593 research outputs found

    Application of Hybrid Agents to Smart Energy Management of a Prosumer Node

    Get PDF
    We outline a solution to the problem of intelligent control of energy consumption of a smart building system by a prosumer planning agent that acts on the base of the knowledge of the system state and of a prediction of future states. Predictions are obtained by using a synthetic model of the system as obtained with a machine learning approach. We present case studies simulations implementing different instantiations of agents that control an air conditioner according to temperature set points dynamically chosen by the user. The agents are able of energy saving while trying to keep indoor temperature within a given comfort interval

    Identifying prosumer’s energy sharing behaviours for forming optimal prosumer-communities

    Get PDF
    Smart Grid (SG) achieves bidirectional energy and information flow between the energy user and the utility grid, allowing energy users not only to consume energy, but also to generate the energy and share with the utility grid or with other energy consumers. This type of energy user who consumes energy and who also can generate the energy is called the “prosumer”. The sustainability of the SG energy sharing process heavily depends on its participating prosumers, making prosumer participation and management schemes crucial within the energy sharing approaches. The contribution of this article is twofold. First, this article introduces a novel concept of participating and managing the prosumers in the SG energy sharing process in the form of virtual communities, which involves with computation, software, data access, and storage services that do not need end-prosumer knowledge of the physical location and system configuration. Here, the community of prosumers can collectively increase the amount of power to be auctioned or bought offering higher bargaining power, thereby settling for a higher price per kilowatt in long-term. The initial step to build an effective prosumer-community is the identification of those prosumers who would be suitable to make efficient prosumer communities. This leads the necessity of identifying parameters that influence the energy sharing behaviours of prosumers. The second contribution of this article is that, this comprehensively analyses the different parameters influencing the prosumer’s energy sharing behaviours and thus presents multi-agent architecture for optimal prosumer-community formation

    Smart Grid Applications for a Practical Implementation of IP over Narrowband Power Line Communications

    Get PDF
    Abstract Currently, Advanced Metering Infrastructure (AMI) systems have equipped the low voltage section with a communication system that is being used mainly for metering purposes, but it can be further employed for additional applications related to the Smart Grid (SG) concept. This paper explores the potential applications beyond metering of the available channel in a Power Line Communication-based AMI system. To that end, IP has been implemented over Narrow Band-Power Line Communication (NB-PLC) in a real microgrid, which includes an AMI system. A thorough review of potential applications for the SG that might be implemented for this representative case is included in order to provide a realistic analysis of the potentiality of NB-PLC beyond smart metering. The results demonstrate that existing AMI systems based on NB-PLC have the capacity to implement additional applications such as remote commands or status signals, which entails an added value for deployed AMI systems.This work has been partially funded by the Basque Government (IT.683-13 and ELKARTEK KK-2017/00071

    Exploring market designs for local energy markets : core functionalities and value proposition in the context of blockchain, IoT and prosumers

    Get PDF
    This dissertation aimed to assess the impact of innovative smart market solutions and Blockchain technology on achieving efficient localized energy markets. Trends suggest the future of renewable energy generation will involve a move away from centralized power plants, and towards a large number of smaller generation units, such as PV cells. There are clear synergies between the market dynamics of photovoltaic systems and Blockchain-enabled smart markets, which can be harnessed towards integrating new consumption patterns and energy sources, as well as connecting consumers. Successful business strategy to integrate these technologies can lead to market leadership in this new industry. Captivating consumers is a key determinant of success, and offering lower electricity prices a necessary condition. For such offering to be feasible, markets need to be more efficient, as smart microgrids are proving to be. Consequently, there came the interest to see how new local electricity markets could be set up, while taking advantage of decentralization. A peer-to-peer, auction-based, local energy market was idealized and various simulations of were ran with differing levels of participants and structure, to understand the impact on the price of electricity achieved by the market. Market size and structure were both shown to affect price at different magnitudes, suggesting an ideal setup of 25-40 participants with generation capabilities over 60% of demand. Further analysis was undertaken to understand the impact of smart meters and Blockchain integration in such a market. Afterwards, conclusions were compiled and recommendations provided for how to approach new practical implementations.Esta dissertação teve como objetivo avaliar o impacto de inovadoras soluções de mercados inteligentes e tecnologia Blockchain em mercados locais de energia. Tendencias apontam para que o futuro das energias renovaveis passe por uma maior prevalencia de paineis fotovoltaicos domesticos. As sinergias entre as atuais dinamicas em mercados eletricos e o uso da Blockchain em mercados inteligentes parecem claras, podendo ser aproveitaveis para integrar novos perfis de consumo e conectar consumidores. Sendo um novo segmento, estratégias de mercado bem conseguidas serão essencias para ganhar posição, e a capacidade de angariar consumidores será um indicador crucial de sucesso. Para tal, os mercados têm que ser mais eficientes, algo que se tem revelado factual em casos de micro sistemas. Assim, criou-se o interesse de perceber como desenhar e implementar mercados localizados de energia que beneficiem desta tendencia de desintermediação. Para tal, um mercado interativo à base de leilões de eletricidade entre consumidores foi idealizado. Posteriormente, este foi simulado repetidamente, com diferentes dimensões e estruturas, a fim de perceber o seu impacto nos preços médios alcançados. Foi mostrado que tamanho e composição afetam os preços em magnitudes diferentes, sugerindo uma dimensão ideal de 25-40 participantes, com capacidades de autogeração superiores a 60%. Análises posteriors foram desenvolvidas de modo substantive, para avaliar o impacto de contadores eletricos inteligentes e integração da Blockchain neste tipo de mercado. Finalmente, conclusões foram reunidas e transformadas em recomendações para futuras implementações práticas

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts

    Get PDF
    The climate changes that are visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this book presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on energy internet, blockchain technology, and smart contracts, we hope that they are of interest to readers working in the related fields mentioned above

    Energy Management of Prosumer Communities

    Get PDF
    The penetration of distributed generation, energy storages and smart loads has resulted in the emergence of prosumers: entities capable of adjusting their electricity production and consumption in order to meet environmental goals and to participate profitably in the available electricity markets. Significant untapped potential remains in the exploitation and coordination of small and medium-sized distributed energy resources. However, such resources usually have a primary purpose, which imposes constraints on the exploitation of the resource; for example, the primary purpose of an electric vehicle battery is for driving, so the battery could be used as temporary storage for excess photovoltaic energy only if the vehicle is available for driving when the owner expects it to be. The aggregation of several distributed energy resources is a solution for coping with the unavailability of one resource. Solutions are needed for managing the electricity production and consumption characteristics of diverse distributed energy resources in order to obtain prosumers with more generic capabilities and services for electricity production, storage, and consumption. This collection of articles studies such prosumers and the emergence of prosumer communities. Demand response-capable smart loads, battery storages and photovoltaic generation resources are forecasted and optimized to ensure energy-efficient and, in some cases, profitable operation of the resources

    Blockchain and internet of things for electrical energy decentralization: A review and system architecture

    Get PDF
    Decentralization in electrical power grids has gained increasing importance, especially in the last two decades, since transmission system operators (TSO), distribution system operators (DSO) and consumers are more aware of energy efficiency and energy sustainability issues. Therefore, globally, due to the introduction of energy production technologies near the consumers, in residential and industrial sectors, new scenarios of decentralized energy production (DEP) are emerging. To guarantee an adequate power management in the electrical power grids, incorporating producers, consumers, and producers-consumers, commonly designated as prosumers together, it is important to adopt intelligent systems and platforms that allow the provision of information on energy consumption and production in real time, as well as for obtaining the price for the sale and purchase of energy. In this research the literature is analysed to identify the appropriate solutions to implement a decentralized electrical power grid based on sensors, blockchain and smart contracts, evaluating the current state of the art and pilot projects already in place. A conceptual model for a power grid model is presented, with renewable energy production, combining Internet of Things (IoT), blockchain and smart contracts.A descentralização nas redes elétricas ganhou importância crescente, especialmente nas últimas duas décadas, uma vez que os operadores da rede de transporte (ORT), operadores da rede de distribuição (ORD) e consumidores estão mais conscientes das questões de eficiência energética e sustentabilidade energética. Globalmente, devido à introdução de tecnologias de produção de energia junto dos consumidores, nos setores residencial e industrial, estão a surgir novos cenários de produção de energia descentralizada. Para garantir uma adequada gestão de energia nas redes elétricas, integrando produtores, consumidores e produtores-consumidores, vulgarmente designados por prosumers, é importante adotar sistemas e plataformas inteligentes que permitam fornecer informações sobre consumo e produção de energia em tempo real, bem como para obter o preço de compra e venda de energia. Nesta pesquisa, a literatura é analisada para identificar as soluções adequadas para implementar uma rede elétrica descentralizada baseada em sensores, blockchain e contratos inteligentes, avaliando o estado da arte atual e projetos piloto já em curso. É apresentado um modelo conceptual para um modelo de rede elétrica, com produção de energia renovável, combinando Internet das Coisas (IoT), blockchain e contratos inteligentes

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107
    corecore