159 research outputs found

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Hybrid 5G optical-wireless SDN-based networks, challenges and open issues

    Get PDF
    The fifth-generation (5G) mobile networks are expected to bring higher capacity, higher density of mobile devices, lower battery consumption and improved coverage. 5G entails the convergence of wireless and wired communications in a unified and efficient architecture. Mobile nodes, as defined in fourth-generation era, are transformed in heterogeneous networks to make the front-haul wireless domains flexible and intelligent. This work highlights a set of critical challenges in advancing 5G networks, fuelled by the utilisation of the network function virtualisation, the software defined radio and the software defined networks techniques. Furthermore, a novel conceptual model is presented in terms of control and management planes, where the inner architectural components are introduced in detail

    Leveraging synergy of SDWN and multi-layer resource management for 5G networks

    Get PDF
    Fifth-generation (5G) networks are envisioned to predispose service-oriented and flexible edge-to-core infrastructure to offer diverse applications. Convergence of software-defined networking (SDN), software-defined radio (SDR), and virtualization on the concept of software-defined wireless networking (SDWN) is a promising approach to support such dynamic networks. The principal technique behind the 5G-SDWN framework is the separation of control and data planes, from deep core entities to edge wireless access points. This separation allows the abstraction of resources as transmission parameters of users. In such user-centric and service-oriented environment, resource management plays a critical role to achieve efficiency and reliability. In this paper, we introduce a converged multi-layer resource management (CML-RM) framework for SDWN-enabled 5G networks, that involves a functional model and an optimization framework. In such framework, the key questions are if 5G-SDWN can be leveraged to enable CML-RM over the portfolio of resources, and reciprocally, if CML-RM can effectively provide performance enhancement and reliability for 5G-SDWN. In this paper, we tackle these questions by proposing a flexible protocol structure for 5G-SDWN, which can handle all the required functionalities in a more cross-layer manner. Based on this, we demonstrate how the proposed general framework of CML-RM can control the end-user quality of experience. Moreover, for two scenarios of 5G-SDWN, we investigate the effects of joint user-association and resource allocation via CML-RM to improve performance in virtualized networks

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users

    5G-MEC Testbeds for V2X Applications

    Get PDF
    Fifth-generation (5G) mobile networks fulfill the demands of critical applications, such as Ultra-Reliable Low-Latency Communication (URLLC), particularly in the automotive industry. Vehicular communication requires low latency and high computational capabilities at the network’s edge. To meet these requirements, ETSI standardized Multi-access Edge Computing (MEC), which provides cloud computing capabilities and addresses the need for low latency. This paper presents a generalized overview for implementing a 5G-MEC testbed for Vehicle-to-Everything (V2X) applications, as well as the analysis of some important testbeds and state-of-the-art implementations based on their deployment scenario, 5G use cases, and open source accessibility. The complexity of using the testbeds is also discussed, and the challenges researchers may face while replicating and deploying them are highlighted. Finally, the paper summarizes the tools used to build the testbeds and addresses open issues related to implementing the testbeds.publishedVersio
    • …
    corecore