Figure 5.22. With the discretization of 2m and assuming

that every maneuver is completed in 2
1.2s the position, velocity and acceleration of every

time-trajectory mapping the primitive are defined as:

ẍ1R,i(t) = 0 ∀i
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go        (1)

go      (3)

north

east

go      (7)
west

go        (5)south

go     (8) go     (2)

go    (4)

go      (6)

n-w n-e

s-w

s-e

Figure 5.22: The 8 primitives for the robot. They consist of simple straight lines in 8
directions. The interconnection of this primitives is an uncontrollable trajectory for a
double integrator model.
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Figure 5.23: APLA automaton for the robot in the example. The string of primitives
consist of straight lines that differ only 45 degrees each other.

ẋ1R,i(t) =


1.2 i = 2, 3, 4

0 i = 1, 5

−1.2 i = 6, 7, 8

x1R,i(t) = ẋR,i(t)t+ xR0 ∀i

ÿ1R,i(t) = 0 ∀i
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ẏ1R,i(t) =


1.2 i = 4, 5, 6

0 i = 3, 7

−1.2 i = 1, 2, 8

y1R,i(t) = ẏR,i(t)tyR0 ∀i

where x1R,i(t) and y1R,i(t) denote the references for the x and y position for the i-th

primitive and xR0, yR0 represent the position reference before the switch, i.e. the final

position of the previous trajectory piece, so as the position reference is continuous.

The initial state is EAST state, meaning that the initial primitive could be only

go_east, go_n-e or go_s-e, but it can be chosen indifferently. The resulting trajectory for

the system will be piece-wise controllable, since straight lines with constant velocity is

a trajectory for the double integrator system, but there are discontinuities at primitives

intersection.

The supervisor when dealing with uncontrollable states should be built as Gsup =

Gmap||Gspec||Gag, such that the resulting automaton is the controllable behavior we want

IFF the system results controllable (the reader can refer to [24] for controllability no-

tions). In this example the system results controllable, otherwise no solutions exist to

the problem.

Low Level Control

The low level control for the simplified dynamic of the VTOL is built following 4.26 in

chapter 4. Low level control is defined with matrix Ks. We need to ensure Dwell time

condition of Lemma 4.1 for the goal (4.14) and to make the system stable. By having

defined the primitives of the supervisor, one can define the parameter d. In particular, by

noticing that two consecutive concatenated trajectory will have a difference in position

equal to 0 and a maximum difference in velocity equal to 1.2, one can pick d = 1.2.

Defined d, one can choose q > d. In our case we pick q = 1.4 to impose the maximum

tracking error. By choosing the regulator parameter a = 40 we obtain:

Ks =

[
4.4721 4.9469 0 0

0 0 4.4721 4.9469

]
, Ps =


44.2467 4.4721 0 0

4.4721 4.9469 0 0

0 0 44.2467 4.4721

0 0 4.4721 4.9469


with a minimum dwell time condition τ ≥ 1.4844 which is respected by the 2

1.2s

switch time of the supervisor.
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Tradeoff between d, q, τ and a

A few more words need to be spent on the tradeoff for the parameters of control, dwell

time and trajectory bounds.

Low level control parameters: a and λP .

For a given low level control law, the parameters a and λP are already chosen, and could

be inferred by a Lyapunov function of the system. On the other hand, if the law is not

chosen and must be decided, one can notice that, by increasing the value a, the final

value of τ decreases and the terms of the matrix K increase. This could seem as an easy

solution to decrease the dwell time constrain, but in practice a bigger K could lead to

problems such as actuators constrains and noise amplification. Those problems are not

considered in this work but should be taken into account for any practical implementa-

tion.

Trajectory parameter: d.

The parameter d is strictly dependent on the primitives of the supervisor, and on how

those primitives are mapped in time-trajectory. The dependence of this parameter is

basically related to the discretization of the map, to the time-trajectory chosen (for ex-

ample a straight line primitive could be mapped in uniformly accelerated trajectory,

constant speed trajectory, trajectory with initial and final speed equal to zero, and so on)

and to the speed at which the trajectory is executed. This last point is very important;

the same geometric path executed with a different speed will lead to different bounds

of the derivative, so as at bigger speed, the time needed to complete the trajectory is

shorter but the parameter d will result bigger. Reminding that q should be greater than

d one can easily understand that for a given primitive, a different execution speed will

lead to a shorter execution time but to a bigger tracking error and a bigger constrain on

τ . This could inspire a particular policy for choosing the trajectory. In particular one

can choose a shorter execution time when the precision doesn’t matter (moving through

areas without obstacles) leading to a faster but less precise movement, while one can

choose a larger execution time when the precision matters (moving through areas full

of obstacles, moving through holes, precision operations) leading to a slower but more

precise movement.

As final remark one can notice that in the case of piece-wise constant trajectory, the

parameter d is given only by the position difference at switching, being all the deriva-

tives equal to zero; in the case of perfect smoother implemented, so as the position and

derivatives at switching time are continuous, the parameter d is equal to zero, leading to

an ideally perfect tracking and with no constrain on dwell time.
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Dwell time: τ .

Dwell time τ represent a constrain which should be fulfilled to guarantee the stability

of the system and to guarantee (4.14). If the condition on the minimum dwell time is

not respected there are three possible way to solve the problem. The first is to increase

a so as increase the values of K but with the problem pointed out in the previous para-

graph. Second way is to increase the parameter q with the drawback of a possible larger

tracking error. Third way is by changing the time-trajectory which map the primitive,

by changing for example the type of motion or decreasing the execution time, so as the

parameter d will decrease. This is probably the best solution because by decreasing d, it

is even possible to reduce q while fulfilling the dwell time constrain.

Simulations

A simulation was run to test the proposed control and to verify that the conditions for

the reference trajectory respect (4.14).

The resulting trajectory is obtained applying the optimization on the supervisor

graph, in particular in this case the Dijkstra algorithm ([28]) was applied to obtain the

minimum distance trajectory. In particular every state of the Supervisor was handled as

a node of the graph and every event as an arc of the graph and weighting every primitive

(arc in the graph) with the related distance so as the four primitives representing lateral

or vertical movements (i = 1, 3, 5, 7) were weighted 1 while the other four primitives

(diagonal movements, i = 2, 4, 6, 8) were weighted
√

2. The reference generated by the

supervisor and the real position of the system are depicted in Figure (5.24). The state

4− 4 represents the discretized square centered in the position (x, y) = (0, 0).

The supervisor generated exactly the expected trajectory (Figure 5.25), following the

constrains of the agent automaton, choosing the shortest path, avoiding obstacles and

avoiding uncontrollable events which could lead to undesired states in the map. The

“wind area” was indeed successfully dodged by the trajectory which could have driven

the robot to undesired states 35 or 45.

Figure 5.26 and Figure 5.27 depict respectively x and y position and velocity trajec-

tory, how the real system tracked the reference, the norm of the error and the goal bound

of (4.14) in terms of parameter q. The goal (4.14) is respected for the whole trajectory.
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Figure 5.24: Position reference generated by the supervisor and real position of the
system in the x-y plane. We can notice how the dynamic system cannot track the
generated un-feasible trajectory, but the maximum error is such that the robot doesn’t
collide.

Figure 5.25: Representation of the discretized map, the obstacles, the target and the
initial state of the robot. In green we can see the optimal trajectory for the set of
primitives.
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Figure 5.26: First plot includes the x position and velocity reference and the real x
position and velocity. Second plot includes the norm of the x error and the bound
given by the parameter q: the bound is respected for the whole time.
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Figure 5.27: First plot includes the y position and velocity reference and the real y
position and velocity. Second plot includes the norm of the y error and the bound
given by the parameter q: the bound is respected for the whole time.
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5.2.2 Differential Wheel Robot and Replanning

In this experiment the differential wheel robot model and control are used to model the

Supervisor. The robot kinematic model is the one defined in Section 2.2 and the control

law the one defined in Section 3.2. With the low level control at hand for our appli-

cation, the Supervisor can be defined. We consider again a map in 2D x − y plane. The

environment consists in a map of dimensions: 80m in x direction and 80m in y direction.

A simulation was run to test the behavior of the proposed approach in case of replan-

ning, where some obstacles are known a priori, i.e. before the first computation of the

trajectory, while another obstacle is detected by the robot only when close to it.

Map automaton:

Since the robot is moving only in x−y plane, the automaton for the map, from which the

specification automaton will be derived, consists of the discretization of the x− y space.

In particular, the space is partitioned into equal pieces, and every state of the automaton

represents a quantum of the space. We consider a rough discretization of squares of 4m

for a total of 20x20 space quanti. The resulting automaton is not depicted because of its

dimension.

Agent automaton:

The primitives used for this problem are the same of the previous example in Figure 5.22

with the difference that the primitives are longer than in previous example because of

different discretization and the linear velocity is different. The corresponding APLA is

different from the one in the previous example, as we want to model a different behavior

for primitives concatenation. To exaggerate the discontinuities and to show how this ap-

proach works with highly non-controllable trajectories, the logic of the Agent Automaton
is built such that primitives that differ 90 degrees can be interconnected. The resulting

APLA can be seen in Figure 5.28.

For this simulation we set v = 4. With this choice, the primitives will be executed

with a constant linear speed of 4m/s.

Specification automaton:

The Specification Automaton is built as usual, by deleting the forbidden states where ob-

stacles are present. We don’t depict the particular automaton because of its dimensions.

Let’s now consider the parameters for the low-level trajectory tracking law derived

in Section 3.2 and in Section 4.2. In term of the angle θ, the maximum discontinuity at

117



5.2. Applications and Simulations

Estart S-E S S-W

WN-WNN-E

goeast

gos−e

gon−e

gosouth

gonorth

gos−e

gosouth

goeast

gos−w

gon−e

gosouth

gos−e

gos−w

goeast

gowest

gos−w

gosouth

gowest

gos−e

gon−w

gowest

gos−w

gon−w

gonorth

gosouth

gon−w

gonorth

gowest

gon−e

gos−w

gonorth

gon−e

gon−w

gow

goe

gon−e

gonorth

goeast

gon−w

gos−e

Figure 5.28: APLA automaton for the robot in the example. The string of primitives
consist of straight lines that differ only 90 degrees maximum each other.

primitive switch is d = π/2, in which the worst case of primitives that differ 90 degrees

is considered (For example: gowest, gonorth). As far as the position px, py is concerned,

note that the maximum discontinuity is 0 since we connect continuous primitives. From

(4.41) it is possible for this particular application calculate the maximum tracking error

q, given d and τ , or viceversa it is possible to calculate the minimum dwell time τ with

at hand d and q. Since α = ᾱ = 1/2 and γ is constant we have

τ = −
ln

(
(q − d)2

q2

)
2γ

or

q =
d
(

1 +
√
e−2γτ

)
(1− e−2γτ )

.

We chose as maximum norm error q = 2, to guarantee that in the worst case, the robot

still remains in the 4m box.

The parameters for the low level controller are chosen as:

• KP = 3, 4
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• Kθ = 180

• λ = 3, 99

• x̃∗ = ỹ∗ = 2, since q = 2

resulting in γ = 1.6 and τ = 0.96. The dwell time τ is compatible with the smaller time

of execution of primitive which is 1s for the horizontal and vertical primitives.

In the simulation, the scenario could be seen in Figure 5.29. The obstacles 1 and 2 are

the ones known at the first planning, while obstacle 3 is detected when the robot is 6m

away from it, forcing a re-plan. In red we can see the path generated before the detection

of the new obstacle and in blue the path after the detection. The robot is forced to do a

90 degree turn to avoid the obstacle.

Figure 5.29: Scenario of simulation. In red the path generated to avoid obstacle 1 and
2. In blue the re-planning trajectory after the detection of obstacle 3.

In Figure (5.30) we can see how the trajectory is tracked by the system, piloted by the

low level control. As we can see the error never exceed the constraint and the obstacles

are avoided. In Figure (5.31) the inputs generated by the low level control.

In Figure (5.32) a section of the Specification Automaton of the simulated scenario.

The states without obstacles are kept, while the states with obstacles are deleted. The

goal becomes a marked state (double circle).

Setting v = 8 and consequently reducing by half the execution time of the primitive

and doubling the linear speed, the condition on dwell-time in Lemma 4.2 is violated.
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Figure 5.30: Simulation with the dynamical model. In red the generated trajectory
and in black the actual trajectory of the robot with closed loop control.
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Figure 5.31: The inputs computed by the low level controller. In black the angular
velocity and in red the linear velocity.

Hence we can see the behavior of the robot in Figure (5.33) where the tracking error

increases, leading to a crash.

This could inspire a particular strategy, in which v(t) is dynamically manipulated

to adapt the boundaries conditions and consequently the maximum tracking error to

adopt different strategies in different scenarios. Let’s imagine for example a scenario in

which one area is cleared from obstacles, while another area is cluttered of obstacles or

some obstacles can appear. Then a policy could for example use faster v in the first area

to cover the trajectory faster, while keeping a low v in the other area, to ensure a more
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Figure 5.32: A section of the Specification Automaton.

Figure 5.33: Not ensuring the condition on dwell-time, the resulting trajectory could
not respect the boundary imposed.

precise and controlled tracking.
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6
Experiments and Applications

I n this chapter we show some of the applications and experiments related to the

contributions of this thesis. While on path planning strategies and DESP only sim-

ulations were conducted, many experiments were performed on the proposed con-

trol law for the VTOL. In particular we show some basic simulations and experiments

on the trajectory tracking control law applied to a quadrotor prototype and how the

same control law was used to develop an architecture for nano-quadrotor swarm control

and coordination. Finally some references are presented where other application of the

proposed control law were implemented and tested.

123



6.1. Application to the control of a quadrotor aerial vehicle

6.1 Application to the control of a quadrotor aerial vehicle

The control strategy developed in chapter 3 for the robust case has been tested on a real

quadrotor aerial vehicle.

The selected prototype, which is depicted in Figure 6.1, is based on a carbon fiber

tubular airframe designed on a tubular structure to obtain the required mechanical

properties, such as stiffness, while maintaining a relative low weight (about 220 grams).

The prototype is actuated by four fixed-pitch propellers, each one driven by a brushless

DC (BLDC) electric motor. The selected motors (Dualsky XM-400, 130 W of maximum

power) and propellers (APC, 8 inches diameter) are able to produce approximately 2 Kg

of total thrust when using a 3S LiPo (Lithium Polimery) battery as the poser source.

Figure 6.1: Quadrotor prototype

Moreover we included markers to be tracked with Optitrack camera system (for a

more precise position estimation). For an indoor flight just Optitrack and IMU are used,

while for outdoor flight or not in presence of Optitrack, IMU, optical flow and sonar are

used together to evaluate the state.

Following [101], the dynamics of the system can be described by means of (3.1) in

which the resultant force and torques can be computed as a function of the four thrusts
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Ti, i = 1, 2, 3, 4, generated by the four different propellers, namely

[
uf

uτ

]
=


−1 −1 −1 −1

0 −d 0 d

d 0 −d 0

Ktm −Ktm Ktm −Ktm



T1

T2

T3

T4

 (6.1)

where d denotes the distance of the propeller spin axis from the center of gravity of the

system, Ktm is a parameter which relates the thrust of a single motor to the aerodynamic

torque produced along the spin axis of the propeller. The thrust Ti produced by each

propeller is a function of the angular speed ωP,i of the motors, namely Ti = kTω
2
P,i,

with i ∈ {1, 2, 3, 4}. The parameters of the specific prototype are M = 1.05 Kg, J0 =

diag(0.0082, 0.0082, 0.0164) Kgm2, d = 0.29 m, and Ktm = 0.026. The values of Ktm,

kT , d and M have been measured experimentally with the help of a load-cell, while the

value of the inertia J0 has been estimated using a computer aided design software. To

take into account possible uncertainties of the mass distribution, the following upper

bound has been taken into account JU = diag(0.01, 0.01, 0.02) Kgm2.

With the above prototype at hand, the following two subsections propose respec-

tively simulations and experimental results obtained by considering the robust control

strategy defined in Sections 3.1.2 and 3.1.2.

6.1.1 Simulations

Two different simulations are proposed. In the first one, the quadrotor is required to

hover at a fixed position p? starting from an initial attitude configuration in which the

vehicle is overturned (attitude recovery maneuver). To govern the position dynamics,

the controller (3.22) has been employed by choosing, according to Proposition 3.1, the

control gains as k?1 = 1, λ?1 = 5, k?2 = 150, λ?2 = 150 and ε = 0.06. For the attitude loop,

the controller in (3.42), yielding robust global stability results, has been considered with

kp = 40, kd = 0.2 and δ = 0.1. To show the robustness of the proposed control law,

realistic parametric uncertainties and disturbances have been considered in the simula-

tions. In particular, the actual inertia J of the vehicle is assumed to be 10 % larger than

the nominal one, while the forces and torques disturbances df and dτ are selected as

coloured noise with maximum amplitude of 1.5 N and 0.05 Nm, respectively, to model

the effects of possible wind impacting propellers. Finally, a white noise with maximum

amplitude of 0.04 rad has been added to the attitude position measurement to represent

uncertainties in the sensor model.

Figures 6.2, 6.3 and 6.4 show the attitude position, the angular speed and the linear

position of the vehicle during the attitude recovery maneuver. Note that, despite the
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vehicle in the initial position being overturned, i.e., [η(0), ε(0)>]> = [0, 1, 0, 0]>, the

vehicle converges rapidly to the desired hover configuration by rotating around the body

x-axis. This is achieved without undesired switches of the hybrid state h, as depicted in

Figure 6.5. This result may not be achieved with continuous time controllers having the

above initial condition as equilibrium point, or with discontinuous feedback laws not

robust to measurement noise (see also [43]). Finally, the force and torque control inputs

applied to the quadrotor during the maneuver are depicted in Figure 6.6.
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Figure 6.2: The attitude trajectory of the quadrotor during the attitude recovery ma-
neuver.
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Figure 6.3: The angular speed of the quadrotor during the attitude recovery maneu-
ver.
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Figure 6.4: The position trajectory of the quadrotor during the attitude recovery ma-
neuver.
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Figure 6.5: The logic state h of the quadrotor during the attitude recovery maneuver.
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Figure 6.6: The control force and torques applied to the quadrotor during the attitude
recovery maneuver.

The second simulation considers an aggressive maneuver (barrel flip) to be accom-

plished by the vehicle. In particular, the desired time reference signals are given by
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x∗(t) := 0, y∗(t) := cos(γt), z∗(t) := − sin(γt), where γ := 1.4π rad/s. In practice the

quadrotor is required to follow a circular trajectory along the y and z inertial axis main-

taining a constant speed along the path. The reference inputs u∗f and u∗τ , required to

compute the feed-forward control terms in (3.14) and (3.42), have been computed as in

Section 3.1.1 with R∗ obtained using the algorithm in Appendix A.1.4. For the above

reference trajectory, condition (3.8) holds with ε ≤ 0.1. Thus the same position and at-

titude control parameters of the first simulation have been considered. The actual and

the reference position trajectories are depicted in Figure 6.9, showing how the system

converges to the desired path. Figure 6.7 shows the attitude of the vehicle during the

aggressive maneuver and Figure 6.8 shows the angular velocity. Note that, to compen-

sate for the high centrifugal force with the thrust forces generated by the propellers, the

quadrotor has to continuously rotate around the body x axis. Finally in Figure 6.10 one

can see a sequence of the aggressive maneuver with the proposed control law.
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Figure 6.7: The attitude trajectory of the quadrotor during the aggressive maneuver:
barrel flip.

6.1.2 Experiments

The goal of this section is to show the performance of the proposed robust inner-outer

loop control strategy in a real-world application scenario. In particular, the robust con-

trol strategy developed in Sections 3.1.2 and 3.1.2 has been implemented on a real au-

topilot [84] in order to stabilize the quadrotor prototype described in Section 6.1. To

determine the attitude of the vehicle, the selected autopilot includes an Inertial Mea-

surement Unit (IMU) which consists of 3D accelerometers, magnetometers and gyros.

The low-level sensor information obtained by the IMU is processed by an Attitude and
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Figure 6.8: The angular speed of the quadrotor during the aggressive maneuver: bar-
rel flip.
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Figure 6.9: The position trajectory of the quadrotor during the aggressive maneuver:
barrel flip.

Heading Reference System (AHRS) algorithm, derived following [31], in order to com-

pute the attitude quaternion and the angular speed of the system. An external motion

tracking system [100] has then been employed to determine the linear position of the

center of gravity of the vehicle. The selected motion tracking system is able to measure

the position at 100 Hz with approximately 1 mm accuracy. With this information at

hand, a standard high-gain observer [61, Chapter 14.5] has been employed to compute

the linear velocities in real-time. All of the control and estimation algorithms run in
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Figure 6.10: Sequence of simulated aggressive maneuver: barrel flip.

real-time at 200 Hz rate on a 32 bit ARM processor. The proposed control law and the

high-gain observer were implemented in c++ as APPs for the PX4 stack. The parame-

ters for the controller used in the experiment are: k?1 = 1, λ?1 = 5, k?2 = 150, λ?2 = 150,

ε = 0.06, kp = 16, kd = 0.7 and δ = 0.15. The value of δ has been selected to take into

account the measurement noise on attitude estimation of the specific prototype.

The proposed experiment has two goals. On one hand it shows how the proposed

control strategy is actually effective in practical applications in which model uncertain-

ties, disturbances and noises are present. On the other hand, it shows how the proposed

global stabilizing controller is able to overcome typical limitations of some continuous-

time stabilizing controllers, such as in particular the un-winding phenomenon [112]. In

the experiment, the vehicle is deployed by the hand of a human operator and the con-

troller is required to maintain a constant position and attitude. Due to this particular

type of deployment, large initial attitude errors can be introduced since the vehicle may

rotate when it is launched by the operator.

Figures1 6.12 and 6.13 show the attitude position and angular velocity of the vehicle

during the experiment. Note that the vehicle starts close to the unit quaternion q =

[1, 0, 0, 0]> and then, due to manual deployment procedure, is rotated by approximately

2π around the body z axis. Note that at time t ≈ 3.9 sec, η is close to zero while ε is

close to [0, 0, −1]>. Due to this large attitude error, the jump domain Drob in (3.45)

is entered. Note that, due to the small values of the inertia JU , the jump condition in

(3.44) can be entered even when the vehicle is rotating at relative large angular speed

values (up to 3 rad/s for the parameters employed in the experiments). Thus the logic

state h, which is depicted in Figure 6.14, switches from 1 to −1 and the unit quaternion

q = [−1, 0, 0, 0]> is stabilized. This fact prevents the vehicle to perform a complete

rotation around its body z axis in order to reach q = [1, 0, 0, 0]>, which, according to

the Rodrigues formula, corresponds to the same orientation. The position of the vehicle

during the maneuver has been depicted in Figure 6.11 while the control inputs are given

in Figure 6.15. A video showing the experiment is available at https://www.youtube.

1Measurements are obtained from the onboard autopilot at 10Hz rate.
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com/watch?v=FFW2MchU79A.
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Figure 6.11: Position during the hand deployment maneuver.
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Figure 6.13: Angular speed during the hand deployment maneuver.
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the hand deployment maneuver.
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6.2 Architecture for Control and Coordination of a Swarm of

Micro-Quadrotors

The control law presented in chapter 3 for the VTOL was used in developing an archi-

tecture for control and coordination of a swarm of micro-quadrotors.

Several contributions in the literature document the effectiveness of rapid prototyp-

ing control frameworks for the development and testing of coordination and control

algorithms [74] [65]. Most of these frameworks are based on motion tracking systems

in which ad-hoc quadrotor platforms can be employed to perform advanced maneu-

vers. While the control algorithms are often released by the authors, the overall control

architecture may not be directly available to other research groups. More recently, an

open-source and open-hardware project, the Crazyflie [14], has proposed a miniature

low-cost quadrotor platform. The vehicle can be easily piloted by a human operator

though a remote computer by means of a standard joystick interface. However, the cur-

rently available software architecture does not include the guidance, control and navi-

gation layers required to test closed-loop control algorithms and to perform advanced

operations.

The goal of this section, presented in [37] is to develop an open source control frame-

work to allow the Crazyflie nano quadrotors to be employed as a test bench for the devel-

opment of advanced control and coordination algorithms. In particular, the guidance,

control, and navigation layers have been designed to let a group of nano quadrotors to

be controlled simultaneously using a motion tracking system. The control layer is based

on the trajectory tracking controller presented in Chapter 3. This feature allows to ex-

ploit the agility of the selected nano quadrotors to perform acrobatic maneuvers, as well

as to effectively recover the vehicle from an arbitrary initial configuration. The cascade

structure of the controller is exploited to distribute the computation on the ground and

the on-board embedded processor. More specifically, the attitude loop is implemented

on the onboard processor while the outer position loop as well as the overall guidance

layer are implemented on a remote ground station, which consists of a PC. The guidance

layer is in charge of generating the reference position and orientation to be tracked by

the cascade controller and also to coordinate multiple nano quadrotors.

The proposed control architecture is then validated by means of an experiment in

which two different vehicles are required to perform a coordinated maneuver. The ex-

periment also shows the capability of the proposed control layer to recover the vehicle

from an arbitrary initial configuration, confirming the hypothesis presented in Chapter

3.
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6.2.1 Crazyflie Platform

The Crazyflie nano-quadrotor is an open-source, open-hardware project developed by

the company Bitcraze AB [14]. The available components 2 include the airframe, the on-

board avionics hardware, a wireless communication device and the software packages

that allow a human pilot to govern the vehicle by means of a standard joystick con-

nected to a ground PC. The following two subsections describe the available hardware

and software components, respectively.

Hardware

• Crazyflie Quadrotor: Because of its dimensions - 90 mm from rotor to rotor - and

flight time - up to 7 minutes - the Crazyflie falls under the nano-quadrotor cate-

gory [32]. Its small weight, 19 grams, and the low-cost of all the components make

it suitable to safely perform experiments without the risk of damaging expensive

hardware. Moreover, the high thrust-to-weight ratio (the maximum thrust is more

than 35 grams) and torque-to-inertia ratio make it suitable to perform aerobatic

maneuvers. The core of the airframe is given by the Printed Circuit Board (PCB),

which includes the microprocessor (an ARM Cortex M3), the Inertial Measure-

ment Unit (IMU) sensor - 3-axis gyros and 3-axis accelerometers integrated in a

single MPU6050 chip - and the power circuit for the motors. Each of the four DC

current motors drives a fixed-pitch propeller having a diameter of 1.8 inches.

• Crazyflie Wireless Communication Device: The Crazyflie setup includes a wireless

radio for bidirectional communication between the quadrotor and a ground sta-

tion. The radio device, denoted as Crazyflie Dongle, is characterized by a frequency

of 2.4 GHz and it is based on a Nordic Semiconductor nRF24LU1 chip. The wire-

less communication is based on the Enhanced ShockBurst protocol. The wireless de-

vice supports approximately 100 different channels simultaneously. Accordingly,

the hardware architecture is suitable to employ a large number of different nano

quadrotors simultaneously.

Software

The original software released by the company includes a PC application, the Crazyflie
Client, and the on-board firmware. The two components, which are described hereafter,

are specifically designed to let the vehicle be easily piloted by a human operator.

• Crazyflie Client: the main goal of the Crazyflie Client is to let the Crazyflie nano

quadrotor communicate with a ground station PC. From a hardware point of view,
2We have considered the 6 DoF version of Crazyflie nano-quadrotor.
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the communication is obtained by means of the wireless device described in the

previous subsection. The Crazyflie Client includes a user interface for manual set-

up and operations with the quadrotor. In particular, the user interface presents to

the operator a number of useful information (battery status, current motor thrust,

etc.) and it allows to change the flight parameters in real-time. In the standard

flight mode, the Crazyflie Client reads the position of the four axis of a standard

joystick device attached to the ground PC in order to produce, as output, the set of

commands to be sent to the onboard avionics. In particular, the commands are the

attitude roll and pitch angle, the yaw angular speed, and the resultant thrust to be

produced by the four propeller.

• Crazyflie Firmware: the firmware is the code running on the on-board microcon-

troller. The firmware runs on a Real-Time Operative System (FreeRTOS) able

to handle multiple threads. The most important components include the sensor

drivers, the attitude estimation filter, the attitude control law, the communication

layer, and the motor control. The attitude estimator, in particular, is based on a

complementary filter proposed in [76]. The attitude control law is based on a sim-

ple PID control loop that has been implemented to stabilize the three Euler angles,

i.e., the roll, the pitch and the yaw, parameterizing the attitude of the vehicle. As

a consequence, the available attitude control algorithm suffers from singularities

deriving from the attitude parameterization and it is not able to globally stabilize

a desired angular position.

6.2.2 Motivation and Control Architecture
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Figure 6.16: Control Framework

The idea behind this work is to define a distributed layered control architecture. By

taking advantage of the Crazyflie platform described in Section 6.2.1, this work derives
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a control architecture suitable for experimental tests of a swarm of quadrotors. The

architecture can be divided into these layers:

• Control Layer is designed to achieve:

– a cascade closed loop control scheme with decentralized computation;

– a globally asymptotically stable controller, which means that for any possible

initial condition the position and attitude error is steered to zero asymptoti-

cally;

• Navigation Layer is designed to obtain information about the state of the system: it

relies on sensors (IMU, gyroscopes, Optitrack System) and estimation filters (filters

for the attitude and velocity estimation);

• Guidance Layer: define a coordination protocol to control a swarm of quadrotors.

The overall control architecture is depicted in Figure 6.16 where the main interac-

tions between hardware and software components, necessary to achieve the proposed

goals, are shown. The core elements of this architecture, which are detailed in the fol-

lowing, are given by the Crazyflie quadrotor, the Optitrack System, the human-machine

interface and the ground station.

• Optitrack System: is an off-the-shelf real-time motion tracking solution based on

infrared cameras [100]. The set of camera with the legacy software package Track-

ing Tools, are able to provide attitude and position of rigid bodies at a frequency of

100 Hz. A set of infra-red reflective markers needs to be pinned to the rigid-body

to be tracked (in our setup, 3 markers for each Crazyflie quadrotor). A flight arena,

in which 12 infrared cameras are employed, has been used in the experiments. The

resulting tracking volume is approximately given by a box of 4×4×2 meters. Any

tracking system could be substituted to Optitrack by sending appropriate UDP

packets following the protocol described later;

• Human-Machine Interface: the human operator (pilot) can communicate with the

ground station through a joystick. By means of the joystick the operator can in-

teract with the guidance layer trajectory, and guarantee a safe flight termination.

From a software point of view, the commands generated by the human via the joy-

stick are processed by a control algorithm implemented using Matlab/Simulink;

• Ground Station: it consists of a desktop PC running Matlab/Simulink with RTWTK

(Real Time Windows Target Kernel) and Crazyflie Clients. The Simulink software

is employed to rapidly implement and validate all the control and coordination
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algorithms. An open source library has been developed to interpret the joystick

commands and data received from the Optitrack System and transmit them, via

UDP protocol, to the Simulink controller.

Control Layer

A cascade control structure is chosen to reflect the intrinsic physical connection between

attitude and position of the quadrotor model. This strategy allows a simple and intuitive

tuning of the attitude and position controllers separately.

The cascade control structure requires frequency separation between the two loops,

in which the attitude is referred as the inner loop while the position is the outer loop.

Thus, the attitude controller is running on-board to fast compute attitude sensors data,

while the position control is running on the ground station PC using Optitrack position

data.

The outer loop layer (position) is running on the ground station PC at 100 Hz, while

the inner loop layer (attitude) is running on-board on the Crazyflie quadrotor at 250

Hz. The communication between these layers is described in Section 6.2.2, while the

modified control law is defined in Section 6.2.3.

Navigation Layer

The Optitrack measured yaw is sent on-board to allow yaw angle control, since the

Crazyflies PCB does not embed a magnetometer and thus the on-board estimation di-

verges. The Optitrack System measures only the position. Hence, a high gain filter for

each quadrotor is implemented on Simulink to estimate the linear velocity. The linear

velocity estimation is necessary to implement the control law described in Section 6.2.3.

Also, with the aforementioned control law in mind, the original on-board attitude es-

timation filter is slightly modified to evaluate the attitude in terms of quaternion instead

of Euler Angles.

Guidance Layer

All the high level logic (state machines, trajectory generation, swarm algorithms, etc.)

can be implemented directly on Simulink, depending on the specific experiment to per-

form. The Guidance Layer is defined as the layer that aims to control the overall behavior

of the system, being a single quadrotor or a swarm. In therms of output, the Guidance

Layer generates reference trajectories to be tracked by the Control Layer: thus, from a

functional point of view, it can be seen as a complex reference generator.
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Communication Protocols

On the Ground Station PC, the communication between the layers is obtained by means

of UDP protocols while the communication from the Ground Station PC to the the

quadrotors is performed by means of the Crazyflie standard radio communication.

"Stream Input" and "Stream Output" Simulink blocks (Real Time Windows Target

Toolbox) are used to receive input data from Optitrack and Joystick into Simulink and

to send output data from Simulink to the Client, respectively. The Crazyflie standard

radio communication protocol is used to send the desired attitude and thrust from the

Crazyflie Client to the quadrotors on-board. Three types of messages can be defined (see

Figure 6.17):

• Optitrack Message: Used to send UDP data from the Optitrack System to Simulink;

a single packet is used for every quadrotor, and the ID of the vehicle is distin-

guished using different UDP port for every agent;

• Joystick Message: Used to send UDP data from Joystick to Simulink;

• Control Message: Used to send UDP data from Simulink to the Client.

Figure 6.17: Messages Protocol Definition

Fields description:

• X, Y, Z: x, y, z positions from optitrack of the tracked quadrotor

• Q0, Q1, Q2, Q3: the four component of the attitude of the tracked quadrotor,

expressed with quaternion

• A, B, C, D: the values from the four axis of joystick (from 0 to 1024)

• BUT the value of the button of joystick

• R, P, Y, THR: roll, pitch, yaw and thrust reference sent to the client.

• YAW: the actual yaw measured by the Optitrack System, to be sent to the client

• T: timestamp (data not used in the current architecture)

• ERR: mean tracking error of optitrack system (data not used in the current archi-

tecture)
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• CRC: cyclic redundancy check for packets integrity check

To allow the use of multiple quadrotors with the proposed architecture, multiple

Clients should be used on the Ground Station. Each quadrotor is associated to one

Crazyflie Client, each one reading from a different UDP ports and communicating data

on-board via a private Dongle. The client is modified to allow the scan for multiple

Dongles and to be able to link every dongle to a quadrotor.

A preliminary code example, including the modified onboard firmware, the modified

Client and the Simulink control scheme for multiple Crazyflies can be found in [13].

6.2.3 Global Trajectory Tracking Control Law

The position control law is slightly modified from the one in Chapter 3. In particular

(3.22) becomes the following

κ(·) := λ3σ

(
k3

λ3

(
˙̃p+ λ2σ

(
k2

λ2
p̃+ λ1σ

(
k1

λ1
ηp

))))
(6.2)

with λi, ki, i ∈ {1, 2, 3}, control parameters to be tuned, and where ηp denotes the state

of the following integrator

η̇p = p̃ .

What differs is the addition of an integral action. The integrator is included to be

robust to constant disturbances (as battery discharge) or to non perfect parameters es-

timation (for example the mass). Adding the integral action, all the stability properties

are preserved, since the design of κ(·) still follows the theorem in the proof.

6.2.4 Experiments and Results

To validate the proposed distributed control law and to show the effectiveness of the

overall control architecture, in this section experimental results are presented. We ex-

pect two crazyflie nano-quadrotors to track a desired trajectory, generated by the Guid-

ance Layer. The quadrotors are hand deployed by the human operator. One nano-

quadrotor is deployed mid-air with a harsh initial condition (it’s deployed overturned,

facing downward and with initial high linear speed) and thus has to perform an attitude

recovery maneuver, assuring that the proposed control law is globally asymptotically

stable. The second quadrotor is then deployed. As soon as the quadrotors are deployed

and have recovered the hovering state, the desired trajectory is generated and they are

requested to track such a reference.

It is important to stress that the harsh initial conditions from which the quadrotor

may start, can impact gravely on a small aerial vehicle without a GAS control law: in our
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case, the proposed control law guarantees that, after a small transient, the quadrotors

recover the hovering condition globally.

Experimental Setup

Two Crazyflie mini-quadrotors are equipped with a carbon fiber structure, to bear mark-

ers for the Optitrack System (Figure 6.18). To avoid limitation in the thrust, the structure

is designed to position the markers outside the airflow. The whole structure and markers

weight is approx. 3.5 grams. This payload impacts on the total flight time, which drops

from 7 to 5 and a half minutes.

Figure 6.18: Crazyflie quadrotor with structure and markers

Guidance Layer

In this experiment, the Guidance Layer is a simple centralized trajectory generator. As

soon as the two quadrotors reach hovering condition, it generates two circular path at

constant height, in counter-clockwise direction, with a phase of π rad and radius of

0.85 m.

Parameters

The control parameters employed in the experiments are the following.

Table 6.1: Control parameters for the experiment

λ1 = 0.1 λ2 = 0.15 λ3 = 0.24

k1 = 0.01 k2 = 0.1 k3 = 0.11

kp,x = 60000 kp,y = 30000 kp,z = 40000

kd,x = 70 kd,y = 60 kd,z = 130

δ = 0.1 KT = 8.5e−7 KQ = 1.3e−8
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The mass is computed by adding to the weight of a Crazyflie, the weight of markers

and structure. The marker’s weight is approx. 1 g each, while the weight of the structure

is negligible. It results a final mass of 22 g.

The inertia tensor is computed using Huygens-Steiner theorem and considering sep-

arate masses. In particular, the frame and the marker mounted on the battery are consid-

ered as a parallelepiped of dimension 4x4x3 cm and mass 12 g. The inertia contribution

of this parallelepiped is given by:

Ixx,f = 13g/cm2

Iyy,f = 13g/cm2

Izz,f = 32g/cm2

The motors and propellers are considered as point masses of 2 g at a distance of 4 cm

from the center of mass. The markers are considered as point masses centered at 7, 5 cm

from the center of mass, in the y-axis. Contribution of motors to inertia is given by:

Ixx,m = 64g/cm2

Iyy,m = 64g/cm2

Izz,m = 128g/cm2

Contribution of markers to inertia is given by:

Ixx,m = 112.5g/cm2

Iyy,m = 0g/cm2

Izz,m = 112.5g/cm2

The total inertia is given by:

Ixx = Ixx,f + Ixx,m + Ixx,m = 189.5g/cm2

Iyy = Iyy,f + Iyy,m + Iyy,m = 77g/cm2

Izz = Izz,f + Izz,m + Izz,m = 272.5g/cm2

Results

In Figure 6.19, the attitude (reference and actual) of the first quadtotor is shown: due to

the harsh initial condition, it has to perform an acrobatic maneuver (attitude recovery)

to reach the desired hovering position before the trajectory starts. Between 7 sec and

9 sec, the human operator manually turns the quadrotor downward. At time 9 sec, the

quadrotor is deployed and in the time interval 9 sec to 12 sec, the quadrotor recovers the

attitude and reaches the requested position.

We can notice an offset in tracking the 3rd and 4th component of the quaternion dur-
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ing the whole experiments, due to the fact that the real attitude is estimated on-board,

while the attitude plotted in Figure 6.19 is given by the Optitrack System. A sequence of

the deployment and attitude recovery maneuver can be seen in Figure 6.20. The condi-

tion (3.33) for switching the hybrid parameter h of the attitude control is fulfilled when

the quadrotor is deployed. The change can be seen in Figure 6.21.

In Figure 6.22 the thrust command of first quadrotor is depicted.

In Figure 6.23 and 6.24, the position of the two quadrotors performing trajectory

tracking is shown: the real position is the black line and the trajectory reference gener-

ated by the Guidance Layer is dashed red.

A video of the experiment can be seen at [87]. Finally in figure 6.25 the 3D plot of

the trajectory executed by the two quadrotors. The different flight phases are clear: two

bump upward are present in the deployment phase, then the circular path is performed,

and a downward slope during the circular path is executed in the end of the experiment

to land.
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Figure 6.19: Desired (black solid) and actual (red dashed) attitude of Quadrotor n.1.
(a): deployment phase. (b): recovery and stabilization phase. (c): trajectory tracking
phase.
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Figure 6.20: Sequence of deployment maneuver and attitude recovery
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Figure 6.23: Position reference and state of Quadrotor n.1. (a): deployment phase. (b):
recovery and stabilization phase. (c): trajectory tracking phase.
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Figure 6.24: Position reference and state of Quadrotor n.2. (a): deployment phase. (b):
recovery and stabilization phase. (c): trajectory tracking phase.
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Figure 6.25: 3D plot of trajectories of both quadrotors
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6.3 Other applications

The control law for the UAV was also applied to a smarthphone-based autopilot for a

quadrotor [5], where an android smartphone was used to develop a complete autopilot

using onboard sensors and computation.

While both the control law and the architecture for a swarm of micro-quadrotor was

applied in [21], where 3 crazyflie micro-quadrotor were coordinated using consensus

theory to achieve a distributed agreement on their trajectories.

The DESP planner was recently developed for parallel computation on GPU and

will be soon published in proceedings of LP-EMS16: 2nd Workshop on design of Low
Power EMbedded Systems under the title An Energy-Efficient Parallel Algorithm for Real-
Time Near-Optimal UAV Path Planning.
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7
Conclusion and Future Works

I n this thesis we presented novel approaches for modeling and control of certain

classes of mobile robots and novel strategies for motion planning of mobile robots.

In particular, a new approach for modeling multi-propeller UAV has been devel-

oped to model VTOL UAV as modular systems composed of payloads and actuators. On

the control level, two control law for VTOL UAV and differential wheel robots (DWR)

were proposed. The first with the goal of globally stabilizing the VTOL, allowing for ac-

robatic maneuvers such as attitude recovery or barrel flips. The second to semi-globally

stabilize the DWR for trajectory tracking or waypoint tracking purpose. On planning

level, a new combined control and planning approach is proposed do build simple non-

feasible trajectory that still guarantee safety in presence of disturbances and respect the

kinodynamic differential constraints. The advantage is a simple strategy suitable for

real-time due to low runtime. Moreover a general planning framework based on DES

for heterogeneous robots was proposed. The proposed framework allows to do quasi-

optimal planning on a symbolic representation of both the robot dynamic and the en-

vironment, reducing the planning problem to a graph-search algorithm. The result is

a real-time, kinodynamic, quasi-optimal planner suitable to replanning for unknown

environments.
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7.1 Future Works

Many are the open questions in this thesis. In particular:

• Differential wheel robot model and control: the dynamic can be extended to the

full dynamic system instead of the kinematic system, to capture a more realistic

behavior. Moreover real saturation on the actuators can be added to reflect the

constraints of the system.

• Multi propeller modeling: an extension to a general model where actuators trust

can be directed into any direction in the 3D space can be taken into account.

• VTOL control: the control is simple, robust and easy to implement. It was tested

on real application with great success, so there are no open problems on this topic.

• Tracking of piece-wise feasible trajectories: some less conservative approaches can

be studied to reduce the impact of discontinuities into the tracking error.

• DESP: many open question are related to this topic being the first approach of this

kind. In particular:

– More detail on the computational complexity of the proposed algorithms.

– More detailed use case and generalization about the use of non-controllable

and non-observable events.

– Extension to non rigid body robots, where the swath of the primitives can

change based on the history of the primitives. In general an application to

non mobile robots should be studied for application such as: manipulators,

humanoid and articulated robots.

– How to use other automata to coordinate the motion planning problem to

other high-level problems such as complex tasks, coordination of multi-agent?

– How to sample the environment and the dynamic of the agent (primitives) to

have a complete problem?

– How to sample the environment and the dynamic of the agent (primitives)

such that the solutions are the optimal solutions of the general planning prob-

lem and not optimal for the discretized problem?
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A.1 Robots Control

A.1.1 Hybrid Systems: Definitions and Stability Notions

In this work, we consider hybrid systems H given by

H

{
ẋ ∈ F (x, vc) x ∈ C
x+ ∈ G(x) x ∈ D ,

(A.1)

with state x ∈ Rn and input vc ∈ Rm acting only on the flows. The sets C ⊂ Rn and

D ⊂ Rn define the flow and jump sets, respectively, while the set-valued mappings

F : Rn × Rm ⇒ Rn and G : Rn ⇒ Rn define the flow map and jump map, respectively.

For details about hybrid systems, see [45].

In the special case in which vc ≡ 0, the hybrid systems considered in this paper will

satisfy the hybrid basic conditions (see [45]), namely

(A1) The sets C and D are closed in Rn.

(A2) The set-valued mapping (x, 0) 7→ F (x, 0) is outer semicontinuous relative to Rn ×
{0} and locally bounded, and for all x ∈ C, F (x, 0) is nonempty and convex.
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A.1. Robots Control

(A3) The set-valued mapping x 7→ G(x) is outer semicontinuous relative to Rn and

locally bounded, and for all x ∈ D, G(x) is nonempty.

Solutions

Solutions to hybrid systemsH are given by pairs of hybrid arcs and hybrid inputs defined

over extended time domains called hybrid time domains. A set S ⊂ R≥0 × N is a hybrid

time domain if, for all (T, J) ∈ S, the set S ∩ ([0, T ]× {0, 1, ..., J}) can be written as

J−1⋃
j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2... ≤ tJ . A hybrid arc x : domx → Rn

is such that domx is a hybrid time domain and, for each j, t 7→ x(t, j) is absolutely

continuous on the interval {t : (t, j) ∈ domx }. A hybrid arc is parameterized by (t, j),

where t is the ordinary-time component and j is the discrete-time component that keeps

track of the number of jumps. A hybrid input vc : dom vc → Rm is such that dom vc

is a hybrid time domain and, for each j ∈ N, the function t 7→ vc(t, j) is Lebesgue

measurable and locally essentially bounded on the interval {t : (t, j) ∈ dom vc }. Then,

given a hybrid input vc : dom vc → Rm and an initial condition ξ, a hybrid arc φ :

domφ→ Rn defines a solution pair (φ, vc) to the hybrid system H in (A.1) if the following

conditions hold:

(S0) ξ ∈ C ∪D and domφ = dom vc (= dom(φ, vc));

(S1) For each j ∈ N such that

Ij := {t : (t, j) ∈ dom(φ, vc) } has nonempty interior int(Ij), φ(t, j) ∈ C for all t ∈
int(Ij), and, for almost all t ∈ Ij , d

dtφ(t, j) ∈ F (φ(t, j), vc(t, j));

(S2) For each (t, j) ∈ dom(φ, vc) such that (t, j+1) ∈ dom(φ, vc), φ(t, j) ∈ D and φ(t, j+

1) ∈ G(φ(t, j)).

A solution pair (φ, vc) to H is said to be complete if dom(φ, vc) is unbounded, maximal
if there does not exist another pair (φ, vc)

′ such that (φ, vc) is a truncation of (φ, vc)
′ to

some proper subset of dom(φ, vc)
′.

Stability Notions

For a hybrid systemH with vc ≡ 0, which will be denoted asH0, the following definition

of stability will be used.

Definition A.1. A compact set A ⊂ Rn is said to be
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• stable if for each ε > 0 there exists δ > 0 such that each maximal solution φ toH0 with
|φ(0, 0)|A ≤ δ satisfies |φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

• attractive if there exists µ > 0 such that every maximal solution φ toH0 with |φ(0, 0)|A ≤
µ is complete and satisfies

lim
(t,j)∈domφ,t+j→∞

|φ(t, j)|A = 0;

• asymptotically stable if it is stable and attractive.

Asymptotic stability is said to be global when the attractivity property holds for every

point in C ∪D.

A.1.2 Proof of Lemma 3.1

By the definition of Rc in (3.17), (3.19) and using R>c Ṙce3 = S(ωc)e3 it follows that

ωc = ḠR>c
d

dt

vc(p̃, t)

|vc(p̃, t)|
+ ω∗ze3

in which Ḡ ∈ R3×3 is the matrix with the first, second and third rows given by [0, −1, 0],

[1, 0, 0] and [0, 0, 0], respectively, and

d

dt

vc
|vc|

=

(
I3

|vc|
− vcv

>
c

|vc|3

)(
v̇∗f + κ̇(p̃)

)
.

By taking advantage from the nested saturation structure of κ(·) in [54] it is possible to

show that κ̇(·) is upper bounded by a value not dependent on p̃. To this purpose, let

ζ := ˙̃p+ λ1σ (k1p̃/λ1) so that κ(p̃) = λ2σ(k2ζ/λ2) and

κ̇(·) =
k2

M
σ′
(
k2ζ

λ2

)(
−λ2σ

(
k2ζ

λ2

)
+

+ Mk1σ
′
(
k1p̃

λ1

)
˙̃p+ Γ + df

)
from which the expressions of Ω1(·) and Ω2(·) immediately follow. The fact that Ω1(0, t) =

ω? follows from (3.11) and σ(0) = 0. Finally, the fact that Ω1 and Ω2 are uniformly

bounded by a constant Ω̄ follows from the fact that vc, σ(·) and σ′(·) are bounded func-

tions (by the definition of saturation function and by (3.14)), and that σ′(k2ζ/λ2) ˙̃p is

a bounded term. As a matter of fact note that, in the computation of a bound for

σ′(k2ζ/λ2) ˙̃p, it is possible to assume |ζ| ≤ λ2/k2 (otherwise σ′(k2ζ/λ2) = 0 by the defini-

tion of saturation function) and thus, by the definition of ζ, | ˙̃p| ≤
√

3(λ2 + λ2/k2). This

completes the proof of the lemma.
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A.1.3 Proof of Lemma 3.2

From Lemma 3.1, since df ≡ 0 and Γ is bounded, we have that ωc(t) is a bounded func-

tion of time. By computing the derivative of ωc(t) we obtain

ω̇c = ḠS(ωc)
>R>c

d

dt

vc
|vc|

+R>c
d2

dt2
vc
|vc|

+ ω̇?ze3

where the expression of (d/dt)(vc/|vc|) is given in the proof of Lemma 3.1, and it is

bounded when df ≡ 0, while

d2

dt2
vc
|vc|

=

(
−vcv>c
|vc|3

− v̇cv
>
c + vcv̇

>
c − 3(vcv

>
c )2

|vc|5

)
v̇c+

+

(
I3

|vc|
− vcv

>
c

|vc|3
v̈c

)
with v̇c = v̇?f + κ̇(·), v̈c = v̈?f + κ̈(·) . From the assumptions on the references given in

Section 3.1.1 and by considering the proof of Lemma 3.1 for the special case in which

df ≡ 0, we have that v̈?f and κ̇(·) are bounded functions of time. Then the result follows

by showing that, when df ≡ 0, also κ̈(·) is bounded. Specifically, we have

κ̈(·) =
k2

2

λ2
σ′′
(
k2ζ

λ2

)
ζ̇2 + k2σ

′
(
k2ζ

λ2

)
ζ̈

with

ζ̇ =
1

M
(−κ(·) + Γ) + k1σ

′
(
k1p̃

λ1

)
˙̃p

ζ̈ = − 1

M
κ̇(·) +

1

M
Γ̇ +

k2
1

λ1
σ′′
(
k1p̃

λ1

)
˙̃p2+

+ k1σ
′
(
k1p̃

λ1

)
¨̃p .

When |ζ| > k2/λ2, from the definition of σ(·), we have that σ′(k2ζ/λ2) = σ′′(k2ζ/λ2) = 0.

In the other case, when |ζ| ≤ k2/λ2, from the definition of ζ given in the proof of Lemma

3.1, we have that | ˙̃p| ≤
√

3(λ2 + λ2/k2). Then, by considering also the definition of Γ

given in (3.21) and ¨̃p given by (3.20) with df ≡ 0, since σ(·), σ′(·), σ′′(·) are bounded

functions, all terms in the expressions of ζ̇ and ζ̈ are bounded. This proves the lemma.

A.1.4 Computation of the rotation matrix

A rotation matrix satisfying (3.7) (or equivalently (3.17)) can be obtained parameterizing

rotations using Euler angles. In fact, given ν = [νx, νy, νz]
> ∈ S2, a matrix R′ ∈ SO(3)
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s.t. R′e3 = ν can be obtained as (i) R′ = RxRyRz or (ii) R′ = RyRxRz with

Rx =

 1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 ,
Ry =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 ,
Rz =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 ,
where φ, θ, ψ ∈ R. Since Rze3 = e3 for all ψ ∈ R, the value of ψ can be considered as a

degree of freedom (namely the heading direction of the vehicle can be assigned arbitrar-

ily) when R′ is computed as in (i) or (ii). For the case (i), if νz 6= 0 or νy 6= 0, φ and θ can

be obtained as

φ = arctan

(
−νy
νz

)
, θ = asin(νx) .

When νz and νy are close to zero, since νx is different from zero from the definition of

S2, the expression of R′ can be computed as in (ii) with φ and θ given as

φ = asin(−νy), θ = arctan

(
νx
νz

)
.

A.2 Path Planning Strategies

A.2.1 Discrete Event Systems and Automata

The following are derived by [24].

Discrete Event Systems (DES), in constrast to standard Continuous-Variable Dynami

Systems, obeys to two properties:

• The state space is a discrete set X = {s1, s2, s3, ....}.

• The state transition mechanism is event-driven.

where events represent the input to the system. Events are instantaneous inputs

that belongs to a discrete set E = {e1, e2, e3, ....}. The behavior of a DES is completely

described by its model and by the sequence of events e1e2e3.... If the set of events E

is called alphabet, this sequence is called a word or string and a collection of possible

words is called the alphabet. The set of all finite strings made from E is called E∗. The

transition function f : X×E → X describes the evolution of the states of the DES based
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on the actual state and the input (event), such that X(i+ 1) = f(X(i), E(i)), where i ∈ N
represents the i − th event and the i − th state reached. An automaton is a "device"

capable of representing a language. The easiest way is to represent a language with

directed graph representation as in the example in Figure A.1

Astart

B C

c

b

a

c

b

Figure A.1: Automaton Example

In this example E = {a, b, c}, X = {A,B,C} and the transition function is defined

as:

f(A, c) = A

f(B, a) = C

f(B, b) = A

f(B, c) = B

f(C, b) = A

As we can notice other information are embedded in the graph. Let’s try to formalize

the definition of automaton.

A Deterministic Automaton, denoted by G, is composed by a six-tuple:

G = (X,E, f,Γ, x0, Xm)

with X the set of states, E the set of events, f the transition function, Γ : X → 2E is

the active event function (the set of all events e for which f(x, e) is defined), x0 the initial
state and Xm ⊆ X is the set of marked states. The marked states represent a set of states

with a particular meaning. The language generated by an automaton is given by:

L(G) = {∫ ∈ E∗ : {(§′, ∫)〉∫de{〉\ed}

while the marked language generated by an automaton is given by:

Lm(G) =
{
∫ ∈ LG : {(§′, ∫) ∈ Xm

}
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We can make a further specification on the events E of an automaton. Events can be

observable or unobservable and controllable or uncontrollable. The observability refers

to the fact that an event may be not seen from a sensor for example, or not communi-

cated. Unobservable events can be used to represent particular situation in the system

we want to model with DES. Controllability of the events instead refers to the capabil-

ity of our "system" to control or not that particular event. It can be strictly related to

the actuators capabilities of the system we are modeling. The events E can be divided

then into Euo and Eo which relate to unobservable and observable events respectively

or into Euc and Cc which relate to uncontrollable and controllable events respectively.

Euo
⋃
Eo = E = Euc

⋃
Ec. Events can be divided even into E

Operations on Automata

We want to present the operations we can perform on automata. Operations on automata

changes the transition function, but doesn’t alter the event set.

Accessible Part: The accessible part of an automaton G is:

Ac(G) = (Xac, E, fac, x0, Xac,m)

Xac = {x ∈ X : (∃s ∈ E∗)[f(x0, s) = x]}
Xac,m = X ∩Xacfac = f |Xac×E→Xac

Parallel Composition: The parallel composition of two automata G1 and G2 is the

automaton:

G3 = G1||G2 = Ac
(
X1 ×X2, E1 × E2, f,Γ1||2, (x01, x02), Xm1 ×Xm2

)
where

f ((x1, x2), e) =


(f1(x1, e), f2(x2, e)) if e ∈ Γ1(x1) ∩ Γ2(x2)

(f1(x1, e), x2) if e ∈ Γ1(x1) \ E2

(x1, f2(x2, e)) if e ∈ Γ2(x2) \ E1

undefined otherwise

that means that a "common" event is executed if both the automata can execute is

(it’s included in both active event functions), while a "private" event can be executed

if the automaton associated to that event can execute it (it’s icluded in the active event

function of the automaton the event belongs to).
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