18 research outputs found

    Концепції побудови сучасних мереж

    Get PDF
    Описуються технології SDN, SDR, NFV, Big Data, IoT та їх реалізація за допомогою хмарних сервісів, що є невід’ємною частиною мереж 5G. Детально розглядається концепція SDN. Визначаються недоліки хмарних мереж радіодоступу та можливі шляхи їх подолання. Пропонується сегментація мережі C-RAN з резервуванням елемента управління та поділ керуючого віртуального контролера на дві площини

    A Novel RF Architecture for Simultaneous Communication, Navigation, and Remote Sensing with Software-Defined Radio

    Get PDF
    The rapid growth of SmallSat and CubeSat missions at NASA has necessitated a re-evaluation of communication and remote-sensing architectures. Novel designs for CubeSat-sized single-board computers can now include larger Field-Programmable Gate Arrays (FPGAs) and faster System-on-Chip (SoCs) devices. These components substantially improve onboard processing capabilities so that varying subsystems no longer require an independent processor. By replacing individual Radio Frequency (RF) systems with a single software-defined radio (SDR) and processor, mission designers have greater control over reliability, performance, and efficiency. The presented architecture combines individual processing systems into a single design and establishes a modular SDR architecture capable of both remote-sensing and communication applications. This new approach based on a multi-input multi-output (MIMO) SDR features a scalable architecture optimized for Size, Weight, Power, and Cost (SWaP-C), with sufficient noise performance and phase-coherence to enable both remote-sensing and navigation applications, while providing a communication solution for simultaneous S-band and X-band transmission. This SDR design is developed around the NASA CubeSat Card Standard (CS2) that provides the required modularity through simplified backplane and interchangeable options for multiple radiation-hardened/tolerant processors. This architecture provides missions with a single platform for high-rate communication and a future platform to develop cognitive radio systems

    Performance Analysis and Software-Defined Implementation of Real-Time MIMO FSO with Adaptive Switching in GNU Radio Platform

    Get PDF
    In this paper, we provide the first software-based implementation of multiple-input multiple-output (MIMO) free space optical (FSO) link with the adaptive switching based on the software defined radio developed by GNU Radio software system, which emulates the real-time capability of the proposed scheme. We propose a switching mechanism to independently configure each transmitter and receiver, based on the channel state information provided at the transmitter via a feedback link and evaluate the link performance under atmospheric conditions such as fog and turbulence. We also validate the advantages of mitigating both the turbulence and fog in the proposed MIMO FSO system by means of numerical simulations and the developed GNU Radio software platform

    A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

    Full text link
    The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, "CATMOSIS", which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure Wireless Networks, pp. 69-102. Springer, Cham, 201

    Network slicing cost allocation model

    Get PDF
    Within the upcoming fifth generation (5G) mobile networks, a lot of emerging technologies, such as Software Defined Network (SDN), Network Function Virtualization (NFV) and network slicing are proposed in order to leverage more flexibility, agility and cost-efficient deployment. These new networking paradigms are shaping not only the network architectures but will also affect the market structure and business case of the stakeholders involved. Due to its capability of splitting the physical network infrastructure into several isolated logical sub-networks, network slicing opens the network resources to vertical segments aiming at providing customized and more efficient end-to-end (E2E) services. While many standardization efforts within the 3GPP body have been made regarding the system architectural and functional features for the implementation of network slicing in 5G networks, techno-economic analysis of this concept is still at a very incipient stage. This paper initiates this techno-economic work by proposing a model that allocates the network cost to the different deployed slices, which can then later be used to price the different E2E services. This allocation is made from a network infrastructure provider perspective. To feed the proposed model with the required inputs, a resource allocation algorithm together with a 5G network function (NF) dimensioning model are also proposed. Results of the different models as well as the cost saving on the core network part resulting from the use of NFV are discussed as well

    Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN

    Get PDF
    This paper analyzes current standardization situation of 5G and the role network softwarization plays in order to address the challenges the new generation of mobile networks must face. This paper surveys recent documentation from the main stakeholders to pick out the use cases, scenarios and emerging vertical sectors that will be enabled by 5G technologies, and to identify future high-level service requirements. Driven by those service requirements 5G systems will support diverse radio access technology scenarios, meet end-to-end user experienced requirements and provide capability of flexible network deployment and efficient operations. Then, based on the identified requirements, the paper overviews the main 5G technology trends and design principles to address them. In particular, the paper emphasizes the role played by three main technologies, namely SDN, NFV and MEC, and analyzes the main open issues of these technologies in relation to 5G.Preprin
    corecore