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Abstract: Battery storages are an essential element of the emerging smart grid. Compared to other

distributed intelligent energy resources, batteries have the advantage of being able to rapidly react to

events such as renewable generation fluctuations or grid disturbances. There is a lack of research on

ways to profitably exploit this ability. Any solution needs to consider rapid electrical phenomena

as well as the much slower dynamics of relevant electricity markets. Reinforcement learning is a

branch of artificial intelligence that has shown promise in optimizing complex problems involving

uncertainty. This article applies reinforcement learning to the problem of trading batteries. The

problem involves two timescales, both of which are important for profitability. Firstly, trading

the battery capacity must occur on the timescale of the chosen electricity markets. Secondly, the

real-time operation of the battery must ensure that no financial penalties are incurred from failing

to meet the technical specification. The trading-related decisions must be done under uncertainties,

such as unknown future market prices and unpredictable power grid disturbances. In this article,

a simulation model of a battery system is proposed as the environment to train a reinforcement

learning agent to make such decisions. The system is demonstrated with an application of the battery

to Finnish primary frequency reserve markets.

Keywords: battery; reinforcement learning; simulation; frequency reserve; frequency containment

reserve; timescale; artificial intelligence; real-time; electricity market

1. Introduction

Battery storages are an essential element of the emerging smart grid. Batteries are
crucial for coping with increased photovoltaic [1] and wind penetration [2]. Schemes for
introducing batteries are proposed at the level of buildings [3], wind farms [4] and the dis-
tribution grid [5]. Electric vehicle batteries can be used to temporarily store excess rooftop
photovoltaic generation, which can be used to supply the load after photovoltaic generation
has dropped [6]. Significant recent research has emerged on reinforcement learning (RL)
applications for complex decision-making involving battery systems and energy markets.
However, such works frequently ignore short-term electrical phenomena and employ RL
frameworks with the simplifying assumption that renewable generation, power consump-
tion and battery charging and discharging power remain constant throughout each market
interval. Such assumptions are usually captured by a set of equations that specifies the
environment of the RL agent. The environment is a system for interactive training of an
RL agent: when the agent takes actions such as placing bids on a market, the environment
gives feedback about the beneficial as well as the undesirable outcomes resulting from the
action. If these simplifying assumptions could be eliminated, RL-powered battery systems
could be a solution for managing short-term phenomena such as fluctuating renewable
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generation and power consumption, as well as sudden grid disturbances. To this end, this
article presents an RL application working on two timescales: the timescale of the markets
and the short-term timescale of electrical phenomena.

There are numerous applications for quickly reacting batteries. For example, batteries
can support the extraction of maximum power generation from photovoltaic batteries with
real-time maximum power point tracking control [7,8]. Battery applications for smooth-
ing fluctuations of wind power generation require real-time control [9,10]. Without such
smoothing applications, grid operations are required to take countermeasures to manage
the resulting grid frequency variations [11]. One way to use batteries is to directly react to
such frequency variations. Frequency reserves are energy resources that stand by to react
to such frequency deviations by adjusting their production and consumption. Depending
on the region, transmission system operators (TSO) or independent system operators (ISO)
operate frequency reserve markets in which they procure frequency reserves and pay com-
pensations for the provider of the reserve resource. Out of the various frequency reserve
markets, primary frequency reserves (PFR) have the fastest response time requirements,
which is reflected in the financial compensations paid to the reserve resource providers [12].
As batteries are easily capable of meeting such requirements, PFR participation allows
batteries to contribute to coping with imbalances in the grid, regardless of whether such
imbalances are caused by fluctuations in photovoltaic or wind generation, changes in
electricity consumption or other disturbances [13].

PFR markets are generally auctions, in which the provider of the reserve resource has
to specify the reserve capacity (adjustable MW of power production or consumption) for
each market interval of the upcoming bidding period. A common market structure is that
the bidding period is day-ahead and that the interval is one hour; this is also the case in the
Finnish PFR market Frequency Containment Reserve for Normal Operation (FCR-N) [14],
which will be the case study of this paper. Although revenues can be increased by bidding
on as many intervals as possible, and with as much capacity as possible, the market will
penalize participants that fail to provide the capacity specified in their bid. In the case of a
battery storage, such failures will occur whenever the battery state of charge (SoC) reaches
a minimum or maximum limit. As PFR requires the battery to react to frequency deviations
on the order of seconds, it is an application operating on the two timescales identified
above: the timescale of the markets and the short-term timescale of electrical phenomena.
The contribution of this paper is an RL solution operating on these two timescales and
using a simulation model to accurately capture the dynamics of the battery. The RL agent
bids on the PFR market, and its training environment is a simulation model in which the
battery reacts to grid frequency deviations with a one-second time step.

This paper is structured as follows: Section 2 reviews the state of the art. Section 3
presents a semiformal description of the solution. Section 4 describes the implementation
of the simulation as well as the RL, with an application to the Northern European PFR
market. Section 5 presents results of running the RL bidder on this market. Section 6
concludes the paper with an assessment of the obtained results and a discussion of further
research directions.

2. Literature Review

There is a lack of research on using RL to trade batteries on PFR markets. However,
there is a growing body of research on RL applications for batteries. There is also research
on battery applications for frequency regulation.

2.1. Batteries in Primary Frequency Reserves

The increased reliance on renewable generation [15] and unreliabilities resulting from
a rapid drive towards a smart grid [16] are increasing the demand for PFR, which has
traditionally been provided by fossil fuel-based solutions [17]. There is a growing volume
of research on solutions for providing PFR with distributed intelligent energy resources
such as electric vehicles [18,19], domestic loads [20,21] and industrial processes [22]. The
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increased penetration of renewables is driving investments to battery-provided PFR [23].
However, since batteries can be exploited for a variety of grid support services, their
penetration in PFR markets will depend on how prices on these markets develop [24].
Although batteries have been economically viable PFR assets for a long time [25], a growing
body of research has emerged only in the last few years. The economic disadvantages
caused by the battery degradation resulting from PFR participation are well understood
and do not prevent economically profitable PFR participation [26,27]. Srinivasan et al. [28]
propose the use of a virtual power plant to complement batteries with other intelligent
distributed energy resources providing PFR.

2.2. Reinforcement Learning Applications for Batteries

In this section, RL applications for batteries are reviewed according to the timescale in
which they operate. Three distinct timescales have been identified:

• Real-time control.
• Medium-term decision-making for optimizing some operational criteria such as elec-

tricity costs or photovoltaic self-consumption. In many cases, this involves decision-
making once per electricity market interval, which in many cases is hourly.

• Long-term studies to support investment decisions.

RL is broadly applied in real-time control, and research exists for a variety of battery
applications. Maximizing photovoltaic generation requires a control algorithm such as
mean power point tracking [29]. Real-time control with respect to driving speed is required
for advanced battery management applications in electric vehicles [30] and plug-in hybrid
electric vehicles (Chen et al. [31]). As a semi-real-time example, Sui and Song [32] used RL
with a one-minute timestep to manage battery temperatures and thus battery lifetime in a
battery pack.

Medium-term RL applications adjust the parameters of intelligent battery systems
to optimize their operation. Muriithi and Chowdhury [33] optimized a battery and local
photovoltaic to minimize electricity bills under variable electricity prices. Batteries have
been used in conjunction with reschedulable loads to perform the rescheduling to exploit
time-of-use and real-time energy pricing schemes [34–36] and variable intraday electricity
market prices [37]. Whereas most works are aimed at existing electricity markets, a few
authors have demonstrated the benefits of RL to optimize the emerging decentralized
electricity system on novel markets [38,39]. The above works involved decision-making
on electricity markets, which is the most common type of RL application in this category.
However, other kinds of applications also exist. Mbuwir et al. [40] used a battery to maxi-
mize self-consumption of a local photovoltaic system. Finally, it is noted that for building
HVAC systems, a thermal energy storage can be a competitor to a battery storage [41].

RL can be used at investment time to determine the parameters of a smart energy
system that incorporates batteries. Diverse application contexts have been encountered,
including wireless EV charging systems [42], wind farms [43], microgrids [44] and isolated
villages with microgrids [45].

There is a lack of RL applications combining multiple timescales. In particular, the
referenced works addressing the timescale of relevant markets ignore phenomena requiring
real-time control actions, so there is a lack of research on how to financially exploit RL
applications for batteries that try to solve the global problem of smoothing the fluctuations
of renewable power generation. In this article, an RL agent is presented for trading on
hourly PFR markets, so that the impact of power grid frequency fluctuations is considered
on the timescale of seconds.

3. Battery Trading System

Figure 1 presents an overview of the proposed system. The bidding agent is im-
plemented with a neural network, and it operates on the timescale of the market. The
environment includes an offline implementation of the frequency market, based on mar-
ket data, as well as a real-time battery simulation, which will detect if the battery goes
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out of bounds. The simulation has two modes: a PFR market participation mode and
a resting mode, for hours with no PFR participation, during which the battery state of
charge is driven to a value that is ideal with respect to upcoming PFR participation. Two
items of state information are provided by the environment to the RL agent: battery state
information and a market forecast. While battery state of charge information could be
very useful for the RL, it would not be available at the timeframe when the bidding is
done on the previous day. Thus, the only battery state information that is available is the
information of when the battery last rested—this information can readily be extracted from
the bidding plans. The PFR market forecast is also relevant, since it may be beneficial to
concentrate bidding on high-price hours and resting on low-price hours. The day-ahead
PFR forecasting method presented in [14] is used.

agent (‘bidding agent’) in the environment of

–
–

the loop with the condition ‘ 4′

Figure 1. System overview.

Several formulations of the reinforcement learning mechanism exist, and these have
been applied in the battery energy management domain. The simplest is q-learning, which
involves a table for mapping states and actions [46]. As our problem formulation involves
a small state space, q-learning could have been used in this work. However, the use of
q-learning would have introduced scalability problems in further work involving more
complex state spaces. Reinforcement learning methods using a neural network instead of a
q-table are a more scalable approach. Such methods are called deep reinforcement learning
in case there is more than one hidden layer [30]. In our case, a neural network with one
hidden layer was used, since experimentation with a second hidden layer did not result
in improved performance. Advanced variations of deep reinforcement learning involve
the use of several interdependent neural networks. This is a beneficial approach when
the state space becomes significantly more complicated, as in the case of Zhang et al. [47],
who consider a system with several resources in each of the following categories: batteries,
wind and photovoltaic generation, water purification plants and diesel generators.

In order to support a problem formulation of the concept in Figure 1, Table 1 defines
relevant symbols and Table 2 defines functions, which are used by the algorithm for training
the reinforcement learning agent. Figure 2 formalizes the concept in Figure 1 using these
symbols. Figure 3 presents the algorithm for training the reinforcement learning agent
(‘bidding agent’) in the environment of Figure 2. The algorithm is based on established
reinforcement learning techniques and integrates a real-time simulation of the battery on a
primary frequency reserves market. A time range of days is selected for the training. One
epoch is one iteration of the outer loop in Figure 3 and involves running the agent for each
day in the training period. One state–action pair of the reinforcement learning agent is
one hour, since that is the primary frequency reserves market interval. One state–action
pair is taken by one iteration of the inner loop of the unshaded area in Figure 3 (i.e., the
loop with the condition ‘h < 24’, which iterates through each hour of the day). The shaded
area of Figure 3 involves calling the battery simulation with a one-second timestep. The
purpose of this is to determine whether the battery state of charge goes out of bounds,
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which involves a penalty from the primary frequency reserves market, since the battery is
not available to provide the primary frequency reserves in such a state.

agent (‘bidding agent’) in the environment of

–
–

the loop with the condition ‘ 4′

Figure 2. Setup for training the bidding agent.

Table 1. Symbols.

Symbol Data Type Description

SoC Float State of charge of the battery expressed as percentage of full charge

OoBmin Boolean True if (SoC) was out of bounds (OoB) at any time during a specific minute

OoBs Boolean True if SoC was out of bounds for a one-second timestep of the battery simulation

R Integer
Hours since the battery last rested. Resting is defined as not participating in the

frequency reserve market and charging/discharging to bring the SoC to 50%. E.g., if
the battery rested most recently on the previous hour, R = 0

day Date The current day corresponding to the current state of the environment

daystart Date The first day of the training set

dayend Date The last day of the training set

h Integer in range 0–23 The current hour (the current day is stored in the symbol day)

FCR-Nfcast[h] Float The forecasted FCR-N market price in EUR per megawatt (EUR/MW) for hour h

FCR-N[h] Float The actual FCR-N market price (EUR/MW) for hour h

S[h] [Integer, Float] State of the environment at the hour h, i.e., [R, FCR-Nfcast[h]]

fh Float [3600] Power grid frequency time series for hour h. One data point per second

a Integer in range 0–3
Action to be taken by the bidding agent. 3 = rest (no bid), 2 = bid with 600 kilowatt

(kW) capacity, 1 = bid with 800 kW capacity, 0 = bid with 1 MW capacity

r float Reward

trace
Array with elements of
type [S[h], a, r, S[h + 1]]

An experience trace consisting of all of the experiences collected during one epoch.
A single experience consists of the following: [S[h], a, r, S[h + 1]]

maxEp Integer The maximum number of epochs used to train the reinforcement learning agent

penaltymin Integer
The number of minutes during the current hour in which the battery was not available

for providing frequency reserves and thus incurred a financial penalty from the
frequency reserve market

compensation[h] float The compensation in EUR for participating in FCR-N for the hour h

penalty[h] float
The penalty in EUR for the battery being unavailable while participating

in FCR-N for the hour h

reputationdamage float
A quantification in EUR of the damage to the reputation of the FCR-N reserve

provider (i.e., the battery operator), due to failures to provide the reserve

reputationfactor float A coefficient in EUR that can be adjusted to train the bidding agent to avoid penalties

5
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Table 2. Functions used in the procedure for training the reinforcement learning agent (Figure 3).

Function Description

reset(S[0]) Resets the state variables at the beginning of the epoch

pow = ctrl(a)

The parameter a is the frequency reserve capacity in kW that the bidding
agent decided to bid on the frequency reserve market. The output pow is
the discharge/charge power command to the battery from the battery
controller. The output is determined according to the frequency data

from fh and the FCR-N market technical specification [48].

OoBs = sim(pow)

This function runs the battery simulation for one second, according to the
pow charge/discharge command from ctrl(a). SoC is an internal state

variable of the battery simulator. If the SoC goes OoB during this second,
the OoBs output is true, otherwise false.

OoBmin = bounds(OoBs) If OoBs is true, OoBmin is set true. Otherwise, no action.

capacity(a)
The capacity in MW of the bid corresponding to the action a taken by the

agent. The capacity is 0 if a = 3, 0.6 MW if a = 2, 0.8 MW if a = 1 and
1.0 MW if a = 0.

S[h] = state(h) Construct the state data structure S[h] with the current value of R and h.

Finally, the environment needs to provide feedback to the RL agent in the form of a
reward. The compensation from the PFR markets and the penalties for failing to provide
the reserve are elements of the reward. For a particular hour, the compensation from
the market is the product of the market price EUR/MW and the reserve capacity in MW.
The FCR-N technical specification states that the compensation is only received for those
minutes when the reserve was available [49]:

compensation =
60 − penaltymin

60
FCR_N[h]× capacity(a), (1)

For each hour, the compensation is paid only for those minutes during which the
system did not violate the penalty criteria. For this reason, Equations (1) and (2) include
the fraction (60_penalty_min)/60 [49]:

penalty =
penaltymin

60
FCRN[h] × capacity(a), (2)

The terms and conditions for providers of FCR state that if the reserve resource
is unavailable too often, the frequency reserve market operator may, at its discretion,
temporarily ban the reserve provider from participating in the market [50]. In order to
include such considerations in the learning process of the reinforcement learning agent,
a reputationdamage is defined. This differs from the penalty in Equation (2) in two respects.
Firstly, it is not dependent on the FCR-N price for the hour in question [50]. Secondly,
since the market operator does not provide any quantitative criteria for banning the
reserve provider [50], a reputationfactor coefficient is defined, which can be adjusted by the
reserve provider in order to make the tradeoff between increasing revenues versus bidding
prudently to avoid penalties:

reputationdamage = reputation f actor ×
penaltymin

60
× capacity(a), (3)

Therefore, the reward for the reinforcement learning agent is the formula for the net
revenue with an additional element to further penalize the agent for failing to provide the
reserve and thus damaging the reputation of the reserve provider:

r = compensation − penalty − reputationdamage, (4)
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Figure 3. Procedure for training the bidding agent using the environment in Figure 2. The shaded
area is the step (a) function discussed in Section 4.1.

4. Implementation

4.1. Enviroment

The battery model in Figure 4 is used to simulate the behavior of the battery’s SoC
when it is charged or discharged as it participates on PFR. The battery model is a Simulink
model and receives its inputs from the MATLAB function that implements the ctrl(a) func-
tion in Table 2. The implementation is done according to the rules of the Finnish PFR market
FCR-N [48]. The same rules apply to PFR markets in Sweden, Norway and Denmark. In
these countries, the nominal power grid frequency is 50 Hz with a maximum permit-
ted deadband zone when the grid frequency is in the range 49.99–50.01 Hz. Equation (5)
defines the discharging power when the frequency is in the range 49.9–49.99 Hz. A one-
second simulation step is used, so fh[s] in Equation (5) is the power grid frequency for the

7
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current second, which corresponds to sec in Figure 3. When the frequency is under 49.9 Hz,
the full power capacity of the bid, negative of capacity(a), is the discharge power.

ctrl(a) =
capacity(a)

49.99 Hz − 49.9 Hz
× fh[s]−

49.99 Hz × capacity(a)
49.99 Hz − 49.9 Hz

, (5)

𝑐𝑡𝑟𝑙(𝑎) =  𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑎)
49.99𝐻𝑧 − 49.9𝐻𝑧 × 𝑓ℎ[𝑠] − 49.99𝐻𝑧 × 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑎)

49.99𝐻𝑧 − 49.9𝐻𝑧 ,
–

𝑐𝑡𝑟𝑙(𝑎) =  𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑎)
50.1𝐻𝑧 − 50.01𝐻𝑧 × 𝑓ℎ[𝑠] − 50.01𝐻𝑧 × 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑎)

50.1𝐻𝑧 − 50.01𝐻𝑧 ,
s (5) and (6) is the ‘power’ input in

‘power’ is computed from the frequency according to a software implementation of 

, ‘power’ is 0 when the frequency is 49.99
and the ‘power’ remains at 1

Figure 4. Battery simulation model.

The case of frequency in the range 50.01–50.1 Hz is symmetric and is described by
Equation (6).

ctrl(a) =
capacity(a)

50.1 Hz − 50.01 Hz
× fh[s]−

50.01 Hz × capacity(a)
50.1 Hz − 50.01 Hz

, (6)

ctrl(a) from Equations (5) and (6) is the ‘power’ input in Figure 4. Figure 5 shows
how ‘power’ is computed from the frequency according to a software implementation of
Equations (5) and (6). In this example, a = 0, so maximum capacity(a) is 1 MW. The slight
differences between the red and blue curves are due to the deadband, e.g., according to
Equation (5), ‘power’ is 0 when the frequency is 49.99 Hz. When frequency exceeds 50.1 Hz,
Equation (6) no longer applies, and the ‘power’ remains at 1 MW.

The battery in Figure 4 is an instance of the ‘Battery’ from Simulink’s Simscape library [51].
The charging and discharging losses of the battery simulation component are according to
the equations for the lithium-ion battery type in [51]. The battery has been parameterized
as specified in Table 3. The OoB limits for the function sim(pow) in Table 2 are defined as 5%
and 95% SoC.

The battery simulation model is an open-loop system, where the battery’s behavior
is controlled with a controlled current source. The controlled current source receives its
control signal from the ‘CurrentCTRL’ (see Figure 4) MATLAB function. Its main purpose
is to convert the ‘power’ input to a current signal for the controlled current source. This
is done by dividing the signal by the battery’s ‘nominal voltage’ (Table 3) when there is
a bid for that hour. Otherwise, the battery rests, which is indicated by the ‘Nap’ input to
‘CurrentCTRL’. During rest hour, the battery will charge or discharge towards SOC 50%
with constant current. The charging and discharging are configured so that the SoC has
time to reach 50% by the end of the rest hour, regardless of the initial SoC. ‘CurrentCTRL’
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also keeps track of the SoC during the simulation. The SoC vector is passed to the MATLAB
function that implements the bounds(OoBs) function in Table 2.

–

an instance of the ‘Battery’ from Simulink’s Simscape library 

battery’s behavior 

control signal from the ‘CurrentCTRL’ (see
is to convert the ‘power’ input to a current signal for the controlled current source. This is 

battery’s ‘nominal voltage’ (
sts, which is indicated by the ‘Nap’ input to 

‘CurrentCTRL’. During rest hour, the battery will charge or discharge towards 

. ‘CurrentCTRL’ 

1200

rs 

Figure 5. Power as a function of frequency (Equations (5) and (6)) for the time period 4 September
2020 00:32:59–00:52:59. Red horizontal lines are the deadband limits. Black horizontal line is the
nominal frequency and the battery idle state.

Table 3. Parameters of the battery in Simulink.

Parameter Value

Type Lithium-ion
Nominal voltage 1200 V
Rated capacity 1400 Ah

Battery response time 0.1 s
Simulate temperature effects No

Simulate aging effects No
Discharge parameters: determine from the

nominal parameters of the battery
Yes

The battery simulation model was wrapped in custom Python code that implements
an interface similar to the environments in the OpenAI Gym collection [52], which has
been used in several recent publications on RL applications in the energy domain [53–58].
This interface defines the functions reset(S[0]) and step(a). reset(S[0]) is called in Figure 3
at the beginning of each day and assigns a random value to the SoC, which ensures that
the RL can continue to gain new experiences when the same day is used several times in
the training phase. In our implementation, the SoC is assigned a random value from a
continuous uniform distribution with bounds 35% and 65%. The shaded area in Figure 3 is
the step(a) function, which receives the action from the RL agent and returns the reward
and the next state.

4.2. Bidding Agent

The RL agent is implemented as a densely connected neural network. Its hyperparam-
eters were determined experimentally and are presented in Table 4. The input layer has
two nodes, since the state vector S[h] has two elements. The output layer has four nodes,
one for each possible value of the action a. An epsilon greedy exploration strategy is used,
so the probability of selecting a random action is initially 1 and is decreased by the epsilon
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decay factor at the end of each day in the algorithm of Figure 3. The algorithm in Figure 3
collects all 24 experiences gained over one day into an experience trace, which is used to
train the neural network, and a discount of 0.5 is applied to the trace.

Table 4. Hyperparameters of the neural network.

Hyperparameter Value

Number of hidden layers 1
Number of nodes in input layer 2

Number of nodes in hidden layer 20
Number of nodes in output layer 4

Epsilon decay 0.998
Learning rate 0.01

Discount factor 0.5
Hidden layer activation function Sigmoid
Output layer activation function Softmax

Dropout Not used
Optimizer Adam

Further work is possible for the optimization of hyperparameters. Automated machine
learning methods for neural architecture search can identify the optimal set of layers for
a deep neural network. Once the architecture has been fixed, automatic hyperparameter
tuning methods can optimize the remaining hyperparameters. However, these techniques
are in general not directly applicable to reinforcement learning [59]. Recent applications to
deep reinforcement learning are a promising approach for improving our neural network
architecture and hyperparameters [60].

The time range of 1 September 2020–31 October 2020 was used for training and
validation. A value of 110 was used for reputationfactor. Out of these 61 days, 11 randomly
selected days were used for validation and the rest were used for training. A random seed
was defined to ensure the repeatability of the results. Figure 6 shows some insights into the
training process after 2, 4, 6, 8 and 10 epochs.

On the left of Figure 6, the actions selected by the trained RL agent are shown for
each state (the state is defined by the combination of R on the vertical axis and FCR-
Nfcast on the horizontal axis). Analyzing Equations (2)–(4), it can be seen that the positive
component of the reward is directly proportional to the price of the FCR-N market, which
is approximated by FCR-Nfcast. However, the negative component of the reward is only
partially proportional to the price. Thus, at higher prices, the benefits should outweigh
the penalties, so it is expected that the agent will learn to prefer resting during low-price
hours. Accordingly, in Figure 6, it is observed that resting actions concentrate on the left of
the price forecast axis. With respect to the vertical axis, it is expected that the likelihood
of penalties increases when the battery has operated for several hours without resting, so
it is expected that the agent will learn to prefer resting on the lower part of the vertical
axis. The combined effect of these two learning outcomes is that the best states for resting
are in the bottom-left corner and the best states for bidding are in the top-right corner. By
observing the progression of the left-hand charts in Figure 6, it is evident that the agent has
learned this behavior.

On the right of Figure 6, the bidding actions taken by the agent are shown for one
of the validation days, 4 September 2020. After epoch 2 (Figure 6a), the chart on the left
shows that the agent has learned to use three actions: rest, bid 600 kW and bid 800 kW.
Only the rest and 800 kW actions are used in the chart on the left (the blue bars show the
bid size with 0 meaning rest). The red prices are the forecasted market price. As training
progresses over subsequent epochs 4, 6, 8 and 10 (Figure 6b-e), the agent learns to use only
two actions: resting and 800 kW bid. The agent also learns to schedule the rest actions for
hours with low price. The figure does not show penalties and rewards, which are discussed
next in Section 5. The purpose of the discussion in this section was to give insights into the
RL training process and the behavior learned by the RL agent.

10



Energies 2021, 14, 5587

 

Figure 6. The actions taken by the trained reinforcement learning agent (left) and the resulting
bidding behavior on 4 September 2020 (right) after epochs 2 (a), 4 (b), 6 (c), 8 (d) and 10 (e).
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5. Result

Figure 7 shows the cumulative reward for all of the days in the training set, and
Figure 8 shows the cumulative reward for the days in the validation set. The results for the
training and validation sets start to stabilize after 20 epochs, so training was stopped after
35 epochs.

Figure 7. The cumulative reward for all of the training days.

Figure 8. The cumulative reward for all the validation days.
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Figure 9 shows the cumulative reward for one of the validation days, 4 September
2020. This is the sum of the rewards for each hour of the day. At nine epochs, there is a
relatively low reward. This epoch is analyzed further in Figure 10. The chart in Figure 10a
is similar to the charts on the right in Figure 6. The chart in Figure 10b is the reward and
the actual market price. The chart in Figure 10c is the penalties. It is observed that due to
only three resting hours for the entire day, the battery fails to provide the reserve capacity
and incurs significant penalties on hour 17, which explains the low reward for epoch 9 in
Figure 9. Figure 11 shows a similar chart after 35 epochs of training. The chart in Figure 11a
shows that the agent has learned to rest more frequently, and generally, the rest occurs
when there is a low price forecast. Although the increased resting reduces the market
revenues (Figure 11b), there are no penalties (Figure 11c). Thus, the agent at 35 epochs
plays safer than the agent at 10 epochs, resulting in a fairly good reward at 35 epochs,
although the reward is not as high as in some of the earlier epochs, when the agent was
resting less and thus making riskier bids. The risks are due to the unpredictable need
to charge or discharge the battery when participating in PFR. The need depends on the
occurrence of grid frequency deviations. There is a lack of research for predicting such
deviations day-ahead (which is when the PFR bids must be placed), so our agent does not
have information to learn the likelihood of charging or discharging needs for any particular
hour. However, the results show that based on the available market forecasts, the agent
learns to bid intelligently under uncertainty, balancing revenues and risk of penalties.

Figure 9. The cumulative reward for all of the hours for one of the validation days (4 September 2020).
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Figure 10. Bids and predicted price (a), reward and actual market price (b) and penalties (c) for the
validation day 4 September 2020 at 9 epochs.
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Figure 11. Bids and predicted price (a), reward and actual market price (b) and penalties (c) for the
validation day 4 September 2020 at 35 epochs.
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The results shown in this paper have been obtained by using a value of 110 for the
reputationfactor. Figure 12 shows how the results would change if the value of reputationfactor
is varied. The experiment described in this paper was repeated for the following values:
10, 30, 50, 70, 90, 110, 130, 150, 170 and 190. Each repetition of the experiment resulted in
one dot in the figure, labeled with the value of reputationfactor. According to Equations
(3) and (4), a higher value of reputationfactor will result in a large negative component
in the reward whenever the battery is unavailable. The duration of this unavailability is
penaltymin on the x-axis. The compensation on the y-axis is according to Equation (1). As
reputationfactor is increased, it is expected that the RL agent learns to be more careful in
avoiding penalties, either by resting more or by bidding a lower capacity, thus reducing
the likelihood of the battery being unavailable. The result of this should be decreasing
compensation and decreasing penalties as reputationfactor increases. This trend is visible
in Figure 12. The dots for 10, 30 and 50 are very close to each other and overlap in the
figure. This is because the compensation outweighs the penalties, so the agent learns to
ignore the penalties and only tries to maximize the compensation. At a value of 70, the
penalties are drastically reduced, without a loss of compensation. In fact, the compensation
is slightly higher, which can be understood from Equation (1): there is no compensation for
the minutes during which the battery is unavailable. As reputationfactor is increased to 90
and beyond, the trend that was mentioned above is observed: the agent bids more carefully,
resulting in a slight decrease in compensation as well as in the penalties. Looking at the
relative vertical positions of the dots, 130 is an outlier in this trend. Further, 110 and 150 do
not fully fit into the trend. The validation set is 11 days, so a longer set would be expected
to result in a clearer trend. From the results, it is concluded that it is advantageous to use a
reputationfactor of at least 70. The use of a higher value is a business decision, depending
on whether a decrease in compensation is considered desirable in order to decrease the
penalties. As has been explained in the context of Equation (3), the potential business
impact of incurring excessive penalties is very severe, but the market operator does not
publish any quantitative criteria for what it considers to be excessive penalties, so for that
reason, the choice of value for reputationfactor is left as a business decision.

 

Figure 12. Compensation versus penaltymin. The dots show the result of running the experi-
ment with different values of reputationfactor. Each dot is labeled with the corresponding value of
reputationfactor.
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6. Conclusions

In the literature review, a research gap was identified for RL-based energy man-
agement solutions that take into account market participation and cope with real-time
requirements for the energy resources that participate in the markets. In this paper, PFR
was selected as an application in which revenues depend on battery capacity that is bid on
hourly markets, as well as penalties that occur on the timeframe of seconds if the battery is
unavailable due to its SoC being OoB. The problem formulation addressed the realities of
an online deployment, in which bids on the PFR market must be done on the day before,
when it is not possible to accurately predict the SoC, as the requirement to discharge and
charge the battery on a PFR market is dependent on power grid frequency deviations,
which cannot be accurately predicted day-ahead. Thus, the state information for the RL
was limited to information that is available at bidding time. It was observed that the agent
learned behavior that took into account the benefits of bidding on high-price hours and
the increased risk of penalties of participating in PFR markets for several hours without
allowing the battery to rest.

A novel methodology integrating a real-time battery simulation with a reinforcement
learning agent bidding on hourly markets was proposed in this article. The main finding
is that this approach promises to achieve the dual goal of maximizing market revenues
while minimizing penalties caused by short-term failures to provide the frequency reserve.
In further work, the reliability of the methodology can be improved by addressing the
following limitations: Firstly, a 2-month dataset was used, so market and grid frequency
data for a longer time-period can be collected and preprocessed. Secondly, the state space
can be broadened with any variables that may have an impact on the power grid frequency.
Although it is not possible to accurately predict the grid frequency in a day-ahead bidding
scenario, some feature engineering based on historical frequency data is an avenue of
further research. Finally, automated machine learning methods that have recently emerged
for reinforcement learning applications can be used to search for the optimal neural network
architecture and hyperparameters.

For further work, batteries for supporting photovoltaic installations in residential and
commercial buildings are an application area that would benefit from optimization on the
two timescales that have been considered in this paper. Maximum power point tracking
(MPPT) algorithms have been proposed to control the battery and thus create an ideal load
for photovoltaic generation. However, such batteries have other uses related to shifting
power consumption from the grid and possible photovoltaic power sales to the grid, taking
into account variable electricity prices. The MPPT and variable electricity price exploitation
are two optimization tasks that occur on two different timescales but cannot be addressed
separately, since they both affect the SoC of the same battery.
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Abstract: The increasing number of prosumers and the accompanying greater use of decentralised

energy resources (DERs) bring new opportunities and challenges for the traditional electricity systems

and the electricity markets. Microgrids, virtual power plants (VPPs), peer-to-peer (P2P) trading

and federated power plants (FPPs) propose different schemes for prosumer coordination and have

the potential of becoming the new paradigm of electricity market and power system operation.

This paper proposes a P2P trading scheme for energy communities that negotiates power flows

between participating prosumers with insufficient renewable power supply and prosumers with

surplus supply in such a way that the community welfare is maximized while avoiding critical

grid conditions. For this purpose, the proposed scheme is based on an Optimal Power Flow (OPF)

problem with a Multi-Bilateral Economic Dispatch (MBED) formulation as an objective function.

The solution is realized in a fully decentralized manner on the basis of the Relaxed Consensus +

Innovations (RCI) algorithm. Network security is ensured by a tariff-based system organized by a

network agent that makes use of product differentiation capabilities of the RCI algorithm. It is found

that the proposed mechanism accurately finds and prevents hazardous network operations, such as

over-voltage in grid buses, while successfully providing economic value to prosumers’ renewable

generation within the scope of a P2P, free market.

Keywords: renewable energy; peer-to-peer; electricity market; economic dispatch; consensus +

innovations; distributed energy resources

1. Introduction

Advances in technology for electricity generation, storage and smart meters as well as
the declines in cost of access to these technologies pose a paradigm shift in the electricity
sector as the number of consumers who are becoming active participants in the electricity
market is rapidly increasing [1]. This opens the door for possibilities on how to envision
the new electricity market design while facing the energy trilemma: Transitioning to zero-
carbon emissions in energy generation while providing universal and secure access to
energy and granting that access in an affordable manner [2]. One key element of such
market design involving prosumers is the inclusion of a central coordination for energy
management purposes that aggregates the demand response potential of a community of
prosumers as suggested by authors in [3].

Individually, prosumers have little impact at a transmission level and the complexity
of communication and transactional costs may outweigh the potential benefits of prosumers
directly participating in the wholesale market [4]. In this scenario, if prosumers do not see
benefits in being part of the retail market, they will see an incentive in going off-grid [5].
As prosumers migrate offline, the costs of the network will be shared among the rest of
participants, increasing the value of the service provided by the network [6]. Peer-to-Peer
(P2P) coordination comes with the benefits of building sufficient aggregated Distributed
Energy Resources (DERs) as to influence the wholesale market and to extract value from
trading at a prosumer level. P2P energy trading allows prosumers to directly sell and
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buy electricity to one another without the need for a central coordinator. However, in the
shift toward a more decentralised energy supply, there is also an increasing demand for
prosumers to play a greater role in ensuring grid stability, thus, coordination mechanisms
should also include this functionality.

This paper, therefore, proposes a P2P coordination for energy communities that max-
imises the community welfare while avoiding critical grid conditions. It is especially
intended for prosumers with their own renewable generation and the possibility of inter-
mediate energy storage, who want to cover temporary energy shortages at low cost and to
share surpluses profitably as part of an energy community. The community approach for
peer-to-peer power exchange is modeled in form of a Multi-Bilateral Economic Dispatch
(MBED) optimization problem [7].

In order to take into account physical constraints of the network such as voltage
or thermal loading of network elements, this approach could now be combined with
an optimal power flow (OPF) problem. P2P approaches including the network security
as constraints for the OPF problem are, for instance, investigated in [8–13]. This paper
takes a different approach by rather building the network requirements directly into
the negotiation mechanism of the economic dispatch: Sorin et al. show in [7] how the
the Relaxed Consensus + Innovations (RCI) method can be used to solve the MBED
problem in a fully decentralized manner by means of agents. They also show how to
implement a product differentiation into the negotiation scheme that can take additional
trade characteristics of the exchanged power into account. The P2P scheme presented in
this paper makes use of this product differentiation in order to iteratively increase the
price penalty of harmful power exchanges until they are prevented. This approach renders
the load flow and the underlying network topology itself to not directly be part of the
optimization problem. In each iteration, only a normal load flow calculation has to be
performed to provide input parameters for the price penalty terms. This calculation could
be realized by a single designated agent controlled by the grid operator or community
coordinator that then shares price signals with the peers.

Key aspects are found throughout this work. On the one hand, the possibility to
establish an electricity market where participating agents can express preference and freely
offer and demand power from sources at will, given the fact that the market mechanism
is formed in a renewable energy-only local distribution grid of prosumers. On the other
hand, the inclusion of a somewhat central grid operator at a local grid level has the rights
to penalize or reward certain trades or to establish a P2P market where participating agents
can freely express preference. Such agent is modeled with limited rights. Namely, its
role is restricted to check for congestion problems at certain components of the network
and to apply tariffs to the participating prosumers whose trades are found to cause those
congestions.

The remaining part of this paper is structured as follows. Section 2 describes the
methodology of the proposed P2P scheme which is based on a iterative process combining
P2P negotiations and load flow calculations. For this, the modeling of the prosumers and
their control strategies, the formulation of the P2P power exchange, the MBED formulation
of the addressed optimization problem, the RCI method and the consideration of network
constraints within the negotiation scheme are presented. Section 3 shows numerical
results of an implementation of the proposed P2P scheme for a 12-bus-meshed network of
prosumers. The agent-based P2P mechanism is realized in python, the network topology is
built with the python open-source library pandapower [14], which is also used for load
flow calculations. The results show the successful prevention of network problems and
provides insight into the conversion behavior of the iterative trading scheme. Finally, in
Section 4 key findings and future work are discussed.
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2. Methodology

2.1. Prosumer Simulation

A prosumer it is thought of as wanting to maximize the consumption of its own
energy production. For that, photovoltaic (PV) generation is consumed first. Subsequently,
the battery energy storage system (BESS) is charged until a desired state of charge (SOC)
is reached. Finally, the prosumer feeds the surplus generation into the community grid,
should there be any. Similarly, a prosumer’s default behavior at the time of no PV genera-
tion is to demand power from its BESS and then to buy from the grid as the BESS’s SOC
falls below a desired limit. Figure 1 shows a conceptual diagram of the basic prosumer
components and the allowed power flow.

Figure 1. Representation of the power and data flow at a prosumer.

The black arrows denote the power flow whereas the grey arrows denote data flow.
Data are here referred to the historical data of PV generation and a load profile in kWh
for a given time step length, ∆t. Naturally, the power flows in both directions for the
exchange with both the BESS and the grid. That is, it does not account for any physical
phenomena with regards to its internal components and, thus, it does not account for
non-linear behavior of the SOC. The power balance equation that governs the prosumer’s
interaction with the power system is stated as follows:

PPV + PBESS + PLoad + PGrid = 0 (1)

where PPV is the power generated by the PV generator, PBESS is the power exchange with
the BESS, PLoad is the power requirements of the prosumer and PGrid is the power exchange
with the grid point of connection.

2.2. Peer-to-Peer Market Coordination Model

An OPF calculation needs to account for congestion events in the power system and
to access a solution in which they are tackled as effectively as possible. As such, to act and
correct hazardous network operation by means of PV curtailment, load demand reduction
or shifting and similar strategies by order of a central processing unit at a grid level through
direct intervention might result in satisfactory grid management. However, the manage-
ment of the OPF conditions by direct intervention and by controlling a grid coordination
agent is not here believed to be a satisfactory enough solution for the prosumers involved.
It is, instead, the intention of this work to provide an automatized solution that does not
rely on such a direct intervention from a grid coordination agent on private prosumer
installations and demand needs. It is believed that a free-market trading scheme provides
a more satisfactory coordination than that of direct obligation, regulation and control.

A P2P market mechanism is applied in order to create an environment where pro-
sumers can trade and exchange the power generation of their PV installations with other
prosumers as agents of a market. This differs from a pool-based market, where all power
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generation is offered in a centralized exchange, where agents can then ask for the needed
energy at the negotiated price. P2P markets are based on simultaneous negotiation of
bilateral-trades where prosumers directly agree among each other on the energy and price
traded. This offers a transparent clearing mechanism that involves all prosumers equally.

In this work, the role of a central coordinator is reduced to monitoring possible grid
congestion occurrences. This market is built such that the valuation of certain trades is
penalized in the case that the prosumer biding a power quantity is subsequently responsible
for an over-voltage occurrence at its bus or thermal overload on the line through which its
power is delivered. Therefore, the natural willingness of prosumers to trade among each
other given the cost of certain trades is ultimately assuring an optimal network use. The
proposed methodology allows for a simultaneous negotiation over the price and energy of
multi-bilateral trades along a predefined trading scheme built directly in the negotiation
mechanism itself. A full P2P market with a complete communication graph is considered,
where every agent, n, in the grid is able to trade with the rest of neighboring agents, m, on
the local grid without the need to be physically connected to them. In order to model a full
P2P trading scheme, the net power injection of any agent n ∈ Ω is considered as the sum
of the bilaterally traded power quantities with neighboring agents m ∈ ωn. A neighbor
here might not necessarily only be physically connected agents m to agent n, but rather
any other agent able to trade with the latter. A power quantity Pn injected by agent n can
be defined as follows.

Pn = ∑
m∈ωn

Pnm (2)

The generator reference system is used, meaning that power injection takes positive
values for those agents behaving as generators and negative values for consumers. The
set of variables {Pnm|n ∈ Ω, m ∈ ωn} is the set of decision variables. An agent’s limitation
on the quantity of power to be injected is defined by the agent power boundaries that
must satisfy the following.

Pn ≤ Pn ≤ Pn (3)

A prosumer’s boundary power injection is Pn, Pn ≥ 0 at times when a prosumer
behaves as a generator and Pn, Pn ≤ 0, otherwise. Similarly, the decision variables assume
the same criteria and are, therefore, Pnm ≥ 0 for when prosumer n is a generator and
Pnm ≤ 0, otherwise. The production cost or willingness to pay of a prosumer n is modeled
as in [15] by the quadratic function of the power set-point with positive parameters an, bn

and dn,

Cn(Pn) =
1
2

anP2
n + bnPn + dn, an, bn, dn ≥ 0 (4)

The cost of the generator or willingness to pay of the consumer is complemented with
the cost of the bilaterally traded quantity towards each neighboring prosumer and has
the following form:

Ĉn(p)n = ∑
m∈ωn

cnmPnm (5)

where p = (Pnm)m∈ωn is the vector of decision variables of prosumer n and cnm is the
bilateral trading coefficient imposed by prosumer n on the trades with the rest of neigh-
bors m ∈ ωn. The bilateral trading coefficient cnm is defined for the purpose of product
differentiation. This coefficient encapsulates the information about what cost is applied to
certain trades given the nature of the trading under the criterion g ∈ G being G the set of
possible criteria of prosumer n applied to its trades with prosumer m. The bilateral trading
coefficient has the following form.
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cnm = ∑
g∈G

cg
nγ

g
nm (6)

The bilateral trading coefficient indicates the objective value of a trade under the
perspective of prosumer n through the parameter γ

g
nm ≥ 0, called the trade characteristic

under criterion g. This allows for flexibility in the nature of the bilateral trading cost as
to what value is given to what trading characteristic. For instance, the criteria g could
refer to the origin of the power traded, whether it comes from renewable sources or not
or the distance between the producer and the consumer. The relative cost that prosumer
n applies on the trade is denoted by the parameter cg

n, called the criterion value. The
nature of the bilateral trading coefficient allows for expressing a variety of strategies for the
conformation of a market mechanism. For instance, the trade criterion could be subjected
to the decision of a centralized coordinator entity in order to express taxation or it could
be set as a completely decentralized notion in order to express prosumer preference over
certain trades.

2.3. The MBED Formulation

The objective of the MBED problem is to maximize the social welfare of the neighbor-
hood of prosumers at every time step of the simulation, while satisfying the demand and
allocating the power generation. The problem formulation as applied in this work for a
time step t takes the following form:

min
D

∑
n∈Ω

(Cn(Pt
n) + Ĉn(p

t
n)) (7)

s.t. Pn ≤ Pt
n≤ Pn ∀n ∈ Ω (8)

Pt
nm + Pt

mn= 0 ∀(n, m) ∈ (Ω, ωn) (9)

Pt
nm≥ 0 ∀(n, m) ∈ (Ωp, ωn) (10)

Pt
mn≤ 0 ∀(n, m) ∈ (Ωc, ωn) (11)

with D = (pt
n ∈ R

|ωn |)n∈Ω; and Ωp and Ωc denoting the sets of producers and consumers,
respectively. A prosumer is subject to inject a power quantity within its capabilities as
stated in Equation (8). The role of consumer and producer is enforced by the sign of the
power injected and that is reflected by constraints (10) and (11), respectively.

Since the MBED is a convex optimization problem, there is a single optimal solution.
From here on, the followed methodology is described for solution through the RCI approach
as in [7]. The approach followed in this work does not extend for the multi-time step
formulation, in which ramping constraints and time-dependent behavior such as BESS
charge/discharge can be considered. Here, BESS charge and discharge are performed
within the prosumers’ premises prior to the application of the P2P market mechanism. For
such exemplary multi-time step formulation and solution of the C + I approach, the reader
is referred to [15].

The stated problem is separated into subproblems subject to be solved locally by
each prosumer. The cost function’s parameters an and bn as well as the bilateral trading
coefficient cg

nm are private to every prosumer. Indeed, every market participant is bound by
the trading reciprocity constraint only, formulated in Equation (9), as to what information
is shared among prosumers in the market. The proposed convex optimization problem
verifies the sufficient condition for strong duality called Slater’s condition. The implications
are that it is possible to solve this problem in a decentralized manner, where all prosumers
focus only on solving their own local welfare maximization problem and it is only by
construction that, by doing so, the maximum social welfare is achieved at convergence.
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2.4. The Relaxed Consensus and Innovations Algorithm

At every time step, t, of the formulation at which a market is formed, each prosumer
has to solve the following problem at iteration i:

min
D

Cn(Pt
n + Ĉn(pt

n))− (pt
n)

⊤λi,t
n (12)

s.t. Pn ≤ Pt
n≤ Pn (13)

Pt
nm≥ 0 ∀m ∈ ωm i f n ∈ Ωp (14)

Pt
mn≤ 0 ∀m ∈ ωm i f n ∈ Ωc (15)

where the Lagrangian dual variable λi,t
n = (λi,t

nm)m∈ωn denotes the vector of price estimates
of prosumer n at iteration i in time step t and (pt

n)
⊤ is the transposed vector. Here,

in order to solve this problem, a gradient step approach is taken and power boundary
constraints are enforced through Lagrangian relaxation as in [16]. The dual variables for the
complementary slackness of the power boundaries are denoted as µn and µn. An iteration
of the RCI algorithm as solved by prosumer n is shown in Figure 2.

Figure 2. Diagram of the Relaxed Consensus + Innovations algorithm.

The RCI algorithm can be split into three main steps. The first and second steps are
the updates for the dual variables λi,t

n of the trading reciprocity constraint and the power
boundary constraints µn

i,t and µn
i,t. The third step is the update of the decision variables

by using the gradient step method. The update of the price estimates is carried out by each
prosumer, who comes up with a solution for each bilateral trade with the rest of prosumers.
Although the calculation is performed locally, a consensus has to be accomplished on
the price estimates for each pair of prosumers involved in a trade (i.e., λnm = λmn) after
convergence. Similarly, the power reciprocity constraint in Equation (9) is enforced during
the dual variable update such that the power quantity observed by the prosumers involved
in the trade is equal (Pnm = Pmn). This is given by the following λ-update:
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λi+1,t
nm = λi,t

nm − βi,t(λi,t
nm − λi,t

mn)− αi,t(Pi,t
nm − Pi,t

mn) (16)

where αi and βi are sequences of positive factors according to [17]. These parameters are
subject to tuning and constitute a trade-off between convergence speed and resilience
to change. The dual variable update of the power boundary constraints is given by the
following:

µn
i+1,t = max(0, µn

i,t + ηi,t(Pi,t
n − Pt

n)) (17)

µn
i+1,t = max(0, µn

i,t + ηi,t(Pt
n − Pi,t

n )) (18)

where ηi is a persistent sequence positive tuning parameter similar to αi and βi. The power
set point for a negotiated trade between any two agents n and m, if λ̂t

nm = λt
nm − ct

nm, can
be written as Equation (19) and the decision variable is updated as in Equation (20):

P(m),i+1,t
n =

λ̂t
nm − µn + µn − bn

an
(19)

Pi+1,t
nm = max(0, Pi,t

nm + f i,t
nm(P(m),i+1,t

n − Pi,t
n )) (20)

where f i,t
nm is an asymptotically proportional parameter with the form as in Equation (21).

This is the primal update in the case of a prosumer acting as a generator. The max operator
in (17), (18) and (20) is to be substituted for a min operator in the case of a prosumer acting
as a load:

f i,t
nm =

|Pt
nm|+ δi,t

∑l∈ωn
(|Pt

nl + δi,t|)
(21)

where δi,t is a positive persistent sequence for which its value is taken from [7]. The iterative
process is finished when the stopping criterion is met. Three parameters are defined in
order to check for convergence of the primal and dual updated. Namely, ǫP, ǫλ and ǫµ, as
follows.

|λi+1,t
nm − λi,t

nm| ≤ ǫλ (22)

|Pi+1,t
nm − Pi,t

nm| ≤ ǫP (23)

|µi+1,t
n − µi,t

n | ≤ ǫµ (24)

The criterion in Equation (24) is optional but can provide better monitoring of the
convergence. Here, only the dual price estimates and primal updates are inspected further
and their implementation is recommended by [7], where more insights on the iterative
process are found and from which the values of parameters α, β, δ and η are taken. Further
details on these parameters are found in the Appendix.

The amount of information exchange per iteration is very low and restricted to the
power and price estimates. Cost function parameters and power injection boundaries
(an, bn, Pn, Pn) as well as criterion parameter (cg

n, γ
g
nm) are kept private for each prosumer

involved in a multi-bilateral trade, rendering this P2P market structure very secure and
robust against an agent gaming the market.

A central coordinator is simulated, who checks for possible congestions, identifies
the location of hazardous operation, stores the results of the network power flow, the
information about the overall simulation process outside prosumer premises and shares
relevant information with the prosumers. It is also another agent of the micro-grid and a
P2P market participant capable of buying and selling energy. It represents the slack bus
at the transformer with the external grid at the higher voltage level, which can absorb
the surplus local power generation or deliver the needed power at moments where the
demand exceeds the generation within the micro-grid.
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For the purpose of information exchange, a broker entity is created to manage the
information exchange and it is responsible for receiving all sent messages of all agents.
Those messages (i.e., Pnm and λnm) are sent to the exchange from where the broker forwards
them to the rest of the peers. The events are ordered as follows: (i) The broker sends the
common estimates at iteration i to all agents in the market, (ii) all agents run an iteration
of the RCI algorithm with the new information and yield their local updates at iteration
i + 1, (iii) agents send the information back to the broker and (iv) the stopping criterion is
evaluated in order to break the iteration or to continue it.

2.5. Safety Operation of the Grid

The central coordinator has the permissions to apply an external cost to the prosumers
in the grid. In this work, criterion parameters {cg

n, γ
g
nm} under criterion g ∈ G are pushed

to the central coordinator. Congestion is here defined as over-voltage at buses with a
per-unit voltage V[p.u.] ≥ 1.03 and thermal overload at lines with loading percent ≥ 80 %.

In this work, three criteria, g1, g2 and g3 are chosen to be over-voltage, thermal
overload and the distance from a bus with over-voltage to the rest of buses where agents
are connected to, respectively. Distance is referred to as the length of the cable that connects
one bus to the other. For the sake of simplicity, it is assumed that the grid topology is a
strongly connected graph where a vertex is representative of a bus. This holds true for
networks in which every market participant is able to trade with every other participant
who is not directly and physically connected to the former. However, the power traded
should be always able to reach the respective trading peer. Referring to buses is similar to
referring to agents connected to them as for the set notation in the coming lines.

Penalty tariff under criterion g1 is always applied in conjunction with that under
criterion g3. That is because the intention is to shift the provision of power from prosumer
n causing bus over-voltage to the rest of prosumers demanding its power. However, in
order for the algorithm to find an alternative, the cost should be differentiable. Therefore,
the differentiating criterion is chosen to be the distance in km. The respective criterion
values for criteria g1 to g3 are in this work chosen to be cg1

n = cg1 = 0.5 c€/kWh, cg2
n =

cg2 = 0.5 c€/kWh and cg3
n = cg3 = 0.5 c€(km · kWh).

The central coordinator holds the information of what tariffs are to be applied to what
prosumers as penalizations for a behavior that results in grid congestion. The penalties
take the following form.

ρt = cg1 · γg1,t + cg2 · γg2,t + cg3 · γg3.t (25)

γg1,t = (γ
g1,t
nm )n∈Ωg1,m∈Ωn ,g1

(26)

γg2,t = (γ
g2,t
nm )n∈Ωg2,m∈Ωn ,g2

= (γ
g2,t
mn )n∈Ωg2,m∈Ωn ,g2

(27)

γg3,t = (γ
g3,t
nm )n∈Ωg3,m∈Ωn ,g3

(28)

Once the algorithm converges and the market is cleared, the results of the power
trades are passed to a power flow calculation instance in order to acknowledge the new
state of the buses and lines, given the new power trades. Should the penalties not be great
enough to shift the market trades towards a safety network operation, the penalization
is updated in order to increase the magnitude of the tariffs imposed over problematic
behavior. At a time step t for an iteration k in the global iteration, penalty updates are
performed iteratively as suggested in [18] with the following form:

ρk+1,t
nm = cg,t

n [γ
g,t
nm + (k − 1)∆up] (29)

where ∆up is an incremental coefficient to increase the tariff ρ over iterations k, only
activated after the second global iteration. If the grid state after the market clearance is
proved to not incur in congestion at any point, the optimal power flow has been found, the
global iteration is exited and the simulation can continue to the next time step t + 1. The
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overall process runs by (i) checking whether the network power flows at time step t incurs
in grid congestion, (ii) identifying prosumers causing congestion, (iii) applying penalization
to the respective prosumers at iteration k, (iv) running the RCI algorithm and obtaining
a market clearing with traded power quantities, (v) running a power flow to check the
new state of the grid and (vi) updating the penalties in iteration k + 1 if congestions are
not fixed or updating exit processes if the network is safely used and continued with t + 1.
Figure 3 illustrates the described process.

Figure 3. Diagram of central coordination control over secure network operation.

2.6. Limitations and Validation

Current methods for the solution of this optimization problem make use of the gener-
ator quadratic cost function model as the objective function and renewable energy sources
such as PV are treated as must-take generation [17–21] and are accounted for as a system
constraint or not accounted for at all [9,22,23]. Here, the quadratic generator cost function
will be used as a virtual cost function to model prosumers’ involvement in a P2P market
and not necessarily to represent the cost of generation. This function serves the purpose of
guiding the RCI algorithm towards an optimal solution that satisfies all demands while
allocating the generated PV power production. The meaning of the linear and quadratic pa-
rameters an and bn for prosumer n is of key importance for allocating the production of that
prosumer and whose magnitude directly influences the overall prices of electricity within
the market. Should prosumers’ have different cost functions, competition would drive
variance on who sells or buys first from whom, as generation from cheaper installations is
sold first (conversely, prosumers with lowest willingness to pay are first supplied).

The de facto implications of the prosumer’s PV quadratic cost function parameters
and the clearing prices that arise from them is subject to a variety of strategies for market
configuration. Benefits of this approach are that it is possible to adjust parameters an and
bn for a number of prosumers in a micro-grid in order to obtain a clearing price matching
the average wholesale price of electricity within a variation range. Moreover, setting these
parameters as equal for all prosumers produces a scenario where prosumers with surplus
PV generation are equally perceived by the RCI algorithm as for the incurred overall cost
they introduce into the system.

Given the nature of renewable energy sources, the establishment of such P2P market is
likely to fall into local power shortage or surplus due to PV power generation intermittency.
In order to overcome this shortcoming, the external grid is modelled by the central coordi-
nator as an additional P2P market participant representing the slack bus that acquires all
prosumers’ surplus power generation that could not be allocated locally in the micro-grid.
Conversely, it delivers the needed power provided that the local prosumers’ PV generation
falls short to meet the local load demand. This behavior is represented by the following
equation:

Pk,t
ExtGrid = − ∑

n∈Ω

Pk,t
n (30)
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Here, the generator system applies, being Pk,t
n > 0 for prosumers’ PV power generation

and Pk,t
n ≤ 0 for prosumer demand. Therefore, the external grid agent buys surplus PV

generation power when Pk,t
ExtGrid ≤ 0 and sells power when Pk,t

ExtGrid > 0. This allows for
the possibility to maintain a continuous P2P market mechanism throughout day and night.
The external grid’s cost function parameters are tuned to give preference to trading with
renewable energies first and serve as a reserve that only ensures power balance. At the time
of tariff imposition, the quantity absorbed by the external grid, Pk,t

ExtGrid, is also shortened
through the external grid penalty incremental coefficient ∆

up
ExtGrid and follows the following

form:

Pk+1,t
ExtGrid = [Pk,t

ExtGrid + (k − 1)∆up
ExtGrid] (31)

∆
up
ExtGrid < 0 i f Pk,t

ExtGrid > 0 (32)

∆
up
ExtGrid > 0 i f Pk,t

ExtGrid < 0 (33)

∆
up
ExtGrid = 0 i f Pk,t

ExtGrid = 0 (34)

where ∆
up
ExtGrid takes negative values when the purpose is to reduce the external grid supply

and positive values for when the aim is to reduce the external grid demand. The effect is
that whenever there is a congestion occurrence and the corresponding tariff is applied, the
external grid also reduces the absolute power injection in order to produce an actual shift
in the demand.

3. Results

For the purpose of showing how the proposed methodology manages the interaction
of different prosumers and solves congestion events during an optimal power-flow, a 12-
Bus meshed network has been created. The topology of the network is shown in Figure 4.
All prosumers count with PV installations and BESS. Moreover, they have the same cost
function parameters which are smaller in magnitude than the cost function parameters
chosen to represent external grid agents. The parameters for prosumers in the networks
are provided in Table 1.

Table 1. Parameters for external grid and prosumer in selected 12-Bus Network.

Bus a b Installed_pv (kW) Battery_Capacity (kWh) Initial_SOC (%)

Ext grid 0.06 35 - - -
Bus LV0 0.05 25 9.9 3 30
Bus LV1.1 0.05 25 5.1 2 30
Bus LV1.2 0.04 25 5.1 2 30
Bus LV1.3 0.05 25 3 1 30
Bus LV1.4 0.05 25 13.8 4 30
Bus LV1.5 0.05 25 13.8 4 30
Bus LV2.1 0.05 25 2.1 1 30
Bus LV2.2 0.05 25 3 1 30
Bus LV2.3 0.05 25 4.8 2 30
Bus LV2.4 0.05 25 8.7 3 30
Bus LV2.2.1 0.05 25 8.1 3 30
Bus LV2.2.2 0.05 25 9.9 3 30

The parameters chosen for the RCI are set to have dual variables convergence stopping
criteria as provided in Table 2. The election of a high power convergence criterion comes
with the trade-off of lower power allocation accuracy but a faster execution time and
reduction in the average number of iterations needed to converge at every RCI process.
The external grid penalty incremental ∆

up
ExtGrid is set to 10 kW. It is expected that the higher
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∆
up
ExtGrid is, the less surplus generation the grid accepts to buy and the higher the curtailment

is in those moments where over-voltage at certain buses occur. Thermal overload is not
found at any line as the power flow is not big enough at this low voltage level line for the
given load demand and PV generation. For that reason, only over-voltage occurrence is
used for the demonstration of the model capabilities.

Figure 4. A 12-Bus LV Meshed distribution network consisting of prosumers.

Table 2. Dual variable RCI convergence stopping criteria. A 12-Bus Network.

RCI Model Parameter Value

ǫλ 0.001
ǫP 0.01

The simulation is performed in a minute interval throughout the day and it is required
to choose a demonstrative time step to show the effects of the applied methodology.
Therefore, the time step 09:31 a.m. is chosen as the representative time step, where an over-
voltage occurs in Bus LV2.2.2 corresponding to prosumer 12, which is shown in Figure 5.
The vertical axis shows how much the per-unit voltage at each bus surpasses 1.0 p.u. From
the figure, it is clear that before the application of RCI, the voltage at bus where prosumer
12 is connected is 1.033 p.u., which is reduced to 1.009 p.u. after the application of the
RCI algorithm.
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Figure 5. Voltage difference surpassing 1.0 p.u. at each prosumer bus at time step 09:31 a.m.

Figure 6 shows the power quantities traded by the prosumers and external grid agent
at time step 09:31 a.m. Prosumer 12 sees its trades with the rest of the agents penalized
with higher cost, shifting the external grid’s demand preferably towards the rest of the
prosumers first, as the demand is progressively satisfied. The demand of power from
the external grid is shortened after the application of RCI algorithm by the application
of the penalty tariff. This implies that external grid’s demand is fully satisfied with less
power purchase, leaving prosumer 12 completely out of the trading. The market condition
permitted prosumer 12 to curtail full power quantity, which was available to sell.

Figure 6. Power trades before and after RCI algorithm congestion correction. (Left): All agents are
shown. (Right): Only prosumers’ power set points. Time step: 09:31 a.m.

Since all prosumers account for the same cost function parameters, they are all ob-
served by the RCI algorithm as equally eligible peers to trade with. That is why all
prosumers have progressively sold the same amount of power to the external grid agent,
having a flat picture as drawn by the blue bars in Figure 6. As the RCI runs for the first
time and a congestion is found, it is re-run with the mentioned penalties and external grid
demands an update. The λ-convergence and the power convergence for non-zero trades
are shown in Figure 7 from the perspective of external grid.
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Figure 7. RCI λ-convergence and power convergence of an over-voltage occurrence at prosumer 12’s
bus. (Left): Over-voltage congestion occurs. (Right): Congestion is fixed. Time step: 09:31 a.m.

Each prosumer tried selling its full surplus power produced from PV and RCI algo-
rithm yielded a power cost of approximately 25.25 c€/kWh. However, after the recognition
of over-voltage occurrence and the respective penalty updates, the implemented RCI al-
gorithm generates a new solution respecting the security of the network, which is shown
at the right-hand side of Figure 7. An overview of the evolution of the voltage levels at
the prosumer buses during the simulation horizon of 24 h is shown in Figure 8. The left
hand side shows the voltages before the application RCI algorithm, where we can observe
that the voltage levels increase beyond the allowed limits at mid-day, which is a time with
high PV production. However such violations are removed after the application of the
algorithm, as observed on the right-hand side.

Figure 8. Voltage level evolution in per-unit throughout the entire simulation of one day for all buses.
(Left): Over-voltage congestion occurs. (Right): Congestions are fixed.

Table 3 shows the performance of the algorithm when run throughout an entire day.
Since the data are sampled in minute intervals, the nº of RCI problems solved is likely to
be 1440. In other words, one RCI solution each minute in order to find a market clearing.
However, as some minutes where found to incur in network congestion at some point,
penalties are applied and the RCI needs to run again finding a new optimal market clearing.
Hence, more iterations than amount of sample points in the data are needed.
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Table 3. Results of a simulation of a day. A 12-Bus Network.

Description Value Unit

Run Time 7.6 min
nº of RCI problems solved 1452 -
nº of RCI with >1 iteration, i 581 -
Average nº of RCI iterations for RCI with >1 iteration 250.3 -
Median of RCI iteration for RCI with >1 iteration 40 -
Average time per RCI solution 0.31 sec

The load profiles vary little during some periods of the night and day. Therefore, the
RCI algorithm requires no extra effort to find a solution from minute to minute when the
state of the network is fairly stable, needing only 1 iteration to find the optimal allocation.
Conversely, times with load or PV production variation need more RCI iterations to
converge. Table 3 shows how many minutes of the day needed more than 1 RCI iteration,
meaning higher power requirement variation. Average and median of the nº of RCI
iterations show some minutes required a higher effort in order to find the optimal solution.

Figure 9 shows the a histogram of the number of iterations needed for each RCI
Algorithm to converge, given that the RCI algorithm needed more than one iteration to find
the solution. Linear scale on the left-hand side versus logarithmic scale on the right-hand
side. Specifications on the equipment used in this work are found in the Table A1 in
the Appendix B.

Figure 9. Histogram of the number of iterations for the convergence of each RCI process that needed
more than one iteration to find a solution. (Left): Linear scale. (Right): Logarithmic scale.

4. Conclusions

A power flow calculation model has been developed in order to simulate a prosumer’s
behavior. The prosumer is expected to first satisfy its demand via its own PV installation to
then charge the BESS with its eventual surplus power production and, finally, to feed the
BESS rejected power into the local grid in exchange for monetary payment. Similarly, had
the prosumer been unable to fully satisfy its demand throughout the PV installation and
the BESS discharge, the prosumer is supplied via the local grid, in that order.

A P2P market coordination is established where prosumers are considered agents
in the market along with the micro-grid operator, modelled as the EGrid agent, that also
participates in the trade mechanism. The P2P market coordination is constructed via the
RCI algorithm that solves the MBED problem at every time step of the simulation. The
problem is solved in a decentralized manner and locally at each agent’s premises. All
agents focus only on solving their own local welfare maximization problem and it is only
by construction that, by doing so, the maximum social welfare is achieved at convergence.
Information exchange is finally limited to the exchange of the power quantities willing to be
traded plus the price at which they ought to be sold or bought. This allows for a high-quality
data protection trading scheme. A grid operator agent in the market is placed in charge of
supervising the optimal and non-hazardous use of the network, continuously checking for
congestion occurrence defined as over-voltages at certain buses and/or thermal overload
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at certain power transmission lines. This agent is allowed to impose a penalty tariff on
each trade found to be incurring in congestion. Hence, the market is re-established with
updated trading prices and the offers and demands are shifted to find the new optimal
trades that simultaneously prevent congestion again.

4.1. Findings

The RCI model parameters allow for enormous possibilities as it accounts for several
key parameters that incur in trade-offs between performance speed and convergence error.
There is a wealth of trading schemes that can be constructed by tuning the parameters for
the cost of power production and purchase that allows for great variation of the clearing
prices, allowing for the simulation of different markets. Parameters related to the cost of
generation/consumption per agent produce an immense amount of markets by selecting
which agents ought to sell/buy first from which agents.

This work focuses in a renewable-only market, where penalties and rewards for
participants can be based on a wealth of criteria such as tariff on congestion, energy origin
preference, distance to source of power, etc. Furthermore, the criteria onto which penalties
or rewards are settled can be pushed centrally or completely decentralize in order to allow
agents to decide what they consider more costly or what reward’s they are more prone to,
enabling a complete product differentiation scheme in the latter scenario.

The communication graph that drives the P2P trading scheme is chosen here to be
a strongly connected graph, i.e., every vertex of the graph is reachable from every other
vertex of the same graph. Vertex is here referred to agents’ points of connection. The graph
can differ from the physical connection of agents through direct cable.

4.2. Future Work

Deeper investigation should be performed with dedicated computational character-
istics and a real-world distributed system in order to better assess the algorithm speed.
Moreover, the proposed algorithm can be itself implemented more optimally in terms of
run-time by re-structuring the imperative flow. Further improvement should be conducted
by testing asynchronous programming or parallelization in this regard. Real-world im-
plementation should come with the need to asses possible lengthy response times after
optimization from the part of the algorithm as well as the study of smaller simulation time
steps.

Further work should be conducted where the proprietary BESS plays an active role in
the OPF problem at a grid-level, optimizing the charge and discharge and making use of
inter-temporal constraints and multi-time step market simulation. Insights on the possible
application of such multi-step optimization are found, for instance, in [15].

An important tool that could be integrated with our proposed methodology to mitigate
the grid stability issues with prosumers is the forecast of their stochastic power generation,
especially at the distribution grid level. In this regard, several works such as [24,25] provide
forecasting methodology for PV generation profiles, which could provide useful integration
into the developed methodology here presented. This would in turn prove helpful in more
accurate power flows, price convergence and improved grid stability.

Further investigations should be made on the asynchrony of the communication
scheme as well as the intermittency of the connections among agents as performed in [26].
Moreover, the communication graph is supposed to be strongly connected. Further studies
should be conducted on how to easily and quickly define changing environments as lines
undergo failure, maintenance or any other event that affects the graph’s characteristics.

Model parameters such as positive tuning parameters αi, βi, δi and ηi for the RCI
should themselves be subject to further optimization and ought to be studied in more
detail. This numerical optimization lies beyond the scope of this work. Furthermore,
the magnitude of the cost criterion for the bilateral trading coefficient, cg

nm, can produce
different market outcomes. The election of these magnitudes can be further explored as to
what criterion is of most interest given different market scenarios. The optimization prob-
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lem of finding the right amount of penalization required in order to prevent a congestion
occurrence is, in and of itself, a problem subject to deeper investigations.
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Abbreviations

The following abbreviations are used in this manuscript:

ANM Active Network Management
BESS Battery Energy Storage System
DER Distributed Energy Resources
EGrid External Grid Agent
FPP Federated Power Plant
MBED Multi-Bilateral Economic Dispatch
OPF Optimal Power Flow
P2P Peer-to-Peer
PV Photovoltaic
RCI Relaxed Consensus + Innovations
SOC State of Charge
VPP Virtual Power Plant

Appendix A

The values of the tuning parameters of The RCI algorithm discussed in Section 2 are
as follows.

αi =
0.01
i0.01 βi =

0.1
i0.1 δi = 1 ηi = 0.005 (A1)

Appendix B

The same data profile is used for all prosumers in order to represent that all belong
to the same neighborhood where solar irradiation variance is negligible. PV generator
data are given in kWh/min. Data are normalized to per-unit hour and are scaled up by
multiplying the series times the prosumer’s installed PV capacity. Figure A1 shows the PV
profile as well as the load profiles used for prosumers, which are also taken from the same
source.
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Figure A1. (Left): PV profile; (Center): Load profile 1; (Right): Load profile 2.

Appendix C

The following Table A1 shows the specifications of the equipment that run the simula-
tion here presented.

Table A1. Equipment used for the performance of the simulations.

Component Value

CPU Ryzen 5 3600 4.2 GHz 35 MB cache
Memory Crucial Ballistix Sport LT 16 GB (2 × 8 GB) 3000 MHz DDR4
Power supply Corsair RM850
Motherboard ASRock Socket AM4 m-ATX B450M PRO4
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Abstract: Real-time electricity pricing mechanisms are emerging as a key component of the smart

grid. However, prior work has not fully addressed the challenges of multi-step prediction (Predicting

multiple time steps into the future) that is accurate, robust and real-time. This paper proposes a novel

Artificial Intelligence-based approach, Robust Intelligent Price Prediction in Real-time (RIPPR), that

overcomes these challenges. RIPPR utilizes Variational Mode Decomposition (VMD) to transform

the spot price data stream into sub-series that are optimized for robustness using the particle swarm

optimization (PSO) algorithm. These sub-series are inputted to a Random Vector Functional Link

neural network algorithm for real-time multi-step prediction. A mirror extension removal of VMD,

including continuous and discrete spaces in the PSO, is a further novel contribution that improves the

effectiveness of RIPPR. The superiority of the proposed RIPPR is demonstrated using three empirical

studies of multi-step price prediction of the Australian electricity market.

Keywords: demand response; real-time pricing; prosumers; electricity price forecasting; particle

swarm optimization

1. Introduction

The global transition to renewable power generation has resulted in significant re-
search efforts to design real-time approaches for power dispatch in power grids [1] and
microgrids [2]. Real-time pricing is emerging as a solution for coordinating renewable
generation with other intelligent energy resources [3], such as flexible loads [4], battery
storages [5] and electric vehicles [6]. Several authors mean real-time pricing when they
use the term ‘demand response’ [7]. In some works, real-time pricing refers to varying
hourly prices that are determined day-ahead [8] or at the end of the day [9]. Anand and
Ramasubbu [10] proposed an isolated microgrid with hourly changing real-time prices
known only one hour in advance. However, a move towards real-time pricing with prices
being determined one interval at a time at 5-min intervals offers powerful tools for retailers
and utilities to coordinate the diverse, intelligent distributed energy resources of their
customers [11]. The transformation of residential and commercial buildings into prosumers
with local renewable generation is one driver for such short interval real-time pricing
markets [12]. Elma et al. [13] proposed a domestic prosumer operating at five min intervals,
rescheduling or curtailing loads according to forecasted local photovoltaic generation and
real-time electricity prices. Mbungu et al. [14] presented a similar approach for a commer-
cial building prosumer with photovoltaic generation and battery storage; the proposed
real-time pricing scheme is built on top of a time-of-use pricing scheme. Mirakhorli and
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Dong [15] demonstrated that a commercial building prosumer operating under five-minute
real-time pricing could achieve major electricity cost savings in comparison to time-of-use
or hourly pricing. Li et al. [3] optimize a multi-energy prosumer community in a market
environment with real-time prices for electricity and district heating. In some regions,
electricity spot markets support real-time trading at 5 min intervals [16]. An example of
such a market is the Australian spot market [17].

Alahyari and Pozo [18] presented an approach for maximizing the profits for electricity
consumers participating in a demand response program. A real-time electricity price is as-
sumed so that the price for the next hours is not known at the time of planning the demand
response actions. The proposed framework is able to use a forecast of such a real-time
price and is able to cope with uncertainties in the forecast. Thus, the approach presented in
this paper could be directly exploited in the demand response optimization proposed by
Alahyari and Pozo [18]. Moving to real-time spot prices, such as prices that change every
5 min, motivates a rethinking of energy management approaches to address a real-time
timeframe. For example, weather forecasts that are crucial to consumption forecasting
are usually not performed short-term to address weather disturbances. However, such a
short-term forecast is provided in Thilker et al. [19]. These forecasts are advantageously
used by a model-predictive controller managing indoor climate, with the goal of reducing
electricity consumption while maintaining indoor comfort within specifications. Our real-
time electricity price forecast is not directly comparable to the short-term weather forecast
in [19], as the price remains constant for the market interval, e.g., 5 min. However, as short
intervals such as 5 min become more common in real-time electricity pricing, a rethinking
of energy management system research to exploit short-term generation and consumption
forecast will be needed.

This article proposes a novel real-time electricity price predictor, and the Australian
spot market will be used as a case study due to the availability of open data. However,
our proposed approach uses generally applicable time series forecasting techniques that
are not specific to spot markets, so the proposed forecasting method is adaptable to other
real-time electricity markets such as those referenced above.

Time series forecasting is a mature field of study with diverse applications in academic,
industrial and business contexts. It is defined as the formulation of forecasts on the basis
of data in one or more time series, where time series is a collection of observations made
sequentially through time [20]. A forecasting method is distinguished from a forecasting
model which takes into account underlying distributions of a time series. A forecast is
predicated on the current time step, forecast horizon, and evaluated using the residual
forecast error. In EPF, time series forecasting methods can be grouped into three categories,
statistical, machine learning and hybrid methods. Statistical methods are effective at
capturing seasonality, machine learning captures non-linear behaviors of a time series
such as sudden bursts or jumps, and hybrid methods break down the raw data stream
into sub-components and then apply either statistical or machine learning methods on
these components. Although hybrid methods exhibit high accuracy, they have only been
demonstrated in theoretical settings, and this limits its value in addressing the practical
challenges of balancing high accuracy with robust, real-time processing.

In this paper, we propose a new EPF method, Robust Intelligent Price Prediction in
Real-time (RIPPR), to address these practical challenges. RIPPR is an ensemble technique
that uses Variation Mode Decomposition (VMD) to decompose time series data streams
into K sub-series, where K is chosen by particle swarm optimization (PSO) considering
both forecasting accuracy and forecasting horizon. Each sub-series is modeled using a
variant of Random Vector Functional Link (RVFL) neural networks, Extreme Learning
Machine (ELM), for the h-step ahead point forecast. Finally, the h-step forecast for the
given data stream is taken by aggregating the forecasted values for each sub-series.

The research contributions of this paper are as follows:

1. The design and development of RIPPR, a novel EPF ensemble using VMD and RVFL;

40



Energies 2021, 14, 4378

2. Optimization of the VMD module using PSO to determine optimal modes of decom-
position with respect to forecast accuracy and forecast horizon;

3. Extending the VMD module to process signal edges for real-time EPF applications;
4. Evaluation of RIPPR on three benchmark datasets and one real-world dataset, using

metrics of accuracy and robustness. The four datasets are from diverse energy market
settings that are representative of the complexities of EPF and the robustness of the
proposed method.

The rest of the paper is organized as follows; Section 2 presents related work in
statistical, machine learning and hybrid methods, followed by the proposed ensemble
approach for EPF. The experiments and results are presented in Section 3, and Section 4
concludes the paper.

2. Materials and Methods

2.1. Related Work

Most related work in the domain of EPF is based on statistical models that derive
underlying statistical properties of the time-series data streams for the task of forecasting.
Some of the examples for statistical methods are autoregressive–moving average (ARMA),
autoregressive integrated moving average (ARIMA), vector autoregression (VAR), Kalman
filter-based methods, Holt–Winters exponential smoothing and generalized autoregressive
conditional heteroskedasticity (GARCH). Chujai et al. [21] validated the capabilities of both
ARMA and ARIMA in household electric consumption forecasting. Furthermore, they
evaluate using the most suitable forecasting period for the given use case. Carolina et al. [22]
used the VAR forecasting model to apply to interval time series. Girish et al. [23] presented
the GARCH-based one-hour-ahead price forecasting model and empirically validated
it using voluminous time series generated by the electricity market of India. The main
limitation of statistical methods is the inability to detect or represent the non-linear features
and random changes in a time series.

In contrast, EPF based on machine learning methods such as support vector machine
(SVM), artificial neural networks (ANN), fuzzy neural networks (FNN), recurrent neural
networks (RNN) and randomly connected neural networks is able to capture and represent
these non-linear features. Ziming et al. [24] proposed a month ahead of daily electricity
price profile forecasting based on SVM; SVM is adopted to forecast the prices of peak hours
in peak months. Furthermore, they validated its effectiveness using the Electric Reliability
Council of Texas (ERCOT). Anand et al. [25] deployed an ANN-based PSO model to
forecast future energy demand for a state of India. Both particle swarm optimization (PSO)
and Genetic algorithm (GA) were developed in linear and quadratic forms, and the hybrid
ANN models were applied to different series. They have empirically evaluated the results
comparing with other methods such as ARIMA, linear models. From the optimization
perspective, they have validated the gains of the PSO-based model over the GA-based
model. Yunpeng et al. [26] proposed a model for multi-step ahead time series forecasting
using long short-term memory (LSTM) RNN. Hassan et al. [27] proposed a novel model
based on randomly connected RNNs for electricity load demand forecasting, and the
results prove the superiority of the proposed model. Compared to statistical methods,
machine learning methods capture the non-linear features and random changes to a certain
extent and maintains the potential for further improvements.

A separate stream of related work has focused on hybrid models composed of one
or more statistical and machine learning techniques, as single models cannot effectively
extract features from a complex time series such as those in energy markets that fluctu-
ate rapidly. Hybrid models use different data decomposition techniques to process the
non-linear and non-stationary electricity-related data before applying it to the forecasting
model. Wang et al. [28] proposed a novel method that uses wavelet packet transform (WPT)
to decompose the time series data and particle swarm optimization based on simulated
annealing (PSOSA) and Least Square Support Vector Machine (LSSVM) for wind speed
forecasting and the experiments demonstrated that the WPT decomposition technique
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makes great improvement on the forecast accuracy. Wang et al. [29] proposed a hybrid
model that consists of a two-layer decomposition technique which includes fast ensemble
empirical mode decomposition (FEEMD) and Variational mode decomposition (VMD).
Further, the model uses back propagation (BP) neural network optimized by the firefly
algorithm (FA) as the prediction algorithm. Yang et al. [30] proposed a multi-step electricity
price forecasting algorithm based on the VMD algorithm, improved multi-objective sine
cosine algorithm (IMOSCA), and regularized extreme learning machine (RELM). Addition-
ally, they ensured the model is not dependent on new information during the testing phases,
thereby increasing its practical value. Kaijian et al. [31] developed a method for forecasting
electricity market risk using Empirical Mode decomposition (EMD) based on the Value
at Risk (VaR) model, with Exponential Weighted Moving Average (EWMA) representing
individual risk factors. Separately, decomposition-based TSF methods such as a multi-
objective optimization for short-term wind speed forecasting [32], an ensemble empirical
mode decomposition based crude oil price forecasting [33], as well as AI-based models
that use deep recurrent neural networks [34], long short term memory networks [35], and
hybrid neuro-fuzzy inference [36] for energy consumption prediction were reported in the
recent literature.

Despite hybrid models reporting improvements to the accuracy and prediction horizon
of time series forecasts, two major limitations are inherent in the development of such
models. Firstly, the use of a fixed number of components for the decomposition of the
raw time-series into train and test sets, which implies the test set is required in advance
in the data pre-processing stage [30]. This means the model will underperform when
deployed in a real-world setting where data is acquired in a sequential manner and cannot
be decomposed in advance. Additionally, the model will not be able to adapt to any changes
in the data stream. Secondly, decomposition has to be conducted at the arrival of each
new data point. If the time step (time between two adjacent data points) is smaller than
the time taken to decompose and forecast, such models become impractical for real-world
application settings.

2.2. Proposed Method

The proposed method, RIPPR, is a machine learning ensemble-based decomposition
method that addresses these limitations. In brief, the proposed approach consists of five
main components. The pre-processing module includes a normalization as well as an
extreme outlier removal process, which is then processed by the data decomposition
module. The data decomposition module decomposes a given data stream into K sub-
series where the optimal parameters for the decomposition are chosen by the optimization
module, including the value K. It is followed up by the Forecasting module where each
sub-series is modeled with RVLF for h-step ahead point forecast, which then aggregated for
each subseries in the post-processing module to produce the h-step ahead point forecast.
The RIPPR process is illustrated in Figure 1. It comprises of five modules, data pre-
processing, data decomposition, optimization, time series forecasting and post-processing.
Each module is delineated in the following subsections.

Figure 1. The Proposed Method-Robust Intelligent Price Prediction in Real-time (RIPPR).
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2.2.1. Data Pre-Processing Module

The pre-processing module receives the raw time series data as input. In the context
of energy markets, short-term EPF is a core capability of an energy market that drives
the market’s operational activities. The short-term EPF is also called spot or day-ahead
price forecasting. Here we consider raw time series data to be the spot prices that the
National Electricity Market Operators use to match the supply of electricity from power
stations with real-time consumption by households and businesses. All electricity in the
spot market is bought and sold at the spot price.

In general, to obtain an accurate forecast, the input time series data that are used to
model the forecasting model should be normalized in consideration of the new data that
the model will account for in the future. Due to the high fluctuation and varying nature of
the energy market, each dataset and data sample is unique, posing unique challenges for
EPF. In the context of spot prices, the primary challenge is the presence of noise, including
duplicated values, missing data points, and extreme outliers that will make the forecasting
model weak. In RIPPR, we adopt two techniques to suppress the noise in input data
streams. First, we remove the extreme values to discard extreme outliers in the input data,
and second, we normalize the input data prior to feeding it to the prediction model.

Extreme values (or outliers) are data points that significantly differ from other obser-
vations, and the removal of such extreme values is considered as one of the significant steps
in data pre-processing. This is because machine learning algorithms and corresponding
predictions/forecasts are sensitive to the range and distribution of the input data points;
therefore, outliers can mislead the training process resulting in longer training times and
less accurate models. Extreme values can be of two types, (1) outliers that are introduced
due to human or mechanical errors, and (2) extreme values that are caused by natural
variations of a given distribution. In the context of smart grid/spot prices, the first type is
rarely attested. However, a common case is the presence of extreme outliers. For instance,
wholesale energy prices are influenced by a range of factors, including weather, local
economic activities, international oil prices and resource availability. The availability of
such factors could lead spot prices to be extremely volatile and unpredictable. Thereby, we
intend to address these extreme values using extreme value analysis that use the statistical
tails of the underlying distribution of the variable and find the values at the extreme end
of the tails. Followed by the extreme value removal, we perform min–max normalization
on the time series data to scale the time series data in the range 0 and 1. In general, the
min–max normalization technique does not handle outliers and extreme values, and this is
why normalization is preceded by extreme value removal.

A limitation of the min-max normalization technique is that the values used in the
train-test phases can be very different from a real-world scenario, where the minimum and
maximum values of a time series is not prior. It is necessary to make a realistic assumption
of the min–max values based on expert knowledge of the energy market.

2.2.2. Data Decomposition Module

Time series data can exhibit a variety of patterns; therefore, splitting such time series
data into several distinct components, each representing an underlying pattern category,
could lead to better analysis and pattern identification. The complex characteristics of the
electricity spot price market make it even harder to capture the underlying patterns in order
to forecast spot prices, which makes decomposition an essential component of the proposed
approach. In recent work, a number of signal decomposition algorithms that can be utilized
for time series forecasting were proposed. For example, Empirical Mode Decomposition
(EMD) [37], Ensemble EMD [38], Complete Ensemble EMD with adaptive noise [39],
Empirical Wavelet Transform (EWT) [40] and Variational Mode Decomposition [41] are
several recent signal decomposition techniques.

As stated by Wang et al. [42], Variational Mode Decomposition (VMD) is the state-of-
the-art data decomposition method in signal modeling. VMD decomposes a signal into an
ensemble of band-limited Intrinsic Mode Functions (IMF). It is more effective than other
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signal decomposition methods as it is able to generate IMF components concurrently using
the ADMM optimization method [43], it can avoid the error caused during the recursive
calculating and ending effect, which is a significant issue of EMD [30] and it is significantly
robust to noise as well [41].

In VMD, a real-valued input signal s is decomposed into a discrete number of modes
uk that have specific sparsity properties while reproducing the input. Each mode of χk is
assumed to be most compact around a center pulsation ωk, which is determined along with
the decomposition. Based on the original algorithm, the resulting constrained variational
problem is expressed as follows.

min{uk},{ωk}
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k
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}
s.t. ∑k uk = f (1)

where {uk}:= {u1, . . . .,uk} and {ωk}:= {ω1, . . . ., ωk} are shorthand notations for the set of
all modes and their center frequencies, respectively, and f is the input signal. Equally,
∑k := ∑

K
k=1 is understood as the summation over all modes. Here, K is the total number

of the decomposed modes. Since the decomposition is mainly based on the parameter K, a
significant effort should be placed to select the optimal value.

To address the constrained variational problem, VMD uses an optimization method-
ology called ADMM [41] to select the central frequencies and intrinsic mode functions
centered on those frequencies concurrently. First, minimization with respect to uk (modes)
is considered, and the following is obtained for ûk

n+1:

ûn+1
k (ω) =
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Secondly, minimization with respect to ωk (center frequencies) is considered and
following is obtained for ωk

n+1
:
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Here uk
n+1, ωk

n+1 and λn+1 are updated continuously until convergence. When the
following convergence condition is met, the algorithm terminates, producing the K modes.
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< ε (4)

The generic VMD algorithm is effective for discrete, finite time signals; however, the
boundaries of the signal are a key technical challenge due to the vanishing derivatives in the
time domain boundary [41]. To address this challenge, VMD introduces a mirror extension
of the signal by half its length on each side. However, this means the prediction is based
on using previously seen values as future point forecasts. This is because decomposed
sub-signals assume that the original signal will continue in the form of a mirror extension.
Therefore, generic VMD cannot be used directly in a real-world time series forecasting
setting. In RIPPR, we modified the VMD algorithm by removing this mirror extension.

In Figure 2, we compared the generic VMD algorithm and the modified version (that
has the mirror extension removed) on a benchmark dataset. The results indicate that
the two versions obviously differ, which will lead to different forecasting performances.
However, the effectiveness of the modified-VMD algorithm is necessary for practical use.
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Figure 2. Data decomposition comparison between VMD and modified-VMD.

Returning to the core capability of the VMD method, the decomposition of a signal
depends on the settings of its input parameters. The VMD method consists of five parame-
ters, namely, mode number (K-the number of modes to be recovered), balancing parameter
(α-the bandwidth of extracted modes (low value of α yields higher bandwidth)), time-
step of dual ascent (τ), initial omega (ω) and tolerance (ε). As experimentally proven by
Dragomiretskiy and Zosso [41], ε, τ and ω has standard values across any given signal dis-
tribution. The standard values are; ε = 1 × 10−6, ω = 0, τ = 0. However, k and α depends on
the signal, and this means for each new signal distribution, these two parameters needed to
be adjusted. We address this in the next module using particle swarm optimization (PSO).

2.2.3. Optimization Module

The number of modes to be recovered (K) and the balancing parameter (α) determine
the accuracy of the VMD decomposition. In this module, we utilize particle swarm opti-
mization [44] (PSO) to select the most suitable values for these two values K, α, for a given
forecasting horizon. We consider the prediction time for a given time-step as the objective
function of the optimization technique.

PSO is a metaheuristic parallel search technique used for the optimization of con-
tinuous non-linear problems, inspired by the social behavior of bird flocking and fish
schooling [45]. PSO is a global optimization algorithm for addressing optimization prob-
lems on which a point or surface in an n-dimensional space represents the best solution. In
this algorithm, several cooperative agents are used, and each agent exchanges information
obtained in its respective search process. Each agent, referred to as a particle, follows
two rules, (1) follow the best performing particle and (2) move toward the best conditions
found by the particle itself. Thereby, each particle ultimately evolves to an optimal or a
near-optimal solution. PSO requires only primitive mathematical operators and is compu-
tationally inexpensive in terms of both memory requirements and speed when compared
with other existing evolutionary algorithms [46].

The standard PSO (Algorithm 1) algorithm can be defined using the following equations,

vi(k + 1) = ωvi(k) + c1r1 .(pbest,i − xi(k)) + c2r2 .(gbest − xi(k)) (5)

xi(k + 1) = xi(k) + vi(k + 1)α (6)

where xi is the position of particle i; vi is the velocity of particle i; k denotes the iteration
number; ω is the inertia weight; r1 and r2 are random variables uniformly distributed
within (0, 1); and c1, c2 are the cognitive and social coefficient, respectively. The variable
pbest,i is used to store the best position that the ith particle has found so far, and gbest is
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used to store the best position of all the particles. The basic PSO is influenced by a number
of control parameters, namely the dimension of the problem, number of particles, step size
(α), inertia weight (ω), neighborhood size, acceleration coefficients, number of iterations
(itermax), and the random values that scale the contribution of the cognitive and social
components. Additionally, if velocity clamping or constriction is used, the maximum
velocity and constriction coefficient also influence the performance of the PSO.

Algorithm 1 Standard particle swarm optimization

Input: Objective function to be minimized (or maximized)
Parameters: swarm size, c1,c2,ω, itermax,error
Output: gbest
1: Initialize population (Number of particles = swarm size) with random position and velocity;
2: Evaluate the fitness value of each particle. Fitness evaluation is conducted by supplying the
candidate solution to the objective function;
3: Update individual and global best fitness values (pbest,i and gbest). Positions are updated by
comparing the newly calculated fitness values against the previous ones and replacing the pbest,i
and gbest, as well as their corresponding positions, as necessary;
4: Update velocity and position of each particle in the swarm, using Equations (5) and (6);
5: Evaluate the convergence criterion. If the convergence criterion is met, terminate the process; if
the iteration number equals itermax, terminate the process; otherwise, the iteration number will
increase by 1 and go to step 2.

A novel contribution of this module is that we have extended the basic PSO algorithm
to take both continuous space (R+-space) and discrete space (Z+-space) for optimization.
In the given context, two variables exist for the optimization purpose, namely K and α. The
variable α is a continuous variable, while K is a discrete variable. Therefore, we modify the
basic PSO to consider both R

+ and Z
+ spaces in optimization.

At the start of the algorithm, we place particles randomly such that particle position
for each particle with respect to K is discrete. Then, we round off the vi(k+1) α to the nearest
integer before adding it to xi (k) (Equation (6)). As such, we change Equation (6) for variable
K as follows:

xi(k + 1) = xi(k) + [vi(k + 1)α] (7)

where ‘[ ]’ operation represents rounding to the nearest integer.
The following section describes the fitness function that is used in the RIPPR approach.

This fitness function is selected to cover both prediction accuracy as well as time taken to
the prediction. The more obvious fitness function will be to use the testRMSE directly so that
PSO will find an optimal (K, α) combination so that the forecasting accuracy will be higher.
However, our experiments show that by doing so, it will result in a higher K value which
is not desirable when considering the time taken for the prediction (K separate models will
be created for each sub-series).

To overcome the aforementioned issue, we have included a penalty term to penalize
having a higher K value while having good accuracy. The final fitness function is as follows:

Fitness function = min{testrmse + β × K} (8)

where β is constant, we can control the penalizing term by adjusting the β value. From
our experiments on energy price forecasting, we see that having β = 1 leads to better
accuracy as well as manages to penalize having a higher K value precisely. Depending on
the application, the value for K should be chosen accordingly. The calculation of the fitness
function is given in Algorithm 2.
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Algorithm 2 Fitness value calculation for PSO

Input: K, α, Data (X), forecasting horizon
Output: Fitness value
1: Decompose the data (X) using VMD for the given (K, α) combination;
2: Divide each sequence (sub-series) into multiple input/output patterns called samples for the
given forecasting horizon;
3: Split the samples set into train and test split at a ratio of 6:4;
4: Train on the train data using the time series forecasting module for each sub-series;
5: Predict for the test data using trained models for each sub-series;
6: Aggregate the predicted values for each sub-series to obtain the final prediction for the test
data;
7: Calculate the RMSE value between actual values and predicted values for the test data
(testRMSE);
8: Calculate fitness value as follows: fitness value = testrmse + β × K.

In Figure 3, we illustrate the learning process of PSO to find the optimal components
for VMD. This experiment is conducted using dataset A (Table 1). We used the following
parameters in the PSO algorithm, swarm_size = 10, inertia = 0.7, local_weight =2 and global
weight = 2. We can see that the learning process follows the discrete–continuous search
space as expected. It keeps the variable K in a discrete space while handling the alpha
variable in a continuous search space. The best position for each iteration is circled in the
plot with the iteration number. The spectrum of colors is used to distinguish between
particles of each iteration.

Figure 3. Convergence of discrete–continuous PSO algorithm.
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Table 1. Experiment setup.

Experiment Dataset Description Referred Literature

1 A Spot price, June 2016, NSW
Wang et al. (2017),
Yang et al. (2020)

2
B Load demand, January 2013, NSW

Qiu et al. (2017)C Load demand, April 2013, NSW
D Load demand, July 2013, NSW

3 E Spot price, May 2013, NSW
Peng et al. (2018),
Babu et al. (2014)

Further visualization of the PSO learning process with respect to the fitness value is
shown in Figure 4. On the left is the contour plot for the scattered data and on the right
is the surface plot of the contour plot. The convergence of the PSO to a global optimum
mainly depends on its parameters. The β × K term in the fitness function prevents looking
at higher K values in the search space. Thus above-mentioned parameter configuration
manages to find near-optimal components for VMD in 10–15 min of time.

Figure 4. D visualization of the PSO learning process.

2.2.4. Time Series Forecasting Module

The forecasting module generates predictions for each sub-series of the input time-
series data that are decomposed by the VMD algorithm. In the context of predicting
sub-series of decomposed input data, each time-step is remodeled; thus, it is not possible
to use the previously trained predictive model to predict future values. Therefore, for each
new time-step, the predictive model needs to be remodeled, and the re-training process
should be efficient and effective to provide an accurate predictive model in a limited
amount of time. This duration should ideally be less than the time between two time-steps
in the time-series function.

In general, most recent approaches utilize feedforward neural networks; however,
such feedforward connectionist networks are comparatively slow in training. This slow
learning of feedforward neural networks continues to be a major shortcoming for EPF. The
key reasons for this latency are the utilization of slow gradient-based learning algorithms
and iterative tuning of all parameters of the network during the learning process. In general,
randomly connected neural networks and Random Vector Functional Link (RVFL) [47] in
particular are popular alternative methods for overcoming this limitation. These networks
are characterized by the simplicity of RVFL’s design and training process. It makes them
a very attractive alternative for solving practical machine learning problems in edge
computing. Further, our recent result on the efficient FPGA implementation of RVFL [48]
makes this type of network particularly suitable for the target real-time prediction scenario.
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Here we use a variant of RVFL known as Extreme Learning Machines (ELM) [49]. ELM is
a single hidden layer feedforward neural network (SLFN) that randomly chooses input
weights and analytically determines the output weights. The technical details of the ELM
algorithm used for the RIPPR approach are described below.

For N arbitrary distinct input samples (xi, ti), where xi = [xi1, xi2, . . . , xin]T ∈ Rn and
ti = [ti1, ti2, . . . , tim]T ∈ Rm standard SLFNs with N hidden nodes and activation function
g(x) are mathematically modelled as:

Ñ

∑
i=1

βigi
(
xj
)
=

Ñ

∑
i=1

βig
(
wi.xj + bi

)
= tj (9)

j = 1, . . . . . . , N

where wi = [wi1, wi2, . . . , win]T is the weight connecting the ith hidden node and the input
nodes, βi = [βi1, βi2, . . . , βin]T is the weight connecting the ith hidden node and the output
nodes, Ñ is the number of hidden layer nodes, and bi is the threshold of the ith hidden
nodes. wi·xi denotes the inner product of wi and xi. The above N equations can be written
compactly as:
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wÑ .x1 + bÑ
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Ñ×m

And T =




tT
1
...

tT
Ñ
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where H denotes the hidden layer’s output matrix. ELM tends to reach not only the
smallest training error but also the smallest norm of output weights. According to Bartlett’s
theory for feedforward neural networks reaching smaller training error, the smaller the
norms of weights are, the better generalization performance of the network.

In the following formulations, 11–15, we deliberate the workings of the learning
and generalization of the ELM model. Firstly, output weight optimization is solved as a
minimization problem using the generalized inverse matrix of the hidden layer, followed
by fine-tuning of the ELM generalization across two cases for N >> L and N > L.

The output weight can be obtained by solving the following minimization problem:

Minimize : ||Hβ − T||2 and ||β|| (11)

where H, β and T are defined in (10). The reason to minimize the norm of the output
weights ||β|| is to maximize the distance of the separating margins of the two different
classes in the RVLF feature space.

The optimal solution is given by:

β = H†T (12)

where H† denotes the Moore–Penrose generalized inverse matrix of the hidden layer’s
output matrix, which can be calculated by the following mathematical transformation. This
eliminates the lengthy training phase where network parameters will be adjusted with
some hyperparameters in most learning algorithms:

H† =
[

HT H
]
−1HT (13)
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Input weights of the SLFN are randomly chosen, then the output weights (linking the
hidden layer to the output layer) of an SLFN are analytically determined by the minimum
norm least-squares solutions of a general system of linear equations. The running speed of
ELM can be a thousand times faster than traditional iterative implementations of SLFNs. To
further extend the generalizability of ELM, regularized extreme learning machine algorithm
is introduced [50]. The original algorithm is extended by adding a regularization parameter
(C) to control the generalization. This is divided into two cases as follows;

Case 1:
If the number of training data is very large, for example, it is much larger than the

dimensionality of the feature space,
N >> L:

β =

(
I
C
+ HT H

)−1

HTT (14)

Case 2:
N > L:

β = HT
(

I
C
+ HHT

)−1

T (15)

where I is the identity matrix.

3. Experiments and Results

In this section, we evaluate RIPPR on three experiments conducted on five different
datasets of EPF for the state of New South Wales (NSW), Australia. The datasets were
chosen to reflect the factors of different seasons in Australia. The following section describes
the experiments, their datasets and their characteristics.

The experiments were carried out on a multi-core CPU at 2.8 GHz with 16 GB memory
and GPU of NVIDIA GeForce GTX 1060.

3.1. Experimental Process

First, we will consider the real-world scenario and then modify it to the experimental
study (past data). Here the forecasting horizon is h (i.e., forecasts are generated for h step
ahead). The full process is outlined in Algorithm 3.

Algorithm 3 Experiment procedure

Input: Data (X),h,(K,α) pair for the given h (taken from the optimization module)
Output: h step ahead forecasted value
1: Obtain the most recent 1440 data points from X(1 month period if the data rate is 30 min−1);
2: Decompose the data into K sub-series by using the data decomposition module;
3: Divide each sequence (sub-series) into multiple input/output patterns for the given forecasting
horizon. Here, we will have (1440-h-input size) samples that have target values (outputs). For the
experiment, the input size is kept as 24. We have (1416-h) samples. Call this train set. Last (h)
samples will not have a target value. Call this test set;
4: Train on the train data using the time series forecasting module for each sub-series;
5: Predict for the test data using trained models for each sub-series;
6: Aggregate the predicted values for each sub-series to obtain the final prediction for the test data
(from the h number of predicted values, the last value will give the final h-step ahead prediction
for the given time frame);
7: At the arrival of a new data point, add it to the data set and remove the least recent data point
from the data set and go to step (2).

For the experimental study, we start the above procedure starting from the train set
and continue till the whole test set values are predicted.
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3.2. Results

We report the empirical evaluation of RIPPR in terms of the following performance
metrics, mean absolute error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE) and mean squared error (MSE).

3.2.1. Experiment 1

This experiment was designed as a comparative study of results for dataset A, com-
pared between the modules of RIPPR and the available literature [29,30]. The RIPPR
modules consist of ELM, VMD-ELM with a fixed K = 8 and α = 1500, VMD-PSO-ELM
(Proposed RIPPR approach). The dataset is divided into train and test as follows, as the
training dataset first 25 days is used. Therefore, the training dataset consists of 1200 data
points. As the test dataset, the last 5 days are used. Thus, it contains 240 data points. The
experiment results are shown in Table 2. The experiment compares results in three metrics,
namely MAE($/MWh), RMSE($/MWh) and MAPE(%). In the experiment results, in three
instances MAE and MAPE are superior to results reported in [28].

Table 2. Results comparison for dataset A.

Horizon
(h)

Metric Persistence LSTM ELM
VMD-
ELM

RIPPR
Wang et al.

[29]
Yang et al.

[30]

0.5
MAE 35.75 27.08 38.62 7.92 4.67 7.17 5.05
RMSE 56.38 39.76 55.32 9.26 5.63 9.77 6.61
MAPE 31.43 23.95 30.45 8.64 4.89 7.88 6.22

1
MAE 48.48 43.40 45.11 11.94 5.45 10.54 5.04
RMSE 71.38 60.69 62.72 14.78 6.91 14.50 7.11
MAPE 46.85 38.49 43.01 12.75 6.02 12.17 5.95

2
MAE 66.84 63.45 56.23 13.90 9.87 15.43 10.98
RMSE 94.00 85.77 78.45 17.66 12.35 20.25 14.25
MAPE 78.41 76.45 51.26 14.05 10.21 17.64 12.94

3
MAE 83.79 80.44 62.98 18.37 18.39 21.10 18.02
RMSE 110.87 100.99 84.64 23.69 20.01 26.61 22.52
MAPE 108.17 81.45 63.48 18.34 18.75 24.89 21.47

Across all instances of this experiment, RIPPR reports a better RMSE value than the
literature. A key challenge in EPF is the inability to forecast outliers. From these three
metrics, RMSE is the most sensitive metric to outliers. Therefore, we can confirm that our
model has a more effective capability to forecast outliers than those reported in the related
literature. Optimal component selection of VMD using PSO gained an advantage over the
other models. A single step in this experiment represents 30 min of time.

In this comparison (Figures 5–8), we compared five models for dataset A. The models
include the Persistence model, LSTM (with two hidden layers), ELM, VMD-ELM (with
a constant α-1500 and K = 8) and finally RIPPR, which uses PSO to find the optimal
components for the VMD algorithm. In the first scenario (1 step ahead forecasting), it
is seen that as expected, VMD-ELM outperforms the Persistence model, LSTM and the
traditional ELM model by a considerable margin. The capability of RIPPR over VMD-ELM
is clearly visible in the second9 scenario (Six steps ahead forecasting), where we can see
that the residuals of the RIPPR are significantly lower than the VMD-ELM’s residuals.
These results confirm that RIPPR can significantly outperform the VMD-ELM model. Due
to the lower performance of the Persistence model and the LSTM model, we have excluded
them from the later experiments.
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Figure 5. One step ahead forecasting for dataset A.

Figure 6. Six steps ahead forecasting for dataset A.

Figure 7. Forecasting error-one step ahead forecasting for dataset A.
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Figure 8. Forecasting error-six steps ahead forecasting for dataset A.

Furthermore, to verify the significance of the accuracy improvement of the RIPPR
model, the forecasting accuracy comparison with the aforementioned models is conducted
using Wilcoxon signed-rank test. It is conducted under a significance level of 0.05 in
one-tail-tests. The test results are presented in Table 3. It is clearly seen that there is a
statistical significance (under a significance level of 0.05) for the proposed RIPPR among
the compared models, including the Persistence model, LSTM model, ELM model and
VMD-ELM model.

Table 3. Wilcoxon signed-rank test.

Compared Models

Wilcoxon Signed-Rank Test

OneStep Ahead (α = 0.05;
W = 1611)

SixStep Ahead (α = 0.05;
W = 9882)

RIPPR vs. Persistence 1120 608

RIPPR vs. LSTM 869 499

RIPPR vs. ELM 316 734

RIPPR vs. VMD-ELM 1548 6782

3.2.2. Experiment 2

This experiment was also designed as a comparative study for datasets B, C and D
between RIPPR modules as experiment 1 and the available literature [51]. Note that here
we consider the electricity load demand for the given time period. The first 3 weeks of
each dataset are used to train the model, and the remaining week is used as the test set.
Therefore, the training set consists of 1008 data points, and the test set consists of 336 data
points. The experiment results are shown in Table 4. The experiment compares results
for two metrics, namely RMSE (MW) and MAPE (%). The results clearly indicate that the
RIPPR model has outperformed the available literature for all datasets. We can confirm the
superiority of VMD over EMD in an EPF scenario as presented in this experiment.
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Table 4. Results comparison for datasets B, C and D.

Horizon
(h)

Metric ELM VMD-ELM RIPPR Qiu et al.

B
0.5

RMSE 94.09 37.82 28.21 49.86
MAPE 0.86 0.35 0.27 0.53

24
RMSE 754.18 483.12 420.19 541.53
MAPE 6.94 4.32 4.01 4.62

C
0.5

RMSE 115.61 46.33 37.56 69.55
MAPE 1.09 0.46 0.35 0.65

24
RMSE 567.33 400.16 352.23 377.63
MAPE 5.67 3.78 2.89 3.22

D
0.5

RMSE 142.61 37.47 30.96 75.09
MAPE 1.21 0.31 0.25 0.70

24
RMSE 583.75 375.59 318.15 322.04
MAPE 4.51 2.66 2.39 3.08

3.2.3. Experiment 3

We follow the same configuration as the two previous experiments for dataset E;
RIPPR vs. the available literature [52,53]. All the data were converted into hourly data
similar to the literature. Thus, 1 day has 24 data points. In total, 744 data points were
obtained, and 24 data points were set as test data for one step (one hour) ahead forecasting
scenario. For one day (25 steps) ahead forecasting scenario, 168 data points were considered
as the test data. The experimental results are shown in Table 5. The experiment compares
results in 2 metrics, namely MAE($/MWh) and MSE($/MWh). In the results, the RIPPR
model outperforms the compared literature by a considerable margin across all instances.
The superiority of a decomposition-based hybrid model over a traditional model is also
confirmed by these results. Hour-ahead forecasting is illustrated in Figure 9, and the
24-h ahead forecasting scenario is presented in Figure 10. For the 24-h ahead scenario in
Figure 10, the RIPPR model has managed to capture a number of outliers in the dataset.
Further, it is supported by the low MSE values across the two horizons. A single step in
this experiment represents one hour of time.

Table 5. Results comparison for dataset E.

Horizon (h) Metric ELM VMD-ELM RIPPR
Peng et al.

[52]
Babu et al.

[53]

1
MAE 2.95 2.91 2.52 3.19 3.23
MSE 13.53 13.02 10.22 15.44 18.27

24
MAE 7.85 7.48 4.63 5.01 5.32
MSE 119.01 112.09 50.08 52.59 53.00

Figure 9. Forecasting performance of RIPPR for one hour ahead.
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Figure 10. Forecasting performance of RIPPR for 24 h ahead.

4. Discussion and Conclusions

In this paper, we propose a novel Artificial Intelligence (AI) based approach for
electricity price forecasting that addresses the challenges of accuracy, robustness and real-
time multi-step prediction. RIPPR utilizes Variational Mode Decomposition (VMD) to
transform the spot price data stream into sub-series that are optimized for robustness using
particle swarm optimization (PSO). These sub-series are input to an Extreme Learning
Machine (ELM) algorithm for real-time multi-step prediction. RIPPR was evaluated with six
electricity price/load demand datasets from the Australian energy market. Five benchmark
methods were compared with the proposed model to verify its effectiveness. Based on
this robust empirical evaluation across three data streams from different market types,
we can conclude that VMD based hybrid models outperform traditional single structure
models in EPF, the performance of VMD depends on the mode number (k) and balancing
parameter (α), and PSO optimization to find the optimal (k, α) combination improves
the results significantly rather than using a static (k, α) combination. As future work, we
intend to extend the proposed model to incorporate additional features such as weather,
global market variables and related external events that will improve the forecast accuracy
and contribute towards the AI capability for real-time monitoring of future smart grids.
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Nomenclature

Nomenclature Refferd to

VMD Variational Mode Decomposition
PSO particle swarm optimization
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RVFL Random Vector Functional Link neural network
ELM Extreme Learning Machine
EPF Electircity Price Forecasting
ARMA Auto regressive moving average
ARIMA Auto-regressive integrated moving average
VAR Vector auto-regression
GARCH Generalized autoregressive conditional heteroskedasticity
ANN Artificial neural networks
SVM Support vector machine
FNN Fuzzy neural networks
RNN Recurrent neural networks
ERCOT Electric Reliability Council of Texas
LSTM Long short-term memory
WPT Wavelet packet transform
PSOSA particle swarm optimization based on simulated annealing
LSSVM Least Square Support Vector Machine
FEEMD Fast ensemble empirical mode decomposition
BP Back propagation
IMOSCA Improved multi-objective sine cosine algorithm
RELM Regularized extreme learning machine
EMD Empirical Mode decomposition
EWMA Exponential Weighted Moving Average
EWT Empirical Wavelet Transform
SLFN Single hidden layer feedforward neural network
NSW New South Wales
MAE Mean absolute error
RMSE Root mean square error
MAPE Mean absolute percentage error
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Abstract: In prosumers’ communities, the use of storage batteries (SBs) as support for photovoltaic

(PV) sources combined with coordination in household appliances usage guarantees several gains.

Although these technologies increase the reliability of the electricity supply, the large-scale use of

home appliances in periods of lower solar radiation and low electricity tariff can impair the perfor-

mance of the electrical system. The appearance of new consumption peaks can lead to disturbances.

Moreover, the repetition of these events in the short term can cause rapid fatigue of the assets. To

address these concerns, this research proposes a mixed-integer linear programming (MILP) model

aiming at the optimal operation of the SBs and the appliance usage of each prosumer, as well as a PV

plant within a community to achieve the maximum load factor (LF) increase. Constraints related

to the household appliances, including the electric vehicle (EV), shared PV plant, and the SBs, are

considered. Uncertainties in consumption habits are simulated using a Monte Carlo algorithm. The

proposed model was solved using the CPLEX solver. The effectiveness of our proposed model is

evaluated with/without the LF improvement. Results corroborate the efficient performance of the

proposed tool. Financial benefits are obtained for both prosumers and the energy company.

Keywords: community of prosumers; new consumption peak; shared PV plant; storage batteries;

load factor

1. Introduction

1.1. Overview

The need for efficient electricity management in large cities worldwide has led electric
utilities to implement the Smart Grid (SG) concept in their electrical distribution networks
(EDNs) [1]. In an advanced communication environment, the SG is characterized by
the bidirectional flow of data and power between the smart meters of customers with
the information center of energy companies [1,2]. In this context, traditional electricity
consumers play an active role in the electrical grid operation either through the photovoltaic
(PV) generation [3] or the change in habits of usage of residential appliances [4]. In the case
of PV generation, some part is used for the customer’s own consumption, while the surplus
PV energy is injected into the power grid [5,6]. In this way, energy credits are obtained
by the prosumers, allowing them to reduce the energy bill for the coming months [6].
Moreover, sometimes, in smart homes, energy storage devices are used to mitigate the
intermittency in PV production during the day to ensure supply continuity [7,8]. In the
case of a consumption habit change, the appliances whose scheduling is based on hourly
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rates allow reducing energy consumption during periods of higher energy prices, i.e., peak
consumption period [4]. The aspects mentioned above represent the most well-known
strategies to guarantee the security and reliability of the EDN in the SG environment [9].
However, the diurnal and intermittent characteristics of solar radiation, as well as the
dynamic energy tariffs on a given day, can contribute to the appearance of new consumption
peaks in the consumption profile of the community [10,11]. As during off-peak hours the
energy tariff is cheaper, many prosumers prefer to postpone or anticipate the usage of
the appliance, then the usage of their appliances may coincide, especially those with
higher average power, within these periods [12]. These events can affect the power grid
performance, compromising the assets lifetime, mainly of the power transformers, feeders,
and protection devices [13].

The International Energy Agency (IEA), in its 2017 report, Residential Prosumers in
the European Energy Union, highlights the impact on the electricity grid (e.g., congestion
and its stability), focusing on the increase in the number of prosumers in a short term
horizon [14]. Upon these challenges, the development of smart tools that assist decision-
makers toward efficient energy management of prosumers communities is of critical
importance. Furthermore, such tools should consider the assessment of indexes related to
the rational usage of energy to guarantee the efficiency of the power supply. One way can
be through the evaluation of the load factor (LF). The LF is defined as the ratio between
the average demand and the maximum demand for a given period [15]. This indicator
varies over a range of values, with a minimum of 0 and a maximum of 1 [16]. Depending
on the adopted value, the LF related to a given consumption profile indicates the efficiency
level at which the electric energy is being utilized. For example, when the LF value is
low, e.g., 0.5, 0.4, 0.2, etc., the profile shows high energy consumption (peaks) at different
times of the day, as well as the periods at which the consumption is almost zero (valleys).
In contrast, when the value is close to 1, e.g., 0.75, 0.8, 0.9, etc., the profile shows a wide
distribution of energy consumption throughout the day, indicating efficient electricity
management [15,17]. Therefore, the LF improvement as part of the intelligent energy
management strategy of prosumers communities can contribute to planning the EDN more
economically and efficiently.

The literature review below highlights the existence of a gap related to the topic of
energy communities to be addressed. To address such shortcomings and fill the existing
gap, this paper proposes a MILP model to manage electricity consumption in a prosumer
community efficiently. The proposed model aims to minimize the energy purchased from
the power grid by scheduling the loads. At the same time, a system of SBs combined
with a shared PV plant fulfills the energy needs of the prosumer community, and, in the
case of generating surpluses of power, these are directed to the grid. These objectives are
achieved in a coordinated manner to obtain a wide distribution of consumption during
the day, which is represented by improving the LF. By increasing the LF, this work seeks
to mitigate the appearance of new peaks in periods with cheap energy tariffs (due to
the coincident usage of appliances with higher average power) via intelligent operation
of PV-based technology and energy storage, ensuring continuity of supply. Operational
constraints related to the operation periods of household appliances and battery charging
of EVs within each smart home, SBs, shared PV plant, and power balance in the power
distribution system are taken into account. Moreover, the uncertainties in the usage
patterns of household appliances and charging of EVs are simulated using a Monte Carlo
algorithm. Our work seeks to go beyond the model proposed in [18]. In this research,
the problem of improving the LF was addressed to a group of consumers differentiated
by domestic income, that is, each consumer having a different number of appliances. In
addition, in this research, the group of consumers has been supplied solely by the energy
company, disregarding the presence of sources of electricity generation and/or storage.
This work addresses the empowerment of residential consumers (especially those with
higher household income), through the use of power technologies to generate surplus
energy once all the community’s energy requirements are met. The proposed MILP model
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is implemented in the AMPL [19] language, and to guarantee to obtain the global optimal
solution, the commercial solver CPLEX [20] is used. Consequently, the main contributions
of this research are itemized hereunder.

• Proposing a computationally efficient MILP model to improve the value of LF re-
lated to the consumption profile of prosumers while taking into account the efficient
scheduling of technologies such as SBs and shared PV generation.

• Investigating the intelligent management of an energy community by improving an
indicator of the rational usage of energy.

• Establishing the management of household appliances (including the EV) to avoid
their coincident consumption, especially those with higher average power, to mitigate
the occurrence of peak consumption in off-peak periods and/or with insufficient
levels of solar irradiation.

• Contributing to reducing the dependence on fossil fuels to meet the energy of domestic
customers aiming at a sustainability context.

1.2. Literature Review

Most of the works addressing energy management of prosumers communities focused
on trading the purchase/sale of energy among stakeholders. The authors in [21] addressed
the problem of energy consumption scheduling for the day-ahead. Cooperative game
theory was implemented to model the scheduling strategy aiming at minimizing the total
costs of each prosumer. Moreover, this strategy was tested in a community with ten
energy self-producers. The impact of consumption patterns of the prosumers, as well as
the levels of solar radiation in the integration of the PV generation in the communities,
was investigated in [22]. The primary objective was to reduce the total costs related
to investments in power technologies (i.e., PV panels and SBs), and results revealed
considerable savings for prosumers, mainly in the electricity bill. The authors in [23]
proposed an optimization model to represent several regulatory aspects related to tariff
schemes and the self-consumption of PV energy. Real data has been used to determine
the economic implications of these regulatory mechanisms. The profitability obtained by
the consumer community shows its strong dependence on regulatory incentives. A MILP
model that aimed to minimize the energy bill of prosumers was developed in [24], where
the constraints related to the operation of PV units in each residence were considered. The
results highlighted the monetary benefits and the possibility of adapting the contracted
demand to the new consumption profile. The work in [25] implemented a two-stage
control architecture to efficiently schedule residential loads taking into account thermal
comfort. The first stage aimed to allocate the PV power according to the production level
of each building. Subsequently, the load of each building was scheduled at the second
stage. The results indicated that flexibility in the allocation of power is a key factor for
occupant comfort. Similarly, the authors in [26] developed a strategy for controlling the
injected PV energy into the power grid. The purpose of this strategy was to stabilize the
voltage profile in the distribution system. For this purpose, a non-cooperative game-based
algorithm was implemented to control PV generators. In [27] and [28], techniques for
optimal management of PV systems, SBs, as well as shared power strategies of energy
communities were applied. In [27], an adaptive robust optimization (ARO) structure was
used to reduce the consumption costs of prosumers, as well as to optimize the management
of thermal loads, while [28] proposed a technique for controlling priority electrical loads
together with SBs, both according to flexibility in community consumption. The authors
in [29] developed a community energy market model (CEM) aiming at maximizing the
financial benefits of both consumers and prosumers. For the consumers, this goal was
achieved through the reduction in consumption costs, and for the prosumers by managing
the power injected into the electrical network. The work revealed that, depending on
the configuration in the consumer and prosumer communities, the economic gains could
increase. Another case of CEMs was addressed in [30] by proposing two schemes based
on the coordination of generation sources and energy storage within a community. These
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schemes considered game theory, Karush–Kuhn–Tucker conditions, and strong duality
theorem to allow achieving a win-win situation for all participants. To manage the power of
a community in real-time, a fog-based model was developed in [31] aiming to improve the
energy contract for all electricity self-producers. Three scenarios were presented to evaluate
this model, such as (i) supply of demand by the electricity company, (ii) cooperation
between prosumers and microgrids to meet demand, and (iii) integration of the electricity
company, prosumers, and microgrids. The results show the effectiveness of the fog model
for real-time data flow in addition to the financial gain. To minimize the operating costs of
both individual residences and an entire residential community, a peer-to-peer (P2P) energy
trading methodology was developed in [32]. Each residence was equipped with a rooftop
PV system, SBs, and a set of DC and AC electrical loads, where the P2P methodology
resulted in energy savings for different levels of PV energy penetration. The authors in [33]
implemented two approaches related to prosumers’ microgrids. In the first approach, a
genetic algorithm was developed to improve the incompatibility between generation and
demand of microgrids. The second approach is aimed at optimizing the coordination of SBs
charging/discharging. Both approaches were carried out in a regulatory context in Spain
and contributed to the efficient performance of the electricity grid. To minimize the total
operational costs of a set of prosumers in the EDN, the authors in [34] developed strategies
based on the Directed Steiner Tree (DST) and Weighted Dominating Set (WDS) algorithms.
In this work, the economic and operational constraints of each microgrid belonging to a
given prosumer were considered in formulating the problem. A MILP model was proposed
in [35] for optimal sizing of SBs, PV panels, and inverters in the prosumer residence. This
model was tested in a deterministic and stochastic manner, demonstrating its potential to
establish more economical and operational plans. Some works in the literature on the same
topic have used machine learning techniques to better capture different aspects. Suitable
adaptation techniques and learning strategies were proposed in [36] to model the behavior
patterns of prosumers, as well as the levels of participation in the power grid through
power injection. In [37], machine learning strategies were applied to manage the renewable
resources of a community of prosumers. In this work, the objective was to minimize
the energy consumption expenditures of the community. The aforementioned works
highlight the application of strategies based on game theory and artificial intelligence,
among others, where most surveys aim to reduce expenses related to energy consumption
in the prosumers community by reducing peak demand and/or increasing their financial
gain by selling energy to EDN operators. However, there is little attention to research
related to the appearance of new consumption peaks in periods with cheaper energy prices
by reducing consumption in peak periods through the intelligent management of SBs and
accomplishing the shared PV plant.

Furthermore, some works addressed the increase in LF through energy efficiency,
integration of distributed generation, or recharging/discharging EVs in the power grid.
The authors in [38] implemented a methodology to improve the LF aiming at reducing
the active losses, as well as integrating the medium voltage PV plants and plug-in EVs.
In [39], the LF improvement through scheduling the charging of EVs was addressed while
minimizing the total costs. This work considered two cases. In the first case, through
operational planning, the charging of EVs was evaluated. And, in the second case, the LF
is improved by charging EVs through efficient scheduling. The LF behavior of a university
building was studied in [40] over a period of three years, where strategies related to loading
balance were implemented to enhance the building LF. Similarly, in [16], the LF of another
university building was improved by replacing old equipment, as well as scheduling
priority loads. Through a multi-objective formulation and several stochastic-based cases,
the work in [41] aimed to minimize the energy costs of a residential customer and increase
the LF related to the domestic consumption profile. The effectiveness of the proposed
method was confirmed by obtaining a reduction in customer bills while guaranteeing
a satisfactory LF. An operational technique to reduce the peak load was implemented
in [17]. In this work, based on classified data according to the frequency of electricity
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consumption, the household appliances having the most significant impact on the energy
bill were identified. By applying this strategy, the peak demand for a set of residential
customers was reduced and, consequently, the LF improved. To improve the LF of a group
of commercial buildings, the authors in [42] proposed demand-side management (DSM)
strategy aiming at reducing energy consumption costs. In addition, a tariff structure to
minimize peak demand was considered. The results showed a reduction in electricity costs,
in addition to an improvement in the performance of the distribution network. As can
be seen, in these works, the improvement of the LF was addressed by some surveys that
consider the presence of distributed generation and fleets of EVs in the operation of the
EDN, while others have considered the implementation of energy efficiency programs
in public buildings. However, strategies related to intelligent energy management that
consider the LF enhancement as an indicator of efficient electricity usage were disregarded.

The rest of the paper is organized as follows. In Section 2, the main hypotheses that
drive the MILP model are presented, while the Monte Carlo simulation algorithm and
the SG environment for this problem are explained. Section 3 describes the MILP model
in detail. Simulation results and analysis are discussed in Section 4. Finally, Section 5
concludes the paper.

2. Simulation Setup

In this Section, the main hypotheses related to the set of household appliances, PV
plant, and operation of SBs are presented. The treatment of the hourly preferences of each
prosumer, and the simulation algorithm in the habitual usage of household appliances,
are explained. Additionally, the flow of energy and information in the SG environment is
mentioned in detail.

2.1. Hypotheses

The following hypotheses are used to develop the model and analyze its potential are
as follows.

1. The research is carried out in the SG environment depicted in Figure 1, which high-
lights the bidirectional flows between various technologies.

2. Considering that household income is proportional to the number of appliances
present at home, it is assumed that all consumers have the same household income
taking into account the appliances reported in Tables 1 and 2 including the presence
of a single EV (to be charged within each household) according to Table 3.

3. The habitual consumption of each appliance (including the EV) for each period of the
day is obtained using the Monte Carlo simulation algorithm.

4. The study horizon considers one day, which is divided into 24 hourly periods.
5. A tariff structure is divided into three levels (peak, intermediate, and off-peak) to effi-

ciently schedule the consumption periods of household appliances and the EV charging.
6. The PV plant is shared by the community of prosumers. The PV panels operate in a

horizontal position and at the point of maximum power.
7. The effect of the presence of clouds on the yield of the PV plant is not considered.

𝛽𝑷𝒂 𝝉𝒂 𝑸𝒂 𝝉𝒂 𝑸𝒂 𝜷𝒂𝒊

𝛽𝑷𝒂 𝝉𝒂 𝑸𝒂 𝝉𝒂 𝑸𝒂 𝜷𝒂𝒊

𝛽 −𝑷𝒂 𝓒𝒖𝒆𝒗 𝝉𝒖𝒆𝒗 𝑸𝒖𝒆𝒗 𝜷𝒂𝒊

𝒜 × 𝒢𝑃 𝑃 =  𝜁 × 𝜁 × 𝜁 × 𝜁 × 𝜁 × 𝒜 × 𝒢 , ∀𝑡 ∈ 𝑇 
𝜁 𝜁 𝜁 𝜁 𝜁𝒢

Figure 1. The daily operational performance of the prosumers community.
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Table 1. Technical Data related to Home Appliances with βa = 1.

a Appliances Pa τa Q
a

τa Qa βi
a

1 Air Conditioner 4.00 2 2 0.25 - 1
2 Freezer 0.40 10 10 0.50 - 0
3 Clothes Dryer 3.50 1 1 0.50 - 1
4 Computer 0.25 2 2 0.50 - 0
5 Incand. light 0.10 5 5 0.25 - 0
6 TV 0.09 5 5 0.50 - 0
7 Electric Iron 1.00 1 1 0.25 - 1
8 Fan 0.10 4 4 0.50 - 0
9 DVD Player 0.025 2 2 0.25 - 0

10 Stereo 0.020 2 2 0.25 - 0

Table 2. Technical Data related to Home Appliances with βa = 0.

a Appliances Pa τa Q
a

τa Qa βi
a

11 Electric Faucet 3.50 0.50 1 - 1 1
12 Dishwasher 1.50 0.75 1 - 1 1
13 Coffee Maker 1.00 0.50 1 - 1 0
14 Resistance Oven 1.50 0.50 1 - 1 0
15 Electric Shower 3.50 0.15 1 - 1 1
16 Microwave 1.30 0.33 1 - 1 0
17 Washing Machine 1.50 0.50 1 - 1 0
18 Vacuum Cleaner 1.00 0.33 1 - 1 0
19 Hair Dryer 0.70 0.50 1 - 1 0
20 Toaster 0.80 0.16 1 - 1 0

Table 3. Technical Data related to EVs (βa = −1).

a Appliances Pa Cev
u τev

u Q
_

ev

u

βi
a

21 EV 1, 2, 3 4.00 20.0 0.5 5.00 1

2.2. Shared PV Plant and Prosumers Community Operation

In the shared PV plant, the solar radiation, Apv × Gt, is converted to electrical power
in DC, Ppv

t , using (1).

Ppv
t = ζ p × ζti × ζdd × ζml × ζcl ×Apv × Gt, ∀t ∈ T (1)

The power conversion is performed considering the effect of the tolerance levels on
the panel production, temperature, dirt and dust, power losses in the cabling, and power
losses on the DC and AC sides represented by the coefficients ζ p, ζti, ζdd, ζml , and ζcl ,
respectively [43,44]. Note that the PV power produced by the shared plant depends on
the levels of solar radiation throughout the day, Gt [45,46]. It is worth mentioning that in
a more realistic scenario, the PV power produced by the shared plant can be reduced to
more than 40% of its nominal power (depending on the number of connected arrays) due
to cloud displacement during the day [47–49]. In this sense, in our proposed model, once
introduced as a feature in the smart meter, it must evaluate the stochastic behavior of solar
radiation (e.g., due to the presence of clouds, etc.) and determine, for each period t, an
average of solar radiation values (based on the weather data). Therefore, each radiation
value in period t can be assigned to Gt in (1) and thus our proposal can be applied in
real systems.

The daily operation of the prosumers’ community in the SG environment is depicted
in Figure 1. In this scheme, energy storage devices (such as SB 1, SB 2, SB 3, and SB 4),
which support the energy consumption of each prosumer u, consider the power flows Pabs

u,t

64



Energies 2021, 14, 3624

and Pinj
u,t in each period t. Note that both powers are the components of Ps

u,t depending
on the state of each SB (recharge/discharge) in period t. In addition, the energy stored

in the SB, Csb
u , during the day considers the ηabs

u and η
inj
u rates. Also, note that the power

Ps
u,t has two directions (i.e., from the grid to the smart home or from the smart home to

the power grid) depending on the Csb
u in the SB, the power generation Ppv

t of the PV plant,
and the electricity price, ζt. Household appliances a, including the EV of each prosumer u
are supplied through the power Psr

t throughout the day. Each smart home has a habitual
consumption profile represented by H

cp
u,a,t, which is optimized through the MILP model,

obtaining O
cp
u,a,t.

2.3. Habitual Consumption Profile and Hourly Preferences

Hourly preferences and the habitual usage patterns of each appliance are two key as-
pects causing changes in the consumption profile of customers. The habitual consumption
profile considers the usage habits of each appliance a, existing in a smart home, according
to the needs of the prosumer u throughout the day. In each smart home, a number of
appliances equal to twenty-one are being considered, including the EV. Tables 1–3 present
the technical characteristics of each appliance a [50,51]. Appliances a with working time
greater than 1 h are shown in Table 1. In Table 2, all appliances a with working hours less
than 1 h are listed. Finally, Table 3 reports the technical data for EVs. Due to the variable
nature of customers’ needs during the day and the day-to-day, uncertainties in the usage of
household appliances a in given periods t need to be considered for having a more practical
model. Algorithm 1, which is based on the Monte Carlo method [52], is used to simulate
these uncertainties.

Algorithm 1 starts considering the date related to Pa, Ca,t, Q
a
, Qa, Qev

u , and ∆t, which
are the average power of each appliance a, the probability of using each appliance a in the
period t [53], the minimum number of times that a given appliance a with βa = 1 is turned
on, the number of times that a given appliance a with βa = 0 is turned on, the number of
times that EV with βa = –1 is connected for battery charging, and the duration of each
period t. The values to be adopted by indexes u, a, and t are established through intervals

1 . . . |U|, 1 . . . |A|, and 1 . . . |T|, respectively. Then, the values of Ĉa,t, Xhp
u,a,t, and Ψu,a

are initialized; Ĉa,t and Xhp
u,a,t to zero, and the value of Ψu,a depends on βa. Note that for

values of βa such as 1, 0, and −1, the parameter Ψu,a assumes the values Q
a
, Qa, and Qev

u ,
respectively. After that, an iterative process related to each appliance a is performed. For
each iteration, the value of the accumulator k is set to zero. Additionally, for each iteration
a, another iterative process for each period t is done. Within this process, Ca,t is added to
the current value of k, thus obtaining a new value for k, which in turn is assigned to Ĉa,t.
Both iterative processes are completed once the indexes a and t reach the values of |A| and
|T|, respectively. Hereafter, an iterative process related to each prosumer u is performed.
Next, another iterative process for each appliance a is also performed. Within this last
iterative process, an infinite loop is executed. For each iteration, a random number, ρ,
between zero and one hundred is generated. Then, within the iterative process related to
periods t, the random value ρ is evaluated through the condition Ĉa,t−1 ≤ ρ ≤ Ĉa,t. If this

condition is met, then a value of one is assigned to Xhp
u,a,t, otherwise, Xhp

u,a,t remains zero.
Once all values of t are completed, a new condition is evaluated. Thus, if the condition

∑
|T|
t=1 Xhp

u,a,t = Ψu,a is verified, then, another iterative process for each period t is performed,

and, in each iteration t, the value of Hcp
u,a,t is calculated as the product Pa × Xhp

u,a,t × ∆t. Still

in the same condition with ∑
|T|
t=1 Xhp

u,a,t = Ψu,a being verified, after index t has completed the
total number of iterations, |T|, the execution of the algorithm goes back to step 12, and the
infinite loop stops. When the previous condition is not met, the algorithm returns to step
18, and then the infinite loop also ends. The algorithm ends when u and a have completed
all their values.
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Algorithm 1. Simulation of uncertainties in household appliances usage.

ℭ , Χ , , Χ , ,∑ Χ , ,| | =  Ψ , ℋ , ,𝑃 × Χ , , × ∆𝑡 ∑ Χ , ,| | =  Ψ ,|𝑇|

1. Set parameters: 𝑃 , ℭ , , 𝑄 , 𝑄 , 𝑄 , ∆𝑡, u ∈ 1...|𝑈|, a ∈ 1...|𝐴|, t ∈ 1…|𝑇| 
2. Values to initialize: ℭ , ← 0, Χ , , ← 0, u ∈ 1...|𝑈|, a ∈ 1...|𝐴|, t ∈ 1…|𝑇| 
3. Ψ , ← 𝑄 ;  𝑖𝑓 𝛽 = 1𝑄 ;  𝑖𝑓 𝛽 = 0𝑄 ;  𝑖𝑓 𝛽 = −1, u ∈ 1...|𝑈|, a ∈ 1...|𝐴| 
4. For a = 1 to |𝐴| do 

5. set k ← 0; 

6. For t = 1 to |𝑇| do 

7. set k ← k + ℭ , ; 

8. obtain  ℭ , ← k; 

9. End for 

10. End for 

11. For u = 1 to |𝑈| do 

12. For a = 1 to |𝐴| do 

13. While (true) do 

14. 𝜌 ← rand (0, 100); 

15. For t = 1 to |𝑇| do 

16: if ℭ , ≤ 𝜌 ≤ ℭ ,  then 

17. Let Χ , , ← 1; 

18. End if 

19. End for 

20. if ∑ Χ , ,| | =  Ψ ,  then  

21. For t = 1 to |𝑇| do 

22. Calculate ℋ , , ← 𝑃 × Χ , , × ∆𝑡; 

23. End for 

24. Break; back to step 12; 

25. Else 

26. Break; back to step 18; 

27. End if 

28. End while 

29. End for 

30. End for 

ℋ , , ℋ , ,𝜃 , ,
As a result of the execution of this Algorithm 1, the values of the habitual consumption

profile, Hcp
u,a,t, are obtained for each prosumer u, for each appliance a, and in each period t.

Moreover, the H
cp
u,a,t values are part of the MILP model input data.

The hourly preferences θ
p
u,a,t of household appliances a are understood as flexibility,

i.e., postponing or anticipating the periods t when a given appliance a can be turned
on for consumption without compromising the comfort or lifestyle of each residential
prosumer u. In this work, these periods t of flexibility in the household appliances usage
are represented through the binary parameter θ

p
u,a,t. Thus, when θ

p
u,a,t adopts the value of 1,

then the corresponding period t is part of the hourly preferences related to the appliance
a, otherwise, periods t with θ

p
u,a,t = 0 do not correspond to the hourly preferences but

may have the habitual consumption of electricity, Hcp
u,a,t. For example, Figure 2 shows the

θ
p
u,a,t = 1 values for air conditioning as well as the EV during the day. In the case of air

conditioning, prosumers can switch on their appliance at certain times, including peak
hours. For EVs, the night and dawn periods are considered. For all prosumers u, the θ

p
u,a,t

values for each appliance a in each period t are assumed to be [54], taking into account the
criteria of [12,50,51,55].
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𝜃 , , 𝜃 , ,𝜃 , , ℋ , ,𝜃 , , 𝜃 , ,

𝜓 𝜓 𝜓𝜛( ) 𝜛( ) 𝜛( )
𝜓 𝜓 𝑃 𝑃

𝑓 =  𝜓 + 𝜓
𝜓 =  𝜛( ) × 𝜁 × 𝒪 , ,∀ ∈∀ ∈∀ ∈ + 𝜛(2) × 𝜃 ,𝑖∀ ∈∀ ∈ + 𝜛(3) × 𝑃𝑒𝑛∀ ∈

𝜓 =  𝜛( ) × (𝑃 − 𝑃 )∀ ∈

Figure 2. Hourly preferences related to air conditioning and the EV.

3. Mathematical Model

The initial formulation of the problem is represented by a mixed-integer nonlinear
programming (MINLP) model. Nonlinear terms are presented in the objective function as
well as in the operational constraints. These constraints are related to household appliances,
including each EV presented in homes, as well as the power balance of the electrical system
and the energy stored through the SB.

3.1. Objective Function

The objective function (2) is composed of two functions, ψ1 and ψ2. In function ψ1, the
terms starting with the weighting coefficients ̟(1), ̟(2), and ̟(3) are respectively related to
the reduction in costs per energy consumption, coincident usage of household appliances
with higher average power, and electricity purchase from the utility company. Therefore,
ψ1 aims to minimize the key elements that have a direct effect on prosumer’s electricity bill.
On the other hand, the function ψ2 allows reshaping of the optimal consumption profile by
reducing the difference between Pat

t and Pav, which implicitly maximizes the value of LF.

Minimize f = ψ1 + ψ2 (2)

where,

ψ1 = ̟(1) ×

[

∑
∀u∈U

∑
∀a∈A

∑
∀t∈T

ζt ×O
cp
u,a,t

]
+ ̟(2) ×

[

∑
∀u∈U

∑
∀t∈T

θi
u,t

]
+ ̟(3) ×

[

∑
∀t∈T

Pen
t

]

ψ2 = ̟(4) ×

[

∑
∀t∈T

(
Pat

t − Pav)2

]

3.2. Constraints
3.2.1. Home Appliances Constraints

The constraints described below are related to the operating regime of household
appliances as well as the charging of EV batteries and are based on the research [40].
Equations (3) and (4), through variable Xop

u,a,t, determine for each period t, the on/off state
of each appliance a belonging to the prosumer u. In (3), the off state of each appliance a is
established only for hourly preferences with θ

p
u,a,t = 0. For each prosumer u with hourly

preference values θ
p
u,a,t = 1, (4) indicates whether the appliance a can be turned on or off in a

given period t. Equation (5) is related to household appliances with higher average power,
βi

a = 1. Thus, for each prosumer u, the value of θi
u,t calculates the number of appliances a in

each period t with βi
a = 1 that can be turned on.

Xop
u,a,t = 0, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | θ

p
u,a,t = 0 ∧ t ≥ 1 (3)

Xop
u,a,t ≤ 1, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | θ

p
u,a,t = 1 ∧ t ≥ 1 (4)
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θi
u,t = ∑

∀a∈A

(
Xop

u,a,t × θ
p
u,a,t × βi

a

)
, ∀u ∈ U, ∀t ∈ T | t ≥ 1 (5)

The operating regime of household appliances with working hours greater than or
equal to 1 h, βa = 1, is modeled by (6)–(9). The number of times this type of appliance is
turned on during the day is established by the limits Q

a
and Qa in (6), while the time of

usage of the appliance a within each period t is obtained by (7). The optimal consumption
profile, Ocp

u,a,t, in each period t in which appliances a with βa = 1 are turned on is calculated
using (8). In (9), for each prosumer u, the total time of usage of the appliance a during the
day, τa, is guaranteed through the product of θ

p
u,a,t, Xop

u,a,t and τus
u,a,t.

Q
a
≤ ∑

∀t∈T| t≥1

Xop
u,a,t × θ

p
u,a,t ≤ Qa, ∀u ∈ U, ∀a ∈ A | βa = 1 (6)

τa ≤ τus
u,a,t ≤ τa, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | βa = 1 ∧ t ≥ 1 (7)

O
cp
u,a,t = Pa × θ

p
u,a,t × Xop

u,a,t × τus
u,a,t, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | βa = 1 ∧ t ≥ 1 (8)

∑
∀t∈T| t≥1

Xop
u,a,t × θ

p
u,a,t × τus

u,a,t = τa, ∀u ∈ U, ∀a ∈ A | βa = 1 (9)

Constraints (10)–(11) are related to appliances a with working hours less than 1 h, i.e.,
type of appliance with βa = 0. In (10), the number of times that each appliance a is utilized
throughout the day is established, while the optimal consumption, Ocp

u,a,t, of each appliance
a related to the prosumer u is obtained by (11).

∑
∀t∈T| t≥1

θ
p
u,a,t × Xop

u,a,t = Qa, ∀u ∈ U, ∀a ∈ A | βa = 0 (10)

O
cp
u,a,t = Pa × θ

p
u,a,t × Xop

u,a,t × τa, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | βa = 0 ∧ t ≥ 1 (11)

Through (12)–(18), the operating regime of EV (the type of appliance a with βa = −1)
related to the prosumer u is represented. For each prosumer u, the energy stored in the EV
battery in each period t is determined in (12). In (13), the variation interval related to the
charging time of the EV battery is established considering the limits [τev

u , τev
u ], while (14)

ensures the number of times that the EV battery can be charged within the range
[

Qev
u

, Q
ev
u

]
.

The optimal profile, Ocp
u,a,t, of the EV (βa = −1) related to prosumer u is obtained by (15) as

the total energy stored in the EV battery during the day is calculated using (16). This total
energy, εev

u , must be equal to a percentage λ1 of the battery capacity, Cev
u , of the EV, as (17).

SoCev
u,t = Pev × Xop

u,a,t × τev
u,t, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | βa = −1 ∧ t ≥ 1 (12)

τev
u ≤ τev

u,t ≤ τev
u , ∀u ∈ U, ∀t ∈ T | t ≥ 1 (13)

Qev
u

≤ ∑
∀t∈T| t≥1

Xop
u,a,t ≤ Q

ev
u , ∀u ∈ U, ∀a ∈ A | βa = −1 (14)

O
cp
u,a,t = SoCev

u,t, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | βa = −1 ∧ t ≥ 1 (15)

εev
u = SoCu + ∑

∀t∈T| t≥1

SoCev
u,t, ∀u ∈ U (16)

εev
u = λ1 × Cev

u , ∀u ∈ U (17)

∑
∀a∈A

O
cp
u,a,t ≤ Max∀t′∈T

[

∑
∀a∈A

H
cp
u,a, t′

]
, ∀u ∈ U, ∀t ∈ T | t ≥ 1 (18)

After calculating O
cp
u,a,t of each appliance a related to the prosumer u, (18) ensures that

the total consumption in each period t of the optimal profile O
cp
u,a,t not exceed the peak

consumption of the habitual profile H
cp
u,a,t.
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3.2.2. Power Balance Constraints

Constraints (19)–(24) are related to the power flow between the PV plant, the electricity
company, the smart home of each prosumer (including EV), as well as the SB, as depicted
in Figure 1. The power balance is guaranteed in (19). Note that this equation considers
the surplus of energy injected into the electrical network, either by the PV plant or by the
SBs in each period t. The non-negativity of the power coming from the electric grid, Pen

t ,
is guaranteed in (20). In (21), the power Ps

u,t is calculated for each period t as the sum

of power supplied to the smart home of the prosumer u, Psr
u,t, and the Pinj

u,t / Pabs
u,t powers,

related to the SB. The Psr
u,t values for the prosumer u in each period t are computed in (22).

The total power required by all smart homes, Pat
t , in each period t is obtained using (23).

Finally, (24) determines the average value of Pat
t that is represented by Pav. It is worth

noting that both (23) and (24) are linked to the improvement of the LF, as can be seen in (2).

Ppv
t +

(
Pen

t − Psplus
t

)
= ∑

∀u∈U

Ps
u,t, ∀t ∈ T | t ≥ 1 (19)

0 ≤ Pen
t , ∀t ∈ T | t ≥ 1 (20)

Ps
u,t = Psr

u,t +
(

ηabs
u × Pabs

u,t − η
inj
u × Pinj

u,t

)
, ∀u ∈ U, ∀t ∈ T | t ≥ 1 (21)

Psr
u,t =

(
1

∆t

)
× ∑

∀a∈A

O
cp
u,a,t, ∀u ∈ U, ∀t ∈ T | t ≥ 1 (22)

Pat
t = ∑

∀u∈U

Psr
u,t, ∀t ∈ T | t ≥ 1 (23)

Pav =

(
1
|T|

)
× ∑

∀t∈T| t≥1

Pat
t (24)

3.2.3. Energy Storage Constraints

Constraints (25)–(31) represent the operation of the SBs related to each prosumer u.

The injected power Pinj
u,t and the absorbed power Pabs

u,t by the SB are limited by (25) and (26),
respectively. The injection/absorption status of the SB is established by (27). Note that

when the SB is injecting power (µinj
u,t = 1), it cannot absorb power (µabs

u,t = 1), and vice versa.

In (28), the initial state of charge SoCsb
u,t (t = 0) of the batteries is established as a percentage

λ2
u of the storage capacity, of each SB related to the prosumer u, Csb

u . It is worth mentioning
that the period t = 0 is related to the last period of the previous day. The state of charge of
the SB for the rest of the periods t is obtained by (29). Constraint (30) guarantees that at
the end of the day t = |T| the SoCsb

u,t of the SB is equal to its storage capacity, Csb
u , while (31)

guarantees that the SoC of SB throughout the day does not exceed the Csb
u capacity.

µ
inj
u,t × Pinj

u ≤ Pinj
u,t ≤ µ

inj
u,t × P

inj
u , ∀u ∈ U, ∀t ∈ T | t ≥ 1 (25)

µabs
u,t × Pabs

u ≤ Pabs
u,t ≤ µabs

u,t × P
abs
u , ∀u ∈ U, ∀t ∈ T | t ≥ 1 (26)

µ
inj
u,t + µabs

u,t = 1, ∀u ∈ U, ∀t ∈ T | t ≥ 1 (27)

SoCsb
u,t = λ2

u × Csb
u , ∀u ∈ U, ∀t ∈ T | t = 0 (28)

SoCsb
u,t = SoCsb

u,t−1 +
(

ηabs
u × Pabs

u,t × ∆t − η
inj
u × Pinj

u,t × ∆t
)

, ∀u ∈ U, ∀t ∈ T | t ≥ 1 (29)

SoCsb
u,t = Csb

u , ∀u ∈ U, ∀t ∈ T | t = |T| (30)

0 ≤ SoCsb
u,t ≤ Csb

u , ∀u ∈ U, ∀t ∈ T | t ≥ 1 (31)
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3.3. Linearization

As the original model is a mixed-integer nonlinear one, commercial solvers face
difficulties in finding the global solution. To address this issue, linearization techniques are
applied to recast the nonlinear terms in the objective function ψ2, as well as in constraints
(8), (9), and (12).

The Big-M method [56] is applied to linearize (8) and (9). Thus, these equations are
replaced by (32)–(35).

O
cp
u,a,t = Pa × θ

p
u,a,t × ∆τus

u,a,t, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | βa = 1 ∧ t ≥ 1 (32)

∑
∀t∈T| t≥1

θ
p
u,a,t × ∆τus

u,a,t = τa, ∀u ∈ U, ∀a ∈ A | βa = 1 (33)

0 ≤ −∆τus
u,a,t + τus

u,a,t ≤ M ×
(

1 − Xop
u,a,t

)
, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | t ≥ 1 (34)

0 ≤ ∆τus
u,a,t ≤ M × Xop

u,a,t, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | t ≥ 1 (35)

Likewise, (36)–(38) present the linear representation of constraint (12).

SoCev
u,t = Pev × ∆τev

u,t, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | βa = −1 ∧ t ≥ 1 (36)

0 ≤ −∆τev
u,t + τev

u,t ≤ M ×
(

1 − Xop
u,a,t

)
, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | t ≥ 1 (37)

0 ≤ ∆τev
u,t ≤ M × Xop

u,a,t, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T | t ≥ 1 (38)

To linearize the function ψ2, a discretization process related to the square of the
difference between Pat

t and Pav is performed [57,58]. As a result, function ψ2 is presented
by ψ′

2, while (39)–(42) are also considered.

ψ′
2 = ̟(4) ×

[
∑

∀t∈T
∑

∀y∈1Y
Πt, y × ∆Λt, y

]

Λt = Pat
t − Pav, ∀t ∈ T | t ≥ 1

(39)

Λ+
t − Λ−

t = Λt, ∀t ∈ T | t ≥ 1 (40)

Λ+
t + Λ−

t =
Y

∑
y=1

∆Λt, y, ∀t ∈ T | t ≥ 1 (41)

0 ≤ ∆Λt, y ≤ ∆t, ∀t ∈ T, y ∈ 1 . . . Y | t ≥ 1 (42)

3.4. Linearized Model

The obtained mixed-integer linear programming (MILP) model is presented as follows.
Minimize f = ψ1 + ψ′

2
s.t.
Constraints: (3)–(7), (10), (11), (13)–(18), (19)–(24), (25)–(31), (32)–(35), (36)–(38),

(39)–(42).

4. Results and Discussion

This section presents the simulation results and the corresponding discussions to
validate the proposed framework related to intelligent energy management in a prosumers
community, considering the LF improvement. This model was written in the algebraic
language AMPL and solved using the solver CPLEX on an Intel(R) Core(TM) i5 CPU
M480@2.67GHz personal computer with a 4.00 GB RAM and a 64-bit Windows 7 operat-
ing system.
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4.1. Basic Data

The proposed model is evaluated using the information provided in Tables 1–3 related
to the technical data of household appliances a, as well as the hourly preferences θ

p
u,a,t

whose periods t are specified in [54]. By executing Algorithm 1, the values of the habitual
consumption profile, Hcp

u,a,t, are simulated for each prosumer u, each appliance a, and for all
periods t. Then, the proposed MILP model is executed based on the information mentioned
above to obtain the optimal consumption profile, Ocp

u,a,t, result in efficient scheduling of
household appliances a, as well as the optimal performance of energy generation and
storage technologies, i.e., shared PV plant and SBs. The efficient scheduling of household
appliances a is driven by a scheme tariff ζt [59] that reflects the price of energy in a given
period t, see Table 4. The EV belonging to each prosumer u starts the day with a state
of charge equal to zero and must be charged with a rate of Pev over 4.00 kW until it is
fully charged (λ1 = 1 and Cev

u = 20 kWh) [56]. The operation of the PV plant and storage
batteries is derived from [60–63]. In the shared PV plant, the power is produced according
to (1). Here, the Gt values during the day are obtained considering the maximum local
solar radiation Ĝ equal to 0.22 kW/m2 [64], as well as the per-unit values of standard
solar radiation γt [65]. This PV power production also considers the loss factors that are
associated with energy conversion, such as ζ p = 0.95, ζti = 0.89, ζdd = 0.93, ζml = 0.95,
and ζcl = 0.90. Moreover, the effective PV area of 116.64 m2 considers an arrangement of
60 panels of 330 kW [66]. For SBs, the energy storage capacity, Csb

u , of prosumers 1, 2, and
3 are 12.0 kWh, 10.0 kWh, and 15.0 kWh, respectively. The SBs start their operation with

λ2
u = 35%, 45%, and 25% of the capacity Csb

u , for each prosumer u [62]. Limits [Pinj
u , P

inj
u ]

of the power injected by each SB are [1.00, 3.00] for prosumer 1, [1.50, 3.50] for prosumer

2, and [0.50, 2.50] for prosumer 3. Also, limits
[

Pabs
u , P

abs
u

]
of the power absorbed by SBs

are assumed to be [1.00, 3.50] for prosumer 1, [0.50, 4.00] for prosumer 2, and [0.50, 3.00]
for prosumer 3. In addition, the recharging and discharging of SB is performed with

efficiencies ηabs
u and η

inj
u of 0.98 and 0.99, respectively [63]. The weighting factors ̟(1), ̟(2),

̟(3), and ̟(4) related to the functions ψ1 and ψ2 adopt the values 1.0, 10.0, 100.0, and 100.0,
respectively. Note that the weights ̟(3) and ̟(4) have a higher value and are related to
the power supplied by the energy company and the term related to the improvement of
the LF. The constants M, and the number of discretization blocks |Y| are set to 1000, and 5,
respectively. Also, the value of ∆t is calculated as 10/|Y| in each period t [57].

Table 4. Hourly values related to the price of energy, standard and local solar radiation.

t Periods ζt ($/kWh)
γt

(p.u.)
Gt (kW)/m2 t Periods ζt ($/kWh)

γt

(p.u.)
Gt (kW)/m2

1 01:00–02:00 h 0.22419 0.00 0.00 13 13:00–14:00 h 0.22419 1.00 0.220
2 02:00–03:00 h 0.22419 0.00 0.00 14 14:00–15:00 h 0.22419 0.95 0.209
3 03:00–04:00 h 0.22419 0.00 0.00 15 15:00–16:00 h 0.22419 0.82 0.180
4 04:00–05:00 h 0.22419 0.00 0.00 16 16:00–17:00 h 0.22419 0.53 0.117
5 05:00–06:00 h 0.22419 0.00 0.00 17 17:00–18:00 h 0.22419 0.15 0.033
6 06:00–07:00 h 0.22419 0.10 0.022 18 18:00–19:00 h 0.32629 0.08 0.018
7 07:00–08:00 h 0.22419 0.20 0.044 19 19:00–20:00 h 0.51792 0.00 0.00
8 08:00–09:00 h 0.22419 0.50 0.11 20 20:00–21:00 h 0.51792 0.00 0.00
9 09:00–10:00 h 0.22419 0.80 0.176 21 21:00–22:00 h 0.51792 0.00 0.00

10 10:00–11:00 h 0.22419 0.90 0.198 22 22:00–23:00 h 0.32629 0.00 0.00
11 11:00–12:00 h 0.22419 0.95 0.209 23 23:00–24:00 h 0.22419 0.00 0.00
12 12:00–13:00 h 0.22419 1.00 0.220 24 24:00–01:00 h 0.22419 0.00 0.00

4.2. Simulation Results

Based on the information presented above, the optimal management of electricity
consumption in a prosumer community can be performed without considering (Case 1)
or with considering (Case 2) the improvement of the LF. In Case 1, the proposed model is
executed without taking into account the ψ′

2 function as part of (2). Unlike Case 1, Case 2
considers the function ψ′

2 to guarantee the improvement of the LF.
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Figure 3 shows the profile of habitual, Hcp
u,a,t, and optimal consumption for each

prosumer (in Figure 3a–c) and for all prosumers (community, in Figure 3d). The H
cp
u,a,t

profile obtained through Algorithm 1 is shown by the red line. The O
cp
u,a,t profiles in

the blue and black line represent Case 1 and 2, respectively. In Figure 3a, the H
cp
u,a,t

profile related to prosumer 1 reaches the maximum values of 8.35 kWh and 8.94 kWh
in the intermediate period (t = 18) and peak period (t = 20), respectively. In Case 1,
the maximum peak is reduced to 6.49 kWh and shifted to period t = 11. Although this
consumption profile presents a smooth distribution of consumption throughout the day,
the maximum consumption peak appears during off-peak hours. Also, other peaks of
consumption of 4 kWh are presented in the respective periods of t = 1 and t = 6 with
the lowest electricity price. In Case 2, the distribution of consumption during the day
is greater than Case 1 previously described. Note that there is not a single maximum
peak, but a distributed consumption with values of 3.63 kWh (t = 1), 3.43 kWh (t = 4),
3.88 kWh (t = 5), 3.96 kWh (t = 11), 3.20 kWh (t = 12), and 3.50 kWh (t = 17). Moreover,
a slight consumption concentration of 4.50 kWh at t = 23 shows how improving the LF
contributes to a wide distribution of consumption without creating high peaks. Figure 3b,c
related to the consumption profiles Hcp

u,a,t of prosumers 2 and 3 show consumption peaks
during peak hours (t = 20 with 8.96 kWh, prosumer 3) and in times close to that (t = 23
with 7.60 kWh, prosumer 2). In the same way, as in Figure 3a, the O

cp
u,a,t profile for both

prosumers, in Case 1, shows a shift from the maximum consumption peak to periods
with cheap energy prices, as t = 13 and t = 12 with 5.50 kWh (prosumer 2) and 5.87 kWh
(prosumer 3), respectively. For Case 2, the O

cp
u,a,t profile related to prosumer 2 presents

a peak consumption of 5.43 kWh at t = 19. Within the same period, prosumers 2 and 3
present zero consumption. Also, note that within t = 20 and t = 21, the only consumption
belongs to prosumer 3. At this same time, the consumption of prosumers 1 and 2 are
reduced such that it does not increase the cost of electricity consumption by the community,
as well as to avoid congestion during power supply in peak periods. This fact shows
the efficiency of the proposed model to schedule the usage of domestic loads, especially
those with a higher average power, to obtain a more homogeneous distribution in the
consumption profile without harming the lifestyle of the prosumers’ community. This
homogeneous distribution due to the efficient scheduling of household appliances can be
seen in Figure 3d. In this figure, the habitual profile of the community reaches a peak of
18.84 kWh at t = 20. For the O

cp
u,a,t profiles, the maximum consumption peaks represent

81.48% (in Case 1) and 40% (in Case 2) of 18.84 kWh, both in the respective periods of
t = 12 and t = 1, 8, 11, 12, and 13. Furthermore, the optimal consumption profile Case 1, the
blue line, shows the maximum peak at t = 12; in addition to this peak, other consumption
peaks are presented within off-peak hours, creating potential load concentrations, which
in turn it can cause congestion during power supply. However, in Case 2, for the O

cp
u,a,t

profile, the black line, this occurrence of new peaks is mitigated. Note that, in this case,
there is a consumption during peak hours, i.e., the habitual peak consumption has been
reduced but not completely eliminated. In Case 1, during peak hours, consumption was
completely shifted to other times that possibly contributed to the formation of the new
peaks. Therefore, this demonstrates that it is possible to reduce consumption without
compromising the reliability of the EDN by considering the improvement in the efficient
usage of energy (i.e., increased LF) in intelligent management.

Figure 4a,b demonstrate the values related to the total costs and the LF of each
prosumer (1, 2, and 3), as well as the community (total). In both figures, the lines in red,
blue, and black are related to the H

cp
u,a,t profile, the O

cp
u,a,t profile considering Case 1, and the

O
cp
u, a, t profile considering Case 2, respectively. For each of these consumption profiles, the

respective total costs result in $44.67 (red square), $30.32 (blue square), and $36.47 (black
square). Note that the costs of each prosumer u and the total of prosumers related to the
Case 1 are lower than those related to Case 2. Financially, Case 1 is more advantageous
only for prosumers. This is because energy consumption in the peak period is completely
shifted to periods with lower energy prices. However, this schedule of consumption for
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off-peak periods can contribute to the appearance of new concentrations of consumption
in these periods (see Figure 3d), causing disturbances in the reliability of the electrical
network, which can increase the maintenance expenses. To alleviate this concern, Case 2, in
addition to being an alternative for reducing the community’s electricity bill, also reduces
the occurrence of peak consumption during off-peak hours (see Figure 3d) through efficient
scheduling of home appliances a considering hourly preferences, which is advantageous
for the energy company and prosumers.

 

ℋ , , 𝒪 , ,𝒪 , ,

Figure 3. Habitual consumption profile and profiles of optimal consumption without and with
the improvement of the LF. (a) Consumption profiles for prosumer 1; (b) Consumption profiles for
prosumer 2; (c) Consumption profiles for prosumer 3; and (d) Consumption profiles for all prosumers.

ℋ , , 𝒪 , ,𝒪 , ,

 

Figure 4. Values related to total costs for energy consumption and LF in the prosumers’ community.
(a) Values of total monetary costs; and (b) LF values.

Figure 4b shows the values related to the LFs of each prosumer and the community. For
profile H

cp
u,a,t, prosumers 1, 2, and 3 have LF values equal to 0.21, 0.24, and 0.21, while the

LF of the community is equal to 0.29. Such values close to zero indicate large concentrations
of consumption in given periods of the day, e.g., peak period. Moreover, these low values
also indicate that energy is being wasted, i.e., high consumption during peak hours can
create stress, especially in the cabling, due to the transformation of electricity into heat that
increases energy losses. For Case 1, the LFs have resulted in 0.28, 0.34, and 0.32. Although
these LF values are higher than the LF values of the Hcp

u,a,t profile, the obtained O
cp
u,a,t profiles

still present a heterogeneous distribution of consumption during the day. For Case 2, the
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LF values of prosumer 1 and 3 have increased while the LF of prosumer 2 has remained
the same. Note that the LF values of 0.42, 0.34, and 0.37 related to prosumer 1, 2, and 3 are
still close to zero. This fact shows that the proposed strategy has efficiently scheduled the
consumption of each customer (Figure 3a–c) in such a way that the consumption profile
of all of them (Figure 3d) presents a wide distribution of consumption during the day.
Thus, the value of the LF related to the total of prosumer has increased from 0.36 to 0.73
(approximately double).

From Figure 5 onwards, the performance of the PV plant, the energy SBs, and the
power flow within the community for Case 1 (blue line) and Case 2 (black line) are analyzed.
Figure 5a shows, for each case, the power supplied by the electrical network, Pen

t , to the
community of prosumers in each period t. For Case 1, the electric grid supplies the
community’s energy needs in the interval from t = 1 to t = 6, and in the period t = 24. Note
that these periods have cheap energy tariffs. Also, the power grid does not provide power
during peak periods, but it is evident that consumption peaks appear at other times, such
as at t = 2 and t = 24, with consumptions equal to 13.72 kWh, and 20.33 kWh, respectively.
In Figure 3d, the consumption at t = 24 related to this case is less than 20.33 kWh. In this
way, part of that consumed energy is provided for each SB presented in a smart home.
For Case 2, the power grid supplies energy between periods t = 2 to t = 6, and t = 18 to
t = 24. Note that in this case, during the peak period, the power supply meets part of the
community requirements, specifically 67.83%, while the remainder can be attributed to
the energy injected by the SBs. In the same way as in Case 1, a large part of the energy
supplied by the electric network in the period t = 24 is absorbed by the SBs to guarantee
their full charging at the end of the day. Figure 5b shows the values of the surplus power

injected into the power grid, Psplus
t , in both cases. Note that for both cases, most of the

energy is injected between periods t = 9 to t = 15, with full presence of solar radiation, Gt.
Moreover, the total amount of surplus energy injected for each case turns out to be 33.32
kWh (Case 1) and 46.73 kWh (Case 2). This fact highlights the effectiveness of Case 2, which
ensures the rational usage of energy between the Energy Company and prosumers and
adds financial gain to prosumers regarding the sale of PV power produced at the shared
plant. Figure 5c shows that the power produced by the shared PV plant is the same for

both cases. It is important to note that the surplus power Psplus
t in Case 1 and 2 represent

24.20% and 33.94% of the power produced by the PV plant, Ppv
t , in the day. Although Psplus

t
is not entirely composed of the plant’s PV power, this sold power to the grid contributes to
reducing the community’s energy bill by approximately 35% when the LF improvement is
taken into account.

Figure 6 reports the Ps
u,t power values for each prosumer u in each period t of the day.

The directions of this power are differentiated by the positive and negative values shown
in each case. Positive values indicate that the power Ps

u,t measured by the smart meter
flows towards the smart home and SB. Otherwise, the power Ps

u,t can flow towards the
electrical grid or contribute to the energy needs of another smart home in a given period t,
see Figure 1. For both cases, the number of periods t in the day when the Ps

u,t power flows
towards the SB and the smart home is much greater than the number of periods t related
to the opposite flow. This situation indicates that a minimum part of the energy injected
by the SBs is delivered to the electric grid, and the rest of this energy contributes to meet
the consumption of household appliances in each smart home. In Case 1, during peak and
intermediate periods, the positive values of Ps

u,t are minimal. According to Figure 3d, in
these periods, energy consumption by household appliances is zero. Thus, the positive
values mentioned above represent only the powers absorbed by the SBs. During the same
periods, the negative values of Ps

u,t represent the power injected by the SBs, which in turn
contribute to meeting the energy consumption needs of other smart homes. For example,
during peak hours (t = 20), it can be seen that there is no presence of solar radiation Gt, and
energy price ζt is high. However, the SB related to prosumer 1 absorbs power (equal to
2.94 kW) from the SB related to prosumer 2 (injects 2.44 kW) and 3 (injects 0.50 kW). For
Case 2, at t = 20, due to the lack of solar radiation, the supply of power to the community
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is done by the electrical network with a value of Pen
t equal to 3.67 kW, as can be seen in

Figure 5a. This power is provided for each prosumer u according to the operational status
of the SB and the energy consumption of the smart home. For prosumer 1, the demand at
t = 20 is equal to 0.5 kW (Figure 3a). Being Ps

u,t positive and equal to 1.48 kW (Figure 6b),
the SB absorbs a power Pabs

u,t of 0.98 kW (Figure 7b). For prosumer 2, the power Ps
u,t is

negative, with a value equal to 3.33 kW (Figure 6d). Furthermore, in the same period,

prosumer 2 has a low demand of 0.1 kW (Figure 3b), causing the SB to inject the power Pinj
u,t

of 3.43 kW (Figure 7d). The highest demand value of 5.03 kW (Figure 3c) in this period is
related to prosumer 3. And in this circumstance, Ps

u,t adopts a positive value of 5.52 kW
(Figure 6f). In this way, the SB absorbs approximately 9% of Ps

u,t (Figure 7f). This fact shows
the influence of the power supplied by the electric network and the operation of the SBs to
serve each smart home during the peak period.

 

𝑃 , 𝑃 , 𝑃 , 𝑃 ,
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𝑃

𝑃 ,𝑃 ,𝑃 , 𝑃 , 𝑃 , 𝑃 ,

Figure 5. Variation during the day of the (a) power supplied by the energy company, (b) surplus
power injected into the power grid, and (c) power produced by the shared PV plant.

Figures 7 and 8 show the injection (negative values) or absorption (positive values) of
power, as well as the state of charge of the SBs in the community of prosumers, respectively.
In Figure 7, for both cases, the largest number of periods t in which the SBs absorb power is
within hours with the presence of solar radiation Gt. As shown in Figure 5a, the power grid
does not contribute to the community’s energy needs during this time. Therefore, the PV
plant, in addition to contributing to surplus power and the supply of household appliances,
also assists the SBs within these hours. It is worth noting that, for Case 1, during peak hours,
both the shared PV plant and the electricity grid do not supply energy to the community.
Also, during this period, the total energy consumption of the community is zero (Figure 3d).

Therefore, the injected power Pinj
u,t and absorption power Pabs

u,t of the SBs during the peak
period shown in Figure 7a,c,e indicate the exchange of power between the same storage
technologies. In Case 2, during peak hours, the SBs inject power with a maximum value
of 3.0 kW (prosumer 1), 3.5 kW (prosumer 2), and 2.0 kW (prosumer 3). These power
values allow managing the state of charge of each SB while the energy consumption of each
prosumer is met. Finally, Figure 8 shows the state of charge, SoCsb

u,t, of each SB for both
cases. It is worth mentioning that the state of charge of each SB in the last period of the
previous day (t = 0) is equal to 35%, 45%, and 25% of its capacity. In all cases, the SBs reach
full charge (12 kWh for prosumer 1; 10 kWh for prosumer 2; and 15 kWh for prosumer 3) at
the end of the day. In the operation of each SB, for Cases 1 and 2, its state of charge at t = 1
shows a reduction of the stored energy to a value of 10% of the capacity at the same time as
the powers of 3.0 kW, 3.50 kW, and 2.5 kW are injected. Note that at the beginning of the
day, i.e., from t ≥ 1, the SBs do not have consecutive recharges. Also, note that consecutive
recharge occurs within the hours with available solar radiation. In addition, in most cases,
the SBs reach full recharge in periods close to the end of the afternoon. Thus, at night hours,
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when energy prices are high and there is no production of PV energy, SBs contribute to
share power among themselves (Case 1) or meet the consumption of household appliances
(Case 2).

𝑃 ,

𝑃 , 𝑃 ,

Figure 6. Bidirectional power Ps
u,t measured by smart meter during the day for prosumer 1 ((a) Case 1,

and (b) Case 2); prosumer 2 ((c) Case 1, and (d) Case 2); and prosumer 3 ((e) Case 1, and (f) Case 2).

𝑃 ,

 𝑃 , 𝑃 ,Figure 7. Injection Pinj
u,t and absorption Pabs

u,t powers related to the SB of the prosumer 1 ((a) Case 1,
and (b) Case 2); prosumer 2 ((c) Case 1, and (d) Case 2); and prosumer 3 ((e) Case 1, and (f) Case 2).
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𝒢

𝑃 , 𝑃 ,

𝑆𝑜𝐶 ,

≥

 𝑆𝑜𝐶 ,Figure 8. State of charge SoCsb
u,t of SBs for Case 1 (in blue) and Case 2 (in black) related to (a) prosumer

1; (b) prosumer 2; and (c) prosumer 3.

5. Conclusions

In this paper, a MILP model has been proposed to address the problem of intelligent
energy management in a community of prosumers by improving the LF. The formulation
of the proposed model considers a set of economic and operational constraints related
to the household appliances usage and charging of EV batteries and the SBs present in
each smart home. Constraints related to energy production by a shared PV plant, surplus
energy, and community energy balance are also taken into account. Moreover, the efficient
scheduling of appliances has been carried out considering the flexibility of their hours of
usage, i.e., hourly preferences, without jeopardizing the prosumers’ lifestyle. Uncertainties
in the habitual usage of each appliance during the day were simulated using a Monte
Carlo algorithm. In evaluating the effectiveness of the proposed model, two cases have
been considered. In Case 1, the MILP model performs intelligent management without
considering the LF improvement. For Case 2, the LF improvement is considered in energy
management. The results have shown that the strategy that adopts the improvement
of the LF guarantees financial benefits for both the energy companies and prosumers.
For prosumers, this strategy allows minimizing energy consumption expenditures through
the optimal scheduling of appliances, especially those with higher average power, to avoid
the appearance of new consumption peaks during off-peak hours. Moreover, the strategy
performs intelligent management of PV generation and energy storage technologies to
meet the community’s energy needs while any surplus energy produced is injected into
the electricity grid. On the other hand, energy companies obtain financial benefits when
the wide load distribution (i.e., increasing the LF) in the optimal consumption profile
relieves the stress of the power grid and reduces energy waste during power supply.
Consequently, several operating costs are minimized in the short and long term, among
them the costs related to the maintenance of assets, e.g., power transformers, feeders, and
protection devices.
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Nomenclature

Functions

ψ1

Cost function related to the optimal consumption profile of prosumers, appliances with higher
average power, and the surplus power to be injected into the electric network of the energy
company.

ψ2 Cost function related to the load factor of prosumers.
Indexes
u Index for prosumers.
a Index for home appliances.
t Index for periods.
y Index for discrete blocks.
Sets
U Set of prosumers u
A Set of home appliances a
T Set of periods t
Y Set of discrete blocks y
Parameters
ζt Energy price in period t [$/kWh].
Pa Average power of appliance a [kW].

βa
Represents the type of appliance a: −1: EV; 0: appliance a with working hours greater than or equal
to 1 h; and 1: appliance a with working hours less than 1 h.

βi
a

Binary parameter that adopts 1 for appliances with power higher than average. Otherwise, adopts
0.

Ca,t Usage probability of a given appliance a in period t.
Ĉa,t Accumulated probability related to the usage of a given appliance a in period t.
∆t Time duration of each period t [h].
τa Average value of usage time for the appliance a [h].
Q

a
Minimum number of times that appliance a with βa = 1 is utilized.

Qa Maximum number of times that appliance a with βa = 1 is utilized.
τa Minimum usage time of appliance a with βa = 1 [h].
τa Maximum usage time of appliance a with βa = 1 [h].
Qa Average value related to the number of times the appliance a with βa = 0 [kW].

Xhp
u,a,t

Binary matrix related to H
cp
u,a,t. Indicates for each prosumer u, the usage state of appliance a in each

period t.

H
cp
u,a,t

Continuous values matrix. Indicates for each prosumer u, the habitual energy consumption of each
appliance a in period t [kWh].

M Big value related to the linearization process.
Pev EV charging rate [kW].
τev

u Minimum charging time of the EV related to prosumer u [h].
τev

u Maximum charging time of the EV related to prosumer u [h].
Qev

u
Minimum number of times the battery of the EV related to prosumer u can be charged.

Q
ev
u Maximum number of times the battery of the EV related to prosumer u can be charged.

SoCu Initial state of charge related to EV battery of prosumer u [kWh].
Cev

u Energy storage capacity of the EV battery related to prosumer u [kWh].
λ1 Percentage value related to Cev

u .

θ
p
u,a,t

Hourly preferences. Indicates flexibility in the periods t when prosumer u can usage the home
appliance a without creating discomfort.

∆t Maximum value related to the variable ∆Γt,y.
Πt,y Inclination value related to the discrete block y at period t.
Pabs

u Minimum value of power absorbed by the SB related to prosumer u [kW].

P
abs
u Maximum value of power absorbed by the SB related to prosumer u [kW].

Pinj
u Minimum value of power injected by the storage battery related to prosumer u [kW].

P
inj
u Maximum value of power injected by the SB related to prosumer u [kW].

ηabs
u Efficiency in power absorption by the SB related to prosumer u.

η
inj
u Efficiency in power injection by the SB related to prosumer u.

Csb
u SB capacity related to prosumer u [kWh].

λ2
u Percentage value related to Csb

u .
Ppv

t Power supplied by the photovoltaic plant in each period t [kW].
k Accumulator.
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Ĝ Maximum value of the local solar radiation [kW/m2].
Gt Local solar radiation in each period t [kW/m2].
γt Standard solar radiation profile per unit.
Apv Photovoltaic area [m2].
ζ p Reduction factor due to production tolerance.
ζti Reduction factor due to temperature increase.
ζdd Reduction factor due to the presence of dirt and dust.
ζml Reduction factor due to mismatch and wiring losses.
ζcl Reduction factor due to DC to AC conversion losses.
̟(1) Weighted weight related to the first component of function ψ1.
̟(2) Weighted weight related to the second component of function ψ1.
̟(3) Weighted weight related to the third component of function ψ1.
̟(4) Weighted weight related to single component of function ψ2.
Variables

Xop
u,a,t

Binary matrix related to O
cp
u,a,t. Indicates for each prosumer u, the usage state of the appliance a in

each period t.

O
cp
u,a,t

Continuous values matrix. Indicates for each prosumer u, the optimal energy consumption of each
appliance a in period t [kWh].

τus
u,a,t Represents for the prosumer u, the time of usage of the appliance a in period t [h].

θi
u,t

Coincidence factor. Indicates for the prosumer u, the number of appliances that are utilized at the
same period t.

SoCev
u,t Indicates for the prosumer u, the state of charge of the EV battery in each period t [kWh].

τev
u,t Represents for the prosumer u, the EV battery charging time in period t [h].

εev
u Indicates for the prosumer u, the total energy stored in the EV battery [kWh].

∆τus
u,a,t Linearization variable related to Xop

u,a,t × τus
u,a,t.

∆τev
u,a,t Linearization variable related to Xop

u,a,t × τev
u,t.

Pat
t Indicates for each period t, the power related to the total number of prosumers [kW].

Pav Average value of Pat
t [kW].

Λt Represents the difference between Pat
t and Pav at period t [kW].

Λ+
t Auxiliary variable to be used in the objective function discretization process.

Λ−
t Auxiliary variable to be used in the objective function discretization process.

∆Λt,y Auxiliary variable to be used in the square of Γt discretization process.
Pen

t Power supplied by the electricity distribution company in each period t [kW].

Psplus
t Surplus power sent to the electricity distribution network in each period t [kW].

Ps
u,t

Indicate for the prosumer u, the bidirectional power measured by the smart meter in each period t
[kW].

Psr
u,t Power injected by SB related to the prosumer u in period t [kW].

Pinj
u,t Indicates for the prosumer u, the power injected in each period t [kW].

Pabs
u,t Indicates for the prosumer u, the power absorbed in each period t [kW].

µ
inj
u,t Binary variable that determines for the prosumer u the injection status of the SB in each period t.

µabs
u,t Binary variable that determines for the prosumer u the absorption status of the SB in each period t.

SoCsb
u,t Indicates for the prosumer u, the state of charge of the SB in each period t [kWh].
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Abstract: This work aims to evaluate the Flexibility Potential that a residential household can

effectively provide to the public grid for participating in a Demand Response activity. In detail, by

using 14 dwellings electrical data collection, an algorithm to simulate the Load Shifting activity over

the daytime is implemented. That algorithm is applied to different scenarios having considered

the addition of several technical constraints on the end users’ devices. In such a way, more realistic

demand-side management actions are implemented in order to assess the Flexibility Potential

deriving from the loads shifting. Basically, by performing simulations it is possible to investigate how

the household appliances real operating conditions can reduce the theoretical Flexibility Potential

extent. Starting from a Flexibility Price-Market-based Strategy, this work simulates the shifting over

the day and night-time of some flexible loads, i.e., the shiftable and the storable ones. Specifically, all

instants where load curtailments and enhancements occur over the typical day, the flexibility strategy

effectiveness in terms of percentage, the power and energy that are potentially flexible, are evaluated.

All the simulations are performed only for residential consumers to evaluate the actual dwellings

Flexibility Potential in the absence of any electrical storage and production systems. The outcomes

of these simulations show an average Theoretical Flexibility reduction, which is calculated as the

fraction of appliances’ cycles shifting over the total ones, equal to 53%, instead of 66%; in a single

dwelling, a maximum variation equal to 29% has been registered. In the end, the monthly average

shifted energy per dwellings decreases from 27 to 18 kWh, entailing 32.5% off.

Keywords: residential users; demand response; flexible loads shifting scenarios

1. Introduction

The European Union long-term strategic vision concerns a detailed analysis of all those
actions to be undertaken for a greenhouse gasses zero emissions economy within 2050. The
outlined scenarios provide the use of Renewable Energy Sources (RES) on large-scale [1].
However, a large quantity of electricity produced by non-programmable RES, may cause
electrical grid management problems, due to potential mismatch between energy supply
and energy demand [2].

An efficient balancing method is represented by the Demand-Side Management activi-
ties (DSM), which have the goal of encouraging consumers to modify their electrical energy
use, either reducing their consumptions or shifting the power uptakes towards off-peak
hours; in detail, among the DSM activities, a great interest was addressed to the Demand
Response (DR) [3], which aims at reshaping the users’ power demand profiles according to
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the grid requirements. DR helps public service enterprises and users to reduce peak power
demand and the energy prices variability [4], converting the users into load management
market active participants [5].

From a literature overview, it emerged how the DSM strategies implementation was
adopted very often to improve energy and economic savings in big industrial sites; Notwith-
standing, in the recent years, an increasing attention to the potential role of residential
sector in the flexibility market has been paid. Even though costly ICT infrastructures to
send signals from or towards the individual house are required, several research activi-
ties were focused on developing less expensive components and sensors to make them
accessible and handy in the medium short term. Additionally, potential incentive schemes
have been proposed in order to improve the end-users’ profitability and to contribute to a
wider deployment.

The growing interest in the implementation of DR programs to dwellings is basically
due to the high energy needs in the building sector; indeed, in the EU member states, the
real estate energy needs accounted for 40.3% of total consumption; namely, the building
stock alone accounted for 26.1% of total energy consumptions, in accordance with data
referred to 2018 [6]. It is noteworthy that a part of residential consumption is electrical,
and only a fraction of can be considered appropriate to be used flexibly. Having said
this, a great potentiality is represented by all those buildings equipped with electric heat
generators; the positive effect magnitude on overall consumption is strongly related to the
climatic zone (i.e., outdoor temperature and relative humidity), to the buildings’ envelope
as well as to the occupancy rate [7].

Several research projects addressed the issue associated to the identification of the
most proper methodology to assess the buildings’ potential of flexibility [8]. For instance,
the authors in Ref. [9] proposed a predictive model to accurately schedule both the users
and the energy resources which can be deferred over the day. The buildings’ thermal
mass can be reputed as a potential storage medium [10,11]. Indeed, that mass, which is a
specific feature of each dwelling, it can store a certain amount of heat by either postponing
or anticipating the operating time schedule of heating and cooling systems. In such a
way, the indoor thermal comfort conditions can be kept under control to the standard
set point [12]. Among the different available options to handle the load flexibility, the
so-called Power-to-X strategies are currently offering good perspectives. Usually, the X
letter is used as an umbrella terms to indicate the electricity conversion, hailing from the
renewables’ overcapacity, into different useful energy forms. Referring to the building
sector, Power-to-Power, Power-to-Heat and Power-to-Gas are considered, by the scientific
community, as the most promising and suitable options in the short-medium term [13–16].
However, cheaper and reliable storage devices, such as PCMs (Phase-change Materials),
pressurized gas vessels, batteries and the electro-fuels injection into NG pipelines, have to
be effectively embedded within the existing energy scenarios [17]. On the other hand, the
recent literature, dealing with how to conveniently store heat in the residential sector, is
strongly oriented to analyse the widespread electric heat pumps application for serving
the end users in terms of Domestic Hot Water production (DHW as well [18]).

In accordance with the mentioned research indications, and based on what has
emerged when applying the management strategy proposed in a previous work [19],
different scenarios have been built. Specifically, they also include several constraints, in
order to evaluate their effects on the dwellings’ flexible potential. The study is based on
a measurement campaign carried out over two years (2018–2019) related to 14 sample
dwellings representing the middle regions Italian building stock; that cluster was chosen
by selecting the most frequent typologies within a database consisting of 751 real dwellings.
The database was built over the last three years by collecting a wide group of information,
such as geometrical characteristics, building materials and energy bills.

Having said this, the authors deem that their contribution to the knowledge in this
research topic is substantially the methodological approach, which integrates on-field
measurements with a simulation process; more specifically, the authors attempt to identify
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how the DSM strategies effectiveness drift away from theoretical values once realistic
technical constraints on devices operation have been considered in calculation model.
By combining several tools for statistical analysis, the dwellings’ electrical loads have
been analysed, classified, filtered, and then processed to verify the realistic flexibility.
Moreover, this study aims at contributing to identify the potential role of Italian residential
sector within the long-term strategy of progressively transforming the end users’ energy
consumptions. Indeed, a high electrification degree is well recognised as one of the most
important drivers in the energy transition, towards an efficient RES integration within the
national grid.

2. Materials and Methods

An effective DR program implementation generally needs an accurate knowledge of
what a generic dwelling can offer, in terms of shiftable loads, for participating in such a
strategy. Considering a single household, the flexibility potential is low and discontinuous
very often; nevertheless, by gathering several dwellings it is possible to mitigate such
discontinuities and to flatten the flexible loads amount over specific time spans. In so doing,
building clusters or districts can fruitfully contribute to the electrical systems management
along with improving their own safety and reliability issues [20].

The loads classification based on their intrinsic nature [21] can be useful only for
preliminary analysis (see Figure 1), providing to designers with a flexibility amount over-
estimation: (i) all those loads deemed as flexible in accordance with the classification
might be not-flexible related to the specific management strategy [22,23]; (ii) other loads
might be not-flexible caused by different technical constraints related to the household
appliances [24]. Those ones, can be eventually imposed by a building energy management
system (e.g., BEMS) [25]. This latter, including several probes, sensors, transducers and
interfaces, is characterised by a purchase price ranging between 1000 and 4000 € as the
household size increases together with technical requirements, specifications and remote
controls [26].

Figure 1. Flexible Loads quantification process.

In this work, the management strategy developed in a previous project of the same
authors [19], are considered; this strategy was defined comparing the power demand
profiles of a buildings cluster with the Italian hourly electricity price. In so doing, all those
moments over the day, in which clusters should reduce or enhance their electrical uptakes,
were detected. Consequently, optimized and reshaped power demand profiles, sorted by
months and days typology, were built (i.e., weekdays, Saturdays, non-working days), as
reported in Tables A1–A3 of Appendix A.
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Seven technical constraints have been identified (see Table 1) and they can be outlined
as follows: (C1) is a maximum flexibility window of 24 h [27]; (C2) is the maximum
withdrawable power from the grid as a function of delivery contracts related to the end
user typology; (C3) the dwelling occupancy for some appliances operation (vacuum cleaner,
iron, etc.) [28]; (C4, C5) account for the working sequence of different appliances (washing
machine, tumble dryer, dishwasher); (C6) takes into account the correlation between the
users stochastic behaviour and the heating and cooling systems operation [29]; (C7) refers
to different user settings imposed to avoid the satisfaction level lessening (of users themself
and neighbours), e.g., for night-time noises.

Table 1. Operative bonds to the appliances working.

Constraints (C) Criterium Definition

C1 Flexibility window Maximum shifting within 24 h ahead

C2
Maximum power at the meter

(detachment conditions)

P > 14.0 kW for τ > 2 s
P > 4.2 kW for τ > 2 min

P > 3.3 kW for τ > 182 min

C3 Vacuum cleaner and Iron using Occupancy in dwelling

C4 Tumble Dryer and Washing Machine TD operation within 3 h from WM cycle end

C5 Dish Washer End of operation within next meal

C6 Heating and Cooling
Occupancy within the next 4 h

(i.e., switching on within the previous 4 h
from the original starting)

C7 No noise in the night-time
No appliances shifting towards night-time

between 12:00 a.m. and 06:00 a.m.

Starting from the theoretical classification (S0), four scenarios were simulated with
the aim of quantifying the flexible loads in the dwellings. Each scenario is characterised
by the application of the aforementioned management strategy, along with the different
constraints set and by the different impositions of the bond conditions set out above (see
Table 2). The simulations were implemented using the Excel environment, with Macros
written in Visual Basic for Applications (VBA).

Table 2. Simulated scenarios.

Scenario (S) Criterium

S0 Theoretical Classification

S1
Load Shifting Strategy Simulation;

No constraint Applied

S2
Load Shifting Strategy Simulation;

constraints V1, V2, V3 Applied

S3
Load Shifting Strategy Simulation;

constraints V1, V2, V3, V4, V5, V6 Applied

S4
Load Shifting Strategy Simulation;

constraints V1, V2, V3, V4, V5, V6, V7 Applied

The theoretical classification (S0) is based on a preliminary analysis carried out on
the sample dwellings. It allows to estimate the flexibility in a “steady” way, once all of the
flexible appliance cycles have been considered shiftable only by their nature; that implicitly
means families are totally willing to participate in a DR program [21].

As regards the management strategy (S1) application, general flexible cycle hourly
allocations and load shifting requests (i.e., “Load Reduction Time”; “Load Increase Time”)
were analysed and correlated, according to what is reported in Appendix A, Tables A1–A3);
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as a result, some loads have been considered not-flexible. In detail, loads belonging to that
category are all those off-takes occurring at the right hourly allocation (cycle load in “Load
Increase Time” o “No Load Variation”), together with the non-shiftable ones due to the
lack of “Load Increase Time” subsequent requests.

The addition of further constraints, such as S2, S3 and S4, limits load amount to be
shifted, owing to the incompatibility between some hourly allocation “Load Increase Time”
and scenario’s constraints.

The flexible loads were characterised by considering, for each working cycle of any
appliances, the following parameters: (i) the starting time, (ii) the cycle duration; (iii) the
consumed energy (EFlex); (iv) the maximum power (Pmax).

The strategy and constraints application effects were evaluated by several indica-
tors able to describe and summarize the flexibility amount in terms of statistical and
energy values:

• Real Flexibility (RF) is the effective fraction of the executed load shifting, respect to the
appliance total cycles tally (see Equation (1));

• Energy Shift (ES) is the shifted energy consumption deriving from the adopted actions
(see Equation (2));

• Peak Shaving (PS) is the maximum achievable peak reduction by the load shifting, in
terms of power, between the scenario Sx and the theoretical one without shifting (S0)
(see Equation (3)).

RFSx =
NFlex,Sx

N f lex, S0
. (1)

ESSx = ∑ EFlex,Sx (2)

PSSx = Max(Pmax,S0 − Pmax,Sx) (3)

where:

• NFlex,S0 is the total tally of flexible cycles before applying both strategy and constraints
(i.e., it corresponds to scenario S0);

• NFlex,Sx represents the number of effective executed load shifting, due to the scenario
Sx application;

• Pmax,S0 . indicates the maximum registered power (in the time span of 15 min) before
applying the strategy and constraints (i.e., scenario S0);

• Pmax,Sx represents the maximum registered power (in the time span of 15 min), hailing
from scenario Sx application, at the same time in which the Pmax,S0 value occurs.

The first indicator (RF) was expressly defined for the present analysis; the remaining
two (ES, PS) were widely used in literature to evaluate the flexibility in the residential sector
and to define the political implications of different scenarios in the energy markets [30].
They were also combined with the cost reduction assessment [31] and they were included
for defining power storage management strategies [32].

The explained procedure was applied to 14 sample dwellings of 751, selected by
the use of a categorizing algorithm [19]. Therefore, they are considered as archetypes
representing part of the Italian residential sector and their main features are outlined
in Appendix B. In such dwellings, some sensors were installed to monitor the electrical
consumption (Appendix B, Table A4) and a measurement campaign was carried out over
2018–2019.

The methodology application has been preceded by data elaboration process of the
acquired measurement. Indeed, the sensors sampling time and data collection is about
5 s. The post-processing phase was performed in order to calculate average values over
15 min, according to the common Distributor’s energy meters: Thus, all of calculations and
analyses were carried out with these average values.
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3. Results and Discussions

3.1. Flexible Loads by Classification

Using a data collection questionnaire [21], the required information for simulating
dwellings energy consumptions and for classifying loads were obtained. Specifically,
collected data refer to the physical and geometrical dwelling characteristics, to plant equip-
ment, to building occupancy, to household appliances typology and to their utilization
(Appendix B, Tables A5 and A6). However, the selected archetypes show a modest elec-
trification degree, equal to 36.8%; furthermore, all of samples have a NG-based heating
system; only one dwelling shows a DHW production by heat pump system; in 9 dwellings
cooling system are installed for the air conditioning of some rooms (2 units per dwelling on
average). All the dwellings are equipped with washing machine; a dishwasher is installed
only in 11 dwellings, while the tumble dryer only in 4 dwellings; there are also some
not-flexible appliances, such as ICTs, personal care items, refrigerators, ovens and kitchen
appliances and others with a marginal usage. Among those, the vacuum cleaner and the
iron are available in all dwellings and in 11 of them, respectively.

In the selected archetypes live different family typologies, in terms of composition,
to adequately represent the Italian residential sector. The distribution can be summarised
as follows: 3 households composed by 2 kids, a working parent and a non-working one;
2 households composed by 2 kids and 2 working parents; 4 households composed by 1 kid
and 2 working parents; 2 households composed by 2 workers; one household composed
by a single worker; 2 households composed by 2 non-workers.

Based on the data collection, some preliminary analyses were performed in order to
identify the appliance cycles main features and the household’s habits. In detail, a trend
for the most energy-intensive appliances, characterised by the longest operation times,
was detected: (i) the dishwasher shows an average starting operation time, in all cases
and over the all months, occurring at 5:30 p.m. with an average variance of +4:30 h (40th
percentile) and −1:30 h (60th percentile); (ii) the washing machine is commonly switched
on close to 2:15 p.m. with an average variance of +1:30 h (40th percentile) and −1:45 h (60th
percentile); the air conditioner usage is very diversified between the dwellings (different
duration cycles, different temperature set-points) with an average starting operation time
around 5:15 p.m. and an average variance of ± 4:15 h. The remaining appliances show a
higher variability and a lower cyclic nature. Therefore, it is not easy to identify a unique
trend, exception for a large frequent time span occurring between 11:00 a.m. and 5:00 p.m..
Anyway, it is clear how the users’ working habits strongly affect appliance usage. Indeed,
the electrical loads are mostly concentrated between 5:00 p.m. and 10:00 p.m., since
the variance from the average value is greatly shifted towards the early evening hours.
For instance, air conditioners and other minor appliances are dependent on the house
occupancy; dishwashers must clean up dishes for dinner; washing machines and tumble
dryers, if any, typically operate in the evening. Consequently, the power demand profiles
related to the archetypes show peak values close to these hours, consistently with the
national power demand profile [19].

The annual average daily profile of flexible loads related to the archetypes are depicted
in Figures 2–4. It can be noticed how those loads are generally concentrated in the afternoon,
exception for the weekdays (see Figure 2), where they are available early in the morning or
after dinner.
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Figure 2. Archetypes average daily flexible loads profiles over the weekdays.

Figure 3. Archetypes average daily flexible loads profiles over the Saturdays.

Figure 4. Archetypes average daily flexible loads profiles over non-working days.
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Referring to plotted data in Figures 3 and 4, it emerges how each archetype is char-
acterised by different values of flexible power associated to the appliances’ cycles. Even
though a great variability occurs, a common trend in the usage has been found early in the
morning, at lunchtime and after dinner.

Based on collected data, Table 3 shows the archetypes energy characterisation as a
result of the applied methodology. Such a characterisation has been used to preliminary
estimate the flexible loads extent, according to scenario S0. The averaged values of Flexible
Loads and Non-Flexible Loads are equal to 811 kWh/y and 1333 kWh/y, respectively.

Table 3. Archetypes reference parameters.

Parameters
Archetype

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

NFlex,S0 840 379 1030 172 1365 1261 1019 246 633 289 1868 650 984 504

Flexible Loads
(NFlex,S0) [kWh/y]

858 294 660 355 1758 927 661 188 1096 728 866 1366 957 637

Non-Flexible
Loads [kWh/y]

2648 1024 1085 879 1298 1000 1099 881 2384 1218 1049 1754 1439 959

3.2. Flexible Loads by Strategy & Scenario: Real Flexibility

The simulated scenarios are characterised by the management strategy application
together with different constraints setting up (see Table 2); by adding those technical
limitations, the dwellings’ capacity to participate in flexibility mechanisms is lessened.

The RF indicator use allows the authors to properly examine each scenario proposed
by the authors. Indeed, once the RF variations associated to the archetypes over different
months are known, it is possible to provide a realistic overview of potential flexibility.
Table 4 summarises NFlex,Sx annual values for the selected archetypes, when the proposed
scenarios have been accounted for.

Table 4. Archetypes NFlex,Sx by applying the Load Shifting strategy.

Parameters
Archetype

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

NFlex,S0 840 379 1030 172 1365 1261 1019 246 633 289 1868 650 984 504

NFlex,S1 432 236 526 83 753 534 769 160 334 194 1218 494 581 315

NFlex,S2 430 236 520 83 740 425 765 160 334 194 1216 492 560 315

NFlex,S3 339 236 201 83 661 386 684 160 265 167 1216 463 466 266

NFlex,S4 304 222 195 81 609 322 636 138 257 144 1037 414 367 259

According to what is reported in Table 4, the annual RF values vs. archetypes, with
changes in scenarios, were calculated and are plotted in Figure 5. From data, it emerges
how the more restrictive constraints applied in S2, S3 and S4 scenarios, lead to significant
reductions of RF values.
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Figure 5. RF: archetype annual average values.

Specifically, RF’s decrease from an average value of 66% once no limitation is applied
in scenario (S1), to 53% taking into account all constraints in S4; moreover, a strong
RF reduction has been registered between scenario S2 (RF = 62%) and S3 (RF = 56%),
since limiting the energy-intensive appliances (i.e., washing machine, dish washer, air
conditioner) hinders an effective load shifting of their cycles. Furthermore, that reduction
is higher for those archetypes characterised by low RF values (e.g., #1, #3, #5, #6, #13). It
is due to the fact that they largely use such appliances, and they are more affected by the
constraint’s introduction than the other archetypes.

Table 5 reports the NFlex,Sx monthly values in each scenario, having considered the
14 archetypes combination (i.e., summing all their contributions).

Table 5. Monthly NFlex,Sx by applying the Load Shifting strategy.

Parameters
Months

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

NFlex,S0 1878 1065 872 1235 924 640 792 597 1088 547 680 934

NFlex,S1 1220 693 589 795 603 404 301 234 561 356 425 515

NFlex,S2 1205 693 586 777 601 395 282 188 501 354 423 515

NFlex,S3 906 634 510 619 514 358 262 160 470 329 369 456

NFlex,S4 677 578 464 510 467 325 250 158 433 295 326 409

Figure 6 depicts the monthly RF values for each scenario, when archetypes have been
gathered. Here too, RF reductions have been registered owing to the increasing limitations
set up, according to S2, S3 and S4. Additionally, months belonging to the summertime are
usually characterised by lower values than the others.
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Figure 6. RF: monthly average values.

These RF reductions over the summertime depend mostly on the cooling systems
operation, since the load shifting of air conditioner cycles is generally not feasible, due to
the lack of suitable Load Reduction Time.

Thus, Figure 6 shows how, in June, July and August, the RF values are less sensitive
to the introduction of S4 constraints. That behaviour is caused by climatic and time-delay
factors, hailing from the larger photovoltaic power release in the national grid, and from
lighting loads postponement. Moreover, the great number of Load Increase Time periods,
occurring in 10:00 a.m. up to 4:00 p.m., shrinks the loads shifting needs towards night-time.

More generally, where the Load Reduction Time periods are frequent, the RF is
strongly penalised by applying the S4 features. Indeed, needs of loads shifting towards
night-time are greater, but S4 constraints do not allow that.

3.3. Flexible Loads by Strategy & Scenario: Energy Shift

It is important to highlight that RF is a relative value accounting only for appliance
cycles. Therefore, it is not an exhaustive indicator for directly comparing each other the
selected archetypes. For that purpose, a thorough analysis on loads peculiarities must be
carried out. In such a way, it is possible to identify how often, the archetypes showing low
RF, can provide higher flexibility in terms of energy shift (ES). For instance, referring to
Figure 7, the archetypes number #6 and #13 are characterised by quite low ES values.

In the same way as before, for the RF indicator, Figure 8 depicts the ES average monthly
values, when the archetypes have been clustered and constraint scenarios changed. That
chart points out remarkable reductions in ES values over the summertime, owing to
different operating mode of flexible appliances.

The archetypes’ ES scattering values, sorted by months for a fixed scenario, are
reported in Figures 9–12.

Comparing those charts, it is possible to recognise a progressive lowering in ES statis-
tical distribution values over the year, as more technical limitations are added. In detail,
that reduction is greater where the ES values are higher, since shifted loads are generally
much more, and hence, from a statistical point of view, even the unshifted loads are higher.
Additionally, that issue repeats often in the winter months, where the ES third quartile
amount to 26 kWh/month/dwelling, and peaks can get to 43 kWh/month/dwelling. By
changing scenarios, those values go down until −32.5%, starting from an annual average of
27 kWh/month/dwelling up to 18 kWh/month/dwelling. Indeed, a high decrease is reg-
istered in wintertime, especially between the S1 and S4 scenarios. In that case, the average
monthly values associated to January lessen from 40 to 17 kWh/month/dwelling. Differ-
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ently, the reduction in the summertime is smaller, because of the modest amount of available
flexibility, such as in June, where ES decreases from 19 to 14 kWh/month/dwelling.

Figure 7. Archetypes average annual values of Monthly Energy Shift, with changes in constraint scenarios.

Figure 8. Clustered archetypes average Monthly Energy Shift, with changes in constraint scenarios.

The average values of monthly reduction, caused by applying technical constraints
C1, C2 and C3 for simulating the S2 scenario, are not significant; conversely, the extreme
limits of scattering values must be considered relevant (see Figure 10).

Introducing all of the restrictions associated to scenario S3, which mostly influence the
energy-intensive appliances, the ES reductions become more evident. That feature espe-
cially occurs over the wintertime, where the ES values are greater, as reported in Figure 11.
On the other hand, the average monthly variability values are mitigated, showing lower
fluctuations over the whole year.
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Figure 9. ES: Scenario 1, monthly average values.

Figure 10. ES: Scenario 2, monthly average values.

Thereafter, when the most restrictive limitations are introduced by the S4 scenario,
the ES monthly variability, in terms of both average and extreme scattering values, is
characterised by a further lessening along with a more flattened trend. Such a behaviour,
it is due to the fact that, the current technical constraints deny loads shifting through the
night time (see Figure 12).

3.4. Flexible Loads by Strategy & Scenario: Peak Shaving

The Peak Shaving indicator trends (i.e., PS) have been clearly plotted in Figures 13
and 14. It is worth noticing that PS is defined as the maximum registered power reduction,
over a 15-min time span. That indicator is calculated for each archetype as well as for
the clustered version. In so doing, it is possible to evaluate firstly the flexibility system
potential, and secondly, to identify the number of minimum users able to provide the
grid DSO with specific DSM parameters and references. Moreover, from Figure 13, it is
possible to distinguish those archetypes using the most energy intensive appliances, so that
greater DSM services might be potentially provided to the grid. In Figure 14, the monthly
variation shows a modest reduction only in the summertime. The PS variability between
the simulated constraint scenarios remains almost constant, highlighting the nature of

94



Energies 2021, 14, 3080

this indicator. Indeed, it indicates a maximum value instead of an average one, as for
the previous indicators. In detail, PS indicator small and quite negligible reductions are
detected by applying the different scenarios, namely: 1678 W for S1, 1677 W for S2, 1612 W
for S3, 1592 W for S4.

Figure 11. ES: Scenario 3, monthly average values.

Figure 12. ES: Scenario 4, monthly average values.

The PS scattered values associated to the archetypes, sorted by months, are plotted in
Figures 15–18. Those charts represent the maximum shaved power distribution, caused by
the scenario Sx application. From data analysis, it is possible to conclude that the higher
variations correspond to the lower PS values. That feature entails that some archetypes
keep constant their PS values over the year, while the others are characterised by lower PS,
generally over the summertime. Moreover, in Figure 15, it can be noticed how the median
monthly values do not exceed the threshold of 2000 W, which mostly range between 1500 W
and 1900 W.
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Figure 13. PS: archetype annual average values.

Figure 14. PS: monthly average values.

Figure 15. PS: Scenario 1, monthly average values.
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Figure 16. PS: Scenario 2, monthly average values.

Figure 17. PS: Scenario 3, monthly average values.

Figure 18. PS: Scenario 4, monthly average values.
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Thus, Figure 16 reports the PS variation owing to the S2 scenario application. Com-
paring these data with those related to the S1 scenario, small differences are registered,
exception for the minimum values of the monthly scattering plot.

That issue is emphasised further within the chart associated to the S3 scenario (see
Figure 17), where the minimum values further decrease (first quartile), hence the PS
variation range increases (e.g., in February).

The same trend is confirmed by the S4 scenario (see Figure 18), where a modest
lessening in the maximum values, together with the median and the average, occur. The
average annual values drift away, starting from 1777 W for the S1 scenario, towards 1600 W
for the S4 scenario.

4. Conclusions

This work aims at defining and quantifying the real flexibility offered by a building
cluster, in the Italian residential sector, to the national grid. In so doing, that cluster can
participate in a demand response program in accordance with a Flexibility Price-market-
based Strategy. Extrapolating and exploiting data collection, hailing from an experimental
campaign carried out on 14 reference dwellings, over two years, a Load Shifting Strategy
has been applied. Additionally, some theoretical indicators have been presented and
extensively discussed on the basis of a real case study. Then, four different scenarios
have been built by imposing several technical constraints on the household appliances,
accounting for operation contemporaneity, building occupancy, cycles time sequences etc.
All of scenarios are characterised by a growing limitation degree in the Load Shifting
strategy, which consequently causes considerable reduction of Real Flexibility capacity that
a building cluster can provide.

In order to evaluate the potential reduction hailing from the realistic constraints, a
reference scenario S0 has been built. It represents the theoretical Flexibility potential. In
detail, scenario S1 includes only the Load Shifting Strategy application; in scenarios, S2–S4
seven technical constraints have been added. Starting from the RF average value over
the year equal to 66%, it decreases up to 53%, with seasonal differences which get the
lowest values in July and August. RF values up to 80%, can be provided by some sample
dwellings. Notwithstanding, when buildings are clustered, the virtuous end users’ habits
can be mitigated, leading to lower flexibility capacity associated to the residential sector.

Other indicators have been calculated, and one of these is the ES (energy amount effec-
tively moved over the day deriving from the Load Shifting strategy). Monthly average val-
ues of ES decrease from 12 to 8 kWh/month/dwelling, due to the more restrictive scenario
application (i.e., S4). ES peak values have been calculated and 35 kWh/month/dwelling
has been accomplished. The PS indicator has been calculated too: values close to 1600 W,
with a low sensitivity to the different scenarios, show moderate effects in terms of power
reduction; nevertheless, by gathering some dwellings, it is possible to get to higher PSs for
providing the grid with an efficient strategy to reshape the load curve.

The main outcomes from simulation can be outlined as follows:

• The RF value shrinks as the constraints number increases; starting from S1 to S4 the
registered RFs are equal to 66%; 62%; 56%; 53%, respectively.

• The ES value decreases by changing scenarios; from S1 to S4, 27; 26; 21; 18 kWh/month/
dwelling, have been registered, respectively.

• The value of PS does not significantly decrease, from S1 to S4, e.g., 1678 W; 1677 W;
1612 W; 1592 W, respectively.

• The appliances’ cycles are mostly shifted in the afternoon, between 4:00 p.m. and
8:00 p.m.; the time span in which they are moved is close to the late evening and
night-time. As regards the S4 scenario, the loads shifting occurs early in the morning
(after 6:00 a.m.).

• The Dish Washer and Washing Machine cycles that generally are shifted, have an
energy consumption approximately equal to 1 kWh/cycle.
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• In the summertime (from June to September) flexibility is on the average lower than
in the other months, in terms of both RF and ES, because of the different composition
of summer loads (e.g., lighting, air conditioning).

• The indicators values reduction is stronger in S2 and S3 rather than in the other
scenarios. That is due to the restrictive limitations addition which have been applied
to the energy-intensive appliances.

This article is presented based on the actual data of 14 homes, which are characterised
by a low electrification degree; among those, only one reference home is equipped with a
photovoltaic plant. New scenarios are being developed dealing with dwellings which use
heat pumps for heating and DHW purpose, and which have self-generation hailing from
PV along with batteries pack. In these cases, self-generation and storage devices constitute
further constraints compared to those examined in this article. As a result, the flexibility
potential that each individual dwelling can offer to the electric spot market will be reduced.
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Appendix A

Table A1. Strategy to optimise the load shifting: weekdays; (−2, Green) Strong Load reduction; (−1, Light Green) Weak
Load re-duction; (0, White) No Load variation; (1, Light Red) Weak Load increase; (2, Red) Strong Load increase.

Months
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

January 1 2 2 2 2 2 1 −1 −2 0 0 0 1 0 0 −1 0 −1 −1 −2 −1 −1 0 0
February 2 2 2 2 2 2 −1 −1 −1 0 0 1 1 1 1 −1 −1 −1 −1 −2 −2 −1 0 0

March 1 2 2 2 2 2 −1 −1 −1 0 0 1 1 1 0 −1 −1 0 −1 −2 −2 −1 0 0
April 1 2 2 2 2 2 1 −1 −1 0 0 0 1 1 0 0 −1 −1 −1 −2 −2 −2 −1 0
May 1 2 2 2 2 2 1 −2 −1 0 0 0 1 0 0 0 −1 0 −1 −2 −2 −2 −1 0
June 1 2 2 2 2 2 1 −1 0 0 0 1 1 0 0 −1 −1 −1 −1 −2 −2 −2 −1 0
July 0 1 2 2 2 2 2 1 0 0 0 0 1 0 0 −1 −1 −1 −2 −2 −2 −2 −1 0

August −1 1 2 2 2 2 2 1 0 0 1 1 1 0 0 −1 −1 −2 −1 −1 −2 −2 −1 −1
September 1 2 2 2 2 2 1 −1 0 −1 0 0 1 1 0 −1 −1 −1 −1 −2 −2 −1 0 0

October 2 2 2 2 2 2 1 −1 −1 −1 0 0 1 1 1 −1 −1 −1 −1 −2 −2 −1 0 0
November 2 2 2 2 2 2 1 −1 −1 0 0 −1 1 1 0 −1 −1 −1 −1 −2 −1 0 0 0
December 2 2 2 2 2 2 1 −1 0 −1 0 0 1 1 −1 −1 −1 −2 −2 −2 −1 0 0 0
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Table A2. Strategy to optimise the load shifting: Saturdays. (−2, Green) Strong Load reduction; (−1, Light Green) Weak
Load reduction; (0, White) No Load variation; (1, Light Red) Weak Load increase; (2, Red) Strong Load increase.

Months
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

January 1 2 2 2 2 2 1 0 0 −1 −1 0 1 0 0 0 −1 −1 −2 −2 −2 −1 −1 1
February 1 1 2 2 2 2 1 0 0 −1 −1 0 1 0 0 0 −1 −1 −1 −1 −2 −1 −1 1

March 0 1 1 2 2 1 0 0 0 −1 −1 1 0 0 0 0 0 0 0 −2 −2 −2 −1 0
April 0 1 1 1 2 1 0 0 0 −2 −1 1 0 0 0 0 0 0 0 −2 −2 −2 −1 0
May 0 0 1 2 2 2 1 0 0 −1 0 0 0 0 0 0 0 0 −1 −1 −2 −2 −1 1
June 0 0 0 1 1 1 1 1 0 −1 0 1 0 0 0 0 0 0 −1 −2 −2 −2 −2 0
July 0 0 0 0 1 1 1 1 0 −1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 −1

August −1 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 −1 0 −1 −2 −1 −2 −1
September 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 −1 −1 −2 −2 −2 −1 1

October 0 0 1 1 2 1 0 0 −1 −1 0 1 0 0 0 1 0 −1 0 −2 −2 −1 0 0
November 1 1 1 2 2 2 1 0 0 −1 −1 0 0 0 0 0 −2 −2 −1 −1 −2 −1 0 1
December 1 1 2 2 2 2 2 0 0 −1 −1 0 1 1 0 −1 −2 −2 −1 −2 −2 −1 0 0

Table A3. Strategy to optimise the load shifting: non-working days. (−2, Green) Strong Load reduction; (−1, Light Green)
Weak Load reduction; (0, White) No Load variation; (1, Light Red) Weak Load increase; (2, Red) Strong Load increase.

Months
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

January 0 1 2 2 2 2 2 2 1 1 −1 −1 −1 0 0 0 −2 −1 −1 −2 −2 −2 −1 1
February 0 1 2 2 2 2 1 1 0 0 −1 0 0 0 0 0 −1 0 −1 −2 −2 −2 −2 0

March −1 1 2 2 2 2 1 1 1 −1 −1 −1 0 1 0 0 −1 0 0 −2 −2 −1 −1 0
April 0 1 1 1 1 0 0 0 0 −1 0 0 0 1 1 1 0 0 −1 −2 −2 −2 −2 −1
May 0 0 1 2 1 0 1 1 0 0 −1 0 0 0 0 0 0 1 0 −1 −2 −2 −2 −1
June 0 0 0 1 1 1 2 1 1 1 −1 1 1 0 0 0 −1 −1 −1 −2 −2 −2 −2 −1
July −1 0 0 0 0 1 2 1 1 0 1 1 1 0 0 0 0 −1 −1 −1 −2 −1 −1 0

August 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 −1 −1 −1 −1 −2 −1 −1
September 0 0 1 2 2 2 0 1 1 −1 0 1 0 0 0 0 0 −1 −2 −2 −2 −2 −1 0

October 0 1 1 2 2 2 1 1 0 −1 −1 0 0 0 0 0 0 0 −1 −2 −2 −2 −1 0
November 1 2 2 2 2 2 2 1 1 1 −1 0 0 0 −1 −1 −1 −1 −2 −2 −2 −2 −1 0
December 1 1 2 2 2 2 2 1 1 −1 −1 −1 −1 1 1 −1 −2 −1 −2 −2 −2 −2 −1 1
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Appendix B

Figure A1. Control kit layout.

Table A4. Control kits configuration for the archetypes.

Function Device
Archetype

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

Energy box Gateway 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Monitoring

Electricity meters 1 1 1 1 2 1 1 1 1 1 1 1 1 2

Multi-sensors
(temperature,

presence, brightness)
5 6 6 4 6 6 4 4 7 6 3 9 7 7

Windows/doors
opening and closing

detectors
7 8 6 5 8 8 5 5 10 10 6 9 12 9

Control
Smart Valves 6 5 0 4 3 6 5 3 8 6 0 0 7 0

Smart Plugs 4 3 4 4 3 4 4 3 3 4 3 5 3 6

Smart Switches 1 0 0 0 1 1 1 1 1 1 0 1 0 0

Table A5. Archetypes appliances and characteristics.

Archetype Floor Surface [m2] Heating and DHW * Cooling * PV Array WM ** DW ** TD **

#1 49 NCB 2 HP 7; 5; A+ 6; 7; A

#2 101 NCB 1 HP 10; 2.5; A

#3 100 NCB 1 HP 7; 5; A+

#4 50 NCB 1 HP 7; 1.5; A+ 5; 0.5; A

#5 100 CB + HP 4 HP 7; 4; A++ 5; 4; A 5; 4; A

#6 65 CB 3 HP 7; 6; A 12; 3.5; A 7; 0.5; B

#7 65 NCB 1 HP 7; 5; A+ 6; 7; A

#8 60 CB 7; 2; A++ 12; 1.5; A+

#9 95 NCB 2 HP 7; 5; A+++ 12; 8; A+
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Table A5. Cont.

Archetype Floor Surface [m2] Heating and DHW * Cooling * PV Array WM ** DW ** TD **

#10 102 NCB 1 HP 7; 3; A+ 14; 5; A

#11 67 CB 10; 5; B 6; 5; B

#12 134 CB 7; 6; A 14; 7; A 6; 3; B

#13 124 CB 5; 4; A 12; 7; A+

#14 123 NCB + solar collectors 3.9 kW 5; 4; A 12; 7; A+

* NCB: Non-Condensing Boiler; CB: Condensing Boiler; HP: Heat Pump; ** WM: Washing machine; DW: Dishwasher; TD: Tumble dryer;
Capacity, cycles per week, Energy Class.

Table A6. Family composition of each archetype.

Archetype Occupants * Description

#1 4; (1; 3; 4; 4) Family with two teenage children and one unemployed parent

#2 2; (0; 0; 2; 2) Commuter Workers

#3 4; (0; 3; 4; 4) Family with school-aged children, and one part-time working parent

#4 1; (0; 0; 1; 1) Commuter Worker

#5 4; (1; 3; 4; 4) Family with school-aged children, and one home parent

#6 4; (1; 3; 4; 4) Family with school-aged children and babies, and one unemployed parent

#7 3; (0; 0; 3; 3) Family with a baby and commuter parents

#8 2; (1; 1; 2; 2) Commuter worker, awaiting employment

#9 3; (1; 2; 3; 3) Family with a school-aged child, and one commuter worker

#10 2; (0; 1; 2; 2) Family of commuter workers

#11 3; (0; 2; 3; 3) Family with a school-aged child, and two commuter workers

#12 4; (0; 1; 4; 4) Family with two adult children, two commuter parents

#13 2; (0; 1; 2; 2) Family with a school-aged child, and two commuter workers

#14 2; (2; 2; 2; 2) Two Pensioners

* Number of occupants; (8 a.m. to 1 p.m.; 1 p.m. to 7 p.m.; 7 p.m. to 12 a.m.; 12 a.m. to 8 a.m.).
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Abstract: To achieve a successful integration of fluctuating renewable power generation, the power-

to-heat (P2H) conversion is seen as an efficient solution that remedies the issue of curtailments as

well as reduces carbon emissions prevailing in the district heating (DH) sector. Concurrently, the

need for storage is also increasing to maintain a continuous power supply. Hence, this paper presents

a MILP-based model to optimize the size of thermal storage required to satisfy the annual DH

demand of a community solely by P2H conversion employing renewable energy. The DH is supplied

by the optimal operation of a novel 2-km deep well heat pump system (DWHP) equipped with

thermal storage. To avoid computational intractability, representative time steps with varying time

duration are chosen by employing hierarchical agglomerative clustering that aggregates adjacent

hours chronologically. The value of demand response and the effect of interannual weather variability

are also analyzed. Numerical results from a Finnish case study show that P2H conversion utilizing

small thermal storage in tandem with the DWHP is able to cover the annual DH demand, thus leading

to a carbon-neutral DH system and, at the same time, mitigating the curtailment of excessive wind

generation. Compared with the annual DH demand, an average thermal storage size of 29.17 MWh

(2.58%) and 13.99 MWh (1.24%) are required in the business-as-usual and the demand response

cases, respectively.

Keywords: power-to-heat; sector coupling; thermal storage; district heat; deep well heat pump;

hierarchical agglomerative clustering; chronology; demand response; two-capacity building model

1. Introduction

The current energy policies of the European Union (EU) and the Intergovernmental
Panel on Climate Change (IPCC) of the United Nations (UN) urge combating global
warming. As a result, the share of renewable energy generation capacity is substantially
increasing in energy systems. A key strategy is to replace centralized fossil fuel-based
energy generation with widely distributed clean renewable sources. This points to a
massive energy transition ahead, including long-term planning of generation expansion
and storage capacity. This clean energy transition not only includes the electrical power
sector but also necessitates more actions in the district heating (DH) sector, as most of the
end-use energy in Europe is in the form of heating [1]. For instance, heating and domestic
hot water, together, constitute over 80% of the households’ end-use energy in Finland [2].
Moreover, DH is mostly based on fossil fuels in Northern Europe such that it stands for
51% of all emissions in Helsinki, the capital of Finland [3].

While renewable energy sources (RES), such as wind and solar power, play an impor-
tant role in the deep decarbonization of energy systems, they come with inherent variable
and intermittent power generation levels that render them un-dispatchable. Thus, in order
to achieve a successful integration of such RES technologies, smart grid solutions become
apparent. In this field, sector coupling of electricity and heat utilizing excess renewable
power generation to perform power-to-heat (P2H) conversion is an extensively proposed
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solution and has received increasing interest [4]. It implies that the excess renewable
generation, which would otherwise be curtailed, can be used to produce DH. The benefit of
this idea is twofold: first, it reduces the generation curtailments, and second, it reduces the
carbon emissions in the DH sector. In simple words, the DH system has a great tendency
to act as a sink for fluctuating RES generation.

Growing efforts have been dedicated to analyzing the flexibility and economic value
associated with P2H coupling. For example, it was concluded in [5] that P2H conversion
utilizing renewable generation was the most cost-efficient approach for minimizing carbon
emissions for the case of the Nordic–Baltic region. The results also highlighted the need for
thermal energy storage in conjunction with P2H application. Likewise, the authors in [6]
demonstrated that utilizing only heat pumps would significantly reduce the emissions of
DH in Helsinki under high wind power penetration. The work in [7] considered a 50% share
of wind generation for Helsinki and established that the P2H option complemented with
thermal storage would eliminate all the wind power curtailments. In [8], by considering
national and local cases in Finland, it was argued that electrification of the heating sector
could prove to be effective in mitigating CO2 but with a warning that wind generation
would not easily replace the electricity cogeneration in DH systems, due to adequacy
issues in peak hours. The foregoing discussed studies particularly focused on the Nordic
countries, as the DH load is quite significant due to the extreme and long winter season in
this region. Moreover, thermal storage was emphasized as an implicit component in P2H
application to eradicate generation curtailments.

While there is a consensus on the benefits of P2H coupling in mitigating curtailments,
demand response (DR) is also characterized as a cost-effective tool to address RES in-
tegration. DR aims to provide upward or downward regulating power to balance the
intermittent power levels of RES. Among DR loads, thermostatically controlled loads
(TCLs), such as heating, ventilation and air-conditioning and domestic hot water usage,
etc., occupy a leading slot. In the case of TCLs, the user-comfort is a function of temperature
dead band only, while a smart thermostat is a fundamental requirement to control the
thermal comfort level. The promising benefits offered by TCLs in the context of network
management, investment planning and balance reserves have gained much attention. For
instance, the system-wide potential of space heating loads for capacity planning of hydro-
gen energy storage in a highly renewable energy case of the Finnish power system was
considered in [9]. In [10], the flexibility potential of space heating together with domestic
hot water loads was analyzed, aiming at mitigating renewable generation curtailments for
a residential microgrid. Similarly, the on-site utilization of solar energy generation was
optimized by the support of TCLs in [11]. The above-discussed studies centered on space
heating loads also considered building thermal dynamics for efficient DR coordination.

In our previous work [12], the P2H option was considered, along with the DR of space
heating in a short-term operation-planning model enabling aggregator and households to
communicate with each other to achieve mutual benefits. However, in order to account for
events concerning high wind days or even very low wind days in P2H application for DH
demand, thermal storage is certainly required, as endorsed in the literature. Therefore, our
current work aims at optimal capacity planning of thermal storage in a DH system relying
entirely on P2H conversion to achieve a zero-emission system.

Indeed, the capacity planning of energy systems is a long-term planning problem span-
ning several years, and it needs to consider short-term operating conditions, as well [13].
It implies using hourly or sub-hourly time representation of the planning horizon, which
renders the model computationally intractable [14]. To deal with such issues, temporal
complexity reduction techniques, also known as time period clustering, are often applied
to power system planning studies. The goal of such time period clustering techniques is
to enhance computational efficiency, while preserving as much information as possible.
Consequently, a smaller number of representative periods is chosen to represent the whole
horizon. One of the broadly accepted approaches requires representing the time-dependent
parameters using system states. For instance, demand is first represented using dura-
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tion curves. The duration curves are segregated into blocks, which are approximated
with a finite number of segments [15]. Although this representation makes the model
computationally efficient, a major drawback is that it totally neglects the chronology and,
therefore, does not enable the inclusion of time-linking constraints, such as storage state of
charge dynamics, tracking indoor thermal comfort of end-users and generation ramping
constraints in the capacity planning model.

A more widely accepted time period clustering routine involves choosing representa-
tive days or weeks from a planning horizon to represent the annual variability of input
data [16,17]. Contrary to the duration curves, this clustering approach is capable of main-
taining some chronology, at least within each representative day or week, which also allows
consideration of intraday time-linking constraints. In the context of storage investment,
the authors in [18] proposed a representative time period model with a transition matrix
to introduce some continuity between representative periods. The model was shown
to outperform both system state and conventional representative time period clustering.
However, such methodology fails to accurately consider interday storage dynamics in a
medium- or long-term planning horizon [14,19], which is crucial, particularly in highly
renewable generation power systems. Moreover, electricity demand has a diurnal pattern
that can be easily captured by representative periods. On the contrary, wind power gen-
eration is highly volatile. Such fast dynamics cannot be captured by representative days,
and hence, these clustering approaches undermine the short-term operating conditions in
long-term planning problems.

In this paper, we utilize the hierarchical agglomerative clustering procedure for retain-
ing the chronological information of the planning horizon in order to accurately capture
the interday storage dynamics and track end-user thermal comfort levels concerning space
heating loads. This technique hierarchically clusters just adjacent hours chronologically,
according to Euclidean norm. There exist only a few studies applying chronological time
period clustering in power system expansion studies involving storage [20,21]. The authors
in [20] carried out a comprehensive comparison among four planning models, namely the
full hourly model (benchmark), a model based on 28 representative days, one based on
four representative weeks, and one based on chronological clustering using 672 timeslots
for storage expansion studies involving renewable generation. It was proved that the
chronological clustering-based model outperforms the remaining two time period repre-
sentations in terms of error of the objective value. More recently, in a similar context, the
authors in [21] demonstrated a comparison between chronological clustering and coupling
clustering for days. The chronological clustering was proved to work more efficiently in
approximating the abrupt variations associated with wind. Thus, aggregating the con-
secutive hours chronologically, denoted here as chronological clustering, overcomes the
drawbacks of classical clustering approaches and brings economic value in combining
renewable generation with storage devices.

The contributions of this paper are summarized as follows:

I. A thermal storage planning model is proposed to cover the annual DH demand of
a community solely by P2H conversion using wind power, thus leading to a fully
carbon-free DH system.

II. Chronological clustering is applied to accurately capture the midterm dynamics of
wind power and track the energy level of storage and thermal comfort level of each
end-user, while keeping the proposed planning model computationally tractable.

III. The P2H conversion is performed using a novel 2-km deep well heat pump (DWHP)
system. The thermal analysis of DWHP is conducted separately in Finnish con-
ditions over a 25-year study period. Moreover, the DWHP is used for both heat
extraction and heat injection.

IV. Space heating load, thermal comfort and the associated DR are modeled using a
two-capacity building thermal model.

V. The effect of interannual weather variability on storage size is studied by simulating
the optimization model with different weather inputs.
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The paper is structured as follows: In Section 2, a brief description of system models,
including the hierarchical agglomerative clustering, is presented. Section 3 presents the
optimization formulation for the thermal energy storage planning in DH systems employ-
ing P2H conversion through wind power. Section 4 discusses the simulation results for a
Finnish case based on the EU visions for the years 2030 and 2050 [22]. Finally, Section 5
concludes the paper.

2. System Description

2.1. Two-Capacity Building Model

The two-capacity building model is accurate enough to estimate the space heating load
of a detached house or an apartment building [10,12,23]. The model evaluates the heating
demand by capturing the indoor air dynamics relative to the outdoor air temperature
variation. As the name asserts, it makes use of two thermal capacitances. One capacitance
represents the building structure, Cm, while the other is designated to the indoor air,
Ca. There are two unknown temperatures, the indoor temperature Ta and the building
fabric temperature Tm, evaluating the demand for heating or cooling. In addition, other
temperature parameters of the model comprise ventilation supply temperature Tx, outdoor
temperature Te and ground temperature Tg. The temperature nodes are related to each
other through heat conductance or heat capacity flow in case there is an airflow between
nodes. It is assumed that there is no warming of the infiltrating air in the building structure
Cm and the infiltrating air temperature is the same as that of the external air. The windows
are assumed to have a negligible thermal mass, compared to the building envelope. The
heating or cooling power of the air-handling unit is convective in nature, and it is set to
operate at a fixed temperature, Tx. Cm is dominant relative to Ca, but Ca has a vital role in
analyzing indoor air dynamics. The model is portrayed in Figure 1.
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Figure 1. Two-capacity building model prototype [12].

The unknown parameters of the model are fine-tuned using the dynamic building
energy simulation tool IDA–ICE, which is used to study the indoor climate and energy
consumption of buildings. The test house is a single-family, two-floor house, with a total
built floor area of 180 m2. The structure of the house is medium-weight passive, according
to the Finnish guidelines. More details of the prototype house, including the floor plan,
are given in [24]. During calibration, the indoor temperature set-point is 21 ◦C [25]. The
heating power is cut off for six hours that results in an exponential drop in the indoor
temperature. The parameters are determined by minimizing the variance between the
response attained from the IDA–ICE model and the derived two-capacity model. The
calibration procedure is performed at three different outdoor temperatures, i.e., −10 ◦C,
0 ◦C and 10 ◦C, as illustrated in Figure 2.
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Figure 2. Calibration of the two-capacity building model [12].

2.2. Deep Well (Borehole) Heat Pump System

The P2H conversion employing clean renewable energy can provide aid for the evolu-
tion of the DH sector, as well as offer new options for balancing the large-scale intermittent
electricity generation. The P2H conversion is usually performed using community-scale
electric boilers and small-scale heat pumps. Concurrently, cutting emissions also requires
exploiting new types of heat sources and storages to match the scale of the DH consump-
tion. Employing large-scale heat pumps utilizing geothermal energy can be a promising
solution in the future. The geothermal energy extracted 100–300 m below the ground with
stable temperatures between 5–7 ◦C is classified as primary geothermal energy, whereas
the thermal energy extracted from the upper layers of the soil (a few meters deep), heated
by solar radiation and ambient temperature, is the secondary geothermal energy. Here, the
temperature varies from freezing conditions to 10–15 ◦C. In either case, a heat pump is
necessary to increase the temperature of the heat source to the desired level, i.e., suitable
for a DH system.

In most heat pump applications, geothermal energy utilization has been limited to
primary geothermal energy. In Northern Europe and Finland, the geological conditions
involve old and stable bedrock, where the upper ground layers have cooled down, and
the thermal gradient in the rock is approximately 10–20 ◦C per km [26]. Hence, harnessing
the geothermal energy for DH applications in Nordic conditions requires 1–3 km deep
boreholes coupled with the heat pump. Such deep heat boreholes (or deep heat wells) have
a temperature ranging between 20–40 ◦C. In Finland, most of the ground-coupled heat
pumps exploit geothermal reserves less than 300 m deep, whereas deeper heat resources
have not been exploited. There is one deep heat well, 7 km deep, under the piloting
phase at the st1-Fortum site in Espoo, Finland, but the technology has not progressed for
commercial use yet. Further, due to a difference in climate, geography and building code,
the results obtained from deep heat wells installed elsewhere cannot be applied locally.

To date, there exist only a few studies addressing the thermal behavior of deep well
heat exchangers. In this area, the authors in [27] carried out a field test of three 2-km deep
heat wells situated in Xi’an, China. The results of the investigation were later matched
with the results obtained by simulating the numerical model. Similarly, [28] developed a
numerical model to study the thermal performance of a coaxial-shaped deep borehole heat
exchanger and replicated the measurements obtained from distributed thermal response
test from an installation in Norway. The simulation was done for boreholes in the depth
range of 200–1000 m. Recently, a detailed simulation study on the thermal behavior of a
2-km deep heat well in Finnish conditions was accomplished in [29]. The deep heat well
performance was analyzed for a period of 25 years, and it was shown to produce about
110 kW heat in a steady state. Moreover, the simulation model developed in [29] was
validated using the results presented in [28].

In this work, we utilize the simulation results of the 2-km deep heat well analyzed
in the Finnish geological conditions [29]. The reason for using the deep heat well is that
its annual heat output is about 30 times more than the conventional 300 m deep well [29].
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The deep well heat pump system (DWHP) is simply a combination of a deep heat well
and a heat pump. The deep heat well consists of a coaxial tube having an outer and inner
pipe incorporating opposite flows, as illustrated in Figure 3. The two pipes are insulated to
avoid thermal short-circuiting, which contributes to thermal losses. The DWHP can be used
for heat extraction and/or heat injection (thermal storage). In heat extraction mode, a fluid
at low temperature enters the well along the outer pipe and exits through the inner pipe.
During this flow, the fluid temperature increases, and this heat energy is transferred to the
coupled heat pump, which further raises the temperature to the desired level. Contrarily, in
heat injection mode, hot fluid enters the well through the middle pipe, transfers energy to
the surrounding bedrock and flows back upwards as a cooled fluid through the outer pipe.
Hence, the bedrock can be regenerated or charged, and the deep well operates as thermal
storage. In both cases, pumping power for fluid flow and compression power for raising
the fluid temperature are required, which can be utilized from wind power generation or
any other renewable energy.

Figure 3. Coaxial borehole heat exchanger coupled with the heat pump.

The numerical model of the DWHP was developed in COMSOL Multiphysics (soft-
ware version 5.4), and the thermal performance in Finnish geological conditions was
simulated for a 25-year period with a time resolution of 7.5 h. A detailed description of the
model, the physical parameters of the deep heat borehole and the COMSOL modules used
can be found in [29,30]. In this work, the operation sequence of the DWHP is six months
of heat generation, followed by six months of heat injection. This operation sequence is
simulated for flow rates ranging from 0.5 kg/s to 15 kg/s to approximate the relationship
between electrical power input and heat power output of the DWHP for both operation
modes. Figure 4 illustrates the fluid temperature dynamics in borehole pipes for both
cycles at a flow rate of 6 kg/s. Figure 4a portrays the heat extraction cycle where the fluid
enters the outer pipe at 6 ◦C and leaves the borehole through the central pipe at a higher
temperature, on average about 14 ◦C at the end of each extraction cycle. Contrarily, in
Figure 4b, during the heat injection phase, hot fluid is injected at 70 ◦C through the central
pipe, and the fluid returns through the outer pipe in the temperature range of 41–46 ◦C.
Such a decline in temperature signifies that the surrounding bedrock absorbs heat. It can
also be seen for both phases in Figure 4 that the thermal dynamics of the borehole are faster
at the beginning, with a declining trend over the six months cycle. This saturation aspect is
explained by the finite thermal conductivity of the bed rock. The temperature variation,
depicted in Figure 4, can be converted into corresponding thermal powers.
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Figure 4. Thermal dynamics of deep well heat pump system (DWHP). (a) Fluid temperature in the
central pipe during heat extraction. (b) Fluid temperature in the outer pipe during heat injection [12].

The performance features of the DWHP for heat extraction and injection cases are
portrayed in Figure 5. Each characteristic curve is well-approximated using a quadratic
regression curve. Note that the minimum input power refers to a fluid flow rate of 0.5 kg/s.
The output heat power against each input in Figure 5 corresponds to the steady-state
simulated value obtained in the last six-month cycle of the 25-year study period. Figure 5a
shows that the extracted heat increases linearly until an input power of 77 kW. Increasing
input beyond 77 kW reduces the system coefficient of performance (CoP) in the heat
extraction mode. This is explained by the increased pressure drop when the flow rate is
increased above 6 kg/s, resulting in larger hydraulic losses, as the losses are proportional
to the square of the fluid velocity. In the heat injection phase, the heat absorption capacity
of the borehole limits the injection power so that the amount of absorbed heat is always
less than the available electricity input, as depicted in Figure 5b. The main limiting factor
for the heat injection rate is the heat transfer from the fluid to the surrounding rock. The
heat transfer inside the rock is dominated by the low heat conductivity, i.e., increasing
the flow rate, and, thus, the convective heat transfer at the fluid–rock interface would not
substantially improve the overall heat transfer rate.

Figure 5. DWHP system operational characteristics. (a) Heat extraction. (b) Heat injection.
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2.3. Time Series Aggregation

In the context of power system planning, time period clustering or aggregation is
broadly used to shrink the planning horizon by choosing a reduced number of representa-
tive time periods (hours, days, weeks, etc.). Hierarchical clustering is used in the current
subject matter, as the resultant representative time series is independent of the initialization
of the clustering algorithm. In other words, the clusters are reproducible. Further, it allows
the inclusion of additional principles regarding how individual clusters are iteratively
merged to form new clusters. Additionally, it aggregates only consecutive hours chrono-
logically. Unlike classical clustering approaches, hierarchical clustering uses a dissimilarity
measure between each successive pair of clusters to determine which clusters are merged
in hierarchical agglomerative clustering. The hierarchical agglomerative clustering used
here is centered on Ward’s linkage criterion. Ward’s method involves recursively merging
consecutive pairs of clusters that minimally increase within cluster variance [31]. The
clustering procedure used in this work is explained below.

At first, the time-dependent parameters are normalized, so that the clustering would
be unaffected by the different orders of magnitude of parameters. Then, the time series of
all parameters are concatenated in a single time series {Xk}k=1, . . . ,8760. For example, in our
case, there are two time-dependent parameters, namely outdoor temperature Te

k driving
the space heating load and wind speed wt, to determine the wind power generation, Xk
= (Te

k , wk). Let R and R’ be the initial and the desired number of time steps (clusters) of
the normalized time series Xk, respectively. The steps to arrive from R to R’ clusters are
listed below:

I. The algorithm initializes as every single entry of the time series as its own cluster.
Fix the initial number of clusters r to the total number of time steps, i.e., 8760, in
our case.

II. Compute the centroid of each cluster K according to Equation (1)

XK =
1
|K| ∑

k∈K

Xk (1)

III. Evaluate the dissimilarity index between each pair of contiguous clusters K and L
according to Ward’s criterion, as in Equation (2). |K| denotes the number of hours
in cluster K.

D(K, L) =
2|K||L|
|K|+ |L|

∥∥XK − XL
∥∥2

(2)

IV. Based on the dissimilarity matrix, combine the two closest adjacent clusters to form
a new cluster (K’, L’); (K’, L’) argmin D(K, L), where L belongs to the set of clusters
adjacent to the cluster K.

V. Update r with r − 1.
VI. If r = R’, proceed to step VII; otherwise go to step II.
VII. Replace the clusters formed in Xk with their cluster centroids. The duration of each

time step (cluster) in the representative time series is equal to the number of hours
forming that cluster.

VIII. The times series is rescaled to obtain the absolute values.

Note that the chronological clustering reduces the number of time-dependent parame-
ters, variables and equations from R, i.e., 8760, to R’. For visualization, Figure 6 illustrates
the aggregation of wind speed (p.u.) time series performed using chronological clustering.
For a clear depiction, 200 consecutive hours are chosen out of the 8760 h clustered using
only 1752 time-steps, i.e., one-fifth of the actual time series. Each candidate cluster is
represented by its centroid. It can be seen in Figure 6 that time steps have a variable time
duration and the methodology well-approximates the highly fluctuating wind speed pro-
file. Such time series cannot be accurately aggregated using the methodology employing
representative weeks, days or hours. In the case of multiple time-dependent parameters,
hierarchical clustering is applied to all parameters simultaneously in blocks. In this work,

112



Energies 2021, 14, 1911

the weather parameters, namely wind speed and outdoor temperature, are clustered using
the method described above.

Figure 6. An illustration of chronological clustering using wind speed time series.

3. Optimization Model

This section presents the mathematical model for optimal sizing of the thermal storage
required to satisfy the DH demand of a community by P2H schemes. The storage sizing
model is formulated as a mixed-integer linear programming (MILP) model. To keep the
model simple, it is formulated as a deterministic optimization problem and planned for a
single year. However, the model was tested with different input time series to study the
interannual weather variability. The model is presented below.

Minimize SOCTS
max (3)

Pw
t − Pwc

t = PTS,ch
t + Pdwhp,e

t + Pdwhp,i
t (4)

Qdwhp,e
t + QTS,dch

t = ∑
n

Qh
t,n (5)

SOCTS
t = SOCTS

t−1 + ηchPTS,ch
t ωt − QTS,dch

t ωt/ηdch − εloss
t (6)

εloss
t = µ SOCTS

t−1 ωt−1 (7)

0 ≤ PTS,ch
t ≤ PTS,ch

max (8)

0 ≤ QTS,dch
t ≤ QTS,dch

max (9)

SOCTS
min ≤ SOCTS

t ≤ SOCTS
max (10)

SOCTS
t=end ≥ SOCTS

t=t0
(11)

∑
t

QBH,i
t ωt = ∑

t
QBH,e

t ωt (12)
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t = A1

(
Pdwhp,e

t

)2
+ A2Pdwhp,e

t + A3ut (13)

QBH,e
t = B1

(
Pdwhp,e

t

)2
+ B2Pdwhp,e

t + B3ut (14)
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min ut ≤ Pdwhp,e

t ≤ Pdwhp,e
max ut (15)
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t = ∑

i

Diyt,i (16)

(
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t
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(Di)
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∑
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In the above problem, the objective function (Equation (3)) is the minimization of
thermal storage capacity. The electrical power balance and the DH power balance are
managed in Equations (4) and (5), respectively. Note that all the DH loads must be satisfied
using wind power in order to ensure zero emissions in the DH sector. The thermal storage
charging and discharging dynamics are captured in Equation (6). The thermal storage is
charged using electricity from wind power generation, where it is stored as heat energy.
Due to the nonideal behavior of the storage, some stored heat energy would be lost. Such
losses are modeled as a linear function of stored energy weighted with a loss coefficient
in Equation (7). The thermal storage charging and discharging powers are capped in
Equations (8) and (9), respectively. Constraint (10) states that the stored thermal energy
can hover within specified limits only, while Equation (11) guarantees that the final energy
level of the thermal storage is greater than or equal to the initial level. Constraint (12)
maintains the energy balance of the deep borehole by ensuring that the total heat energy
extracted from the borehole is equal to the heat energy injected over a yearly operating
cycle. Although the borehole reaches a steady-state operation in 10–15 years of continuous
operation, maintaining such energy balance is quite necessary for long-term operation.
Constraint (13), using the regression curve depicted in Figure 5, relates the heat output
with the electricity input of the DWHP system, i.e., the borehole coupled with heat pump,
whereas Equation (14) relates the DWHP input with the extracted heat of the deep borehole,
alone. The input limits of the DWHP during heat extraction are defined in Equation (15).
The binary variable in Equations (13)–(15) ensures that the DWHP operates according to
specified limits, as depicted in Figure 5.
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In order to linearize the quadratic term in Equations (13) and (14), special ordered sets
of type 2 (SOS2) variables are employed in Equations (16) and (17). SOS2 is a set of variables
in which at most two variables take nonzero values, and these variables are adjacent to
each other [12,32]. The base of the quadratic term, i.e., a continuous variable, is first
represented as a sum of a finite number of breakpoints weighted with SOS2 variables, as in
Equation (16). The square of the continuous variables is then evaluated using Equation
(17). Another necessary condition is that the sum of SOS2 variables must be equal to
unity, which is implemented in Equation (18). The Constraints (19) and (20) describe the
operation of DWHP in heat injection mode following the same linearization procedure as
in Equations (21)–(23). To ensure that both heat extraction and heat injection do not occur
simultaneously, Equation (24) is applied.

Constraints (25) and (26) represent the discrete version of the two-capacity building
model that is used to calculate the space heating demand and capture the indoor ambient
temperature variation in a detached house. When DR is enabled, the indoor temperature
can mutate between a predefined dead band, as modeled in Equation (27). A binary
variable is used to relax the upper comfort limit of the indoor temperature if the day gets
warm and heating is not needed [33]. It is further supported by Constraint (28), establishing
that heating is either zero or turned on to keep the indoor temperature within the thermal
comfort band. According to Equation (29), the net flexibility of space heating load for each
household is set to zero over the horizon, so that the annual demand remains the same with
or without activating DR. Finally, the allowed wind curtailment level can be tuned using
Equation (30) to ensure that the thermal storage operation coordinates with the available
wind generation.

4. Case Study

4.1. Simulation Parameters

We consider the weather profile of Helsinki, Finland. The wind speed time series
Pw

t at the height of 50 m above sea level was prepared using the framework in [34]. A
statistical approach was employed by [34] without any site-specific measured data to
simulate 100 yearly wind speed profiles at varying heights for different locations in Finland.
The hourly outdoor temperature profile was obtained from the Finnish Meteorological
Institute [35]. Having known the wind speed, the corresponding wind power generation
could be computed using cut-in speed and rated speed of wind turbine, which can be
obtained from the wind turbine datasheet. We considered a wind farm with a rated output
power of 700 kW, which was increased in steps. For the DWHP operation, SOS2 variables
with three breakpoints were used in both the heat extraction and the injection case.

The time-dependent weather parameters spanning 8760 h were clustered using the
methodology explained in Section 2.3. Figure 7 illustrates the wind speed and the outdoor
temperature profiles using 1252 representative time steps obtained by chronologically
clustering the 8760 h. Although, in Figure 7, the time resolution is not hourly, based on the
duration of each time step, abrupt variations and the seasonal trend in the input profiles
are still appropriately captured by chronological clustering. The reason to cluster such
driving factors directly instead of corresponding power levels is that the parameter, such as
outdoor temperature, significantly affects the space heating decision variable, thus enables
to utilize the clustered data in the DR mechanism separately.

A small-scale community comprising 100 single-family two-floor detached houses,
each equipped with the DH facility, was considered. It was assumed that there was an
aggregator that owned a wind farm and controlled the operation of the DWHP system and
a separate thermal storage in tandem. Moreover, a smart environment was assumed, in
which the aggregator was authorized to schedule the DH load of each house and knew the
individual load parameters, including thermal comfort levels, by communicating with the
home energy management system (HEMS) installed with each end-user. The aggregator
operated the resources optimally to minimize the thermal storage size, while covering the
DH demand through P2H conversion, only. The calibrated two-capacity model parameters

115



Energies 2021, 14, 1911

of the prototype house are listed in Table 1 [11,12]. The rated power of the heating unit
for each house was distributed around a mean value of 7 kW, while the mean house area
was 180 m2. The indoor heating set-point temperature of each household was 21 ◦C, which
could deviate within ±0.5 ◦C when the DR was activated [25]. To reduce the computational
burden further, a set of fewer representative houses with the DH load comprising only
space heating load was considered in this study. The domestic hot water consumption
was ignored, as well as that the associated DH network losses were negligible. It was
assumed that houses were continuously occupied over the study horizon so that there was
always a heating demand, and thermal comfort had to be maintained in each time step of
the horizon. The heat gains from lighting, equipment, occupants and solar irradiation in
a detached house were simulated using the IDA–ICE tool. Such heat gains for a typical
house have been depicted in Figure 8. Based on these assumptions, Figure 9 illustrates the
corresponding space heating demand and wind power generated using the clustered data
shown in Figure 7. The annual DH demand and the wind power production corresponding
to the given weather profiles total 1.13 GWh and 2.05 GWh, respectively.

Figure 7. Input data time series using 1252 representative time steps clustered chronologically. (a) Outdoor temperature. (b)
Wind speed at 50 m height.

Table 1. Calibrated two-capacity model parameters.

Parameter Unit Value

He, Hm, Hg, Hx, Hy W/◦C/m2 0.29, 5.16, 0.05, 0.48, 0.33
Cm, Ca Wh/◦C/m2 31.14, 3.616
Tx, Tg ◦C 18, 10

The simulation horizon was one year, i.e., from 1 January to 31 December. The
input data included outdoor temperature, wind speed, two-capacity building parameters,
households’ thermal comfort preferences and their load parameters. The decision variables
comprised thermal storage size, its charging and discharging power, capacity variation,
curtailed wind power, the DWHP operation and the DR. The chronological clustering
was performed in Matlab prior to simulating the MILP problem (Equations (3)–(30)) in
Matlab–GAMS platform. The CPLEX solver was used to solve the proposed model on a
Windows desktop computer with a 3.4 GHz Intel Xeon processor and 48 GB RAM. The
simulation time related to clustering, for reducing 8760 h to 1252 representative time steps,
was about 55 min, whereas the simulation time of the MILP problem (Equations (3)–(30))
employing 1252 representative time steps was about 7 min.

116



Energies 2021, 14, 1911

Figure 8. Heat gains in a detached house. (a) Internal heat gains from lighting, equipment and
occupants. (b) Solar heat gains.

Figure 9. Input data time series using 1252 representative time steps. (a) Total district heat demand. (b) Wind power.

4.2. Simulation Results

We simulated two cases. The first was the business-as-usual (BAU) case, in which the
indoor temperature of each household was strictly fixed to the set-point temperature of
21 ◦C during the heating period. It was accomplished by setting the thermal comfort band
to zero in Equation (27). In the second case, DR was activated, and the indoor temperature
could vary within ±0.5 ◦C from the set-point. For either case, wind curtailment level was
set to 10% at the most, and the thermal storage parameters were set as ηch = ηdch = 0.9,
initial SoC was 50% and loss coefficient µ = 0.2% per hour.

Figure 10 demonstrates the thermal storage evolution for the BAU case. The SoC
dynamics of the thermal storage show that its operation was more demanding in the winter
season, when the DH demand was also high. On the contrary, storage was occasionally
charged or discharged during the summer season, since the heating was turned on and
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off, depending on the outdoor temperature, as depicted in Figure 9a. The optimal storage
size was simulated as 31.44 MWh, which just forms 2.78% of the annual DH demand.
Such an outcome is significantly supported by coordinating the DWHP operation with the
thermal storage. The heat extracted and injected from the deep heat borehole is depicted in
Figure 11. For a comparison, heat extracted from the DWHP is also portrayed alongside. In
Figure 11, the difference between the heat extracted from the borehole, alone, and that from
the DWHP system represents the heat pump compression power required to further raise
the temperature of the heat source. Moreover, heat injection mostly functions during low-
demand periods, when thermal storage is also oscillating around its maximum capacity.
Simulation results show that a total of 337.3 MWh of heat energy was extracted from or
injected into the borehole, alone.

Figure 10. State of charge (SoC) of the thermal storage in the business-as-usual (BAU) case.

Figure 11. The DWHP and bore hole operation in the BAU case. (a) Heat extraction. (b) Heat injection.

The simulation results show significant improvement when the DR of the heating
load was unleashed. The required thermal storage capacity reduced to 12.87 MWh, which
is 2.5 times smaller, as compared to that in the BAU case. Moreover, this storage size
merely constitutes 1.14% of the annual DH demand. The storage capacity variation over
the horizon is illustrated in Figure 12. The DR case results in more heat energy extracted
or injected into the bore hole, as depicted in Figure 13, and this energy aggregates to
482.45 MWh per annum. The reason behind this outcome is that the maximum allowed
wind power curtailment level was maintained via Equation (30). The BAU case had more
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opportunities to utilize wind power, due to a higher thermal storage capacity and storage
losses, which required more charging energy during the horizon. Contrarily, the thermal
storage in the DR case resulted in a relatively smaller capacity and, hence, led to lower
storage losses and the charging energy. To maintain the desired curtailment level, more
wind power was utilized to operate the DWHP system, instead.

Figure 12. State of charge (SoC) of the thermal storage in the demand response (DR) case.

Figure 13. The deep heat bore hole operation in the DR case. (a) Heat extraction from borehole. (b)
Heat injected to borehole.

Figure 14 shows the DH demand during DR, which is quite different from that in the
BAU case, as depicted in Figure 9a. In Figure 14, the DH demand has a fluctuating nature,
as the heating units are frequently operated to utilize the extreme limits of the predefined
thermal comfort band to effectively balance the wind generation level. Nonetheless, the
annual aggregated demand remained the same, i.e., 1.13 GWh. Note that, according to the
simulation results, even in the absence of a heating period, the indoor ambient temperature
remained between 21 ◦C and 22 ◦C for both cases.
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Figure 14. District heating demand in the DR case.

Figure 15 demonstrates the variation in thermal storage size and the wind power
spillage with respect to the increasing wind power penetrations. Please note that higher
wind power penetrations require higher wind power curtailment limits if the DH demand
is the same. For this reason, the wind curtailment limit was increased to 40% to carry
out this sensitivity analysis. As can be seen in Figure 15, the required storage capacity
remarkably decreases from 2.78% of the aggregated DH demand to 1.7% when the wind
generation is oversized to about 140% of the initial capacity in the BAU case. Contrarily, in
the DR case, the storage size did not show any significant improvement with the increasing
wind power penetrations and rather showed a saturating trend. Figure 15 also proves that
the DR of the DH demand is more effective in reducing the storage size when compared
with increasing wind power investments, which also results in more wind power spillage.

Figure 15. Effect of increasing wind power penetration on storage size and wind generation curtail-
ments (Maximum wind curtailment = 40%).

The simulation results presented above were based on a single run of wind speed
time series. To account for the variability and uncertain nature associated with the weather
parameters, it was important to solve the optimization model for different input data and
determine relevant statistics of the results. For this purpose, the model (Equations (3)–(30))
was solved for 19 distinct weather input time series obtained from [34]. Each weather time
series data was first clustered chronologically into 1252 representative time-steps, and the
model was simulated for both the BAU and the DR case. The mean, standard deviation
and confidence bounds were determined, which are summarized in Table 2. The spread,
including the interquartile range of the obtained results, are also demonstrated using a
box-plot in Figure 16. The higher standard deviation relative to the mean value for the DR
case, as listed in Table 2, is explained by the higher extreme values and the outlier, as can be
seen in Figure 16. However, the mean value falls within the interquartile range, implying
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that considering a greater number of inputs would certainly reduce the standard deviation
and shorten the interquartile range, as well.

Table 2. Storage size statistics.

Case Mean (MWh)
Standard Deviation

(MWh)
Lower 95% Confidence Bound

(MWh)
Upper 95% Confidence Bound

(MWh)

BAU 29.172 7.66 25.72 32.61
DR 13.99 5.37 11.58 16.40

Figure 16. Box-plot representation of the simulation results for various wind speed profiles.

Lastly, the impact of increasing the representative periods on the energy storage size
was investigated. Table 3 lists the outcome when the model (Equations (3)–(30)) was
simulated with a higher number of representative time periods. The effect on the storage
size was negligible when representative periods were increased from 1252 to 2920, but
the simulation time increased rapidly. The simulation time nearly doubled at each stage,
when more details of the time series were added, as is visible in Table 3. The model became
intractable before the number of representative periods reached one-half of the number of
hours in the actual time series.

Table 3. Effect of increasing the representative time periods.

No. of Representative Time Periods Time Series Representation (×8760) Storage Size (MWh) Simulation Time

1252 1/7 12.87 6 min 46 s
1460 1/6 12.53 14 min 38 s
1752 1/5 12.81 32 min 39 s
2190 1/4 13.27 1 h 49 s
2920 1/3 13.32 2 h 16 min

5. Conclusions

Renewable energy sources can play a decisive role in reducing carbon emissions
that are proliferating in the district heating sector. However, the inherent intermittency
of such energy sources offers a significant integration challenge to the current power
system. This work was aimed at mitigating curtailments from the perspective of power
systems and simultaneously concluded a zero-emission district heating system by utilizing
direct P2H conversion from wind generation. The task utilizes a 2-km-DWHP system
and thermal storage coupled with the existing DH system. Accordingly, a framework
was proposed to minimize the size of the community-scale thermal storage. The second
contribution involved employing chronological time period clustering to accurately solve
the optimization problem for a period of one year. The model was applied to a case study
in Finland. The main findings are summarized as follows:
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• The simulation results proved that considering a small thermal storage in tandem
with the DWHP prototype can cover the DH demand of a community. On average,
the required optimal size of the thermal storage in the BAU case is just 29.172 MWh,
i.e., 2.58% of the DH demand.

• DR can play a complementary role to economically satisfy the DH demand without
oversizing the wind generation, which would otherwise result in an increased power
spillage. Activating DR reduces the storage size, on average, to 13.99 MWh, i.e., 1.24%
of the DH demand.

• The precision of the results was evaluated by increasing the number of representative
time periods. The storage size increased slightly when the time series representa-
tion increased from 1252 clusters to 2920 clusters. However, the simulation time
rose rapidly.

The study was mainly focused on a community-scale district heating demand. In the
future, the study shall be extended to the municipality-level district heating demand with
more deep heat boreholes, while considering the electrical and the DH network. The heat
and power losses in the network would somehow affect the benefits obtained from the
proposed model.
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Nomenclature
Sets
t, T index and set of time steps
n, N index and set of households
i, I index and set of breakpoints for SOS2 variables during heat injection
j, J index and set of breakpoints for SOS2 variables during heat extraction
Parameters
A1, A2, A3 Regression coefficients for heat extracted by the DWHP
B1, B2, B3 Regression coefficients for the heat extracted by the deep bore hole alone
C1, C2, C3 Regression coefficients for the heat injected into the deep bore hole alone
Ca

n Thermal capacitance of indoor air (Wh/◦C/m2)
Cm

n Thermal capacitance of building fabric (Wh/◦C/m2)
Di, Ej Breakpoints for SOS2 variables
Hm

n Heat conductance between indoor air and building fabric (W/◦C/m2)
He

n Heat conductance between external air and indoor air (W/◦C/m2)
Hy

n Heat conductance between external air and building fabric (W/◦C/m2)
Hx

n Heat conductance between heating air and indoor air (W/◦C/m2)
Hg

n Heat conductance between indoor air and ground (W/◦C/m2)
M a big number
Pw

t Wind power generation in time step t (W)
PTS,ch

max Maximum charging power of the thermal storage (W)

Pdwhp,e
min ,

Pdwhp,e
max

Minimum and maximum input power of the DWHP during heat extraction, respectively (W)

Pdwhp,i
min ,

Pdwhp,,i
max

Minimum and maximum input power of the DWHP during heat injection, respectively (W)

Qmax
n Rated power of the heating unit of house n (W)

QTS,dch
max Maximum discharging heat power of the thermal storage (W)

SOCTS
min Minimum allowed state of charge of the thermal storage (Wh)

Tg Ground node temperature (◦C)
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Tx Temperature of heating air (◦C)
Tset

n Indoor set-point temperature of household n (◦C)
α Wind curtailment level
∆ Width of the temperature dead band (◦C)
βh

n Annual space heating demand of household n (Wh)
ωt Duration of time step t (hours)
ηch, ηdch Charging and discharging efficiency of the thermal storage
µ Thermal storage loss coefficient
φsol

t,n , φint
t,n Solar and internal heat gains in house n in time step t, respectively (W)

Variables
PTS,ch

t Charging power of the thermal storage (W)

Pdwhp,e
t Input power of the DWHP during heat extraction in time step t (W)

Pdwhp,i
t Input power of the DWHP during heat injection in time step t (W)

Pwc
t Wind power curtailed in time step t (W)

QTS,dch
t Discharging power of the thermal storage (W)

Qh
t,n Heating power required in house n in time step t (W)

Qdwhp,e
t Heat extracted by the DWHP in time step t (W)
QBH,e

t ,
QBH,i

t
Heat extracted and injected to the deep bore hole in time step t, respectively (W)

SOCTS
max,

SOCTS
t

Maximum capacity and instantaneous capacity of the thermal storage in time t, respectively (Wh)

Ta
t,n Indoor ambient temperature of house n in time step t (◦C)

Tm
t,n Building mass temperature of house n in time step t (◦C)

ut, vt Binary variables for the heat extraction and heat injection, respectively
xh

t,n Binary variable for the heating power of household n in time step t
yt,i, zt,j SOS2 variables for calculating the square of continuous variables
εloss

t Storage losses of the thermal storage in time step t (Wh)
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