38,631 research outputs found

    Space telescope phase B definition study. Volume 2A: Science instruments, f24 field camera

    Get PDF
    The analysis and design of the F/24 field camera for the space telescope are discussed. The camera was designed for application to the radial bay of the optical telescope assembly and has an on axis field of view of 3 arc-minutes by 3 arc-minutes

    Adaptive Interference Mitigation in GPS Receivers

    Get PDF
    Satellite navigation systems (GNSS) are among the most complex radio-navigation systems, providing positioning, navigation, and timing (PNT) information. A growing number of public sector and commercial applications rely on the GNSS PNT service to support business growth, technical development, and the day-to-day operation of technology and socioeconomic systems. As GNSS signals have inherent limitations, they are highly vulnerable to intentional and unintentional interference. GNSS signals have spectral power densities far below ambient thermal noise. Consequently, GNSS receivers must meet high standards of reliability and integrity to be used within a broad spectrum of applications. GNSS receivers must employ effective interference mitigation techniques to ensure robust, accurate, and reliable PNT service. This research aims to evaluate the effectiveness of the Adaptive Notch Filter (ANF), a precorrelation mitigation technique that can be used to excise Continuous Wave Interference (CWI), hop-frequency and chirp-type interferences from GPS L1 signals. To mitigate unwanted interference, state-of-the-art ANFs typically adjust a single parameter, the notch centre frequency, and zeros are constrained extremely close to unity. Because of this, the notch centre frequency converges slowly to the target frequency. During this slow converge period, interference leaks into the acquisition block, thus sabotaging the operation of the acquisition block. Furthermore, if the CWI continuously hops within the GPS L1 in-band region, the subsequent interference frequency is locked onto after a delay, which means constant interference occurs in the receiver throughout the delay period. This research contributes to the field of interference mitigation at GNSS's receiver end using adaptive signal processing, predominately for GPS. This research can be divided into three stages. I first designed, modelled and developed a Simulink-based GPS L1 signal simulator, providing a homogenous test signal for existing and proposed interference mitigation algorithms. Simulink-based GPS L1 signal simulator provided great flexibility to change various parameters to generate GPS L1 signal under different conditions, e.g. Doppler Shift, code phase delay and amount of propagation degradation. Furthermore, I modelled three acquisition schemes for GPS signals and tested GPS L1 signals acquisition via coherent and non-coherent integration methods. As a next step, I modelled different types of interference signals precisely and implemented and evaluated existing adaptive notch filters in MATLAB in terms of Carrier to Noise Density (\u1d436/\u1d4410), Signal to Noise Ratio (SNR), Peak Degradation Metric, and Mean Square Error (MSE) at the output of the acquisition module in order to create benchmarks. Finally, I designed, developed and implemented a novel algorithm that simultaneously adapts both coefficients in lattice-based ANF. Mathematically, I derived the full-gradient term for the notch's bandwidth parameter adaptation and developed a framework for simultaneously adapting both coefficients of a lattice-based adaptive notch filter. I evaluated the performance of existing and proposed interference mitigation techniques under different types of interference signals. Moreover, I critically analysed different internal signals within the ANF structure in order to develop a new threshold parameter that resets the notch bandwidth at the start of each subsequent interference frequency. As a result, I further reduce the complexity of the structural implementation of lattice-based ANF, allowing for efficient hardware realisation and lower computational costs. It is concluded from extensive simulation results that the proposed fully adaptive lattice-based provides better interference mitigation performance and superior convergence properties to target frequency compared to traditional ANF algorithms. It is demonstrated that by employing the proposed algorithm, a receiver is able to operate with a higher dynamic range of JNR than is possible with existing methods. This research also presents the design and MATLAB implementation of a parameterisable Complex Adaptive Notch Filer (CANF). Present analysis on higher order CANF for detecting and mitigating various types of interference for complex baseband GPS L1 signals. In the end, further research was conducted to suppress interference in the GPS L1 signal by exploiting autocorrelation properties and discarding some portion of the main lobe of the GPS L1 signal. It is shown that by removing 30% spectrum of the main lobe, either from left, right, or centre, the GPS L1 signal is still acquirable

    Surveyor spacecraft system - Surveyor 6 flight performance Final report

    Get PDF
    Surveyor 6 spacecraft flight performance characteristics, including data on television equipment, alpha scattering experiment, and powered flight translatio

    Hardware simulation of Ku-band spacecraft receiver and bit synchronizer, volume 1

    Get PDF
    A hardware simulation which emulates an automatically acquiring transmit receive spread spectrum communication and tracking system and developed for use in future NASA programs involving digital communications is considered. The system architecture and tradeoff analysis that led to the selection of the system to be simulated is presented

    Evaluation of a self-guided transport vehicle for remote transportation of transuranic and other hazardous waste

    Full text link

    Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant

    Get PDF
    In this paper an innovative small-scale concentrated solar 2 kWe organic Rankine cycle plant coupled with a phase change material storage tank equipped with reversible heat pipes is investigated using a simulation analysis. The plant, intended for residential applications, is going to be built and tested under the European funded H2020 Innova MicroSolar project executed by the consortium of several Universities and industrial organizations, led by Northumbria University. The authors of this work used the design of the integrated system, developed by the consortium, to preliminary estimate the overall performance of the system in order to provide useful information for its forthcoming real operation. In particular, according to the varying ambient conditions, the influence of different operation modes of the prototype plant are evaluated. The dynamic simulation analysis has shown an interesting performance of the system in terms of annual operating hours, power production and conversion efficiencies. More precisely, the organic Rankine cycle unit is able to operate for more than 3100 h/year, achieving the design performance when solar power is sufficiently high, producing about 5100 kWhe/year. For the considered operating set-point temperatures of the thermal energy storage, the plant is able to reach high conversion efficiency also when the organic Rankine cycle unit is supplied by discharging the energy stored in the storage tank, for about 800 h/year. Hence, the work has provided some useful insights into the best working conditions of such micro combined heat and power system to be integrated in residential buildings. Moreover, the analysis could serve as a general guide for the design and optimization of the mutual interactions of the different subsystems in small-scale concentrated solar organic Rankine cycle plants

    Closed-Loop Control of Constrained Flapping Wing Micro Air Vehicles

    Get PDF
    Micro air vehicles are vehicles with a maximum dimension of 15 cm or less, so they are ideal in confined spaces such as indoors, urban canyons, and caves. Considerable research has been invested in the areas of unsteady and low Reynolds number aerodynamics, as well as techniques to fabricate small scale prototypes. Control of these vehicles has been less studied, and most control techniques proposed have only been implemented within simulations without concern for power requirements, sensors and observers, or actual hardware demonstrations. In this work, power requirements while using a piezo-driven, resonant flapping wing control scheme, Bi-harmonic Amplitude and Bias Modulation, were studied. In addition, the power efficiency versus flapping frequency was studied and shown to be maximized while flapping at the piezo-driven system\u27s resonance. Then prototype hardware of varying designs was used to capture the impact of a specific component of the flapping wing micro air vehicle, the passive rotation joint. Finally, closed-loop control of different constrained configurations was demonstrated using the resonant flapping Bi-harmonic Amplitude and Bias Modulation scheme with the optimized hardware. This work is important in the development and understanding of eventual free-flight capable flapping wing micro air vehicle

    Conceptual design and analysis of a large antenna utilizing electrostatic membrane management

    Get PDF
    Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    • …
    corecore