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ABSTRACT: In this paper, we provide the first software-based implementation of multiple-input multiple-output (MIMO) 

free space optical (FSO) link with the adaptive switching based on the software defined radio developed by GNU Radio 

software system, which emulates the real-time capability of the proposed scheme. We propose a switching mechanism to 

independently configure each transmitter and receiver, based on the channel state information provided at the transmitter via 

a feedback link and evaluate the link performance under atmospheric conditions such as fog and turbulence. We also validate 

the advantages of mitigating both the turbulence and fog in the proposed MIMO FSO system by means of numerical 

simulations and the developed GNU Radio software platform. 

 
INDEX TERMS FSO; MIMO; software defined radio; GNU Radio; Adaptive switching; Fog; Turbulence.

I. INTRODUCTION 

Over the next decade, the number of smart devices to be 

connected is expected to double, and consequently, the data 

traffic generated is predicted to increase a thousandfold [1]. 

This rapid expansion of data generated will impose 

noticeable pressure on the bandwidth usage of current 

wireless networks. Therefore, the fifth and sixth generations 

(5G and 6G) wireless technologies are aiming to address the 

connectivity challenges associated with the future Internet of 

things (IoT) including people-to-devices communications, 

device-to-device communications, etc. by utilizing the 

emerging machine learning on a grand scale. As part of the 

5G and 6G, to meet the spectrum congestion and ensure 

reliable connectivity with 99.999% link availability, the 

optical wireless communications (OWC) has been 

considered [1, 2]. OWC offers several advantages including 

a virtually unlimited licensed free bandwidth in the infrared 

band when compared to the overcrowded radio frequency 

(RF) spectrum, inherent security at the physical layer by 

confining the optical beams in restricted areas, optical fibre 

type high data rates, etc. could be adopted in certain 

applications, where RF-based systems cannot be effectively 

utilized [1]. As a branch of OWC, the free space optical 

(FSO) systems have been deployed in short to long haul 

transmission links including the last-mile/meter access 

networks, building-to-building communications, video 

surveillance, broadcasting, and satellite-to-satellite 

communications, to name a few [1, 3, 4]. 

While the aforementioned examples probed the realistic 

applications of FSO, the link performance and the quality of 

service (QoS) of FSO systems are affected by the 

unpredictable atmospheric phenomena, especially 

turbulence and fog/smoke induced fading. This results in 

channel impairments and fluctuations of both the amplitude 

and phase of the propagating optical signals particularly over 

longer transmission link spans [1]. To overcome this 

problem, several techniques, including multiple-input 

multiple-output (MIMO) and relay-assisted FSO systems 

have been proposed in the literature [4-6]. Among the 

available techniques, MIMO is a reliable technology to 

realize spatial diversity and to alleviate the atmospheric 

turbulence induced fading and fog induced attenuation in 

long distance data transmissions [2]. However, the 

fundamental characteristics of MIMO systems imposed 

challenges such as costly multiple transmitters (Txs) and the 

receivers (Rxs), as well as the complexity of hardware design 
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and implementation when using high-speed optical devices 

(i.e., lasers, laser drivers, and photodetectors (PDs) [7].  

In OWC, the optical beam can be modulated using either 

analogue or digital signals, and the evaluation of methods for 

different applications deserves the flexibility of software-

defined radio (SDR). SDR provides a re-usable and future-

proof platform by means of combining an RF-to-baseband 

transceiver physical layer and a digital smart processor. This 

offers many advantages including (i) software-

configurability and control; (ii) improved system 

performance with the efficient and flexible use of the RF 

spectrum to offer available new services to the users; (iii) a 

reduced system size and minimization of the design risk and 

time-to-market; and (iv) flexibility in research and 

development due to the implementation and verification of a 

range of newly developed protocols using the RF platform-

based testbeds [8], [9]. In [10-12], implementation of a 

MIMO system deploying universal software radio peripheral 

(USRP) for synchronization, beamforming in the RF domain 

using the SDR environment for all digital and low-cost 

systems were reported.  

Highly flexible and powerful SDR platforms to 

accommodate 5G wireless networks have also been reported 

in the literature [13-15]. Apart from highly reconfigurable 

software defined implementation in the RF domain, SDR has 

also attracted considerable interest in OWC systems for 

diverse applications. In [16], experimental evaluation and 

performance analysis of an indoor visible light 

communications (VLC) system with adaptive software-

defined equalization using USRPs and LABVIEW was 

reported. The work reported validated the flexibility of 

LABVIEW software platform and the ability to improve the 

measured data simply by changing the software side of the 

testing prototype. LiFi systems in the range of visible, 

infrared (IR), and ultraviolet (UV) bands over a 20 m 

linkspan using LimeSDR USB and GNU Radio for research 

and development purposes to perform data transmission 

between two optical transceivers are also commercially 

reported [17]. Validation of  the IR optical front ends with a 

bandwidth of 10 MHz for USRPs for transmission of an 

audio signal was reported in [18].  

In this work, we outline the design and implementation of 

out of tree (OOT) modules/signal processing blocks 

integrated into GNU Radio. Then we analyse the 

performance of a MIMO intensity modulation-direct 

detection FSO system with the adaptive switching using 

GNU Radio under various atmospheric conditions for real-

time data transmission. To the best of the authors' 

knowledge, the proposed system is the first implementation 

of MIMO FSO in the SDR platform. We investigate the FSO 

link in the SDR environment and evaluate its performance in 

terms of the bit error rate (BER) performance under fog and 

turbulence conditions using GNU Radio. We show that, the 

proposed system (i) could effectively operate in heavy fog 

with a BER within the range of 10-8 to ~ 10-7, for the link 

spans of 100, 200, and 300 m; and (ii) experienced a peak 

turn-over degradation following switching, with the BER of 

~10-7 and > 10-4 for the moderate and high turbulence levels, 

respectively over 100 and 200 to 300 m. 

The rest of the paper is organised as follows: Sections II 

and III describe the MIMO FSO system and provide all the 

design considerations including the adaptive switching 

mechanisms and implementation of MIMO FSO in the 

SDR/GNU-Radio environment. Section IV is devoted to the 

results and discussion on the measured data. Finally, Section 

V concludes the paper. 

II. SYSTEM MODEL 

In FSO systems, the link availability as a function of the 

transmission distance is an important factor, which can vary 

depending on the applications and geographical areas. Most 

FSO systems are used in the enterprise market (i.e., the last 

mile access networks), where, the link availability must meet 

the five-nine requirements (i.e., 99.999%) [19], [20].  

The proposed system with OOT modules facilitates the 

implementation of N number of Txs and Rxs. In this work 

we consider a 4 × 2 MIMO FSO system as a proof of 

concept, see Figure 1. In this design, two sets of Txs and Rxs 

are used for parallel transmission of two different signals to 

achieve improved link reliability. A dedicated switching 

algorithm is proposed to switch on the Tx(s) based on the 

channel conditions. Each Tx and Rx operates independently 

or in a unified cluster. Fog and turbulence induced 

attenuation, and geometric losses are considered for 

assessing the link reliability. The considered key system 

parameters are given in Table 1. The Tx unit consists of 4-

Txs (i.e., Tx-A1, Tx-A2, Tx-B1, and Tx-B2), which are 

grouped into two clusters of 2-Tx with each cluster 

transmitting different on-off keying (OOK) data streams i.e., 

𝑑𝑎(𝑡) and 𝑑𝑏(𝑡). Note, at the Tx unit within the Tx switch 

module we have included threshold levels of  𝐿Atm(Thres) and 

𝜎𝐼(Thres)
2 for the fog and atmospheric induced loss and 

intensity fluctuations, respectively to determine the 

operation mode using Log-normal and Gamma-Gamma 

turbulence models [21] [22].  

Under normal weather conditions, two independent data 

streams are transmitted via Tx-A1 and Tx-B1. However, 

under fog or turbulence, additional Txs (i.e., Tx-A2 and Tx-

B2) can be used provided the following conditions i.e., 

𝐿Atm (input) ≥  𝐿Atm (Thres) or 𝜎𝐼(input)
2 ≥ 𝜎𝐼(Thres)

2  have 

been met. This is to ensure that the link availability will be 

maintained as much as possible at the cost of increased 

transmit power PTx.  The intensity modulated optical beams 

are launched into the free space channel using optical lenses. 

At the Rx side, the received optical beams are focused on to 

two optical Rxs (i.e., Rx-A and Rx-B), which are composed 

the PD and trans-impedance amplifiers, via optical 

collimating lenses.  The regenerated electrical signal is then 

applied to moving average filters, samplers, and threshold 

detectors (slicers) to recover the estimated version of the 

transmitted data stream. The bit error rate tester (BERT) is 

utilized subsequently to compare the received and 

transmitted data stream to determine the real-time BER. 

Note, (i) the parameters used and the link characteristics in  
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terms of the channel loss (visibility V, scintillation index 𝜎𝐼
2

, 

and refractive index structure parameter 𝐶𝑛
2 for turbulence) 

are monitored using SDR/GNU Radio; and (ii) the extracted 

link characteristics and the received OOK signal are 

generated in the GNU Radio software domain.  

A typical FSO system consists of the laser driver, laser 

source, additional Tx, and Rx optics, PD, and signal 

processing. Considering the FSO link with no interference, 

the received signal is given as: 

𝑦(𝑡) = 𝑥(𝑡)∑𝐼𝑖

𝑁𝑇𝑥

𝑖=1

+ 𝑛(𝑡), (1) 

where x(t) is the transmitted signal,  is the photodetector 

responsivity and n(t) is the additive white Gaussian noise 

(AWGN) with variance 𝜎𝑛
2. Ii = -𝛾lIohi is the received signal 

intensity from the ith Tx, where Io is received signal intensity 

for the ideal channel, ℎ𝑖 is the channel irradiance, l is the link 

distance, and 𝛾 is the weather-dependent attenuation 

coefficient (in dB/km) typically 0.43, 42.2 for the clear air 

and moderate fog, respectively [6]. For an FSO link, the 

channel gain due to the atmospheric conditions is defined by 

ℎ𝑎 = 𝑒
−𝛾𝑙  [23]. Note, weather attenuation as a function of 

wavelength   is given by  [24]: 

𝛾(𝜆) =  𝛼𝑚(𝜆) + 𝛼𝑎(𝜆) + 𝛽𝑚(𝜆) + 𝛽𝑎(𝜆), (2) 

where, 𝛼𝑚(𝜆) and 𝛼𝑎(𝜆) are the molecular and aerosol 

absorption coefficients, respectively, and 𝛽𝑚(𝜆) is the 

molecular scattering coefficient. The last term represents the 

aerosol scattering coefficient due to fog attenuation which is 

provided to the Tx switch unit in the proposed system and is 

expressed as [24]:

𝛽𝑎(𝜆)  =
3.91

𝑉
(

𝜆

550 nm
)
−𝑞

, (3) 

Table 1. Key System parameters. 

Parameter Value 

Link length l 100, 200, 300 m 

Number of bits 3.6 × 1010   bits 

Transmit power 𝑃Tx 10 dBm 

Rx lens diameter 𝐷Rx 50 mm 

Tx lens diameter  𝐷Tx 5 mm 

Tx beam divergence 𝜃 0.01° 

Optical wavelength 𝜆 850 nm 

Effective focal length at Rx ~50 mm 

Responsivity of PD at 830 nm 0.4 A/W 

Rx operating wavelength range 300-1100 nm 

Rx bandwidth 30 kHz-1.2 GHz 

Noise equivalent power 60 pW/√Hz 

Photodetector PIN 

Channel temporal correlation 10 ms 

Txs correlation length (for 100, 200 

and 300 m) 
~1, ~1.3, ~1.6 cm 

Tx separation distance 𝑑Tx ~7.5 cm 

Rx separation distance 𝑑Rx ~2.5 cm 

 
Figure 1. Schematic system block diagram. 
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where, q is the size distribution of scattering fog particles for 

which Kruse model is considered in this paper, as given by 

[25]: 

𝑞 =

{
 
 

 
 
      1.6                𝑉 > 50 km
1.3                6 km < 𝑉 < 50 km

0.16𝑉 + 0.34     1 km < 𝑉 < 6 km
𝑉 − 0.5                1 km < 𝑉 < 1 km
    0                         𝑉 < 0.5 km

. (4) 

The received power can be expressed as a function of 𝑃Tx 

and the system losses, which is given by: 

𝑃Rx = 10
𝐿Geo
10 × 10

𝐿Atm
𝑙

1000
10

    × 10
(
𝐿Misc
10

)
𝑃Tx , 

(5) 

where 𝐿Misc is the miscellaneous loss including the 

coupling losses (i.e., optics to fibre). The geometric and 

atmospheric losses are given, respectively by  [26], [27]: 

𝐿Geo(dB)  =  20 log10 (
𝐷rx

𝐷tx + 𝑙 ×  𝜃
) , (6) 

  𝐿Atm (
dB

km
) = 4.343𝛽𝑎(𝜆), (7) 

 where 𝐷tx  and 𝐷rx are the Tx and the Rx aperture diameters 

in meters, respectively and 𝜃 is the Tx beam divergence.  For 

varying thermal expansion in the channel, the scintillation 

index, which is used to estimate the turbulence effect, is 

given as [28]: 

𝜎𝐼
2 = 

〈𝐼2〉 − 〈𝐼〉2

〈𝐼〉2
 , (8) 

where 〈. 〉 denotes the ensemble average equivalent to long-

time averaging with the assumption of an ergodic process 

and I is the irradiance of the optical beam. The Rytov 

variance used for determining the strength of turbulence and 

is given by [28] : 

𝜎𝑅
2 = 1.23𝐶𝑛

2𝑘7/6𝑙11/6.     (9) 

The strength of turbulence can be classified as weak (𝜎𝑅
2 <

1), moderate (𝜎𝑅
2≌ 1), and strong (𝜎𝑅

2 > 1) [20]. For weak to 

Table 2. The number of Txs used as a function of l, V and 𝑳𝐀𝐭𝐦 under the fog condition. 

Link length l (m) Visibility V (km) Atmospheric loss 𝐿Atm (dB) Txs used 

100 

20 0.048 Tx-A1, Tx-B1 

2 0.48 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

1 0.96 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

200 

20 0.096 Tx-A1, Tx-B1 

5 0.41 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

1 2.7 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

300 

20 0.14 Tx-A1, Tx-B1 

8 0.36 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

1 4.1 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

    

Table 3.  The number of Txs used as a function of l, 𝝈𝑰
𝟐 and 𝑪𝒏

𝟐  under the turbulence condition. 

Link length l (m) Scintillation index 𝜎𝐼
2 

Refractive index structure parameter 𝐶𝑛
2 

(m
-2

3⁄ ) 
Txs used 

100 

5.9×10-9 10-20 Tx-A1, Tx-B1 

0.589 10-12 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

> 1 10-11 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

200 

2.01×10-8 10-20 Tx-A1, Tx-B1 

0.21 10-13 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

>1 10-12 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

300 

4.4×10-8 10-20 Tx-A1, Tx-B1 

0.414 10-13 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

>1 10-12 Tx-A1, Tx-B1, Tx-A2, Tx-B2 

    



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3092968, IEEE Access

 

VOLUME XX, 2017 9 

moderate turbulence, we can assume that 𝜎𝐼
2  = 𝜎𝑅

2. Note, k 

is the wave number, and  the refractive index structure 

parameter is expressed as [29]:

𝐶𝑛
2 = [79 × 10−6

𝑃

𝑇2
] 〈𝛿𝑇2〉𝑟−2/3, (10) 

where P is the atmospheric pressure in mbar, T is the 

temperature in Kelvin, and 𝛿𝑇 refers to the thermal 

difference between two points separated by a distance r.   

Assuming that, the transmitted and received signals of the 

proposed MIMO FSO system are uncorrelated [30], we 

numerically calculate the separation space between the Txs 

and the Rxs, which must exceed the correlation length 𝑑𝑐 ≈

√λ𝑙 . The correlation coefficient as a function of the 

separation distance 𝑑 between the Txs is given by [31]: 

𝜌 =  exp (
𝑑

𝑑𝑐
). (11) 

Using (3), (4), and (7),  𝐿Atm is estimated for a range of V 

from 20 km to 1 km. Using (8) and (9), 𝜎𝐼
2 is determined for 

𝐶𝑛
2 of 10-17 to 10-11, which are then adopted in the system 

simulation to evaluate the link performance in terms of the 

BER and therefore to determine 𝐿Atm(Thres) and 𝜎𝐼(Thres)
2 ,  

where BER range is ~10-5 to ~10-3. For the link with fog and 

based on the numerically simulated  𝐿Atm for a given V and 

l, selection of the Txs to used is carried out, as outlined in 

Table 2. Table 3 outlines the number of Txs used under 

turbulence for the link spans of 100, 200, and 300 m in the 

MIMO FSO system. Note, 𝜎𝐼
2 and 𝐶𝑛

2 are estimated to attain 

the upper limit forward error correction (FEC) BER of 3.8 × 

10-3. 

III. IMPLEMENTATION OF MIMO FSO IN GNU 
RADIO/SDR 

To investigate the performance of the proposed MIMO FSO 

system, we have implemented the SDR-based Tx, Rx, and 

the channel in GNU Radio, as well as a general-purpose 

processor (GPP)-based real-time signal processing 

framework. The GNU Radio can also work as a simulation 

environment without the need for real devices. Note, GNU 

Radio applications are commonly written in Python language 

as a package and are combined with digital signal processing 

(DSP) blocks integrated within GNU Radio and 

implemented in C++ to perform critical signal processing 

tasks [32]. Figure. 2 shows the MIMO FSO system 

implementation in the GNU Radio domain, which is 

composed of a Tx, a channel, and a Rx. 

 

 
(a) 

 
(b) 
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At the Tx, a pseudo random sequence of binary data in the 

OOK format at the output of the signal generator is applied 

to the throttle module, which is used to avoid CPU 

congestion following real time simulation.  The outputs of 

Throttles are applied to (i) the virtual sink modules; and (ii) 

the MIMO-Tx module. The output of which are applied to 

virtual sink modules. In addition, the outputs of the virtual 

sources, which represent the feedback data on atmospheric 

loss 𝐿Atm (input) in dB and turbulence strength 𝜎𝐼(input)
2  from 

the channel, are applied to the MIMO-Tx. The outputs of the 

 

(c) 
Figure  2. System implementation for: (a) Tx with fog and turbulence, (b) channel with the additive white gaussian noise, and (c) the Rx with 

real time BER estimation. 

 

 
Figure 3. OOK waveforms at the: (a) Tx Link A, (b) Tx link B, (c) optical Rx for a clear channel, and (d) Tx Link A, (e) Tx link B, and (f) optical Rx 

for an un-clear channel. 

(a)

(b)

(c)

(d)

(e)

(f)


or or
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MIMO-Tx, i.e., Since GNU Radio provides a graphical user 

interface (GUI) to generate and configure signal processing 

flow graphs, we have generated sample time waveforms at 

outputs of the Tx (links A and B), and the optical Rx in 

Figure 2, as depicted in Figures 3a, b, and c, respectively, 

under a clear channel, where only single Tx is active at any 

given time. Depending on the channel condition, provided 

𝐿Atm ≥ 𝐿Atm (Thres) of 0.3 and 𝜎𝐼
2  𝜎𝐼(Thres)

2  of 0.02, thus 

meeting the FEC BER limits of 3.8 10-3, additional Txs are 

switched on to ensure link availability. For this case, the 

simulated time waveforms are shown in Figure 3d-e. 

IV. RESULTS AND DISCUSSION 

We have investigated the implementation of MIMO FSO in 

SDR using the GNU Radio environment. The objective is to 

monitor and control the proposed system using a software 

platform without the need for changing the hardware 

platform and by only updating the software. Implementation 

of MIMO FSO utilizing the OOT DSP blocks, which is built 

from scratch, not only satisfies the purpose but also 

demonstrates real time system performance evaluation. It 

also has the potential of experimental implementation on the 

fly due to direct communications with the SDR platform. 

Here, we have considered a clear channel (i.e., with V of 20 

km), 𝑃Tx of 10 dBm, 0 dB channel loss, and additional losses 

including 𝐿Geo that are assumed to be low. Using the flow 

chart shown in Figure 4, we have carried out a simulation to 

determine the BER as a function of V for single FSO, MIMO 

FSO, and proposed FSO links with a range of 100, 200, and 

300 m under turbulence and fog conditions. 

 

 
(a) 

 
(b) 

 

Figure 4. System flow chart. 
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(c) 

Figure 5. BER vs. the visibility for single, MIMO and proposed FSO 

links of: (a) 100, (b) 200, and (c) 300 m with fog. 
 

Figure 5 depicts the BER plots for the three systems for 

the link range of 100, 200, and 300 m under the fog 

condition.  As shown in Figure 5(a), MIMO FSO 

outperforms the single FSO link for V < 18 km and 

particularly at lower values of V. At the FEC limit, MIMO 

FSO meets the BER criteria for all values of V in contrast to 

the single FSO link where the minimum V is 2 km with BER 

of 1.9 × 10-2.  For the proposed FSO link, the BER pattern 

follows the single FSO plot until V of 3km, beyond which 

the BER drops down to the MIMO FSO link level with BER 

of ~ 10-9, which is due to turning on additional Txs (i.e., Tx-

A2 and Tx-B2) as was explained in the previous section. 

Note, for the MIMO FSO link, the BER is flat beyond V of 4 

km.  We observe the same patterns for the BER as in Figure 

5 (a), for the 200 and 300 m link as depicted in Figures 5 (b) 

and (c), except for the switching taking place at V of 6 and 9 

km where the BER values are 1.3 × 10-3 and 7.4 × 10-4, 

respectively. After turning on additional Txs, BER of the 200 

and 300 m proposed FSO links improve to 1.6 × 10-9 at V of 

5 km and 5 × 10-9 at 8 km, respectively. Also observed are 

the BER plot for the MIMO FSO link, which is almost 

constant (i.e., 10-9) at V > 5 and 10 km in Figures 5 (b) and 

(c), respectively. calculated Additionally. The beam spot 

sizes of 17.5 and 34.9 mm in 100 and 200 m, respectively, 

are smaller, compared to 𝐷Rx. Therefore, 𝐿Geo is not 

considered. Due to the beam spot size of 52.4 mm, 

additional 𝐿Geo of 1.2 dB is introduced in 300 m link. to 1.6 

× 10-9 at V of 5 km and 5 × 10-9 at 8 km, respectively. Also 

observed are the BER plot for the MIMO FSO link, which is 

almost constant (i.e., 10-9) at V > 5 and 10 km in Figures 5 

(b) and (c), respectively. calculated Additionally. The beam 

spot sizes of 17.5 and 34.9 mm in 100 and 200 m, 

respectively, are smaller, compared to 𝐷Rx. Therefore, 𝐿Geo 

is not considered. Due to the beam spot size of 52.4 mm, 

additional 𝐿Geo of 1.2 dB is introduced in 300 m link.  

 
(a) 

 
(b) 

 
(c) 

Figure 6. The BER against 𝑪𝒏
𝟐   for single, MIMO and proposed 

FSO links of: (a) 100, (b) 200, and (c) 300 m with turbulence. 
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Note that, for all three systems, the estimated BER is 

above the FEC limit for 𝜎𝐼 
2 < 0.02, therefore, 𝜎𝐼(𝑇ℎ𝑟𝑒𝑠)

2  was 

set at ≤ 0.02. The systems were then simulated under weak 

to moderate turbulence (i.e., 10-11 < 𝐶𝑛
2 < 10-17) to determine 

the BER performance as illustrated in Figure 6 for all three 

systems and link spans of 100, 200, and 300 m. In these plots, 

we also observe the same pattern as in Figure 6, with the 

BER of the 100 m proposed FSO link following the single 

FSO link plot for 𝐶𝑛
2 of 10-13m

-2
3⁄ , beyond which the BER 

improves considerably, reaching the level in MIMO FSO 

link at 𝐶𝑛
2 of 10-12   from 10-4 to 2.5 × 10-8 , see Figure 6 (a). 

This improvement in the BER performance is due to 

switching additional Txs of Tx-A2 and Tx-B2.  In Figure 6 

(b), the switch-over in the BER plot for the proposed link is 

at 𝐶𝑛
2 < 10-14 dropping down to the BER of 10-8 at 𝐶𝑛

2 < 10-13 

and then increasing with 𝐶𝑛
2. Finally, in Figure 6(c), for the 

proposed system the BER changes over from 10-3 to 3.210-

9 at 𝐶𝑛
2 of 10-14 to 10-13, respectively. Note, for (i) both MIMO 

FSO and proposed FSO links the BER floor level is ~ 10-9 

for 𝐶𝑛
2 > 10-13; and (ii) the 200 and 300 m long MIMO FSO 

link performance is deteriorated more under turbulence 

effects (i.e., 𝐶𝑛
2 > 10-13). 

V. CONCLUSION 

In this work, we have demonstrated a real-time SDR/GNU 
Radio implementation of a MIMO FSO link with adaptive 
switching and investigated its performance under different 
atmospheric conditions. We made the bit-by-bit comparison 
with the BERT, a signal processing block in GNU Radio. It 
was shown that, the proposed switching mechanism 
mitigated the fog and turbulence induced attenuation 
effectively for range of transmission link spans. We outlined 
that, the proposed MIMO FSO system with switching 
technique could effectively operates in heavy fog with a BER 
within the range of 10-8 to ~ 10-7 , for the link spans of 100, 
200, and 300 m. Additionally, the proposed FSO links 
experienced a peak turn-over degradation after switching, 
with BER > 10-4 beyond 𝐶𝑛

2 of 10-12 in 200 m and 10-13 in 
300 m respectively, hence, cannot mitigate moderate 
turbulence effectively, whereas in 100 m link, the proposed 
system can mitigate moderate turbulence with BER of ~10-7. 

We concluded that, (i) in MIMO FSO, parallel transmission 
of the same data effectively mitigates fog induced 
attenuation; and (ii) switching on additional Txs overcomes 
the weak turbulence effect.  
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