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Summary

The main aim of the thesis is to develop dynamic path planning methods for mobile

robots in dynamic environments. This research consists of multi-agents mobile

robot system construction and online path planning methods for mobile wheeled

robot.

A multiple mobile robotic system, Robot Soccer System, is constructed. The

behavior hierarchy of robot strategies, formations and actions, successfully organize

a robot team to coordinate. The kinematic and dynamic models of the nonholo-

nomic mobile robot are studied. A tracking controller is designed based on the

models and the models are validated through simulation and experiments.

Path planning is one of the main issues associated with mobile robots. An

artificial potential field (APF) based approach is presented to navigate the multiple

robots while avoiding obstacles in a dynamic environment. It is observed that the

APF approach is a simple and flexible method for path planning. Another potential

field approach, electrostatic potential field (EPF) is studied and its effectiveness is

verified.

In order to improve the performance, multi-objectives evolutionary algorithm

(MOEA) tools are applied to optimize the APF parameters during the potential

construction, providing sub-optimal solutions with multiple objectives. The local

minima problem in APF is also tackled with a heuristic method in which an escape

force is designed to push the robot out of the local minimal positions.

Effective prediction of the positions of the moving objects paves the way for

vi



effective motion planning. Particle filter is utilized to predict the position of the

mobile robot which in turn is combined with the APF algorithm to plan the motion

of the robots.

Finally, conclusions about the research are drawn, and suggestion for further

research are presented.
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Chapter 1

Introduction

1.1 Background and Motivation

Since its inception, robots have been regarded as human assistants or even replace-

ment to some extent. The last century has seen successful applications of classical

control algorithms and the robots being utilized extensively in industries, military

and space exploration [1][2][3].

With the rapid development of computing facilities in recent years, the perfor-

mance of robotic systems has dramatically improved by using high speed computers

and advanced control algorithms. Robotic systems play more and more important

roles not only in the labor-lack situations but also in the entertainment world, es-

pecially by the mobile robots. Path planning is one of the central issues in mobile

robot research. The path-planning problem is to identify a collision free path from

the current robot position to a destination point, satisfying certain constrains such

as smoothness in motion, minimum path length, etc. Path planner has a signifi-

cant part in mobile robot control research and the algorithms should be capable of

providing fast adaptive control in dynamic environments.

In this thesis, a multiple mobile robot system (Robot Soccer System) is studied

and multiple mobile robot navigation algorithms are proposed which are verified
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1.2. Previous Work

through hardware implementation.

1.2 Previous Work

The conventional definition of the robot is a mechanical device with perception

module to collect environmental information, actuation module and a control sys-

tem processing the information and providing appropriate instructions [4][5][6].

No matter where the robots are used, whether in factory locations for non-

trivial tasks and hazardous environments such as mining, nuclear power station,

tunnelling or fire fighting, one of the major problems system designers face is the

controller design.

Since the robot actions could be decomposed into behaviors, Behavior-based

robotics obtained wide acceptance [7]. The behaviors are defined according to

the features of the robotic system. There are many novel approaches in various

applications, especially in simulation experiments [8][9][10][11].

1.2.1 Mobile Robot Path Planning

Path planning is the central issue in mobile robotic systems and algorithms for

mobile robot path planning have been intensively researched for years. The path

planner is required to find a trajectory that allows the robot to navigate from

the given starting Point A to the destination Point B with a safe distance from

obstacles in the environment.

The main approaches for collision-free and deadlock-free paths include: road

map approaches, cell decomposition approaches, artificial potential field approaches

and neural network models. The roadmap approach is mostly used to design a

collection of path segments to avoid the indoors obstacles [12]. Visibility graphs

and Voronoi diagrams [13] are commonly used to build the paths from the initial to

target configuration. Cell decomposition approaches decompose the obstacle free

2
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space into regions, called cells or grids, and connect the appropriate successive cells

into a path for mobile robots [14][15].

Artificial potential field (APF) approaches navigate the robots by the artificial

potential forces constructed virtually by simulating the natural potential fields.

APF was first proposed in [16] and applied later in path planning [17][3]. In the

construction of APF, heuristic methods are also utilized [18]. The local minimal

problem is the main shortcoming of APF [19]. Researchers have developed different

methods to overcome the local minima [20][21][22]. APF has been used widely in

mobile robot path planning [23][24][25][26].

Neural networks are also used to generate robot paths through training and

learning. In [27] a generalized predictive control method based on self-recurrent

wavelet neural network (NN) trained with the adaptive learning rates is proposed

for stable path tracking of mobile robot. In [28] a robust adaptive controller is

designed with adaptive neural networks. An adaptive fuzzy logic system [29] is

used to estimate the uncertainty of environment in wheeled mobile robot control.

The real time control is obtained by online tuning of the parameters of fuzzy logic

system. In [30] hierarchical fuzzy control is designed for autonomous navigation

of wheeled robots where the controller is decomposed into three fuzzy subsystems,

fuzzy steering, fuzzy linear velocity control and fuzzy angular velocity control where

each rule is constructed manually. Furthermore, the coupling effect between linear

and angular motion dynamics is considered in fuzzy steering by appropriate rules.

Meanwhile the research on non-holonomic robot model has attracted wide atten-

tion due to the fact that mobile robots always have motion constrains [31][32][33].

An appropriate model of the robot is a significant element to design a precise con-

troller. The kinematic model of the system alone is insufficient to describe the

system behavior [34][35]. The generalized non-holonomic kinematic and dynamic

models are specified in individual application cases. In [36] the dynamic model of

a wheeled inverted pendulum is analyzed from a controllability and feedback lin-

earizability points of view. A sliding-mode control method is proposed for mobile

3
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robots with kinematics in 2-D polar coordinates [37][38]. Some methods design the

steering controller directly from the spectral information [39][40].

Evolutionary computing, fuzzy computing and neurocomputing are catalogued

into Computational Intelligence, or soft computing. The soft computing techniques,

artificial neural networks (ANN), fuzzy logic (FL) and evolutionary algorithms

(EA), have been combined with robot control designs [41][42][43][44]. ANN and

FL act as identifiers in various areas [45], while EA shows its advantages in system

parameter optimization [46].

Tracking problem is one of the typical navigation problems, which has been

studied extensively in recent years [47][48][49][32]. In [28] wheeled robot tracking

controller is designed by adaptive neural networks, while in [50] Fuzzy logic is used

to design the robot controller.

Trajectory prediction is closely connected with trajectory tracking which has

been widely studied. In this work the particle filter is used to predict robot motion.

Particle filtering, a sequential important sampling algorithm, is widely used in

Bayesian tracking recursions for general nonlinear and non-Gaussian models [51].

In particle filtering, the target distribution is represented by a set of samples, called

particles, with associated importance weights which are propagated through time.

The target trajectory prediction is to estimate the state of the target of interest at

the current time and at a point in future.

Particle filters have been applied successfully in various state estimation prob-

lems [52][53]. Improved particle filter (IPF) is successfully applied in randomly

moving object tracking [49].

1.2.2 Evolutionary Algorithms

Evolutionary Algorithm (EA) [46][54][55] is a term used to describe a catalogue

of algorithms which are inspired by biological evolutionary processes in nature.

4
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The major EAs are: Genetic Algorithms, Evolutionary Programming, Evolution-

ary Strategies, Classifier Systems, and Genetic Programming. In these algorithms

the evolution procedures of species (selection, mutation, and reproduction), are

simulated in computational models to solve optimization problems in complicated

search space.

The main applications of EAs in robotic systems are along model structure

or parameter optimization. The optimization problems on mobile robots could be

path planning problems, trajectory planning problems and task planning problems.

In [56] an algorithm based on EA is utilized to learn safe navigation in multiple

robot systems. The robots shared information to speed up the learning process. As

well defined artificial potential could be integrated with EA for fast and efficient tra-

jectory searching mechanism [57]. Differential Evolution and Genetic Algorithms

are applied for the optimum design of fuzzy controllers for mobile robot trajectory

tracking [58]. Moreover, EA is programmed into the onboard software to learn

dynamic gaits of the entertainment robot AIBO by Sony [59].

1.2.3 Multi-Objective Evolutionary Algorithms

Many real world problems involve multiple measures of performance, or objectives,

which should be optimized simultaneously [60]. In certain cases, objective functions

may be optimized separately. However, suitable solutions to the overall problem

can seldom be found in this way. Optimal performance according to one objective

often implies unacceptable low performance in one or more of the other objective

dimensions, creating the need for a compromise to be reached. EAs have been

recognized to be possibly well-suited to multi-objective optimization since early in

their development. It is possible to search for multiple solutions in parallel, eventu-

ally taking advantage of any similarities available in the family of possible solutions

to the problem. Multiple Objective Evolutionary Algorithm has been proposed for

multi-objective optimization problems [61][62][63]. In [64] another multi-objective

combinatorial optimization algorithm other than MOEA was proposed to improve

5
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the global searching ability while maintaining the parallel computing ability.

There are several approaches in MOEA : Plain aggregating approaches, population-

based non-Pareto approaches, and Pareto-based approaches.

Plain aggregating approaches Optimize a combination of the objectives with

the advantage of producing a single compromise solution. In population-based

non-Pareto approaches each objective is effectively weighted proportionally to the

size of each sub-population and, more importantly, proportional to the inverse of

the average fitness (in terms of that objective) of the whole population at each gen-

eration. Pareto-based fitness assignment is a means of assigning equal probability

of reproduction to all non-dominated individuals in the population.

1.3 Work in the Thesis

A robot soccer system (RSS) is used in this work to test the algorithms. In Chapter

2 RSS is studied. The RSS integrates robotics, intelligent control and computer

technology. In the system robots moving inside a wooden field are controlled via

RF commands from a host computer. The information about the environment is

conceived by an overhead CCD camera. The mobile robots are 7.5cm cubic in

size and are capable of locomotion on a surface through the actuation of wheel

assemblies mounted on the robot and in contact with the surface. In Chapter

3, the kinematic and dynamic model of the soccer robot are analyzed for further

application in controller design.

In Chapter 4, an Adaptive Window based Electrostatic Potential Field (AW-

EPF) is proposed to bring down the computational time and to improve the real

time performance of the EPF with simple steps before solving for the maximal

current path. In the proposed AW-EPF, an effective window area is set according

to the current positions of the robot and target, and the obstacles that are in the

immediate vicinity are identified. The electrical potential is calculated with respect

to the effective window to determine a nearly optimal direction for the robot’s

6
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next travel log. The proposed approach is able to generate a shorter path. The

proposed approach, also partially solved a problem that the empty space between

two obstacles cannot be passed through even if the space is large enough for the

robot.

In Chapter 5, an APF based on Evolutionary optimization (EAPF) is built

to provide the guide forces to the robot avoiding collisions. The environment

data is converted to steering commands and the robot reacts directly by small

time expense without decision making. The workspace of robot soccer system is

placid and continuous with fixed bounds, and APF approach can be applied for

path-planning. EAPF is applied in a robot soccer system where the environment

changes dynamically. The input of the EAPF controller is the potential gradient

instead of the potential value and hence the involved computation is simple. Several

parameters are introduced to construct the artificial attractive and repulsive forces.

As path smoothness, safety and path length play roles in the evaluation of the

planned path, a multi-objective optimization algorithm is utilized to search for sub-

optimal solutions. With the help of MOEA, the proposed EAPF is implemented

on a robot soccer system.

In Chapter 6, the particle filter workframe is discussed and used in the mobile

robot trajectory prediction. Combing the prediction algorithm with the mobile

robot system management and path planning modules, the robot is able to chase

the target on a better scale.

Finally in Chapter 7, conclusions and suggestions on further research are pre-

sented.
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Chapter 2

Multiple Mobile Robotic System

Research in mobile robots has reached a level of maturity where robotic systems

can be expected to efficiently perform complex missions in real-world, and capable

teams of cooperative mobile robots could provide a valuable service in risk-intensive

environments. Through the distribution of computation, perception, and action, a

multiple robot team is more powerful [65].

Multiple mobile robot systems are more capable than a single robot in real-

world applications, for the reason that complicated missions with interdependencies

between the robots become feasible.

The issues associated with multiple mobile robot systems include motion plan-

ning, mission planning, and distributed tasks cooperation [66] [67] [68].

Path planning is one of the fundamental problems in mobile robots. In the

context of autonomous robots, path planning techniques are required to simultane-

ously solve two complementary tasks: minimize the length of the trajectory from

the starting position to the target position, and maximize the distance to obstacle

in order to minimize the risk of collision. The problem becomes harder in multiple

robot systems, since the size of state space of the robots grows exponentially with

the number of robots [12]. There are two categories of methods for multiple robots

motion planning: centralized approach in which the configuration spaces of the

8



individual robots are combined into one composite configuration space and then

a path is searched in the whole composite system, and the decoupled approach in

which the individual robot paths are determined and further possible collisions are

resolved.

There are different techniques that have been used in dynamic path planning.

In [69] a probabilistic model is used to estimate the risk of collision in a typical

office environment. In [70] an augmented Lagrangian decomposition and coordi-

nation technique based distributed route planning method is applied to minimize

the total transportation time without collision among automated guided vehicles in

semiconductor fabrication bays. To avoid conflicts, reactive navigation by collab-

orative resolution of multiple moving agents is proposed as a cooperative scheme

associated with real time robot parameters [71].

It is also considered to plan motion of robots one by one according to their

priorities in the system [65]. Complex trajectory planning problem is transformed

into path planning and velocity planning to reduce the complexity [72][73].

Formation methods of multiple mobile robot systems have been reported in

terms of cooperation. The first method is Behavior-Based Strategy [74]. This

approach places weightings on certain actions for each robot and the group dy-

namics emerge. The advantage of this strategy is that the group dynamics contain

formation feedback by coupling the weightings of the actions. The second one is

Multi-Agent System Strategy which applies a game theoretical approach to the de-

sign of closed-loop feedback laws [75][76][77] . Virtual Structure Strategy presents

a control scheme for improving multiple mobile robots in formation [78]. The ad-

vantage of this strategy is that it makes it easy to prescribe formation strategy,

with guaranteed stability, and to add robustness to the formation through the use

of group dynamics. The disadvantage of both strategies is the difficulty in con-

trolling mobile robots in formation with a decentralized system. Another one is

Leader-Following strategy [79][80]. The advantages of this strategy is that it is

easy to control multiple robots in a desired formation using only two, controllers
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2.1. Robot Soccer System Overview

and it is suitable for describing the formation of robots.

2.1 Robot Soccer System Overview

Robot Soccer System (RSS) is an intriguing multiple mobile robot system for re-

search and entertainment by providing a platform for distributed intelligence algo-

rithms as well as for competition. The idea of robotic soccer was published in early

1990’s [81], and the Robot World Cup Initiative (RoboCup) [82] and The Federa-

tion of International Robot-soccer Association (FIRA) [83] were estalished in mid

of 1990’s as major robot soccer league organizations. Robot soccer covers many

research topics such as mobile robot control, communication, image processing and

mechatronics.

The MiroSot system consists of mobile robots, a radio transceiver, a host com-

puter and a CCD camera (Figure 2.2) [84] [85] [86].

The aim of Robot Soccer Games is to inculcate in the general public an un-

derstanding and appreciation of robotics and automation; to educate the general

public on the things robots can do that are quite apart from industrial tasks; to

help in the technology development by providing benchmarks for practical robotics

research and development.

The target of the robot soccer system is to build a team of robots to play 3-a-side

(or more robots in a team) football against an opponent robot team. Each robot

soccer team shall setup a global vision system, which is above the football field,

to keep track of their robots’ and the ball positions. A host computer processes

the vision information and sends the motion commands to soccer robots through

radio frequency communication. The robot soccer designers have to take up the

challenges such as to identify their own robots, the ball, and the opponent robots

through the vision information, and to establish a reliable protocol for the radio

frequency communication. They also need to implement various strategies among

the team robots for attacking and defending, and to manage the fouls that comprise
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2.1. Robot Soccer System Overview

of free ball, penalty kick, goal kick, and free kick.

The soccer robot has driving mechanism, communication parts, and computa-

tional parts for velocity control and for processing the data received from the host

computer.

Robot Soccer System is an example of distributed robotic systems, which con-

sists of multiple robotic agents whose tasks are distributed. In a distributed sys-

tem, the agents may be robots, modules, computers, processors or sensors; for the

distributed characters, they could be multi-robot, distributed sensing, distributed

planning or control, cooperative control or shared autonomy [87]. Problems in RSS

include motion plan, path planning, cooperation strategies and so on. According

to the tasks and construction of RSS, a top-down analytic behavior based approach

is used to design the control software.

The robot soccer system in this work belongs to small league Micro-Robot

Soccer Tournament (MiroSot) of FIRA (Figure 2.1). Organized by FIRA, various

scales of MiroSot soccer competitions are held annually in different countries. In

the small league MiroSot rules, two teams of three robots each, start to goal against

the other team during two sessions of game time. The soccer field is black colored

wooden platform of 1.5m × 1.3m, and the ball color is orange. Once the game

starts, no human intervention is allowed until the referee’s whistle. MiroSot robots

are homogeneous because they share the same size, shape, and hardware structure.

The overall system structure is shown in Figure 2.3. In each control loop, the

camera captures the image of the field and sends the analogue frame signals to the

computer; the image signals are then converted into digital ones by the capture

card and processed by vision module of the system software. Information about

the robots is processed by the vision processing and becomes the input of the

system control module. After the behavior management and trajectory planning,

the commands to each robot are transmitted by the Radio communication module.
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2.1. Robot Soccer System Overview

Figure 2.1: Micro-Robot Soccer System (MiroSot)

Figure 2.2: Real Robot Soccer System
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Figure 2.3: Robot Soccer System overall structure

2.2 Mobile Robot Hardware

The mobile robots in a Micro Robot Soccer System are capable of moving on a

surface through the actuation of wheel assemblies mounted on the robot and in

contact with the surface. It is assumed there is no slip between the wheel and

surface. The wheel assembly provides or allows motion between its mount and

surface on which it is intended to have a single point of rolling contact. Here bi-

wheel type robot with independent motor control is utilized for robot soccer for

smooth motion. The robot appearance is shown in Figure 2.4 and the hardware

structure in Figure 2.7. In this work the host computer is a DELL GX260 (CPU

2.4GHz) with Windows/2000 platform and a Samsung CCD camera is used.

The robot developed in NUS is powered by a 7.2v battery and is embedded

with communication module, microprocessor, and power control unit (Figure 2.5).

The robot is symmetrical with a size of 7.5cm cubic and has a low center of gravity.

Low center of gravity results in high mobility in robot movement.

A Micro-controller chip (PIC16F67X) with flash memory, data memory and

13



2.2. Mobile Robot Hardware

Figure 2.4: Mobile Robots

Figure 2.5: Hardware construction

Figure 2.6: Radio transmitter circuit
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EEPROM is selected to process the RF signal and generate Pulse Width Modula-

tion (PWM) motor controls.

In RSS, communication is important to connect the host computer and robots.

The prime mode of communication is sending data from the host to the robot. A

transceiver receives the encoded data via serial port and broadcasts them to the

robots. The data is decoded into wheel controls by individual robots. To improve

the interaction ability, the robot communication module is bi-directional. The

transceiver module is a single frequency device and can be configured as a trans-

mitter or a receiver using two I/O ports from the micro-controller. Time-division

multiplexing (TDMA) is applied as delivery mode in RF. Control data for each

robot are combined into one string and each robot reads the allocated bytes from

the received string. A common protocol is applied to handle the communication

system, which consists of 21 bytes in each protocol string including preamble bytes,

lock byte, header, data, tail and checksum. Preamble bytes is to make sure that a

reliable data is received.

2.3 System Software

Robotic soccer is motivated by the human soccer competition and encouraged

by the inherent research potential on a wide range of topics, hence it is natural

to design the system software based on system behaviors. Behavior based robot

systems decompose complicated behaviors into layered simple behaviors [7]. The

flexible architecture of behaviors enables the system to improve system capabilities

by incorporation of new subsets of behaviors.

RSS is a multiagent robot system in which the robots share a common goal

with teammates against adversaries [88]. In a multiagent system, the behavior ar-

chitecture provides a framework for each agent to communicate with environment,

make decisions, and decompose the tasks. The entire structure should be in mind

at the time of creating the multiagent system. On the other hand, the structure

16



2.3. System Software

should be flexible for function changes and improvement.

RSS is a time-critical environment where the robots are assigned roles according

to the latest updated information. The process structure of the whole software is

shown in Figure 2.8. The game control interface is shown in Figure 2.9, which

is programmed in Visual C++. There are three functional modules in the whole

system:

• Perception module. It captures the image in vision memory and identifies

the objects on the playground.

• Game management module. It takes charge of behavior management and

trajectory planner.

• Communication module. It generates and transfers the commands via serial

port.

As the center of the software, game management architecture is illustrated in

Figure 2.10. From the information obtained through vision processing, the game

management module reads the current game (robot positions), decides the actions

for each robot, and sends the commands to the communication module. There are

three catalogues of behaviors designed in the control software to decompose the

complicated team tasks:

• Supervisory level behaviors: Event and Stragety supervision. Event supervi-

sion deals with the game events, such as game kick off, game over, free ball

and penalty, then sets the system inner status. Base on the robot position

information, Strategy supervision decides the team attitude, either attack or

defend.

• Basic robot behaviors: Robot basic behaviors are predefined movements with

direct targets (Table 2.3).

• Supplementary behaviors: These behaviors are relatively independent with

the public functions like path planning algorithms plug-in.
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Figure 2.9: Robot Soccer System control panel

Table 2.1: Frequently-used Behaviors

Basic Behaviors Function Note
DirestShoot Rush shoot for goal
SpinShoot Shoot by turning the body for goal
Goal area Attack Movement in Goal area
CleanBall Clean the ball out of home side
GetBall Close to get control to the ball
LineGuard Defense Stay along the dangerous line to protect
PushBallInDangerZone Push the ball out of penalty area
Escape From Goal Avoid to own goal only for Goalie
GuardByEstimation Protective patrol according to the ball po-

sition to
only for Goalie

ReturnGuardLine Back to guard line after running out of
penalty area

only for Goalie

AvoidBoundary Check if the movement is too close to the
boundary

for each robot
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The system decision-making starts from the top level of the whole system,

Event supervision and Strategy supervision. In each computing loop, they dispatch

the status to Role assignment, then the Striker, Defender, and Goalie roles are

sequentially assigned to each robot according to the team attitude and the robot

distribution. The final action of each robot is generated by the robot agent with

basic behaviors. Note that in this system the robot agents are homogeneous both

in software and in hardware. The individual robot object is generated from the

same generic classes.

2.4 Discussions

In this chapter, the Robot Soccer System and the individual robots are discussed.

The mobile robots are coordinated by the host computer through RF commands,

and the whole game management is implemented hierarchically.
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Chapter 3

Robot Modelling and Tracking

Controller Design

3.1 Introduction

In this chapter, the wheeled mobile robot, a nonholonomic robotic system, used is

discussed.

The research on control of nonholonomic systems has grown largely since last

century [89][90][12]. Nonholonomic systems commonly arise in finite dimensional

mechanical systems with constraints. Nonholonomic control systems have been

studied in the domains of robot manipulation, mobile robots, and space robotics

[91][92][93][31].

3.2 Wheeled-Robot Model

For a wheel mobile robot as shown in Figure 2.4, in 2-D space X-Y coordination

system, the nonholonomic constraint is,

ẏcosθ − ẋsinθ = 0 (3.1)
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Figure 3.1: Robot posture in X-Y Coordination system

It equals to



ẋ

ẏ

θ̇


 =




cosθ sinθ

sinθ cosθ

0 1





 ν

ω


 , (3.2)

or,

q̇ = S(q)ν(t) (3.3)

S(q) =




cosθ 0

sinθ 0

0 1


 , (3.4)

where (x, y) is the robot position in X-Y coordinates, θ denotes the robot orien-

tation, posture q = [x, y, θ]T , ν(t) = [ν, ω]T. Since the mass center and geometric

center of the robot are identical, d = 0.

Driven by DC motor with Pulse Width Modulation (PWM), the dynamic model

of the mobile robot is deduced in the following. For a DC motor, the torque τm

is determined by the effective moment of inertia Jm and the angular velocity of

the shaft ω̇m, and in a relation with motor torque constant Km and the current

supplied to the armature i at the same time, as

τm = Jmω̇m = Kmi. (3.5)
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3.2. Wheeled-Robot Model

A gear ratio of Kg reduces the rpm of DC motor to drive the wheel at higher torque

τl, with effective moment of inertia Jl at the wheel axle and angular velocity ωl,

τl = Jlω̇l = Kgiτm (3.6)

Replacing τm with (3.5), we get

ωl =
1

Kg

ωm (3.7)

which is equivalent to,

ω̇l =
1

Kg

ω̇m (3.8)

τl = Jlω̇l = KgJmω̇m. (3.9)

Replacing ωl with (3.7), we get

Jl = K2
gJm. (3.10)

According to Kirchhoff’s Voltage Law, the voltage vin is

vin = iRa + eb = iRa + Kmωm (3.11)

where Ra is armature resistance and eb is back-emf induced in the armature which

can be expressed by angular velocity ωm and motor constant Km,

vin =
Jmω̇mRa

Km

+ Kmωm (3.12)

ω̇l = −K2
mK2

g

JlRa

ωl +
KmKg

JlRa

ωlvin (3.13)

There is a linear relationship between the duty cycle and the average output voltage

level [94][95],

vin = βµ, (3.14)

where µ is the control signal corresponding to the duty cycle, and β is a propor-

tionality constant. Hence,

ω̇l = −K2
mK2

g

JlRa

ωl +
KmKgβ

JlRa

ωlµ. (3.15)
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3.2. Wheeled-Robot Model

Let k1 =
K2

mK2
g

JlRa
and k2 = KmKgβ

JlRa
, then (3.15) can be rewritten as

ω̇l = −k1ωl + k2v. (3.16)

The relationship among the robot linear velocity ν, angular velocity ω and wheel

speeds (νleft, νright) is,

ν =
νright + νleft

2
, (3.17)

ω =
νright − νleft

L
. (3.18)

By Newton’s Second Law of Motion,

ν̇ =
fright + fleft

m
=

τright + τleft

mr
(3.19)

where r is the wheel radius. Replace the torques with (3.6), and using (3.17),

ν̇right + ν̇left =
2Jm(ω̇right + ω̇right)

mr
(3.20)

The total torque τ in relation with forces on wheels (fleft, fright) is

τ =
L

2
(fright − fleft) =

L

2r
(τright − τleft) (3.21)

According to (3.5), (3.21) can be written as

Iω̇ =
L

2r
Jm(ω̇right − ω̇right) (3.22)

where I is the moment of inertia, hence,

ω̇ =
L

2Ir
Jm(ω̇right − ω̇right), (3.23)

ν̇right − ν̇right =
L2

2Ir
Jm(ω̇right − ω̇right). (3.24)

Let v =


 νleft

νright


, and u =


 µleft

µright


. Combining (3.20) and (3.24),

v̇ =


 ν̇left

ν̇right


 = H ·


 ω̇left

ω̇right


 , (3.25)
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where

H =




Jl

mr
+ L2Jl

4Ir
Jl

mr
− L2Jl

4Ir

Jl

mr
− L2Jl

4Ir
Jl

mr
+ L2Jl

4Ir


 . (3.26)

Substituting (3.16) into (3.25),

v̇ = K1v + K2u, (3.27)

where K1 = −k1H and K2 = k2H. With the robot specifications: r = 0.022m,

Ra = 1.94, m = 0.650kg, Kg = 9.68, Km = 6.92e−3Nm/A, Jm = 2.7e−7Kgm2,

L = 0.075m, we get,

K1 =


 −18.3799 3.6760

3.6760 −18.3799


, K2 =


 0.2158 −4.32

−4.32 21.58


.
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Figure 3.2: Robot response to different command inputs.

Once the robot speed becomes constant, v̇ = 0, and,

K1v + K2u = 0 (3.28)

Assuming G = −K−1
1 K2,

v = Gu (3.29)
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G acts as a gain of input controls to the final wheel speeds. With the condition

that the motors are designed symmetrically and the wheel motors are decoupled,

G is a diagonal matrix. The relationship between the input and the output speed

for each wheel is simulated as,

v = gEu, (3.30)

where E is the unit matrix, g ≈ 1.7 according to specifications provided earlier.

The simplified robot model is used to develop a game simulator to test the

strategies and algorithms in small time load without damage on the real results.

From Figure 3.2 we can see that it takes less than 0.4sec to reach the desired

speeds with a 0.04sec time interval, i.e. within 10 run cycles the robot can reach

the desired speed.

3.3 Tracking Controller

The proposed approach to generate commands for desired motion is verified in

simulation and experiment. For target tracking problem, a heuristic fuzzy based

method in a similar robot system, where fuzzy rule gains are tuned manually [50].

A sliding mode control for wheeled mobile robots is proposed in [32].

To generate the control command u for the robot, an auxiliary velocity signal

v∗ is considered [48],

v∗ =


 νtar cos e3 + a1e1

ωtar + a2νtare2 + a3νtar sin e3


 (3.31)

where νtar, ωtar is the target object velocity and angular velocity respectively, and




e1

e2

e3


 =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1







xtar − x

ytar − y

θtar − θ


 (3.32)

where a1, a2, and a3 are positive constants and are optimized by EA to get accept-

able performance. By (3.32), the errors between the robot and target in workspace
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coordinates (Figure 3.1) are transformed to an error posture based on robot local

coordinates. For example, when the target is ahead of the robot, e1 > 0; when the

target is behind of the robot, e1 < 0.

From (3.31), ν is associated with the heading angle error (θtar−θ), target veloc-

ity νtar and the distance error along the robot orientation e1, while ω is generated

by the errors of the heading angle and angular velocity ωtar, and distance error

along the perpendicular to the robot orientation e2.

The command signal to achieve the auxiliary velocity v∗ is u∗ which satisfies

(3.33).

K2u
∗ = K1v + v̇∗ − keev (3.33)

where ke is positive constant, ev = v̇ − v̇∗, is the error between the desired

velocity and robot velocity. Substituting (3.33) into (3.27), we get,

v̇ = v̇∗ − keev, (3.34)

ėv = −keev. (3.35)

(3.36)

Since ke is a positive constant, limt=+∞(ev) = 0.

Hence the desired control signal u∗ is

u∗ = −K−1
2 K1v + K−1

2 v̇∗ − keK
−1
2 ev (3.37)

3.4 Simulation Results

The command generation method is tested for line path following and curve path

following. In Figure 3.3, the robot moves from an initial position (0.1, 0.13)m,

with initial speed 0, catches up with the moving ball initiated from (0.27, 0.28)m

with speed 0.8m/sec within 1 sec. The commands to left and right wheels rise

to nearly maximum at the start, and converge to the target velocity rapidly with
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stable distance to the target (Figure 3.6). Considering its size, the robot is closer

to the target. When the target moves with sharp turning (Figure 3.7), the robot

starts from the initial position (0.1, 0.13)m, with an initial speed of 0, follows up

with the randomly moving ball initiated from (0.27, 0.28)m within 1 sec. The robot

makes a similar trajectory as the target. The distance between the robot and target

decreases to 0.06m, considering the sizes of the robot and ball, the robot moves to

the target.
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Figure 3.3: Robot following a line.

3.5 Experimental Results

The robot shown in Figure 2.4 is used in the experiments. The specifications

are: r = 0.022m, Ra = 1.94, m = 0.650kg, Kg = 9.68, Km = 6.92e−3Nm/A,

Jm = 2.7e−7Kgm2, L = 0.075m.

In Figure 3.9, the robot follows the ball and kicks it from of danger area. In

Figure 3.10, the robot follows the robot with ball and intercepts it when closes to the

goal area. Assuming Robot1 is in team defence, it starts from the down left position
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of the field, to block opponent team member Robot2 attacking from the up left

position of the field. Robot1 succeeds blocking Robot2 at the interception position

noted as in the figure and avoids the opponent attack attempt. In Figure 3.11,

starting from the left side of the field, Robot1 runs longer to block the opponent

Robot2 attacking along the boundary direction.

Figure 3.9: Robot blocking possible shoot

3.6 Discussions

In this chapter, the kinematic and dynamic model of the wheeled-robot used in RSS.

The experimental results show the practicality of the specified models obtained

from the non-holonomic general expressions.
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Figure 3.11: Robot blocking the opponent (case 2)
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Chapter 4

Electrostatic Potential Field

Based Path Planning

4.1 Introduction

In this chapter, structured from physical potential fields directly, Electrostatic Po-

tential Field (EPF) is discussed as a Potential Field approach in path planning.

Kimon proposed the EPF [96] for indoor autonomous robot navigation in 2-D

space. With no prior information about the environment, an occupancy map is

established by sensor models in real time and converted into a resistor matrix. The

electrical potential is calculated by Kirchhoff Current Law on the assumption that a

robot is a current source and a target absorbs all the current. As a result, the point

where the robot is positioned has the highest potential and the target the lowest.

The mobile robot path is the maximal current path in a sheet of conductance

networks mapped from the environment occupancy situation. EPF is proved to

have a sole minimal at the sink point by classical electrostatic laws according to

the potential function criteria suggested by Elon Rimon [97]. Therefore EPF is a

local-minimal free navigation function. Smaller cell sizes result in better resolution

of the path as the robot path is a connection of cells.
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EPF is a basic navigation methodology and can be combined with other tech-

niques. EPF is combined with Fuzzy Logic (FL) to fuse the sensor readings and

predict possible collisions [98]. A two-layer FL inference engine is suggested in [98]

to process the sonar sensor readings and guarantee collision avoidance. Once the

detection module detects high collision possibility, the path is updated.

The main disadvantage of EPF is the associated high computational require-

ment. In the EPF method, for a stationary environment, the robot path would

remain unaltered throughout. In a dynamic system, it is preferable for the robot

to react promptly to avoid dangers. Unfortunately the computing speed of most

mobile robot systems is not that fast enough and it is reasonable to formulate

ways to reduce the computing time. EPF’s computational requirement would in-

crease tremendously with increase in the map resolution. Algorithms are required

to tackle the issue associated with the computational requirement.

In this chapter, an Adaptive Window based EPF (AW-EPF) is proposed to

bring down the computational time and to improve the real time performance of

the EPF. In the proposed AW-EPF, an effective window area is set according to

the current positions of the robot and the target. The obstacles in the immediate

vicinity of the robot are identified. The electrical potential is calculated with

respect to the effective window to determine a nearly optimal direction for the

robot’s next travel log. The proposed approach is able to generate a shorter path.

The proposed approach, also partially solved a problem associated that the empty

space between two obstacles which generally cannot be passed through even if the

space is large enough for the robot.

The AW-EPF path planner instructs the path direction on spot and generates

the robot direction for the following step. As the complete path is not generated in a

single iteration, the navigation efficiency is improved, especially if the environment

is dynamic.

AW-EPF is implemented in a Robot Soccer System. The robots are controlled

to move inside a wooden field via RF commands from a host computer. The
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information of the environment is conceived by a video camera placed over the

field. In the mapping from the environment to the resistor network, the obstacle

cells are assigned with high resistance instead of treating the cells as open circuits

to simplify the implementation. The experimental results show that the AW-EPF

can reduce computations and is able to generate shorter paths.

4.2 Electrostatic Potential Field Construction

It is proved that the unique solution to a resistor network system is equivalent to

minimizing the instantaneous power consumed by the network and to identify a

maximum current path that follows the path of least resistance [96]. The EPF is

a natural potential field approach developed from the theories of electrostatics. In

EPF approach, the navigation problem is to find the maximal current flow within

a resistor network. The maximal current path is taken as the optimal path for the

robot to follow.

The expression for electric field in terms of the applied voltage can be expressed

in gradient from [99] as,

E = −∇V. (4.1)

The total of the electric flux out of a closed surface is equal to the charge

enclosed divided by the permittivity of free space. It is often convenient to construct

an imaginary surface, a Gaussian surface, to take advantage of the symmetry in

the physical situation. The electric flux through an area is defined as the electric

field multiplied by the area of the surface projected in a plane perpendicular to

the field. By Gauss’s Law, the divergence of the electric field at a point in space is

equal to the charge density ρ divided by the permittivity of free space ε0.

∇ · E =
ρ

ε0

(4.2)

Therefore by Poisson’s equation the potential is related to the charge density.

∇ · ∇V = ∇2V = − ρ

ε0

(4.3)
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In a charge-free region of space, (4.3) becomes the LaPlace’s equation (4.4).

∇2V = 0 (4.4)

From (4.4), it is inferred that there is no local minima in the electrostatic potential

field.

To calculate the potential, Kirchhoff’s Current Law (KCL) is applied. This

fundamental law results from the conservation of charges. The current I is the

total outward flux through the surface S is,

I = − d

dt

∫

V

ρ · dv. (4.5)

The total charge flowing into a node must be the same as the total charge flowing

out of that node. In the mapping from the environment to a resistor network, the

robot node is the external current source and the target node is the sink.

For a resistor system of N = n× n nodes, the current from the kth node to the

jth node, ikj is calculated by (4.6).

ikj = Gkj(vk − vj) (4.6)

where Gkj is the conductance of the branch connected between nodes k and j, vk

and vj are the voltages of the two nodes respectively. From (4.6) a general equation

is derived,

GN×N · VN = JN . (4.7)

VN is the potential value matrix, GN×N is the admittance matrix and JN is current

matrix [100]. GN×N = [gjk]N is formed such that gkk is equal to the sum of all the

conductances connected to node k and gkj is equal to the negative sum of all the

conductances connected between the nodes k and j. The potential value matrix

VN then can be calculated by (4.8).

VN = G−1
N×N · JN (4.8)

However, it is not practical to calculate G−1 when the matrix order is usually higher

than 20 in real life applications. The Gause Jordan Elimination (GJE) method is
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applied in this work to calculate the potential V . Initially an augmented matrix,

A (4.9) is formed by G and J .

A = [G J ] =




g11 g12 g13 .. g1N i1

g21 g22 g23 .. g2N i2

g31 g32 g33 .. g3N i3

.. .. .. .. .. ..

gN1 gN2 gN3 .. gNN iN




(4.9)

The row reduction is performed until a nearly non-zero diagonal matrix is derived.

A = [G
′
J
′
] =




g′11 g′12 g′13 .. g′1N i′1

0 g′22 g′23 .. g′2N i′2

0 0 g′33 .. g′3N i′3

.. .. .. .. .. ..

0 0 0 .. g′NN i′N




(4.10)

The equation (4.7) can be written as in (4.11).

G′ · V = J ′, (4.11)

where the potential V can be obtained easily.

In the electrical network, the target is considered as the sink, the navigated

robot as the source and obstacles around as high value resistors (Figure 4.1). Free

spaces are occupied by low value resistors. The electrostatic potential field created

through a discrete network of linear passive resistors is free of all local minima

except at the external sources or sinks [96]. The procedure to find an optimal

path is to map the workspace to a sheet of resistive network and then to solve the

electrostatic matrix to obtain the potential values. For other application domains,

the EPF approach can be combined with specific features to obtain satisfactory

results.

The EPF is associated with complex matrix calculations and it is critical to

reduce the computing time for real time application. No matter the ways to solve

the matrix equation, the computational complexity of EPF is O(N) [96], where N is
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Figure 4.1: In the electrical network, the target is considered as the sink point,
the navigated robot as the source and obstacles around as high value resistors, free
spaces are occupied by low value resistors.
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Table 4.1: Effects of grid size
Grid size Computing time (s) Run iterations

7x7 0.03 20
9x9 0.12 22

10x10 0.17 28

the number of polygons in the space. The effects of cell numbers on the trajectories

are shown by simulation results by comparing the robot trajectories with different

grid numbers in the same situation (Figure 4.2). In the simulation, the robot

starts from the bottom of the field to the Target on the upper position, avoiding

the Obstacle just below the Target. By Figure 4.2 (a), (b) and (c), the trajectories

with the grid number 7x7, 9x9, and 10x10 are illustrated respectively, and their

computing time for EPF per loop and total run iterations listed in Table 4.1. When

the grid size increases to 9x9 from 7x7, the computing time on EPF becomes

four times of the previous one. lIt is clear that the computing time increasing

dramatically with the higher resolution.

As the computation expense increases largely with the number of cells in the

work space, which in turn affects the real time performance seriously, an adaptive

window with a fixed grid number would improve the resolution without increase in

computational burden.

4.3 Adaptive Window based EPF(AW-EPF)

An adaptive window based EPF (AW-EPF) is proposed to bring down the compu-

tational burden (Figure 4.3). The steps involved in the AW-EPF approach are: a)

set an effective window according to the positions of robot and target, b) identify

obstacles inside the effective window, c) convert the workspace to a resistive net-

work, d) solve the network matrix and f) identify the maximal current direction as

the robot travel direction. The cells of resistors (Figure 4.1) are all square-shaped

in a 2-D space. The resistor values occupied by obstacles are set to a high value.
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Figure 4.2: Trajectories with different cell numbers
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In AW-EPF, the effective area is a window that moves along with the robot

and target. Only the obstacles closer to the robot within a specific circular area

are considered as valid obstacles. These two features of the AW-EPF reduce the

computational burden.

Set adaptive window

Identify valid

obstacles
Solve network

Map window to

resistor network

Generate travel

direction

Control robot

movement

Processed

Robot information

Commands

to motors

Figure 4.3: Robot information is filtered by the adaptive windows to reduce the
computing, then resistor network is mapped and used to navigate the robot move-
ment.

An adaptive window (rectangular frame in Figure 4.4) of constant number of

cells is proposed to cut down the computational expense without resolution loss.

In Figure 4.4) (a), Obstacle1 is ignored because it is beyond the space between the

robot and target; Obstacle3 is also ignored because it is distant for robot current

position; Only Obstacle2 is treated as obstacle in this situation; in Figure 4.4) (b)

Obstacle1 is ignored because it is beyond the space between the robot and target;

Obstacle2 and obstacle3 are both treated as obstacles in this situation.

Since the focus of navigation is the space between the robot and the target, the

adaptive window boundary is determined by the positions of the target and the

robot. When the robot is closer to the target the window size is decreased and

with the number of cells within the window remain unchanged, the resolution is
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increased. This is beneficial as the path would be more critical when the robot is

closer to the target. The effective area window is adaptive in terms that the window

size changes at each update iteration according to the positions of the robot and

the target. With the adaptive window, the path could be more precise with the

same computing time by sacrificing less important areas, and so the resolution of

the space is higher without an increase in computational time.

Meanwhile, by eliminating the distant obstacles it may help to keep the robot

path direct as long as possible which in turn shortens the path as shown in Fig-

ure 4.5. In the artificial potential field, an obstacle would influence the shape of

potential distribution and block the robot to pass around in facing direction. It is

natural that an obstacle which is away from the robot could be ignored temporarily

in path planning to reduce the computation and to make the path smoother.

The obstacles outside a circle of five times of the robot size are not valid for

the potential construction (the circle at top left part of Figure 4.4). The robot size

unit is the radius of robot circumcircle. Moreover, if two obstacles are far away

by distance of three times of robot size, the farthest obstacle with respect to the

robot is not considered while planning the path. By this method, the path would

be more direct. The path differences for such situations are illustrated in Figure

4.5. The robot starts from the top circle position, avoids the rectangular obstacles

and reaches the bottom target circle. Removing the less dangerous obstacles is

valuable to partially resolve the problem associated with potential field approaches

that the robot may not pass through two obstacles even when the empty space in

between is large enough for the robot to pass (Figure 4.5).

From the potential distribution (Figures 4.6 to 4.8), it is observed that the ob-

stacles block the current through it and the potential around the obstacles become

higher. It is observed that the AW-EPF based potential field is smoother than the

EPF based potential.
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Figure 4.4: Examples of Adaptive Window work policy
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(a)

(b)

Figure 4.5: Simulated paths comparison (2 stationary obstacles), (a)In EPF-based
approach, the robot chooses a outside path to avoid both obstacles; (b) In AW-EPF-
based approach, the robot passes between the obstacles with shorter pathlength.
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4.4 Experimental Results

The proposed path planner is verified on a multi-robot Soccer System (Chapter 2).

The AW-EPF path planner built-in with the robot motion controller in the

host computer enabled the robot to avoid other robots on its way to the target

(ball). The robot’s positions in the field are identified from the updated vision

frame of an overhead camera. The experimental results show that AW-EFP is

good as a navigation method for mobile robots for short and quick paths. For

different scenarios (Figure 4.9-4.12), the generated paths are more direct with a

shorter path and running time. The records are taken from monitor screen, where

the main background is the wooden playground.

In Figure 4.9, one robot (Robot 1) is trying to avoid collision with another

(Robot 2) to reach the target ball. When the robot closes in to the target, the

resolution becomes higher resulting in a smoother path. The rectangular dotted

frame in Figure 4.9 on the right is the effective boundary area at the current frame.

The window moves and its size changes with respect to the robot motion. With

more obstacles, similar results are observed. Especially with 2 obstacles (Figure

4.10), the robot ran through the empty space between the obstacles with the AW-

EPF navigation. This result demonstrates an important advantage of AW-EPF

in overcoming the ’misleading’ repulsive forces in empty space between adjacent

obstacles.

The robot followed a shorter path when the obstacles are moving as shown in

the following experiments. In Figure 4.11, the robot will move to right of the ball

through a stationary Obstacle1 and a straight-line moving Obstacle2 which starts

from the upper center of the field. As the trails drown on the fields, the robot with

AW-EPF (the lower figure) avoided the obstacle with a smoother path to reach the

target ball. In Figure 4.12, Obstacle1 and Obstacle2 are both moving in opposite

directions, and the robot with AW-EPF also passes the barriers smoother (the

lower figure). It is noted that AW-EPF has better performance happens in cases
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Figure 4.6: Simulated potential comparison (Initial position)
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Figure 4.7: Simulated potential comparison (Intermediate I)
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Figure 4.8: Potential comparison (Intermediate II)
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Table 4.2: AW-EPF time illustration
Case Loop time (ms) Run time (s)

EPF AW-EPF EPF AW-EPF Improvement
case1 228 83 16.2 8.4 48%
case2 203 142 13.6 5.0 63%
case3 234 147 9.96 7.95 20%
case4 229 108 12.93 10.7 17%

the obstacles move away from the robot movement direction, and there might be

risks when the obstacles running fast into the robot way.

The path is quicker in terms of the running time for each session (Table 4.2)

and AW-EPF reduced the run time. It is possible to illustrate the time saved with

the help of typical scenarios. The process loop time and whole run time are both

decreased considerably. The main reason for this is that the number of cells in

AW-EPF is less. Secondly the less important obstacles are ignored depending on

the prevailing scenarios.

The most notable improvement in performance is in the one-stationary-obstacle

scenario (Figure 4.9). The running time reduces to half of the original and the loop

time reduces when the obstacle is not taken into account. The run time is reduced

in different ratios depending on the numbers of obstacles and their positions.

AW-EPF works well as a navigator in mobile robot system to generate smoother

and shorter collision free paths. The AW can be applied to other path planning

methods as well.

4.5 Discussions

From the experiments, it is observed that AW-EPF with adaptive ability can gen-

erate shorter and smoother paths for mobile robots. A path generator with more

intelligence handles various cases in real time.
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EPF-based path

AW-EPF-based path

Figure 4.9: Case 1: Paths comparison (1 stationary obstacle)
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EPF-based path

AW-EPF-based path

Figure 4.10: Case 2: Paths comparison (2 stationary obstacles)
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EPF-based path

AW-EPF-based path

Figure 4.11: Case 3: Paths comparison (moving obstacle)
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EPF-based path

AW-EPF-based path

Figure 4.12: Case 4: Paths comparison (two moving obstacles)
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Since the EPF approach generates a global path and is proved local minimal

free in a bounded environment, AW-EPF inherits its properties within the adaptive

window coverage. To study the generality of AW-EPF, consider the situations when

a speedy or unforeseen obstacle suddenly appears around the moving robot, which

could happen if the window does not cover the whole work space. If an obstacle is

running towards the target in high speed from far away, the AW-EPF ignores the

obstacle observed earlier and takes it into account when the obstacle is already quite

closer to the target. As in Figure 4.13, a moving interference Obstacle2 is placed

round the robot after the robot begins move to the Target, avoiding a stationary

Obstacle1. The path curves more for the faster obstacle in (c) comparing the paths

in (b) with a slow obstacle and the one with no interference. It is implicated that

AW-EPF could react to the dynamic environment promptly with a high system

refresh rate and to compensate the possible global information inefficiency.

To apply this navigation method in real time with less computation and higher

resolution, the adaptive window functions as a subspace of the whole field ground

for the robot.
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Figure 4.13: AW-EPF performances on unforeseen obstacles
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Chapter 5

Evolutionary Artificial Potential

Field Based Path Planning

Simple and effective navigation methodologies play important roles in mobile ro-

bot systems providing fast adaptive control in dynamic environments. Among

these methodologies, the Artificial Potential Field (APF) approach is an effec-

tive and convenient path-planning method inspired from physical potential fields

[16][3][101][102][103]. By combining its elegant form with other heuristic algo-

rithms, the APF can be utilized effectively for path planning [18].

In this chapter, an Evolutionary Artificial Potential Field (EAPF) approach is

proposed for multiple mobile robot real-time path planning. EAPF is an Artificial

Potential Field approach which utilizes Evolutionary Algorithms to optimize the

associated parameters where an artificial potential field is constructed based on the

distribution of the target and obstacles. The repulsive forces from the obstacles

and the attractive force towards the target drive the robot around the obstacle

while moving towards the target.

To develop a more efficient potential field, the parameters of the proposed Ar-

tificial Potential Field need to be optimized. The Multi-objective Evolutionary

Algorithm (MOEA) [60][61] is utilized for this purpose, as it provides a way to
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obtain nearly optimal results in complex search spaces. The proposed approach

is implemented in real-time for mobile robot path planning within a micro-robot

soccer setup.

In the later section of this chapter, the experimental results with the multiple

mobile robot system show that EAPF is a simple and effective approach for real

time mobile robot path-planning.

5.1 Artificial Potential Field

Besides the logic-and-rules based traditional AI approaches, another direction in

path planning is the Artificial Potential Field (APF) [97] approach which is flexible

and simple to implement. APF approach is inspired from the physical potential

fields. Different APFs have been suggested in various application domains from

mobile robots, manipulators, and sensor networks [104][105][26][106]. For instance,

APF based on heat resistance [107] and electrostatic field [96] are capable of gen-

erating the paths for robots in indoor environments. Fractional potential field was

also introduced to robot path planning [108]. APF has been also successfully ap-

plied in walking robots [109] and in multiple robot environments [110][111]. In [112]

the Potential Field approach is utilized for strategy decision making in cooperative

robotics.

In [113] a potential field-based cooperative motion planning of a team of semi-

autonomous robots is presented in an unknown environment. Gaussian functions

are chosen to model the objects and the navigation function is changed with sensor

data update. Researchers have developed the APF concept and utilized it for

multi-robot coordination [114][115].

The main issue associated with the potential field is the local minima problem.

At the local minimum position, the gradient of the potential is zero resulting in a

null force input to the robot. Random policy [19] or specific designed strategies

[116][117][21][118] can overcome the local minima. However some of the methods
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either require a workspace without restrictions on the direction of motion, or that

the algorithms are too complicated. In this work an escape force is constructed to

the potential field to push the robot away from a local minima. An obstacle filter

is designed to simplify the associated processing and to overcome the convex trap

formed by obstacles.

In APF, the target and obstacles are assumed to radiate energy potential and

the total potential field motivates the robot to the target point which has a lower

potential. Usually only the potential generated by the objects in the work space is

considered, avoiding the complicated algorithms or rules in path planning. By uti-

lizing appropriate potential field functions, the potential field provides appropriate

force to the robot to reach the target safely.

In this work, an APF based on Evolutionary optimization (EAPF) is built to

provide the guide forces to the robot along a collision free path in real time. Several

parameters are introduced to construct the artificial attractive and repulsive forces

and optimized by MOEA.

As path smoothness, safety and path length play roles in the evaluation of the

planned path, a multi-objective optimization algorithm is utilized to search for

sub-optimal solutions. The details on MOEA is presented in section 5.4.

With the help of MOEA, the proposed EAPF is implemented on a robot soccer

system. The workspace of robot soccer system is placid and continuous with fixed

bounds, and APF approach can be applied for path-planning.

This chapter is organized as follows. The EAPF functions and the fitness func-

tion are presented in Section 5.2. Simulation and experimental results are included

in Sections 5.5 and 5.6. Conclusion and future research direction are provided in

Section 5.8.
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5.2 Evolutionary Artificial Potential Field

In the Artificial Potential Field method, an obstacle is considered as a point of

higher potential, and the target as a point of lowest potential.

The 2-D space (S) under-consideration is represented by a Cartesian coordinate

system (Figure 5.2). Each point (x, y) in S is represented by vector P . Let P T ,

PR and PO represent the vectors pointing from the origin (0,0) to the Target, the

Robot, and the Obstacle respectively. Given a target (xT , yT ) and an obstacle

(xO, yO), the robot is attracted by an attractive force F a towards the target and

repelled by a repulsive force F r from an obstacle. The total force F total is the

geometric sum of the attractive and repulsive forces.

G

Robot 1

Robot 2
(obstacle)

Figure 5.1: Forces in Artificial Potential Field

The attractive force F a and repulsive force F r are defined in (5.3) and (5.4).

The magnitude of the attractive force F a is defined as inversely proportional to the

distance (DTR) from the robot to the target, while the magnitude of the repulsive

force F r is inversely proportional to exponent of the distance (DORi
) between the
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Figure 5.3: Artificial potential field distribution
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robot and obstacle, where i is the index of obstacles. The radii of the robots, ob-

stacles and the ball (rR, rO and rB) are considered in the potential field generation.

The sum of the radii of the robot and ball/obstacle is subtracted from the distance

between the robot and the ball/obstacle in calculating DOR (5.1) and DTR (5.2).

The angles of the forces are defined between −π and π. p and n in (5.4) are

positive parameters to optimize. For definite j obstacles in S, F r is the geometric

sum of all the repulsive force vectors.

DTR = ‖P T − PR‖ − (rR + rB), (5.1)

DOR = ‖PR − POi‖ − (rR + rO), (5.2)

F a = D−1
TR∠(P T − PR), (5.3)

F r =

j∑
i=1

(pDORi
)−n∠(POi

− PR), (5.4)

F total = F a + F r. (5.5)

The robot orientation is important in control implementation. Taking the head-

ing factor into the force functions, the attractive and repulsive forces then become:

F a = (DTR)−1(1 +
∆θa

2π
)∠(P T − PR), (5.6)

F r = (pDOR)−n(1 +
∆θr

2π
)∠(PO − PR). (5.7)

where, ∆θa is the error between the robot orientation and the attractive force

direction. The force is enforced by (1 + ∆θa

2π
) when the robot is not facing the

right direction. Similar modification on the repulsive force is brought out with ∆θr

which is the error between the robot orientation and the repulsive force direction.

When the attractive and repulsive forces balance out, the robot is trapped

in local minimum. To avoid this, an escape force F e (5.8) is utilized [20], when

‖F a‖−‖F r‖
‖F r‖ < b and cos(∠F a − ∠F r) < − cos(c), where b, c, d and m are positive

parameters.

‖F e‖ =
1

dDm
RO

(
∣∣∣ cos(∠F a − ∠F r)− cos(c)

∣∣∣) (5.8)
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In this work, the repulsive force is taken into account in the definition of the

escape force (5.9) (5.10). when ‖F a‖−‖F r‖
‖F r‖ < b and |∠F a − ∠F r| < π/m, where

b and m are positive integer variables to optimize, and π/m refers to a certain

radian. Hence when the robot begins to enter a possible local-minimal area where

the force sum is close to zero, the escape force is triggered to pull the robot out

of the trap. The condition to apply an escape force is defined from the magnitude

relationship of the attractive force and the repulsive force by b and from their

direction relationship by m.

‖F e‖ = ‖F r‖
∣∣∣ cos(∠F a − ∠F r − π)− cos(π/m)

∣∣∣ (5.9)

∠F e =





∠F r + π/2 if sin(∠F a − ∠F r) > 0

∠F r − π/2 otherwise
(5.10)

Figure 5.4: Escape force direction determination

When the difference in the attractive and repulsive force angles is less than π/m,

falling within a narrow part between the dashed lines in Figure 5.4, the geometric

sum of the forces is possible to be close to zero and the potential force might be

too small to command the robot to move. The escape force is larger when the

difference in the attractive and repulsive force angles is closer to π/m.
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5.3. EAPF Parameter Analysis

The magnitude of the escape force is proportional to the magnitude of the

repulsive force and the escape force is large enough to push the robot away from the

nearly local minimum position. In the proposed escape force definition, the number

of parameters to optimize is reduced from 4 in [20] to 2. In [20], the direction of

the escape force is not clearly defined, while the direction of the proposed escape

force is provided by (5.10). ∠F e is designed perpendicular to the repulsive force

so that the escape force enables the robot to move away from the local minimum

swiftly to leave the potential trap, and the positive projection on the direction

to the target helps the robot to follow a right direction in movement. The total

potential force F total is the geographic addition of attractive force, repulsive force

and escape force,

F total = F a + F r + F e. (5.11)

Hence there are 4 parameters to be optimized from (5.7),(5.9), (5.10): p, n in

the repulsive force and, b, m in the escape force. These parameters determine the

distribution of the artificial potential field and affects the robot’s path in terms

of force magnitude. The values of these parameters are crucial in improving the

performance of the path planning algorithm. Since the search space of the parame-

ters is large and it is difficult to find an ideal theoretical solution for this problem,

Evolutionary Algorithm is utilized for the parameter optimization.

5.3 EAPF Parameter Analysis

Obviously the parameters involved in potential field configuration affect the field

layout. In a simulation setup the effect of various parameters associated with EAPF

are studied.

The robot paths for different values of p within the range [0.1, 0.5] are depicted

in Figure 5.5 to Figure 5.8. Stationary robots of the same size are the two obstacles

nearby.

With the increase of p, the repulsive force from obstacles decrease exponentially,
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5.3. EAPF Parameter Analysis

i.e. the field surface became more smooth. The augment of n has a similar function,

with a decrease in the repulsive force. As result, the robot follows a path which

can be closer the obstacles.

A smaller p (Figure 5.11) resulted in a larger repulsive force, making the robot

path longer. However, when p increases, the parameter’s influence fades as the

repulsive force diminished to a large extend. For the p parameter, the curvature of

the path increases with decreasing of p, while the repulsive force increases. However,

when p > 0.3, its influence fades because the repulsive force becomes bitterly small.

From the view of potential fields, the degree of convex surface decreases with the

increase of p, the peak height becomes lower and the influenced area by the convex

surface becomes smaller. The same parameter value may lead to different paths in

various situations and it is a tradeoff between safety and path length to select an

appropriate value.

n has more influence on the robot path as it is in the exponent power. b and

m influence to the path is activated only when escape force is needed. Bigger b

means the escape force is enabled with higher possibility, while bigger m means

larger escape force.

When p is 0.5 and above the robot path remained unaltered. Bigger values for

n impart smaller repulsive forces (Figure 5.5). Considering the dynamic obstacles

in real time implementation, smaller values are preferable for both n and p.

The same parameter set may lead to various cost (path length) in various sce-

narios, e.g., different robot speeds may lead to different paths. A tradeoff between

safety and path length determines the appropriate parameter values for use in

different scenarios. Within the possible range of parameters, it may require to

fine-tune the parameters.

The parameter n has a large influence on the robot path being an exponential

in the repulsive force vector (5.4). The influence of parameters b and m to the

path are activated only when the escape force is needed. The path generated by

different m values are alike.
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From the simulation results, it is noted that the parameters p and n play im-

portant roles, while b and m are less important as they are only effective around

local minima.

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

110

Obstacle1 

Obstacle2 

p=0.1 

p=0.15

p=0.2

p=0.5

Goal

(n = 3.2, b = 8, m = 10)
0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

Obstacle1 

Obstacle2 

p=0.1 

p=0.15

p=0.2

p=0.5

Goal

(n = 3, b = 5, m = 12)

Figure 5.5: Simulated robot trajectories with different p value
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Figure 5.6: Simulated robot trajectories with different p value

5.4 Parameter Optimization based on MOEA

As path smoothness, safety and path length play roles in the evaluation of the

planned path, a multi-objective optimization algorithm is utilized to search sub-

optimal solutions. The Multi-objective Evolutionary Algorithm (MOEA) is utilized
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Figure 5.11: Potential distributions for different p values
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Figure 5.12: Potential distributions for different n values

72



5.4. Parameter Optimization based on MOEA

to handle the parameter optimization for being powerful in multi-objective prob-

lems. Evolutionary Algorithm (EA) is based on models of organic evolution in

which initial problem solutions are modelled into evolution to generate satisfactory

solutions, and it has been developed decades back and successfully applied in opti-

mization problems in many fields [119], [120], [121], [122], [123]. At the beginning

of evolution process, an initial set of populations (solutions) generate offsprings

through genetic operations like cross-over, mutation and selection and, the evolu-

tion stops when the fitness values of the offsprings reach an expected value. With

a single objective, the solution with the lowest fitness is preserved, however, for

multiple objectives, the solutions are ranked and those not inferior to any other are

preserved. Since 1985 [124] researchers have been developing MOEA techniques

to solve multi-objective problems (MOP) and this research field has attracted the

interest of both EA researchers and engineers. MOEA [125], [126], [127] has been

applied successfully in various engineering fields like filter design [62], pattern iden-

tification [128] and robot control [20], [23], [129]. There are many MOEA techniques

which could be classified into three categories [130]: a) Aggregating approaches for

single objective EA, b) approaches based on Pareto dominance and c) the rest of

the approaches. Aggregating approaches are derived from the naive idea that mul-

tiple objectives can be combined to a single objective. This method works well if

the objectives can be linearly combined or in other appropriate ways. However, it

is difficult in many real world problems to find such an aggregation method. As a

result, approaches based on special treatment techniques are developed [124], [131],

[132].

The use of Pareto optimality in population fitness assignment is suggested in

[133]. The approaches based on Pareto selection have become a significant branch

of MOEA [134], [130], [135]. In Pareto dominance based approaches, the string

in population is mainly ranked by the number of strings it dominates. To keep

the diversity of population and to avoid premature convergence, niching, fitness

sharing and restrictive mating techniques are proposed in [136], [137], [138], [139].

The Multi-Objective Evolutionary Algorithm (MOEA) is utilized to optimize
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5.4. Parameter Optimization based on MOEA

the parameters, p, n, m and b, associated with the potential field functions in

simulation before implementing on to the robot soccer system.

The MOEA toolbox [140] incorporates Pareto cost assignment scheme and other

complementary features of hard constraint specification for constraint handling,

dynamic population size, fuzzy boundary local perturbation with interactive local

fine-tuning, a novel switching preserved strategy and convergence representation

for multi-objective optimization. The users only needs to write the model files and

GUI windows provide easy-to-understand monitor information.

The MOEA tool involved in this paper used the Elistist strategy, where the best

strings from the previous generation (strings with rank one, for multi-objective) are

added to the new population. Then the population goes through evaluation and

the excess, inferior strings are removed. With this strategy, good strings are always

preserved. The new population is then fed to the model file to get the new cost

functions. In case that too many strings are equal, say they are all ranked one, the

cost after niching is considered.

Figure 5.14 and Figure 5.15 are the MOEA settings and progress ratio in evo-

lution.

The robot is expected to approach the target point along a collision free path.

Let Γ denotes the pool of points the robot passes through. The fitness functions

defined (5.12 - 5.14) form the multiple objectives. They may influence the control

policy and evolutionary program techniques [141] [142].

c1 = min(DTR), (5.12)

c2 =





0 min(DOR) > Dsafe

Dsafe −min(DOR) otherwise
, (5.13)

c3 =

∫

Γ

ds. (5.14)

The function c1 (5.12) calculates the penalty value associated with the distance
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Figure 5.14: MOEA setting

Figure 5.15: Evolution progress ratio
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5.5. Simulation Results

between the robot and target (DTR). c1 stands for the minimal distance between

the robot and the target, and is 0 when the robot is at the target point. c2 (5.13)

denotes the penalty value upon collision and is 0 when the distance (DOR) between

the robot and obstacle is more than Dsafe. When the robot keeps a safe distance

from the obstacle (DOR > Dsafe) c2 is 0. Dsafe is defined as the accepted safe value

for DOR. Dsafe is considered as the sum of the radii of the circles that respectively

contain the robot and the obstacle under consideration. A 10% of the above sum is

added on as a safe gap. If DOR ∈ (0, Dsafe), the robot is very close to the obstacle.

c2 is then the difference between Dsafe and the shortest possible DOR when the

robot is closer to an obstacle. A larger c2 is more dangerous. The third objective

c3 (5.14) denotes the path length.

c2 and c3 conflicts sometimes when the robot path is safer with farther distance

to the obstacle, and the whole path length might be increased. During the evolution

configuration, the costs could be associated with priorities, c2 is set with higher

priority, Figure 5.16 shows that more population with low c2 would survive; vice

vise, if c3 is set higher priority more population with low c3 in Figure 5.17. The

Y axle is the normalized value of each cost. During the optimization, the priority

configuration could influence the results the robot motion.

The influence of the parameters on potential field distribution is discussed in

this section with reference to the simulation.

To ensure the generalization of optimization results, different situations of ini-

tial states of the objects are considered to evaluate each candidate, i.e., multiple

situations with the speeds and positions of robot, target and obstacles, including

the number of obstacles, are designed in each evaluation loop.

5.5 Simulation Results

In the simulation setup the robot and obstacles are represented by circles that can

contain a robot as introduced in Chapter 2.
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Figure 5.16: Population distribution with higher priority of safe
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Figure 5.17: Population distribution with higher priority of path length
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Figure 5.18: Robot avoiding one stationary obstacle
.
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Figure 5.19: Robot avoiding multiple obstacles
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Figure 5.20: Robot avoiding moving obstacle (the moving obstacle starts from the
initial position at (a), end at (d))

In Figure 5.18, the robot heads for a stationary target behind a stationary

obstacle. The sub-figure on the right (Figure 5.18) is the potential distribution.

Following the gradient of the potential, the robot moves to the target. The field

remains unchanged as both the target and obstacle are stationary.

The trajectories and potential field distribution with three stationary obstacles

are plotted in Figure 5.19. In Figure 5.20, one of the obstacles moves along the

dashed line affecting the potential field. The potential fields at different motion

phases are plotted to illustrate the way in which the potential field is modified.
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Table 5.1: Obstacle Filter Rules by distances and speeds
Speed Distance State
Fast Far Middle
Fast Middle Middle
Fast Near Danger
Middle Far Safe
Middle Middle Middle
Middle Near Danger
Slow Far Safe
Slow Middle Safe
Slow Near Danger

5.6 Experimental Results

The robot soccer system (Chapter 2) is the test bed used for EAPF. An adaptive

window is constructed to filter the obstacles far away the robot’s current position

(Figure 4.4). Only obstacles inside the window and within a certain radius are

handled as valid obstacles in the potential field. The experiments validate the

effectiveness of such a approach.

The optimization is applied to obtain appropriate parameters of the potential

field functions.

It is noted that the potential field should adapt to different scenarios. When the

obstacle is slow and relatively far, the repulsive force could be gentler, while in the

contrast cases, the repulsive force should be larger to avoid collision. A Fuzzy Logic

based controller (FLC) is designed to determine current status: safe, moderate and

dangerous and three sets of parameters are applied for each respective status.

The FLC inputs are the distance and relative velocity between the mobile robot

and the critical obstacle. The FLC rules are shown in Figure 5.21.

EAPF is utilized in the robot soccer system for obstacle avoidance. The play

field of the robots is mapped into a 2-D coordinate system. Positions of the robots

and ball are represented by respective X-Y coordinates (Figure 5.2). The center
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Figure 5.21: Membership functions of linguistic variables for Fuzzy logic rules in
judging current status (safe, moderate, dangerous).
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point of the robots, obstacles and the ball represent their positions.

In Figure 5.22, Robot1 passes through the obstacles when the empty space is

larger than one and half size of the robot. Robot1 started from the upper left

position of the field and went straightly ahead through Obstacle1 and Obstacle2.

When Robot1 was closer to Obstacle1 and Obstacle2, it turned across the empty

space between them and headed for the target.

With more obstacles around (Figure 5.23), the robot also could reach the tar-

get along a short path. Robot1 started from upper left part of the field. Initially

Robot1 encountered Obstacle2 and Obstacle4 which are close to each other, and

it could pass through them. Robot1 then headed towards the target and stopped

closer to Obstacle3. It changed its course of motion and navigated through the

space between Obstacle3 and Obstacle1 effectively. The robot could navigate

through the complicated obstacles space with the proposed approach.

The proposed EAPF is applied to two robots (Robot1 and Robot2). Figure

5.24 depicts two scenarios where Robot1 and Robot2 navigate through various

static obstacles. Robot1 and Robot2, both with EAPF path planner, starting

from different sides of the platform, are required to reach their respective targets.

Robot1 moved along an upper path to avoid Robot3 and Robot6; and Robot2 went

between Robot4 and Robot5 towards its target.

In Figure 5.25 the two robots avoided colliding each other. The changes in the

paths of Robot1 and Robot2 around the region ’A’ where they crossed the path

validated the suitability of EAPF in dynamic path planning.

5.7 Comparison with AW-EPF

Both EAPF and AW-EPF (chapter 4) are based on potential field and compari-

son of their performances on typical situations could be helpful to identify their
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(a) Trajectory
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Figure 5.22: Robot avoiding stationary obstacles on the field
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(a) Trajectory through a complicate environment
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Figure 5.23: Robot passing multiple obstacles on the field
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Figure 5.24: EAPF application1 on multiple robots
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Figure 5.25: EAPF application2 on multiple robots
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characteristics. With the optimized configuration in previous experiments, the sim-

ulation experiments are carried out and the results are presented in figures below.

Application of adaptive window considerately diminishes the computation burden

of solving matrix in AW-EPF, but there is no such a concern in EAPF which con-

sumes much less time in computing and it is not combined with EAPF approach

in the following experiments.

In Figure 5.26, the robot starts from a right side position and goes to the

Target by EAPF and AW-EPF alternatively. The trajectory of dot line is the path

navigated by EAPF and the solid one is by AW-EPF. Their running times are

almost the same, 5.44 seconds and 5.4 seconds respectively. In EAPF approach,

the distance between the obstacles is larger than it is by AW-EPF.

Their performances are also compared in Figure 5.27 with more moving obsta-

cles, Obstacle1 and Obstacle3. The dot line is the path navigated by EAPF and

the solid one is by AW-EPF. The robot by EAPF takes extra 0.12 second to reach

the Target than by EPF.

It could be implicated from the results that the robot is affected by the obstacles

aside more in EAPF based navigation and it keeps further from the obstacles

than it does in AW-EPF based navigation. By AW-EPF approach the robot path

is more smooth, while by EAPF the robot is more sensitive and reactive to the

environment. One of the reasons is EAPF potential field distribution is sharper

because of the exponential formula construction. Meanwhile, the usage of grid map

with limited resolution smooths AW-EPF potential distribution. Hence the both

approach could be chosen to apply according to the sensitivity requirement and

computation capability.

5.8 Discussions

For different values of the EAPF parameters, the potential fields and corresponding

robot motion are simulated and tested. The EAPF functions proposed are tested in
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different scenarios for ball tracking and kicking, while facing competition from other

robots. The proposed approach could be applied for real time obstacle avoidance

in dynamic environments effectively.

EAPF navigated the robot path effectively to avoid obstacles and reach target

finally in various scenarios in the multiple mobile robot system.

For more accurate solutions, it is required to optimize the parameters associated

with the EAPF functions in real-time. Further research is needed to improve the

path planning performance in the system cooperative behaviors.
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Chapter 6

Particle Filter based Trajectory

Prediction

6.1 Introduction

In robotics, trajectory prediction is an important issue while planning the motion

and different prediction approaches exist. In this chapter, a particle filter based

trajectory prediction method for mobile robots is proposed and the method is

applied in a multiple mobile robot system.

The problem of predicting moving object trajectory is often encountered in in-

dustrial robotic or servo systems where the motion information such as position,

velocity, and acceleration, is required for control. Even with high-frequency up-

dating information, a reliable prediction trajectory would be helpful to grasping

tasks.

Using prediction procedure, the control system could anticipate the object’s

position, velocity and acceleration with in order to plan an appropriate path for

grasping, catching objects or avoiding obstacles.

In robotic systems, Bayesian framework is widely used to estimate and predict
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the system states. Kalman filter is one of the common methods used in sensor fusion

based on the assumption that the system is linear and Guassian [143]. Kalman

filter is of limited power when the system is nonlinear and non-Guassian in type.

The extended Kalman filter approach, requires linearisation about the predicted

state with Guassian posterior distribution. The approximation that the posterior

distribution is Guassian in type is a gross distortion of the true underlying structure

and may lead to filter divergence.

Particle filter, a sequential Monte Carlo method for on-line learning within a

Bayesian framework, can be applied to any state-space models [51]. In particle

filtering, the target distribution is represented by a set of samples, called particles,

with associated importance weights which are propagated through time. Such fil-

ters have been variously described as Bayesian bootstrap [144], condensation [145],

Monte Carlo [146] and Metropolis-Hasting importance resampling filters [147]. Ow-

ing to its advantage of handling nonlinear and non-Guassian system estimation,

particle filter is utilized widely in tracking applications [49][148][38]. In [149] and

[150], particle filter combined with Gibbs sampler is applied to track multiple mov-

ing objects. The targets are assumed to move at nearly constant velocity and only

one-dimensional observation variable, the bearing angle, is considered.

Prediction method based on particle filter is to predict the state of the target

of interest at a point in the future. By this approach, the position, velocity, and

acceleration of the object are predicted by particle filter on the base of previous

object information.

In this chapter, the particle filter is used to predict the robot’s position and

velocity and the experimental results are presented to illustrate the performances

of the proposed approach. The experiments of target prediction in robot path

planning are carried out in robot soccer system to improve the team competitive

ability.
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6.2. Generic Particle Filter

6.2 Generic Particle Filter

The tracking problem is discussed to illustrate the particle filter algorithm. Con-

sider a state sequence {Xk, k ∈ N} of a target is evolved by

Xk = fk(Xk−1, Vk−1) (6.1)

where fk : Rnx × Rnv −→ Rnx is a possibly nonlinear function of the state

Xk−1, {Vk−1, k ∈ N} is an independent and identically distributed process noise

sequence, and nx, nv are dimensions of the state and process noise vectors respec-

tively. N is the set of natural numbers. The objective of the tracking is recursively

estimate Xk from measurements

Zk = hk(Xk,nk) (6.2)

where hk : Rnz × Rnn −→ Rnz is a possibly nonlinear function, {nk,k ∈ N} is an

independent and identically distributed measurement noise sequence, and nz, nn

are dimensions of the state and process noise vectors, respectively. The set of

available measurements Z1:k = {Zi, i = 1, ..., k} are the base of estimates of Xk.

In Bayesian approach, the trajectory estimation problem is to recursively cal-

culate some degree of belief in the state Xk at time k, taking different values,

given the measurement data Z1:k up to time k. Thus, it is required to construct

the posterior density function (pdf) p(Xk|Z1:k). It is assumed that the initial pdf

p(X0|Z0) ≡ p(X0) of the state vector, which is also known as the prior, is avail-

able. Z0 is the set of initial empty measurements. Then, the pdf p(Xk|Z1:k) can be

obtained recursively in two stages of prediction and update.

Assume that the required pdf p(Xk−1|Z1:k−1) at time k − 1 is available. The

prediction stage involves using the system model (6.1) to obtain the prior pdf of

the state at time k via the Chapman-Kolmogorov equation,

p(Xk|Z1:k) =

∫
p(Xk|Xk−1)p(Xk−1|Z1:k−1)dXk−1. (6.3)

Here it is assumed that p(Xk|Xk−1, Z1:k−1) = p(Xk|Xk−1) since the system

model describes a Markov process of order one. The probabilistic model of the
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6.2. Generic Particle Filter

state evolution p(Xk|Xk−1) is defined by the system equation (6.1) and the known

statistics of Vk−1.

At time step k, a measurement Zk becomes available, and this is used to update

the prior via Baye’s rule,

p(Xk|Z1:k) =
p(Zk|Xk)p(Xk|Z1:k−1)

p(Zk|Z1:k−1)
, (6.4)

where the normalizing constant,

p(Zk|Z1:k−1) =

∫
p(Zk|Xk)p(Xk|Z1:k−1)dXk, (6.5)

depends on the likelihood function p(Zk|Xk) defined by the measurement model

(6.2) and the known statistics of nk. In the update stage (6.4), the measurement

Zk is used to modify the prior density to obtain the required posterior density of

the current state.

The recurrence relations of (6.3) and (6.4) form the basis for the optimal

Bayesian solution, which solves the problem of recursively calculating the exact

posterior density. This recursive propagation of the posterior density is a concep-

tual solution in general, and cannot be determined analytically. Optimal Bayesian

solutions exist in a restrictive set of cases, including the Kalman filter and grid-

based filters, meanwhile, suboptimal algorithms like extended Kalman filters, ap-

proximate grid-based filters, and particle filters, approximate the optimal Bayesian

solution.

Particle filtering is based on sequential Monte Carlo (MC) method for imple-

menting a recursive Bayesian filter by Monte Carlo simulations [151]. The main

idea is to represent the required posterior density function by a set of random sam-

ples with associated weights and to compute estimates based on these samples and

weights. As the number of samples becomes very large, the MC characterization

becomes an equivalent representation to the usual functional description of the

posterior pdf.

To describe the algorithm, let {X i
0:k, w

i
k}Ns

i=1 denote a random measure that

characterizes the posterior pdf p(X0:k|Z1:k), where {X i
0:k, i = 0, ..., Ns} is a set of
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support points with associated weights {wi
k, i = 1, ..., Ns} and X0:k = {Xj, j =

0, ..., k} is the set of all states up to time k. The weights are normalized such that
∑

i w
i
k = 1. Hence, the posterior density at k can be approximated as,

p(X0:k|Z1:k) ≈
Ns∑
i=1

wi
kδ(X0:k −X i

0:k). (6.6)

The weights are chosen using the principle of importance sampling as following.

Suppose p(x) ∝ π(x) is probability density for which π(x) can be evaluated. Let

xi ∼ q(x), i = 1, ..., Ns be samples that are easily generated from a proposal q(·)
called an importance density. So a weighted approximation to the density p(·) is

given by,

p(x) ≈
Ns∑
i=1

wiδ(x− xi), (6.7)

where,

wi ∝ π(xi)

q(xi)
, (6.8)

is the normalized weight of the ith particle.

Hence, if the samples X i
0:k are drawn from an importance density q(X0:k|Z1:k),

the weights in (6.6) as defined by (6.8) becomes,

wi
k ∝

p(X i
0:k|Z1:k)

q(X i
0:k|Z1:k)

. (6.9)

At each iteration, we have samples constituting an approximation to p(X0:k−1|Z1:k−1)

and approximating p(X0:k|Z1:k) with a new set of samples.

Returning to the sequential case, at each iteration, we could have samples consti-

tuting an approximation to p(X0:k−1|Z1:k−1) and want to approximate p(X0:k|Z1:k)

with a new set of samples. If the importance density is chosen as,

q(X0:k|Z1:k) = q(Xk|X0:k−1, Z1:k)q(X0:k−1|Z1:k−1) (6.10)

then we can obtain samples X i
0:k ∼ q(X0:k|Z1:k−1) by augmenting each of the ex-

isting samples by X i
0:k−1 ∼ q(X0:k−1|Z1:k−1) with the new state X i

k ∼ q(Xk|X0:k−1, Z1:k).
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To derive the weight update equation, p(X0:k|Z1:k) is first expressed in terms of

p(X0:k−1|Z1:k−1), p(Zk|Xk) and p(Xk|Xk−1). Note that

p(X0:k|Z1:k) =
p(Zk|X0:k|Z1:k−1)p(X0:k|Z1:k−1)

p(Zk|Z1:k−1)
(6.11)

=
p(Zk|X0:k|Z1:k−1)p(Xk|X0:k−1|Z1:k−1)

p(Zk|Z1:k−1)
× p(X0:k−1|Z1:k−1)(6.12)

=
p(Zk|Xk)p(Xk|Xk−1)

p(Zk|Z1:k−1)
p(X0:k−1|Z1:k−1) (6.13)

∝ p(Zk|Xk)p(Xk|Xk−1)p(X0:k−1|Z1:k−1) (6.14)

Substituting (6.11) into (6.9), the weight update equation can then be:

w i
k ∝

p(Zk |X i
k )p(X i

k |X i
k−1 )p(X i

0 :k−1 |Z1 :k−1 )

q(X i
k |X i

0 :k−1 ,Z1 :k)q(X i
0 :k−1 |Z1 :k−1 )

= w i
k−1

p(Zk |X i
k )p(X i

k |X i
k−1 )

q(X i
k |X i

0 :k−1 ,Z1 :k)
. (6.15)

Furthermore, if q(Xk|X0:k−1, Z1:k) = q(Xk|Xk−1, Zk), the importance density

becomes only dependent on Xk−1 and Zk. This is particularly useful in a common

situation when only a filter estimate of p(Xk|Z1:K) is required at each time step.

Assume such a case except when explicitly stated otherwise. Hence only X i
k need

be stored, we can discard the path X i
0:k−1 and history of observations Z1:k−1. The

weights is modified as,

w i
k ∝ w i

k−1

p(Zk |X i
k )p(X i

k |X i
k−1 )

q(X i
k |X i

k−1 ,Zk)
, (6.16)

and the posterior filtered density p(Xk|Zk) can be approximated as,

p(Xk|Z1:k) ≈
Ns∑
i=1

w i
kδ(Xk − X i

k ). (6.17)

The weights are defined in (6.16). As Ns → ∞, the approximation (6.17) ap-

proaches the true posterior density p(Xk|Z1:k).

A common problem with the particle filter is the degeneracy phenomenon, where

after a few iterations, all but one particle will have negligible weight. It is because

that the variance of the importance weights only increase over time so it is im-

possible to avoid the degeneracy phenomenon. Degeneracy implies that a large

computational effort is devoted to updating particles whose contribution to the ap-

proximation to p(Xk|Z1:k) is almost zero. A measure of degeneracy of the algorithm
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Figure 6.1: Generic particle filter procedure illustration

is the effective sample size Neff [152], defined as,

Neff =
Ns

1 + V ar(w ∗i
k )

, (6.18)

where w ∗i
k =

p(X i
k |Z1 :k )

q(X i
k |X i

k−1 ,Zk )
is referred to as the true weight. The estimate N̂eff of

Neff can be obtained by,

N̂eff =
1∑Ns

i=1((w)ik)
2
. (6.19)

To overcome the degeneracy problem, we need good choice of importance density

or usage of resampling method.

The most common choice of importance density is,

q(Xk|X i
k−1, Zk) = p(Xk|X i

k−1). (6.20)

Substitute (6.20) into (6.16) yields,

w i
k ∝ w i

k−1p(Zk |X i
k ). (6.21)

Among a cluster of other densities that can be used, the optimal importance density

function that minimizes the variance of the true weights w ∗i
k conditioned on X i

k−1
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and Zk as shown in [153] is

q(Xk|X i
k−1, Zk)opt = p(Xk|X i

k−1, Zk) (6.22)

=
p(Zk|Xk|X i

k−1p(Xk|X i
k−1)

p(Zk|X i
k−1)

. (6.23)

Substituting into (6.16) yields,

w i
k ∝ w i

k−1p(Zk |X i
k ) (6.24)

= w i
k−1

∫
p(Zk |X ′

k)p(X ′
k |X i

k−1 )dX ′
k . (6.25)

This choice of importance density is optimal since for a given X i
k−1, w i

k takes the

same value, whatever sample is drawn from q(Xk|X i
k−1, Zk)opt.

Resampling method also reduces the effects of degeneracy. The base of re-

sampling is to eliminate particles that have small weights and to concentrate on

particles with large weights. The resampling involves generating a new set {X i∗
k }Ns

i=1

by resampling (with replacement) Ns times from an approximate discrete repre-

sentation of p(Xk|Z1:k) given by,

p(Xk|Z1:k) ≈
Ns∑
i=1

w i
kδ(Xk − X i

k ), (6.26)

so that Pr(X
i∗
k = Xj

k) = w j
k . The resultant sample is an independent and identically

distributed sample from the discrete density (6.26), hence the weights are now reset

to w i
k = 1/Ns .

In this project, a randomly moving object’s position and velocity are predicted

by particle filter algorithm. As the robot moves fast, the velocity and acceleration

vary quickly and are hard to predict. To avoid sample impoverishment which

makes all particles collapse to a single point, a random resampling algorithm [38]

is applied to tackle this issue. In this work, the new particles are sampled from the

neighborhoods of the focused particles based on the uniform distribution, U(xi:l
k −

α|xi:l
k |, xi:l

k +α|xi:l
k |). xi:l

k is the lth state variable of the state vector xi
k. α determines

the size of sampling region, which adapts to the effective number of particles Neff

and the variance σ2
xi:l

k
of the state variable.

α ∝
σ2

xi:l
k

Neff

(6.27)
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When Neff decreases, the sampling region is expanded to cover diverse particles.

Variance σ2 determines the tracking precision of the state variable, larger σ2 means

a wider searching area and sampling region is expanded at the same time, and

vice verse. In the improved resampling algorithm, two thresholds about effective

sample size are set, one for degeneracy and the other for sample improvement.

With the degeneracy threshold, the particles with small weights are eliminated

and those with large weights ar retained and duplicated. Then the diversity of

particles decreases rapidly and their effective size is less than the second threshold,

new particles are sampled from the neighborhoods of previous samples based on

uniform distribution. The size of the sampling space is determined by α, which

adapts to the effective number of particles and variance of the state variable. So

the distribution space of new samples is expanded while the continuity of the state

space remains.

In practical situations, the predicted position would be limited by the physi-

cal constraints, a window is applied to keep the anticipated position within the

reasonable area.

6.3 Trajectory Prediction

The robot soccer system is utilized to implement the particle filter algorithm in

predicting the position and velocity of a mobile robot. The prediction problem can

be formulated as follows: Given an object moving along some arbitrary path, it is

required to predict its trajectory in real time and with endurable error. For the 2-D

space of robot soccer system, the predicted position (x, y) is calculated based on

past values of the object coordinates obtained through vision processing by camera.

To limit the complexity of the vision process, the objects are represented by their

mass points. It is assumed that the object velocity and acceleration are within

a specified range due to the physical constraints. The predictor outputs are the

anticipated values of the target position and velocity at the next sampling period,

which are used by the path planning to calculate control input.
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6.3. Trajectory Prediction

There are four stages associated with the generic particle filter method used for

trajectory prediction:

1. Initialization: Sample X i
0 from the initial posterior distribution p(X0) and

set the weights wi
0 to 1

N
, i = 1, ..., N . The target initial position and velocity

are assigned at the start of the particle filter module.

2. Prediction: Each sample is passed through the system model to obtain the

predicted samples:

X̂ i
k = f(X i

k−1, w
i
k−1) (6.28)

where wi
k−1 is a sample drawn from the probability density function of the

system noise pω(ω). The predictions of the target are calculated.

3. Update: Once the position data Zk is updated, evaluate the importance

weight of each predicted sample in (6.29) and normalize the weights in (6.30).

wi
k = w̃i

k−1

p(Zk|X̂ i
k)p(X̂k|X i

k−1)

q(X̂k|X i
k−1, Zk)

(6.29)

w̃i
k =

wi
k−1∑N

i=1 wi
k−1

(6.30)

Define a discrete distribution {w̃i
k : i = 1, ..., N} over {X̃ i

k : i = 1, ..., N},
with probability mass w̃i

k associated with element X̃ i
k at time k.

4. Resample: Calculate the effective sample size:

Neff =
1∑N

i=1(ŵ
i
k)

2
(6.31)

An iteration of the recursive algorithm consists of the above four steps. In

this work, the prediction function is implemented in an object module of robot

soccer system control software and the game management enables the prediction

according to situations. The robot behaviors include tracking and blocking the

moving object to defeat an opponent team.
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6.4 Experimental Results

The prediction module based on particle filter framework is tested in Robot Soccer

System (Chapter 2). The system perceives the environment using an overhead

camera at a refresh frequency of 40ms. The Improved particle filter is implemented

as an object in the software, with a Gaussion pdf, a sample number of 200, and an

adaptive noise error of 0.01-0.05m.

Firstly, the prediction performance is tested for a random motion of the ball.

In Figure 6.2, the ball’s initial position is at (0.75, 0.65)m of the RSS coordination

system. The predicted trajectory error is below 5cm, the max errors occurs around

the sharp turning where the velocity is too large.

The prediction of motion could apply on either target position prediction or ob-

stacle position prediction. The prediction is incorporated with the robot behaviors

when it locks a target ball or opponent robot.

The experiments show the influence of the algorithm by comparing the perfor-

mance of with and without the prediction. In Figure 6.4, from the same initial

situation and the same target situation, the moving obstacle Obstacle1 moves from

the the left lower side of the ground (0.15, 0.4)m to the upper right area, while

Robot1 starts from (0.3, 0.2)m to get the ball on the upper part without collision

with the Obstacle1. In Figure 6.4 (a), with the prediction algorithm, Robot1 could

avoid the moving obstacle and took 2.5 seconds to reach the target ball. While in

(b), Robot1 took longer time, 3 seconds to reach the ball. With the prediction of

obstacle position, the robot reached the target earlier, which is an improvement in

the competition ability during the match.

The robot behaviors associated with the robot soccer system are shown in

Figure 6.3. The prediction function is ready to be called by the further behavior

functions.

In Figure 6.6 Robot1 and Robot2 is assigned to pursue and surpass OppRobot1

and OppRobot2 respectively to protect goal area, with collision free function by the
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Figure 6.2: Random moving object trajectory prediction

104



6.5. Discussions

Behavior

Management

Command

Generator

Perception

velocity

Angular

velocity

Posture

Posture

velocity

Angular

velocity

Robot

Target
(predicted)

Desired

wheel speed

Wheel speed

command

Vision frames

capture

Supplementary

Modules

Robot

Communication

Figure 6.3: Behavior decision procedures

EAPF algorithm to avoid team robots. With the prediction as in Figure 6.6 (a),

Robot1 pushed OppRobot1 away from the goal area, Robot2 successfully homed

OppRobot2 in time and run to support the goalie, while as results in Figure 6.6

(b), the defending robots Robot1 and Robot2 run into jam with the opponents

(ellipse area) and fail to assistant the goalie.

6.5 Discussions

In this chapter, a prediction method based on particle filter is constructed and

verified successfully in a mobile robot system. For a competitive environment, the

robots become more capable with the prediction algorithm. This would give the

robot sufficient time and space to perform the necessary actions to avoid obstacles

and change its route towards its destination position.
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(a) robot motion with prediction

(b) robot motion without prediction

Figure 6.6: Robot motion comparison
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Chapter 7

Conclusions

In the thesis, the multiple mobile robot system and dynamic path planning methods

are studied with experiments on wheeled mobile robot.

Firstly, a multiple mobile robot system, Robot Soccer System is studied along

hardware and game management architectures (Chapter 2). A top-down behavior

management system is set up in C++. The individual robot model is presented

in Chapter 3. A tracking controller based on the models is validated through

simulation and experimentation.

An Electrostatic Potential Field based path planning method is presented in

Chapter 4, it is observed that AW-EPF with adaptive window can generate shorter

and quicker paths for mobile robots.

In Chapter 5, an Evolutionary Artificial Potential Field approach is proposed.

For different values of the EAPF parameters, the potential fields and corresponding

robot motion are simulated and tested. In the experiments, EAPF path planner

navigated the robots effectively to avoid obstacles and reach the target. The EAPF

functions proposed are tested in different scenarios for ball tracking and kicking.

The proposed approach could be applied for real time obstacle avoidance in dy-

namic environments.

The two navigation approaches, based on EPF and EAPF respectively, are
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inspired by the physical potential field distribution and have different features.

EAPF approach is more flexible due to its construction flexibility and more agile

in reacting to the changes in environment, while EPF is more suitable for global

path planning. The drawback of EPF is the exponential increase in computing

time with the increase in resolution of the grids.

In Chapter 6, a trajectory prediction method based on particle filter is pre-

sented. The results show that the prediction can improvement the performance of

the robots in dynamic environments.

In the proposed approaches and experiments, each robot’s path planning is

based on data of the whole multiple mobile systems. The data of each robot

are collected at each iteration and processed to navigate the single robot through

stationary or moving robots in the system in real time, and the other team robots

are labeled at the start of the robot’s itself path planning. Therefore the whole

process is based on multiple robot systems in real time.

Further research would be focusing on the combination of various path planning

methods and utilizing more computational intelligence techniques.
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